C. F. Madigan and J. C. Sturm, Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification, Applied Physics Letters, vol.27, issue.13, pp.1650-1652, 2000.
DOI : 10.1016/0379-6779(93)90568-H

S. Möller and S. R. Forrest, Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays, Journal of Applied Physics, vol.13, issue.5, pp.3324-3327, 2002.
DOI : 10.1038/380029a0

K. Neyts, Simulation of light emission from thin-film microcavities, Journal of the Optical Society of America A, vol.15, issue.4, p.962, 1998.
DOI : 10.1364/JOSAA.15.000962

S. K. So, W. K. Choi, L. M. Leung, and K. Neyts, Interference effects in bilayer organic light-emitting diodes, Applied Physics Letters, vol.74, issue.14, p.1939, 1999.
DOI : 10.1117/12.151148

V. Cimrova and D. Neher, ???phenylene vinylene), Journal of Applied Physics, vol.53, issue.6, pp.3299-3306, 1996.
DOI : 10.1063/1.343793

K. Neyts, Microcavity effects and the outcoupling of light in displays and lighting applications based on thin emitting films, Applied Surface Science, vol.244, issue.1-4, pp.1-4, 2005.
DOI : 10.1016/j.apsusc.2004.09.156

L. J. Dodabalapur, T. M. Rothberg, and . Miller, Color variation with electroluminescent organic semiconductors in multimode resonant cavities, Applied Physics Letters, vol.58, issue.18, pp.2308-2310, 1994.
DOI : 10.1038/357477a0

Y. ?ahin, S. Alem, R. D. Bettignies, and J. M. Nunzi, Development of air stable polymer solar cells using an inverted gold on top anode structure, Thin Solid Films, vol.476, issue.2, pp.340-343, 2005.
DOI : 10.1016/j.tsf.2004.10.018

S. K. Hau, H. L. Yip, N. S. Baek, J. Zou, K. O. Malley et al., Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer, Applied Physics Letters, vol.92, issue.25, pp.2006-2009, 2008.
DOI : 10.1021/jp050745x

M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer, Applied Physics Letters, vol.85, issue.14, 2006.
DOI : 10.1063/1.114370

G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Efficient inverted polymer solar cells, Applied Physics Letters, vol.94, issue.25, pp.1-4, 2006.
DOI : 10.1063/1.324152

M. Chen, Y. Kuo, H. Lin, Y. Chao, and M. Wong, Highly stable inverted organic photovoltaics using aluminum-doped zinc oxide as electron transport layers, Journal of Power Sources, vol.275, pp.274-278, 2015.
DOI : 10.1016/j.jpowsour.2014.11.011

J. Birnstock, 4.4L: Late-News Paper: Novel OLEDs for Full Color Displays with Highest Power Efficiencies and Long Lifetime, SID Symposium Digest of Technical Papers, vol.85, issue.1, pp.40-43, 2005.
DOI : 10.1889/1.2036459

M. Pfeiffer, Doped organic semiconductors: Physics and application in light emitting diodes, Organic Electronics, vol.4, issue.2-3, pp.3-89, 2003.
DOI : 10.1016/j.orgel.2003.08.004

Y. U. Shi and S. Jabarin, Glass-transition and melting behavior of poly(ethylene terephthalate)/poly(ethylene 2,6-naphthalate) blends, Journal of Applied Polymer Science, vol.17, issue.1, pp.11-22, 2000.
DOI : 10.1021/ma00138a017

S. Ophir, . Kenig, Y. Shai, J. Barka, and . Miltz, Hot-fillable containers containing PET/PEN copolymers and blends, Polymer Engineering and Science, vol.272, issue.9, pp.1670-1675, 2004.
DOI : 10.1007/978-1-4615-4853-9_2

J. S. Park, Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors, Applied Physics Letters, vol.2008, issue.1, pp.1-4, 2009.
DOI : 10.1109/JPROC.2005.851534

D. R. Baigent, R. N. Marks, N. C. Greenham, R. H. Friend, S. C. Moratti et al., Conjugated polymer light???emitting diodes on silicon substrates, Applied Physics Letters, vol.65, issue.21, pp.2636-2638, 1994.
DOI : 10.1002/adma.19940060612

M. H. Lu, High-efficiency top-emitting organic light-emitting devices, Applied Physics Letters, vol.81, issue.21, pp.3921-3923, 2002.
DOI : 10.1117/12.151148

C. W. Tang and S. Vanslyke, Organic electroluminescent diodes, Applied Physics Letters, vol.78, issue.12, pp.913-915, 1987.
DOI : 10.1021/ja01593a006

G. Laurans, Electrode transparente en nanofils d'argent : intégration dans les cellules et modules photovoltaïques organiques sur substrat souple, 2016.

Z. Chen, B. Cotterell, and W. Wang, The fracture of brittle thin films on compliant substrates in flexible displays, Engineering Fracture Mechanics, vol.69, issue.5, pp.597-603, 2002.
DOI : 10.1016/S0013-7944(01)00104-7

D. S. Hecht, L. Hu, and G. Irvin, Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures, Advanced Materials, vol.110, issue.13, pp.1482-1513, 2011.
DOI : 10.1021/cr9002962

C. Guillén and J. Herrero, Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates, Thin Solid Films, vol.480, issue.481, pp.480-481, 2005.
DOI : 10.1016/j.tsf.2004.11.040

D. Munoz-rojas and J. Macmanus-driscoll, Spatial atmospheric atomic layer deposition: a new laboratory and industrial tool for low-cost photovoltaics, Mater. Horiz., vol.20, issue.3, pp.314-320, 2014.
DOI : 10.1002/adma.200801253

URL : https://hal.archives-ouvertes.fr/hal-01067640

L. S. Hung, C. W. Tang, and M. G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode, Applied Physics Letters, vol.12, issue.2, pp.152-154, 1997.
DOI : 10.1063/1.362350

L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes, Applied Physics Letters, vol.78, issue.4, pp.544-546, 2001.
DOI : 10.1063/1.122612

J. Lee, Y. Park, D. Y. Kim, H. Y. Chu, H. Lee et al., High efficiency organic light-emitting devices with Al/NaF cathode, Applied Physics Letters, vol.37, issue.2, pp.173-175, 2003.
DOI : 10.1063/1.1446988

H. Kanno, Y. Sun, and S. R. Forrest, High-efficiency top-emissive white-lightemitting organic electrophosphorescent devices, Appl. Phys. Lett, vol.86, issue.26, pp.1-3, 2005.
DOI : 10.1063/1.1947376

F. C. Chen, J. L. Wu, S. S. Yang, K. H. Hsieh, and W. C. Chen, Cesium carbonate as a functional interlayer for polymer photovoltaic devices, Journal of Applied Physics, vol.103, issue.10, pp.2-7, 2008.
DOI : 10.1063/1.2181635

Y. J. Pu, M. Miyamoto, K. I. Nakayama, T. Oyama, Y. Masaaki et al., Lithium phenolate complexes for an electron injection layer in organic light-emitting diodes, Organic Electronics, vol.10, issue.2, pp.228-232, 2009.
DOI : 10.1016/j.orgel.2008.11.003

J. Endo, T. Matsumoto, and J. Kido, Organic Electroluminescent Devices Having Metal Complexes as Cathode Interface Layer, Japanese Journal of Applied Physics, vol.41, issue.Part 2, No. 7A, 2002.
DOI : 10.1143/JJAP.41.L800

Y. Liu, M. A. Summers, C. Edder, J. M. Fréchet, and M. D. Mcgehee, Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic-Inorganic Hybrid Photovoltaic Cells, Advanced Materials, vol.12, issue.452, pp.2960-2964, 2005.
DOI : 10.1103/PhysRevB.67.115326

C. Waldauf, Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact, Applied Physics Letters, vol.89, issue.23, pp.1-4, 2006.
DOI : 10.1063/1.2198930

J. Owen, M. S. Son, K. H. Yoo, B. D. Ahn, and S. Y. Lee, Organic photovoltaic devices with Ga-doped ZnO electrode, Applied Physics Letters, vol.90, issue.3, 2007.
DOI : 10.1116/1.581887

S. K. Hau, H. Yip, O. Acton, N. S. Baek, H. Ma et al., Interfacial modification to improve inverted polymer solar cells, Journal of Materials Chemistry, vol.86, issue.42, p.5113, 2008.
DOI : 10.1039/b808004f

F. C. Krebs, Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes, Solar Energy Materials and Solar Cells, vol.92, issue.7, pp.715-726, 2008.
DOI : 10.1016/j.solmat.2008.01.013

.. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao et al., An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer, Applied Physics Letters, vol.55, issue.22, pp.1-4, 2008.
DOI : 10.1016/S0963-8695(96)00044-8

P. De-bruyn, D. J. Moet, and P. W. Blom, A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer, Organic Electronics, vol.11, issue.8, pp.1419-1422, 2010.
DOI : 10.1016/j.orgel.2010.06.002

K. Morii, Encapsulation-free hybrid organic-inorganic light-emitting diodes, Applied Physics Letters, vol.89, issue.18, pp.1-4, 2006.
DOI : 10.1038/nature03376

H. J. Bolink, E. Coronado, D. Repetto, and M. Sessolo, Air stable hybrid organicinorganic light emitting diodes using ZnO as the cathode, Appl. Phys. Lett, vol.91, issue.22, pp.6-9, 2007.

M. Sessolo and H. J. Bolink, Hybrid Organic-Inorganic Light-Emitting Diodes, Advanced Materials, vol.41, issue.16, pp.1829-1874, 2011.
DOI : 10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5

D. Kabra, M. H. Song, B. Wenger, R. H. Friend, and H. J. Snaith, High Efficiency Composite Metal Oxide-Polymer Electroluminescent Devices: A Morphological and Material Based Investigation, Advanced Materials, vol.127, issue.18, pp.3447-3452, 2008.
DOI : 10.1002/adma.200800202

N. Tokmoldin, N. Griffiths, D. D. Bradley, and S. Hague, as an Electron-Injection Layer, Advanced Materials, vol.40, issue.452, pp.3475-3478, 2009.
DOI : 10.1002/adma.200802594

M. Lu, P. De-bruyn, H. T. Nicolai, G. A. Wetzelaer, and P. W. Blom, Hole-enhanced electron injection from ZnO in inverted polymer light-emitting diodes, Organic Electronics, vol.13, issue.9, pp.1693-1699, 2012.
DOI : 10.1016/j.orgel.2012.05.032

Y. Zhou, A Universal Method to Produce Low-Work Function Electrodes for Organic Electronics, Science, vol.12, issue.18, pp.327-332, 2012.
DOI : 10.1016/j.orgel.2011.02.017

P. J. Hotchkiss, Modification of the Surface Properties of Indium Tin Oxide with Benzylphosphonic Acids: A Joint Experimental and Theoretical Study, Advanced Materials, vol.30, issue.44, pp.4496-4501, 2009.
DOI : 10.1080/10426509808545455

P. J. Hotchkiss, The Modification of Indium Tin Oxide with Phosphonic Acids: Mechanism of Binding, Tuning of Surface Properties, and Potential for Use in Organic Electronic Applications, Accounts of Chemical Research, vol.45, issue.3, pp.337-346, 2011.
DOI : 10.1021/ar200119g

Z. He, C. Zhong, S. Su, M. Xu, H. Wu et al., Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nature Photonics, vol.16, issue.9, pp.593-597, 2012.
DOI : 10.1002/adfm.200600489

T. Chiba, Y. J. Pu, M. Hirasawa, A. Masuhara, H. Sasabe et al., Solution-Processed Inorganic???Organic Hybrid Electron Injection Layer for Polymer Light-Emitting Devices, ACS Applied Materials & Interfaces, vol.4, issue.11, pp.6104-6108, 2012.
DOI : 10.1021/am301732m

T. Chiba, Y. J. Pu, S. Takahashi, H. Sasabe, and J. Kido, Lithium Phenolate Complexes with a Pyridine-Containing Polymer for Solution-Processable Electron Injection Layers in PLEDs, Advanced Functional Materials, vol.21, issue.38, pp.6038-6045, 2014.
DOI : 10.1002/adfm.201001252

F. Huang, H. Wu, D. Wang, W. Yang, and Y. Cao, Novel Electroluminescent Conjugated Polyelectrolytes Based on Polyfluorene, Chemistry of Materials, vol.16, issue.4, pp.708-716, 2004.
DOI : 10.1021/cm034650o

Z. He, Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells, Advanced Materials, vol.16, issue.40, pp.4636-4643, 2011.
DOI : 10.1002/adfm.200600489

J. H. Seo, Low-temperature solution-processed flexible organic solar cells with PFN/AgNWs cathode, Nano Energy, vol.16, pp.122-129, 2015.
DOI : 10.1016/j.nanoen.2015.06.013

S. Xue, L. Yao, F. Shen, C. Gu, H. Wu et al., Highly Efficient and Fully Solution-Processed White Electroluminescence Based on Fluorescent Small Molecules and a Polar Conjugated Polymer as the Electron-Injection Material, Advanced Functional Materials, vol.23, issue.5, pp.1092-1097, 2012.
DOI : 10.1002/adma.201002636

S. Van-reenen, S. Kouijzer, R. , J. Janssen, M. M. Wienk et al., Origin of Work Function Modification by Ionic and Amine-Based Interface Layers Adv

S. Liu, High ? Efficiency Polymer Solar Cells via the Incorporation of an Ami ? no ? Functionalized Conjugated Metallopolymer as a Cathode Inter ? layer, 2013.

R. Xia, Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells, Advanced Energy Materials, vol.108, issue.6, pp.718-723, 2013.
DOI : 10.1063/1.3518509

T. Xiong, F. Wang, X. Qiao, and D. Ma, A soluble nonionic surfactant as electron injection material for high-efficiency inverted bottom-emission organic light emitting diodes, Applied Physics Letters, vol.93, issue.12, pp.2006-2009, 2008.
DOI : 10.1063/1.123397

M. Kielar, O. Dhez, G. Pecastaings, A. Curutchet, and L. Hirsch, Long-Term Stable Organic Photodetectors with Ultra Low Dark Currents for High Detectivity Applications, Scientific Reports, vol.3, issue.1, 2016.
DOI : 10.1063/1.4938554

Y. H. Kim, T. H. Han, H. Cho, S. Y. Min, C. L. Lee et al., Polyethylene Imine as an Ideal Interlayer for Highly Efficient Inverted Polymer Light-Emitting Diodes, Advanced Functional Materials, vol.87, issue.24, pp.3808-3814, 2014.
DOI : 10.1063/1.2033129

P. Li, High-efficiency inverted polymer solar cells controlled by the thickness of polyethylenimine ethoxylated (PEIE) interfacial layers, Phys. Chem. Chem. Phys., vol.23, issue.43, pp.23792-23801, 2014.
DOI : 10.1002/adma.201004311

C. Liu, Efficiency Improvement of Inverted Organic Solar Cells via Introducing a Series of Polyfluorene Dots in Electron Transport Layer, The Journal of Physical Chemistry C, vol.119, issue.29, pp.16462-16467, 2015.
DOI : 10.1021/acs.jpcc.5b04079

X. Zhang, Preparation and employment of carbon nanodots to improve electron extraction capacity of polyethylenimine interfacial layer for polymer solar cells, Organic Electronics, vol.33, pp.62-70, 2016.
DOI : 10.1016/j.orgel.2016.03.004

S. Baek, J. H. Kim, J. Kang, H. Lee, J. Y. Park et al., Enhancing the Internal Quantum Efficiency and Stability of Organic Solar Cells via Metallic Nanofunnels, Advanced Energy Materials, vol.128, issue.24, p.1501393, 2015.
DOI : 10.1021/ja061762i

T. H. Lee, H. Choi, B. Walker, T. Kim, H. Kim et al., Replacing the metal oxide layer with a polymer surface modifier for high-performance inverted polymer solar cells, RSC Adv., vol.103, issue.9, pp.4791-4795, 2014.
DOI : 10.1063/1.2902804

D. Yang, P. Fu, F. Zhang, N. Wang, J. Zhang et al., High efficiency inverted polymer solar cells with room-temperature titanium oxide/polyethylenimine films as electron transport layers, J. Mater. Chem. A, vol.23, issue.41, 2014.
DOI : 10.1002/adma.201103006

P. Li, PEIE capped ZnO as cathode buffer layer with enhanced charge transfer ability for high efficiency polymer solar cells, Synthetic Metals, vol.203, pp.243-248, 2015.
DOI : 10.1016/j.synthmet.2015.02.021

A. K. Kyaw, Efficient Solution-Processed Small-Molecule Solar Cells with Inverted Structure, Advanced Materials, vol.18, issue.17, pp.2397-2402, 2013.
DOI : 10.1039/b808004f

Z. Li, Enhanced Electron Extraction Capability of Polymer Solar Cells via Employing Electrostatically Self-Assembled Molecule on Cathode Interfacial Layer, ACS Applied Materials & Interfaces, vol.8, issue.12, pp.8224-8231, 2016.
DOI : 10.1021/acsami.5b12394

H. C. Chen, S. W. Lin, J. M. Jiang, Y. W. Su, and K. H. Wei, Solution-Processed Zinc Oxide/Polyethylenimine Nanocomposites as Tunable Electron Transport Layers for Highly Efficient Bulk Heterojunction Polymer Solar Cells, ACS Applied Materials & Interfaces, vol.7, issue.11, pp.6273-6281, 2015.
DOI : 10.1021/acsami.5b00521

H. C. Cha, Performance improvement of large-area roll-to-roll slot-die-coated inverted polymer solar cell by tailoring electron transport layer, Solar Energy Materials and Solar Cells, vol.130
DOI : 10.1016/j.solmat.2014.07.003

F. C. Wu, K. C. Tung, W. Y. Chou, F. C. Tang, and H. L. Cheng, Charge selectivity in polymer:Fullerene-based organic solar cells with a chemically linked polyethylenimine interlayer, Organic Electronics, vol.29, pp.120-126, 2016.
DOI : 10.1016/j.orgel.2015.11.037

T. M. Khan, Y. Zhou, A. Dindar, J. W. Shim, C. Fuentes-hernandez et al., Organic Photovoltaic Cells with Stable Top Metal Electrodes Modified with Polyethylenimine, ACS Applied Materials & Interfaces, vol.6, issue.9, pp.6202-6207, 2014.
DOI : 10.1021/am501236z

Q. Dong, Easy accessible polymer additive in tuning the crystal-growth of perovskite thin-film for high efficient solar cells, Nanoscale, pp.5552-5558, 2016.

K. Yao, X. Wang, Y. X. Xu, F. Li, and L. Zhou, Multilayered Perovskite Materials Based on Polymeric-Ammonium Cations for Stable Large-Area Solar Cell, Chemistry of Materials, vol.28, issue.9, pp.3131-3138, 2016.
DOI : 10.1021/acs.chemmater.6b00711

S. Dong, Polyethylenimine as a dual functional additive for electron transporting layer in efficient solution processed planar heterojunction perovskite solar cells, RSC Adv., vol.134, issue.63, pp.57793-57798, 2016.
DOI : 10.1021/ja307789s

X. Jia, A low-cost and low-temperature processable zinc oxidepolyethylenimine (ZnO:PEI) nano-composite as cathode buffer layer for organic and perovskite solar cells, Org. Electron. physics, Mater. Appl, vol.38, pp.150-157, 2016.

J. Ha, H. Kim, H. Lee, K. Lim, T. Lee et al., Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers, Solar Energy Materials and Solar Cells, vol.161, issue.c, pp.338-346, 2017.
DOI : 10.1016/j.solmat.2016.11.031

H. Yang, Effect of polyelectrolyte interlayer on efficiency and stability of p-i-n perovskite solar cells, Solar Energy, vol.139, pp.190-198, 2016.
DOI : 10.1016/j.solener.2016.09.048

S. Song, Interfacial electron accumulation for efficient homo-junction perovskite solar cells, Nano Energy, vol.28, pp.269-276, 2016.
DOI : 10.1016/j.nanoen.2016.06.046

E. Saracco, Work Function Tuning for High-Performance Solution-Processed Organic Photodetectors with Inverted Structure, Advanced Materials, vol.1, issue.452, pp.1-5, 2013.
DOI : 10.1021/jp4001237

M. Zaidi, P. Lugli, and . Abdellah, Spray deposition of Polyethylenimine thin films for the fabrication of fully-sprayed organic photodiodes, Org. Electron. physics, Mater. Appl, vol.23, pp.186-192, 2015.

A. Pierre, I. Deckman, P. B. Lechene, and A. C. Arias, High Detectivity All-Printed Organic Photodiodes, Advanced Materials, vol.21, issue.41, pp.6411-6417, 2015.
DOI : 10.1002/adfm.201002290

S. R. Tseng, Electron transport and electroluminescent efficiency of conjugated polymers, Synthetic Metals, vol.159, issue.1-2, pp.137-141, 2009.
DOI : 10.1016/j.synthmet.2008.08.017

S. Höfle, A. Schienle, M. Bruns, U. Lemmer, and A. Colsmann, Enhanced Electron Injection into Inverted Polymer Light-Emitting Diodes by Combined Solution-Processed Zinc Oxide/Polyethylenimine Interlayers, Advanced Materials, vol.3, issue.17, pp.2750-2754, 2014.
DOI : 10.1002/aenm.201200532

T. C. Monson, M. T. Lloyd, D. C. Olson, Y. J. Lee, and J. W. Hsu, Photocurrent Enhancement in Polythiophene- and Alkanethiol-Modified ZnO Solar Cells, Advanced Materials, vol.19, issue.24, pp.4755-4759, 2008.
DOI : 10.1103/PhysRevB.67.064203

D. C. Olson, Effect of ZnO Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells, The Journal of Physical Chemistry C, vol.112, issue.26, pp.9544-9547, 2008.
DOI : 10.1021/jp802626u

D. C. Olson, Effect of Polymer Processing on the Performance of Poly(3-hexylthiophene)/ZnO Nanorod Photovoltaic Devices, The Journal of Physical Chemistry C, vol.111, issue.44, pp.16640-16645, 2007.
DOI : 10.1021/jp0757816

Q. Zheng, Hybrid graphene???ZnO nanocomposites as electron acceptor in polymer-based bulk-heterojunction organic photovoltaics, Journal of Physics D: Applied Physics, vol.45, issue.45, p.5103, 2012.
DOI : 10.1088/0022-3727/45/45/455103

T. Stübinger and W. Brütting, Exciton diffusion and optical interference in organic donor???acceptor photovoltaic cells, Journal of Applied Physics, vol.253, issue.7, pp.3632-3641, 2001.
DOI : 10.1016/S0379-6779(97)80252-4

D. E. Markov, E. Amsterdam, P. W. Blom, A. B. Sieval, and J. C. Hummelen, Accurate Measurement of the Exciton Diffusion Length in a Conjugated Polymer Using a Heterostructure with a Side-Chain Cross-Linked Fullerene Layer, The Journal of Physical Chemistry A, vol.109, issue.24, pp.5266-5274, 2005.
DOI : 10.1021/jp0509663

A. Köhnen, M. Irion, M. C. Gather, N. Rehmann, P. Zacharias et al., Highly color-stable solution-processed multilayer WOLEDs for lighting application, Journal of Materials Chemistry, vol.515, issue.16
DOI : 10.1039/b924968k

H. Fukagawa, Highly efficient and air-stable inverted organic light-emitting diode composed of inert materials, Applied Physics Express, vol.7, issue.8, 2014.
DOI : 10.7567/APEX.7.082104

S. Stolz, Investigation of Solution-Processed Ultrathin Electron Injection Layers for Organic Light-Emitting Diodes, ACS Applied Materials & Interfaces, vol.6, issue.9, pp.6616-6622, 2014.
DOI : 10.1021/am500287y

X. Yang, R. Wang, C. Fan, G. Li, Z. Xiong et al., Ethoxylated polyethylenimine as an efficient electron injection layer for conventional and inverted polymer light emitting diodes, Organic Electronics, vol.15, issue.10, pp.2387-2394, 2014.
DOI : 10.1016/j.orgel.2014.07.009

Y. J. Pu, Fabrication of Organic Light-Emitting Devices Comprising Stacked Light-Emitting Units by Solution-Based Processes, Advanced Materials, vol.4, issue.8, pp.1327-1332, 2015.
DOI : 10.1021/am301732m

T. Chiba, Y. J. Pu, and J. Kido, Organic Light-Emitting Devices with Tandem Structure, Top. Curr. Chem, vol.374, issue.3, pp.1-17, 2016.
DOI : 10.1007/978-3-319-59304-3_11

S. Stolz, High-Performance Electron Injection Layers with a Wide Processing Window from an Amidoamine-Functionalized Polyfluorene, ACS Applied Materials & Interfaces, vol.8, issue.20, pp.12959-12967, 2016.
DOI : 10.1021/acsami.6b03557

X. Zhang, Bright Perovskite Nanocrystal Films for Efficient Light-Emitting Devices, The Journal of Physical Chemistry Letters, vol.7, issue.22, pp.4602-4610, 2016.
DOI : 10.1021/acs.jpclett.6b02073

D. I. Son, H. H. Kim, S. Cho, D. K. Hwang, J. W. Seo et al., Carrier transport of inverted quantum dot LED with PEIE polymer, Organic Electronics, vol.15, issue.4, pp.886-892, 2014.
DOI : 10.1016/j.orgel.2014.01.014

D. I. Son, H. H. Kim, D. K. Hwang, S. Kwon, and W. K. Choi, Inverted CdSe???ZnS quantum dots light-emitting diode using low-work function organic material polyethylenimine ethoxylated, J. Mater. Chem. C, vol.51, issue.3, pp.510-514, 2014.
DOI : 10.1088/0957-4484/19/39/395201

H. H. Kim, Inverted Quantum Dot Light Emitting Diodes using Polyethylenimine ethoxylated modified ZnO, Scientific Reports, vol.19, issue.1, p.8968, 2015.
DOI : 10.1088/0957-4484/19/39/395201

URL : http://doi.org/10.1038/srep08968

Y. H. Kim, T. H. Han, H. Cho, S. Y. Min, C. L. Lee et al., Polyethylene Imine as an Ideal Interlayer for Highly Efficient Inverted Polymer Light-Emitting Diodes, Advanced Functional Materials, vol.87, issue.24, pp.3808-3814, 2014.
DOI : 10.1063/1.2033129

H. C. Weerasinghe, N. Rolston, D. Vak, A. D. Scully, and R. H. Dauskardt, A stability study of roll-to-roll processed organic photovoltaic modules containing a polymeric electron-selective layer, Solar Energy Materials and Solar Cells, vol.152, pp.133-140, 2016.
DOI : 10.1016/j.solmat.2016.03.034

S. Chen, J. R. Manders, S. Tsang, and F. So, Metal oxides for interface engineering in polymer solar cells, Journal of Materials Chemistry, vol.9, issue.2, pp.24202-24212, 2012.
DOI : 10.1039/B612489E

B. Tian, G. Williams, D. Ban, and H. Aziz, cathode, Journal of Applied Physics, vol.12, issue.10, 2011.
DOI : 10.1016/j.tsf.2004.10.027

URL : https://hal.archives-ouvertes.fr/hal-00739597

T. Tong, Adhesion in organic electronic structures, Journal of Applied Physics, vol.44, issue.8, 2009.
DOI : 10.1063/1.2388688

R. Phatak, T. Y. Tsui, and H. Aziz, Dependence of dark spot growth on cathode/organic interfacial adhesion in organic light emitting devices, Journal of Applied Physics, vol.724, issue.5, 2012.
DOI : 10.1117/12.512505

Q. Wang, G. Williams, T. Tsui, and H. Aziz, Photochemical deterioration of the organic/metal contacts in organic optoelectronic devices, Journal of Applied Physics, vol.112, issue.6, pp.0-7, 2012.
DOI : 10.1016/0167-6636(90)90047-J

W. Greenbank, Improved mechanical adhesion and electronic stability of organic solar cells with thermal ageing: the role of diffusion at the hole extraction interface, J. Mater. Chem. A, vol.22, issue.6, pp.2911-2919, 2017.
DOI : 10.1002/adma.200903420

S. Scholz, D. Kondakov, B. Lüssem, and K. Leo, Degradation Mechanisms and Reactions in Organic Light-Emitting Devices, Chemical Reviews, vol.115, issue.16, pp.8449-8503, 2015.
DOI : 10.1021/cr400704v

R. Meerheim, K. Walzer, M. Pfeiffer, and K. Leo, Ultrastable and efficient red organic light emitting diodes with doped transport layers, Applied Physics Letters, vol.89, issue.6, pp.2004-2007, 2006.
DOI : 10.1063/1.2133922

F. Löser, Improvement of device efficiency in PIN-OLEDs by controlling the charge carrier balance and intrinsic outcoupling methods, Journal of Photonics for Energy, vol.2, issue.1, p.21207, 2012.
DOI : 10.1117/1.JPE.2.021207

J. Liu, Highly Efficient and Stable Electron Injection Layer for Inverted Organic Light-Emitting Diodes, ACS Applied Materials & Interfaces, vol.7, issue.12, pp.6438-6443, 2015.
DOI : 10.1021/am506300c

S. Stolz, Y. Zhang, U. Lemmer, G. Hernandez-sosa, and H. Aziz, Degradation Mechanisms in Organic Light-Emitting Diodes with Polyethylenimine as a Solution-Processed Electron Injection Layer, ACS Applied Materials & Interfaces, vol.9, issue.3, pp.2776-2785, 2017.
DOI : 10.1021/acsami.6b15062

Y. Zhang, M. M. Abdelmalek, Q. Wang, and H. Aziz, Degradation mechanism in simplified phosphorescent organic light-emitting devices utilizing one material for hole transport and emitter host, Applied Physics Letters, vol.103, issue.6, pp.6-10, 2013.
DOI : 10.1063/1.3079797

H. Fukagawa, T. Shimizu, H. Hanashima, Y. Osada, M. Suzuki et al., Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Diodes Using Platinum Complexes, Advanced Materials, vol.89, issue.37, pp.5099-5103, 2012.
DOI : 10.1063/1.2268354

H. Fukagawa, 46.4: Effects of Electron Injection Layer on Storage and Operational Stability of Air-Stable OLEDs, SID Symposium Digest of Technical Papers, vol.21, issue.1, pp.696-699, 2015.
DOI : 10.1039/c1jm12421h

H. Fukagawa, Demonstration of Highly Efficient and Air-Stable OLED Utilizing Novel Heavy-Doping Technique, SID Symp. Dig. Tech. Pap, vol.558, pp.790-793, 2016.

J. Peng, A facile solution-processed alumina film as an efficient electron-injection layer for inverted organic light-emitting diodes, J. Mater. Chem. C, vol.125, issue.5, p.864, 2014.
DOI : 10.1021/ja027945w

J. H. Youn, Improving the lifetime of a polymer light-emitting diode by introducing solution processed tungsten-oxide, Journal of Materials Chemistry C, vol.94, issue.6, pp.3250-3254, 2013.
DOI : 10.1016/j.solmat.2009.10.026

S. J. Cha, S. N. Cho, W. H. Lee, H. S. Chung, I. N. Kang et al., Thermally Cross-Linkable Hole Transport Polymers for Solution-Based Organic Light-Emitting Diodes, Macromolecular Rapid Communications, vol.490, issue.201, pp.807-812, 2014.
DOI : 10.1088/0957-4484/24/48/484003

D. Costenaro, F. Carniato, G. Gatti, and C. Bisio, Organo-modified ZnO nanoparticles: tuning of the optical properties for PLED device fabrication, New J. Chem., vol.103, issue.12, pp.6205-6211, 2014.
DOI : 10.1021/jp9839450

C. Y. Ng, High efficiency solution processed fluorescent yellow organic light-emitting diode through fluorinated alcohol treatment at the emissive layer/cathode interface, Journal of Physics D: Applied Physics, vol.47, issue.1, p.15106, 2014.
DOI : 10.1088/0022-3727/47/1/015106

J. Kim, A. Kanwat, H. M. Kim, and J. Jang, Solution processed polymer light emitting diode with vanadium-oxide doped PEDOT:PSS, physica status solidi (a), vol.77, issue.3, pp.640-645, 2015.
DOI : 10.1063/1.1315344

K. Gilissen, Ultrasonic spray coating as deposition technique for the lightemitting layer in polymer LEDs, Org. Electron. physics, Mater. Appl, vol.20, pp.31-35, 2015.

L. Edman, M. A. Summers, S. K. Buratto, and A. J. Heeger, Polymer light-emitting electrochemical cells: Doping, luminescence, and mobility, Physical Review B, vol.111, issue.112
DOI : 10.1063/1.1512950

Y. Shao, G. C. Bazan, and A. J. Heeger, Long-Lifetime Polymer Light-Emitting Electrochemical Cells, Advanced Materials, vol.70, issue.3, pp.365-370, 2007.
DOI : 10.1103/PhysRevB.70.115212

Z. Yu, M. Wang, G. Lei, J. Liu, L. Li et al., Stabilizing the Dynamic p???i???n Junction in Polymer Light-Emitting Electrochemical Cells, The Journal of Physical Chemistry Letters, vol.2, issue.5, pp.367-372, 2011.
DOI : 10.1021/jz200071b

A. Sandström, A. Asadpoordarvish, J. Enevold, and L. Edman, Spraying Light: Ambient-Air Fabrication of Large-Area Emissive Devices on Complex-Shaped Surfaces, Advanced Materials, vol.459, issue.29, pp.4975-4980, 2014.
DOI : 10.1038/nature08003

J. S. Swensen, C. Soci, and A. J. Heeger, Light emission from an ambipolar semiconducting polymer field-effect transistor, Appl. Phys. Lett, vol.87, issue.25, pp.1-3, 2005.
DOI : 10.1117/12.644204

E. B. Namdas, High performance light emitting transistors High performance light emitting transistors, 2006.
DOI : 10.1063/1.2920436

URL : http://espace.library.uq.edu.au/view/UQ:233752/UQ233752_OA.pdf

K. Tandy, M. Ullah, P. L. Burn, P. Meredith, and E. B. Namdas, Unlocking the full potential of light emitting field-effect transistors by engineering charge injection layers, Organic Electronics, vol.14, issue.11, pp.2953-2961, 2013.
DOI : 10.1016/j.orgel.2013.08.013

H. J. Bolink, E. Coronado, J. Orozco, and M. Sessolo, Efficient Polymer Light-Emitting Diode Using Air-Stable Metal Oxides as Electrodes, Advanced Materials, vol.299, issue.1, pp.79-82, 2009.
DOI : 10.1002/adma.200802155

S. Höfle, A. Schienle, M. Bruns, U. Lemmer, and A. Colsmann, Enhanced Electron Injection into Inverted Polymer Light-Emitting Diodes by Combined Solution-Processed Zinc Oxide/Polyethylenimine Interlayers, Advanced Materials, vol.3, issue.17, pp.2750-2754, 2014.
DOI : 10.1002/aenm.201200532

S. Höfle, A. Schienle, C. Bernhard, M. Bruns, U. Lemmer et al., Solution Processed, White Emitting Tandem Organic Light-Emitting Diodes with Inverted Device Architecture, Advanced Materials, vol.97, issue.30, pp.5155-5159, 2014.
DOI : 10.1016/j.solmat.2011.08.025

Y. H. Kim, T. H. Han, H. Cho, S. Y. Min, C. L. Lee et al., Polyethylene Imine as an Ideal Interlayer for Highly Efficient Inverted Polymer Light-Emitting Diodes, Advanced Functional Materials, vol.87, issue.24, pp.3808-3814, 2014.
DOI : 10.1063/1.2033129

H. Lee, Y. Kwon, and C. Lee, Improved performances in organic and polymer light-emitting diodes using solution-processed vanadium pentoxide as a hole injection layer, Journal of the Society for Information Display, vol.12, issue.4, pp.640-645, 2012.
DOI : 10.1080/15980316.2011.621323

S. Gambino, A. K. Bansal, and I. D. Samuel, Comparison of hole mobility in thick and thin films of a conjugated polymer, Organic Electronics, vol.11, issue.3, pp.467-471, 2010.
DOI : 10.1016/j.orgel.2009.11.030

T. Maindron, J. Y. Simon, E. Viasnoff, and D. Lafond, Stability of 8-hydroxyquinoline aluminum films encapsulated by a single Al2O3 barrier deposited by low temperature atomic layer deposition, Thin Solid Films, vol.520, issue.23, pp.6876-6881, 2012.
DOI : 10.1016/j.tsf.2012.07.043

T. Maindron, Investigation of Al2O3 barrier film properties made by atomic layer deposition onto fluorescent tris-(8-hydroxyquinoline) aluminium molecular films, Thin Solid Films, vol.548, pp.517-525, 2013.
DOI : 10.1016/j.tsf.2013.08.092

M. Nonnenmacher, M. P. O-'boyle, and H. K. Wickramasinghe, Kelvin probe force microscopy, Applied Physics Letters, vol.160, issue.25, pp.2921-2923, 1991.
DOI : 10.1116/1.585195

W. Melitz, J. Shen, A. C. Kummel, and S. Lee, Kelvin probe force microscopy and its application, Surface Science Reports, vol.66, issue.1, pp.1-27, 2011.
DOI : 10.1016/j.surfrep.2010.10.001

W. N. Hansen and G. J. Hansen, Standard reference surfaces for work function measurements in air, Surface Science, vol.481, issue.1-3, pp.1-3, 2001.
DOI : 10.1016/S0039-6028(01)01036-6

G. Haacke, New figure of merit for transparent conductors, Journal of Applied Physics, vol.28, issue.9, pp.4086-4089, 1976.
DOI : 10.1103/PhysRevB.6.4370

T. Terlier, Analyse par ToF-SIMS de matériaux organiques pour les applications en électronique organique, 2015.

I. Performante and .. Base-d-'un-polymere-emissif, 111 3.2.1. Optimisation de l, 111 3.2.2. Optimisation de la couche émissive à base de Super Yellow, p.115

S. Höfle, A. Schienle, M. Bruns, U. Lemmer, and A. Colsmann, Enhanced Electron Injection into Inverted Polymer Light-Emitting Diodes by Combined Solution-Processed Zinc Oxide/Polyethylenimine Interlayers, Advanced Materials, vol.3, issue.17, pp.2750-2754, 2014.
DOI : 10.1002/aenm.201200532

X. Zhang, Z. Wu, D. Wang, D. Wang, and X. Hou, Improving the stability of organic light-emitting devices using a solution-processed hole-injecting layer, Applied Surface Science, vol.255, issue.18, pp.7970-7973, 2009.
DOI : 10.1016/j.apsusc.2009.04.192

C. Wei, J. Zhuang, Y. Chen, D. Zhang, W. Su et al., Surface treatment on polyethylenimine interlayer to improve inverted OLED performance, Chinese Physics B, vol.25, issue.10, p.108505, 2016.
DOI : 10.1088/1674-1056/25/10/108505

T. Homola, Atmospheric pressure diffuse plasma in ambient air for ITO surface cleaning, Applied Surface Science, vol.258, issue.18, pp.7135-7139, 2012.
DOI : 10.1016/j.apsusc.2012.03.188

M. Kielar, O. Dhez, G. Pecastaings, A. Curutchet, and L. Hirsch, Long-Term Stable Organic Photodetectors with Ultra Low Dark Currents for High Detectivity Applications, Scientific Reports, vol.3, issue.1, 2016.
DOI : 10.1063/1.4938554

URL : http://doi.org/10.1038/srep39201

M. B. Khalifa, G. Wantz, J. P. Parneix, and L. Hirsch, Multilayer fluorescent polymer light emitting diode with low voltage and high efficiency, The European Physical Journal Applied Physics, vol.41, issue.1, pp.29-32, 2008.
DOI : 10.1051/epjap:2007174

URL : https://hal.archives-ouvertes.fr/hal-00373256

X. Yang, R. Wang, C. Fan, G. Li, Z. Xiong et al., Ethoxylated polyethylenimine as an efficient electron injection layer for conventional and inverted polymer light emitting diodes, Organic Electronics, vol.15, issue.10, pp.2387-2394, 2014.
DOI : 10.1016/j.orgel.2014.07.009

E. Saracco, Work Function Tuning for High-Performance Solution-Processed Organic Photodetectors with Inverted Structure, Advanced Materials, vol.1, issue.452, pp.1-5, 2013.
DOI : 10.1021/jp4001237

L. Edman, M. A. Summers, S. K. Buratto, and A. J. Heeger, Polymer light-emitting electrochemical cells: Doping, luminescence, and mobility, Physical Review B, vol.111, issue.112
DOI : 10.1063/1.1512950

P. W. Blom, M. J. De, J. J. Jong, and . Vleggaar, ???phenylene vinylene) devices, Applied Physics Letters, vol.16, issue.23, pp.3308-3310, 1996.
DOI : 10.1063/1.116583

H. Becker, Soluble PPVs with Enhanced Performance???A Mechanistic Approach, Advanced Materials, vol.12, issue.1, pp.42-48, 2000.
DOI : 10.1002/(SICI)1521-4095(200001)12:1<42::AID-ADMA42>3.0.CO;2-F

S. Gambino, A. K. Bansal, and I. D. Samuel, Comparison of hole mobility in thick and thin films of a conjugated polymer, Organic Electronics, vol.11, issue.3, pp.467-471, 2010.
DOI : 10.1016/j.orgel.2009.11.030

S. Barth, Electron mobility in tris(8-hydroxy-quinoline)aluminum thin films determined via transient electroluminescence from single- and multilayer organic light-emitting diodes, Journal of Applied Physics, vol.89, issue.7, pp.3711-3719, 2001.
DOI : 10.1063/1.125521

M. J. Harding, D. Poplavskyy, V. Choong, F. So, and A. J. Campbell, Altering the interfacial morphology of polymer light-emitting diodes using polymer interlayers: effect on hole injection and device performance, Organic Light Emitting Materials and Devices X, pp.63331-63331, 2006.
DOI : 10.1117/12.680649

Y. H. Kim, T. H. Han, H. Cho, S. Y. Min, C. L. Lee et al., Polyethylene Imine as an Ideal Interlayer for Highly Efficient Inverted Polymer Light-Emitting Diodes, Advanced Functional Materials, vol.87, issue.24, pp.3808-3814, 2014.
DOI : 10.1063/1.2033129

H. Bässler, Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study, physica status solidi (b), vol.35, issue.1, pp.15-56, 1993.
DOI : 10.1080/13642819208204920

P. W. Blom, V. D. Mihailetchi, L. J. Koster, and D. E. Markov, Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells, Advanced Materials, vol.16, issue.12, pp.1551-1566, 2007.
DOI : 10.1002/adma.200601093

E. Du, S. De, and P. , 155 4.2.1, p.157

L. Qiu, J. A. Lim, X. Wang, W. H. Lee, M. Hwang et al., Versatile Use of Vertical-Phase-Separation-Induced Bilayer Structures in Organic Thin-Film Transistors, Advanced Materials, vol.21, issue.6, pp.1141-1145, 2008.
DOI : 10.1002/adma.200702505

Y. S. Jung, J. S. Yeo, B. K. Yu, and D. Y. Kim, Spontaneous phase separation of a zinc oxide interfacial layer in bulk heterojunction organic photovoltaics, Solar Energy Materials and Solar Cells, vol.134, pp.291-297, 2015.
DOI : 10.1016/j.solmat.2014.11.031

H. Zhang, Roll to roll compatible fabrication of inverted organic solar cells with a self-organized charge selective cathode interfacial layer, J. Mater. Chem. A, vol.1, issue.14, pp.5032-5038, 2016.
DOI : 10.1039/c3ta10987a

H. Kang, Self-assembly of interfacial and photoactive layers via one-step solution processing for efficient inverted organic solar cells, Nanoscale, vol.203, issue.204, pp.11587-91, 2013.
DOI : 10.1016/S0169-4332(02)00756-0

T. Xiong, F. Wang, X. Qiao, and D. Ma, A soluble nonionic surfactant as electron injection material for high-efficiency inverted bottom-emission organic light emitting diodes, Applied Physics Letters, vol.93, issue.12, pp.2006-2009, 2008.
DOI : 10.1063/1.123397

W. Lee and J. W. Jung, High performance polymer solar cells employing a lowtemperature solution-processed organic?inorganic hybrid electron transport layer, J. Mater. Chem. A, vol.00, pp.1-7, 2016.

K. Tsai, C. Wu, J. Jan, Y. Hsu, T. Guo et al., Ternary electron injection layers for highly efficient polymer light emitting diodes, J. Mater. Chem. C, vol.40, issue.36, pp.8559-8564, 2016.
DOI : 10.1016/S0032-3861(98)00300-0

Y. Zhou, A Universal Method to Produce Low-Work Function Electrodes for Organic Electronics, Science, vol.12, issue.18, pp.327-359, 2012.
DOI : 10.1016/j.orgel.2011.02.017

Y. Zhou, C. Fuentes-hernandez, J. W. Shim, T. M. Khan, and B. Kippelen, High performance polymeric charge recombination layer for organic tandem solar cells, Energy & Environmental Science, vol.96, issue.12, p.9827, 2012.
DOI : 10.1063/1.3455108

A. K. Kyaw, Efficient Solution-Processed Small-Molecule Solar Cells with Inverted Structure, Advanced Materials, vol.18, issue.17, pp.2397-2402, 2013.
DOI : 10.1039/b808004f

S. Höfle, A. Schienle, M. Bruns, U. Lemmer, and A. Colsmann, Enhanced Electron Injection into Inverted Polymer Light-Emitting Diodes by Combined Solution-Processed Zinc Oxide/Polyethylenimine Interlayers, Advanced Materials, vol.3, issue.17, pp.2750-2754, 2014.
DOI : 10.1002/aenm.201200532

Y. H. Kim, T. H. Han, H. Cho, S. Y. Min, C. L. Lee et al., Polyethylene Imine as an Ideal Interlayer for Highly Efficient Inverted Polymer Light-Emitting Diodes, Advanced Functional Materials, vol.87, issue.24, pp.3808-3814, 2014.
DOI : 10.1063/1.2033129

D. I. Son, H. H. Kim, S. Cho, D. K. Hwang, J. W. Seo et al., Carrier transport of inverted quantum dot LED with PEIE polymer, Organic Electronics, vol.15, issue.4, pp.886-892, 2014.
DOI : 10.1016/j.orgel.2014.01.014

H. Fukagawa, Highly efficient and air-stable inverted organic light-emitting diode composed of inert materials, Applied Physics Express, vol.7, issue.8, 2014.
DOI : 10.7567/APEX.7.082104

M. Kielar, O. Dhez, G. Pecastaings, A. Curutchet, and L. Hirsch, Long-Term Stable Organic Photodetectors with Ultra Low Dark Currents for High Detectivity Applications, Scientific Reports, vol.3, issue.1, 2016.
DOI : 10.1063/1.4938554

Z. Li, Enhanced Electron Extraction Capability of Polymer Solar Cells via Employing Electrostatically Self-Assembled Molecule on Cathode Interfacial Layer, ACS Applied Materials & Interfaces, vol.8, issue.12, pp.8224-8231, 2016.
DOI : 10.1021/acsami.5b12394

X. Zhang, Preparation and employment of carbon nanodots to improve electron extraction capacity of polyethylenimine interfacial layer for polymer solar cells, Organic Electronics, vol.33, pp.62-70, 2016.
DOI : 10.1016/j.orgel.2016.03.004

X. Min, Polyethylenimine Aqueous Solution: A Low-Cost and Environmentally Friendly Formulation to Produce Low-Work-Function Electrodes for Efficient Easy-to-Fabricate Organic Solar Cells, ACS Applied Materials & Interfaces, vol.6, issue.24, pp.22628-22633, 2014.
DOI : 10.1021/am5077974

P. Banerjee, W. Lee, K. Bae, S. B. Lee, and G. W. Rubloff, Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films, Journal of Applied Physics, vol.108, issue.4, p.43504, 2010.
DOI : 10.1103/PhysRevB.24.1971

D. Lee, H. Kim, J. Kwon, H. Choi, S. Kim et al., Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films, Advanced Functional Materials, vol.103, issue.194, pp.448-455, 2011.
DOI : 10.1103/PhysRevLett.103.245501

J. Huang, C. Ku, C. Lin, S. Chen, and H. Lee, In situ Al-doped ZnO films by atomic layer deposition with an interrupted flow, Materials Chemistry and Physics, vol.165, pp.245-252, 2015.
DOI : 10.1016/j.matchemphys.2015.09.024

Y. Wu, Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition, Journal of Applied Physics, vol.114, issue.2, 2013.
DOI : 10.1116/1.4728205

M. Verheijen, Factors limiting the doping efficiency in atomic layer deposited ZnO:Al thin films: a dopant distribution study by transmission electron microscopy and atom probe tomography, The 16th Euroepan Microscopy Congress 2016, 2016.
DOI : 10.1002/9783527808465.EMC2016.6528

Q. Hou, F. Meng, and J. Sun, Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films prepared by atomic layer deposition, Nanoscale Research Letters, vol.8, issue.1, pp.144-151, 2013.
DOI : 10.1016/j.synthmet.2011.02.007

D. W. Choi and J. S. Park, Highly conductive SnO2 thin films deposited by atomic layer deposition using tetrakis-dimethyl-amine-tin precursor and ozone reactant, Surface and Coatings Technology, vol.259, issue.PB, pp.238-243, 2014.
DOI : 10.1016/j.surfcoat.2014.02.012

J. Park, Effects of Controlling the AZO Thin Film's Optical Band Gap on AZO/MEH-PPV Devices with Buffer Layer, International Journal of Photoenergy, vol.14, 2012.
DOI : 10.1016/j.eurpolymj.2007.08.006

C. Féry, B. Racine, D. Vaufrey, H. Doyeux, and S. Cinà, Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes, Applied Physics Letters, vol.87, issue.21, pp.1-3, 2005.
DOI : 10.1103/PhysRevB.70.132202

Y. Murat, G. Wantz, S. Fasquel, J. Laurent, T. Maindron et al., Physical characterizations of direct and inverted solution-processed organic light-emitting diodes, Proc. SPIE, p.994129, 2016.
DOI : 10.1117/12.2237585

Y. Murat, Bright and efficient inverted organic lith-emitting diodes with improved solution-processed electron-transport interlayers, Org. Electron, p.2017
DOI : 10.1016/j.orgel.2017.04.023

Y. Murat, G. Wantz, J. Laurent, V. Gorge, and T. Maindron, Highly Performant and Stable Thin-Film Encapsulated Inverted Top-emitting Organic Diodes Based on MoO X as Electron Injection Layer, pp.654-657, 2016.

M. Kielar, O. Dhez, G. Pecastaings, A. Curutchet, and L. Hirsch, Long-Term Stable Organic Photodetectors with Ultra Low Dark Currents for High Detectivity Applications, Scientific Reports, vol.3, issue.1, 2016.
DOI : 10.1063/1.4938554

URL : http://doi.org/10.1038/srep39201

Y. Murat, M. Barr, L. Santinacci, J. Laurent, L. Hirsch et al., Free indium-tin oxide inverted organic light-emitting diodes. (en préparation)

Y. Murat, E. Langer, J. Barnes, J. Laurent, G. Wantz et al., Bright and efficient inverted organic light-emitting diodes with improving solution-processed electron-transport interlayers, Organic Electronics, 2017.
DOI : 10.1016/j.orgel.2017.04.023

Y. Murat, G. Wantz, S. Fasquel, J. Laurent, and L. Hirsch, Physical characterizations of direct and inverted solution-processed Organic Light-Emitting Diodes, Proceeding of SPIE, vol.9941, pp.29-30, 2016.

Y. Murat, G. Wantz, S. Fasquel, J. Laurent, and L. Hirsch, Physical characterizations of direct and inverted solution-processed Organic Light-Emitting Diodes

. Compris-entre-transparence and . Conductivité, L'inconvénient majeur de cette électrode est sa rugosité

. Actuellement, une électrode a été mise en vente

E. Comporte and . Couches, PEDOT:PSS, oxyde de zinc et la grille d'argent. Les coûts de fabrication restent encore élevés. Des combinaisons entre grilles métalliques et OMOs sont aussi réalisées

L. Nanoparticules and . Nanofils-métalliques, Ces deux types de matériaux peuvent être fabriqués à partir de divers métaux (argent, or, cuivre, etc) ce qui va influencer les coûts de production et les propriétés de l'électrode

T. Minami, Transparent conducting oxide semiconductors for transparent electrodes, Semiconductor Science and Technology, vol.20, issue.4, pp.35-44, 2005.
DOI : 10.1088/0268-1242/20/4/004

D. H. Zhang and H. L. Ma, Scattering mechanisms of charge carriers in transparent conducting oxide films, Applied Physics A Materials Science and Processing, vol.77, issue.5, pp.487-492, 1996.
DOI : 10.1149/1.2114132

E. Elangovan and K. Ramamurthi, A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films, Applied Surface Science, vol.249, issue.1-4, pp.1-4, 2005.
DOI : 10.1016/j.apsusc.2004.11.074

A. Messad, J. Bruneaux, H. Cachet, and M. Froment, Analysis of the effects of substrate temperature, concentration of tin chloride and nature of dopants on the structural and electrical properties of sprayed SnO2 films, Journal of Materials Science, vol.8, issue.19, pp.5095-5103, 1994.
DOI : 10.1007/BF01151102

T. Minami, Transparent Conductive Oxides for Transparent Electrode Applications, 2013.
DOI : 10.1016/B978-0-12-396489-2.00005-9

S. S. Shinde, P. S. Shinde, S. M. Pawar, .. V. Moholkar, C. H. Bhosale et al., Physical properties of transparent and conducting sprayed fluorine doped zinc oxide thin films, Solid State Sciences, vol.10, issue.9, pp.1209-1214, 2008.
DOI : 10.1016/j.solidstatesciences.2007.11.031

T. Minami, T. Yamamoto, and T. Miyata, Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering, Thin Solid Films, vol.366, issue.1-2, pp.63-68, 2000.
DOI : 10.1016/S0040-6090(00)00731-8

Y. Igasaki and H. Saito, Substrate temperature dependence of electrical properties of ZnO:Al epitaxial films on sapphire (12??10), Journal of Applied Physics, vol.32, issue.4, pp.2190-2195, 1991.
DOI : 10.1063/1.327472

J. F. Chang and M. H. Hon, The effect of deposition temperature on the properties of Al-doped zinc oxide thin films, Thin Solid Films, vol.386, issue.1, pp.79-86, 2001.
DOI : 10.1016/S0040-6090(00)01891-5

W. Beyer, J. H. , and H. Stiebig, Transparent conducting oxide films for thin film silicon photovoltaics, Thin Solid Films, vol.516, issue.2-4, pp.4-147, 2007.
DOI : 10.1016/j.tsf.2007.08.110

M. Takada, T. Kobayashi, T. Nagase, and H. Naito, Inverted organic light-emitting diodes using different transparent conductive oxide films as a cathode, Japanese Journal of Applied Physics, vol.55, issue.3S2, 2016.
DOI : 10.7567/JJAP.55.03DC06

M. Morales-masis, An Indium-Free Anode for Large-Area Flexible OLEDs: Defect-Free Transparent Conductive Zinc Tin Oxide, Advanced Functional Materials, vol.93, issue.3, pp.384-392, 2016.
DOI : 10.1063/1.2998599

D. W. Choi and J. S. Park, Highly conductive SnO2 thin films deposited by atomic layer deposition using tetrakis-dimethyl-amine-tin precursor and ozone reactant, Surface and Coatings Technology, vol.259, issue.PB, pp.238-243, 2014.
DOI : 10.1016/j.surfcoat.2014.02.012

M. Esro, :Sb transparent conductive oxide as an alternative to indium tin oxide for applications in organic light emitting diodes, J. Mater. Chem. C, vol.43, issue.16, pp.3563-3570, 2016.
DOI : 10.1088/0022-3727/43/5/055301

J. Du, S. Pei, L. Ma, and H. M. Cheng, 25th anniversary article: Carbon nanotubeand graphene-based transparent conductive films for optoelectronic devices, Adv. Mater, vol.26, issue.13, 1958.

S. S. Shams, R. Zhang, and J. Zhu, Abstract, Materials Science-Poland, vol.38, issue.3, pp.566-578, 2015.
DOI : 10.1039/c3ee22325f

H. Han, N. D. Theodore, and T. L. Alford, Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer, Journal of Applied Physics, vol.103, issue.1, 2008.
DOI : 10.1063/1.1342042

H. K. Park, J. W. Kang, S. I. Na, D. Y. Kim, H. K. Kimag et al., Characteristics of indium-free GZOAZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics, Sol. Energy Mater. Sol. Cells, vol.93, issue.11, 1994.

C. Tao, Semitransparent inverted polymer solar cells with MoO3/Ag/MoO3 as transparent electrode, Applied Physics Letters, vol.95, issue.5, p.53303, 2009.
DOI : 10.1016/j.cattod.2005.11.072

L. Cattin, M. Morsli, F. Dahou, S. Y. Abe, J. C. Khelil et al., Investigation of low resistance transparent MoO3/Ag/MoO3 multilayer and application as anode in organic solar cells, Thin Solid Films, vol.518, issue.16, pp.4560-4563, 2010.
DOI : 10.1016/j.tsf.2009.12.031

URL : https://hal.archives-ouvertes.fr/hal-00848872

W. Cao, Y. Zheng, Z. Li, E. Wrzesniewski, W. T. Hammond et al., Flexible organic solar cells using an oxide/metal/oxide trilayer as transparent electrode, Organic Electronics, vol.13, issue.11, pp.2221-2228, 2012.
DOI : 10.1016/j.orgel.2012.05.047

M. Makha, anode in organic photovoltaic cells: Influence of the presence of a CuI buffer layer between the anode and the electron donor, Applied Physics Letters, vol.101, issue.23, pp.3-6, 2012.
DOI : 10.1021/cm8016352

URL : https://hal.archives-ouvertes.fr/hal-00865862

F. Li, Semitransparent inverted polymer solar cells using MoO3/Ag/WO3 as highly transparent anodes, Solar Energy Materials and Solar Cells, vol.95, issue.3, pp.877-880, 2011.
DOI : 10.1016/j.solmat.2010.11.009

L. Shen, S. Ruan, W. Guo, F. Meng, and W. Chen, Semitransparent inverted polymer solar cells using MoO3/Ag/V2O5 as transparent anodes, Solar Energy Materials and Solar Cells, vol.97, issue.3, pp.59-63, 2012.
DOI : 10.1016/j.solmat.2011.09.004

L. Shen, Y. Xu, F. Meng, F. Li, S. Ruan et al., Semitransparent inverted polymer solar cells using MoO3/Ag/V2O5 as transparent anodes, Solar Energy Materials and Solar Cells, vol.97, issue.7, pp.1223-1226, 2011.
DOI : 10.1016/j.solmat.2011.09.004

C. Wang, C. Ting, S. Li, and S. Chu, Ag grids/MoO 3 sandwich electrode deposited on flexible substrate via thermal deposition method, Characterization of the MoO, vol.3, issue.9941, p.994121, 2016.
DOI : 10.1117/12.2236892

A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. , Electron Transport Materials for Organic Light-Emitting Diodes, Chemistry of Materials, vol.16, issue.23, pp.4556-4573, 2004.
DOI : 10.1021/cm049473l

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, Metal Nanowire Networks: The Next Generation of Transparent Conductors, Advanced Materials, vol.4, issue.39, pp.6670-6687, 2014.
DOI : 10.1002/aenm.201300737

D. L. Simonato, G. Giusti, C. Mayousse, C. Celle, D. Bellet et al., Flexible transparent conductive materials based on silver nanowire networks: a review, Nanotechnology, vol.24, issue.45, p.452001, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01067074

L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley et al., Solution-Processed Flexible Polymer Solar Cells with Silver Nanowire Electrodes, ACS Applied Materials & Interfaces, vol.3, issue.10, pp.4075-84, 2011.
DOI : 10.1021/am2009585

G. Laurans, Electrode transparente en nanofils d'argent : intégration dans les cellules et modules photovoltaïques organiques sur substrat souple, 2016.

E. C. Garnett, Self-limited plasmonic welding of silver nanowire??junctions, Nature Materials, vol.8, issue.3, pp.241-250, 2012.
DOI : 10.1021/nl073296g

C. Mayousse, C. Celle, A. Fraczkiewicz, and J. Simonato, Stability of silver nanowire based electrodes under environmental and electrical stresses, Nanoscale, vol.15, issue.5, pp.2107-2115, 2015.
DOI : 10.1016/j.orgel.2014.09.047

E. W. Snedden, L. Cury, K. N. Bourdakos, and . Monkman, High photoluminescence quantum yield due to intramolecular energy transfer in the Super Yellow conjugated copolymer, Chemical Physics Letters, vol.490, issue.1-3, pp.1-3, 2010.
DOI : 10.1016/j.cplett.2010.03.030

H. Youn and M. Yang, Solution processed polymer light-emitting diodes utilizing a ZnO/organic ionic interlayer with Al cathode, Applied Physics Letters, vol.97, issue.24, pp.2-5, 2010.
DOI : 10.1021/jp050745x

H. Lee, Y. K. Kim, and C. Lee, P-111: Improved Performances in Phosphorescent Organic Light-emitting Diodes using Solution-processed Vanadium Pentoxide as a Hole Injection Layer, SID Symposium Digest of Technical Papers, vol.20, issue.123, pp.1477-1480, 2012.
DOI : 10.1002/adma.200701730

G. A. Wetzelaer, R. J. Najafi, M. Kist, P. W. Kuik, and . Blom, Efficient electron injection from solution-processed cesium stearate interlayers in organic light-emitting diodes, Applied Physics Letters, vol.102, issue.5, p.53301, 2013.
DOI : 10.1016/j.orgel.2010.01.015

J. H. Youn, Improving the lifetime of a polymer light-emitting diode by introducing solution processed tungsten-oxide, Journal of Materials Chemistry C, vol.94, issue.6, pp.3250-3254, 2013.
DOI : 10.1016/j.solmat.2009.10.026

S. J. Cha, S. N. Cho, W. H. Lee, H. S. Chung, I. N. Kang et al., Thermally Cross-Linkable Hole Transport Polymers for Solution-Based Organic Light-Emitting Diodes, Macromolecular Rapid Communications, vol.490, issue.201, pp.807-812, 2014.
DOI : 10.1088/0957-4484/24/48/484003

D. Costenaro, F. Carniato, G. Gatti, and C. Bisio, Organo-modified ZnO nanoparticles: tuning of the optical properties for PLED device fabrication, New J. Chem., vol.103, issue.12, pp.6205-6211, 2014.
DOI : 10.1021/jp9839450

C. Y. Ng, High efficiency solution processed fluorescent yellow organic light-emitting diode through fluorinated alcohol treatment at the emissive layer/cathode interface, Journal of Physics D: Applied Physics, vol.47, issue.1, p.15106, 2014.
DOI : 10.1088/0022-3727/47/1/015106

K. Gilissen, Ultrasonic spray coating as deposition technique for the lightemitting layer in polymer LEDs, Org. Electron. physics, Mater. Appl, vol.20, pp.31-35, 2015.

J. Kim, A. Kanwat, H. M. Kim, and J. Jang, Solution processed polymer light emitting diode with vanadium-oxide doped PEDOT:PSS, physica status solidi (a), vol.77, issue.3, pp.640-645, 2015.
DOI : 10.1063/1.1315344

S. Burns, J. Macleod, T. T. Do, P. Sonar, and S. D. Yambem, Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs, Scientific Reports, vol.7, p.40805, 2017.
DOI : 10.1063/1.2432410

X. Gong, D. Moses, .. J. Heeger, S. K. Liu, and . Jen, High-performance polymer light-emitting diodes fabricated with a polymer hole injection layer, Applied Physics Letters, vol.83, issue.1, pp.183-185, 2003.
DOI : 10.1002/(SICI)1521-4095(199903)11:3<227::AID-ADMA227>3.0.CO;2-3

S. R. Tseng, H. F. Meng, K. C. Lee, and S. F. Horng, Multilayer polymer lightemitting diodes by blade coating method, Appl. Phys. Lett, vol.93, issue.15, pp.1-5, 2008.
DOI : 10.1063/1.2999541

H. J. Bolink, E. Coronado, J. Orozco, and M. Sessolo, Efficient Polymer Light-Emitting Diode Using Air-Stable Metal Oxides as Electrodes, Advanced Materials, vol.299, issue.1, pp.79-82, 2009.
DOI : 10.1002/adma.200802155

S. Höfle, A. Schienle, M. Bruns, U. Lemmer, and A. Colsmann, Enhanced Electron Injection into Inverted Polymer Light-Emitting Diodes by Combined Solution-Processed Zinc Oxide/Polyethylenimine Interlayers, Advanced Materials, vol.3, issue.17, pp.2750-2754, 2014.
DOI : 10.1002/aenm.201200532

S. Höfle, A. Schienle, C. Bernhard, M. Bruns, U. Lemmer et al., Solution Processed, White Emitting Tandem Organic Light-Emitting Diodes with Inverted Device Architecture, Advanced Materials, vol.97, issue.30, pp.5155-5159, 2014.
DOI : 10.1016/j.solmat.2011.08.025

Y. H. Kim, T. H. Han, H. Cho, S. Y. Min, C. L. Lee et al., Polyethylene Imine as an Ideal Interlayer for Highly Efficient Inverted Polymer Light-Emitting Diodes, Advanced Functional Materials, vol.87, issue.24, pp.3808-3814, 2014.
DOI : 10.1063/1.2033129

L. Edman, M. A. Summers, S. K. Buratto, and A. J. Heeger, Polymer light-emitting electrochemical cells: Doping, luminescence, and mobility, Physical Review B, vol.111, issue.112
DOI : 10.1063/1.1512950

Y. Shao, G. C. Bazan, and A. J. Heeger, Long-Lifetime Polymer Light-Emitting Electrochemical Cells, Advanced Materials, vol.70, issue.3, pp.365-370, 2007.
DOI : 10.1103/PhysRevB.70.115212

Z. Yu, M. Wang, G. Lei, J. Liu, L. Li et al., Stabilizing the Dynamic p???i???n Junction in Polymer Light-Emitting Electrochemical Cells, The Journal of Physical Chemistry Letters, vol.2, issue.5, pp.367-372, 2011.
DOI : 10.1021/jz200071b

A. Sandström, A. Asadpoordarvish, J. Enevold, and L. Edman, Spraying Light: Ambient-Air Fabrication of Large-Area Emissive Devices on Complex-Shaped Surfaces, Advanced Materials, vol.459, issue.29, pp.4975-4980, 2014.
DOI : 10.1038/nature08003

J. S. Swensen, C. Soci, and A. J. Heeger, Light emission from an ambipolar semiconducting polymer field-effect transistor, Appl. Phys. Lett, vol.87, issue.25, pp.1-3, 2005.
DOI : 10.1117/12.644204

E. B. Namdas, High performance light emitting transistors High performance light emitting transistors, 2006.
DOI : 10.1063/1.2920436

URL : http://espace.library.uq.edu.au/view/UQ:233752/UQ233752_OA.pdf

K. Tandy, M. Ullah, P. L. Burn, P. Meredith, and E. B. Namdas, Unlocking the full potential of light emitting field-effect transistors by engineering charge injection layers, Organic Electronics, vol.14, issue.11, pp.2953-2961, 2013.
DOI : 10.1016/j.orgel.2013.08.013