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Abstract

Simple structure, low cost, large workspace and mature technology, these
advantages make the serial manipulators are widely used in many industrial fields. With
the rapid development of industry and various applications of serial manipulators, new
strict requirements are proposed, such as high stability, high positioning accuracy and
high speed operation.

One of the efficient ways to improve the mentioned performances is the design of
manipulators with dynamic decoupling. Therefore, the goal in this thesis is to find
simple structure permitting to carry out complete dynamic decoupling of serial
manipulators taking into account the changing payload.

The review, given in Chapter 1, summarizes the known solutions and discloses the
drawbacks of different techniques permitting a simplification of the dynamics of
manipulators. It allows an identification of objectives that are of interest and should be
studied within the framework of this thesis.

Chapter 2 deals with the design of adjustable serial manipulators with linearized
and decoupled dynamics. Without payload, the developed method accomplishes the
dynamic decoupling via opposite rotation of links and optimal redistribution of masses.
The payload which leads to the perturbation of the dynamic decoupling equations is
compensated by the optimal control technique.

Chapter 3 deals with a new dynamic decoupling concept, which involves
connecting to a serial manipulator a two-link group forming a Scott-Russell mechanism
with the initial links of the manipulator. The opposite motion of links in the Scott-
Russell mechanism combined with optimal redistribution of masses allows the
cancellation of the coefficients of nonlinear terms in the manipulator’s dynamic
equations. Then, by using the control, the dynamic decoupling taking into account the
changing payload is achieved.

In chapter 4, robustness properties (parametric uncertainties) of four various
models of serial manipulators (one coupled manipulator, one decoupled manipulator by
feedback linearization and the two decoupled manipulators that modeled in chapters 2
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and 3) are considered. The given comparison performed via simulations is achieved
with the same optimal control law and the same reference trajectory. Simulation results
allow one to derive robustness assessments of manipulators described in chapters 2 and
3.

The suggested design methodology and control techniques are illustrated by
simulations carried out using ADAMS and MATLAB software, which have confirmed
the efficiency of the developed approaches.
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Nomenclature

This nomenclature references the principal variables and abbreviations used in this

manuscript.

00 mw > >
2
g.

=~

m O. O. O o, o
8 w w w
N N N

m

2

o

Q @ Q@ O @ =
= o~ B

)

N

aw

<]

the state matrix of the system.
the state matrix of the ith subsystem.

the input matrix of the system.
the input matrix of the ith subsystem.

the output matrix of the system.
the vector of Coriolis and centrifugal effects.

the centroid of link k.

the constant disturbance.
the estimate of the constant disturbance.

the distance between the center of mass S, of link 2 and joint center B.

the velocity of center of mass S, of link 2 relative to joint center B.

the acceleration of center of mass S, of link 2 relative to joint center B.
the kinematic energy of the ith component of the manipulator.
the kinematic energy of the counterweight.

the vector of performance function.
the controllability transient gramian.

the vector of feedback factor of the ith subsystem.

the gravitational acceleration.
the torque vector due to gravity.

the feedback factor of the ith output in the jth subsystem.
the i-j element of the manipulator inertia matrix.

the unit matrix.
the axial moment of inertia of link .
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an integer.
the index of performance.
an integer.

positive, diagonal matrices of derivative gains.

o

positive, diagonal matrices of proportional gains.

the Lagrangian factor.
the length of the itk link of the serial manipulator.
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the distance between the centre of mass S, of link AB and joint center 4.
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the distance between the centre of mass S, of link BP and joint center B.
the real center of mass and moment of inertia of the object which is
constituted by link BP, Scott-Russell mechanism and counterweight

M (6) the inertia matrix.

m,

—

the mass tensor of link .

the mass of the Scott Russell mechanism.

Mg

m,, the mass of the counterweight.

P the position of the end-effector.

P the initial end-effector position.

P, the final end-effector position.

(9 the position vector from an arbitrary point on the ith joint axis to the
centroid.

Ran the random value matrix.

T the total time for the rotation.

T, the controllability matrix.

T, the time when the peak value of the ith subsystem response is achieved.

W, the upper triangular Toeplitz matrix.

@, natural frequency.

u an input signal.

\% the Lyapunov function candidate.

X the position of the end-effector along the X-axis of the base frame.

X an axis.

y the position of the end-effector along the Y-axis of the base frame.

Y an axis.

T, the inertia torque generated by the acceleration of the ith joint.

T4 the torque terms in the dynamic equation of ith link due to gravity.

T juithout the output torque value of the jth actuator when no payload is added on the
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end-effector of the serial manipulator.

the output torque value of the jth actuator when taking into account the
payload on the end-effector of the serial manipulator.

the angular position of the ith link.

the angular velocity of the ith link.

the angular acceleration of the ith link.

a constant reference set-point.

the reference trajectory of the ith actuator.
the desired initial angle of the ith actuator.
the desired final angle of the itk actuator.

the angular difference between the renference angle and the real angle.
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the angular distance between the initial and the final position of the it4 joint.
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the state vector of the state equation.
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the element of the state vector of the second subsystem.
the symmetric matrix of the solution of Riccati equation in the ith subsystem

the element of the symmetric matrix 2 .
the performance index of angular error of the it/ joint.

the performance index of position error of the ith joint.
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Introduction

With the rapid development of industry and various applications of serial
manipulators, new strict requirements are proposed, such as high stability, high
positioning accuracy, high speed operation and etc. It is known that the serial
manipulator dynamics are highly coupled and nonlinear. The complicated dynamics
results from varying inertia, interactions between the different joints, and nonlinear
forces such as Coriolis and centrifugal forces. Nonlinear forces cause errors in position
response at high speed, and have been shown to be significant even at slow speed. Thus,
the goal of this thesis is to deal with the problem of dynamic decoupling of the serial
manipulators.

The critical review given in the first chapter showed that the known mechanical
solutions for dynamic decoupling. They are the methods of actuator relocation,
optimum inertia redistribution and addition of auxiliary links respectively. These
methods can only be reached by a considerably more complicated design of the initial
structure of the manipulator. One of the solutions is carried out by the connection of
gears to the oscillating links. The gears added to the oscillating links of the manipulator
are sources of shocks between teeth that lead to the perturbation of the operation of the
manipulator, the noise and other negative effects. It is obvious that mechanical solutions
for adjustment of nonlinear terms of dynamic equations can be reached by unreasonably
complicated design. In addition, this problem is more complicated and unpredictable
when it is necessary to take into account a variable payload. Because the variable
payload introduce variable load which is nonlinear term on the dynamic models of the
manipulators. Then the positioning accuracy will be influenced.

Considering the mentioned problems related to the dynamic decoupling of
manipulators, in the thesis are proposed new solutions combining both mechanical and
control solutions.

Chapter 2 deals with the problem of dynamic decoupling of adjustable serial
manipulators via a new mechatronic design approach, which is based on the opposite
motion of manipulator links and the optimal command design. It is carried out in two
steps. At first, the dynamic decoupling of the serial manipulator with adjustable lengths
of links is accomplished via an opposite rotation of links and optimal redistribution of
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masses. Such a solution proposed for the first time allows one to carry out the dynamic
decoupling without connection of gears to the oscillating links. The elimination of gears
from design concept is a main advantage of the suggested solution. Thus, the proposed
mechanical solution allows one to transform the original nonlinear system model into a
fully linear system without using the feedback linearization technique. In addition, to
ensure linearized and decoupled dynamics of the manipulator for any payload, an
optimal control technique is applied. It is shown that the dynamic decoupling of the
manipulator simplifies the control solution ensuring the dynamic decoupling taking into
account the changing payload.

Chapter 3 deals with another dynamic decoupling principle, which involves
connecting to a serial manipulator a two-link group forming a Scott-Russell mechanism
with the initial links of the manipulator. It also be carried out in two steps. At first, the
dynamic decoupling of the serial manipulator is accomplished via the Scott-Russell
mechanism properties and optimal redistribution of masses. Thus, the modification of
the mass redistribution allows one to transform the original nonlinear system model into
a fully linear system without using the feedback linearization technique. However, as it
mentioned above, the changing payload leads to the perturbation of the dynamic
decoupling of the manipulator. To ensure decoupled dynamics of the manipulator for
any payload, an optimal control technique has been applied.

All suggested design methodologies and control techniques are illustrated by
simulations carried out using ADAMS and MATLAB software. According to the
modeling process and the simulation results, the advantages of these two dynamic
decoupling manipulators are:

- the dynamic equations are simplified and the controller can be treated as the
superposition of serial SISO controller.

- the simplification of the controller based on the linearized input/output
relationships, hence the computational burden caused by the huge amount of
iterative calculation is vanished. Thus, the real-time performance can be
improved.

- the positioning error can be reduced by the eliminations of the Coriolis and
centrifugal forces. Therefor the robustness of the serial manipulators is improved.

- the changing payload can be taken into account based on the dynamic
decoupling manipulator with simple linear control law.
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In chapter 4, the tolerance capabilities of these two dynamic decoupling
manipulators are investigated through the comparison with a coupled manipulator and
one other manipulator which is decoupled by feedback linearization. In order to make
the comparison analysis clearer, two kinds of indices are proposed to quantify the
positioning accuracy of the manipulator. They are angular error of the actuators and the
position error of the end-effector. And two kinds of simulations are implemented for
complete analysis. Through the results, it is obvious that, during the whole process, the
tracking trajectories of the decoupled manipulators are more precise and less sensitive to
the variable errors. In the aspect of the final positioning accuracy, according to the
quantitative analysis, it also shows that the tolerance capabilities of the two
manipulators that dynamic decoupled by the mechatronic method are higher than the
ones of the coupled model and the dynamic decoupled model by feedback linearization.
In a result, the simulation results prove that the manipulators that decoupled by the
mechatronic methods in this thesis are more robust.

Finally, in the last part of the discussion, the dynamic of serial manipulator with
prismatic joints is a discussed. In this discussion, an attempt is made to carry out the
dynamic decoupling of serial manipulators with prismatic joints by introducing the
rhomboid pantograph mechanism which has the same properties as the Scott-Russell
mechanism. As result, the added rhomboid pantograph mechanism allows one to carry
out a partial decoupling. It ensures only the cancellation of the terms related to gravity.






Chapter 1: Manipulator design for simplified dynamics

Chapter 1

Manipulator design for simplified dynamics

1.1.

1.2.

1.3.

1.4.

The historical evolution of serial manipulators p.6
Dynamics and control of serial manipulators p.10
Design of manipulators with linear and decoupled dynamics p.20
Summary p.29

To introduce the first chapter, we give a brief overview of the
serial manipulators. Simple structure, low cost, large workspace and
mature technology are principal and essential characteristics these
advantages make the serial manipulators are widely used in many
industrial fields.

With the rapid development of industry and various applications of
serial manipulators, the increase in high stability and positioning
accuracy were requested. It is known that the dynamics of the
manipulator in series are strongly coupled and nonlinear. These non-
linear forces cause high-speed position response errors and in certain
cases to be significant even at slow speed. Thus, the dynamic
decoupling of manipulators has been in permanent development in
recent decades.

Through this review, which summarizes the known solutions, the
drawbacks of different techniques permitting a simplification of the
dynamics of manipulators are disclosed. It allows an identification of
objectives that are of interest and should be studied within the
framework of this dissertation.



Chapter 1: Manipulator design for simplified dynamics

1.1. The historical evolution of serial manipulators

The first industrial robots were created only one half century ago. George Devol
applied for the first robotics patents in 1954 (granted in 1961) (George C 1961). The
first company to produce a robot was Unimation. These robots were also called
programmable transfer machines since their main use at first was to transfer objects
from one point to another, less than a dozen feet or so apart. They used hydraulic
actuators and were programmed in joint coordinates. The robotic production has been
changed radically in the late 1970s when several big Japanese conglomerates began
producing industrial robots. Nowadays, the robots play an indispensable role in the
manufacturing. However, for the thinking and imagination of robot, the time necessary
to develop these possibilities will be certainly very long.

1.1.1. From automatic machines to robot manipulators

“If every instrument would accomplish its own work, obeying or anticipating the
will of others...if the shuttle could weave, and the pick touch the lyre, without a hand to
guide them, chief workmen would not need servants” wrote by Aristote.

Actually, through the human history, the tools that be used by human have been
continually improved and explored in order to accomplish works more convenient and
more time-saving. In history, the tool which is considered one of the earliest mechanical
devices is the clepsydra developed by the Babylonians 1400 BCE (Siciliano and Khatib
2016).

In 1495, Leonardo Da Vinci designed a clockwork knight. It is designed to sit up,
wave its arms and move its head. And this design may constitute the first humanoid
robot. Speaking of the word ‘robot’, it was first used to denote fictional humanoid in a
1921 play named Rossum’s Universal Robots by the Czech writer, Karel Capek. This
show described the extreme desire to create a kind of universal tools that can work hard
for mankind. Since then, this word is known all over the world. According to the
International Organization for Standardization (standard 1SO 8373:2012), a robot is an
"actuated mechanism programmable in two or more axes with a degree of autonomy,
moving within its environment, to perform intended tasks."

In 1956, George Devol and Joseph Engelberger form the world’s first robotics
company, Unimation and then the first industrial robot called Unimate came out (Nof
1999). It was installed on the General Motors automotive assembly line to sequence and
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stack hot pieces of die-casting metal in 1961. This successful example attracted the
attention of other manufacturers such as Ford, Fiat and Chrysler. Soon, this first
commercial industrial robot was widely used and it promoted the research on robot
around the world.

After several years, in 1978, the Unimation took out a smaller manipulator arm,
called PUMA (Programmable Universal Machine for Assembly) which is designed by
Vic Schienman and financed by GM at MIT. It is specifically designed to handle
smaller parts in the assembly of instruments and engines. According to different
requirements, PUMA is represented in three categories: 200, 500 and 700 series
(Gebizlioglu 2003). The 500 Series is most commonly used in automated spot welding
application. The model 560c has 6 degrees of freedom (Bejczy et al. 1985). This is a
typical serial manipulator. Each link of the manipulator is connected to others by a
rotation joint and driven by a permanent-magnet DC servomotor. And each motor
contains an incremental encoder and a potentiometer driven through a 116 to 1 gear
reduction. To achieve maximum strength with minimum weight, the upper arm and
forearm are monocogue construction. And with the maximum payload of 4 kg, the max
velocity that can be reached is 470 mm/sec straight line moves (Corke 1991).

For years, this type of manipulator is widely used in the automotive industry. Even
now, PUMAs are probably the most common robot in the university laboratories and
one of the most common assembly robots (Gupta and Guo 1991) (Elgazzar 1985)
(Leahy 1989).

1.1.2. Industrial applications of serial manipulators

Advantages such as simple structure, low cost, large workspace and mature
technology, make the serial manipulators are widely used in many industrial fields such
as welding, painting, assembly, pick and place (such as packaging, palletizing and
SMT), product inspection and testing.

This kind of manipulators also has some drawbacks such as, for example,
accumulated position errors or low rigidity of links for machining. With the progress of
these technologies, these drawbacks will become smaller and smaller. Actually, based
on the PUMA model, lots of improved serial manipulators are designed to suit the
requirements of different industrial fields that mentioned above (Cheng et al. 1997)
(Kircanski and Boric 1992) (Armstrong et al. 1986).
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the SCARA (for Selective Compliance Assembly Robot Arm) was first
introduced in Japan for fast pick-and-place operations (Fig. 1.1.a) (Angeles
2013). It has 4 degrees of freedom with three rotary (R) joints and a prismatic
(P) joint. This kind of manipulator is characterized by high speed and accuracy.
the IRB 460 (Fig. 1.1.b): this is a 4-axis robot with a reach of 2.4 meters and
110-kilogram capacity. As the smallest member in the palletizing family of
ABB, it is considered as the world’s fastest palletizing robot. With a payload
of 60 kilograms, it can reach up to 2190 cycles per hour.

FANUC 430i (Fig. 1.1.c) marked a significant change in arm design. It has 6
axes, three of them are driven by motors that are optimally located. This
design can better balance the manipulator’s weight and allows the robot to
move with a great deal of flexibility. This arm design is similar to the KUKA
design used on the IR360 and then on the KR series. The main difference is
the sensible use of a mechanical spring to help axis 2 movements, rather than
the gas spring used by KUKA. The standard version of this kind of
manipulator can have a payload of 130 kg and a reach of 2643 mm. The
VA1400 (Fig. 1.1.d): the first 7-axis robotic welder from YASKAWA.
Innovative 7-axis design dramatically increases freedom of movement and
maintains proper welding posture at all times. Located in lower arm, the
seventh axis acts as elbow, providing tremendous additional flexibility.
Normally, this kind of manipulator has low payload (from 3 kg to 10 kg). As
the same, the maximum payload of this welder is 3 kg.

LBR 1IWA (Fig. 1.1.e): a 7-axis manipulator with sensory capabilities for
safety, fast teaching and simple operator control (Waurzyniak 2015). Opens up
new areas of application in the vicinity of humans that were previously off-
limits for robots. For the first time, human and robot can work together on
highly sensitive tasks in close cooperation.

Canadarm 2 (Fig. 1.1.f): well-known as a part of the Mobile Servicing System
which is the robotic system on board the International Space Station. It is 17.6
m long when fully extended and has 7 motorized joints. It plays a key role in
station assembly and maintenance. This arm is capable of handling large
payloads of up to 116,00 kg and is able to assist with docking the space shuttle.
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(c) FANUC 4301 (d) the VA1400 II from YASKAWA

(e) LBR IIWA from KUKA (f) Canadarm 2

Figure 1.1. — Serial manipulators applied in various fields.
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Nowadays, industrial robots rapidly take their niche in the drilling (Zhu et al. 2013)
(Olsson et al. 2010), milling (Matsuoka et al. 1999) (Vosniakos and Matsas 2010),
friction stir welding (Guillo and Dubourg 2016) (Mendes et al. 2016) and other
operations (Leali et al. 2013) (Guo et al. 2016) (Denkena and Lepper 2015).

Obviously, serial manipulators are widely used in the industrial domains even in
the space exploration. Until now, they are still the main products of the four leading
manufacturers of robotic systems worldwide (ABB, KUKA, FANUC and YASKAWA).

However, as mentioned above, serial manipulators still have some drawbacks, such
as accumulated position errors. Accumulated position error is caused by the character of
serial chain. The best way to solve this problem is to improve the processing and
assembly accuracy. For some technological operations as friction stir welding the serial
robots have low rigidity. However, it can be solved by using more rigid links.
Compared with the others, the highly coupled dynamics which is the inherent character
of the serial manipulator is considered one of the prominent problems that influence the
trajectory tracking accuracy.

1.2. Dynamics and control of serial manipulators

An effective way to deal with the problem of high complex coupled dynamics is
the decoupling. In fact, this concept was first proposed by Morgan in 1964 when he
tried to introduce the design method of the typical control theory into the MIMO (Multi-
Input and Multi-Output) linear system (Descusse et al. 1988). Morgan searches the
necessary condition in order that the closed-loop transfer function matrix is a full rank
diagonal rational matrix.

As known, the form of the dynamic equation of the serial manipulator can be
written as:

r=M(0)0+C(0,0)0+g(6) (1.1)

where 7 is a nx1 torque vector applied to the joints of the manipulator; 6,6 and 6 are
nx1vectors representing the angular positions, velocities and accelerations, respectively;
M (8) is nxn inertia matrix; C(6, 9) is nx1vector of Coriolis and centrifugal effects;
g(0)is the torque vector due to gravity.

10
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The first term on the right hand side represents the inertia torque. It can be divided
into two parts: the main diagonal elements of the matrix and the off-diagonal elements
of the matrix. The first part is generated by the acceleration of the corresponding joint.

The second part is the interactive inertia torque caused by the accelerations of the
other joints. This interactive inertia torque is linearly proportional to acceleration. The
second term represents the nonlinear velocity torques resulting from Coriolis and
centrifugal effects. Generally, the dependence of the inertia matrix on the arm
configuration produces these nonlinear velocity torques.

For an arbitrary arm configuration, the inertia matrix M () is reduced to a diagonal
matrix if the off-diagonal elements of the matrix M (8) are all zero. Then it is defined as

decoupled inertia matrix. Hence, the control system can be treated as a set of SISO
(Single-Input and Single-Output) subsystems.

When the second term C(0, )6 disappears, the inertia matrix is constant for all
arbitrary arm configurations (the matrix M(#)=M is independent of joint
displacements). In this case, the inertia matrix is referred to as configuration invariant
inertia matrix. The significance of this form is that the linear control methods which are
much simpler and easier to implement can be adopted.

However, the most desirable form for the manipulator dynamics is the one with
decoupled and configuration-invariant inertia matrix where the effects of gravity are
compensated by mechanical engineering, that is

r=Mé (1.2)
where M is nxn diagonal inertia matrix.

In this case, the system is completely decoupled and linearized. This system can be
treated as SISO systems with constant parameters.

As the main inherent character of the serial manipulators, the dynamic coupled
results from varying inertia, interactions between the different joints and nonlinear
forces such as Coriolis and centrifugal forces have obvious influence on the positioning
accuracy. This influence exists both at slow speed and high speed, especially for the
latter. Hence, many researchers devote to achieve the dynamic decoupling and linear
situation. When this situation is realized:

- dynamic equation can be simplified and the controller can be treated as the
superposition of serial SISO controller;

11
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- the controller design can be simplified, hence the real-time operational
performance of the manipulator can be improved because of the reduction of the
computational burden;

- positioning error can be reduced by the eliminations of the Coriolis and
centrifugal forces. Therefor the robustness of the serial manipulators is improved.

In the part of control, lots methods proposed out to reduce or even to eliminate
such dynamic complexity of the serial manipulators.

1.2.1. PD control of serial manipulators

The control of most industrial manipulators in use today is based on the application
of conventional servo control techniques such as PD (proportional-derivative) or PID
(proportional-integral-derivative) control (Rocco 1996) (Santibanez and Kelly 1998)
(Senthil Kumar and Karthigai Amutha 2014) (Su et al. 2007) (Craig 2005) (Kiam
Heong Ang et al. 2005) (Ouyang et al. 2015). In this kind of method, the tracking errors
which describe the difference between the desired and real trajectories are multiplied by
gains, and then contribute as part of input torque to reduce the difference. This
traditional control method is widely used because of its simple structure, easy
implementation and robust operation.

It has been shown that a simple PD control applied at each joint is adequate in most
position control applications such as spot-welding or palletizing. An independent joint
PD controller has been shown to be asymptotic stable for rigid manipulators (Asada and
Slotine 1986b). Consider an equation, without the effects of friction, where the gravity
is compensated by the control law:

M (0)6+C(0,0)0=7-g(6) =u (1.3)
where
u=K,(6,-6)-K,0 (1.4)

be an independent joint PD control, where g, represents a constant reference set-point;
K, and K, are positive, diagonal matrices of proportional and derivative gains,
respectively. Consider the Lyapunov function candidate

12
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v :%Q'le(e)e#%(ed ~0)"Kq(6,-6)>0 (1.5)

Then a simple calculation using the skew symmetry property shows that:
V=-0K,0<0 (1.6)

The function V is not negative definite. In this case, the LaSalle’s theorem (Lasalle
1961), known today as LaSalle’s invariance principle, may be used to prove the
asymptotic stability.

0=0=0=0=>M(0)6+C(0,0)0=K,(0,-0)-K,8=0=6=0, (1.7

However, as shown here, the gravity parameters must be known exactly. The other
limitation is simply due to the inherent “mismatch” between the nonlinear dynamics
character of the manipulators and the linear regulating behavior of the PID or PD
controller (Ouyang et al. 2006). Hence, this control method is not satisfactory for
applications which require high tracking accuracy and high speed performance.

1.2.2. Inverse dynamics control of serial manipulators

In inverse dynamics control method, the system outputs are assumed as anticipative
values. Then the corresponding inputs are calculated through the reversed state function.
So, the inputs are functions of time and state variables. This is an inverse system of the
original system. Finally, the two systems combine together compose an artificial linear
system. Based on time-scale separation principle, the system can be separated into an
inner control loop subsystem and an outer control loop subsystem by time-scale
(Atashzar et al. 2010). If the inner control loop has already realized decoupling and
obtained control performance well, the outer control loop can be simplified with
classical control method. So the crux of inverse dynamics control is the design of the
inner loop (Fig. 1.2).

Consider the dynamic model of a manipulator that described by equation (1.1),
then the nonlinear feedback control law is given as (Levine 1996):

r=M(8)a, +C(6,0)6+9(6) (1.8)

where a, €[] "is, as yet, undetermined. Since the inertia matrix M (@) is invertible for
all @, the closed-loop system reduces to the decoupled double integrator.
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Linearized and decoupled system
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Figure 1.2. — The control scheme of inverse dynamics control.
f=a, (1.9)

Given a joint space trajectory, g, (t), an obvious choice for the outer loop term a,
is as a PD plus feedforward acceleration control

a, =0, +K, (0, -0)-K, (6, —6) (1.10)
Substituting equation (1.10) into equation (1.9) and defining
6=06-6, (1.11)
the linear and decoupled closed-loop system is obtained as
0+K,0+K.0=0 (1.12)

In the robotics context, feedback linearization is also known as inverse dynamics.
Although this method is possible in theory, it is difficult to achieve in practice, mainly
because the coordinate transformation is a function of the system parameters and, hence,
sensitive to uncertainty.

1.2.3. Control of the double integrator

The second-order linear and time-invariant dynamical system, called double
integrator, is one of the most fundamental systems in control applications. It can be
considered as single-degree-of-freedom translational and rotational motion. So,
researchers are interested in double integrator since the early days of control theory
when it was used extensively to illustrate minimum-time and minimum-fuel controllers

14
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(Hocking 1991) (Yang and Slotine 1994) (Chen and Desrochers 1989). The equations of
the double integrator are given by (Rao and Bernstein 2001).

X = AX+Bu

y=Cx (1.13)

where

[y Yoo

Since the double integrator is unstable but completely controllable and observable,
closed-loop control strategies can be used to drive the state to the origin in the finite
time, some researches are carried out based on this kind of model (Bhat et al. 1998). In
the other aspect, a simple linear double integrator relationship between the output and
input is better for a tracking controller (Slotine et al. 1991).

In this thesis, the design of the controller is based on the state and the control law
given by u=-Gx.

The function of the gain matrix G=[g, g,] is to stabilize the system by moving

the closed-loop poles in the left-half complex plane. We seek U that minimizes the cost
J :j[ Ly? +u® ] dt =j[ X Q.X+Uu’ ] dt (1.14)
0 0
The matrix L is based on the controllability transient gramian defined by

G.(0T.) =Tj[ e"BR"e"" } dt (1.15)
0

For the matrix L = [ T,CG.(0,T,)C " }71 , the matrix Q. =C "LC is symmetric and

semi-definite positive. The parameter T jassume that poles of closed-loop system may

be placed, in the S plane, at the left or near of the vertical straight with the abscissa
—— . The output equation U=—-GX of the controller is unique, optimal, full state

To

feedback control law with G = B'Z_. that minimizes the cost J.
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The matrix 2 is the unique, symmetric, positive definite solution to the algebraic

Riccati equation A'Y. + X A-2.BB'Z. +Q. =0.

3 243
T. '

For the double integrator, the matrix G gives: G = [ 0,=—

g,= Tp
V243 3
Then the closed-loop characteristic polynomial is: P () =5+ T\F S +£2 :
P P

g

If P.(s)=5"+2{®,s+w’, we have: @, B and¢ =
P
The closed-loop control law, presented by Fig. 1.3, can be written as

2
7 .

u:éR_gl[e_HR]_gZ[é_éR] (1.16)

Figure 1.3. — The closed-loop control law of double integrator system.

In the case of some characterization of the model uncertainties, we propose a
robust controller based from estimate state and implicit integral action (Arakelian et al.
2016b).

The zero-steady-state error optimal control law is given by u(t) =-G%—d .

The gain matrix G is given by same manner as previously because feedback and
observer can be design separately without destroying stability properties for each other.
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The estimate of the state-vector X is X and ci is an estimate of the constant disturbance
d placed in the state equation of the double integrator.

For obtain the observer, we model the constant disturbance as d= 0.

The steady-state optimal observer which allows estimating x and d is

0 {o l}é&/ﬁ{o}u(t){o}d{kl}y[lo]9

.= . - | @7

G1Lo o g8 |1 1 N S (1.17)
%% B B

. A
X

; 0
d©) =k y-[1 0] . (1.18)
H_J 9
C
The state-equations of the observer are:
1079 (o :
48| = -k, 0 0 [+] 1 lu+| k, |y (1.19)
& _ks 0 C] ks
L . AE BE K

Where,y:[1 0 O]XE.
Ce

The function of the gain matrix K =[k, k, Kk, ]T is to stabilize asymptotically the

observer. The duality between the optimal regulator and the optimal observer (Kalman
filter) enables us to transfer from the regulator to the observer all important results. The

Riccati equation can be rephrased as A.Z, +Zo Al —ZoCq CeZo +Q, =0.
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The matrix Q, =[ T,G,(0,T;) ]71 is based on the observability transient gramian

TR
defined by G,(0,T;) = J[ eAEtCETCEeAEt } dt. The parameter T, assume that poles of
0
the observer may be placed, in the s plane, at the left or near of the vertical straight with
1
the abscissa—T— . The solution of the Riccati equation is given by:
R
Cl T
.
K :ZOCE :|:k1=ﬁ k2 :? k3 :Fj| (120)

For ¢ —2c, =9 and ¢, =12/5, the values are: ¢, =7.198;c, = 21.408;c, = 26.83.

3.0735}( , 4.1248 8.7303}
S™+ S+ 2 .
TR TR

Then the characteristic polynomial is: P, (s) = (s +
R

If P, (s) =(S+a)1)(s2 +2§w0s+a)§) , we have @, = 2.9547

and ¢ =0.698.

R

The Fig. 1.4 shows the closed-loop control system which accumulates information
about the double integrator during operation and allows a zero steady-state tracking

error in spite of constant disturbance d defined by d=0.

d tal 0 0
LI L O ’T\ | 0=y
hd : + L] L]
B
: d
gu - + A optimal "
2 N 0 observer
Y 5 Y
N\ 0

Figure 1.4. — The closed-loop control system of the double integrator with optimal
observer block.

The closed-loop control law can be written as
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u=éR—gl[é§0RJ—g2[é—éR}—d (1.21)

1.2.4. The other control methods

Adaptive control in where the coupled term is treated as measurable disturbance,
then a self-tuning feed-forward control method is used to response to the changes in the
dynamics of the manipulator (Kolhe et al. 2013) (Slotine and Li 1987). Thus, the exact
real-time decoupling can be achieved. This method can deal with the parameter
uncertainties (Tran et al. 2015) (Tran et al. 2016), however, it requires real-time online
model identification which causes extensive computational burdens. In addition, since
the adaptive control generally does not guarantee that the estimated parameters of the
manipulators converge to their real values, tracking errors will be repeated as the
manipulators repeat their tasks (Sun and Mills 1999).

A certain number of control methods are identified as intelligent control, such as
artificial neural networks (Nawrocka et al. 2016) (Sun et al. 2016), fuzzy logic (Chen
Ken et al. 1988) (Xu et al. 1991) (Piltan et al. 2011) and expert systems (De Silva and
MacFarlane 1989). The common character of these control methods is that they usually
involve learning in some form or another. Like adaptive control method, these
intelligent controls also can deal well with the non-structural uncertainties. A major
advantage of using these intelligent controls as compared to conventional adaptive
system is the lack of necessity to be familiar with the mathematical description of the
dynamics of the process. However, in common, these methods have no standard system-
theoretic approach to algorithms.

Besides, there are optimal control (Lin and Brandt 1998) (Bobrow et al. 1985),
robust control (Kolhe et al. 2013), feedback control, iterative learning control (Kuc et al.
1991) (Sugie and Ono 1991) and etc. Moreover, the hybrid control which concluding at
least two or three control methods, such fuzzy PID control (Petrov et al. 2002) (Li et al.
2001), adaptive fuzzy control (Yoo and Ham 2000) (Jin 1998).

As known, these control methods really works for improving the performance of
the serial manipulator. However, if only taking into account the design of controller, its
algorithm which becomes huger and more complex will be a big computational burden,
the burden of iterative calculations consumes a lot of memory and also they are
relatively slow in comparison with nonlinear controllers. The overall high cost of
practically implementing such controllers made them unattractive to customers’ opinion.
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1.3. Design of manipulators with linear and decoupled dynamics

As mentioned above, the dynamics of a manipulator arm depends upon the mass
properties of individual arm links and the kinematic structure of the arm linkages.
Hence, usually, the redistribution of mass and modification of the arm structure are used
to reducing the dynamic complexity of the manipulators.

Let us consider three main approaches developed for dynamic decoupling of
manipulators.

1.3.1. Decoupling of dynamic equations via mass redistribution

The necessary conditions for the decoupled and configuration-invariant inertia of
the general manipulator are given in (Youcef-Toumi and Asada 1986a). Let us disclose
the necessary properties of mass distribution to reach this goal.

Let 6, and 7;, be the joint displacement and torque of the ith joint, respectively,
then the equation of motion of the manipulator is given by

y } oH; 10H; ),
7, =H0+> H,6,+> [8—91—5 aaj jyjek +74 (1.22)
k i

j#i j k

where H; is the i-j element of the manipulator inertia matrix, and z; is the torque due

to gravity. The first term of this equation represents the inertia torque generated by the
acceleration of the ith joint, while the second term is the interactive inertia torque
caused by the accelerations of the other joints. The interactive inertia torque is linearly
proportional to acceleration. The third term represents the nonlinear velocity torques
resulting from Coriolis and centrifugal effects. In general, the dependence of the inertia
matrix on the arm configuration produces these nonlinear velocity torques.

Consider the inertia matrix that reduces to a diagonal matrix for an arbitrary arm
configuration, then the second term in equation mentioned above vanishes and no
interactive torques appear. The manipulator inertia matrix in this case is referred to as a
decoupled inertia matrix. The significance of the decoupled inertia matrix is that the
control system can be treated as a set of single-input, single-output subsystems
associated with individual joint motions.

The equation of motion under these conditions reduces to
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. oH. . . 16H, -
r=H.8 + Qg —= Wﬁj+ri (1.23)
Zk:[aek 200 )0

where the second term represents the nonlinear velocity torques resulting from the
spatial dependency of the diagonal elements of the inertia matrix. Note that the number
of terms involved in this equation is much smaller than the number of original nonlinear

velocity torques, because all the off diagonal elements are zero for &,,...,6,. This
reduces the computational complexity of the nonlinear torques.

Another significant form of the inertia matrix that reduces the dynamic complexity
is a configuration-invariant form. The inertia matrix in this case does not vary from an
arbitrary arm configuration. In other words, the matrix is independent of joint
displacements, hence the third term in first equation vanishes and the equation of
motion reduces to

r=H,0+> H,0 +1, (1.24)
i

Note that the coefficients H;

Thus, the equation is linear except the last term, that is, the gravity torque. The inertia
matrix in this form is referred to as an invariant inertia matrix. The significance of this
form is that linear control schemes can be adopted, which are much simpler and easier
to implement.

and H; are constant for all arm configurations.

When the inertia matrix is both decoupled and configuration invariant, the equation
of motion reduces to

L= Hiiéi Ty (1.25)

The system is completely decoupled and linearized, except the gravity term. Thus,
we can treat the system as single-input, single-output systems with constant parameters.

Now let us consider the optimum mass redistribution to ensure a dynamic
decoupling.

As shown in Fig. 1.5, the manipulator is assumed to be an open kinematic chain
consisting of only revolute joints. The joints are numbered 1 through n from the
proximal joint to the distal joint. The link between joints i and i+1 is called link i. The
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direction of the axis of joint i is represented by a unit vector b,, and the displacement of

link i is denoted by &, which is the angle of rotation about the unit vector.

Figure 1.5. — An open kinematic chain manipulator with revolute joints.

The center of mass of link k is shown by point C, in the figure, the velocity vector
of the center of mass is denoted by V, and the angular velocity vector by o, . Let m,

and I, be the mass and the inertia tensor of link k with respect to the O-xyz inertial

reference frame, then the total kinetic energy stored in the arm links from 1 to n is given
by
n

T =Z%(mkVJchk +oy o) (1.26)

k=1

The motion of link k is generated by the preceding joint motions. The angular
velocity @, , for example, is given by

k .
o, = b6 (1.27)
i=1

To represent the linear velocity of the center of mass C, , we denote the position
vector from an arbitrary point on the ith joint axis to the center of mass C, by vector

Fo - Then,
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k .
Vi = Zbigi X (1.28)
i=1
Substituting two last equations into equation T = %(mchTkvck+a)Ilka)k), we
k=1
obtain
1< .
T =§ZZ H,66, (1.29)
i=1 j=1

where H; is the i—j element of the nxn manipulator inertia matrix given by

H, = Z [ M, (B7by KTl =b] 1 g b7 o )+ 671D | (1.30)

1) ek ek ]
k=max(i, j]
Note that the inertia matrix is symmetric, hence H; =H ;.

In order to eliminate the coupling and nonlinear torques, the inertia matrix must be
diagonalized and made invariant for all the arm configurations.

Figure 1.6 shows two kinds of structure designs for serial manipulators with
decoupled and configuration invariant torques.

(@) (b)
Figure 1.6. — Two kinds of structure designs for serial manipulators with decoupled and
configuration invariant torques (Youcef-Toumi and Asada 1987).

The linearization of the dynamic equations and their decoupling via optimum
inertia redistribution (Abdel-Rahman and Elbestawi 1991; Arakelian and Dahan 1995;
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Chapter 1: Manipulator design for simplified dynamics

Asada and Slotine 1986a; Asada and Youcef-Toumi 1984a; Filaretov and Vukobratovié¢
1993; Minotti and Pracht 1992; Yang and Tzeng 1985, 1986, Youcef-Toumi and Asada
1985, 1986), which can be achieved when the inertia tensors are diagonal and
independent of manipulator configuration.

Figure 1.7. — Design for a 3 DOF Figure 1.8. — KUKA robot with mass
manipulator with linear dynamics. redistribution simplifying its dynamics.

In the research (Yang and Tzeng 1986), a three-link model is considered (Fig. 1.7).
As shown, the form of the links is modified to achieve the linearization condition. The
mass centers should be located in the extensions of links AB and BP. Meanwhile, the
inertia of links is required to be nearly symmetrical in both axial and transverse
directions. Based on this kind of structure, the complexity of its dynamics is
significantly reduced.

Figure 1.8 shows a KUKA robot in which the motor arrangements and the mass
redistribution are based on the mentioned above design concept simplifying the
complexity of its dynamics.

The linearization and dynamic decoupling of 3 DOF manipulators have also been
considered (Youcef-Toumi and Asada 1987). As shown in Fig. 1.9, axis b1 and b, are
perpendicular to each other, that is, these two rotations along axis by and b are
decoupled. The axis b, and bz are parallel, however, the center mass of link 3 coincide
with its rotational axis bs, and the total mass center of link 2 and link 3 is right on the
rotational axis bz. These conditions derive the invariant inertia. In this research, all of
the arm constructions that yielded the decoupled inertia matrices were determined. The
approach in this research is applied to serial manipulators in which the axis of joints are
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1.3. Design of manipulators with linear and decoupled dynamics

not parallel. In the case of parallel axes such an approach allows linearization of the
dynamic equations but not their dynamic decoupling (Gompertz and Yang 1989). Thus,
in the case of planar serial manipulators, it cannot be used.

Figure 1.9. — Designs for 3 DOF manipulators with configuration invariant inertia.

Finally, it should be noted that for serial manipulator arms with an open kinematic
chain structure, the inertia matrix cannot be decoupled unless the joint axes are
orthogonal to each other (Fig. 1.6).

1.3.2. Decoupling of dynamic equations via actuator relocation

A popular configuration for the actuation of robot manipulators with actuated joints
is to have motors directly attached to the joints. This design does not involve any
transmission elements between the actuators and the joints. However, in certain cases
this configuration may not be appropriate and manipulators with remotely-actuated
joints may be desirable from point of view of the simplified dynamics.

In this case the dynamic decoupling follows from the kinematic decoupling of
motion when the rotation of any link is due to only one actuator. It is obvious that it
must be accompanied by an optimal choose the mass properties of certain links.

The five-bar-link mechanism shown in Fig. 1.10 (Asada and Youcef-Toumi 1984b)
is the first structure that achieves the dynamic decoupling. The distance between the two
motors is zero and fixed on the base. Because of this special motor location, the weight
of one motor is not a load on the other. Also the reaction torque of one motor does not
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Chapter 1: Manipulator design for simplified dynamics

act directly upon the other. An arm mechanism in which motors are mounted on a
fixture and the weight and reaction torque of one motor do not affect the other motors
directly is referred to as a parallel drive mechanism. In this mechanism, the overall
inertias about the two motor axes are invariant respectively. Furthermore, the interactive
inertia torques are eliminated by modification of the mass ratio of link 3 and link 4 and
the ratio of mass center distances of the two links. Thus, the inertia tensor is invariant
and completely decoupled.

Figure 1.10. - The first structure with dynamic decoupling.

The review have shown that the design concept with remote actuation is not
optimal from the point of view of the precise reproduction of the end-effector tasks
because it accumulates all errors due to the clearances and elasticity of the belt
transmission mainly used (Fig. 1.11).

Figure 1.11. — A linearization and dynamic decoupling model via actuator relocation
(Belyanin et al. 1981).
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1.3. Design of manipulators with linear and decoupled dynamics

Obviously, it is lot better to connect actuators directly with links than to use
transmission mechanisms. The manufacturing and assembly errors of the added
transmission mechanisms also have a negative impact to the robot precision.

1.3.3. Decoupling of dynamic equations via addition of auxiliary links

The linearization of the dynamic equations and their decoupling via redesign of the
manipulator by adding auxiliary links has also been developed (Arakelian et al. 2011)
(Arakelian and Sargsyan 2012) (Coelho et al. 2004) (Moradi et al. 2010). The dynamic
decoupling via redesign of the manipulator by adding auxiliary links is a promising new
approach in the robotics.

Figure 1.12 shows a modified 2-DOF serial manipulator with two added gears
(Coelho et al. 2004).

Figure 1.12. — A 2 DOF manipulator with addition of two gears.
Ensuring condition
ls; + 15, =gy (1.31)
the dynamic equations of the manipulator are decoupled:

2

z-1 :I:rr]llA51+(m2 +m2')|12 +rnl'| A§+|Sl + ISl' + ISZ + ISZ'] 91 (132)

7, =(lg,+ 15 +151) 6, (1.33)
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Chapter 1: Manipulator design for simplified dynamics

where, 1,1, are the lengths of links 1 and 2; |, is the distance between the centre of
mass S, of link 1 and joint centre A; |,. is the distance between the centre of joint A
and joint centre C; m;,m, are the masses of links 1 and 2; |, is the axial moment of
inertia of link 1 relative to the centre of mass Sy of link 1; I, is the axial moment of
inertia of link 2 relative to the centre of mass S, of link 2; I, is the axial moment of
inertia of gear 7°; Iy, is the axial moment of inertia of gear 2’ [9'1 is the angular

acceleration of link 1 relative to the base; @, is the angular acceleration of link 2
relative to link 1.

However, the design methodology proposed in (Coelho et al. 2004), which claims
that it is the first time the added links have been used for dynamic decoupling, leads to
the unavoidable increase of the total mass of the manipulator. This is due to the
disposition of the added elements in the end of each link.

In (Arakelian and Sargsyan 2012) a solution has been proposed permitting the
dynamic decoupling of the serial manipulators with a relatively small increase in the
total mass of the moving links (Fig. 1.13).

Y0, (1))

Figure 1.13. — A 3 DOF manipulator with addition of gear group.

In (Arakelian et al. 2016a), epicyclic gear train has been used to carry out the
dynamic decoupling of the exoskeleton arm.

28



1.3. Design of manipulators with linear and decoupled dynamics

Nevertheless, it should be noted that such a technique has a major disadvantage:
the need for the connection of gears to the oscillating links. The gears added to the
oscillating links of the manipulator are sources of shocks between teeth that will lead to
the perturbation of the operation of the manipulator, and to noise and other negative
effects.

1.4. Summary

In this chapter, a brief review of serial manipulators with simplified dynamics has
been presented. Simple structure, low cost, large workspace and mature technology,
these advantages make the serial manipulators are widely used in many industrial fields.
With the rapid development of industry, some new strict requirements are proposed,
such as high stability, high positioning accuracy, high speed operation and etc.

One of the ways to improve the mentioned requirements is the design of
manipulators with dynamic decoupling. As was mentioned above it can be reached by
control or design solutions.

The dynamic decoupling via mass redistribution is simple and it found practical
applications. However, as was mentioned above this solution can be used for dynamic
decoupling of serial manipulators with orthogonal dispositions of joint axes. In the case
of serial manipulators with parallel axes actuator relocation or auxiliary mechanisms are
used.

However, from the above review can be concluded that all known mechanical
solutions can only be reached by a considerably more complicated design of the initial
structure via adding gears to the oscillating links leading to the unavoidable drawbacks.
The gears added to the oscillating links of the manipulator are sources of shocks
between teeth that will lead to the perturbation of the operation of the manipulator, and
to noise and other negative effects.

Thus, it becomes evident that it is more optimal to carry out the dynamic
decoupling via adding simple linkages ensuring an opposite motion of links without
using gears. Therefore, one of the goals is to find simple linkages permitting to carry out
complete dynamic decoupling of serial manipulators.
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Chapter 3: Dynamic decoupling of planar serial manipulaors with revolute joints

The review has shown that the influence of the payload on the dynamic coupling
remains lightly studied. It is obvious that mechanical solutions for adjustment of
nonlinear terms of dynamic equations due to the changing payload can be reached by
very complicated design solutions. It is not attractive for practical applications.
Therefore, it becomes evident that it is necessary to find new more simple solutions
permitting to take into account the changing payload in the problems of dynamic
decoupling.

On the other hand, dynamic decoupling via optimal control of a manipulator with a
nonlinear system model and a changing payload is also rather complex task. That is why,
this work will propose new approaches of dynamic decoupling, which are a symbiosis
of mechanical and control solutions. To reach this purpose, the dynamic decoupling
may be carried out in two steps.

In the first step, the dynamic decoupling of serial manipulator will achieved via the
opposite rotation of links and their optimal redistribution of masses. Such a solution will
eliminate the need for the connection of gears to the oscillating links. This is the first
main advantage of the suggested mechatronic approach. Thus, the proposed mechanical
solution will allow one to transform the original nonlinear system model into a fully
linear system without using the feedback linearization technique.

It is obvious that the changing payload leads to the perturbation of the dynamic
decoupling of the manipulator and it must be eliminated.

Therefore, in second step, the dynamic decoupling of the equation of motion due to
the changing payload will be carried out using control techniques.

Such an approach is promising because it combines the advantages of two different
principles: mechanical and control. As mentioned above the mechanical solutions,
which can be used for dynamic decoupling of motion equations taking into account the
changing payload, can only be reached with any undue complication of the design.
Divers actuated counterweights should be applied. Such an approach is not viable.
However, the linearized dynamic of the manipulator via opposite rotation of
manipulator’s links leads to the relatively simple equations, which are easier to analyze
for further dynamic decoupling taking into account the changing payload. In other terms,
the mechanical solution to be developed will lead to the linearized equations of the
manipulator, which then facilitate the optimal control design for decoupling of dynamic
equations taking into account the changing payload. This is the second main advantage
of the mechatronic design to be developed.
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1.4. Summary

These mechatronic solutions will certainly improve the known design concepts
permitting the dynamic decoupling of serial manipulators with a relatively small
increase in to total mass of the moving links and it takes into account the changing
payload.
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In this chapter, a new approach for dynamic decoupling of serial
planar manipulators, which is a symbiosis of mechanical and control
solutions is proposed. It is based on the opposite motion of
manipulator links and the optimal command design. The opposite
motion of links with optimal redistribution of masses allows the
cancellation of the coefficients of nonlinear terms in the
manipulator ’s kinetic and potential energy equations.

Then, based on this completely linearized and decoupled
manipulator, the simple linear control method is used. Furthermore,
the changing payload is taken into account as a forward
compensation in the controller. Finally, in order to stabilize the
manipulator linearized and decoupled, a full state feedback is set up.

The suggested design methodology is illustrated by simulations
carried out using ADAMS and MATLAB software, which have
confirmed the efficiency of the developed approach.
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Chapter 2: Design of adjustable serial manipulators with decoupled dynamics

2.1. Design concept of manipulators with adjustable links

As mentioned in the previous chapter, the inherent character of coupled dynamics
is the prominent factor that impacts the operation accuracy and velocity performances of
the serial manipulators. In this chapter, a mechatronic method is proposed to achieve the

dynamic decoupling. The advantages of the suggested solution are:

- a simple linkage is added for achieving the dynamic decoupling of the serial
planar manipulators. It allows a dynamic decoupling of manipulators without
connection of gears to the oscillating links of the manipulator having leading to
imperfections reviewed in chapter 1.

- the simplification of the controller based on the linearized input/output
relationships, hence the computational burden caused by the huge amount of
iterative calculation is vanished. The real-time performance can be improved.

- the feasibility of the linear control method that used in this kind of manipulator.

- the changing payload can be taken into account based on the dynamic
decoupling manipulator.

Figure 2.1 shows the proposed adjustable serial manipulator for ensuring the
dynamic decoupling of motion equations.

Y

Figure 2.1. — Design concept of dynamically decoupled planar serial manipulator with
adjustable links.
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2.1. Design concept of manipulators with adjustable links

It is composed of link 1 with elements 1a, 1b and link 2 with elements 2a, 2b. The
adjustable links of the manipulator allow an optimal selection of the lengths L =L,g

and L, = L, of links 1 and 2, which ensures an identical and opposite rotation of links.

It can also be seen that the proposed manipulator is provided with a double Scott—
Russell mechanism, which ensures the static balancing of link 2 for any position of
element 2b.

To disclose the operation of the proposed adjustable manipulators, let's first
consider the dynamic decoupling of an arbitrary serial manipulator.

2.1.1. Dynamic decoupling modeling of an arbitrary serial manipulator

So let’s start by the dynamic decoupling of a serial planar manipulator with two
degrees of freedom shown in Fig. 2.2.

Yi

Figure 2.2. — An arbitrary planar serial manipulator.

According to Lagrangian dynamics, the equations of motion can be written as
|:Tl:| :|:Dll D12:||:é1:|+|:Dlll D122:||:0:12j|+ {DllZ D121:||:0:19:2j|+|:Dl:| (21)
TZ DZl D22 92 Dle D222 92 D212 D221 0102 D2

Dll = I’n'lI_ZASI + mZLi + m2 L%?)SZ + 2m2L1LBSZ Cos 92 + ISl + ISZ (22)

with
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Chapter 2: Design of adjustable serial manipulators with decoupled dynamics

D, =D, =m,%, +m,L L., cosd, +I, (2.3)
D,, = mZL",’382 +1g, (2.4)
D, =0 (2.5)
D,,, =—-m,L Ly, siné, (2.6)
D,,, =m,L L;,siné, (2.7)
D,,, =0 (2.8)
D, =D, =—m,L L, Siné, (2.9)
D,,, =D,,, =0 (2.10)
D, =(m,L,s, +m,L; ) g cosé, +m,glg,, cos(6, +6,) (2.11)
D, =m, gLy, cos(6, +6,) (2.12)

where 7, and 7, are respectively the actuator torques in A and B; L, L, are the lengths
of links AB and BP; &, is the angular displacement of link AB relative to the base; 6,
is the angular displacement of link BP relative to link AB; 91 is the angular velocity of
link AB relative to the base; 92 is the angular velocity of link BP relative to link AB;
m,,m, are the masses of links AB and BP; 6, is the angular acceleration of link AB
relative to the base; &, is the angular acceleration of link BP relative to link AB; m,,m,
are the masses of links AB and BP; L, is the distance between the center of mass S,
of link AB and joint center A; Ly, is the distance between the center of mass S, of link
BP and joint center B; |, is the axial moment of inertia of link AB relative to the center
of mass S, of link AB; I, is the axial moment of inertia of link BP relative to the

center of mass S, of link BP; g is the gravitational acceleration.

As known, this is a typical dynamic coupled and nonlinear model. In order to
reduce or even eliminate the influence that cased by the coupling, the dynamic model
must be improved further.
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2.1. Design concept of manipulators with adjustable links

Now, let us consider that the second link is statically balanced, i.e. Ly, =0 and the

gravitational forces are perpendicular to the motion plane xOy, i.e. D,=D, =0.

With the conditions above, the equation (2.1) can be rewritten as

7, | [a+b a] |4
L s

_ . 2 2
where, a=1lg,; b=1g,+mL,, +m,L.

Obviously, this is linearized dynamic model but still uncoupled.

To ensure the dynamic decoupling, it is necessary to ensure the condition 6'5l =-0,.
Then the equation (2.13) can be simplified as
7, =hé
{ s (2.14)
7,=0
Thus, we obtain a completely decoupled and linearized model.

Next step is the geometric synthesis of the mechanical structure which should
ensure two identical motions of links in opposite directions for any given initial and
final positions of the end-effector.

2.1.2. Adjustment lengths of links for ensuring opposite rotations

According to the inverse kinematics of the planar serial manipulator shown in Fig.
2.1, the joint angles can be expressed as

0 —tan-! y(L +L,c0s6,)—xL,siné, (2.15)
' x(L, +L,cos6,)+yL,sin 6, '
ezzicos-{xzwz‘q‘ﬂ (2.16)
2L,

where x and y are the coordinates of the end-effector in Fig.2.2.

37



Chapter 2: Design of adjustable serial manipulators with decoupled dynamics

ey
Figure 2.3. — Two configurations of the serial manipulator corresponding to the initial

and final end-effector positions.

The given expressions show that for the same end-effector position there are two
possible configurations of the manipulator called “elbow down” (configuration noted
(1)) and “elbow up” (configuration noted (2)). The fact that a manipulator has multiple
solutions would be used for ensuring the dynamic decoupling. Two configurations of

the manipulator corresponding to the initial end-effector position P and the final end-

effector position p,are shown in Fig. 2.3. As it has been mentioned above, the initial
position of the end-effector can be found by the following solutions: 6,6, “clbow

down” solution, 9;(2),9;(2) “elbow up” solution (not shown) and the final position of the

end-effector by 6’1&),9;(1) “elbow down” solution (not shown), 91{2)’0;(2) “elbow up”

solution. Thus, the links of the manipulator move in such a manner that in the initial
end-effector position (P), where the configuration of the manipulator will correspond

to the “elbow down” solution; and, in the final end-effector position(P;), where the

configuration of the manipulator will correspond to the “elbow up” solution.

This choice of initial and final end-effector configurations of the manipulator with
an optimal selection of lengths L and L, allows equal (A6, =A6,) and opposite

S, . ) . o pi _ f i
(6,=-06,) rotations of links AB and BP, i.e. ‘01(2) ) ‘— ‘02(2) o) ‘ These

conditions lead to @, =—6, and consequently to equations (2.14).
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2.1. Design concept of manipulators with adjustable links

Now consider the selection of lengths L, and L, of links 1 and 2 for any given

trajectory. To limit the variables in the specified conditions, suppose that the following
parameters are given:

the initial position P. of the end-effector: X, Y, ;

the final position p, of the end-effector: X;,y; ;

the initial angular position of the second link: 0;(1) ,

the rotating angle of the first link: A6, =6, —6,, .

The geometrical equations of the manipulator with the mentioned conditions lead
to the following expressions:

2 2 u2 2
i £Ye =X =Y,

= - i (2.17)

2L, (cos &y, —C0s b))

—E—(E2 442 /2
2
where

Xy xt -yt |

x= — (2.19)
2(C0S Gy, —C0S by yy)

&=2(x)"*cosb, — X~y (2.20)
ezf(z) = _(Agl - 02i(l)) (2.21)

Thus, for any initial and final positions of the end-effector, the lengths L, and L,
determined from equations (2.17) and (2.18) will ensure an equal (A& =Ad,) and
opposite (6, = —6,) rotations of links AB and BP.

Let us now consider the Scott-Russell mechanism.
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Chapter 2: Design of adjustable serial manipulators with decoupled dynamics

The Scott-Russell mechanism is usually used as a straight line generator, so it is
also called exact straight line mechanism (Fig. 2.4). In this mechanism, the point C on
the connecting rod copies the line traced by the slider B in a perpendicular direction OC,
if OA=AB=AC. It should be noticed that the straight-line or linear path exhibits great
potential for high-speed pick and place operations in many manufacturing sectors(Liao
2011).

Figure 2.4. — Scott-Russell mechanism (Dukkipati 2007).

As shown in Fig. 2.5, a pair of Scott-Russell mechanism is added. Thus, the
proposed structure ensures the complete static balancing for any arbitrary configuration
of the adjustable link BP.

Figure 2.5. — Adjustable link BP with added Scott-Russell mechanisms.

2.2. Motion generation and dynamic decoupling of the adjustable

manipulators

In previous sections, we studied the kinematics and dynamics of the adjustable
manipulator. This means that using the obtained equations of motion of the manipulator,
we can determine the manipulator’s positions.
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2.2. Motion generation and dynamic decoupling of the adjustable manipulators

The present section relates to the way the adjustable manipulator is moved from
initial position to the final position, as well as the conditions of dynamic decoupling
during the generated motions.

2.2.1. Motion generation via fifth-order polynomial trajectory planning

For motion generation between initial and final positions, a fifth-degree and
secondary derivative polynomial is used

5 .
6=> ct' (i=1..,5) (2.22)
i=0
Thus,we have
Ot) =c, +ct+ct> +ct® +ct* +ct® (2.23)
O(t) =c, +2c,t +3c,t* + 4c,t® +5ct* (2.24)
6(t) = 2c, +6c,t +12¢,t% + 20c,t? (2.25)
00)| [6 o) | [6:
The initial and final conditions are given by | (0) [=| 0 | and | O(T) |=| 0 |,
6(0)| |0 o) 0

where T is the total time for the rotation. 6, and & are the initial and final positions in
the joint space, respectively.

Substituting these conditions into equations (2.23)-(2.25). Then, we obtain that

9(t):9,+[9F—9,]Gj {10—15(%}6(%)} (2.26)
: 30(tY t) (t)
6’(t)=[9p—9|]?[; {1—2(?}(?” (2.27)

) 60 t t t
i) = 6, ‘9']?2(? {1—3[;}2(;) } (2.28)
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To ensure the opposite rotation of links, the actuators generate the same motions.
Hence, for joint A, we get

0,(t) =0, +10 _‘9“](% [10—15(%j+6(%j }
. 30 t 2 t t 2
Ho=H _9”]?@ 1_2(?}(?} ] (2.29)

el(t) = [6’1F _01|]$_2(%j|:1_3(%j+ 2(%] :|

N et

. 30(tY t) (tY

6,(t) =[0, _GZI]?(?) {1_2(?j+(?j :l (2.30)
. 60 t t t)’

92(t) :[92F _02|]T_2(?j{1_3(?J+2(?j ]

2.2.2. Dynamic decoupling without payload

for joint B, we get

For the dynamic decoupling of the model, the Scott-Russell mechanism should be
added. In consequence, the second link will be characterized by the link BP with the
Scott-Russell mechanism and the counterweight.

The kinematic energies of all parts of the manipulator are:

1 o1 .
E1 = E mlLiSIle + E Isﬂl2 (2.31)
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E2 - E m2+SR+cw[Lig:L2 + LfSSZr (91 + 02)2 + 2L1LBSZr 008(92)91(91 + 92)]

(2.32)
+3 l,spoan (6, +6,)°
with,
M, sriey =M, + Mgy +M,,
L, = m, L, + My Lo, =M, L, (2.33)

m

2+SR+cw

2 2 2
ISZ+SR+cw = Isz + ISR + mz(LBsz - LBszr) + mSR(LBSZ - LBSZr) + mcw(Lcw + LBSZr)

where, m,, M, M, are the masses of link BP, Scott-Russell mechanism and

counterweight, respectively; Ly, is referred to as the real distance between joint center
B and center of mass of the object which is constituted by link BP, Scott-Russell
mechanism and counterweight; |, .., is referred to as the moment of inertia of this
new combined object. In addition, the friction effect and gravity force are ignored here.

Thus, according to the Lagrangian equations, the torques of the manipulator
without payload are:

Lo dfej_a
1without dt 6 91 a 91

= mlLiSIél + I519'1 My sriow Lfel (2.34)
+ m2+SR+cw LéSZr (91 + 92) + m2+SR+CWL1LBSZr COS(QZ)(ZQI + 92)
- m2+SR+ch1LBS2r Sln(ez)(zgjLHZ + 022) + ISZ+SR+cw (91 + 92)

L oodfa)
2without dt 802 892

=My, srow Lés 2r (81 + ‘92) + m2+SR+ch1LBSZr COS(@Z)él (2.35)

+ m2+SR+ch1LBSZr Sin(92)912 + |82+SR+cw (01 + 62)
where, 7ot @Nd Touimout are torques of the manipulator without any payload.

Introducing the static equilibrium equations considered above, the dynamic
equations can be simplified as
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' ' ' )
Ty ithout a'+b’ a'| |
[ R R N (2.36)
Towithout a a 02
i 2 2 2 LR 2 2
Where’ a= ISZ+ ISR +m2LB52+mSRLBSZ+mCWLCW ! b _rnlLASl+ ISl+m2+SR+CWL1 .

With the condition of opposite rotations (&, =—4,), the equation (2.36) can be
simplified as

{leithout = b!él (237)

z-2without = 0

2.3. Closed-loop control

As known, an open-loop system cannot correct any errors that it could make. And
it will also not compensate for disturbances during the process. A closed-loop control
system, also known as a feedback control system is a control system which uses the
concept of an open-loop system as its forward path but has one or more feedback loops
between its output and its input. A closed-loop control system is necessary when the
open-loop system is unstable (double integrator).

Closed-loop systems are designed to automatically achieve and maintain the
desired output trajectory by compensating an error signal which is the difference
between the actual output and the reference input. Meanwhile, it can be used for
compensating the disturbance during the while process.

According to the inverse calculation of the equation (2.36), the state equation of the
MIMO model can be obtained with the state vector £=[6, 6, 6, 6,]'

—— N -0 0 |
qa| [0100]¢ 1 1
‘52 0 O 0 O ‘:;2 b’ b, |:leithout:|
453 0001 §3 0 Tawithout
_5'4_ 0000]¢&) | 1 1+£ r
;A e L oabl

- - t ~-

(2.38)
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2.3. Closed-loop control

Before the further research, the controllable canonical form of the state equation
should be built by the following transformation:

&=[TW.]¢ (2.39)

where, T is the controllability matrix, and it is formed as

o o L L
b" b
Lo
T =[B| AB]- L
0 0 -=— =+=
b" a' b
L
L b a b i

W, is the upper triangular Toeplitz matrix, and it is formed by characteristic
equation of matrix A: [slI-Aj=s* +a,s° +a,s* +a,;s+a, =s". So,

1 a a a| [1 000
0 1 a a, 0100
WC = = = I
0 01 a 0 010
000 110001
As known,
& = AS + B0y (2.40)

Substituting the equation (2.39) into equation (2.40), we obtain

é./ = [ch ]_l A[ch ] é, + [ch ]_1 BZ-without (241)

Hence, the controllable canonical form is given by

- 0 0|| <& 10

00

<, 0 000|C N 0 1 || Zumitnout (2.42)

&17l1000fg | oo |
01

¢ | 0 0ll¢,| (00

TZwithout
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and the sate vector

4 [(a'+b)6, + a6,
2| _ mie=| :jl'él + a:éz
¢ (a’'+b")6, +a'o,
4 a'6,+a't, |

(2.43)

It is obviously that, the system that described by state equation (2.42) can be

divided into two independent subsystems:

&]_[o o4l
4;3 - _1 0 4/3 0 Thwithout

&l [0 0] [1
4;4_—_1 O:| 4,4 +|:O:|T2Without

(2.44)

Hence, when taking into account the feedback control, the closed-loop can be
added firstly on each simple subsystem, then combine them together for the whole
system. Obviously, both of these two subsystems are simple double integrator structures.

Hence, the linear control method can be employed.

2.3.1. Command of the first double integrator

According to the first double integrator, we can deduce:

{ é;l = leithout
4. 3 =G

p=4¢;

Assuming that { .
p=¢

Then the state equation of the double integrator is given by

e

A B

46
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2.3. Closed-loop control

Obviously, this is a simple double integrator structure. For the closed-loop control,
the control law can be written as

Tyithot = M — G110 — U0 (2.47)

Substituting this control law in the equation (2.46), then the state equation of the
double integrator can be rewritten as

m i {—90 - HEHS” (2.48)

=+ gll:b + 0,0 (2.49)

7o ol 3 i) -

hence, @, = p. It can be found that

Assuming that

then

= p+ gnp + 00 (2.51)

It is concluded that a balance position of the double integrator is given by the
conditions about o and its continual derivatives. Hence, if a trajectory p, which is
secondary derivable over a range [0, T] is given, we can deduce:

the = Pr + 91105 + 91,08 (2.52)
Finally, the control law of the closed-loop double integrator is
Tywithout = bR - gll[p - le] - glz[p _pR] (2-53)

As known, p=(a'+b")6, +a'd,, the control law can be rewritten as

Tyt = (@ F b’)élR + a’éZR
- 911[(3‘, + b’)[él - élR] + a,[éz - ézR]] (2-54)
—0p [(a' + b’)[el - elR] + a'[ez - QZR]]
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2.3.2. Feedback parameters of the first double integrator

According to the last section, the double integration state equation of the first

double integrator is obtained.

For realize the control law: 7,0 = =G, [p /)]T, the matrix of state feedback

parameter G, =[g,, 9,,] should be obtained. It is calculated by minimizing the index of

performance J below:

0 . p
J = _[|:[p p]Ql|: . :| + Z-;rwithout erlwithout :Ft
0 P
where
R =1>0
12 6
T -1 e -3
¢ T T 1 T 1
Q= Tpl[le’* B,Be” drﬂ = ) g : >0
T To

Assuming that the symmetric matrix X is the solution of Riccati equation

AiTzl +2A _ZlBlRl_lBlTZl +Q,=0

O, O
where £, =| * ?|.
0, O3

o, >0

It is known that, the matrix will be positive if : )
0,0,—0, >0

thus
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2.3. Closed-loop control

we obtain

20'2+i>0:>02=§:><732=4(1+—2\/_3)
pl pl Tpl

020'3+£3>0:>03=2 13

pl

pl
612(72(73+£= 6+4\/§«f1+\/§

3 3
Ta Ta

Hence, the expression of matrix X is obtained

644431+ 3 23
T3 T2
5= pl p1
=
23 2\1+3
] T2 Ty |

As known, the matrix G is noted as

Gl = I:21_1811-“71
Then,

szl T

pl

s _[2J§ 2 1+x/§}

As result, we obtain

23 _ 21+ NG
0, =—5 andg, =———.
T, T

pl

The state model of the closed-loop system is written as follows

sz a6 a5 ]

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)
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The characteristic polynomial P(s) is given by

P(s)=|sl -A +BG, |=s* +

pl pl
o

If P(s)=s’+2{w,s+w’, we obtain @, =———and ¢ = [+43 0.89.

Tpl 2\/§

As shown in equation (2.44), the two subsystems have the same state equations.
Hence, the control law and feedback parameters of the first double integrator that
obtained above are also suitable for the second double integrator:

(2.62)

Towithout — a'élR + a'éZR
_g21[a’[91 - 91R] + a’[‘gz - ‘92R]] (2-63)
- 922 [a,[91 - ‘91R] + a,[92 - HZR]]

where,
2.3 _21+3
Op=—%and §y =——.
p2 Tp2

2.4. Dynamic decoupling taking into account the payload

The introduction of the payload leads to new loads on the actuators which are also
nonlinear. Here, consider the payload also as one part of link BP. The energies of both
of the two links are described as

1 o1 .
El:EmlLiMelz-i_EISlle
1 . .
Ez =EM2[L56712 + LéSZr(Hl _ng)z (2.64)
. 1 L
+ 2L1LBSZr 003(92)91(91 + 92 )] + E |52+SR+cw+p (‘91 + ‘92)2

where,
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2.4. Dynamic decoupling taking into account the payload

m,L L..,—m_ L +m, L,
+m ’ BSZ SR BS2 CW —CcwW

2+SR+cw p LBS or = M !
2

M,=m

2 2
|82+SR+CW+P = Isz + ISR + mz(LBsz - LBszr) + mSR(LBSZ - LBSZr)

+ mcw(Lcw + LBSZI‘)Z + mp(LZ - LBSZr)Z'

According to the Lagrangian, the dynamic equations are

-
1With_dt B 69

=M Lisﬂ + |51‘9 +M ng +M, BSZr(g +6 ) (2.65)
+M,LiLgso, c08(6,)(26, +6,) - M, L Les,, SiN(6,)(26,6, +6;)

+1 (6, +6,)

S2+SR+cw+p

d( oL oL
Towith = | 24 |~ =4
dt\ o6, ) 06,

=M, g5 (‘91 + ‘92) +M,L L, C05(92)‘9.1 (2.66)
+ M, L Ly, Sin(6,)67 + 1 (6,+6,)

S2+SR+cw+p

where, 7, and 7, are the output torque values of the first actuator and the second

actuator respectively when taking into account the payload on the end-effector of the
serial manipulator.

Substituting the equation (2.33) into these dynamic equations, then they can be
simplified as

_ ) , ..
Thwith mLASl+ISl+M2L1+ISZ+ISR I, + 1 || G
I, + I ls, + sz || 6,

n (m +mSR)LBSZ+mCWLiW (m +mSR)LBSZ+mCWL§W:|[é]

Towith |

(m +mSR)LBSZ+mCWLiW (m +mSR)LBSZ+mCWL(2:W éz
.. 2.67
. mpL§+2mpL1L2cos(02) m, L5 +m L L, cos(6,) {‘91} (2.67)
| m,L5+m,LL,cos6,)  m,L; 6,
+_—2mpL1Lzsin(02)9'2 -m,LL,sin(6,)6, {9‘1}
| m,L L, sin(6,)6), 0 6,
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Introducing the condition of opposite rotations (4, =—6,), then

{leith | — mlLZASl + |31 + m2+SR+chi 0 01
Towith | 0 0 éz

'm, L2 +m,LL,cos(6,) 04
+_mpL1chos(z92) O}Lj (2.68)
—m,LL,sin@,)6, 014
| m,L,L, sin(6,)6; O]L'j

Compare equation (2.68) with equation (2.37), the torques that caused by the
introduction of the payload can be found

At, __mpo+mpL1chos(6?z) 04
[Arj__mlechos(ez) 04,

-m LL,sin(@,)4, 0][4
mLLsin@,)6 0],

(2.69)

Hence, the dynamic equation with payload can be rewritten as

{leith = Tyithour T ATy (2.70)

TZwith = TZWithOUt + ATZ

This part is referred to as payload compensation. Extracting the payload
compensation from the dynamic equation of the model taking into account the payload,
then the model can be treated still as a dynamic decoupling model. This is another
advantage that building a dynamic decoupling model taking into account the changing
payload.

Under this mechatronic method, the dynamic model can be greatly simplified and
meanwhile achieve the dynamic decoupling. In addition, the changing payload is also
considered. As a result, no matter there is payload or not, the simple linear control law
can always be used.
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2.5. lllustrative example with the SIMULINK block of MATLAB

2.5. Hlustrative example with the SIMULINK block of MATLAB

In this section, a simulation model will be built in the SIMULINK block of the
MATLAB. The performance of the proposed technique is examined. First, the inverse
transformation of the dynamic model with payload must be found. Rewritten the
equation (2.64) as fellows

{71 = ‘//(92)‘% + [7/2 +ﬁ(‘92)]éz - 2“(92)9192 _05(92)6}22

.. .. . (2.71)
7, = [7/2 +ﬁ(‘92)]91 + 7,0, +a(€2)912
where
a(6,) =M, L L., sin(4,);
B(6,) =M, L Ly, cos(6,);
yo=lg+mLl;
Vo= ISZ+SR+CW+p +M Lészr;
w(0)=r+y,+ M2L1 +2/(6,).
The inverse dynamic equations of the system are:
— V2 r _[7/2 +ﬁ(‘92)]2_ +72a(‘92)(9‘6}
YAB) Y O AB) P AWG) P 212
ROV AYICH P ZOT |
A(6,) A(6,)
= [72 +ﬂ(92)] 7+ v (6,) 7, - 0’(‘92)[7/2 +ﬂ(92)] 0192
A(6,) A(6,) A(6,) 273)
_ 0!(92)(//(92) 912 . a(HZ)D/Z +IB(92)] (91 + 9’2)9'2 l
A(6,) A(6,)

where A(6,) = 7,7, + MZLiISz +[0£(92)]2 >0
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Chapter 2: Design of adjustable serial manipulators with decoupled dynamics

2.5.1. Simulation model of open-loop control system

In order to demonstrate the influence of the payload compensation, an open-loop
control system is built. In the simulation model, it mainly contains two blocks, a
controller block and a manipulator block, shown as Fig. 2.6. The controller block is
used to provide the desired trajectories and the payload compensation. The manipulator
block is used to simulate the real planar serial manipulator:

tlwithmn +ATI
s{ Torques
T]wilhom and TE\vithou[ .
. described by
described by Tovioon + AT: equations (2.70)
equation (2.37) > '
v "
At, and Art, Manioulator 0,
described by anipuiato — >
equation (2.69) described by 0
. 2
q equations (2.72)-(2.73) ——>
Controller

Figure 2.6. — The schema of the open-loop control system.

The simulation parametric values are obtained by using the ADAMS software. It
should note that, this software is good at dynamic simulation and the model that built in
this software is the same with the model in real word. Thus, these parametric values in
(Tab. 2.1) can be considered as the real parametric values of a real manipulator.

As shown, they can be divided into three mainly categories: mass parameter, length
parameter and moment of inertia parameter.

Table 2.1. — The parametric values of the open-loop control system.

mass length moment of inertia
(kg) (m) (kg-m)
m 13193 L/L,  08/04 I, 0.77754
m, 8477 L,/Ls, 05/025 I, 0.20744
mg, 0.811 Loce 0.25 e 0.01717
m,, 9.288 L., 0.25
m 5
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2.5. lllustrative example with the SIMULINK block of MATLAB

It should be noted that, for simplify the calculation, the parametric values of
counterweight are given by

Mgy, = My +Mgg 2.74)
Loy = Las,
Until now, a whole simulation model of the open-loop control system can be built.
For the operation of the model, the desired trajectories that described by the equations
(2.29) and (2.30) are used, and the initial and final positions of the manipulator are
given as (Tab. 2.2). Here, the total operation time T =1s.

Table 2.2. — The initial and final values of the desired trajectories.

Angle Velocity Acceleration
(°) (m/s) (m/s?)
6, 33 6, O 4, 0
6 110 6, O 6. 0
0y, 0 0,, 0 éﬂ 0
O 77 ézF 0 éZF 0

According to the equations (2.29) and (2.30), the desired trajectories, velocities and
accelerations of the two actuators are shown in Fig. 2.7. Fig. 2.7(al)-(a3) are the curves
of the angular trajectory, angular velocity and angular acceleration of the first actuator
respectively. As the same, Fig. 2.7(b1)-(b3) are the curves of the angular trajectory,
angular velocity and angular acceleration of the second actuator respectively. It is
obvious that these two trajectories are totally opposite.

As proposed, this is a dynamic decoupling manipulator. The torque of each motor
is only influence by one kind of parameter. Especially for the second actuator, its output
torque is completely cancelled (Fig. 2.8).
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=77

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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(al) (b1)
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125F i -25
100 : -50

75F -75
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0 (deg/s)
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500

400
300
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-200
-300
-400

-500
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Figure 2.7. — Desired trajectories, velocities and accelerations of the two actuators.
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200 20

150F

without payload compensation

with payload compensation

100

50F fF

1

7. (Nm)
T, (Nm)

without payload compensation

-50F

/
-100f with payload compensation

-150 -
0 0.2 0.4 06 0.8 1 0 0.2 0.4 086 08 1
Time (sec) Time (sec)

Figure 2.8. — Torques with payload compensation (solid line) and without it (dashed
line) for the open-loop system.

In the controller of this system, the payload is considered as a forward
compensation based on the linear and dynamic decoupling model. With payload
compensation, both links of the manipulator can rotate exactly to the target angles,
shown as the solid line in Fig. 2.9, because that the controller model reflects precisely
the structure of the manipulator.

However, there are always some disturbances that can influence the precision. One
of the extremely examples is cancellation of the payload compensation, shown as the
dashed line in Fig. 2.9. Under this situation, the errors of angular displacements of link
AB and BP are, respectively, 12.34% and 40.87%.

110 0
100.85F -
-20f with payload compensation
[<Te] 3 with payload compensation
-40F
80
g g
k) 70F k=) -60F
- ~
[==] [==) ».4.
60F 774 'v.\
\ .
50} witllloul payload compensation /"'r...
without payload compensation .
“or -108.47} ]
30 N s N N 120 s s . .
0 0.2 0.4 06 08 1 0 0.2 0.4 06 0.8 1
Time (sec) Time (sec)

Figure 2.9. — Angular displacements of links with load compensation (solid line) and
without it (dashed line) for the open-loop system.
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2.5.2. Simulation model of closed-loop control system

In order to reduce the impact of disturbance on tracking accuracy, the closed-loop
is added. The closed-loop control law can be written as

1 = Thitnoue TAT
—g,[(@' +b)[6, - 6]+ a0, - 0, ]]
—0,[(@'+b")[6, -0 1+aT0, - O]
T = Touitnour T AT
_921[a'[91 - élR] + a![éz - 92R]]
—0,[a16, - O]+ 210, - O 1]

(2.75)

where, T inour Tawimour» A7, @nd A7, are given by equations (2.37) and (2.69). The

simulation diagram in SIMULINK of MATLAB is shown in Fig. 2.10, and the detailed
information is shown in Appendix A.

Tiwithout +ATI

>{ Torques P
T1without and Towithout . o~
. described by
described by Tovithour TAT: equations (2.70) <
equation (2.37) > &4 ]
Ti (%
At and Ar; Mani V] tor ¥ A
described by a Pu ato 6.4
equation (2.69) described by 00
q ' equations (2.72)-(2.73) 22
Controller

Figure 2.10. - The schema of the open-loop control system.

As in the case of open-loop system, the dashed curves show the torques and the
angular displacements of the manipulator without payload compensation and the solid
curves show the simulation results of the model with payload compensation in Fig.2.11
and Fig. 2.12, respectively.
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200 20

150F without payload compensation

without payload compensation
s

oo b 10}

*

100

sof £

1
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-50F s

with payload compensation /
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with payload compensation

-100F

-150} Rl s}

-200 -20
0 0.2 0.4 06 08 1 0 0.2 0.4 06 08 1

Time (sec) Time (sec)

Figure 2.11. — Torques with payload compensation (solid line) and without it (dashed
line) for the closed-loop system.

Comparing the torque curves of closed-loop control system with the ones of open-
loop control system, it is obviously that, the two torque curves of the simulation with
and without payload compensation are closer in the closed-loop control system,
especially for the second actuator (Fig. 2.11). In aspect of tracking accuracy, in this
closed-loop control system, the payload compensation allows an exact reproduction of
manipulator motions. However, it should note that, the closed-loop can reduce the
influence of absence of payload compensation, shown in Fig. 2.12. The errors of
angular displacements of link AB and link BP are 1.43% and 1.18%.

120

110.91F

with payload compensation
20 ’ 100} with payload compensation

0F
-30

80F
-40

0, (deg)
0, (deg)

70F
-50
60f

-60

S50F [

\

without payload compensation

-70
-75.9p

40}

30
0 0.2 0.4 06 0.8 1 0 0.2 0.4 0.6 0.8 1

Time (sec) Time (sec)

Figure 2.12. — Angular displacements of links with payload compensation (solid line)
and without it (dashed line) for the closed-loop system.
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2.6. Summary

This chapter deals with the design concept of adjustable serial manipulators with
linearized and decoupled dynamics taking into account the changing payload. It is
achieved by using links with adjustable lengths connected to the double Scott-Russell
mechanism and by means of an optimal control technique. Such a dynamic decoupling
Is a symbiosis of mechanical and control solutions. It is carried out in two steps. At first,
the dynamic decoupling of the serial manipulator with adjustable lengths of links is
accomplished via an opposite rotation of links and optimal redistribution of masses.
Such a solution proposed for the first time allows one to carry out the dynamic
decoupling without connection of gears to the oscillating links. The elimination of gears
from design concept is a main advantage of the suggested solution. Thus, the proposed
mechanical solution allows one to transform the original nonlinear system model into a
fully linear system without using the feedback linearization technique.

However, it is obvious that the changing payload leads to the perturbation of the
dynamic decoupling of the manipulator. To ensure linearized and decoupled dynamics
of the manipulator for any payload, an optimal control technique is applied. It is shown
that the dynamic decoupling of the manipulator simplifies the control solution ensuring
the dynamic decoupling taking into account the changing payload. The perturbation of
required motions of the manipulator with payload compensation and without it is shown
via ADAMS and MATLAB simulations. Two kinds of simulations are carried out with
open-loop control system which is a non-feedback system and closed-loop control
system. The obtained results showed the efficiency of the proposed solution.

60



Chapter 3

Dynamic decoupling of planar serial

manipulators with revolute joints

3.1.
3.2.
3.3.
3.4.

3.5.

Dynamic decoupling modeling via adding a two-link group
Closed-loop control

Dynamic analysis taking into account the payload

Illustrative example with the SIMULINK block of MATLAB

Summary

p.62
p.65
p.71
p.74
p.82

This chapter deals with a new dynamic decoupling principle,
which involves connecting to a serial manipulator with revolute joints
a two-link group forming a Scott-Russell mechanism with the initial
links of the manipulator. The opposite motion of links in the Scott-
Russell mechanism combined with optimal redistribution of masses
allows the cancellation of the coefficients of nonlinear terms in the
manipulator’s kinetic and potential energy equations. Then, by using
the optimal control design, the dynamic decoupling due to the
changing payload is achieved. The suggested design methodology is
illustrated by simulations carried out using ADAMS and MATLAB
software, which have confirmed the efficiency of the developed
approach.
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3.1. Dynamic decoupling modeling via adding a two-link group

Fig.3.1 shows a serial planar manipulator with two degrees of freedom, which
consists of two principal links 1, 2 and a sub-group with links 3 and slider 4. The
movements of this manipulator are planar motions which are perpendicular to the
vertical plane, and therefore, not subjected to gravitational forces. The slider 4 can slide
freely along the link 1, and it’s connected with link 3 by revolute joint D.

X |

Figure 3.1. - The 2-dof planar serial manipulator with added two-link group.

Thus, the added sub-group with links 2 forms a Scott-Russell mechanism. As said
above, the Scott-Russell mechanism has been developed to generate a rectilinear motion.
Here, another property of this mechanism is used. The Scott-Russell linkage generates
also rotations of links by identic angular accelerations, i.e. the angular accelerations of
links 2 and 3 are similar.

Let us consider the equations of motion of the unbalanced mechanism. In this case,
the Lagrangian of the system is equal to the total kinetic energy. The kinetic energy
expressions of all parts of the structure are:

1 . 1 .

E1 = E mleAsﬂlz +§ |31912 (3'1)
1 ) .. .. 1 .

E, = Emz[Lf@f + L2, (6, +6,)" + 2L L, cos(6,)6,(6, +¢92)]+§ I, (6, +6,)° (3.2
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3.1. Dynamic decoupling modeling via adding a two-link group

E, =2 M L0 + L0+ 6 + iy (6, - 0. ~2L, L, cos(0,)6,(6,+0)

- 2L1Lc53 C05(02)91(91 - 92) + 2'-3LC53 C08(292)(0‘12 - 022)] +% |83(91 - 92)2

1 . . . 1 .
E4 = §m4[(2|-3 COS(@Z) - L1)2‘912 +4L§ S|n2(92)922]+§ IS4912

(3.3)

(3.4)

Here, E,E,, E; and E,are the kinetic energy of link 1, link 2, link 3 and slider 4
respectively. Then the dynamic equation of the serial planar manipulator can be

obtained
|:Tl :| — |: Dll D12 :| 01 + |: Dlll Dl22 :| 9.12 + |: D112 D121 :| 9192
& D21 D22 éz D211 D222 922 D212 D221 9192

Dll = mlLiSl + ISl + mZLi + mZLzBSZ + 2rnZ"lLBSZ cos 92 + ISZ + m3Lf
+m,L2 +myL2 . —2m,L L, cosé,)—2m,L L, cosé,
+2m,L, L, c0s(26,) + |4, +m, (2L, cos 6, — L) + I,

with

D, =D, =m,L5, +m,L L., co88, + 1, +mL2 —m,L%. —m,L L, cosd,
+m,L L, c0860, -1,

D,, =m, L2, + 1, +mL3 +m,L%, —2mL L., cos(26,) + I ¢, +4m, L3 sin® 6,

Dy, =0

Dy, =—M,LLgs, sin6, +myLL;sin6, —myLy L, Sin 6,

D,,, =m,L L, sing, —m,L L;sin8, —-m,L L, sin g, + 2m,L, L., Sin(26,)
+2m,L,(2L; cosé, —L,)sin b,

D,,, =2m,L, L, sin(26,) +2m,L;sin(26,)

D,,, =—2m,L L, sin 6, +2m,L L, sin 6, + 2m,L L4, Sin 6,
—4m,L,L ., sin(26,) —4m, L sin(26,) +4m, L L, sin(6,)
Dy =Dy, =Dy =0

(3.5)

(3.6)

3.7)

(3.8)
(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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where, m;,m,, m,, and m, are the masses of link 1, link 2, link 3 and slider 4
respectively; lg,, ls,,ls; and |, are the moments of inertia of link 1, link 2, link 3 and
slider respectively; L, L,, L, are the lengths of link 1, link 2 , link 3 respectively, and
L, also the distance between centers of revolute joints B and C; L, is the distance
between the center of mass 5, 0f link 1 and joint center A; Lg, is the distance between
the center of mass S, of link 2 and joint center B; L, is the distance between the center
of joint C and center of mass of link 3; 6, is angular displacement of link 1 relative to

the base; 0, is angular displacement of link 2 relative to link 1; 4, is angular velocity of
link 1 relative to the base; 4,is angular velocity of link 2 relative to link 1; 4 is the
angular acceleration of link 1relative to the base; 4, is the angular acceleration of link 2
relative to link 1.

In order to further simplify this dynamic equation, two balancing conditions are
applied

m;Leg; +mM,L; =0 (3.15)

(ms"'m4)|-3_m2|-ssz =0 (3.16)

Substituting these two equations into the dynamic equation (3.5), then it can be
simplified as

7, =06, + b6,
S (3.17)
7, =b6, +c6,
where
2 2
d:I51+ISZ+I53+IS4+m1L2ASl+(m2+m3+m4)|_f+{(m3+m4) L (my +m,) 2
m, m,

B 2 2 2
m,+m m;, —m
b:|52_|53+ ( 3 4) + 3 4:||_:23

m, m,

(m+m,)°  (m,+m,)’ } 2

c=l.,+1..+
S2 S3
I“Z ||3

Obviously, we obtain linear dynamic equations.
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3.1. Dynamic decoupling modeling via adding a two-link group

Furthermore, if

2 2 2
|53:|52+{(m3+m4) + M m“}Lﬁ (3.18)

then we get b=0.

Thus, the complete dynamic decoupling of the serial planar manipulator without
payload is achieved:

{leithout = d '01 (319)

Y
TZwithout =C 92

where,

d'=1lg,+2l5, + |54+m1|—151+(m2+m3+m4)|-f
42 (M, +m,)(m, +m, +m,) Lg
2

(m3 + m4)(m2 + m3 + m4)

¢'=2[lg,+ 2]

2

3.2. Closed-loop control

The main goal of the closed-loop control is actually to stabilize this serial planar
manipulator which is instable. The feedback design allows good tracking properties.

Define the state vectoras £=[g, 4, 6, 6,]".

According to the inverse calculation of the equation (3.19), the state equation of the
MIMO model can be obtained

I 0 O
&l [o10 07¢
: 0
52 — 0 0 0 O é:Z d' leilhout (3 20)
53 0 0 0 1 é:3 O 0 z-Zwithout .

1 :

¢

G B Sl 0 I

A
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Chapter 3: Dynamic decoupling of planar serial manipulaors with revolute joints

The controllable canonical form of the state equation should be built for the further
research. It needs to use the following transformation:

&=[TW,]¢ (3.21)

where, T, is the controllability matrix, and it is formed as

0 0 X o0
d

% 0 0 0

T. =[B| AB]- .
0o 0 o0 =

c

o I o0 o0
L C i

W,, is the upper triangular Toeplitz matrix, and it is formed by characteristic
equation of matrix A: |sl-A|=s* +a,s® +a,s* +a;s+a, =s*. S0,

1 a, a, a 1 0 00
0 1 a 01 0 O
WC = a3 2 = :I
0 01 a 0 010
0 0 0 1| 0 0 01
As known,

¢=Ac+Br (3.22)
Substituting the equation (3.39) into equation (3.40), we obtain
£=[T.] AT ]S +[T.] Br (3.23)

Hence, the controllable canonical form is given by

&l [oooo]f¢g] 1o

<, _ 0 000|C N 0 1 || Zuwitnout (3.24)
4;3 1 0 0 O 4/3 0 O TZwithout .
424 010 0]d, 00
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3.2. Closed-loop control

and the state vector

4 d'6, |
4/2 -1 C'Q

- t) = 2 3.25
o |FlLreo=| (3.25)
¢4  ¢'0, |

It is obviously that, the system that described by state equation (3.42) can be
divided into two independent subsystems:

& o offa] [t
4;3 - 10 43 0 Tlwithout

:g': 0 0l¢ . (3.26)
4;4_ —|:1 O:||:é,4:|+|:0:| z-2with0ut

Hence, when taking into account the feedback control, the closed-loop can be
added firstly on each simple subsystem, then combine them together for the whole
system. Obviously, both of these two subsystems are simple double integrator structures.
Hence, the linear control method can be employed.

3.2.1. Command of the first double integrator

According to the first double integrator, we can deduce:

‘ :Twi oul
{;l o (3.27)
43 :gl
Assuming that { p =5

pP=¢

Then the state equation of the double integrator is given by

.l . 1without (328)
pl [00]p] |1

A B

Obviously, this is a simple double integrator structure. For the closed-loop control,
the control law can be written as

Thitnout = M — 0110 — 91,0 (3.29)
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Chapter 3: Dynamic decoupling of planar serial manipulaors with revolute joints

Sustituting this control law in the equation (3.28), then the state equation of the
double integrator can be rewritten as

BH—QO —;M{ﬂ“l (3.30)

=+ glllb + 0,0 (3.31)

L e

hence, @, = p. It can be found that

Assuming that

then

M= p+ gllp + 0,0 (3.33)

It is concluded that a balance position of the double integrator is given by the
conditions about p and its continual derivatives.

Hence, if a trajectory p; which is secondary derivable over a range [0, T] is given,
we can deduce:

g = Pr + 01105 + 0,05 (3.34)

Finally, the control law of the closed-loop double integrator is
Thitout = Pr — L0 = Pr] = 9l — &) (3.35)
As known, p=d’d,, the control law can be rewritten as

Thithout = d ’ém -g,d ,[91 - 0.1R] —0,dT6, - 6] (3.36)

3.2.2. Determination of the feedback parameters for the first double integrator

In order to realize the control law: rl(t):—Gl[,o(t) p(t)]T, the matrix of state

feedback parameter G, =[0,, 0,;] should be obtained.
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3.2. Closed-loop control

It is calculated by minimizing the index of performance J below:

K t
J :j|:[p(t) p(t)]Ql {P( )}‘H—I (t) Rﬂl“)}dt (3.37)
0 p(t)
where
R =1>0
2 6]
Tos . = -|-41 -|-31
Q —[TMU eAlTBlBlTeA”drﬂ = ) bf’ i" >0
T o

Assuming that the symmetric matrix X is the solution of Riccati equation

A +2A-2BR'B/ X +Q =0 (3.38)
0, 0, .. L 0y~ 0
where 2, = must be positive-definite, i.e. )
o, O, 0,0,—0,>0

thus § o, =—F =0,

we obtain
202+i2>0:>02 :ﬁzqf :4(1+—;/_3)
pl pl pl

2V1+3 (3.39)

6 0 B
0,0,+—>0=>0,=

pl pl
6 6+4«/§x/1+«/§

0, = 0,03 T3~ T3
pl pl
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Chapter 3: Dynamic decoupling of planar serial manipulaors with revolute joints

Hence, the expression of matrix 2] is

644431+ 3 N
T3 T2
z = P i (3.40)
23 21+3
T T |

As known, the matrix G, is noted as

G =R'B/ % (3.41)
Then,
G, = Nf 2y1++3 (3.42)
To Tor
2~/3 2«}1 3
As result, we obtain J;, = —{ and 9, = ;\/_ .
T T,
The state model of the closed-loop system is written as follows
‘ 0 1
P P P
{..}[A—B&]{ l: 23 241+43 {} (3.43)
P Pl |——= -~ P
To Tot
The characteristic polynomial P(s) is given by
P(s) =[sl = A +BG, |- 5° + 2 1+ﬁsﬂ@ (3.44)
To T
x/2 3
If P(s)=s*+2{w s+, we obtain @, = V3 and¢ = 1++3 ~0.89.

T V23

According to these results, the control law and feedback parameters of the second
double integrator can be written as
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3.2. Closed-loop control

Towithout — C'éZR - ngC,[éz - 92R] - 922C'[92 - HZR] (3-45)

2 1+x/?_>

where, 95, B and g, = T

p2 p2

3.3. Dynamic analysis taking into account the payload

Based on the assumption above, we consider the link 2 and the payload as one
object. Then,

M, =m, +m, (3.46)
m m
LBszr = M_ZZ LBsz + M_Z LBP (3-47)
I2+p = |2+m2(LBSZ_LBSZr)2+mp(L2_LBSZr)2 (3.48)

where, M, is the total mass of link 2 and the payload; Lg,, is the distance between the

mass center of M, and the joint center B; Ly, is the distance between the joint center B
and the end-effector; 1, is the total moment of inertia of link 2 and the payload.

Thus, according to the Lagrangian dynamics, the dynamic equations with payload

are:
L o_dfay_au
M dt 06, ) a6,

= 9;[m1L151 +lg + Mz'—f + Mz'—észr +2M,L Ly, €08(6,) + 1.5
+ ms'—f + m3|-§ + m3|—2053 - 2m3|-1|-3 COS(Hz)_ 2m3|-1|—c53 C05(92)
+2m,L, Lo, €0S(26,) + |5, +m, (2L, cos(6,) — L) + I5,]
+ éZ[MZLéSZr +M,LLgs,, COS(6,) + 1,5 + ms'—é - m3|-§:ss (3.49)
- msLlLe COS(@Z) + msLchss COS(@Z) - Isa]
+6,0,[-2M, L Lgg,, Sin(6,) + 2my Ly L, sin(8,) +2m; Ly L g, sin(6,)
—4m,L Lo, Sin(26,) - 4m, L (2L, c0s(6,) - L) sin(6,)]
+ 922[_M 2L1LBSZr Sil’](@z) + m3L1L3 Sin(‘gz) - msLiLcss Sin(gz)]
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Chapter 3: Dynamic decoupling of planar serial manipulaors with revolute joints

. dfoL) oL
2 =4t 06, | o8,
- ‘9[M LBszr +2M, L Lgs,, COS(@Z) + I2+p +m3|—3 m Lcss
—m; L, L, c0s(6,) + Myl Legs €0s(6,) — 15
+0 [M LBSZr + I2+p + msl-g + ms'—éss —2m;LsLeg, COS(292) +lg, (3.50)
+4m,L5sin?(6,)]
+ 912[M2L1L352r Sin(gz) - m3L1L3 Sin(ez) - msLiLcss Sin(gz)
+2myLyLog Sin(20,) +2m, L (2L, cos(6,) ~ L,)sin(6,)]
+62[2m,L, L, SiN(26,) — 2m, L2 sin(26,)]

where, 7., andz,,,, are the output torque values of the first actuator and the second

actuator respectively when taking into account the payload on the end-effector of the
serial manipulator.

From equations (3.15), (3.16) and (3.47), we can obtain that

m
Less = - L, (3.51)
m,
_(my+m,) my
L - Lgp 3.52
BS2r — M2 L3 M2 ( )

Substituting these two equations into the dynamic equations (3.49) and (3.50), then
they can be simplified as

A 2 2 2 2
leith_91[|31+| +IS3+IS4+mlLA81+M2L1+m3L1+m4L1

2+p
m,+m,)L, +m L., T? 2
+[( 3 4)L3 p BP] +(m3+m4) L§+2mpL1LBPCOS(92)]
M, ] | M, . (3.53)
m,+m,)L,+m L m —-m;
+4,[I +— . P *
[ 2+p S3 M2 m3 L3]

+ éZ[mp L, Lgp €OS(6,)]+ 6,6, [-2m, LiLg, sin(6,)]+ 0; [-m, LiLgp sin(6,)]
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3.3. Dynamic analysis taking into account the payload

5 [(my+m)L+m Lo l? m2 —m?
ovitn = Ol p =I5 — M, P 3m3 5]
- m, +m +m L. T 2
+‘92['z+p+'ss+[( s ¥ ML Mybeel” | (mg +m,) 3] (3.54)
Mz m3

+6,[m, L Ly, c0s(6,)]+ 67[m, Ly 1L, Sin(6,)
Finally, replace the parameter I, and 1,, by the equations (3.18) and (3.48), the

dynamic equation with payload can be rewritten as

B m,+m,)(m,+m, +m

leith:01[|81+2|52+IS4+mlLiSl+(m2+m3+m4)Lf+2( : 4)(m2 : 4)L12’.]
2

+9;[mpo]+(9;+éz)[[m'°LBP“;I'”m“)LS] —(m3;m“)2 2]

+6[2m L L, 1c0s 6, + 6,[m L Ly, 1cos 0, + 6.6,[-2m L, L, ]sin 6,

+60Z[-m, L Lo Isin 6,
(m,+m,)(m,+m,+m
3 4 ( 2 3 4)|_:2;]
2

+(91 +9'2)[[mpLBP +(|:]/Iqs + m4)|-3] _ (ms ;mzl)z |_§]

Touitn = 260, [ 15, +

+6[m, L Lg1cos 6, + G2 [m L L, ]sin 6,
(3.55)

Compare equation (3.55) with equation (3.19), the torques related to the payload
can be found

AT, =6'.1[””pl-f]+(5"1+éz)[[m"|'BF’ +('\':|‘3+m4)|-3] _(m3;m4)2 2]

+6[2m L Lgp1c0s 6, +6,[m L Ly, ]cos 6, +6,6,[-2m L Ly, ]sin 6,
+0Z[-m, L Lgs]sin 6, (3.56)

vy =@y T RILL ()

+6[m,LLg1cos 6, + 82[m, L Ly, 1sin 6,
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Chapter 3: Dynamic decoupling of planar serial manipulaors with revolute joints

Hence, the dynamic equation with payload can be rewritten as

{leith = Tyithour T ATy (3.57)

TZWith = 2-2Wi'[hout + ATZ

As noted in the previous chapter, this part is referred as payload compensation.
Extracting the payload compensation from the dynamic equation of the model taking
into account the payload, then the model can be treated still as a dynamic decoupling
model. Also, no matter there is payload or not, the simple linear control law can always
be used.

3.4. Hlustrative example with the SIMULINK block of MATLAB

For verifying the performance of this proposed dynamic decoupling method, a
simulation model will be built in the SIMULINK block of MATLAB. We note that

8y =[mM Lig, + I, + ML+ M, L5g,, + 1, ) +myLf +myL5
+m3LéS3 + ISS + IS4 +4m4L§ +m4Li +2m3L3LCS3]
a1:[m3|-3|-css+m4|-§]
a, =[M,L g, —msL L]
8, =[M,Lgs,, + . + m, 3] (3.58)
a, =[m,L2, +1,]
a5 =[m,L, L]
a; =[m,L L]
a; =[m;L;Leg,]

then, the dynamic equations (3.49) and (3.50) can be rewritten as

1, = a,0, +6,[ 2a, — 2a, —4a ] cos(6,) + 6,[- 4a,]sin*(6,)
+0,[a, —a,]+6,[a, +a,]cos(6,) + 6,6,[-2a, + 2a, +4a;]sin(b,) (3.59)
+0,6,[-8a,]sin(6,) cos(6,) + 07 [-a, —a, ]sin(6,)
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3.4. lllustrative example with the SIMULINK block of MATLAB

r, =6[a, —a,]+6[a, +a,]cos(6,)
+é2[a3+a4—2a7]+é?'2[4a1]sin2(92) (3.60)
+67[a, - a, —2a,]sin(8,) + 67[4a,]sin(6,) cos(6,)
+62[4a,]sin(6,) cos(6,)

According to the form Ag +Cg' = 7 ,we can obtain the dynamic model equation as

{rlHao +204(6,)-45,(0,)  a,—a,+7,(6,) }m

7 a;—a, +7,(6,) a;+a, —2¢, +4/5(0,) éz
. " _ “ (3.61)
+{@[—2%(02)—8@(492) 02[—%(«92)]}{91}
‘ 91[052 (6,)+4p,(0,)] 92[4ﬂ2 (6,)] ‘9.2 _
where
0{1((92) = [az — & —ae]cos(ez)
a,(6,) =[a, —a; —a,]sin(4,)
B.(0,) = a,sin*(6,)
ﬂz ('92) =q Sin(ez) COS(QZ)
71(92) = [az + 3.5]COS(92)
7,(6,) =[a, +a;]sin(6,)
As the matrix A is positive and invertible, we deduce
A—l _ 1 {a3+a4_za7+4ﬁ1(92) _a3+a4_71(‘92) } (3.62)
AG,) | —a,+a,—.(6,) &, +2a,(6,)—4p.(6,)

where

A((92) = [ao +2a1(‘92)_4ﬂ1(‘92)][a3 +a, _2a7 +4ﬂ1(92)]—[83 —a, +71(92) ]2

Finally, the serial planar manipulator is modeled in MATLAB by using the
following equations:
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Chapter 3: Dynamic decoupling of planar serial manipulaors with revolute joints

_a3+a4_2a7+4:81(92)2_ +_a3+a4_7/1(‘92)
b A6,) ' O

2[a3+a —2a,+45(6, )][az(9)+4ﬂ2(9)]96,

A(6,)
[ +a, —7(6)][e,(6,) +45,(6,)] &7
A(6,)
s +a, —2a8, +4/(6,)][r, (4, )]92 4[-a, +a, — 1, (015, (6, )]92
A(6,) A(6,)

(3.63)

_ —a,+a,—7,(6,) : +a0+20{1(92)—4,31(92)z_
? NG ' A(6,) 2
A2 +a, 71(9)][a2(6’)+4ﬂ2(9)]96,
A(6),)
_[8, +2a,(6,) —45.(8,)][a,(6,) +45,(6,)] 0
A(6,)
LA+, =y @)1, (0] o 48 +204(6,) ~ 45, (0 115, (6,)] 02
A(6,) % A(6,)

(3.64)

3.4.1. Simulation model of open-loop control system

First, the open-loop control system of the serial planar manipulator is built. It is
constituted mainly by two parts, the controller part and the manipulator part. The
controller part is described by the equations (3.19) and (3.56). And the manipulator part
is described by equations (3.63) and (3.64), as shown in Fig. 3.2.

T 1without +Art,

ihour AN Tous 5| Torques
mmm‘ e described by
described by Do +ATs cquations (3.57)
equation (3.19) > ©q .
T T

At and Az, v Vl t v 0
described by aanU ator L >
equation (3.56) described by 0,

- ' equations (3.63)-(3.64) ——>

Controller

Figure 3.2. - The schema of the open-loop control system.
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3.4. lllustrative example with the SIMULINK block of MATLAB

The parametric values of all the parts of the system is given in Tab. 3.1. It should
be noted that the value of the length parameter L., is negative. That is because a

counterweight is added on the inverse extension line of link 3, when consider link 3 and
the payload as one object, the total mass center moves along the inverse extension line
of link 3 and finally located on the side of the joint C.

Table 3.1. - The parametric values of all the parts of the system.

mass length moment of inertia
(kg) (m) (kg-m*)
m 13193 L/L,,  08/04 I, 077754
m, 10472 L,/Lg, 0.8/01738 I, 1415
m, 5374 L/l 0.3/-0038 I, 22069
m, 0.692 Lo 0.5 I, 7.2x10™*
m, 5

As discussed above, in order to simplify the dynamic model, link 2 and the payload
are treated as one object. The parametric values of the composite object are shown in

Tab. 3.2

Table 3.2. - The composite parametric values of the system.

mass length moment of inertia
(kg) (m) (kg -m?)
M, 15.472 Les,,  0.2792 ., 1.7751

The initial and final simulation angles are given in Tab. 3.3.

Table 3.3. - The initial and final values of the desired trajectories.

Angle Velocity Acceleration
(°) (m/s) (m/s?)
&, 0 éu 0 él, 0
O 40 6. O O, 0
6, 30 6, 0 6,, 0
0, 80 6, 0 0, 0
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Chapter 3: Dynamic decoupling of planar serial manipulaors with revolute joints

Different from the decoupled model that proposed in last chapter, there is no
special requirement for choosing these angles, i.e. they can be arbitrary values. Here, for
the desired trajectories, velocities and accelerations, the same expressions that described

by equations (2.29) and (2.30) are used.

40

35

30

0 0.2 0.4 06

Time (sec)
(al)
80
70
60
“n" 50
~
&0
< 40
=
<
30
20
10
0
0 0.2 0.4 06 0.8 1
Time (sec)
(a2)

250

fi(deg/s?)

-250 . = L y
0 0.2 0.4 0.8 0.8 1
Time (sec)

(a3)

B (deg/s)

0, (deg)

0.2 0.4 0.6 0.8 1
Time (sec)

(b1)

-20
0 0.2 0.4 06 0.8 1
Time (sec)
(b2)
300 T T
200f
. 1oof
"o
—
g
< 0
=
-100F
-200F
-300 L - L L
0 0.2 0.4 06 0.8 1
Time (sec)
(b3)

Figure 3.3. - Desired trajectories, velocities and accelerations of the two actuators.
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3.4. lllustrative example with the SIMULINK block of MATLAB

As a result, they are shown in Fig. 3.3. Fig.3.3(al)-(a3) are the curves of angular
trajectory, angular velocity and angular acceleration of the first actuator. Fig.3.3(b1)-(b3)
are the curves of angular trajectory, angular velocity and angular acceleration of the
second actuator. It should be note that, the operation time is assumed as T=1s.

With all these conditions, the simulations of the open-loop system with a payload
of 5 kg can be done. During the simulation, the required torque values are calculated
firstly. As mentioned above, the controller can be divided into two parts: the dynamic
decoupled model of the manipulator without payload and the payload compensation
shown in Fig. 3.2. With the payload compensation, the expressions of the torques are
derived exactly by the model of the manipulator. Thus, the desired torque values can be
obtained, shown as the solid lines in Fig. 3.4. Meanwhile, the desired trajectories are
achieved, shown as the solid lines in Fig. 3.5.

150 50

without payload compensation 40
100 4 20 without payload compensation

50 20

10}/

E E
£ 0 z

e S0

-50 -10

-20

-100 with payload compensation 20 with payload compensation
-150 -40
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time (sec) Time (sec)

Figure 3.4. - Torques with payload compensation (solid line) and without it (dashed
line) for the open-loop system.

40 80

35 with payload compensation 70 with payload compensation
N

30

2588} 60

53.54f

20

8, (deg)
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15
40

10

.
-
;
.
<k
<N
* \

-~ d
__,f" without payload compensation
with payload compensation 30

A . . . 20 . . . .
0 02 0.4 06 0.8 1 0 02 0.4 06 0.8 1
Time (sec) Time (sec)

Figure 3.5. - Angular displacements of links with load compensation (solid line) and
without it (dashed line) for the open-loop system.
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Chapter 3: Dynamic decoupling of planar serial manipulaors with revolute joints

When without the payload compensation, the torque expressions in the controller
won’t precisely reflect the model of the manipulator. Thus, under this situation, the
torque values are different with the desired ones, shown as the dashed lines in Fig. 3.4.
In other aspect, the payload compensation can be treated as the compensation of the
inaccurate modeling of the manipulator. As known, the inaccurate modeling part is
always exists more or less. Hence, without the payload compensation, a great difference
will appear during the desired and the real trajectories (Fig. 3.5). The errors of angular
displacements of link AB and BP are, respectively, 35.3% and 52.92%.

3.4.2. Simulation model of closed-loop control system

To deal with the unexpected disturbances or situations, such as the lack of the
payload compensation, the closed-loop is added, shown in Fig. 3.6.

Thwithou TATs

5| Torques
described by
equations (3.57)

Thiionr ANA Tovishons
described by Tovithow TAT2
equation (3.19)

N A

A 4

T V'D
At and At Manioulat .
. anipulator o 0
described b 1o
Y described by .

tion (3.56
equation (3.56) equations (3.63)-(3.64)

Controller

Figure 3.6. — The schema of the closed-loop control system.

The feedback factors are already obtained above, according to the schema of the
closed-loop control system, the closed-loop control law can be written as
7,(1) = Thinow + AT

— 0,06, — 6,,]1- 9,416, — O ] (3.65)

7,(t) = Toiou T AT,

- g21C'[6’2 - ézR] —0,,CT0, — 0,1

where, Timou @Nd oo @re given in equation (3.19); Az, and Ar, are given in
equation (3.56).

The simulation diagram in SIMULINK of MATLAB is shown in Appendix B. As
known, the feedback loop works only when there is difference between the desired and
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3.4. lllustrative example with the SIMULINK block of MATLAB

real trajectories. With the payload compensation, the desired torques allows an exact
reproduction of the desired manipulator motions, i.e. the tracking curves overlaps
completely with the desired trajectories, shown as the solid lines in Fig. 3.7 and Fig. 3.8.
If the payload compensation is absent in the controller, it will lead to inaccurate torques,
hence the incorrect tracking trajectories will be obtained. However, such a tracking
error can be reduced because of the self-correcting performance of the feedback loop. It
is obvious that, the tracking curves without payload compensation (the dashed lines in
Fig. 3.8) are closer with the desired trajectories than the ones in open-loop system (the
dashed lines in Fig. 3.5). As a result, the errors of angular displacements of link AB and
BP are, respectively, 2.68% and 2.96%. Obviously, they are greatly diminished.
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Chapter 3: Dynamic decoupling of planar serial manipulaors with revolute joints

3.5. Summary

This chapter proposed a new dynamic decoupling principle, which involves
connecting to a serial manipulator a two-link group forming a Scott-Russell mechanism
with the initial links of the manipulator.

It has been carried out in two steps. At first, the dynamic decoupling of the serial
manipulator is accomplished via the Scott-Russell mechanism properties and optimal
redistribution of masses. Thus, the modification of the mass redistribution allows one to
transform the original nonlinear system model into a fully linear system without using
the feedback linearization technique. However, as it mentioned above, the changing
payload leads to the perturbation of the dynamic decoupling of the manipulator. To
ensure decoupled dynamics of the manipulator for any payload, an optimal control
technique has been applied.

The perturbation of required motions of the manipulator with payload
compensation and without has been illustrated via simulations. Two Kkinds of
simulations are carried out with open-loop control system which is a non-feedback
system and closed-loop control system. The obtained results showed the efficiency of
the proposed solution.

Finally, it should be noted that the developed approach of dynamic decoupling can
also be applied to the design of planar serial manipulators with three degrees of freedom.
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This chapter deal with the robustness properties of serial
manipulators with decoupled and coupled dynamics derived by
tolerance analysis.

After having introduced some performance indices of the
manipulators, the tolerance capabilities of four manipulators are
analyzed. In order to quantify the influencing degree, two kinds of the
indices are defined. They are angular error and position error.

Two kinds of simulation are designed here. The first kind of
simulation is implemented by fixed parametric error. Then, the
influencing degrees of all variables on the positioning accuracy of the
manipulators are analyzed respectively.

In order to obtain the models closer to the practical situation, the
random parametric errors are introduced in the second kind of
simulation. Furthermore, the parametric errors of all the variables
are added at the same time during one simulation.

The simulation results prove that the manipulators that decoupled
by the mechatronic methods are more robust.
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Chapter 4: Tolerance analysis of serial manipulators with decoupled and coupled
dynamics

4.1. Performance indices of the manipulators

The performances of the manipulators such as the dexterity, load capacity, force
transmission from the joint to the end-effector, and dynamic responsiveness etc. are
investigated for optimize the design of the manipulators. Usually, in these researches,
the performances are quantified by using some indices.

The dexterity indices for planar and spatial manipulators are presented in(Gosselin
1990). (Asada 1983) proposed the generalized inertia ellipsoid (GIE) as a quantitative
method to measure the capability of changing end-effector’s velocity in different
directions for fixed Kkinetic energy. In the research of (Yoshikawa 1985), the dynamic
manipulability ellipsoid (DME) is introduced for measuring the ease of changing the
end-effector’s configuration by a set of joint torques with fixed magnitude. Both of the
two indices (GIE and DME) are based on the relationship between the generalized
inertia force of the end-effector and the generalized inertia torques of joints. The
dynamic conditioning index (DCI) which is defined as the least-square difference
between the generalized inertia matrix and an isotropic matrix is used to measure the
dynamic performance of a manipulator (Ma and Angeles 1990).

Besides the analysis of the performances above, the error tolerance analysis is also
important for a manipulator. For applications in remote and/or hazardous environments
where repair is not possible, the fault tolerance of the manipulators is necessary. Cause
once the components failure, it will result in a robot’s joint becoming immobilized, i.e.,
a locked joint failure mode (Ben-Gharbia et al. 2015). Hence, lots of researches such as
to increase manipulator reliability (Cheng and Dhillon 2011) and to improve failure
detection (Dixon et al. 2000).(Ben-Gharbia et al. 2011) are proposed. However, these
applications are extreme ones. In normal application of the manipulators where repair is
possible, there is another performance referred as error tolerance corresponds to fault
tolerance needs to be considered.

Positioning inaccuracy can stem from a number of sources such as the dimensional
error of the components, the assembly error, the deflection error, the clearance in the
kinematic pair, the elastic deformation error, the friction and wear error and the
measurement and control error etc. In addition, during the actual operation, the variation
of the payload, acceleration and deceleration of the manipulator may cause the
geometric deviation and the movement deviation of the manipulator. All of these can
affect the positioning accuracy of the serial manipulators.

The error of serial manipulator can be divided into systematic error and random
error. System error is the error in the manufacturing and assembly process of the
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4.1. Performance indices of the manipulators

components. Usually, this kind of error is in the form of cumulative error, reverse error
or periodic error. The error follows a certain mathematical model and can be
compensated by control algorithm. Random error is the error that caused by uncertainty
of the unpredictable disturbances, and therefore it is impossible to build a precise
mathematical model for this error. The current effective way is to estimate the statistical
processing of multiple measurements.

Considerable researches have been proposed for error analysis, error model
derivation and calibration (Veitschegger and Wu 1986) (Wu 1983) (Veitschegger and
Wu 1988). For the error model, some researches focus on the effects of manipulator
joint errors (Waldron and Kumar 1979) (Benhabib et al. 1987), as well as the effects of
link dimensional errors (Vaishnav and Magrab 1987) (Ferreira and Liu 1986). For
instance, in the research of (Caro et al. 2005), two dimensional variations are discussed
for a 2-DOF serial manipulator model.

4.2. The dynamic models of manipulators for tolerance capability

comparison

The method mentioned in (Caro et al. 2005) is an efficient tolerance synthesis
method. However, not just the length parameters, but also the parameters of mass and
inertia are needed to be considered for tolerance analysis of the manipulators.

Hence, six main parameters of the serial manipulators are used here, they are:

- M, m,: the mass parameters of the two main links 1 and 2 respectively;
- gy, lg, : the inertia parameters of the two main links 1 and 2 respectively;
- L, : the distance between the center of mass of link 1 and joint A;

- Lg,: the distance between the center of mass of link 2 and joint B.

In addition, four serial planar manipulators with two degrees of freedom are
considered. They are:
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manipulator_0: a serial planar manipulator with non-decoupled dynamics,
shown in Fig. 4.1.The simulation diagram in SIMULINK of MATLAB is shown
in Appendix C.

manipulator_1: a serial planar manipulator with decoupled dynamics (chapter 2),
shown in Fig. 4.2.The simulation diagram in SIMULINK of MATLAB is shown
in Appendix A.

manipulator_2: the decoupled 2-DOF serial planar manipulator that proposed in
chapter 3, shown in Fig. 4.3. The simulation diagram in SIMULINK of
MATLAB is shown in Appendix B.

manipulator_3: a decoupled 2-DOF serial planar manipulator that decoupled by
feedback linearization (Fig. 4.4). The control schema of inverse dynamics
control is shown in Fig. 4.5. And the simulation diagram in SIMULINK of
MATLAB is shown in Appendix D.

Yi

Figure 4.1. — The structure model of manipulator_0.

The dynamic equation of manipulator_0 without payload can be expressed as

7, = 6,8, +byg) +2m, L L, c08 6,1+ 6,8, + M, L Ly, COS6,]

+922[_m2|-1|—532 sin '92] + 9192[_2m2L1LBsz sin 92] (4 1)
7, =6[a, +m,L L, cos6,]+a,0,

+62[m,L, L, sin6,]



4.2. The mathematic background for tolerance capability comparison

where

2
) = M, Les, + s,

2 2
b(o) =mLy +mb + I
Thus the structure model of manipulator_0 for the simulation is given as

=12 o 7.+ B(6,)] 7, + 7,2(6,) 66,
A(6,) A(6,) A(6,)

I ) PR ZACAY P
NN R

LRG3 I CA I OO VA CAI PP
A(6,) A(6,) A(6,)

_ a(6,)y (6,) 07 _ a(ez)[72 +ﬂ(82)]
AG) A(6,)

(4.2)

2

(6, +6,)0,

where,

a(6,) =m,L L, sin(6,);
18(92) = mzL1L352 COS(@Z);

2 .
7= g MLy

V2= Isz"'mzl-ész;
1/1(92):}/1+72+qu +2(6,);

A(ez) =072 +m2Li|sz +[a(92)]2 > 0.

To establish the closed-loop control system, all the nonlinear terms in equation (4.1)
are cancelled first, shown as equation (4.3).

7, = (8 +D))0; + 2,0,

. . (4.3)
7, =86 +38,)6,

Then, we obtain
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dynamics

6, = L nL- S (2
b b
(0) (0)
02 = _i o+ ( L
Boy ~ A

of manipulator_0 can be deduced as

where, the feedback factors are: 0, =0, =

h= [a(o) + b(O)]élR + a(o)ezrz

_gll[(a(o) + b(o))[él - 91R] + a(o) [92 - 92R]]
_912[(3-(0) + b(o))[91 —0Op]+ a(o) [0, — 0, ]]

nL= a(o)élR + a(o)éZR

_gzl[a(o) [01 - 91R] + a(o) [92 - 92R]]
_gzz [a(o)[‘gl - ‘91R] + a(o) [‘92 - QZR]]

2143

12=0p=

without payload is expressed as
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Figure 4.2. — The structure model of manipulator_1.
According to the results in chapter 2, the dynamic equation of

(4.4)

According to the same derivation process in chapter 2, the closed-loop control law

(4.5)

manipulator_1



4.2. The mathematic background for tolerance capability comparison

r=(a,+ b(1))‘.9.1 + a(l)éZ

7, = a6, +a,0,
where,

— 2 2 2
a(l) - ISZ + ISR +m2LBSZ +mSRLBSZ +m L

CwW —Ccw

2 2
b(l) =MLy + 1o + My sonly

The structure model of manipulator_1 for the simulation is given as

1= 2] 7
A(6,) A(6,) A(6,)

T 0(((92)[]/2 +IB(92)] 9'12 " 726¥(92) (91 + 92)92

A(6,) A(6,)

8@ vo) @t FE)],,
A(6,) A(6,) A(6,)

_ a(ez)'//(‘gz) o7 _ a(ez)b/z +ﬁ(6’2)]
AG) A(6,)

V2 [72+,B(l92)] +}/205(92) 9192

(6, +6,)6,

where

a(6,)=m, o...Llss,, SIN(G,);
B(6,) =My, sz cwls Losor COS(6,);

7o =lg +mLl;

V2 = lsaesreon + Massraoulasars

W (0,) =1+ 72 + My ks +258(6,);

AG,) =ny, + m2+SR+chiISZ + [0‘(‘92)]2 >0.

(4.6)

(4.7)

To establish the closed-loop system of manipulator_1, the equation (4.6) is

reformed as
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R
b. ' b
o Py “s)
L1 1 1 '
0,=——1,+(—+—)r,
by~ Ay by

According to the results in chapter 2, the closed-loop control law of manipulator_1
can be written as

= (ay) +0,)) s + a0 — 9ul(@y) +10,))[6, — 01+ 8, [6, = 6,¢]]
—glz[(a +b )[9—91R]+a [92—92R]]
, = 8 0he + 8 O = 98y [0, — O]+ 3, [6, — 6, ]]

—gzz[a(l) [6, - 491R] +a, [6, - 0,:1]

(4.9)

where, the feedback factors are: 9, =0, =

Figure 4.3. — The structure model of manipulator_2.

According to the results in chapter 3, the dynamic equation of manipulator_2
without payload is expressed as

. =a.b
{ P (4.10)
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4.2. The mathematic background for tolerance capability comparison

where,
ay = g 215, + gy + ML, +(M, +my +m, )L
42 (m; +m,)(m, +m, +m,) 2
2
(m; +m,)(m, +m; +m,)

5]

b..=2[l., +
(2) [ls. m,

Thus the structure model of manipulator_2 can be described as equations (4.11)
and (4.12).

_t+a, —2a,+45(6,) _— 3, +3, —7(6,) :
1 A(6,) O
+ 2[33 + a4 — 2a7 + 4ﬂ1(92)][0!2 (92) + 4ﬁ2 (92)] 9‘192
A(6,)
_ [-a; +8, = 7(6,)][,(6,) +45,(6,)] o2
A(6,) 1

& +a, —2a, +45,(6,)1[7,(6,)] 07 4-a, +a, — 1 (6,)1[5,(6,)] 02

A(6,) i A(6,) i

(4.11)

i

6‘; _ —+3, _71(92) o+ g+ 2“1(02) _4181(02) r
’ A(6,) ' A(6,) i
+ 2[—63 +a, — ]/1(192)][0[2 (‘92) + 4/32 (‘92)] 9192
A(6,)
_ [ao + 2051 (92) — 4181 (92 )] [az (92) + 4ﬂ2 (02 )] 9'2
A(6,) 1
+ [—8.3 +a, - 71(92 )][72 (‘92)] 9‘2 _ 4[30 + 2“1(92) — 4ﬂ1(92)] [ﬂz (92)] 9'2
A(6,) ’ A(6,) ’

(4.12)

where

2 2 2 2 2
a0 :[rnlLASl+ ISl+ MZLl + MZLBSZr + |2+p +m3L1 +m3L3
+m3L€?SS+ IS3+ IS4 +4m4|‘121+m4|‘f +2m3L3LC33];

a :[msLchss+m4L§];
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a, :[MZLlLBSZr _m3L1L3];
a, :[le—zaszr + I2+p +m3|-32];

a, :[msl-f:ss + |3];

a5 :m3|-1|-3;
a; =m,LLs;
a; =mylylegs;

a,(6,) =[a, —a; —a,;]cos(b,);
a,(6,) =[a, —a;, —a,]sin(6,);
B,(6,) =a,sin*(6,);

,(6,) = & sin(6,) cos(6,);
7:(0,) = [a, +a5]cos(6,);
7,(65) =[a, +a;]sin(6,).

As the same, to establish the closed-loop control of manipulator_2, the equation
(4.10) is reformed as

0 =—
1 a(z) 2]
(4.13)
bg,-L o
b(z)

According to the results in chapter 3, the closed-loop control law of manipulator_2
can be written as
0= a(z)élR - glla(z)[gl ~ O]~ glza(z)[‘gl — Ol
= b(z)ézR - gzlb(z) [‘92 - Q.ZR] - gzzb(z) [‘92 - 92R]

21443 23

and 0,=0p="%5"
T, Ty

(4.14)

where, the feedback factors are: 0, =0, =

The manipulator_3 has the same structure as manipulator_0 (Fig. 4.4), however, it
is linearized and decoupled by feedback linearization which is shown in Fig 4.5.
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4.2. The mathematic background for tolerance capability comparison

Figure 4.4. — The structure model of manipulator_3.

The dynamic model of manipulator_3 can be expressed as

r=A0)d+C(0,6)0 (4.15)
The decoupling law is written as

r = KoV +C(0,0)0 (4.16)

where, A(@) is referred to as the inertia matrix that be formed by nominal parameters;

é(e, 0) is referred to as Coriolis and centrifugal effects that be formed by nominal
parameters.

:_ " Linearized and Iacﬁnﬁed_sﬁteTn_:
(.9. + VI ~ Nonlinear | 9,9
R A 1 + T -
O O iA(H) "+ manipulator :
I I
g g | | |
| _ |
| C(6.6) |
0, |y L_______‘=——d_ _
O
0, - A+
N

Figure 4.5. — The control schema of inverse dynamics control for manipulator_3.
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If A9) = A(0) and C(6,6) =C(6,0), then we obtain
A@)v = A9)d (4.17)

In addition, the inertia matrix A(#) is reversible, thus
v(t) =0(t) (4.18)

Substituting equations (4.15) and (4.18) into equation (4.1), then the equation of
the torgue can be rewritten as
T, = [a(o) + b(o) +2m,L L, coséb,]v, + [a(o) +m,L L, cos6,]v,
+[_m2 L1|—Bsz sin ‘92]6}22 + [—2m2 LlLBSZ sin 92]9192
T,= [a(o) +m,L L, cos6,]v, + N

+Hm,L,Lgg, sin ‘92]912

(4.19)

Replacing 7, and 7, of the equation (4.1) by equation (4.19), finally, we can

4 (t v, (t
..1() {1()} (4.20)
6,(t) | [V.(t)
Now, as shown in Fig. 4.5, the nonlinear manipulator which is described by
equation (4.2) becomes linearized and decoupled.

obtain

Based on this linear and decoupled model, the closed-loop control system can be
furthermore established. Because that this model is similar to manipulator_2, according
to the same derivation process, the closed-loop control law and the feedback factors can
be obtained

{Vl (t) = élR (t) - 911[91 (t) - 91R (t)] — 0 [91 (t) - HlR (t)] (4 21)
vy (t) = éZR (t) - 921[92 (t) - 92R (t)] —0x [‘92 (t) - ‘92R (t)] .
where, the feedback factors are: g;; =0y = 2—'1_;\/5 and g, =0,, = 2T—2\/§ :

p p
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4.2. The mathematic background for tolerance capability comparison

Through the comparisons among the closed-loop control law of these four
manipulators, it is found that, the manipulator_0 is similar to manipulator_1, and the
manipulator_2 is similar to manipulator_3. However, in the aspect of the structure
model, the manipulator_1 and manipulator_2 are much simpler than manipulator_0 and
manipulator_3.

Next, in order to compare the robustness of these manipulators, the error tolerance
capability analysis is introduced. In addition, to make meaningful comparisons between
different manipulators, it is useful to quantify the system capability in terms of a
representative numerical index. This also allows one to optimize the design with respect
to the physical parameters such as the mass distribution, actuator location or link
dimensions. Hence, here in order to quantitatively describe the tolerance capability
against the parametric variation, two kinds of indices referred as angular error and
position error are identified.

The angular error is defined as the ratio of the absolute angular variation to the
desired overall angular displacement Aé.. It is calculated as

o0

=|—1x100% (i=12 ,
&, v o ( ) (4.22)

where, A0 =6 -6, . 0, represents the desired initial angle of the ith actuator, 6,
represents the desired final angle of the ith actuator.

According to the kinematic of the manipulators, the position vector of the end-
effector of the serial manipulator in the Cartesian coordinate that attached on the first
joint can be written as

o_ {cos 6, cos(d,+ @}[Ll } w2

sing, sin(6,+46,) || L,

XP
where, P = .
Ye

The position error is defined as the norm of the position vector variation that
caused by the variation of the angular displacement of the actuators. The expression is
described as
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£p =OX2+SY2  (mm) (4.24)

with,

0% =Ly €08 Gy + L,y COS(O)y +6,y) — L COS G — Ly COS(G5 +6,)
6Yp =Ly SinGy + Loy sin(Gy + 6,y ) — Lig Sin O — Lyg Sin(Bg +6y5)

where, 5x,, 5y, are the components of the position vector variation on the x axis and y

(4.25)

axis of the Cartesian coordinate respectively; L,,L,,.6y.6, are the nominal

parameters ; L, L,z,65,6,5 are the real parameters.

4.3. Tolerance capability comparison among the manipulators

For the comparison, the main parameters are needed to be uniformed, shown as in
(Tab. 4.1). As the special condition of reverse rotations of the two main links is
necessary for the dynamic decoupling of manipulator_1, the initial and final angular
positions of the manipulators are given as in (Tab. 4.2).

Table 4.1. — The parametric values of the open-loop control system.

mass length moment of inertia
(kg) (m) (kg-m?)
m 13193 L/L,  0.8/0.4 I, 0.77754

m,  8.477 L,/Ls, 05/025 I, 0.20744

Table 4.2. — The initial and final values of the desired trajectories.

Angle Velocity Acceleration
(°) (m/s) (m/s?)

o, 60 o, 0 é, 0

6 O 6. O 6, 0

g, 20 6, O 0,, 0

0, 80 0, O O, 0
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4.3. Tolerance capability comparison among the manipulators

The desired trajectories of the two links are produced by equation (2.29) and (2.30).
With these simulation conditions, two kinds of comparison methods are designed, they
are implemented by the introduction of fixed and random parametric errors respectively.
All the simulations are taken under the close-loop systems.

4.3.1. Tolerance capability comparison by introducing the fixed parametric error

In this section, to provide insight to the tolerance capability, a set of simulations are
designed for the main independent variables. In each simulation, the error is added to
one and only one parameter, the value of error is assumed to vary from -20% to 20% in
step of 5%. Here, om;, om>, dls1, dls2, OLas; and JLps2 are noted as the diviation of the
variables m;, m2, Is;, Is2 and L4s; respectivily.

During these simulations, the angular error &, and the position error &, are
calculated according to the equations (4.22) and (4.24).

The simulations with 20% parametric errors of the variables are shown in Fig. 4.6
to compare the tracking accuracy among the four manipulators during the whole process.
Each figure shows the influence on the angular accuracy of one link by introducing one
kind of variable error for the four manipulators.

Fig. 4.6(al) shows the curves of absolut deviation of 6 that influenced by om;
during the whole process. Obviously, for the coupled manipulator_0, there are three
peaks of wave, for all the three dynamic decoupled models (manipulator 1,
manipulator_2, manipulator_3,), there are two peaks of wave. Moreover, they are much
lower than the peaks of wave in the coupled manipulator 0. It should be noted that,
during the coupled manipulators, the angular error curves of manipulator_1 and
manipulator_2 are similar and both of theirs peaks of wave are lower than the ones of
manipulator_3 which is dynamic decoupled by the control method. However, with the
increase of operation time, for all the manipulators, the difference between the desired
trajectory and the real trajectory became smaller and smaller, and then became a
constant.

From this aspect, the rates of convergence of the decoupled manipulators are
similar and faster than the coupled manipulator_0. The similar phenomenon also exists
in Fig. 4.6(a2) and Fig. 4.6(a3). The robust of the decoupled manipulators for tracking
the desired trajectory also displayed in Fig. 4.6(a5) and Fig. 4.6(a6), especially in Fig.
4.6(a4). It shows that, during the whole process, the parametric error of variable /5. has
no influence on the tracking accuracy of link 1.
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Figure 4.6. — The absolut deviation of the two links that influenced by introducing 20%
parametric errors of the variables during the whole process of the four manipulators.
(al)-(a6) show the angular errors of link 1 that influenced by om;, om., dls1, 6ls2, OL4si,
oLgs>, respectively. (b1)-(b6) show the angular errors of link 2 that influenced by dm;,
omy, olsi, 0ls2, 0L 4s1, oL s> respectively.
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Figure 4.6. — The absolut deviation of the two links that influenced by introducing 20%
parametric errors of the variables during the whole process of the four manipulators.
(al)-(a6) show the angular errors of link 1 that influenced by om;, om>, dls1, ls2, OL4s1,
oLgs2, respectively. (b1)-(b6) show the angular errors of link 2 that influenced by om;,
oma, dls1, 0ls2, 0L 4s1, OLps> respectively. (Continued).
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Figure 4.6(b1)-(b6) show the curves of angular error of link 2 that influenced by
oMy, dma, dls1, dlsz, dLasi, SLss> during the whole process respectively. All of them strongly
proved that the decoupled manipulators can track the desired trajectory more precise and less
sensitive to the variable errors during the whole process. In addition, it also can be found that,
the tracking accuracies of manipulator 1 and manipulator 2 are higher than the ones of
manipulator 3.

Moreover, according to the final tracking results, the highter robust performance of
the decoupled also been proved (Tab. 4.3, Tab.4.4, Tab. 4.5 and Tab. 4.6).

Table 4.3 shows the influence on the positioning accuracy of manipulator 0. As
mentioned above, in order to establish the closed-loop control, all the nonlinear terms in
the dynamic equations are cancelled. This causes the discordance between the control
model and the real manipulator. The result is that, even not any parametric error is
introduced, the positioning error still exists. For all kinds of variables, along with the
increase of the parametric error, both the angular error and the position error become
larger.

Table 4.3. — The influence on the positioning accuracy of manipulator_0 by introducing
fixed errors.

-20% -15% -10% -5% 0 5% 10% 15% 20%

€g1 0,000246 0,000239 0,000236 0,000238 0,000243 0,000252 0,000265 0,000281 0,000299
om; g 0,000748 0,000823 0,000892 0,000955 0,001012 0,001063 0,001109 0,001148 0,001183
& 0,005916 0,006228 0,006550 0,006879 0,007212 0,007548 0,007885 0,008223 0,008562
g1 0,000313 0,000270 0,000249 0,000242 0,000243 0,000244 0,000239 0,000220 0,000183
om; gp 0,001112 0,000516 0,000048 0,000563 0,001012 0,001376 0,001638 0,001782 0,001797
& 0,004534 0,002403 0,002807 0,004988 0,007212 0,009068 0,010363 0,010955 0,010744
g1 0,000237 0,000237 0,000239 0,000241 0,000243 0,000246 0,000250 0,000253 0,000258
ols; € 0,000926 0,000949 0,000971 0,000992 0,001012 0,001032 0,001050 0,001068 0,001085
g 0,006723 0,006844 0,006966 0,007089 0,007212 0,007335 0,007459 0,007583 0,007707
€g1  0,000308 0,000292 0,000276 0,000260 0,000243 0,000226 0,000209 0,000191 0,000173
ols; €»  0,000477 0,000629 0,000769 0,000897 0,001012 0,001115 0,001203 0,001278 0,001339
g 0,005219 0,005777 0,006302 0,006783 0,007212 0,007581 0,007887 0,008124 0,008290
€1 0,001533 0,000893 0,000463 0,000252 0,000243 0,000390 0,000629 0,000911 0,001290
0L4s; €2 0,002217 0,001119 0,000195 0,000521 0,001012 0,001285 0,001380 0,001364 0,001290
& 159,996477 119,998832 80,001383 40,003990 0,007212 39,991362 79,989642 119,988269 159,986697
g1 0,000309 0,000317 0,000312 0,000289 0,000243 0,000168 0,000057 0,000092 0,000281
OLgs> g2 0,001955 0,001206 0,000411 0,000361 0,001012 0,001408 0,001379 0,000730 0,000730
€& 99,997451 74,997385 49,997426 24,997614 0,007212 25,001386 50,000473 74,999237 99,997679
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Table 4.4. — The influence on the positioning accuracy of manipulator_1 by introducing
fixed errors.

gor 0,001302 0,000576 0,000107 0,000083
oL4s; €02 0,001302 0,000576 0,000107 0,000083
g 160,000000 120,000000 80,000000 40,000000
gg1 0,000003 0,000001 0,000001 0
oLps> €92 0,000169 0,000126 0,000083 0,000042
g 99,999979 74,999988 49,999995 24,999999

0,000317 0,000796 0,001365 0,002036
0,000317 0,000796 0,001365 0,002036
40,000000 80,000000 120,000001 160,000001
0 0,000001 0,000002 0,000003
0,000042 0,000084 0,000128 0,000173
25,000001 50,000006 75,000013 100,000022

-20% -15% -10% -5% 0 5% 10% 15% 20%
gp1 0,000053 0,000041 0,000029 0,000015 0 0,000016 0,000034 0,000053 0,000073
om; gy 0,000053 0,000041 0,000029 0,000015 0 0,000016 0,000034 0,000053 0,000073
g  0,000440 0,000348 0,000243 0,000127 0 0,000138 0,000286 0,000445 0,000613
g 0,000084 0,000079 0,000063 0,000036 0 0,000045 0,000098 0,000158 0,000224
om; gp 0,000024 0,000011 0,000003 0,000001 0 0,000004 0,000011 0,000020 0,000030
g 0,000983 0,000876 0,000675 0,000381 0 0,000464 0,001004 0,001614 0,002287
g1 0,000022 0,000017 0,000011 0,000006 0 0,000006 0,000012 0,000018 0,000025
ols; g, 0,000022 0,000017 0,000011 0,000006 0 0,000006 0,000012 0,000018 0,000025
g  0,000183 0,000140 0,000095 0,000048 0 0,000050 0,000101 0,000153 0,000207
€01 0 0 0 0 0 0 0 0 0
ols> em 0 0 0 0 0 0 0 0 0
€ 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

Table 4.5. — The influence on the positioning accuracy of manipulator_2 by introducing
fixed errors.

€ 160,002617 120,000886 79,999848 39,999552
g1 0,000008 0,000006 0,000005 0,000002
OLps» €52 0,000034 0,000026 0,000018 0,000010
g 100,000065 75,000052 50,000037 25,000020

39,998872 79,997197 119,995142 159,992838
0,000003 0,000005 0,000008 0,000012
0,000010 0,000021 0,000033 0,000044

25,000022 50,000045 75,000070 100,000096

-20% -15% -10% -5% 0 5% 10% 15% 20%
gp1 0,000045 0,000035 0,000024 0,000013 0 0,000013 0,000028 0,000043 0,000059
om; &m 0 0 0 0 0 0 0 0 0
g 0,000475 0,000371 0,000257 0,000133 0 0,000142 0,000294 0,000454 0,000622
gp1 0,000087 0,000084 0,000068 0,000040 0 0,000051 0,000112 0,000183 0,000262
om; gg 0,000087 0,000085 0,000070 0,000042 0 0,000055 0,000124 0,000205 0,000298
g 0,000732 0,000704 0,000570 0,000333 0 0,000424 0,000933 0,001518 0,002172
g 0,000018 0,000014 0,000009 0,000005 0 0,000005 0,000010 0,000015 0,000020
ols; e 0 0 0 0 0 0 0 0 0
g 0000193 0,000147 0,000099 0,000050 0 0,000051 0,000104 0,000158 0,000213
€01 0 0 0 0 0 0 0 0 0
ols> em 0 0 0 0 0 0 0 0 0
& 0 0 0 0 0 0 0 0 0
g1 0,000507 0,000172 0,000030 0,000087 0 0,000219 0,000544 0,000942 0,001389
OL4s1 € 0 0 0 0 0 0 0 0 0
0
0
0
0
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Table 4.6. — The influence on the positioning accuracy of manipulator_3 by introducing
fixed errors.

gor 0,001144 0,000497 0,000080 0,000085
oL4s; €02 0,001345 0,000594 0,000106 0,000093
gp 159,998964 119,999496 79,999870 40,000044
gp1 0,000010 0,000008 0,000006 0,000004
oLps> €92 0,000294  0,000083 0,000030 0,000052
g 99,999920 74,999931 49,999948 24,999971

0,000305 0,000774 0,001353 0,002063
0,000354 0,000903 0,001584 0,002423
40,000251 80,000666 120,001192 160,001856
0,000004 0,000008 0,000011 0,000011
0,000089 0,000156 0,000110 0,000170
24,999966 49,999932 74,999908 99,999907

-20% -15% -10% -5% 0 5% 10% 15% 20%
gp1  0,000079 0,000067 0,000049 0,000027 0 0,000031 0,000066 0,000105 0,000147
om; gy 0,000124 0,000103 0,000075 0,000040 0 0,000046 0,000098 0,000155 0,000217
g  0,000664 0,000557 0,000409 0,000223 0 0,000258 0,000549 0,000871 0,001222
g 0,000033 0,000076 0,000083 0,000056 0 0,000083 0,000190 0,000317 0,000461
om; gy 0,000072 0,000057 0,000043 0,000026 0 0,000043 0,000111 0,000214 0,000364
g 0000311 0,000657 0,000754 0,000522 0 0,000763 0,001714 0,002802 0,003987
gp1 0,000038 0,000029 0,000020 0,000010 0 0,000011 0,000022 0,000034 0,000047
ols; g, 0,000058 0,000044 0,000030 0,000016 0 0,000016 0,000034 0,000052 0,000070
g 0,000316 0,000244 0,000168 0,000086 0 0,000091 0,000187 0,000287 0,000392
€01 0 0 0 0 0 0 0 0 0
ols> em 0 0 0 0 0 0 0 0 0
€ 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

Table 4.4, 4.5 and 4.6 shows the influences on the positioning accuracies of
manipulator_1, manipulator_2 and manipulator_3 respectively. They are all linearized
and decoupled models. Through the comparison between the linear model and the
nonlinear model, the biggest difference is that, there is no positioning error in the
simulations of the linear models with the nominal parametric values.

In addition, compared with the values of both angular error and position error
which are caused by introducing om;, omz, dls;, and dls> respectively in the coupled
manipulator_0, the values of the corresponding ones in the decoupled manipulators are
an order of magnitude. Especially, the positioning errors that caused by dls> in the
manipulator 1, manipulator 2 and manipulator 3 are all zero, that is, the inertia
deviation of link 2 has no influence on the positioning error in the decoupled
manipulators. Moreover, it can be found that, the angular accuracy of link 2 can’t be
affected by the variable deviations of link 1 (dm;, dlsi, dL4s), this is also confirmed in
Fig. 4.6(4a) and 4.6(4b) above.

Compared with other kinds of variables, the parametric errors of the length
variables lead to the biggest influences on the positioning accuracy. It seems that the
control system here cannot compensate the position error that caused by the variation of
length variable. Besides, the effects of the mass variables are weaker. And the third
impact factor for positioning accuracy is the inertia variable.
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4.3.2. Tolerance capability comparison by introducing the random parametric
error

In last section, the influencing degrees on the angular error and position error that
caused by the six variables are analyzed respectively. In order to closer the practical
situation, the variations of all the variables are added to the nominal models at the same
time. As the control method cannot compensate the positon errors that caused by the
length variables, only the mass diviations (dm;, omz) and inertia diviations (d/s;, dls2)
are investigated in this section.

Thus, the positioning accuracy of the manipulator is influenced by the parametric
errors of all the variables together.

There are totally eleven simulations for each manipulator. One of them is
implemented with nominal parametric values. The rest ten simulations are implemented
by adding the parametric errors of the four variables in the same time. In order to let the
parametric values closer to the practical situation, ten sets of random values are created
in MATLAB first, shown as

[0,814724 0,157613 0,655741 0,706046 |
0,905792 0,970593 0,035712 0,031833
0,126987 0,957167 0,849129 0,276923
0,913376 0,485376 0,933993 0,046171
0,632359 0,80028 0,678735 0,097132
Ran = (4.26)

0,09754 0,141886 0,75774 0,823458
0,278498 0,421761 0,743132 0,694829
0,546882 0,915736 0,392227 0,317099
0,957507 0,792207 0,655478 0,950222

10,964889 0,959492 0,171187 0,034446

In order to make sure that the variation range of the variable is still from -20% to
20%. the equations (4.27)-(4.30) are used to calculate the real parametric values for all
the simulations.

m,, =m,, x(0.8+0.4xRan(i,1)) 4.27)
m,, =m,, x(0.8+0.4xRan(i, 2)) (4.28)
l5;, =gy, x(0.8+0.4xRan(i, 3)) (4.29)
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ls,, =1g,, x(0.8+0.4xRan(i,4)) (4.30)

where, m;,, m, |, and I, represent the real parametric values; m,, m,, I, and

l5,, represent the nominal parametric values.

Finally, the real parametric values for all the simulations can obtained, shown in
Tab. 4.7. In this table, Sim_i means the ith simulation. It should be note that, all the
parametric values are nominal value in the first simulation (Sim_1). In the rest
simulations (from Sim_2 to Sim_11), the parametric values are all added with errors.

Based on these simulations, the total tolerance capability of all the models can be
compared. Fig. 4.7 shows the angular errors of the link 1. It shows that, in Sim_1, all the
angular errors of link 1 of the decoupled manipulators (manipulator_1, manipulator_2
and manipulator_3) are zero. On the contrary, for the coupled manipulator_0, there is
the angular error. As discussed in the last section, this is because the ‘mismatch’
between the control model and the actual model in coupled manipulator 0. This
phenomenon also exists for the angular error of link 2 and the positioning error of the
end-effector, shown in Fig. 4.8 and Fig.4.9.

When the parametric errors are added, the angular errors appear. It shows that the
angular errors of link 1 of manipulator_1 and manipulator_2 are close and smaller than
the ones of manipulator_0 and manipulator_3. Meanwhile the range of variation of the
angular errors of link 1 are also smaller than the ones in manipulator 0 and
manipulator_3.

Table 4.7. — The real parametric values for the 10 simulations.

My, Mar Isir Is2r
Sim_1 13.193 8.477 0.77754  0.20744
Sim_2 14,85386 7,316034 0,825978 0,224537
Sim_3 15,33445 10,07269 0,633139 0,168593
Sim_4 11,22453 10,02716 0,886125 0,18893
Sim_5 15,37447 8,427412 0,912519 0,169783
Sim_6 13,89149 9,495191 0,833129 0,174012
Sim_7 11,06914 7,262708 0,857701 0,234279
Sim_8 12,02409 8,211708 0,853158 0,223606
Sim_9 13,4404 9,886676 0,744021 0,192264
Sim_10 15,60736 9,467817 0,825896 0,244798
Sim_11 15,64631 10,03505 0,675274 0,16881
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The angular errors of link 2 that caused by the parametric errors of all the variables
together are shown in Fig. 4.8. Obviously, the angular error of the coupled
manipulator_0 is much higher than the ones of the decoupled manipulators. Among the
three coupled manipulator, it is difficult to say which is better. This is difference with
the phenomenon in Fig. 4.7.
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Figure 4.7. — The angular error of link 1 with the parametric errors of all the variables.
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Figure 4.8. — The angular error of link 2 with the parametric errors of all the variables.
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Figure 4.9. — The position error of the end-effector with the parametric errors of all the
variables.

In Fig. 4.9, the position errors of the end-effector of all the models are represented.
A clear tendency appears that the position error of the end-effector in the coupled
manipulator_0 is the highest. In addition, the position errors of the end-effectors in
manipulator_1 and manipulator_2 are close and they are smaller than the ones in
manipulator_3. In other words, the tolerance capability of manipulator 1 and
manipulator_2 which are decoupled by the mechatronic methods that proposed in this
thesis are similar. And these two manipulators are more robust than manipulator_3
which is decoupled by the control method. Of course, all these three decoupled
manipulators are much more robust than the coupled manipulator.

4.4, Summary

In this chapter, the tolerance capabilities of four models are analyzed. Two kinds of
indices are proposed to quantify the positioning accuracy of the manipulator. They are
angular error of the actuators and the position error of the end-effector.

First, in order to analysis the influencing degree of each variable of the manipulator
on the positioning accuracy, the fixed parametric errors are introduced. According to the
quantitative analysis, it shows that the positioning accuracy is more sensitive with the
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variation of the length variables. The second influencing factors are the mass parameters.
And the influences of the inertia parameters on the positioning accuracy are the lowest.

In addition, it can be also found that, during the whole process, the tracking
trajectories of the decoupled manipulators, especially in manipulator 1 and
manipulator_2, are more precise and less sensitive to the variable errors.

Then, in order to obtain the models closer to the practical situation, the random
parametric errors are introduced. Furthermore, the parametric errors of all the variables
are added at the same time during one simulation. According to the results, the
advantages of the coupled manipulators (manipulator_1 and manipulator_2) appear. The
tolerance capabilities of these two manipulators are higher than the ones of
manipulator 3 which is decoupled by feedback linearization and the coupled
manipulator.
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Discussion

Serial manipulators are principally designed by revolute or prismatic joints. In the
chapters above, the serial manipulators with revolute joints has been discussed. The
dynamic decoupling of serial manipulator with prismatic joints is a very complicated
problem. In this discussion, an attempt is made to carry out the dynamic decoupling of
serial manipulators with prismatic joints by using the same approaches, which was
applied to serial manipulators with revolute joints.

The Scott-Russell mechanism has been successfully used in previous chapters for
achieving the dynamic decoupling of the serial manipulators with revolute joints. In the
present section, the rhomboid pantograph mechanism having the same properties as the
Scott-Russell mechanism is considered for the simplification of dynamic equations of
the serial manipulators with prismatic joints.

First, a proper manipulator model with a prismatic joint is examined. Then, the
rhomboid pantograph mechanism is introduced. Finally, the dynamics of the model is
analyzed.

Y\

Figure 5.1. — Planar serial manipulator with a prismatic joint.

Let us consider a planar serial manipulator with two degrees of freedom shown in
(Fig. 5.1). This is a planar serial manipulator with revolute and prismatic joints. Link 1
of the manipulator is connected with the base of the manipulator by a revolute joint and
link 2 is connected with link 1 by a prismatic joint.
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As in the previous cases, the Lagrangian formalism is still used for the dynamic
modeling.

First, the Lagrangian is calculated as

L=E-P=E,+E,-R-P, (5.1)

where,

1 . 1 .
E1 = E rTHLi\sﬂlz + E |51912

1 . . 1 .
Ez = Emz[dszz + (L1 +dsz)2912]+5 Isz‘912
P1 = m19LA51 sin 91

Pz = ng(L1 +d52)3in‘91

Thus, the Lagrangian dynamic equations of the manipulator can be obtained as

Ldfo)_a
dt{ 06, ) 06,
= mlLZASlél + ISlél +m2(Ll+dSZ)2é1 +2m2(L1 +d82)91d + ISZél (52)

+m,gL,s, cosé, +m,g(L, +dg,)cosé

c _g( oL J_ oL
dt{ adg, ) ad, (5.3)

= mzd.sz —m, (L, +d82)912 +m,gsing,

Rewriting these equations, we obtain
r= [rnlLZASl + ISl + mZ(Ll -l_dSZ)2 + ISZ]él + 2m2(L1 + dsz)éld
+mlgLA51C0501+ng(|-1+dsz)cos'91 (5.4)

F :mzd‘sz —m, (L, "'dsz)él2 +m,gsin g,
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where, m;,m,are the masses of link 1 and 2, respectively; I, l5,are the moments of
inertia of links 1 and 2, respectively; L, L,are the lengths of links 1 and 2, respectively;
L, is the distance between the center of mass S, of link 1 and joint center A; d, is the
distance between the center of mass S, of link 2 and joint center B; &, is angular
displacement of link 1 relative to the base; 6, is angular velocity of link 1 relative to the
base; d., is velocity of center of mass S,of link 2 relative to joint center B; @, is the
angular acceleration of link 1 relative to the base; d, is acceleration of center of mass

S, of link 2 relative to joint center B; 7 is the input torque and F is the input force, g is
the gravity acceleration.

Obviously, this is a coupled and nonlinear dynamic model. Now, the rhomboid
pantograph mechanism will be added in order to examine the decoupling conditions in
such a structure.

Figure 5.2 shows the examined serial manipulator with the added rhomboid
pantograph mechanism having the same properties as the Scott-Russell mechanism.

Y |

Figure 5.2. — Serial manipulator with the added rhomboid pantograph mechanism.

In the modified structure, one end of the added mechanism is attached on the center
of mass of link 2. The other end of the mechanism is connected with the counterweight

CW2. Thus the counterweight CW?2 copies the movement of the center of mass S, in the
opposite direction.
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Assuming that
mcwzl-cvvz = mzdsz (5.5)

where, M, is the mass of the counterweight CW?2 that attached on one end of the

rhomboid pantograph mechanism, L, is the distance between the mass of the
counterweight CW2 and the center of joint B.

Further, in order to simply the following calculation, we will consider that the
loops of the rhomboid pantograph mechanism are similar, i.e.

Mew, =M,

Lew2 :dsz

Now, let us rewrite the Lagrangian factor taking into account the added structure

(5.6)

L=E +E,+E,-B-P,-F, (5.7)
where,
1 . 1

E1 = E rnlLiSlelz + E I510-12

1 . . 1. .

E,= Emz[dszz +(L +d52)26’12]+5 ISZHlZ
1 . .

E, =§m2[d522 +(L —ds,)*g]
R =mgL,s,sing
P, =m,g(L, +ds,)sin 6,
P, =m,g(L, —ds,)sing
Thus, we get:

c-dfo) o
dtl 06, ) o6,

= mlLiSlé;. + ISléL + m2(L1 +d$2)29‘1 +2m2(L1 +d52)6-l dSZ + |529;L (58)

+ mz('—1 _dsz)zél _2m2(|-1 _dSZ)él dsz

+ mlgLAsl cos 91 + ng(l—l +d52)COS ‘91 + m29(|-1 —dSZ)COS ‘91
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c _g( oL ]_ oL
dit{ adg, ) ad, (5.9)

=m,d, +m,d,, —m, (L, +d,)0% +m, (L, —d,,)0?
Rewriting these equations, we obtain
r=[mL%, + g +2m, 2 +2m,d2, + 14,16, +4m,d,,6,d,,
+m, gL, cosé, +2m,gL, cos b, (5.10)
F =2m,d, -2m,d,6;

From equation (5.10) it can be seen that the gravity terms in the second equation is
cancelled. To cancel the gravity term in the first equation, another counterweight should
be added to link 1.

The static moment of the added counterweight CW1 can be found by the
expression

mCWl"CWl :rnl"ASl+m2(L1+d82)+m2(L1_d52) (511)

where, M, is the mass of the added counterweight CW1 mounted on the link 1, L, is

the distance between the center of mass of the counterweight CW1 and the center of the
revolute joint A.

Finally, we obtain

T = [mlL?ASl + ISl + 2m2Li + 2m2d522 + ISZ + mCWlLéWl]él + 4m2d529.l dSZ (5 12)
F =2m,d,, —2m,d,,6?

It is obvious that, the added rhomboid pantograph mechanism allows one to carry
out a partial decoupling. It ensures only the cancellation of the terms related to gravity.

In conclusion, it should be noted that the application of the rhomboid pantograph
mechanism having the same properties as the Scott-Russell mechanism on the serial
planar manipulator with a prismatic joint allows a partial cancellation of the coupled
terms of the dynamic equations. The given analysis showed that only terms due to
gravity have been cancelled. The problem of dynamic decoupling of serial manipulators
with prismatic joints remains quite complicated.
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The critical review given in the first chapter showed that the known mechanical
solutions can only be reached by a considerably more complicated design of the initial
structure of the manipulator. The complexity of mechanical solutions is in the fact that
the dynamic decoupling can be achieved via the opposite rotation of links and their
optimal redistribution of masses. In the known design concepts such a solution is
carried out by the connection of gears to the oscillating links. The gears added to the
oscillating links of the manipulator are sources of shocks between teeth that lead to the
perturbation of the operation of the manipulator, the noise and other negative effects. It
is obvious that mechanical solutions for adjustment of nonlinear terms of dynamic
equations due to the changing payload can be reached by unreasonably complicated
design.

On the other hand, dynamic decoupling via optimal control of a manipulator with a
nonlinear system model and a changing payload is also rather complex task. A number
of procedures for the synthesis of control systems ensuring high quality control of
manipulators have been elaborated. Applicability of these approximation solutions
depends on the neglected interaction dynamics, which can be viewed as modeling errors.
It is obvious that the robustness analysis can be applied to determine their impact. This
problem is more complicated and unpredictable when it is necessary to take into
account a variable payload. In this case, the nonlinearity due to the variable load adds to
the nonlinearity of the manipulator structure.

Considering the mentioned problems related to the dynamic decoupling of
manipulators, in the thesis are proposed new solutions combining both mechanical and
control solutions.

Chapter 2 deals with the design concept of adjustable serial manipulators with
linearized and decoupled dynamics taking into account the changing payload. The
novelty of the developed method consist in the fact that the opposite rotation for
dynamic decoupling is achieved not by including gears in the existing system but by
opposite rotation of the links themselves. At first, the dynamic decoupling of the serial
manipulator with adjustable lengths of links is accomplished via an opposite rotation of
links and optimal redistribution of masses. Thus, the proposed mechanical solution
allows one to transform the original nonlinear system model into a fully linear system
without using the feedback linearization technique. However, as mentioned above, the
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changing payload creates the variable forces on the actuators, which are also nonlinear.
Thus, the changing payload leads to the perturbation of the dynamic decoupling of the
manipulator. To ensure linearized and decoupled dynamics of the manipulator for any
payload, an optimal control technique is applied. It should be noted that the linearized
dynamic of the manipulator via opposite rotation of manipulator’s links leads to
relatively simple equations, which are easier to analyze for further dynamic decoupling
taking into account the changing payload.

Chapter 3 deals with a new dynamic decoupling principle, which involves
connecting to a serial manipulator a two-link group forming a Scott-Russell mechanism
with the initial links of the manipulator. The opposite motion of links in the Scott-
Russell mechanism combined with optimal redistribution of masses allows the
cancellation of the coefficients of nonlinear terms in the manipulator’s kinetic and
potential energy equations. Then, by using the optimal control design, the dynamic
decoupling due to the changing payload is achieved. The proposed approach, which is a
symbiosis of mechanical and control solutions, improves the known design concepts
permitting the dynamic decoupling of serial manipulators.

In chapter 4, the tolerance capabilities of the two dynamic decoupling manipulators
(referred to as manipulator 1 and manipulator_2) are investigated through the
comparison with a coupled manipulator (referred to as manipulator_0) and one other
manipulator which is decoupled by command (referred to as manipulator_3). Two kinds
of indices are proposed to quantify the positioning accuracy of the manipulator. They
are angular error of the actuators and the position error of the end-effector. And two
kinds of simulations are implemented for complete analysis. Through the results, it is
obvious that, during the whole process, the tracking trajectories of the decoupled
manipulators, especially in manipulator_1 and manipulator_2, are more precise and less
sensitive to the variable errors. In the aspect of the final positioning accuracy, according
to the quantitative analysis, it also shows that the tolerance capabilities of the two
manipulators that dynamic decoupled by the mechatronic method are higher than the
ones of the coupled model and the dynamic decoupled model by command. In brief, no
matter the behavior during the whole process or the final positioning accuracy, both of
these aspects prove that the manipulators that decoupled by the mechatronic method in
this thesis are more robust.

All suggested design methodologies and control techniques are illustrated by
simulations carried out using ADAMS and MATLAB software, which have confirmed
the efficiency of the developed approaches.
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Finally, it should be noted that in the thesis an attempt is made to carry out the
dynamic decoupling of serial manipulators with prismatic joints by using the same
approaches, which was applied to serial manipulators with revolute joints. The obtained
results showed that only terms due to gravity has been cancelled. The problem of
dynamic decoupling of serial manipulators with prismatic joints remains quite
complicated.

We would like to mention that these works have been presented in several articles that
listed in Appendix E.
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R&umeédéendu en Franais

CONCEPTION ET ETUDE DES MANIPULATEURS
SERIELS A DYNAMIQUE DECOUPLEE PRENANT
EN COMPTE LA CHARGE EMBARQUEE

Les manipulateurs sé&iels composé& de chaines cinématiques ouvertes sont des systémes
multi entrés et multi sorties repré&enté& par des éguations difféentielles couplées et non
linéaires. Ces équations différentielles se complexifient si [’on tient compte de la charge
embarquée. Dans ce contexte, ['utilisation d’une commande classique de type PID, pour des
applications nécessitant des mouvements rapides et précis, n’est pas efficace. En effet, les
forces non liné&ires qui interviennent dans les manipulateurs séiels induisent des erreurs de
réonse en position lors de mouvements trés rapides. M@ne avitesse lente, les erreurs en
position ne sont pas négligeables.

Afin d’améliorer la précision de positionnement de ces manipulateurs, il a été propos€a
partir des années 90 d’appliquer une commande par découplage non linéaire (nommée
«feedback linearization >3 <«inverse dynamics » ou <«computer torque control >»). Cette
commande, envisageable suite au développement fulgurant des technologies des
microprocesseurs, consiste aobtenir un systéme déoupléet linérisépar compensation des
termes non lin&ires couplé& issus du modée dynamique du manipulateur gr&e aune boucle
de retour dite interne. Une condition préalable a ['utilisation de la commande par dé&ouplage
non linéaire est l'identification du modeéle dynamique issu du lagrangien dont l'inverse doit étre
calculé dans un intervalle de temps inférieur au pas d’acquisition des mesures nécessaires a la
commande du systéme désoupléet linériségréce aune boucle de retour dite externe. La figure
suivante présente la structure de commande par dé&ouplage non liné&uire.

___________________ -

: Systéme linéarisé et découplé I

I

' I

¢ ) g

Gestion des 0, Boucle L : Boucle T | Manipulateur 18
trajectoires rq externe Tl interne 21 non linéaire Bl

I

A : A |

: I

' I

I

Structure de commande par dé&ouplage non linéire.
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Sans ['utilisation de microprocesseurs puissants, la contrainte de temps est difficile &
satisfaire lorsque le modée dynamique du robot est complexe. Ce type de commande conduit
géneralement a une solution coiiteuse qui est peu attractive d’un point de vue industriel.

Pour satisfaire le temps de calcul néessaire ala boucle de commande dite externe, il est
propos€dans ce ménoire une recherche de solutions mé&aniques susceptibles de simplifier le
modele dynamique du manipulateur sériel. Dans le cadre de ce travail, 'objectif fixe est le
dé&ouplage total des &uations de la dynamique du manipulateur par des solutions combinées
au niveau de la méanique et de la commande en tenant compte de la charge embarquée. Le cas
ultime du déouplage total conduit &la suppression de la boucle dite interne. Sur le plan
meéanique, les solutions envisagés pour simplifier les modées dynamiques ne doivent pas
conduire &augmenter considéablement les masses en mouvement et &ajouter des complexités
structurelles supplé@nentaires trop importantes.

Chapitre 1 : Conception des manipulateurs adynamique simplifie

Aprés un bref historique de I’évolution des manipulateurs sériels et des
applications industrielles, ce chapitre est dédi¢ d’une part, aux méthodes mécaniques
actuelles de linéarisation et de découplage des équations dynamiques et d’autre part, a la
synthése de la loi de commande, issue de la commande optimale &ahorizon infini, du
modée simplifiéobtenu par déouplage non lin&ire (avec la boucle dite interne).

Au niveau de la mé&anique, les mé&hodes consacrés ala lin&risation et au
deéouplage des équations dynamiques des robots sériels peuvent s’inscrire dans I’une
des trois tendances principales suivantes :

Figure 1.1. - Lin&risation et dé&ouplage par déocalisation de I'actionneur.

1) La lin&risation et le dé&ouplage des éjuations dynamiques par la déocalisation
de Il'actionneur. Cela consiste adéoupler la cinénmatique du mouvement quand
la rotation de chaque @ément est due aun seul actionneur. En d'autres termes, on
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doit s’assurer que les déplacements de I’actionneur correspondent & un ensemble
de coordonnées géné&alisées indépendantes qui permettent de localiser sans
aucune ambigu¥€le manipulateur. La figure 1.1 montre I’exemple présenté en
1981 par Belyanin, Konstantin, Aron et Alfred.

Ce principe de conception n'est pas optimal du point de vue de la
reproduction preéeise du mouvement car il accumule les erreurs dues aux jeux et
a I’élasticité de la courroie de transmission utilisé habituellement pour le
deésouplage, ainsi que les erreurs dues ala fabrication.

2) La lin&risation et le déouplage des éjuations dynamiques par la redistribution
optimale des inerties. Cela consiste a obtenir des tenseurs d’inertie diagonaux
qui doivent &re indéendants de la configuration du manipulateur. La figure 1.2
montre un robot KUKA avec telle redistribution des masses afin de simplifier les
&uations dynamiques.

Figure 1.2. - Robot KUKA avec redistribution des masses.

Une telle approche est efficace pour les manipulateurs sé&iels si les axes des
liaisons ne sont pas parallées.

3) La lin&risation et le dé&ouplage des &uations dynamiques par la mise en place
d’éléments auxiliaires. La figure 1.3 montre ’exemple présenté en 2012 par
Arakelian et Sargsyan.

Figure 1.3. - Manipulateur déouplépar un groupe d’engrenages.
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La modification de la structure du manipulateur permet d’atteindre le dé&ouplage
dynamique. Cette nouvelle tendance, dans la conception de robots séiels, est
certainement prometteuse. Elle devrait aboutir au développement de nouveaux
manipulateurs deéeouplé sans grande difficulté Cependant, la méhodologie de
conception proposés dans diverses éudes conduit inévitablement al'augmentation de la
masse totale du manipulateur suite aux ééments ajoutés au niveau de chaque lien.

Les solutions connues sur le plan mé&anique conduisent souvent aune conception
compliqué et aune augmentation inévitable de la masse totale du manipulateur. En
conseguence, les couples aappliquer deviennent importants et ils ne tiennent pas
compte de la charge embarques.

Au niveau de la commande, le chapitre 1 présente les commandes par retour d’état
statique et par retour d’état dynamique (rejet asymptotique d’une perturbation constante)
d’un double intégrateur. En effet, que ce soit par découplage non linéaire par la
commande ou par dé&ouplage du manipulateur par la méanique, on aboutit toujours a
des doubles inté&yrateurs (par obtention de la forme canonique, si né&essaire). La figure
1.4 présente la commande par retour d’état statique du double intégrateur.

o+~

- +
-/

gfe
+

g, -
/
Figure 1.4. - Commande par retour d’état statique.

Si I’on se donne une trajectoire 6, 2 fois dé&ivable sur un intervalle [0 T],

vérifiant les conditions initiales et finales, la loi de commande s’écrit :

u= éR _gl[g_HR]_ gZ[é_éR]

Le retour statique (g, et g,) est déerminéde telle maniee que la commande u
minimise le critée de performance ahorizon infini suivant :

3= ﬂ(e 6)[T,Gec (0.1, )T[ZJ ¥ uz} dt

122
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ot Gy, (O,Tp) est le grammien transitoire de commandabilité sur un horizon de

poursuite T, capable de r&gler les modes dominants du systéme en boucle fermee.

En ce qui concerne la commande robuste par retour d’état dynamique du double

intégrateur, un reconstructeur est mis en place dans la boucle afin d’obtenir é?%’ etd
(estimation de la perturbation fictive constante d qui permet de générer de I’intégration
implicite). La figure 1.5 présente la commande par retour d’état dynamique du double
intéyrateur our les gains g, et g, sont identiques & ceux déermin& pré&é&emment

(principe de séparation). La loi de commande est : u =&, — g,[#£ 0,]- gz[é—éR]—(i .

N +~
b ) L] L]
;
91{ - + c; Observateur
0, . O+ ~ ; optimal

Figure 1.5. - Commande par retour d’état dynamique.

La synthése du reconstructeur est basé sur le grammien transitoire
d’observabilité¢ sur un horizon de ré&ulation T, capable de ré&ler les modes du

reconstructeur.

Dans les chapitres 2 et 3 de la these, les solutions proposés permettent
d'am@iorer la conception des manipulateurs sé&iels dé&ouplés, par une augmentation
relativement faible de la masse totale des ééments en mouvement et, en prenant en
compte la charge embarquee afin d’obtenir une bonne précision de positionnement.
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Chapitre 2 : Manipulateur sé&riel reconfigurable adynamique deésoupléee

La structure du manipulateur reconfigurable &adynamique déeouplé, sans charge
embarquée, est pré&senté ala figure 2.1. Le manipulateur est composéde deux bras et
de deux liaisons roto'des motorisees. Les effets de la gravité sont compensés par
construction meeanique.

Les longueurs L, =L,; et L,=L,, des bras 1 (compose€ de la et 1b) et 2
(composéde 2a et 2b) sont variables et peuvent &re modifiés selon la trajectoire
dé&iré pour le prénenseur. La préence de deux meéanismes Scott-Russel permet
d’obtenir 1’équilibrage statique du bras 2 pour toutes les configurations possibles du
manipulateur (en fonction de 2b). Le modée géamérique inverse du manipulateur
permet d’obtenir les angles 0, et 8, en fonction de la trajectoire du prénenseur P(x,y) :

0 :tan_{y(Lﬁ L, cos@z)—xLzs?n 62} et 0, :icos_l{xz Y -L2- Li}
x(L, +L,c0s6,)+ yL,sin6, 2LL,

Y

Figure 2.1. - Structure du manipulateur.

Deux solutions sont possibles et correspondent & deux postures diffé&entes
nommess «coude bas », notée avec I’index (1) sur la figure 2.2, et coude haut, notée
avec l’index (2). En effet, la figure 2.2 montre deux configurations du manipulateur

pour une position initiale P' («coude bas >) et une position finale P" («coude haut >
du préhenseur. L’autre solution, pour une position initiale P' («coude haut > et une
position finale P" («coude bas ») du préhenseur, n’apparait pas sur la figure 2.2.
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iy
Figure 2.2. - Les configurations initiale et finale du manipulateur.

Le manipulateur &ant statiquement éguilibré&(le centre de masse du bras 2 est en
B), le modde dynamique devient linéaire mais est couplé, c’est-adire :

|:Tl:|:|:|32 + |51+m1|-3451+m2|-i |52:| {91}
§) Is, ls2 | | 6,

our, et r, : lescouplesen AetB; I et I, : les moments d’inertie des bras 1 et 2 ;
m, et m, : les masses des bras 1 et 2 ; 6, etd, : les acc@éations angulaires en A et B ;

L,s, : la distance du centre de masse du bras 1 par rapport au point A.

Pour déeoupler le modée liné&uire, il faut assurer les rotations opposés des bras 1
et 2 avec les acc@éations angulaires telles que : 6, =—6,. Dans ce cas, on obtient :

2 2\p -
Tl:(|52+|81+m1LASl+m2L1)01 , 7,=0
Les conditions qui conduisent & 6, =—6,, consiste acalculer les longueurs L, et

L, en fonction des conditions initiales et finales des angles & et 6, qui doivent
veifier :

f i
= “ Or2) = Oopy

f i
‘ O2) ~ )

A partir des éjuations gémeriques du manipulateur et pour les positions initiale
(coude bas) P'(x,,y;) et finale (coude haut) P'(x,,y,) et pour A, =6, -6y, , on
en deluit :
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L Xp+Yi=X =% Lz{_f—(fz—u)mr
2L, (cos By, — €0 by, 2

2
: X2+ Y —x -y} :
=[2(x)%cos@, . —x*—y?|: y= LM S B O =—(AQ -0
é I: (x) ) — % —Yi ] X {Z(COS ezf(z) oS 92'(1)) 2(2) (A, 2(1))

En tenant compte de la charge embarquée (masse m_ ), les e€guations

diffé&entielles couplées et non lin&ires du manipulateur a 1’étude se complexifient. Ces
&uations complexes seront utilisés, aprés inversion, pour crér le modde du
manipulateur sous I’environnement MATLAB/SIMULINK.

Sous I’hypothése des rotations opposées (6, =6, ), les éjuations se simplifient

et deviennent alors exploitables pour compenser par anticipation la charge embarquée.
Dans ce cas, on obtient :

7= (Ig, + gy + ML, + M5 ) G+m, L (L, + L, c08(6,) ) 6, —m, L, (L, 5in(6,) ) 6,6,
7, =0+m,L, (L, cos(6,)) 6, + m,L, (L,sin(6,) ) &7

Si m =0 (pas de charge embarquee), on retrouve les &juations des couples 7, et

7, déerminés pre&alemment.

Pour les simulations, les trajectoires angulaires de 6, et 6,, sont construites par

interpolation polyn@niale (polyn@mes du cinquiéne ordre qui vé&ifient les conditions
initiales et finales). Pour les valeurs nominales du manipulateur, quatre simulations
(avec et sans compensation de la charge embarqué) sont effectuées.

La premiee simulation, en boucle ouverte avec compensation de la charge,
fournit des ré&ultats identiques aux trajectoires désirés qui sont pré&senté&s ala figure
2.3. La deuxiéne simulation, en boucle ouverte sans compensation de la charge, fournit
des ré&ultats qui divergent car le systéne est instable. Il ne peut pas rejeter la
perturbation (charge embarquee).

La troisiéne simulation, en boucle fermé avec compensation de la charge, fournit
des résultats identiques aux trajectoires désirés qui sont pré&entées ala figure 2.3. La
quatrieme simulation, en boucle fermé& sans compensation de la charge, fournit des
résultats qui convergent car le systéme est asymptotiqguement stable mais pré&ente des
&xarts en rgime permanent pour 6, et 6, qui sont liés ala charge embarques.
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Figure 2.3. - Les trajectoires désiréss pour 6, et 6,.

Les résultats obtenus attestent de 1’efficacité et de la pertinence de la solution
propose&s dans ce chapitre 2 qui tient compte de la charge embarquée.

Chapitre 3 : D&ouplage des manipulateurs sé&riels aliaisons rotodes

Le manipulateur sé&iel a dynamique deécouplé, sans charge embarquée, est
pré&entéala figure 3.1. Le manipulateur est composé€de deux bras principaux (1 et 2),
de deux liaisons rotoides (A et B) motorisées (deux degrés de liberté) et d’un bras
auxiliaire (3) connecté a un glisseur (4) par I'intermédiaire d’une liaison pivot glissant
en D et au bras 2 gr&e aune liaison pivot (roto'de) en C.

Le meé&anisme Scott-Russel, constituédes dénents BC, CD et du glisseur, permet

un mouvement rectiligne parallde au bras 1 et génée des acc@é&ations angulaires
identiques des bras 2 et 3.

Figure 3.1. - Structure du manipulateur.
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Le manipulateur est statiquement équilibré si 1’on vérifie les relations suivantes :
Myless +M,Ly =05 (My+m,)L; —m,Lg, =0
oum,, m, et m, : les masses des bras 2 et 3 et du glisseur 4 ; L, : longueur du bras 3 ;

Lss, : la distance du centre de masse du bras 2 par rapport au point B ; L., : la
distance du centre de masse du bras 3 par rapport au point C.

Ces deux conditions permettent d’obtenir un modele dynamique linéaire couplé.
Pour effectuer le découplage, le moment d’inertie du bras 3 doit étre égal a :

2

2 2 2
I _I + (m3+m4) +m3_m4
S3 ~ 'S2
m, m,

oul, et Iy, : les moments d’inertie des bras 2 et 3.

Dans ce cas, on obtient :

m. +m,)(m, +m, +m o
rlz(I31+2I52+IS4+mlLfm+(m2+m3+m4)Lf+2( 3+ MM, + M, 4)L§J01

2

T, = 2['52 + (ms + m4)(m2 +m; + m4) Lijgz

m2
ourr, et r, : les couples en A et B; I, et I, : les moments d’inertie du bras 1 et du
glisseur 4 ; m, : la masse du bras 1; L, : la longueur du bras 1; L, : la distance du
centre de masse du bras 1 par rapport au point A.

En tenant compte de la charge embarquée (masse m, ), les eguations

diffé&entielles couplés et non linéaires du manipulateur a 1’étude se complexifient
terriblement. Ces éguations tres complexes seront utilisées, aprés inversion, pour creer
le modéle du manipulateur sous 1I’environnement MATLAB/SIMULINK.

Sous I’hypothése des deux conditions réalisées, les e€juations se simplifient et
deviennent alors exploitables pour compenser par anticipation la charge embarquée. Les
couples aappliguer deviennent :

2 2
11:[I31+2I32+I54+mlLA81+(m2+m3+m4)L1+2

(m3+m4)(m2+m3+m4) I_; 9
m, !

+m, L (L +2Lg, €056, )6, + m L L, (652 cos 8, —26,6,sin 9, — 67 sin 6’2)

2
n (mpLBP +(m3 +m4)|-3) _ (m3 +m4)2L§
m, +m, m,

(6, +6})
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7, = Z[I32 LM m4)(rrnn2 +M,+m,) I.é]éz +myLLgp (61 cosé, + 67 sin 02)
2

(mPLBP + (M, + m4)L3)2 _(my+m,)* L5

(6,+6,)
m, +m, m,

+

oul L, : ladistance du préaenseur par rapport au point B.

Si m =0 (pas de charge embarquez), on retrouve les &juations des couples r, et

7, déerminés pr&ealemment.

Pour les simulations, les trajectoires angulaires de 6, et 6,, sont construites par

interpolation polyn@niale (polyn@mes du cinquieme ordre qui ve&ifient les conditions et
finales). Pour les valeurs nominales du manipulateur, quatre simulations (avec et sans
compensation de la charge embarqué) sont effectuées.

La premi&e simulation, en boucle ouverte avec compensation de la charge,
fournit des réultats identiques aux trajectoires désirés qui sont présentés ala figure
3.2. La deuxiame simulation, en boucle ouverte sans compensation de la charge, fournit
des ré&sultats qui divergent car le systame est instable. 1l ne peut pas rejeter la
perturbation (charge embarquee).

La troisieme simulation, en boucle fermé avec compensation de la charge, fournit
des résultats identiques aux trajectoires désirés qui sont pré&entées ala figure 3.2. La
quatriéme simulation, en boucle fermé& sans compensation de la charge, fournit des
résultats qui convergent car le systéme est asymptotiquement stable mais présente des
&xarts en rgime permanent pour €, et 6, qui sont liés ala charge embarques.

40 80

35

30

0 0.2 0.4 0.6 08 1 0 0.2 0.4 0.6 0.8 1
Time (sec) Time (sec)

Figure 3.2. - Les trajectoires dé&siréss pour 6, et 6,.
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Les résultats obtenus attestent de 1’efficacité et de la pertinence de la solution
proposee dans ce chapitre 3 qui tient compte de la charge embarquee.

Chapitre 4 : Analyse de la tolé&ance des manipulateurs sé&iels a
dynamique couplee et dé&ouplé

Le chapitre 4 est d&liéadeux &udes qualitatives, par simulation, sur la robustesse
de quatre modées de manipulateurs planaires et sé&iels, adeux degreés de libert& pour la
méme loi de commande en boucle fermée (la boucle de retour externe). Il s’agit de
simuler les comportements en ré&ime transitoire et en ré&ime permanent des quatre
systames, sans charge embarqués, lorsque les paraméres des moddes des
manipulateurs varient par rapport aleurs valeurs nominales. Les manipulateurs sont les
suivants :

- Le manipulateur_0 &dynamique non dé&ouplée, pré&sentéala figure 4.1.
- Le manipulateur_1 du chapitre 2 (figure 2.1) &adynamique dé&ouplés.
- Le manipulateur_2 du chapitre 3 (figure 3.1) adynamique désouplé&.

- Le manipulateur 3 a dynamique découplée par la commande par I’intermédiaire
de la boucle de retour interne (obtention des doubles intégrateurs).

Yi
« sPxy)
S2 f
T2 éz '\«’\)
> y g
v N
B
A S1
- \)&'\ v
/'\Tl
AR 01 - X
77777777

Figure 4.1. - Structure du manipulateur.

Pour éablir la loi de commande du manipulateur_0 de la figure 4.1, le modée
lin&ire et dé&oupléest obtenu en n&ligeant les forces centrifuges, de Coriolis et les
influences mutuelles de la matrice d’inertie pour la rendre constante et diagonale.

La premiee &ude qualitative consiste aobserver les valeurs absolues des erreurs,
dans le plan articulaire, en ré&jime transitoire. Les paramétres variables concernent les
masses m, (bras 1) et m, (bras 2), les moments d’inertie |, (bras 1) et I, (bras 2) et
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Chapitre 4 : Analyse de la toléance des manipulateurs s&iels adynamique couplée et
dé&ouplé

les distances L, (centre de masse du bras 1 par rapport au point A) et L, (centre de
masse du bras 2 par rapport au point B). Pour chaque simulation, un seul des six
paraméres définis est modifié (variation de +20% par pas de 5% ). La figure 4.2
présente les résultats pour une variation de +20% de la masse m, .
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—&— manipulator 2
—+— manipulator 3
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Figure 4.2. - Valeurs absolues des erreurs sur 6, etd,.

Tous les autres réultats présentés dans le ménoire sont en concordance avec ceux
de la figure 4.2 et permettent d’en tirer la conclusion suivante : les amplitudes des
variations des valeurs absolues des erreurs sur 6, et 8, sont nettement plus faibles pour
les manipulateurs des chapitres 2 et 3 adynamique liné&risée et dé&ouplée que celles du

manipulateur_3 (dé&ouplage par la boucle interne) et surtout celles du manipulateur 0 &
dynamique non d&ouplée.

La deuxiéne éude qualitative consiste &observer les éarts en régime permanent
dans les plans articulaire et cartésien. Les paramétres variables concernent les masses
m, (bras 1) et m, (bras 2), les moments d’inertie I, (bras 1) et I, (bras 2) et les
distances L, (centre de masse du bras 1 par rapport au point A) et L., (centre de
masse du bras 2 par rapport au point B). Pour chaque simulation, les six paramétres
définis précédemment sont tous modifiés en méme temps par tirage des valeurs, a I’aide

d’un générateur pseudo-alé&toire, dans une plage de £20% de leurs valeurs nominales.
La figure 4.3 pré&ente les résultats des €arts en régime permanent dans le plan cartésien.

Les résultats en régime permanent, dans le plan articulaire, qui sont pré&sentés dans
le ménoire sont en concordance avec ceux de la figure 4.3 et permettent d’en tirer la
conclusion suivante : les &arts en position sur €, et 6,, dans I’espace articulaire et les
écarts en position du préhenseur, dans I’espace cartésien, sont beaucoup plus faibles
pour les manipulateurs des chapitres 2 et 3 adynamique lin@risé et deouplee que

ceux du manipulateur_3 (déouplage par la boucle interne) et surtout ceux du
manipulateur_0 &adynamique non désouplé.
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Figure 4.3. - Ecarts en ré&gime permanent du préienseur.

En conclusion, les réultats de simulation montrent (pour une méne loi de
commande en boucle fermee) une meilleure robustesse (vis-avis des variations des
parametres) des modées des manipulateurs planaires et séiels, développ& aux
chapitres 2 et 3. Ceci est dOala pertinence des modées utilisés, proches des modees
resls, pour généer la loi de commande.

Discussion :

En géné&al, les manipulateurs sé&iels font apparaitre des liaisons roto'des et des
liaisons prismatiques. Dans les chapitres 2 et 3, les manipulateurs développ& possédent
uniquement des liaisons rotowes et aucune liaison prismatique. Dans le cadre des
liaisons rotoides, c’est I’utilisation du mécanisme Scott-Russel qui a permis le
désouplage partiel et total des &uations dynamiques des manipulateurs éudiés.

Dans le cadre d’une simple discussion, le découplage dynamique d’un
manipulateur sé&iel, soumis ala gravitation, avec une liaison roto'de et une liaison
prismatique est mis a I’étude. Le modéle est non linéaire et couplé. Pour examiner les
conditions de désouplage des €juations du manipulateur pré&entéala figure 5.1, un
pantographe rhombodal est mis en place. Ce type de méanisme présente les ménes
propriéés que le méanisme Scott-Russel. Une extrémitédu pantographe rhomboTdal
est attachee au centre de masse S, du bras 2 qui est connectéau bras 1 par une liaison

prismatique. L’autre extrémité du pantographe est connectée au contrepoids CW 2 qui
copie le mouvement du centre de masse S, dans la direction opposee. Enfin, le bras 1

est connectéala base du manipulateur par une liaison roto'de.
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Discussion

Figure 5.1. - Structure du manipulateur.

Si I’on rajoute un contrepoids au niveau du bras 1, les équations du couple 7 et de
la force F se simplifient mais restent non lin&ires et coupléss. Cependant les termes
dus a la gravité n’apparaissent plus dans les équations finales.

Cet exemple simple montre la difficulté trés importante & surmonter lorsque 1’on
souhaite déoupler un manipulateur s&iel avec une liaison prismatique.

Conclusion :

Les solutions originales, développés aux chapitres 2 et 3, pour lin&riser et
découpler la dynamique d’un manipulateur planaire et sériel a deux degrés de liberté
sont trés prometteuses. Elles permettent de mettre en place une commande optimale qui
tient compte de la charge embarquée (trés utile dans le cadre d’opérations du type « pick
and place >). La pertinence des solutions retenues confée une trés bonne robustesse vis-
avis des variations des paramétres des modées. Enfin, travailler sur un modée linéaire
permet d’envisager, par exemple, la mise en place de lois de commande a énergie
minimale, atemps minimal, etc.

Par rapport ala commande par déouplage non linéire, les commandes proposeéss
s’affranchissent de la boucle interne et autorisent des cadences ¢élevées (réduction du
temps de calcul). La préeision est éalement amé@iorée car elles permettent un calcul
pre&is des couples né&essaires au mouvement du manipulateur.

L’ensemble du travail réalisé est illustré par les simulations réalisées sur les
progiciels ADAMS et MATLAB.

Pour I’avenir, des démonstrateurs seraient évidemment les bienvenus pour valider
les ré&ultats obtenus. De mé&ne, une ouverture vers les manipulateurs parallées est a
considéer.
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Appendix A

The closed-loop simulation diagram of the dynamic

decoupling model in chapter 2
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Figure A.2. — The controller diagram of the dynamic decoupling model in chapter 2.
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Figure A.4. — The manipulator diagram of the dynamic decoupling model in chapter 2.
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Appendix B

The closed-loop simulation diagram of the dynamic

decoupling model in chapter 3
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Figure B.2. — The controller diagram of the dynamic decoupling model in chapter 3.
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Figure B.4. — The manipulator diagram of the dynamic decoupling model in chapter 3.
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Appendix C

The closed-loop simulation diagram of the coupled model
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Figure C.2. — The controller diagram of the coupled model.
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Appendix C

Figure C.4. — The manipulator diagram of the coupled model.
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Appendix D

The closed-loop simulation diagram of the decoupled model

by feedback linearization
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Figure D.2. — The controller diagram of the decoupled model by feedback linearization.
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Figure D.3. — The closed-loop diagram of the decoupled model by feedback

linearization.
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Figure D.4. — The manipulator diagram of the decoupled model by feedback
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Résumé

Structure simple, faible co(t, grand espace de travail et
technologie mature, ces avantages font que les manipulateurs
sériels sont largement utilisés dans de nombreux domaines
industriels. Avec le développement rapide de l'industrie et les
diverses applications des manipulateurs sériels, de nouvelles
exigences strictes sont souhaitées, telles que la stabilité
robuste, la grande précision de positionnement et la cadence
élevée.

Un des moyens efficaces pour améliorer les performances
mentionnées est la conception de manipulateurs sériels a
découplage dynamique. Dans ce cadre, I'objectif de cette thése
est de valider une structure simple permettant de réaliser un
découplage dynamique complet des manipulateurs sériels en
tenant compte de la charge embarquée.

Le chapitre 1 présente les solutions connues et décrit les
inconvénients liés aux différentes techniques permettant une
simplification de la dynamique des manipulateurs. L’étude de la
bibliographie a permis d’affiner les objectifs a atteindre. Le
chapitre 2 traite de la conception de manipulateurs sériels
réglables a dynamique linéarisée et découplée. Sans la charge
embarquée, la méthode développée réalise le découplage
dynamique par rotation inverse des bras et par redistribution
optimale des masses. La charge embarquée qui conduit a une
perturbation au niveau des équations dynamiques de
découplage est compensée par la commande.

Le chapitre 3 envisage un nouveau concept de découplage
dynamique qui consiste a relier aux bras initiaux d'un
manipulateur sériel, deux bras additionnels pour réaliser un
mécanisme Scott-Russell. Les mouvements opposés des bras
du mécanisme Scott-Russell associés a une redistribution
optimale des masses permettent de supprimer les termes non
linéaires des équations dynamiques du manipulateur. Le
modele linéaire et découplé ainsi obtenu permet de tenir
compte de la charge embarquée.

Dans le chapitre 4, on considere les propriétés de robustesse
(incertitudes  paramétriques) de quatre modéles de
manipulateurs sériels (un manipulateur couplé, un manipulateur
découplé par la commande et les deux manipulateurs
découplés qui sont issus des chapitres 2 et 3). Les études
qualitatives sont effectuées par simulation en utilisant la méme
loi de commande optimale et la méme trajectoire de référence.
Les résultats des simulations permettent de conclure sur la
robustesse des manipulateurs décrits aux chapitres 2 et 3 par
rapport au manipulateur couplé et au manipulateur découplé
par la commande.

La méthodologie de conception et les techniques de commande
proposeées sont illustrées par des simulations réalisées a l'aide
des logiciels ADAMS et MATLAB. Les simulations ont confirmé
I'efficacité des approches développées.
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Abstract

Simple structure, low cost, large workspace and mature
technology, these advantages make the serial manipulators are
widely used in many industrial fields. With the rapid
development of industry and various applications of serial
manipulators, new strict requirements are proposed, such as
high stability, high positioning accuracy and high speed
operation.

One of the efficient ways to improve the mentioned
performances is the design of manipulators with dynamic
decoupling. Therefore, the goal in this thesis is to find simple
structure permitting to carry out complete dynamic decoupling
of serial manipulators taking into account the changing payload.

The review, given in Chapter 1, summarizes the known
solutions and discloses the drawbacks of different techniques
permitting a simplification of the dynamics of manipulators. It
allows an identification of objectives that are of interest and
should be studied within the framework of this thesis.

Chapter 2 deals with the design of adjustable serial
manipulators with linearized and decoupled dynamics. Without
payload, the developed method accomplishes the dynamic
decoupling via opposite rotation of links and optimal
redistribution of masses. The payload which leads to the
perturbation of the dynamic decoupling equations is
compensated by the optimal control technique.

Chapter 3 deals with a new dynamic decoupling concept, which
involves connecting to a serial manipulator a two-link group
forming a Scott-Russell mechanism with the initial links of the
manipulator. The opposite motion of links in the Scott-Russell
mechanism combined with optimal redistribution of masses
allows the cancellation of the coefficients of nonlinear terms in
the manipulator's dynamic equations. Then, by using the
control, the dynamic decoupling taking into account the
changing payload is achieved.

In chapter 4, robustness properties (parametric uncertainties) of
four various models of serial manipulators (one coupled
manipulator, one decoupled manipulator by feedback
linearization and the two decoupled manipulators that modeled
in chapters 2 and 3) are considered. The given comparison
performed via simulations is achieved with the same optimal
control law and the same reference trajectory. Simulation
results allow one to derive robustness assessments of
manipulators described in chapters 2 and 3.

The suggested design methodology and control techniques are
illustrated by simulations carried out using ADAMS and
MATLAB software, which have confirmed the efficiency of the
developed approaches.
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