N

N

Subclonal evolution in neuroblastoma

Paul Deveau

» To cite this version:

Paul Deveau. Subclonal evolution in neuroblastoma. Cancer. Université Paris Saclay (COmUE),
2017. English. NNT': 2017SACLS140 . tel-01576703

HAL Id: tel-01576703
https://theses.hal.science/tel-01576703
Submitted on 23 Aug 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-01576703
https://hal.archives-ouvertes.fr

UNIVERSITE

o
universite P CARIS

PARIS-SACLAY

NNT : 2017SACLS140

THESE DE DOCTORAT
DE LUNIVERSITE PARIS-SACLAY
PREPAREE A L'INSTITUT CURIE

Ecole doctorale n°582
Ecole doctorale de Cancérologie : biologie - médecine - santé
Spécialité de doctorat: Recherche clinique, innovation
technologique, santé publique

par

M. PAUL DEVEAU
Evolution sous-clonale dans le neuroblastome

Thése présentée et soutenue a U'lnstitut Curie, le 27 Juin 2017.

Composition du Jury :

Mme. VALENTINA BOEvVA Chargée de recherche (Co-Directrice de thése)
Institut Cochin

M. OLIVIER DELATTRE DRCE (Co-Directeur de theése)
Institut Curie

Mme. GUDRUN SCHLEIERMACHER Practicien Hospitalier (Co-Directrice de thése)
Institut Curie

M. CHRISTIAN AUCLAIR Professeur des universités (Président du jury)
Gustave Roussy

M. FABIEN CALVO Professeur des universités -
practicien hospitalier (Examinateur)
Gustave Roussy

M. JAN KOSTER Postdoctoral fellow (Rapporteur)
Universiteit van Amsterdam

M. HuGUES ROEST CROLLIUS  Directeur de recherche (Rapporteur)

Ecole Normale Supérieure




GUSTAVE/

PARIS
ROUSSY o
I.ﬂ-':sf'.“'?-?"”"'-«"-“- ! \- nEF:EEH:EHE

ECOLE
DOCTORALE
DE CANCEROLOGIE
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Mots clefs :

Résumé : Le neuroblastome est le cancer solide
extra-cranial le plus fréquent chez I'enfant. Il est
caractérisé par une trés grande hétérogénéité tant
au niveau clinique que moléculaire.

Alors que certains patients rentrent spontanément
en rémission, on peut se demander quels facteurs
permettent la réémergence du cancer chez d’autres
malgré traitement.

Pour répondre & cette question,
d’identifier chez les patients ayant rechuté, les dif-
férentes populations clonales coexistant au diagnos-
tic et/ou a la rechute. Cela permet, entre autre,

il convient
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d’étudier les voies différemment altérées entre ces
deux temps.

Dans cette optique, nous présentons ici Quantum-
Clone, un algorithme de reconstruction clonal a
partir de données de séquencage, ainsi que son ap-
plication & une cohorte de patients souffrant d’un
neuroblastome. Sur ces données, ’application de
notre méthode a permis d’identifier des différences
dans le ratio de variants prédits fonctionnels par
rapport & ceux prédits passagers entre les popula-
tions ancestrales, enrichies & la rechute ou appau-
vries a la rechute.

Title :

Keywords :

Abstract : Neuroblastoma is the most frequent
solid extra-cranial cancer of childhood. This can-
cer displays a high heterogeneity both at clinical
and molecular levels.

Even though in some patients spontaneous remis-
sion can be observed, some others relapse despite
treatment and surgical resection. It may be won-
dered which are the factors that distinguish these
two cases.

In order to answer this question, identification of
populations coexisting at diagnosis and/or relapse
in the patients which have relapsed is a prerequi-
site. This would allow, between other things, to
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study the pathways differently altered in clones
that are specific to each time point.

With this in mind, we hereby present QQuantum-
Clone, a clonal reconstruction algorithm from se-
quencing data. In addition, we applied this method
to a cohort of patients suffering from neuroblas-
toma.

On these data, our method identified differences
in the functional mutation rate, i.e. the number
of putative functional variants by total number of
variants, between the ancestral clones, clones ex-
panding at relapse, and clones shrinking at relapse.
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L'’ADN se cache depuis des millions d’années dans nos cellules. Nous
sommes en train de le dérouler.

— Frank Thilliez, GATACA, 2011

L’homme n’est qu’'un enfant dans I'échelle de I'évolution. Une béte
sauvage qui se croit évoluée.

— Maxime Chattam, Prédateurs, 2007

Les lapins courent plus vite que les renards simplement parce qu'ils
courent pour survivre.

— Frank Thilliez, GATACA, 2011
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Mathematical notations

In all this thesis, we will use the following notations:

B for the binomial distribution of size » and probability p
¢ for cellularity
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¢ for the log-likelihood

¢? for the norm derived from the scalar product

w for weights
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Synthese

Que I'on me donne six heures pour couper un arbre, j'en passerai
quatre a préparer ma hache.
—Abraham Lincoln

Le neuroblastome est le cancer extra-cranial solide le plus fréquent chez
'enfant. |l est caractérisé par une trés grande hétérogénéité tant au niveau clin-
iqgue que moléculaire. En effet, on observe une rémission spontanée chez cer-
tains patients alors que la maladie peut progresser pour d’autres malgré une in-
tervention thérapeutique chirurgicale et médicamenteuse. Dans ces conditions,
on peut se demander quels facteurs différencient les premiers de ceux dont la
maladie survient a nouveau aprés traitement.

Pour répondre a cette question, nous nous sommes attachés aux différentes
populations cellulaires constituant la tumeur au diagnostic et a la rechute. Pour
cela nous disposons de vingt-deux patients pour lesquels 'ADN constitutif, la
tumeur au diagnostic et celle a la rechute ont été séquencés par séquencage a
haut débit de génome complet.

Afin de détecter au mieux les différentes populations coexistantes, il a été
nécessaire de développer un algorithme de reconstruction adapté a la problé-
matique du neuroblastome. C’est-a-dire un algorithme prenant en compte les
possibles altérations chromosomiques (gains et pertes), tout en se satisfaisant
d’un faible nombre de variations de nucléotides uniques. Dans ce cadre, nous
présentons QuantumClone, ainsi que les différentes techniques mathématiques
permettant la résolution efficace du probleme de reconstruction clonale. Les
améliorations par rappot a I'existant, tant au niveau de la qualité de la prédic-
tion du clustering que de la vitesse de calcul, ont été validés par comparaison
sur des simulations numeériques avec deux méthodes déja publiées, nommément
sciClone et pyClone.

Cependant, au travers d’'une compétition — le DREAM Meta challenge —
nous montrons d’'une part que le nombre de variants appelés par les outils de
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variant calling contiennent un nombre important de faux positifs, et d’autre part
qgu’il est difficile de recréer les erreurs recontrées dans les données biologiques.
En effet, nous mettons en exergue la grande disparité existante dans cette com-
pétition entre les échantillons simulés et les échantillons issus de patients. Pour
cette raison, nous proposons une série de filtres permettant de retirer les faux
positifs et reposant sur des raisonnements biologiques pour pallier le manque de
résultats des algorithmes d’apprentissage supervisés.

Une fois les différentes populations clonales extraites des données, il est im-
portant de pouvoir caractériser leurs particularités biologiques. Pour cette raison,
nous proposons de diviser les variations génomiques en deux groupes non ex-
clusifs : celles a faible variance et haute qualité qui seront utilisés pour le cluster-
ing d’'une part, et celles ayant un impact biologique connu ou prédit d’autre part.
En effet, par attribution a posteriori des variations ayant un intérét biologique,
nous pensons pouvoir mettre en avant les mécanismes biologiques expliquant
I'apparition ou la disparition de populations clonales entre le diagnostic et la
rechute — l'une des forces étant la sélection négative par le traitement.

Cependant, trés peu de genes comportent des mutations récurrentes dans
le neuroblastome. Nous pouvons citer comme exemple les plus fréquents ALK
(avec une fréquence d’occurrence de 6 a 12% en fonction des cohortes), ou
ATRX (inférieur a 10%). Il apparait alors comme raisonnable de s’intéresser non
pas a des génes uniques mais a des ensembles de genes, qui eux peuvent étre
touchés de facon récurrente par la maladie. Pour ce faire, il a fallu dans un pre-
mier déterminer les genes candidats. Nous avons donc utilisé plusieurs outils de
prédiction d’impact de variations dans les régions codantes (SIFT, Polyphen-2) et
non codantes (Funseqg2). En utilisant la liste des genes contenant au moins une
variation prédite délétére, nous avons pu comparer le nombre de génes mutés
dans un processus biologique et le nombre attendu par hasard. Cette compara-
ison a éteé réalisée en utilisant ACSNMineR, développé et publié pendant cette
thése, et qui repose sur les connaissances biologiques agrégées dans I'Atlas of
Cancer Signalling Network (ACSN). Nous montrons que différents processus bi-
ologiques déja connus sont a I'ceuvre dans le neuroblastome touchant aussi bien
le cycle cellulaire, 'apoptose, la transition épithélio-mésenchymateuse, la répara-
tion de 'ADN, la survie cellulaire ou la neurogenése. Plus spécifiguement, nous
pouvons citer les voies de signalisation WNT (canonique et non-canonique), AK-
T/mTOR, ou enfin les MAPKinases.

Finalement, nous avons pu comparer les différentes voies affectées dans
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les clones occupant une plus grande fraction de la tumeur au diagnostic ou
a la rechute. Alors que le nombre de variations double entre le diagnostic et
la rechute, le nombre de variations prédites délétéres dans des processus bi-
ologiques enrichis en variations reste stable. De la méme maniére, les mémes
processus sont ciblés au diagnostic et a la rechute.

Afin d’expliquer ces résultats, nous formulons I’hypothése suivante : sachant
que la capacité d’adaptation des cellules diminue avec I'accumulation de varia-
tions fonctionnelles, les populations ayant un avantage sélectif au diagnostic —
du fait d’'un grand nombre de mutations dans les processus cancérogenes —
sont sélectionnées négativement par le traitement. Apres traitement, seules des
populations ayant un faible de taux de variations fonctionnelles ont survécu. La
pression de sélection dle au traitement étant relachée, une nouvelle compétition
intratumorale peut prendre place. Les populations accumulent alors a nouveau
des variations fonctionnelles dans les mécanismes liés a la tumorigenése, ex-
pliquant le nombre comparable de variations fonctionnelles au diagnostic et a la
rechute.Le fait que les cellules accumulent de maniere réguliere des variations
avec chaque division permet quant a lui d’expliquer que le taux de mutation fonc-
tionnel est réduit a la rechute par rapport au diagnostic.
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General overview

We detail below the structure of the thesis and the interdependence of chapters
to one another.

e Chapter 1 is an introduction to the relevant concepts of biology that will be
used and developed in the following work.

e Chapter 2 introduces the machine learning concepts that will be used through-
out the manuscript, such as clustering and classification. We will also
detail the clonal reconstruction problem and the existing literature on that
subject.

e Chapter 3 details the mathematical aspect of QuantumClone, the algorithm
developed to solve the clonal reconstruction task. This chapter assumes
that all variants provided are true positives. In the next chapter we will see
how to remove the noise from the sequencing output.

e Chapter 4 illustrates the fact that data from biological sequencing and shows
that High Throughput Sequencing contains a high proportion of false pos-
itives. The DREAM meta challenge was used to illustrate the difficulty of
finding correct features to discriminate true and false positives. Knowledge
derived from this experience is then applied to the results of whole genome
sequencing from 23 patients.

e Chapter 5 focuses on the extraction of biological meaning from sequencing
data. For that reason, we detail functional annotation tools and pathway
enrichment analyses. This lead to the development of ACSNMineR, an R
package to compute enrichment of variants in a biological module.

e Chapter 6 is the specific application of all previous chapters to the neurob-
lastoma cohort presented in chapter 4, and the biological conclusions and
hypothesis resulting from this application.

e Chapter 7 concludes this work and gives possible tracks to continue and
expand it.
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Biological knowledge
(chapter 1)

RSB0

* Feature creation * Pathway analysis
* Filters design * Hypothesis
generation
. Clonal . \
Whole genome @ Cleanlng reconstruction L Interpretatlon
sequencing (ch. 4) g (ch. 3and 5) (ch. 5 and 6) /
* False positive e Algorithm design
detection * Validation of
¢ Validation of method
filters

=4 Machine learning

Wﬂ : (chapter 2)

Figure 1: From data to biological results. We represent the interaction be-
tween the different chapters of the manuscript. Biological knowledge and ma-
chine learning are prerequisites to this work and intervene at different stages of
the manuscripts, highlighted by specific points. The workflow in the middle repre-
sents the general chronology of a data analysis project, which may not reflect the
structure of the manuscript presented here or the chronology of the thesis itself.
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Chapter 1

Biological preamble

I have called this principle, by which each slight variation, if useful, is
preserved, by the term of Natural Selection, in order to mark its
relation to man’s power of selection.

— Charles Darwin, The Origin of Species, 1859

In this work, many different aspects of cancer biology and computational biol-
ogy are described. Although this introduction may not be as detailed as a biologist
or a data scientist would like, it is provided so that both can exchange with the
same vocabulary. We will first introduce the topic of cancer and detail the char-
acteristics of neuroblastoma. Then we will describe the sequencing techniques
called "High Throughput Sequencing" (HTS), and we will finally conclude with a
brief discussion of statistics applied to genomic data.

1.1 A small history of cancer

The first historical description of cancer date as far back as 3000 b.c. in ancient
Egypt, with treatments of breast cancer by cauterization'. Hippocrates is believed
to be the first user of the word "carcinoma" to describe uncontrolled proliferative
swellings [1]. It is only in the 18th century that John Hunter developed the idea
that cancer could be cured through surgery, only when the tumor had not invaded
nearby tissues.

1.1.1 Hallmarks of cancer

It is difficult to talk about cancer and not cancers, as many different diseases are
classified under this name: from liquid tumors such as leukemia, pediatric can-

' American Cancer Society. 2009
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cers such as Ewing Sarcoma, adult cancers such as the prostate cancer, sporadic
or hereditary breast cancers. First classifications were based on the localization
of the tumor, and are still used for some specific cancers: we are all too familiar
with the terminology of colon, breast or prostate cancer. However a dissection of
these tumors leads to a molecular classification of tumors based on cellular (think
of Non-Small Cell lung cancer) or molecular (Estrogen Receptor positive breast
cancer) markers. We can then wonder what all these diseases have in common.

In January 2000, one of the most renown reviews in oncology (attracting more
than 15,000 citations) was published by Douglas Hanahan and Robert Weinberg
[2]. This review defines eight hallmarks of cancer and was followed by an up-
date 11 years later [3], adding four new hallmarks, bringing the figure to twelve
key mechanisms for cancer development: sustaining proliferative signaling, evad-
ing growth suppressors, activating invasion and metastasis, enabling replicative
immortality, inducing angiogenesis, resisting cell death, avoiding immune destruc-
tion, tumor promoting inflammation, deregulating cellular energetics and genome
instability and mutation.

In this thesis, we will focus on the analysis of a pediatric cancer called neu-
roblastoma.

1.1.2 The oncological context: neuroblastoma

Pediatric tumors are less frequent than in adults, and represent only 1% of diag-
nosed cancers®. Neuroblastoma is the most common extra-cranial solid cancer
of childhood, representing 7.6% of pediatric cancers in Europe [4]. This cancer
stems from neural crest cells, and is characterized as sympaticoadrenal lineage
neural-crest derived tumors [5, 6, 7]. This leads to a wide range of tumor local-
ization such as the adrenal gland, neck or pelvis (Fig. 1.1).

In the next paragraphs we address the specificity of this disease both as het-
erogeneity between patients and within a patient.

Heterogeneity between patients

Neuroblastoma landscape is characterized by a small number of recurrent al-
terations, whether copy number alterations or mutations. In fact, recurrent alter-
ations are MYCN amplifications (16%), 17q gain (48%), 11qloss (21%) or 1p loss

2www.e-sante.fr
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Figure 1.1: Neuroblastoma localization. Neuroblastoma primary tumors derive
from precursor cells of the peripheral (sympathetic) nervous system and can arise
anywhere along the sympathetic chain, most frequently in the adrenal gland (po-
sition 8 as shown). Neuroblastoma may also develop from spinal cord of neck (po-
sition 6) and pelvis (position 10). Neuroblastomas mainly metastasize to lymph
nodes (position 3), liver (position 4), bone and bone marrow (position 5), and also
spread to central nervous system (position 1) and lungs (position 2) in infants.[5]

(23%) [7], while mutations occur in ALK (6 - 12%) [8] or ATRX (< 10%) genes [9].

This diversity is also represented in the prognosis of patients where sponta-
neous remission can be observed in younger patients, while older children (> 2
years old) with chromosomal imbalance have a poor outcome prognosis despite
chemotherapy and ablative treatments. In addition, only an estimated 1 to 5% of
neuroblastoma cases appear as hereditary [10, 5], with mutations in PHOX2B or
ALK genes[11, 12] and predisposition loci in chromosomes 16p12—13 and 4p16
[5]. This has to be put in perspective with other cancers with a high hereditary
burden such as retinoblastoma. Indeed, in retinoblastoma, RB7 gene mutations
are often dominant with near complete penetrance (> 99%)[13, 14]

Intratumoral heterogeneity

Cancer is one of the very few times in a lifetime where one can be confronted
to the principle of Natural Selection. Evolution is usually set on a time scale of
multiple generations, and it is difficult to experience this in a single lifetime except
with microorganisms or smaller organisms such as Drosophila Melanogaster or
C. Elegans. An example of these reported phenomena is the change of color of
the Peppered Moth, Biston Betularia, where the melanic phenotype of the moth
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was associated to a lower predation by birds in regions with high atmospheric
pollution, as first hypothesized in 1896 by J.W. Tutt [15]. Even in this occurence,
it took decades for the natural selection to shift the most frequent allele from the
typical to the melanic.

We can assume that our body is an ecosystem of its own, with bacteria and
cells of different types coexisting, competing, and collaborating for the sake of the
organism. Mutations are one of the driving forces of evolution in species, as new
traits with potential benefits are more likely to be passed on to the next genera-
tions. It is also one of the forces underlying cancer development, and will push the
cell toward an uncontrolled proliferative state - similar to what can be observed
with invasive species.

It is then important to understand what are the signals that deregulated the
cell, this means to be able to figure out the phylogeny of the cells and find the
common ancestor to all these (Fig. 1.2). While it may not be useful to reconstruct
the whole tree, some essential nodes may be of interest, for example the geno-
type of the cell that gave rise to the relapse could give clues and insights in the
mechanisms of resistance to treatment.

1.2 High throughput sequencing analysis

Next generation sequencing (NGS) is a set of technologies that allowed faster
and cheaper sequencing of the DNA molecule. We will focus here on the lllumina
technology that is used for the whole exome (WES) and whole genome (WGS)
analyses.

1.2.1 Principle

The modern sequencing methods rely on the reaction set up by Frederick Sanger
in 1977, for which he received the Nobel Prize in 1980. For this reason, we will
first explain the historical sequencing reaction, now dubbed "Sanger sequencing",
before moving on to the lllumina protocol.

Sanger sequencing

Sanger sequencing mainly relies on the Polymerase Chain Reaction (PCR), which
is used to amplify a DNA sequence (Fig. 1.3). This reaction can be terminated
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Figure 1.2: Phylogenetic tree of a cancer. Colors represent the different al-
terations characterizing each cell. With each division alterations accumulate so
that each cell is distinct from all others be it from the same generation, from its
ancestry or progeny.

during the elongation by the use of dideoxynucleotides triphosphate (ddNTP)
which cannot form the phosphodiester bond required to link a nucleotide with
the following. As a result, the reaction will create chains of various sizes, de-
pending on where the ddNTP was incorporated. Having a different radioactively
labeled dANTP in each reaction mix allows to reveal the order in which adenine
(A), thymine (T), guanine (G), and cytosine (C) are incorporated by electophoresis
on a polyacrylamide gel. This has now been simplified with each ddNTP labeled
with a fluorophore re-emitting at a different wavelength. The sequence can then
be automatically read by monitoring light re-emission of the migrating molecules.

Illumina

In order to reduce costs and increase speed of sequencing alternative meth-
ods had to be designed to sequence the genome. Indeed, the Human Genome
Project, which aimed at sequencing the first human genome, cost approximately
300 million USD for the first draft and an additional 150 million USD to refine this
draft, using cloning and Sanger sequencing. With refined techniques, the same
draft would have cost an estimated 14 million dollars in 2006 and can now be
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Figure 1.3: Polymerase Chain Reaction. The PCR mainly consists of three
steps forming one cycle. First the denaturation at high temperature ensures that
the DNA fragments are single stranded. Then the annealing phase at lower tem-
perature allows the PCR primers to bind the DNA fragment to replicate. Finally
the elongation allows the polymerase to synthesize the complementary strand
of DNA with the available deoxynucleotides. This cycle is repeated several
times - usually 10 to 30. Adapted from Enzoklop - Own work, CC BY-SA 3.
https://commons.wikimedia.org/w/index.php?curid=32003643

achieved for 4000USD? in 2016, as shown in figure 1.4.
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Figure 1.4: Cost of sequencing Evolution of the cost of sequencing of 1 million
bases (Mb, left) or a full human genome (right) in USD, from September 2001 to
October 2015, based on data from genome.gov. In addition, an equivalent of the
Moore law (blue) is added on the right chart, to show a price divided by two every
18 months, and periods annotated with the technology used.

Shttps://www.genome.gov/27565109/the- cost-of - sequencing-a-human- genome
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lllumina sequencing relies on the reversible terminated chemistry concept de-
scribed in Canard et al [16]. First the DNA fragments are digested to small frag-
ments, and adapters are attached. These adapters will then be used to anchor
the fragment on one end of the flow cell. Using a primer, the sequence is then
amplified, with all copies of the sequence being localized in the neighborhood of
the first fragment, due to the anchoring. This creates a cluster of identical se-
quences - forward and reverse strands. To sequence these clusters, a nucleotide
engineered with reversible termination and a chromophore is added to the plate.
Unused reactants are washed away, and a picture of the chip is taken. The de-
blocking step allows the incorporated nucleotide to bind to another nucleotide and
the cycle is repeated until the full DNA molecule is sequenced.

This sequencing technique can be used to read the sequence from a sin-
gle end of the molecule (single end sequencing), or from both ends (paired end
sequencing, see Figure 1.5). Another technique, called mate pair sequencing
circularizes the DNA fragment before fragmentation. Because of circularization,
two sequences separated by more than 1kb can be brought together, which can
be useful to detect complex genomic rearrangements.

In the case of paired end sequencing, the expected distance between the
two pairs is known, and can be used by the aligner to map the sequence on the
reference genome, as we will see in the next subsection.

Complete Genomics

Complete Genomics (CG) uses a proprietary technology optimized for human
sequencing. In the cohort of neuroblastoma samples provided by John Marris
from the Children’s Hospital of Philadelphia, paired end sequencing was used.
It is to be noted that the reads coming from this technology bear a deletion of
a few base pairs (see Figure 1.6), limiting possible operations (such as indel
realignment) on the file.

1.2.2 Read alignment

The sequences obtained from lllumina or Sanger are small fragments of the donor
genome, with a length of 36 to 600 base pairs (bp). This is to be compared to the
3 x 10° bp of the human reference genome. It is thus required to align the donor
sequences on the reference genome.
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Figure 1.5: Illlustration of paired end sequencing read mapping. Reads
aligned on the genome from left to right are shown in red, those from right to
left in blue. A grey line links the pair of read. Depth of coverage (number of
reads overlapping the position) is shown on top in grey. Visualization of the reads
and sequences made with the Integrative Genomics Viewer (IGV) [17]. Image
courtesy of Léo Colmet-Daage.

Principle of read mapping

In theory, for a combination of 4 letters and length 100, a total of 4!%° = 1.61 x 10%°
unigue sequences exist. This number is far superior to the size of the genome
and should guarantee that each sequence of 100 bp can be accurately attributed
to its position.

However, our genome may have emerged from two whole genome duplications
[18] at vertebrate stage, meaning that many genes have paralogs with very sim-
ilar sequences®*. Approximately 811,737,329 bp are identified as a part of seg-
mental duplication and 319, 296, 434 bp as simple repeated element in the human
genome assembly hg19.> We will detail further repeated elements and duplica-
tions in chapter 3.

4This is termed the 2R hypothesis, for two rounds of duplications, or Ohno’s hypothesis.
SNumbers are based on the UCSC genome browser tracks Segmental Duplication and Simple
Repeats.
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Figure 1.6: lllustration of Complete Genomics sequencing output. Contrary
to the previous figures, lines here show a deletion inside a read. Purple brackets
denote an insertion compared to the reference genome. From top to bottom:
germline sequence, tumor at diagnosis, and tumor at relapse from patient PAR-
BAJ. Highlighted is a variant (C to A) specific to the relapse sample.

Moreover, we align the sequences on a reference, and, on average 3.3 million
differences [19] exist between any individual human genome and the reference.
They correspond to Single Nucleotide Polymorphisms (SNPs) or private varia-
tions. This does not include sequencing errors. As a result, a number of allowed
mismatches between the reference and the read sequence has to be set. This
is especially of interest in the case of insertions or deletions, which will introduce
many changes between the sequence read and the reference, as shown in table
1.1, if a gapless alignment is used or if the correct alignment was missed by the
aligner.

Reference ATACGACGAAGCTAC
1 mismatch | ATACGAGGAAGCTAC
2 mismatches | ACACGAGGAAGCTAC
1bp deletion | ATACGAC-
2bp insertion | ATACGACGGC

Table 1.1: Example of variation impact on a sequence. All sequences have the
same length, the mutation is represented in red and subsequent changes in the
gapless alignment are shown in orange. We can see that a deletion or insertion
inserts many mismatches in the local alignment, such errors can be resolved
through various techniques.
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Variant calling

Once that reads have been mapped to the closest sequence of the reference, we
can look for positions where it differs from the reference. This is done thanks to
the variant calling.

In tumoral context, it is important to distinguish variations that would come
from the tumor, called somatic, and the variants that are also present in the
healthy tissue, termed germline. The former may give indications on the course
of development of the disease while the latter may be linked to predisposition. A
third type of variants exist, but will not be discussed in this manuscript: germinal
mutations that appear in gonadal tissues, and that can potentially be passed to
the descendants.

As a result, somatic variant callers first look for differences between the reads
aligned at a given position and the reference, and if there is a difference, it will dig
into the matching germline sample to see if the same variation can be found in its
genome.

Many different algorithms have been developed to do so, among which we can
cite Varscan2 [20], Mutect [21] or Strelka [22].

Varscan2, that will be used for the whole genome analysis, uses Fisher’s ex-
act test [23] on the number of reads supporting the variant in the germline and
tumoral samples to distinguish somatic and germline variants.

1.3 Available and relevant data

1.3.1 Is it big data?

In the recent years, an unprecedented stream of information poured in different
domains of computer science, including bioinformatics. We detailed in previous
sections the principles of High Throughput Sequencing technologies. It can be
noted that one sequenced read has to store the information about the sequence
of each nucleotide as well as the confidence in the result of the nucleotide read
being correctly guessed — called base quality. After mapping, we also have to
encode the position of the genome where the sequence has been mapped, and
the confidence in the mapping of this specific read on the reference genome —-
called mapping quality. As a result, a whole genome sequenced with an aver-
age depth of 100x and stored in a compressed format (called BAM), represents
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~ 500G B of data.

However, we have said that roughly a million positions are supposed to be
different from the reference genome, so less than one in a thousand. With reads
of only 100bp, with the hypothesis of variants being heterozygous and a depth of
sequencing of 100x, this would lead to as little as a read for 20 being informative.
The mutated positions not being known a priori, this cost to efficacy can hardly be
compressed. In practice, whole exome sequencing (WES) (where only the exonic
regions are sequenced, based on a capture technique) or targeted sequencing
(where only predetermined regions are sequenced) can be used. However, these
techniques introduce a bias in the data and the analysis. In whole exomes, a
bias in read distribution is often observed, meaning that the probability to ob-
serve reads in G/C poor or G/C rich regions is lowered. In addition, the regions
captured will depend on the capture technology used. This will lead to a different
coverage of genes and exons. Targeted sequencing is biased towards genes that
have already been shown to have an interest in the disease, and will be less likely
to be used in a prospective study.

At a time where "big data" has become a buzzword and marketing strategy,
the disparity between useful and total information has been dubbed "Fat data".
Indeed, data quantity is often understood as an increase in quality. The relevant
information in our data for this study can be downsized to a few gigabytes worth,
with the copy number alterations on the one hand and variant calling results on
the other hand.

Another layer of information could be retrieved by looking at structural variants.
Structural variants can be detected using dedicated algorithms such as SVDetect
[24] or BreakDancer [25]. This aspect will not be further detailed in this thesis.

In chapter 2 we will see how to analyze genomic data with respect to the
question of clonal evolution in cancer. We have seen here that the genomic data
could be described as "fat data", reaching large sizes with little information con-
tained. We also describe here another limitation of biological data: the scarcity of
samples often outweighs the number of parameters to test.

1.3.2 The small p large n curse

Machine learning problems often require that the number of observations largely
exceed the number of parameters to tune. This is required to avoid spurious
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correlations.

In genomic, this assumption cannot be held true, and this is referred to as
the "Small p large n" issue. This can be easily illustrated in Genome Wide As-
sociation Studies (GWAS), where a million polymorphisms (SNPs) are tested for
association with a disease, and to a lower extent in cancer, where the association
of the 19,033 protein coding genes with the disease is tested, to which we can
add an extra 6,732 non-coding RNA genes (number correspond to unique HUGO
symbols)®. These SNPs can be associated with (and sometimes responsible of)
an increased risk of a few percents. To uncover association of a SNP that has a
10% increase of the risk, and a cohort of 1,000,000 participants equally affected
by the disease or healthy, the p-value associated with the SNP will be ~ 0.1 (see
table 1.2 for details).

Minor allele | Major allele | total

Healthy 4,762 95, 238 10°
Disease 5,238 94, 762 10°
Total 1 x 10 1.9 x 10° |2 x 10°

Table 1.2: Allelic imbalance: for a cohort of 2 x 10° individuals, with an allele
in 1% of the population and 10% more frequent in the disease population. This
SNP would have a p-value computed by fisher test of 1.092 x 10-¢. After Bonfer-
roni correction, and considering that SNP arrays currently have ~ 10° positions
covered, we can estimate the corrected p-value to be: 0.1, higher than the 0.05
threshold, even though the cohort has 200,000 individuals.

The evolution of the cohort needed to estimate a linkage between a SNP and
a disease depending on the cohort size, is shown in figure 1.7. It is important
to note that this kind of studies cannot uncover low risk factors even in studies
with large cohorts. For example, a SNP associated with a risk factor of 1% in the
example cannot be found significant, even for a cohort of 10® persons.

As a result, it may be difficult to extract relevant features, i.e. explicative vari-
ables, from the data, especially in the case of low risk factors. In our case, with
a cohort of ~ 20 patients, the relevance of a variant in the disease can hardly be
detected, and we will limit the scope of our study to descriptive results.

6Detection of pathways enriched in somatic variants will be further detailed in chapter 5
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Figure 1.7: p-value and cohort size Evolution of significance of a SNP given
the risk factor and the cohort size. An equal partition of healthy and disease
patients is assumed. For readability p-values below 107" are not shown. The
light blue line corresponds to the traditional 0.05 threshold, and the dark blue
line corresponds to the threshold taking into account one million test (Bonferroni
correction)
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Chapter 2

Mathematical perspective of the
clonal reconstruction

All models are wrong but some are useful.
— George Box, Robustness in the strategy of scientific model building,
1979

Machine learning is translated in French as "apprentissage statistique”, or
"statistical learning". This terminology accurately represents the idea that com-
puters do not learn by themselves, but that we fit a statistical model to the data
that is gathered.

2.1 Introduction to machine learning

Machine learning is the field of study that gives computers the ability to
learn without being explicitly programmed
— attributed to Arthur I. Samuel, circa 1959

A more recent definition of machine learning has been given by Mitchell in
1997: "A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P if its performance at tasks in
T, as measured by P, improves with experience E." [26]

In these 40 years, machine learning had been applied to various tasks, such
as classification (when groups are known beforehand), regression, or clustering
(where groups are unknown beforehand).

The task of finding clones using a group of variants is a clustering issue:
the number and characteristics in terms of mutations and cellular prevalence are
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unknown before the clustering (see chapter 3). Looking for relevant features ex-
plaining if a variant called is a true or false positive is a classification task (see
chapter 4). In the following sections we will provide background for classification
task first then for clustering.

2.1.1 Classification: supervised learning

"The term ‘supervised learning’ is rooted in statistical learning/machine learning
parlance, where it describes the analysis of data via a focused structure. "[27]

In the data used for training, the groups or classes are known beforehand and
usually provided by a human expert — hence the supervised denomination. A
classification algorithm will then learn on a set of characteristics (or features) that
are given for each entry, and will combine them in a way to try to predict the out-
come. The algorithm will try to minimize the error given a metric which can be
accuracy or recall for example.

Many classes of algorithms can be used to classify data, among which we
can cite logistic regressions, Support Vector Machines (SVM), partition trees (and
their extension random forests), and neural networks.

Recent trends in machine learning: neural networks

Neural networks have received a lot of attention from the media in the last years
due to their progress in image recognition’, transformation (generating dreams?),
natural language processing?®, or beating human champions at Go games*.

However, neural networks do not represent the entirety of classification algo-
rithms. In fact, Kaggle — a data science competition platform — shows that the
gradient boosted random forest package XGboost was dominating discussions
in 2016, in front of Keras, a neural network library. Both these methods have
reached this status because of their ease of use and efficiency in solving tasks.

'The Revolutionary Technique That Quietly Changed Machine Vision Forever, MIT Technology
review, September 9th, 2014

20On a testé pour vous. .. Deep Dream, la machine a « réves » psychédéliques de Google, Le
Monde, July 9th, 2015

3Computer Wins on ‘Jeopardy!’: Trivial, It's Not, The New York Times, February 6th, 2015

4Google’s Al Wins Fifth And Final Game Against Go Genius Lee Sedol, Wired, March 15th,
2016
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We will see that simpler model can provide insights on the data, insights that
can then be used as guidelines for patient handling for example. In more complex
models, the structure of the classification is difficult to apprehend. This can be
illustrated by the difficulty to understand what a specific neuron in the network
sees from the image, except by extracting image parts that activate such neuron
[28].

Focus on Random forests

We describe in the rest of this paragraph a standard procedure for classification
tasks, that will illustrate the use of random forests, that will be subsequently used
in chapter 4.

We will use the Wisconsin Breast Cancer data set [29, 30, 31, 32] as a toy exam-
ple. In this data set, the classification task should discriminate between benign
and malignant tumors, using nine features, such as uniformity of cell shape and
size or the clump thickness. All features are evaluated on a scale of 1 to 10. This
data set has been curated, and contains 699 entries, of which 16 contain at least
one unobserved feature. These 16 entries have been removed from our analysis.

Previous studies have shown that based on these features an accuracy of up
to 95.9% could be achieved [29, 33], using 2/3 of the data set as training and the
remaining as validation.

The principle of a partition tree is to find a feature that best separates between
the classes. In our case, we would like to find the relevant features that separate
between malignant and benign tumor (see Figure 2.1). For each partition, the
algorithm will try to find the best value to separate between malignant and benign,
and repeat the procedure until either:

e Adding a partition does not increase prediction metric - here the metric is
the accuracy;

e The complexity of the tree is higher than parameters given by user.
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Figure 2.1: Partition tree on Wisconsin breast cancer data. This tree was
trained on two thirds of the the Wisconsin data set. The label of the nodes shows
the prediction, with the proportion of the malignant entries in the partition. The
percentage of entries in the partition is shown on the third row. The representation
of the partition tree was made using rpart.plot

In order to find the optimal complexity of the tree, a five-fold cross-validation
is used. This means that for each value of the complexity, five random samplings
of the training set will be done and accuracy will tested. Finally only the most
accurate model will be kept, corresponding to the model presented in Figure 2.1.
In our case, the best model achieved an accuracy of 94.8%, relatively close to the
state of the art in 1992.

An extension of partition trees is random forest. Instead of training a single
tree, multiple trees are trained on the data set. To prevent generation of identical
trees, only a fraction of the features is used for training. The number of features
simultaneously used is a parameter chosen by the user, and is tuned in our case
using three folds of cross-validation. For prediction, each generated tree will give
its prediction, weighted by its accuracy. With an "out-of-the-box" method, a 98.28%
accuracy was reached on the same set of training and validation as previously.
This in particular shows the quick progresses that have been made in the recent
years. Such pace has also been highlighted in Jeremy Howard’s course on neural
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networks®, with few lines of code achieving better predictions than state-of-the-art
publication few years before.

This increase in accuracy is detrimental to the intelligibility of the model. While
it is easy to grasp the model underlying a partition tree, which makes it easily im-
plementable in diagnostic or every-day life, random forests are much more com-
plex and require a prediction from the machine to classify new data.

2.1.2 Clustering

Clustering is the way to create groups based on the intrinsic architecture of the
data. These groups are not necessarily known beforehand - but knowledge can
be used to test accuracy of the method. The number of clusters k£ can be a param-
eter of the model, or can be selected using an information criterion. Information
criteria balance the complexity of the clustering and the power of the model to
explain accurately the data.

We describe in the two next parts two common clustering methods that will be
used in chapter 3 and chapter 4 for clonal reconstruction and detection of similar
pipelines.

Hierarchical clustering

Hierarchical clustering is a technique that aims at reconstructing a tree, which
gives information on the whole structure of the dataset. Once the tree is com-
pleted, % clusters can be created by cutting the tree at a point where it contains
exactly k branches, each branch defining a cluster.

The hierarchical clustering relies on a simple algorithm, described in algo-
rithm 1. We can separate agglomerative and divisive clustering. Agglomerative
clustering will start with as many classes as there are observations and groups
classes by merging observations (bottom-up), whereas divisive clustering starts
from a single class and removes observations one at a time (top-down).

Either two groups are merged together because they have minimal distance
or dissimilarity, or they are split because they have maximal distance. The way
the distance between clusters is computed can vary. In single-link clustering, the
distance between two classes is the distance between two observations (one from
each cluster) that are the closest from one another. In contrast, with complete-link

Shttp://course.fast.ai/
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the distance used is the one between two observations of the clusters that have
maximal distance[27] (see Figure 2.2). These two methods have shown to lead to
extreme cases due to the chaining problem with single-link, and tightly contained
clusters with complete link.

-
—’
-

Single-linkage §oOiag

-

g Complete-linkage

Figure 2.2: Example of single linkage and complete linkage inter-cluster
distance. Two clusters (grey and orange), containing multiple observations are
shown. For single linkage, the distance between the two clusters corresponds
to the distance between the closest points, whereas the distance for complete
linkage corresponds to the distance between the two farthest points.

A compromise of the two methods for inter-cluster distance computation is the
average-link that approximates the average dissimilarity of the two clusters. The
same intuition is used in the Ward method [34], where two clusters are merged if
they minimize intra-cluster dissimilarity.

A combination of direction (bottom-up or top-down) and inter-cluster distance
computation methods creates the algorithm, an example of which described in
algorithm 1.

To compute the heterogeneity between two classes, a distance has to be cho-
sen. Usual choices are ¢* for numeric values, or Jaccard for binary values. We
can write the Jaccard distance for two binary vectors of length n, with the number
of events where both vectors equal 1 (respectively 0) M, ; (respectively M, ):

M, 4

J=1- bl
n—M070

In chapter 3 we will also show a distance derived from the probability of two
observations to belong to the same cluster).
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Algorithm 1: Agglomerative hierarchical clustering pseudo-algorithm

Fach observation 2s 2n 2ts own class;
4 distance ©s defined: Jaccard, 2,
4 method to compute inter-cluster distance 1s defined: Ward,
single-link, ... ;
while Number of classes > 1; do
for ij € classes; do
‘ Compute distance between 7 and j;
end
Merge classes ¢ and j that have the minimal distance to one
another;

end

We refer the reader to chapter 11 of Statistical data analysis[27] or chapter 9
of the book Data mining et statistique décisionnel[35] for more details.

k-means and k-medoid

k-means is a widespread method used for clustering. A point will be attributed to
a cluster if it is closest to the cluster center.

In the k-means clustering[36], the number of clusters is a user input. It gener-
ally comes from knowledge or previous analyses. The pseudo algorithm for the
k-means is shown in algorithm 2.

Algorithm 2: k-means pseudo-algorithm, as described in Piegorsh
(2015)[27]

Initialization: k points designated as centrotds;
while Cluster assignment changes; do

for i observations; do
Compute distance between observation i and centroids;

Attribute observation to cluster with closest centroid;
end
Update centroids as mean of observations in the cluster;
end

k-means can be highly sensitive to outliers, and an alternative has been pro-
posed by using medoids® instead of means, resulting in the k-medoid algorithm[37].

6A medoid is a point of the cluster that minimizes intra-cluster dissimilarity.
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Evaluation of number of clusters and information criteria

The number of clusters is usually unknown before clustering. In order to select
a correct number of clusters based on the data, several approaches have been
proposed, including silhouette analysis [38] and information criterion.

From the latest, we present the two most widely used criteria that are Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC). Informa-
tion criterion rely on the idea that with more parameters it is easier to create a
model that will explain the data. However, this can result in overfitting the data,
which means that the statistical model has learned features that are specific to
the dataset and do not reflect the general behavior (see Figure 2.3).
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Figure 2.3: Example of overfitting the data The black dots represent obser-
vations, they have been generated by adding a small amount of noise to the
function f,) =  x (1 — x), shown in pink. The blue line represents overfitting,
as the function goes through each point of the training dataset. The algorithm
thus has learned the model and the noise, which may not be relevant for future
applications.

In order to limit overfitting by addition of new parameters, the information crite-
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rion introduces a balance between the increase in parameters and the accuracy
of the model. Mathematically, the BIC is written:

BIC =k x log(n) — 2log(L) (2.1)

With £ the number of parameters, n the number of observations, and (£ the
likelihood of the model.
Similarly, the AIC is written:

AIC =2 x k —2log(L) (2.2)

We can see that the BIC uses information from the number of observations
of the model, which is not true for the AIC. In both cases, the model that will be
chosen is the one that minimizes the information criterion.

Usage of clustering in biology

Clustering in biology has often been used for patient stratification [39], or extract-
ing signature of variants[40] or differentially expressed pathways [41].

In our case, clustering will be use to differentiate between clonal populations
that coexist in the tumor. We detail our model and published algorithms in the
next section.

2.2 The clonal reconstruction task

2.2.1 Phylogeny

Phylogenetics is the study of the evolutionary structure underlying evolution of or-
ganisms. We can represent a set of cancer cells as different organisms evolving
under a pressure of selection, be it selection by a strive for nutrients, escaping
the immune system, or simply accumulation of deleterious mutations.

The phylogeny of a cancer holds information on the mutations that arise first,
or those that confer an advantage to the population, expanding the population
that carries them.

Imagine an experiment where one throws a handful of bouncing balls. At first,
most of them would have the same trajectory, behaving in the same way. But as
time passes, they would differentiate and move in different directions. With the
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same idea, cells that have the same genotype would behave in the same fash-
ion, yet they would accumulate mutations with each cells division. This leads to
a differential evolution between the populations given enough generations (Fig-
ure 2.4).

% T.
//‘ Q\ii
¢ V0 ®%%e

Figure 2.4: Left: Bouncing balls: two ball are simultaneously let loose. During
the free fall stage, the trajectories are identical. Due to internal differences, when
they meet the ground the trajectories differ. Right: evolution of the clonal pop-
ulation. Both clones expand when there is no pressure of selection. However,
the red clone disappears after treatment, while the blue one resists treatment and
expands afterwards.

2.2.2 Assumptions used for the clonal reconstruction

In order to identify different cell populations we have to rely on a set of axioms, or
assumptions, that rely on biological insights of the tumor mechanistic:

¢ Infinite loci: The probability that a mutation appears twice is null. This
is justified by the randomness of mutations, and the very large size of the
human genome [42, 43].

¢ Diploid contamination: the cells infiltrating the tumor exclusively have a
diploid genome.

e Cellular prevalence and observed allele frequency are proportional to
one another, given correction by the number of alleles mutated and the num-
ber of copies of the locus in the tumor
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2.2.3 Mathematical model of clonal reconstruction
Read sampling during the sequencing process

Modeling the link between the proportion of reads carrying an alternative allele
(and a fortiori the number of chromosomes) and the observed number of reads
is a sampling issue. The easiest way to model this phenomenon is to use a
binomial law, where the probability to draw an alternative allele is the proportion
of alternative alleles in the population (figure 2.5).

Normal cells: Cancer cell: Cancer cell:
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Figure 2.5: Sampling model. Alleles from paternal and maternal alleles are
represented in blue and green. Mutations are represented with orange and red
boxes. We here show what would be the result of a perfect sampling of alleles (i.e.

if the proportions of the different alleles was exactly preserved), and an example
of realistic sampling.

The sampling of reads can be affected by experimental conditions, for example
depth of coverage in WGS data is highly linked to the G/C content of the reads.
For a given depth of coverage, we model the sampling issue by a binomial law:

Alt ~ B (n, p) (2.3)
Where:
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e Alt is the number of reads supporting alternative allele;
¢ 1 is the depth of coverage at the positions;

e p is the proportion of alternative alleles in the sampling populations. The
observed p, often noted p in statistics, is the Variant Allele Frequency (VAF)
in our problem.

In the case of a mixture of diploid populations without loss of heterozygosity
(LoH), the proportion of alternative alleles is directly linked to the cellular preva-
lence of a variant, i.e. the fraction of cells bearing the variant (¢,;,):

¢alt

p= o (2.4)

However in the case of multiple populations with different number of copies of
the locus, the probability of drawing the alternative allele has to be re-written:

. > Nix ¢,
p= —ZZ Gix e, (2.5)
With:

e NN, the number of copies of the variant allele in the cell population i;
e ¢, the fraction of cells with genotype ;
e (&; the number of copies of the locus in the population i.

In the hypothesis that the tumor has only one genotype in the sampled popu-
lation, and that infiltrating cells all are diploid, we can rewrite the equation as:

cx N
1= Coonta) X G+ Coonta X 2

Where ¢,,,.., IS the fraction of normal cells infiltrating the tumor, ¢ is the faction
of cells bearing the alternative variant, N the number of copies of the variant, and
G the number of copies of the locus in the tumoral cells. We can verify that in a
triploid tumor AAB, without contamination (¢,,,;, — 0, the variant in the ancestral
clones will have probability 1/3if N =1 or 2/3if N = 2, as expected.

Given that the number of copies of the locus can be inferred through statistical
analysis of the data [44, 45, 46, 47], the problem to solve is to detect the different
populations in the data and the number of copies of the variant in hyperdiploid
loci.

_ 2.6
p( (2.6)

Overview of the literature

Many different mathematical solutions have been proposed to solve the clonal re-
construction task [48, 49, 50, 51]. A summary and comparison of these methods
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is the subject of a DREAM challenge’ as well as a review[52].

We reproduced the list from Beerenwinkel et al. [52] summarizing the different
algorithms and their principles (Table 2.1).

Software Data Model/Inference

PhyloSub[53] SNV Tree-stick-breaking process, binomial / MCMC
PyClone[49] SNV Dirichlet Process, beta-binomial / MCMC
SciClone[48] SNV Beta mixture model

Clomial[54] SNV Binomial / EM

Trap[55] SNV Exhaustive search under constraints
CloneHDI[56] SNV + CNA HMM, EM, Variational Bayes

ThetA[45] CNA Maximum likelihood

cancerTiming[57] CNA Maximum likelihood

GRAFT[58] CNA Partial maximum likelihood

MEDICC[59] CNA Finite state transducer, Minimum-event distance
TuMult[60] CNA Breakpoint distance

TITAN[46] CNA HMM / EM

Table 2.1: Existing algorithms: we here reproduce the list of table from Beeren-
winkel et al[52].SNV: Single Nucleotide Variant; CNA: Copy Number Aberration;
MCMC: Markov-Chain Monte Carlo; EM: expectation maximization: HMM: Hid-
den Markov Model.

CNA based algorithms

In this section we will discuss the principles of the class of algorithms dealing with
CNA that use two possible inputs: coverage and B-allele frequency (BAF).

This class of algorithms heavily relies on segmentation algorithms: the goal is
to detect breakpoints (i.e. changes in the signal).
The depth of coverage of a portion of the genome heavily depends on intrinsic
factors of the region (GC content, mappability), as well as experimental factors
(sequencing kit). As a result, the data has to be normalized by a control, usually
the constitutive DNA of the patient sequenced with the same protocol. After nor-
malization and segmentation, changes in the depth of coverage indicate changes
in the number of copies of the locus compared to a baseline. Tumors, however,
can be hyperdiploid, meaning that the average number of copies of the tumor is
higher than two.

’ICGC-TCGA-DREAM Somatic Mutation Calling Challenge — Tumor Heterogeneity and Evolu-
tion

Chapter 2 27



Clonal evolution in neuroblastoma

Moreover, the median B-allele frequency can help distinguishing regions with
allelicimbalance, as the B-allele frequencies will be shifted from the 50% position,
as explained by Equation 2.6. The algorithm thus has to estimate the following
parameters that best fit the model:

® C..... the proportion of normal cells;

e A;B;: the number of copies A and B alleles of segment i that explain both
BAF and depth of coverage.

Usually, numbers of A and B alleles are coerced to integer values, and the
output then is the profile of the major clone (see Figure 2.6). For example, an
heterozygous SNV in a triploid (AAB) locus without contamination should be ob-
served either at 33% (B-allele) or 66% (A-allele). If we add contamination, we
have to consider that normal cells contribute to the BAF by bringing one copy of
the B-allele but also one copy of the A-allele. We can then write:

¢conta + <1 — ¢conta>Bi

BAF, =
2 % ¢conta + (1 - ¢conta)(A’i + Bl)

(2.7)

This formula can also be used to estimate the contamination on loci with odd
number of copies. However, detection of sub-optimal solutions on segments can
reveal subclonal copy number changes. The algorithm then has to estimate:

® ¢.onie: the proportion of normal cells;
e n: the number of populations;
e ¢;: the fraction of cells with genotype j;

e A;;B,;;: the number of copies A and B alleles of segment i in population j
sothat >, ¢;A; ;B;; explains both BAF and depth of coverage.
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Figure 2.6: lllustration of the copy number reconstruction for sample
NB1361-D (diagnosis) of chromosomes 1 to 5. (A) Copy number status of
the different loci. The normal, diploid, state is shown in green, losses in blue and
gains inred. The 1p loss is associated in this case with the 179 gain (not shown).
(B) B-allele frequency: for each SNP, the VAF of the minor allele (in the popu-
lation) is shown. For an heterozygous position in a diploid locus a VAF of 50%
is observed. For odd number of copies, two states are shown, corresponding to
major and minor alleles (see Equation 2.7). Due to contamination, the median
BAF for single copy locus is higher than 0, and higher than 33% in triploid locus.

SNV based algorithms

While CNA class can function on their own, SNV based algorithms require that
variants are called first to estimate the number of alternative and reference allele
of the variant in all related samples (i.e. samples coming from the same patient).
In addition, some algorithms require information from copy number and contam-
ination as input, as we have seen in Equation 2.6 that the probability to draw a
variant is related to its copy number status and contamination by normal cells.

We detail here two methods that will be used for comparison to our clonal
reconstruction algorithm: sciClone[48] and pyClone [49]. These algorithms have
been selected because of their widespread use [61, 62, 63, 64, 65].

These two methods rely on approximate inference. Markov Chain Monte Carlo
(MCMC), used in pyClone, is a stochastic technique. ‘Given infinite computational
resource, they [stochastic techniques] can generate exact results’[66]. Variational
techniques, on the contrary, are based on a deterministic approximation of the
posterior distribution.

Markov Chain Monte Carlo and pyClone
Before detailing complex Bayesian model, we first describe the basic concept
of a graphical model as it can be easier to represent complex Bayesian models
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using a graphical model. For the joint distribution p(, s of the two variables a and
b, we can write:

P(a,b) = Pbla)P(a)

This would be represented by Figure 2.7A. If we extend to three variables,
adapting the example from Bishop et al [66], we can write (using Bayes Theorem):

P(a,b,e) = P(c|a,b)P(bla)P(a)

A B 3 b

Figure 2.7: Graphical model representation (A) Representation of pja)p) (B)
Representation of pj..)p@sa)P@)- The c variable is colored to show that it is ob-
served.

Using this representation, the model for pyClone can be written as in Fig-
ure 2.8.

This model shows (on the left hand side), that a proposed cellular prevalence
for variant m will first be sampled from a Dirichlet process with uniform distribu-
tion (in [0; 1]), and accepted or rejected based on the user defined parameters a,,
and b,. Due to the Dirichlet process, even though an infinite number of states
exists, those states are discrete. As a result, a variant can either take a cellular
prevalence ®™ that is new or used. If two variants use the same cellular preva-
lence, they are considered to belong to the same cluster. More details about the
implementation of pyClone can be found in the supplentary Figure 3 and supple-
mentary note of Roth et al[49].

We can note that this sampling method gives access to the whole distribu-
tion of cellular prevalence in the sample. However, the first pass of the algorithm
requires O(sm?) operations, and each subsequent pass will require O(skm) op-
erations, where k is the number of remaining clusters, m the number of variants,
and s the number of samples. This high complexity of the model illustrate the note
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Figure 2.8: Graphical representation of the pyClone model. This represen-
tation shows how genotype information, user defined parameters and observed
depth of a variant in a sample are used to estimate the cellular prevalence of a
clone. This figure has been adapted from Roth et al[49] for consistency with no-
tations and clarity. In their model ™ and sh are combined using a beta binomial

distribution.
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from Bishop et al[66]: ‘In practice, sampling methods can be computationally de-
manding, often limiting their use to small-scale problems.

Variational Bayesian Mixture Model and sciClone

sciClone relies on a variational bayesian mixture model (VBMM)[66]. Varia-
tional inference is a deterministic method, that can find approximate solutions.
The log marginal probability can be decomposed as following:

logp(x) = Lg) + KL(q)p) (2.8)

Where KL is the Kullback-Leibler divergence:

KL(qu) = _/Q(Z) lOg (%) dz (29)

fo= fuave(")

Here X is the random variable and ~ is a set of latent variables.

and

Variational inference will then minimize the Kullback-Leibler divergence for a
given class of functions ¢. sciClone makes the assumption that the data follows
a beta-binomial mixture model to take into account possibly higher variability in
the observed VAF. Miller et al make the classic assumption that the ¢ distributions
can be factorized (Supplementary Text S1 section C[48]), but add the condition
that latent variables must be independent and non-overlapping.

In the section C of supplementary text S1, Miller et al. [48] also define the
expectation with respect to the distributions ¢; (j # ) of the approximate posterior
distribution:

Ejillogp(X, Z)] = /logp(X, 2] 0%
j#i

From this, they conclude that at each pass, the value of ¢; that minimizes the

KL divergence is:
log g; oc Eji(log p(X, Z)]

The algorithm reaches convergence when the maximal difference between
two passes is lower than 1074,

Contrary to pyClone, sciClone voluntarily restricts clonal reconstruction to vari-
ants in copy neutral and LoH-free regions. In the next chapter we will present a
new solution to the clonal reconstruction task that relies on an expectation maxi-
mization procedure, called QuantumClone.
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Efficient solving of the clonal
reconstruction task

Can a genetic accident of unpredictable biological properties be taken
into account in the Seldon plan?

— Isaac Asimov, Second Foundation, 1953

In this chapter we will detail our implementation of a clonal reconstruction
algorithm: QuantumClone.

3.1 Implementation

In this section we will extensively explain the implementation of QuantumClone.

3.1.1 Expectation Maximization

In order to uncover the parameters of the clonal populations in the data, we chose
to use an EM method.

We use the algorithm described in algorithm 3 in diploid cases.

We define a stopping threshold n € R*, and we say that the convergence
criterion is reached.,if between two rounds of optimization we have:

mkax <|¢k,s,n - ¢k,s,n+1|v |Wk,nwk,n+1|) <n

Where ¢, ., is cellular prevalence of a cluster k£ in sample s for iteration n,
and wy, is the weight of cluster £ at iteration n. This principle is illustrated in
figure 3.1, which shows updates of probabilities on E-steps and changes in clone
centers and weights during M-steps. The exact values after each step are given
in Table 3.1.

If we look at the clone centers and weights after each maximization step we
see:
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Figure 3.1: Example of EM convergence. Two clones are generated with cellular
prevalence 0.6 and 0.3 for clone 1 and 0.4 and 0.8 for clone 2. Clone 1 bears 65%
of the 5000 generated variants, all with a depth of 200x.

In yellow we show centers of the clusters, with the size of the point proportional
to the weight of the cluster. The color of the variant shows the relative probability
of a variant to belong to cluster 1 or 2, given by the following law:

p= gg;ﬁ where p2 (respectively pl) is the probability to belong to cluster 2 (resp.
1)

The trajectory of each clone center is shown after each update (M steps).
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Algorithm 3: Expectation Maximization algorithm underlying Quantum-
Clone
for c in number of clones; do

for [in initializations; do
initialize distribution parameter: ¢, ,wko the cellularity

and weight of clone k;

while not converged; do
E-step: update f;; probability of variant i to belong

to k;
M-step: find ¢;,,Wrn to maximize log-likelihood /,
knowing f;

end
end
end
Iteration Clone1 S1 C1S2 Clone2 S1 C2S2 | Weight C1  Weight C2
Ground truth 0.600 0.300 0.400 0.800 0.650 0.350
Start 0.600 0.590 0.400 0.520 0.500 0.500
M1 0.531 0.588 0.413 0.662 0.521 0.479
M2 0.601 0.302 0.399 0.800 0.652 0.348
M3 0.601 0.303 0.399 0.801 0.651 0.349

Table 3.1: Cluster values for EM example The algorithm converges toward the
real position of the clone centers. Simultaneously, the proportion of cells belong-
ing to a clone converges to the weights used to generate the data. Finally, the
algorithms stops when the difference between two observations is smaller than
1%. Abbreviations: Clone, Sample

Solving the unknown number of copies of a variant

Equation 2.6 shows that the number of copies of the variant is required to compute
the probability of a variant to belong to a clone. The status of each variant is
unknown before the clustering unfortunately. As a consequence, the algorithm
has to find the correct number of copies of the variant among all possible statuses,
as shown in figure 3.2.

To do so, all possible states of a variant are described and will be used in a
first round of EM. Then, only the values that are the most likely — i.e. the ones
with the highest probability to belong to a clone — are kept, as shown in figure
3.3. In order to avoid that contribution increases with the number copy status pos-
sibilities, the contribution of each variant to the model is normalized to 1. Then
another round of EM is started with only the selected value for the copy number
of the variant.
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Figure 3.2: Copy number status of a variant. (A) In this example, a variant
is detected on 1/3 of the reads, and the genotype of the locus is AAB. (B) With
these information, several cases fitting the data are shown.

In the case of polyploid tumors, the algorithm uses two rounds of EM, as
described in algorithm 4.

Finally the best model from the ¢ x I computed is chosen thanks to an infor-
mation criterion, either Akaike (AlIC), Bayesian (BIC), or modified Bayesian.

3.1.2 Incremental upgrades to the maximization step

In order to converge, we needed to maximize the log-likelihood function that can
be written in our case:

(=% > > > Bunfin1og (Pisp (¢islers))  (31)

i€variant k€clones s€samples pEpossibilities(i)
With 5 ) a coefficient so that for a given varianti, > 5 ) = 1. This has been
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Figure 3.3: Principle of selection of variant cellularity for variants in poly-
ploid regions. Mutations located in regions of copy number aberration can be
present on several chromosomal copies; they can thus be assigned to several cel-
lular prevalence values (panel A). After the Expectation Maximization (EM) step
each mutation is attributed the most likely cellular prevalence value (panel B).
Each mutation is represented by a specific color. Mutations located in AB regions
(circles); mutations located at relapse in regions of gain (squares), mutations lo-
cated in regions of gain both at diagnosis and relapse (triangles).

added to prevent higher contribution to the model from variants with higher copy
number status. Indeed, as shown in Figure 3.2, a variant in a triploid region has
two possible copy status whereas a variant in a diploid region only has one. With-
out this correction, a variant in a triploid region would contribute twice as much to
the model, but only one of the two possibilities would be true.

At first, the maximization step used the optim function in R, using Broyden-
Fletcher-Goldfarb-Shanno (‘BFGS °) algorithm. This method relied on a numeric
differentiation of the log-likelihood function. This box constrained optimization on
the [0; 1]"** space, where n is the number of clones and s the number of samples,
requires many calls to the computation function.

In order to reduce the computational time, the exact gradient was provided
(see annex 8.1 for computation). This can effectively decrease computational
time when variants are in hyperdiploid loci. However, looking at the exact formula
of the gradient (see 8.1), we can see that when all variants have the same adjust-
ing factor to go from VAF to cellular prevalence, then it is easy to find the exact
0 of the function 3.2. This is only possible when all variants are in either haploid
or diploid regions. Then, the adjusting factor simply is a transition from observed

Chapter 3 37



Clonal evolution in neuroblastoma

Algorithm 4: Expectation Maximization algorithm underlying Quantum-
Clone, when at least one variant lies in hyperdiploid or LoH region.

for cin searched clone value; do
for [in initializations; do
initialize distribution parameter: ¢ ,wko the cellularity
and weight of clone k;
while not converged; do
E-step: update f;; probability of possibility i to
belong to k;
M-step: find ¢ ,,wr, to maximize log-likelihood /,
knowing f;, k;
end
select most likely position
while not converged; do
E-step: update f;; probability of variant i to belong
to k;
M-step: find ¢ ,,wr, to maximize log-likelihood /,
knowing f;, k;
end
end
end

VAF to cellular prevalence and is the same for all variants.

ot =0« ¢ — ZiEvam‘ants ti,k,s X Alti,s
a¢k’s . a x ZiEUam’ants ti,k,s X Depthm

With ¢, ;. s the contribution of possibility p to cluster k and « the adjusting factor,
as explained in section 8.1.

(3.2)

Effectively computing the zero of the function has allowed a decrease in com-
putational time of orders of magnitude, and explains the gains in performance
compared to other published methods as we will see in the following part.

3.1.3 Improvements in the initialization procedure

It is a common practice to use the result of a k-mean clustering algorithm to ini-
tialize EM algorithms’. We first used a k-medoid algorithm from f£pc R package.

In order to improve clustering results, we came with a new initialization pro-
cedure. We use a hierarchical clustering of the variants using as dissimilarity the
p-value obtained from the z-score of two variants being from the same population.

'Francis Bach, K-means, EM, Mélanges de Gaussiennes, Théorie des graphes, http: //www.
di.ens.fr/"fbach/courses/fall2010/cours3.pdf
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The number of clusters to look for is a parameter provided by the user — as a
range of values. For each tested value n, we can initialize the algorithm with »
centers found by cutting the hierarchical tree in n groups. The value of the centers
is then taken as an average of the cellular prevalence of variants from the cluster
weighted by the depth of sequencing of each variant (see Equation 8.1 in chap-
ter 8). This second method provided more accurate starting points, reducing the
number of steps required to converge — and doing so, the computational time. It
also provides better results with a decreased chance of falling in a local minimum.

3.2 Experimental comparison of methods

In this section we will focus on the validation of our method, called QuantumClone,
through simulated data, and we will compare it to sciClone and pyClone.

3.2.1 Comparison methodology
Simulating cancer samples

The simulations of genomic data from cancer samples have been made using
QuantumCat, part of the QuantumClone R package. First, a phylogenetic tree is
created with the following set of properties:

¢ In this tree, in a given sample the summed cellular prevalence of progeny
cannot be higher than its ancestor;

e The number of clones — nodes and leaves of the tree bearing at least one
observed variant — is a parameter of the simulation;

e As clones can be nodes of the tree, a variant can only belong to a single
clone;

e The tumor stems from a single ancestral clone.

Then, for each variant in each sample, a depth of coverage of the position is
simulated using a negative binomial distribution using the chosen mean depth of
coverage and parameters fitted on experimental data: coverage of variants called
from the patients published in Eleveld et al [67]. In hyperdiploid cases, the geno-
type and number of copies of each variant is also simulated.

Then the number of alternative reads for each variant is drawn with a binomial
law, as explained in 2.3.

Chapter 3 39



Clonal evolution in neuroblastoma

To validate this model, we hereby present the simulations of a 50x average
depth of sequencing, where all simulated variants are heterozygous, and the ob-
served germline VAF distribution from patient NB0784 (see Figure 3.4).

2e+05
1e+06

count
count

1e+054
504051 i

0e+00 1 0e+00

0 25 50 75 100 0 25 50 75 100
NB0784D VAF Simulated VAF

Figure 3.4: Distribution of variant allele frequency (VAF). Left: VAF distribu-
tion for variants called in the diagnosis sample from patient NB0784 and anno-
tated as germline by varscan 2. Right: the simulated VAF distribution of het-
erozygous variants for a 50x average coverage (10° simulated variants).

Evaluation of algorithms

The clonal reconstruction by the three algorithms is then assessed using normal-
ized mutual information (NMI), euclidian distance error (¢ error), and computa-
tional time. NMI and ¢ will be detailed below.

The NMI assesses the mutual information of two group partitions, one being
the classes created by the simulation and the second being the reconstructed
clusters. In this section we will note Q2 the set of clusters w;, and C the set of
clones ¢; . Note that for NMI, the two sets are interchangeable. Also, we will note
| X| the cardinal of set X , i.e. the number of elements in X. The NMI can then
be written:

|wrNe; | N X |wgNej|
22N 1Og( A )
S el log (1) + 32, Sl tog (154
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Where N is the number of observations (variants used for the clustering in our
case). NMl is a positive function of the reconstruction quality and is bounded by 0
(no mutual information between reconstruction and ground truth) and 1 —- case
of a perfect clustering.

The average ¢* error measures the average distance in /2 norm between the
cellular prevalence of the cluster center attributed to the variant and the real cel-
lular prevalence of this variant.

For each parameter tested, 50 simulations were generated. Each simulation
was stored and given as input to all three algorithms. In our simulation experi-
ments, the following parameters varied within realistic ranges: depth of sequenc-
ing (100x to 1000x), fraction of contamination by normal cells (from 0 to 70%),
number of variants used for the clonal reconstruction (from 50 to 200), number of
tumor samples used for each patient (from 1 to 5) and number of distinct clones
per cancer (from 2 to 10).

3.2.2 Results from in silico experiments

This section has been adapted from Clonal assessment of functional mutations
in cancer based on a genotype-aware method for clonal reconstruction, Deveau
et al (see section 9.2).

Our analysis showed that QuantumClone is equivalent to or better than the best
published algorithm in clustering quality (Figure 3.5A) for diploid genomes. Al-
though in terms of NMI QuantumClone showed similar performances compared
to pyClone, QuantumClone generally outcompeted sciClone for NMI (p — value <
2.2 x 10716, Welch two sample t-test). In particular, in samples with 50% con-
tamination by normal cells QuantumClone drastically outperformed sciClone (p —
value = 3.6 x 1071 Welch one-side two-sample t-test). On average, Quan-
tumClone decreased the ¢? mean error by 69% compared to sciClone and 22%
compared to pyClone, significantly improving predictions compared to both meth-
ods (p — value < 2.2 x 1071%). At high values of sequencing depth, all meth-
ods accurately estimated prevalence of variants (Figure 3.5B, /> mean error <
0.059 at 1000x for all methods). However, at depth of sequencing of 100x,
which is the depth of sequencing currently used for the majority of WES and
WGS experiments, QuantumClone consistently gave better predictions than py-
Clone (p — value = 1.5 x 1075, Welch one-sided two-sample t-test) and sciClone
(p — value = 4.9 x 107?). In addition, compared to the other methods, Quantum-
Clone took the best advantage of data when multiple samples were provided for
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the analysis (p — value = 2.4 x 10719 and < 2.2 x 107!¢ for pyClone and sciClone
respectively, Welch one-sided two-sample t-test, for simulated tumors with five
samples).

Also, the average computational time was significantly decreased using Quan-
tumClone compared to sciClone (median 35 fold improvement), or pyClone (me-
dian 46 fold improvement, Figure 3.5C). In the case of highly heterogeneous tu-
mors (e.g. tumors with 10 simulated clones), the gain in computational time was
of 41 fold (p — value < 2.2 x 1071¢) compared sciClone and 44 fold (p — value <
2.2 x 1071%) compared to pyClone. Similarly, when five samples were provided,
we observed a 74.1 fold (p — value < 2.2 x 10~'6) compared to pyClone and 74.2
fold (p — value < 2.2 x 1071¢) compared to sciClone.

We expect that in addition to the parameters discussed above, the degree
of genome rearrangement and chromosome duplication significantly affects the
quality of the mutation clustering and consecutive clonal reconstruction. Indeed,
values of cellular prevalence are linked to VAF values through the parameters
representing the number of copies of the variant and the number of copies of the
reference allele. Given an observed VAF value, a variant occurring in a high copy
number locus has more possibilities for values of cellular prevalence: a variant
with an observed allele frequency of 25% can only be linked to a cellular preva-
lence of 50% in a AB locus, while this variant can arise from cellular prevalence
values of 33.3%, 50% or 100% if the genotype at this locus is AAAB.

In order to validate QuantumClone on diploid and hyper-diploid genomes, we
simulated variants in loci of genotype AB, AAB, AABB, and in a nearly diploid
genome, where all possible genotypes can be observed (Figure 3.6). We ex-
cluded sciClone from this experiment as it cannot use variants from non-diploid
regions.

In all types of regions, QuantumClone and pyClone performed equally in terms
of NMI ( Figure 3.6A), but QuantumClone outperformed pyClone in terms of mean
¢% error with an improvement of 31% (Figure 3.6B, p — value = 5.7 x 107!). In
addition, QuantumClone without parallelization was faster than pyClone in three
out of four setting (from 6.3 fold slower to 61.5 faster; 15.6 times faster on aver-
age), while the distributed algorithm outcompeted pyClone in all settings (average
computational time decreased by a 43 fold compared to pyClone, Figure 3.6C).

In addition, in the majority of cases QuantumClone correctly assumed the ex-
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Figure 3.5: Comparison of QuantumClone to existing methods.
(A)Normalized Mutual Information (NMI) is used to assess the quality of
variant clustering on simulated data, with a single parameter varying in each test.
This measure evaluates correct assignment of two variants to the same cluster.
QuantumClone (red) shows equivalent performance to the best tool in each
settings. (B) L2 average error is used to assess the error for each clustered
variants between its simulated position and its reconstructed position. (C)
Computational time necessary to complete the clustering with each algorithm.
Default parameters: two tumor samples without contamination sequenced at
100x; 6 clones; 100 mutations used for clustering.
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Figure 3.6: Quality of clonal reconstruction for mutations located in regions
of altered copy number. (A) Normalized Mutual Information shows equivalent
performances of pyClone and QuantumClone in diploid, triploid and tetraploid
tumors, or nearly diploid (ND), whereas the average L2 error (B) shows signifi-
cantly better results for QuantumClone.(C) QuantumClone can use parallelization
to handle longer computations that can be due to visiting all possible variant copy
states.

act number of copies of a variant in polyploid regions (average accuracy = 68.9%,
p — value < 2.2 x 1076, Figure 3.7).

3.2.3 Validation of the algorithm for hyperdiploid genomes

In order to demonstrate the validity of our approach on hyperdiploid samples, we
hereby show results from the comparison of QuantumClone to a version that is
forced to predict all variants at the single copy level, extending the results from
Figure 3.7.

As suggested by figure Figure 3.7, the correct selection of copy number sta-
tus by QuantumClone greatly improves clustering quality with higher NMI, and
decreases the average ¢? error (see Figure 3.8).

3.2.4 Improvements in the QuantumClone algorithm

In this section, we illustrate the improvements made in QuantumClone through
time on simulated data. Even though the reconstruction algorithm has been highly
modified during the three years, the QuantumCat function for data generation has
been mostly conserved. This allows comparison of the different versions of the
tool.

As (2 average error was only considered as a possible metric between July
2016 and January 2017, it is not displayed in Figure 3.9.
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Figure 3.7: Fraction of correct guesses: QuantumClone is compared to a pre-
dictor that would assume that all variants are at the single copy state. As only a
single state is available for AB regions, both predictors achieve 100% accuracy. In
hyperdiploid regions, the maximal number of copies is determined by the number
of copies of the A-allele.

The first thing to notice is that the latest version is the one that has been the
most thoroughly evaluated.

Secondly, it may be surprising that the first version better dealt with single
sample data. This was in fact due to an error in the phylogenetic tree generation
for single samples that also prevented correct evaluation of QuantumClone on
this parameter a year later. For all other parameters we can see the incremental
gain in reconstruction quality. This is especially brought to light by the varying
number of simulated clones. This is also due to the fact that the default number
of simulated clones has changed between 2016 and 2017, and went from four to
six clones.

If the increase in quality between 2015 and 2016 was detrimental to compu-
tational time — as the gradient descent step was becoming more complex — by
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Figure 3.8: QuantumClone vs QuantumCloneSingle: QuantumClone is com-
pared to a its derivative where all variants are predicted at the single copy state.
(A) Comparison on normalized mutual information shows poorer performance of
the Single algorithm, with decreased NMI, especially in the case of nearly diploid
tumors (B) The ¢? error shows drastically increased error when the algorithm
is forced to select the single copy level, especially in strictly triploid and stricly
tetraploid tumors.

switching to an accurate computation of gradient zeros we were able to drastically
decrease the computational time. Another factor that can explain the changes
between the penultimate and final versions of QuantumClone is the initialization
procedure, as described in subsection 3.1.3.

Last but not least, the total computational time for the simulated tests depicted
here (i.e. QuantumClone on diploid simulations only) amounts to 362,134.8 s or
~ 100h.

3.3 QuantumClone guidelines harnessed from sim-
ulations

In this section, we will distinguish intrinsic factors of the tumor, that cannot be
known a priori, such as the fraction of normal cells in the sample, the number of
mutations or the number of clones in the sample, and the extrinsic factors: depth
of sequencing or number of samples sequenced. We provide guidelines to chose
appropriate values for factors extrinsic to the tumor.
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Figure 3.9: Comparison of QuantumClone versions. (A) Normalized Mutual
Information (NMI) is used to assess the quality of variant clustering on simulated
data, with a single parameter varying in each test. This measure evaluates cor-
rect assignment of two variants to the same cluster. (B) Computational time
necessary to complete the clustering with each algorithm. Default parameters:
two tumor samples without contamination sequenced at 100x; 100 mutations
used for clustering.
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3.3.1 Impact of extrinsic factors on the reconstruction

From the simulations, we can extract a few rules of thumb. First, doubling the
sequencing depth — going from 100 x to 200, only increases the NMI by an av-
erage of 8.7% (from 0.85 to 0.92) whereas doubling the number of samples (going
from two to four samples) results in an increase of 13.1% (from 0.85 to 0.96). In
addition, using several samples from the same patient can ease uncovering the
phylogenetic tree of the tumor. Note that the samples may not necessarily come
from different time points but can also come from different localization of the same
tumor, or a combination of both space and time changes. Note that the observed
¢? error decreases of 46% (from 0.041 to 0.022) for a doubling of sequencing depth
compared to 7% (from 0.041 to 0.038) if the number of samples is doubled.

It should be stressed that the decrease in ¢, is affected by the number of
dimensions (d) of the working space. If a model makes an € error in each direction,
the ¢2 error will be:

P =Vdxe=leVd

As a result, if the error in each direction stays the same, doubling the number
of dimensions would multiply the ¢ error by v/2 ~ 1.41. To accurately compare
the error between two dimensions, we define ¢ the average error per dimension:

We recapitulate the results in Table 3.2. There, we can see that the average ¢
decrease for a doubling of the number of samples (34% ) is only slightly smaller
than the average decrease for a doubling of sequencing depth (45%) .

Sequencing depth | Number of samples | ¢? € ¢? decrease | ¢ decrease
100x 2 0.041 | 0.029
200x 2 0.022 | 0.016 46% 45%
100x 4 0.038 | 0.019 ™% 34%

Table 3.2: Sequencing depth and number of samples comparison The /2 error
can partially mask an improvement when the number of dimensions increases. To
accurately compare the error decrease we show ¢ the decrease in ¢? normalized
by the number of dimensions.

The Pearson correlation between the sequencing depth and NMI was of p =
0.611, compared to p = 0.816. for the increase in the number of samples and NMI
(both p-values < 2.2 x 10716). In terms of ¢2 error, the correlation between the
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depth of sequencing and ¢* was of —0.714 (p-value < 2.2 x 10716), compared to
—0.422 between number of samples and ¢? (p-value= 3.1 x 10~12).

As a result, we can conclude that an increase in the number of samples should
be favored when possible compared to an increase in the sequencing depth.

3.3.2 Impact of intrinsic factors on the reconstruction

The contamination by normal cells in the sequenced sample remains uncertain
before sequencing, but can be estimated by pathologists. The number of variants
in the tumor or the heterogeneity of the tumor are also unknown prior to the anal-
ysis.

We here show that the number of variants used to reconstruct the tumor barely
affects the quality of the clustering, with a Spearman p equal to —0.263 (p-value
= 2.4 x 107°) for the ¢2 error and p = —0.075 (p-value = 0.24) for the NMI.

With an opposite behavior, the fraction of contaminating cells negatively im-
pacted both NMI (p = —0.629, p-value < 2.2 x 10716), and /2 (p = 0.738, p-value
< 2.2x10719). In the same way, the clonal heterogeneity negatively impacted NMI
(p = —0.629, p-value < 2.2 x 1071), and ¢2 error (p = 0.738, p-value < 2.2 x 1071¢).

We will see in subsection 5.2.2 how to deal with higly remodeled tumors with-
out loss of accuracy.
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Contributions to variant calling

The real risk with Al isn’t malice but competence. A superintelligent Al
will be extremely good at accomplishing its goals, and if those goals
aren’t aligned with ours, we're in trouble.

— Stephen Hawking, Reddit Ask Me Anything, 2015

Biological data have several issues in machine learning. We already men-
tioned the ‘small p large n’issue, where the number of observations is largely
inferior to the number of features. The second issue is the rather high variability
and noise that exists in the data from biological experiments. One such example
can be highlighted by the use of zero-inflated mixture models in the case of single
cell experiments for example. In this part, we will focus on the noise associated
to variant calling from DNA sequencing.

4.1 DREAM Challenge

In this section | will detail insights and models elaborated as a part of a team
participating in a DREAM challenge. Only the models | personally implemented
will be described, logistic regression and Negative Matrix Factorization models
developed by Judith Abecassis will not be presented.

The ICGC-TCGA SMC-DNA Meta challenge' is an expansion of the ICGC-
TCGA Dream Mutation calling challenge. It was organized by Paul C. Boutros
(Ontario Institute for Cancer Research), Josh Stuart (University of California,
Santa Cruz), Gustavo Stolovitzky (IBM, DREAM), Stephen Friend (Sage Bionet-
works), and Thea Norman (Sage Bionetworks).

In the ‘original’ Mutation calling challenge, participants were asked to design

"https://www.synapse.org/
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the best variant calling pipelines, meaning that they would be ranked both on
precision and recall for the variants called, starting from BAM files.

The Mutation calling challenge was divided in subchallenges, either at differ-
ent time points, or on different data (simulated vs patient, SNV vs SV). If we
focus on the SNV challenges, the timeline allowed competitors to improve their
pipelines between two subchallenges by using the results of the previous one. As
a consequence, there is no evidence that the same pipeline would be used in all
subchallenges, and it is reasonable to assume that no two submissions used the
same pipelines between two subchallenges.

The organizers from the mutation calling challenge had found that, for each
subchallenge, using a majority vote of the five best ranked submissions to predict
true positives always outcompeted the best submissions from participants. In or-
der to further improve results from variant calling, the Meta challenge aimed at
finding the true positives among the calls made by participants of the Mutation
calling challenge using machine learning techniques to aggregate predictions —
by either using five or fifty pipelines. The ranking was made using the F1 score,
which is defined by the harmonic mean of precision and recall. The true positives
were given for the simulated samples to be able to train a supervised algorithm,
and the predictions were assessed on the data from both simulation and real pa-
tients.

From the pipeline, only the number of the submission was provided, which
could be linked to a team, but could not give information on the tools or parame-
ters used.

It is to be noted that, as the pipelines used for the submissions in the Muta-
tion calling challenge differed between two samples, it was impossible to learn
features for a given pipeline — such as weighing prediction of the pipeline by its
accuracy or recall.

4.1.1 Description
Data features provided by organizers

The data provided by organizers of the challenge contained 14 samples (four
from simulations, five from colorectal cancer, and five from prostate cancer), and
for each sample the organizers provided:

¢ All positions called by at least one pipeline;
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e For each pipeline (referenced by its submission number), the status of each
position;

e 13 genomic features at this position, such as base quality, number of refer-
ence and alternative reads, mapping quality, and strand bias.

In addition, ground truth was provided for the four simulated samples, and
users could add any relevant biological feature. We chose to add information
about the localization of the SNV inside a repeated region.

Synthetic samples 1 to 4 (noted IS1-4) are of increasing difficulty, with addi-
tion of contamination by normal cells, structural variants, and subclonal variants.
In addition, the number of variants called in each sample varied by orders of
magnitude (see Table 4.1).

Sample Number of calls Number of true positives Number of pipelines

IS1 214541 3535 119
1S2 51108 4303 69
1S3 22884 7709 67
1S4 129091 15163 223

Table 4.1: Overview of DREAM training dataset. We here give the number of calls
made at least by one pipeline, the number of these that are true positives, and
the number of pipelines available.

We can see that progresses are made in terms of accuracy with time. This
refinement of pipelines is also illustrated in Figure 4.1, for S1 to S3.
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Figure 4.1: F1 evolution in DREAM data set. The F1 score on the simulated
data set increased with each iteration — I1S1 through 1S3 — except for IS4. In
that case the increased complexity between 1S3 and 1S4 drastically reduced F1
score.

A first data exploration also shows that the predictions of pipelines were highly
conserved within each teams (Figure 4.2). This is visualized using a hierarchical
tree clustering on all variants of a sample. We can also note that the consensus
obtained by majority vote of all pipelines are close to one another, despite the
poor performance of multiple pipelines.

In Figure 4.2 we can also see submissions from a team tends to cluster to-
gether, showing incremental changes in the pipeline.
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Figure 4.2: Hierarchical clustering of pipelines based on predicted posi-
tions. This clustering is based on a Jaccard distance between the pipelines. A
ward method is then used to combine classes. The consensus obtained by ma-
jority vote of all the pipelines and the ground truth are also shown. The different
colors of submission names reveal the team which has made the submission.
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Feature augmentation and selection

Biological data can be error prone. The human genome contains repeated se-
quences that only have few nucleotides of difference. The mapping to such parts
of the genome can be highly difficult, and wrongfully attributed sequences will re-
sult in predicted mismatches.

In order to avoid such bias, we added information from the UCSC repeated
regions track. We also included the GC content (percentage of G and C nu-
cleotides in a 50bp region around the variant), the variant allele frequency, and
the homopolymer rate, defined by the sum of squared homopolymer lengths nor-
malized by the length of the sequence. For example, the AAATTGAGG would
have a homopolymer rate of #2142 — 19 9 11, These features are there
to indicate the potential sequencing error in sequences that integrate a high de-
gree of repetitions.

In addition, we integrate the read base quality. The base quality per position
was provided by challenge organizers.

Finally, we added the consensus ratio, as the number of selected pipelines
that predicted a variant at this position. This feature assumes that the selection
of pipelines will collectively behave in a similar trend in all samples. Nonetheless,
the fact that pipelines changed between samples prevented learning directly on
the pipelines.

4.1.2 Proposed model and cross-validation

Two challenges were created, one using five or less pipelines. In the second
challenge participants could use a maximum of 50 pipelines. The selection of
pipelines was left to the competitors.

In order to maximize the potential recall, we chose to select the pipelines max-
imizing the number of variants called.

In order to test models, we trained a model on three samples and tested on
the fourth. This procedure was applied to all samples consecutively, and mean
F1 as well as the median absolute divergence (MAD) was used to evaluate the
model.
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Pipeline selection

In the two sub-challenges, the maximal number of pipelines that could be used
for predictions was lower than the number of submissions provided. This has for
consequence that the first step of the analysis will be a selection of a given num-
ber of pipelines.

Two different strategies had to be balanced: one could provide pipelines with
a very high accuracy - further filtering refining the selection of variants - or a very
high recall. The variants that were not called by at least one of the selected
pipelines could not be used for predictions.

We define a fictional consensus pipeline, as the hypothesized pipeline that for
each tumor sample independently, only the variants predicted by a majority of
pipelines are considered as called.

In order to maximize the accuracy, we selected pipelines that were the closest
to the consensus - in terms of Manhattan distance. The strategy to maximize the
recall was to select the pipeline with the highest number of variants, remove all
these positions, then repeat until the desired number of pipelines is reached.

First models only learned on pipelines close to consensus, limiting recall. Max-
imizing recall however lead to numerous false positives. Balance was achieved
by training three models: one on a few very stringent pipelines, the second on ex-
tensive pipelines, and the third on the aggregation of both stringent and extensive
models (see Figure 4.3).

4.1.3 Results from the different pipelines

In this section, we will discuss results as provided by DREAM challenge organiz-
ers.

In silico data

The simplest idea tested was the majority vote of pipelines close to the consensus
(see Table 4.2).

We here show that the majority vote of the five pipelines closest to consensus
achieved a high F1 score, that was only lightly decreased by a higher thresh-
old, mainly due to a decrease in sensitivity not balanced by the increased preci-
sion. Using 50 pipelines achieved an even higher F1 score, even if this procedure
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Figure 4.3: Random forest (RF) model for DREAM. The consensus pipeline
is generated by majority vote of all pipelines. From the initial pipelines only a
fraction of the closest to the consensus will be taken. To reach 5 or 50 pipelines,
the set of pipelines is completed by addition of pipelines maximizing the set of
variants called. Three different models are trained using the fraction of pipelines
that have called a variant as well as other features - such as mappability or variant
allele frequency. The prediction of the three models is aggregated using another
random forest.
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Number of pipelines Threshold for prediction F1 MAD

5 0.5 0.9451 0.0269
5 0.8 0.9414 0.0294
50 0.5 0.9572 0.0124

Table 4.2: Results from majority vote in silico.The threshold for prediction is
the fraction of the pipelines agreeing on a true positive to predictive a variant at
this position. MAD: Median Absolute Deviation.

seems highly unlikely to be used in diagnosis, as the use of 50 different pipelines
would be too much time-consuming for a single sample.

The score could be increased by using features from genomic context and
variant context, as shown in Table 4.3. For the first three models, the training
was realized on the same samples as the test, this means that the measure only
shows how close to the training is the fit, and can result in overfitting the data.
The line marked with a * has been trained only on sample 1S4. With this, we
show that by training the sample of higher complexity, it was possible to learn the
model behind the simulation.

Number of Consensus/Recall Filter F1 MAD Feature
pipelines ratio set

5 0.4 0.4 0.9754 0.0250 A

50 0.3 0.4 0.9774 0.0177 A
50 0.3 0.3 0.9679 0.0091 B
50* 0.3 0.3 0.9571 0.0415 B

Table 4.3: Results from random forest models in silico.Training for set A con-
tains mean base quality, allele frequency, tumor coverage, variant inside or out-
side of a repeated region, mean mapping quality, homopolymer rate and GC con-
tent. Set B additionally contained distance to closest SNP, and if the variant was
inside intergenic or intronic regions. * Training was only realized on tumor sample
1S4.

4.1.4 Discussion: difference between in silico and real data

First, we can note that results provided for real sequencing data were assessed
using specificity and not F1 score contrary to simulated data. Specificity (also
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called true negative rate) is the fraction of true negatives correctly identified as
such. The issue with specificity is that it can be "hacked" by predicting many false
positives.

We can see the poor performance of the pipelines in this setting, with a speci-
ficity twice as low as the F1 score from the previous experiment (Table 4.4). The
fact that we did not use a supervised method for these submissions shows that
there is an important discrepancy between simulated and real data in this chal-
lenge. This discrepancy is highlighted in Table 4.5, with performances lower than
the consensus alone.

Number of pipelines Threshold for prediction Specificity = MAD

5 0.5 0.4104  0.0620
5 0.8 0.4160  0.0560
50 0.5 0.4224  0.0649

Table 4.4: Results from majority vote cancer samples.The threshold for pre-
diction is the fraction of the pipelines agreeing on a true positive to predictive a
variant at this position. MAD: Median Absolute Deviation.

Number of Consensus/Recall Filter F1 MAD Feature
pipelines ratio set

5 04 0.4 0.3796 0.1508 A
50 0.3 0.4 0.3723 0.0431 A
50 0.3 0.3 0.3693 0.0343 B
50* 0.3 0.3 0.3577 0.0179 B

Table 4.5: Results from random forest models cancer samples.Training for set
A contains mean base quality, allele frequency, tumor coverage, variant inside or
outside of a repeated region, mean mapping quality, homopolymer rate and GC
content. Set B additionally contained distance to closest SNP, and if the variant
was inside intergenic or intronic regions. * Training was only realized on tumor
sample 1S4.

From these we can conclude that the model used to generate the data did
not fit reality closely enough to extract relevant features for filtering. This is also
illustrated by the fact that training on three simulated samples and testing on the
fourth resulted in an F1 score of 0.979 (M AD = 0.005) for our more complex
model.
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As a result, for the clonal reconstruction problem, filters had to be redesigned
to select only high quality variants. Final results of the challenge are not available
yet.

4.2 Filters for clonal reconstruction

In this section we will detail the filters used for to limit the number of false pos-
itives in the variant calling for clonal reconstruction without necessity for visual
inspection.

4.2.1 Presentation of the neuroblastoma WGS cohort

The cohort used in Clonal assessment of functional variants in cancer based on
a genotype-aware method for clonal reconstruction consists of 22 patients (see
Table 4.6) for which the germline DNA and tumoral DNA both at diagnosis and
relapse were sequenced. Patients whose ids start with ‘NB’come from the French
cohort. Samples were sequenced at 50 x for the germline DNA, and 100x for the
tumoral DNA. Samples of patients NB308, NB3099, NB804, NB1224, NB1269
and NB1382 were sequenced at the Beijing Genomic Institute (BGl), the remain-
ing NB patients were sequenced at the Centre National de Génotypage (CNG).
Samples whose ids start with ‘PA’come from the US cohort and were sequenced
at 100x both for germline DNA and tumoral DNA at Complete Genomics (CG).
For these patients, estimation of copy number status was realized using Control-

FREEC (version 7.2, see Figure 4.4) which also gave an estimation of the con-
tamination by normal cell of the samples. This estimation is in agreement with
purity estimation given by pathologist (Table 4.7).

4.2.2 Raw output of variant calling

Variant calling was performed using Varscan2 version 2.3.6[20]. Due to the very
large size of the data, performing multiple variant callings and then aggregat-
ing them by majority vote was out of line because of both time and size con-
straints. For example, Strelka[22] requires an estimated 50 cpu-hours to com-
plete a variant calling for an exome sequenced at 40 to 60x. With 44 whole
genomes sequenced at 100x (roughly 200x the size of the reference provided
by Strelka authors), and assuming that the time required is linear with the size of
the data, we can estimate the time for a single variant calling of the full cohort to
be 44 x 50 x 200 = 440, 000 hours, or the equivalent of 50 years of computation.
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<
Patient Risk Stage MYCN Gender Age at Timeto Time to Status Diagnosis m
stratification status diagnosis relapse last report Mhua
NB1178 H 4 N/Amp M 30 21 24 Dead Retroperitoneum
NB1224 L 2 N/Amp M 15 8 18 Alive  Mediastinum
NB1269 H 4 Amp M 14 9 11 Dead Retroperitoneum
NB1382 H 4 Amp M 4 50 64 Dead Abdomen
NB308 L 2 N/Amp F 2 21 91 Alive  Abdomen
NB399 L 4s N/Amp M 0 7 134 Dead Subcutaneous nodule
NB804 _ 4 N/Amp F 2 26 56 Alive  Subcutaneous nodule
PAPVEB L 2 N/Amp M 57 9 40 Dead Adrenal gland
PARBAJ | 3 N/Amp M 1 10 88 Alive  Retroperitoneum
PARHAM | 4 N/Amp F 11 1 81 Dead Pelvis
PASHFA H 3 Amp F 13 7 11 Dead Adrenal gland
PASNPG | 3 N/Amp F 10 10 63 Alive  Retroperitoneum
PATNKP H 4 N/Amp M 113 20 40 Alive  Retroperitoneum
PATYIL _ 4 N/Amp F 11 8 16 Dead Abdomen
PAUDDK | 3 N/Amp M 12 11 38 Alive Pelvis
NBO784 4 N/Amp F 26 12 94 Alive  Pelvis
NB1177 4s N/Amp M 13 10 49 Alive  Subcutaneous - para vertebral left
NB1361 L 4s N/Amp M 27 16 27 Dead Surrenal mass
NB1385 H 4 Amp M 147 8 14 Dead MD
NB1434 H 4 Amp F 26 10 27 Dead Left mandibula
NB1457 L L2 N/Amp M 12 6 22 Alive  Retro-pharyngal
NB1471 1 N/Amp M 64 7 20 Alive  Thorax

Table 4.6: Neuroblastoma cohort: Characteristics of neuroblastoma samples used for data analysis. Ages at diagnosis is given in

months. H: High; I: Intermediate; L: Low; N/Amp; Non amplified; Amp: Amplified; M: Male; F: Female.
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Figure 4.4: Copy number summary. Summary of the copy number profiles for
a color, with the genomic position in abscissa and the sample on the y-axis
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Patient Contamination estimation Contamination estimation Purity diagnosis Purity relapse N
(diagnosis) (relapse) (Pathologist) (Pathologist) m

©
e

NB1178 0.060 0.028 90% Proliferating tumoral cells ©

on 20% of slice

NB1224 0.188 0.204 60% 90%

NB1269 0.208 0.150 60%7? High tumoral burden High tumoral burden

NB1382 0.131 0.079 60-70% 90%

NB308 0.600 0.600 50% 60%

NB399 0.166 0.412 90% >60%

NB804 0.213 0.140 90% Made of 60% viable tumoral cells

PAPVEB 0.065 0.024

PARBAJ 0.083 0.067

PARHAM 0.182 0.144

PASHFA  0.550 0.024

PASNPG 0.060 0.410

PATNKP  0.072 0.122

PATYIL 0.008 0.090

PAUDDK 0.048 0.006

NB0784 >0.70 0.014

NB1177 0.034 0.018

NB1361 0.038 0.012

NB1385 0.150 0.700

NB1434 0.145 >0.9

NB1457  0.000 0.085

NB1471  0.044 >0.75

Table 4.7: Purity estimation of samples. We here present the contamination estimation evaluated by Control-FREEC and purity
estimation by pathologists (when available). For clonal reconstruction, patients with at least one sample with contamination higher  «

than 70% were withdrawn from the analysis. As a reminder, the link between contamination (c) and purity (c)isp=1—c¢
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The raw output from Varscan shows that a bias exists between sequencing
platforms (CNG vs BGI) and sequencing technology (lllumina vs Complete Ge-
nomics) (see Figure 4.5). Complete genomics reads have the particularity to bear
a deletion in the middle of the read, making impossible to remap the reads or do
a realignment around indels except with proprietary tools.

Pearson correlation test : p-value = 0.09830222

1500000 4

1000000 4

Number of variants (before filters)
8

500000

Age (months)

Figure 4.5: Number of calls from Varscan2. The number of variants has been
previously correlated with the age of the patient in pediactric tumors [9]. Here we
demonstrate a sequencing platform effect between samples sequenced at the
BGl, CG, or CNG.

The goal of filters is then to:

1. Filter out false positives;

2. Reach a comparable number of variants called independently of the plat-
form and technology.

4.2.3 Retrieving high fidelity variants

We define high fidelity variants as variants with low variance on the observed VAF,
and lowest probability to be false positive as possible (see section 9.2).
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To do so, we selected variants with at least 50x coverage at the position and
required that a minima 10% of reads support the variant allele.
In addition, variants were required to be located in regions of maximal mappabil-
ity, assessed by the UCSC 100bp mappability track.
Local mappability does not exclude regions that can be highly similar to other
regions of the genomes. To exclude a bias coming from mismapping, we only
included variants outside of repeat and duplicated genomic regions (assessed
by the UCSC repeat masker, simple repeat, and segmental duplication region
tracks).
We further filtered mutations that created a stretch of four or more identical nu-
cleotides. By this we mean an A>C transition in a CCACC sequence for example,
or T>G in GGGT (see Figure 4.6).

144 bp
16 060 by 2786 080 bp 3786100 bp 3786 120 bp 3786 Laa bp 3786 160 by
| 1
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= [[TGAACTATATGATGAGATATATTCAGCAT CCCACTCCAAGGG CAATACATTITTITCTGCIGGT CTATCTIGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCCT CCCAG

Figure 4.6: Example of a likely false positive call extending a stretch of
polynucleotides. In the relapse sample we can observe a G>A substitution be-
fore a stretch of As. Reads with the substitution also present mappability issues,
as shown by the high number of variants on those reads. The fact that the varia-
tion is specific to the relapse shows the variability of the mapping step.

We filtered out variants corresponding to polymorphisms present in more than
1% of the population (present in snp138, 1000Genomes, esp6500) except if it was
a known cancer related variant (COSMIC database for coding and non-coding
mutations). An usual way of filtering out sequencing and mapping artifacts is to
remove all variants called in at least one sample of germline origin. However, it
should be noted that this way of doing does not scale with cohort size (the big-
ger the cohort the more positions will be filtered out), and may introduce biases.

66 Chapter 4



Clonal evolution in neuroblastoma

Indeed, ALK mutations have already been observed as germline variants, espe-
cially in hereditary neuroblastomas[11, 12].

Finally, we only kept mutations located in regions where the genotype evalu-
ated by Control-FREEC was available.

4.2.4 Assessment of applied filters

It should be noted that no re-sequencing of the variants predicted as high fidelity
has been realized. This can be legitimately explained by the cost and time of
such procedure, and the scarcity of biological material. As a result, validation of
the filters have been made by visual inspection of the sequences by Integrative
Genome Viewer (IGV) [68, 17].

In addition, we used the correlation between age of patient and number of
variants[9] to evaluate the quality of the filtering as reducing platform biases. Af-
ter all filters, a significant correlation between age and variants called is found
Figure 4.8.

Chapter 4 67



Clonal evolution in neuroblastoma

- Depth
C_RM
C_SR
C_SegDup

retches

»
mmmmmmmmm

Filter

Start
VA
Mappability_100bp
Germline

- uc
uc:
uc:
St
SN

&
A \BO
&

Y
S L
& X

R R
SIS
&

Lol CRNC]
B
F X ¥ &

@[‘J
Sample

SJUBLIBA JO JQWINN

Figure 4.7: Effect of filtering on the number of somatic variants called.
The initial number of variants corresponds to the raw output from Varscan2;
the “VAF_Depth” filter selects variants with at least 10% of the reads supporting
each variant and at least 50 reads mapping at the position of each variant; the
“Mappability _100bp” filter requires the mappability of a 100 bp DNA sequence
to be 1 at the position of the variant (the UCSC genome browser 100 bp map-
pability track); the "Germline" filter removes variants found at germline level in
other patients of the cohort; the “Stretches” filter removes variants that would
create a homopolymer of three or more identical bases; the “SNPs” filter re-
moves variants that are present in the SNP databases at a frequency higher
than 1% except when the variant is listed in the COSMIC database; finally,
the “UCSC_RM”,“UCSC_SM”,“UCSC_SegDup” filter removes variants that are
present in respectively repeat masker, simple repeat and segmental duplication
regions from the corresponding UCSC genome browser track.
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Figure 4.8: After filtering, number of variants correlates with age. As previ-
ously published[9], this effect is also found after filtering in our cohort: Spearman’s
p = 0.44, p — value = 6.3 x 1073. Note that the number of variants at relapse is
highly correlated to the number of variants at diagnosis (Spearman’s p = 0.93,
p — value = 3.4 x 1079).
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Combining enrichment and clonal
reconstruction results

EVERYTHING IS DEEPLY INTERTWINGLED. In an important sense
there are no “subjects” at all; there is only all knowledge, since the
cross-connections among the myriad topics of this world simply cannot
be divided up neatly.

— Theodor Holm Nelson, Computer Lib/Machine Dreams, 1974

As exposed in the introduction, neuroblastoma has only very few recurrent
genomic alterations, especially at the single nucleotide level. This raises the pos-
sibility that it is not specific genes that are altered but pathways. This implies that
mutational signal should not be observed at the gene level but at a larger level.

5.1 How to find pathways enriched in mutations

Enrichment of a pathway will depend on the method of description of the path-
way. In the case of networks (directed or undirected), diffusion strategies have
been developed [69, 70, 71]. However, when the pathway is defined as a list of
genes, and only discrete events are observed - such as mutations - the simplest
model is to compare the number of mutations observed in genes from the path-
way compared to the expected number of genes expected to be mutated if all
pathways had equal distribution [72]. Finally, the last method consists in group-
ing genes by ontology, which is equivalent to the previous method except for the
fact that it does not work directly with gene networks but with the ontology of
genes[73, 74, 75, 76].

Nonetheless, all these methods require that variants with a functional impact
are given as input, as passenger variants are not considered relevant for the
analysis of disrupted pathways.
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5.1.1 Finding variants with biological impact

In this section we will differentiate substitutions that are in protein coding regions
(exons), or in non-coding regions (intronic, intergenic regions). In protein coding
regions, substitutions can be silent (the amino acid is not changed), missense
(the amino acid is changed for another one), or non-sense (also called stop-gain
as the trinucleotide is replaced by a stop codon, truncating the protein). While,
arguably, silent mutations are thought to be benign, in reality these mutations can
be deleterious due to changes in the RNA and protein structure [77]. Stop-gain
substitutions are often thought as highly deleterious for the protein. However,
translation and transcription mechanisms can lead to a functionally active pro-
tein even in the case of a stop codon. For example, exon skipping (when the
exon bearing the mutation is removed from the RNA by splicing events), stop
readthrough (when the stop is ignored), or reinitiation (when the starts from a
new ATG trinucleotide) [78, 79] events can potentially reduce the impact of a stop
gain.

This shows that even in the simplest cases, it is difficult to assess the impact
of a variation on the protein function. To solve this issue, we relied on prediction
algorithms presented in the next paragraphs.

Predicting impact on protein structure

SIFT and Polyphen are two widely used prediction tools that help prioritizing can-
didate genes with putative deleterious variants. Kumar et al. [80] summarizes
the differences between SIFT [81] and Polyphen [82] by the fact that SIFT solely
uses sequence homology whereas Polyphen uses both sequence homology and
protein structure from SWISS-Prot.

In more details, SIFT uses sequence homology, as described in Figure 5.1.
It does not directly try to reconstruct the 3D structure of the protein, but looks at
local conservation of a protein sequence to establish if the substituted amino acid
has the same characteristics as a given proportion of homologous and paralo-
gous sequences. Amino acid can be electrically charged, which often leads to an
hydrophilic behavior, and would preferentially located at the surface of the pro-
tein, whereas neutral amino acids tend to have a more lipophilic and hydrophobic
behavior, which would be more often found on the inside of proteins. As a result,
change in those characteristics can lead to different structures which in turn could
change the activity of the protein.
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Figure 5.1: SIFT workflow, from [80]. For the protein sequence IRRLRPMD,
first SIFT looks for sequences with high homology in homologous and paralo-
gous genes. After alignment of the sequences, a conservation score for each
position is computed, telling if the position requires a highly conserved amino
acid, an hydrophobic / hydrophilic amino acid, or if the position is not conserved.
The probability to observe the amino acid coming from the substitution is then
compared to a threshold to separate benign, possibly damaging and damaging
mutations.

Polyphen2 uses sequence conservation, protein structure and protein function
annotation. These pieces of information are combined by a classifier to predict
the probability of a variant being deleterious (Figure 5.2).

Funseq2

We detailed in the previous section, the prediction of impact of variants in the
protein coding regions. In whole genome sequencing, we also have access to
non-coding sequences, that could be altered by a genetic event and impact the
behavior of the tumor. One such possibility is the disruption of transcription factor
binding sites (TFBS), which could lead to a change in the gene expression level
in the tumor (Figure 5.3).

Testing all possible motifs of all transcription factors would be extremely te-
dious, and would necessitate important statistical corrections. In order to avoid
these issues, we relied on Funseq2, which estimates the impact of variations both
in coding and non-coding regions.

The first step of Funseq2 [84, 85] relies on aggregating data from databases
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Figure 5.2: Polyphen-2 workflow from [82]. Polyphen-2 uses as features for
the probabilistic classifier 11 features, some of which are extracted from the
multiple sequences alignment, whereas some others are physical (fluctuation of
molecule around its position, also called B-factor) or biological properties (Pfam
is a database of protein function domains). In the end, a prediction ranging from
benign to deleterious and a confidence in the prediction are provided.

such as 1000Genomes, COSMIC, or GERP, to establish a list of genes that are
conserved between species or targeted in cancer. After this step, the scoring
(see Figure 5.4) uses information such as breaking or gaining motifs (consensus
sequence of a TFBS), or centrality of the gene in a gene network.

All these information can be aggregated to predict variants of potential inter-
est. However, the total number of variants predicted to be deleterious by at least
one of the three algorithms is rather high, and not all deleterious variants can be
of interest for the disease studied. In order to focus on highly relevant genes, and
due to the very low frequency of recurrently altered genes in neuroblastoma, we
extracted genes in pathways recurrently altered at the cohort level.

5.1.2 Diffusion networks and network based stratification
Introduction to networks

We define a biological network as a network of species represented as nodes and
biological interactions represented by edges. The nodes in the graphs can be the
DNA sequence of a gene, the transcribed RNA, or, when relevant, the protein
associated with the gene. A biological interaction can be a direct interaction, for
example two proteins that bind together, or can be through activation or repres-
sion of a gene.

Networks that use information from activation or repression tend to be di-
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Figure 5.3: Transcription factor binding site conversion. A mutation in a se-
quence can either create a TFBS, leading to expression of the RNA, or disrupt
the sequence, leading to loss of expression of the RNA. Adapted from In pursuit

of design principles of regulatory sequences, [83]
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Figure 5.4: Funseq?2 prioritization. The variant prioritization step will annotate
input variants and then score them using the weighted scoring scheme. Features
used in the weighted scoring scheme can be classified into ‘functional annota-
tions’, ‘conservation’, ‘nucleotide-level analysis’, ‘network analysis’, and ‘recur-
rence’. ‘Recurrence’ feature could be detected from user-input cancer samples
and also from ‘Recurrence DB’ (* means optional. User can choose to use the
‘Recurrence DB’ or not). Different from other features, ‘recurrence’ depends on
the user-input (for example, if user only uploads one sample and chooses not
to use the ‘Recurrence DB’, then ‘recurrence’ feature will not be observed for
any variant). Each feature is assigned a weighted score (Material and methods).
Scores obtained from the top grey panel are called ‘core scores’, which is inde-
pendent of the user’s choice (see above for ‘recurrence’ feature). Variants with
the ‘recurrence’ feature are assigned an additional score in the final output. In ad-
dition to features used in the scoring scheme, other features are used to highlight
potentially interesting variants, such as variants associated with known cancer
genes. Figure and legend from Fu et al [85]
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rected, as a gene can effect its targets, but this effect is often unidirectional.
The action of A on B will be written as A — B. Protein-protein interaction are
undirected as they only depict the fact that two proteins can be found spatially
interacting. While it is always possible to convert a directed network to an undi-
rected one, the opposite is false.

It can be difficult to assess the role of a perturbation in a network and general
idea relies on diffusion equations. In the same idea that heat sources can diffuse
energy through physical links, the perturbation of the network can be passed to
neighboring chemical species through interaction. For example, if A is responsi-
ble for the expression of B and we disrupt A, we expect B not to be expressed
anymore.

Diffusion networks [86, 87] rely on the idea that a variant affecting the func-
tional properties of a protein or non-coding RNA (ncRNA) will not only affect the
protein itself but also neighboring genes of the network (see Figure 5.5).
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Figure 5.5: Disruption of a linear pathway. The biological network shows the
healthy pathway. With gene B deleted, all downstream genes are also affected, as
shown in the damaged network. When using a diffusion model with low diffusion
rate, only genes A and C will also appear affected by deletion of gene B (network
A), while a higher diffusion rate will lead to gene D also being affected (network
B).
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This class of algorithms requires as minimal knowledge an undirected net-
work, meaning that interactions occur both in direction A — B and B — A.
However, testing all possible sub-networks of k£ genes for a network of N genes
requires testing (’“) = k,(N i possibilities. Consequently, testing all possible
sub-networks of sizes 1 to N would ask for S5, (%) =2V — 1 evaluations’.

Diffusion model in linear (signaling) pathway

If we take the example of a linear pathway Figure 5.5, which can model a signal-
ing pathway, the deletion of a gene in the middle of the pathway should lead to
a disruption of the pathway integrity due to the lack of redundancy (Figure 5.5).
A diffusion network will not predict that all genes downstream of the deletion are
affected, but only neighbors, with an effect decreasing with the distance to the
gene, the rate of the decrease being a parameter of the algorithm.

However, most of the time, pathways have more complex architectures, and
the deletion of a gene may not be sufficient to disrupt the pathway. Some genes
in the network play a more fundamental role than others, as they are used in
the cross-talk between different elements of the network. These genes, termed
hub genes, should be considered as good candidates of genes being targeted by
cancer, if the pathway has to be shut down. TP53 is one such example of gene
recurrently altered in cancers and is also central to many pathways [88, 89, 90]
(see Figure 5.6).

Other times, however proxy genes (genes that have many neighboring genes
somatically mutated, but non altered themselves) can be more relevant to un-
derstand the disease or be used as predictors of the disease [71]. This case is
depicted in Figure 5.7, where the gene with the highest impact is not mutated
itself, but has mutated neighbors.

Use of diffusion network assumes a high reliability in the edges of the graph,
as the diffusion process can only occur between two entities that are linked to
one another. In addition, this process can be computationally intensive in large
networks as previously described. In order to bypass these restrictions, we detalil
enrichment of molecular mechanisms in the next subsection.

'Demonstration of this comes from the development of (X + 1)N = Y23 (5) x 1% x 1(N—5),
For X =1, we find 2V = S0 (%) x 1%F x 1(N=H)
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Figure 5.6: The p53 network, adapted from Liu et al [91].

5.1.3 Gene ontology

Two widely used algorithms to detect over represented pathways in a gene set
are Panther [73, 74] and DAVID[75, 76]. Both rely on gene ontology (GO), which
is defined as ‘the framework for the model of biology. The GO defines concept-
s/classes used to describe gene function, and relationships between these con-
cepts. It classifies functions along three aspects: molecular function [...], cellular
component [...], [and] biological process.?

Panther uses a binomial test to assess the over-representation or under-representation

of a class in the input list [92]. An example is given in box 3 from Mi et al. [92], 440
genes map to the term ‘induction of apoptosis’out of the roughly 20,000 genes of
the human genome. This means that about P,,,:.sis2.2% of the genes are con-
sidered as linked to this process. This means that for a gene list of K = 500 items,
we would expect about k,p.p0sis = 11 of them to be related to apoptosis. If more
(respectively less) than that are found, we can estimate if this list is statistically
enriched (respectively depleted). The corresponding p-value is computed with
the formulas:

Perriched = Z k (1= P(C)) B (5.1)

k=kc)

2http://www.geneontology.org/
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SRefRa R

Functional Damaged

Figure 5.7: Explanation of diffusion models: case of hub genes. In this net-
work, two genes were altered. By diffusion, the highest score will be found in a
gene that is unaltered but central to the network. This gene can then be further
studied, and linked to different aspect of the disease such as survival.

k(o) K
Pdepleted = Z EP(%)(]- - P(C))K_k (52)
k=0

DAVID uses a Fisher exact test to compute enrichment or depletion of a class
in the list. It also incorporates annotations from databases outside of GO, such
as KEGG [93] and BioCarta [94]. The results of the different databases are then
aggregated using a x measure, which evaluates agreement between the two sets.
Both DAVID and Panther enrichment analysis have been used to assess the en-
richment results in neuroblastoma from the ACSNMineR which will be presented
in the next section.

5.1.4 Enrichment analysis of gene sets

N.B.: Gene Set Enrichment Analysis (GSEA) is a computational method main-
tained by the BROAD Institute. Here we describe enrichment analysis of gene
sets, without capitals to avoid confusion.

Enrichment analysis of gene sets use ass input list(s) of genes or variants, and
looks for statistical enrichment in this list. Contrary to diffusion networks, as the
input is a list of genes, there are no information coming from interaction between
two genes - which can be seen as more robust, but also as losing knowledge from
the network.
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Statistical model of gene enrichment

The goal of statistical is to compare a gene set, or module, to a control group.
Usually, a module is compared to the statistical universe, which is the list of genes
that can be observed in the experiment. For example, the universe from a chip
analysis will depend on the probes of the chip, and will be limited to the genes
that are quantified by the probe set.

The assumption behind gene set enrichment analysis is that all genes have
the same probability to be mutated. As a result the observed proportion of genes
mutated within a module can be compared to the proportion of genes outside the
module.

Further refinement of the model can include the size of the genes to remove
a possible bias towards modules with longer genes. Indeed, if we consider a
model where the mutations are strictly random with uniform distribution along the
genome - this corresponds to a random process of mutation without biological
selection - then the probability to mutate a gene will be directly linked to its size.
The direct consequence of this is that the probability of mutating a module will not
only depend on the size (as the number of genes) of the module but on the total
length of the genes making the module (this can be for example the sum of all
gene transcript lengths).

A possibility to correct for that would be to compare the results to simulated
sampling: given N variants, N being the observed number of variants in the bio-
logical data, and the probability to draw a gene being proportional to its size, it is
possible to assess if the sampling is different from the observation.

This refinement however can be rendered difficult if not impossible when we
take into account genetic events such as motif gain or disruption. Then the size
of the gene should not only include its transcript, but also promoter regions. For
transcription factors, a mutation in its targets could also be evaluated. This would
mean that counting TFBS would artificially increase the length of the gene. In
addition, regulatory regions could also be taken into account in the size of the
‘gene’. Super enhancers are regions that can cover a few megabases, and are
much longer than regular enhancers. Taking into account super enhancers would
thus result in a drastic increase of the size of the gene. Taking into account all
these possibilities would lead to a high variability in the ‘gene‘size, for that reason
we limited the model to a uniform probability to mutate a gene independently of
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its transcript size.

ACSN and ACSNMineR

This section has been adapted from Calculating Biological Module Enrichment or
Depletion and Visualizing Data on Large-scale Molecular Maps with ACSNMineR
and RNaviCell Packages, Deveau et al [72] (see section 9.1).

The Atlas of Cancer Signaling Network (ACSN) is a web-based database
which describes signaling and regulatory molecular processes that occur in a
healthy mammalian cell but that are frequently deregulated during cancerogen-
esis [95]. The ACSN atlas aims to be a comprehensive description of cancer-
related mechanisms retrieved from the most recent literature.

Currently, ACSN maps cover signaling pathways involved in DNA repair, cell
cycle, cell survival, cell death, epithelial-to-mesenchymal transition (EMT) and
cell motility. Each of these large-scale molecular maps is decomposed in a num-
ber of functional modules. The maps themselves are merged into a global ACSN
map. Thus the information included in ACSN is organized in three hierarchi-
cal levels: a global map, five individual maps, and several functional modules.
Each ACSN map covers hundreds of molecular players, biochemical reactions
and causal relationships between the molecular players and cellular phenotypes.
ACSN represents a large-scale biochemical reaction network of 4,826 reactions
involving 2,371 proteins (as of today), and is continuously updated and expanded.

We have included the three hierarchical levels in the ACSNMineR package, in
order to be able to calculate enrichments at all three levels. The calculations
are made by counting the number of occurences of gene symbols (HUGO gene
names) from a given list of genes of interest in all ACSN maps and modules. Table
5.1 is detailling the number of gene symbols contained in all the ACSN maps.

The statistical significance of the counts in the modules is assessed by using
either the Fisher exact test [23, 96] or the hypergeometric test, which are equiva-
lent for this purpose [97].

The current ACSN maps are included in the ACSNMineR package, as a list of
character matrices.

For each matrix, rows represent a module, with the name of the module in the
first column, followed by a description of the module (optional), and then followed
by all the gene symbols of the module. The maps will be updated according to
every ACSN major release.

The main function of the ACSNMineR package is the enrichment function, which
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Map Total Nbmod. Min Max Mean
ACSN global 2239 67 2 629 79
Survival 1053 5 208 431 328
Apoptosis 667 7 19 382 136
EMT & Cell motility 634 9 18 629 137
DNA repair 345 21 3 17 45
Cell cycle 250 25 2 130 20

Table 5.1: ACSN maps included in the ACSNMineR package. Map: map name,
Total: total number of gene symbols (HUGO) used to construct the map, Nb mod.:
number of modules, Min: minimum number of gene symbols in the modules,
Max: maximum number of gene symbols in the modules, Mean: average number
of gene sybols per module. N.B.: one gene symbol may be present in several
modules of the map.

is calculating over-representation or depletion of genes in the ACSN maps and
modules. We have included a small list of 12 Cell Cycle related genes in the
package, named genes_test that can be used to test the main enrichment func-
tion and to get familiar with its different options.

genes_test
(1] "ATM" "ATR" "CHEK2" "CREBBP" "TFDP1" "E2F1" "EP300"
(8] "HDAC1" "KAT2B" "GTF2H1" "GTF2H2" "GTF2H2B"

The example shown below is the simplest command that can be done to test
a gene list for over-representation on the six included ACSN maps. With the list
of 12 genes mentionned above and a default p-value cutoff of 0.05, we have a set
of 8 maps or modules that are significantly enriched. The results are structured
as a data frame with nine columns displaying the module name, the module size,
the number of genes from the list in the module, the names of the genes that are
present in the module, the size of the reference universe, the number of genes
from the list that are present in the universe, the raw p-value, the p-value corrected
for multiple testing and the type of test performed. The module field in the results
data frame indicate the map name and the module name separated by a column
character. If a complete map is significantly enriched or depleted, then only the
map name is shown, without any module or column character. For instance, the
third line of the results object below concern the E2F1 module of the CellCycle
map.

library (ACSNMineR)
results <- enrichment(genes_test)

dim(results)
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[11 8 9
results[3,]
module module_size nb_genes_in_module
V161 CellCycle:E2F1 19 12
genes_in_module

V161 ATM ATR CHEK2 CREBBP TFDP1 E2F1 EP300 HDAC1 KAT2B GTF2H1 GTF2H2

GTF2H2B

universe_size nb_genes_in_universe p.value p.value.corrected test
V161 2237 12 3.735018e-21 2.353061e-19 greater

The enrichment function can take up to nine arguments: the gene list (as a
character vector), the list of maps that will be used to calculate enrichment or
depletion, the type of statistical test (either the Fisher exact test or the hypergeo-
metric test), the module minimal size for which the calculations will be done, the
universe, the p-value threshold, the alternative hypothesis ("greater" for calculat-
ing over-representation, "less" for depletion and "both" for both tests) and a list of
genes that should be removed from the universe (option "Remove_from_universe").
This option may be useful for instance if we know beforehand that a number of
genes are not expressed in the samples considered.

Only the gene list is mandatory to call the enrichment function, all the other
arguments have default values. The maps argument can either be a dataframe im-
ported from a GMT file with the format_from_gmt function or a list of dataframes
generated by the same procedure. The GMT format corresponds to the Broad
Institute’s Gene Matrix Transposed file format, a convenient and easy way to en-
code named sets of genes of interest in tab-delimited text files (it is not a graph or
network format). By default, the function enrichment uses the ACSN maps pre-
viously described. The correction for multiple testing is set by default to use the
method of Benjamini & Hochberg, but can be changed to any of the usual correc-
tion methods (Bonferroni, Holm, Hochberg, Holm, or Benjamini & Yekutieli [98]),
or even disabled . The minimal module size represents the smallest size value of
a module that will be used to compute enrichment or depletion. This is meant to
remove results of low significance for module of small size. The universe in which
the computation is made by default is defined by all the gene symbols contained
in the maps. All the genes that were given as input and that are not present on
the maps will be discarded. To keep all genes, the user can change the universe
to HUGO, and in that case, the complete list of HUGO gene symbols will be used
as the reference (> 39,000 genes). The threshold corresponds to the maximal
value of the corrected p-value (unless the user chose not to correct for multiple
testing) that will be displayed in the result table.

It may be of interest to compare enrichment of pathways in different cohorts or
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experiments. For example, enrichment of highly expressed pathways can reveal
differences between two cancer types or two cell lines. To facilitate such compar-
isons, ACSNMineR provides a multisample_enrichment function. It relies on the
enrichment function but takes a list of character vector genes. The name of each
element of the list will be assumed to be the name of the sample for further anal-
ysis. Most of the arguments given t0 multisample_enrichment are the same as
the ones passed to enrichment. However, the cohort_threshold is designed to
filter out modules which would not pass the significance threshold in all samples.

Finally, to facilitate visualization of results, ACSNMineR integrates a represen-
tation function based on ggplot2 syntax [99]. It allows representation of results
from enrichment Or multisample_enrichment with a limited number of param-
eters. Two types of display are available: heat-map tiles or bars. For multiple
samples using a barplot representation, the number of rows used can be pro-
vided, otherwise all plots will be on the same row. For the heatmap, the color of
the non-significant modules, and boundaries of the gradient for significant values
can also be tuned.

We previously computed the p-value of the genes_test list with default pa-
rameters. The number of modules which have a p-value below 0.05 was 8, that
can be compared to the 16 obtained without correction with the simple command
shown below (some of the results are displayed in Table 5.2).

enrichment (genes_test,correction_multitest = FALSE)

Module Mod. size Genes in module p-value Test

CellCycle 242 ATM ATR CHEK2 5.4 x 1077 greater
CREBBP TFDP1 E2F1
EP300 HDAC1 KAT2B
GTF2H1 GTF2H2 GTF2H2B
CellCycle:APOPTOSIS_ENTRY 10 ATM ATR CHEK2 E2F1 3.5 x 1077 greater
CellCycle:CYCLINB 7 ATM 0.04 greater

Table 5.2: First rows of the results from enrichment analysis without correction.
Module : name of the module. Mod. size: size of the module. Genes in module:
genes from input which are found in the module. p-value: uncorrected p-value.
Test : null hypothesis used, greater is synonym of enrichment.

We can now plot the first six rows of the results obtained for corrected and
uncorrected fisher test with heatmap format (5.1.4) or barplot (Figure 5.1.4) with
the following commands:

# heatmap
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represent_enrichment (enrichment = list(Corrected = results[1:6,],

Uncorrected = results_uncorrected[1:6,]),

plot = "heatmap", scale = "reverselog",
low = "steelblue" , high ="white", na.value =
Ilgreyll)

# barplot

represent_enrichment (enrichment = list(Corrected = results[1:6,],
Uncorrected = results_uncorrected[1:6,]),

plot = "bar", scale = "reverselog",
1)

nrow
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Figure 5.8: Representation of the enriched modules (first six rows for each set-
ting), with either Bonferroni correction or no correction. Grey tiles means that the
data is not available for this module in this sample. P-values of low significance
are in white, whereas p-values of high significance are represented in blue.
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Figure 5.9: Representation of the enriched modules (first six rows for each set-
ting), with either Bonferroni correction (left) or no correction (right). The modules
are on the X axis and the p-values are on the Y axis.

5.2 A pipeline to combine enrichment and clonal
reconstruction

5.2.1 Rationale and description

Previous publications have applied the same filters to variants used for the clonal
reconstruction and those of biological relevance [100, 51, 61]. This approach
masks the fact that the two different sets have very different purposes.

On the one hand, the clonal reconstruction set should have very low VAF dis-
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persion and as few false positives as possible in order to achieve a very accurate
clustering. Precisely pinpointing the cluster centers can facilitate interpretation of
tumor evolution, and implies reliability of further results. Yet, those variants are
not necessarily biologically relevant (passenger variants for example).

On the other hand, biologically relevant variants (variants with a known driver
effect, such as ALK mutations in neuroblastoma), can be poorly covered by the
sequencing. Stringent filtering of those variants would be detrimental to the un-
derstanding of the selection mechanisms that happen in the tumor.

In order to avoid compromises between the two approaches, we designed
an original pipeline (Figure 5.10, adapted from ‘Clonal assessment of functional
variants in cancer based on a genotype-aware method for clonal reconstruc-
tion’section 9.2)
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Figure 5.10: Overview of the general clonal reconstruction workflow. (1) Vari-
ants are filtered to remove false positive calls; stringent filters are used to produce
mutations that are further employed for clonal reconstruction (step 2), tolerant fil-
ters are used to detect functional mutations. (2) Variants that pass stringent filters
and have genotype information assigned to the corresponding genomic loci are
used as input to QuantumClone to reconstruct clonal populations. (3) Finally, pos-
sibly damaging mutations belonging to frequently altered pathways are mapped
to the reconstructed clones.

The stringent filters were previously described in subsection 4.2.3. We pro-
pose to define informative variants as variants in a pathway enriched in variants
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predicted deleterious by at least one of the three algorithms (i.e. SIFT, Polyphen-
2 or Funseqg?2). This approach would be especially benefit cancers with few genes
mutated recurrently or those for which the recurrent genes are found in a small
fraction of patients (e.g. neuroblastoma).

As a result of our definition, a variant will be considered deleterious in our
study if at least one of the three predictive algorithm (i.e. SIFT, Polyphen-2 or
Funseg?2) predicts it as deleterious, and it is in a gene from a module recurrently
altered, as predicted by ACSNMineR.

5.2.2 Validation of the pipeline on simulated data

We used simulations to validate the well-founded of our original pipeline design.
The following subsection is adapted from ‘Clonal assessment of functional vari-
ants in cancer based on a genotype-aware method for clonal reconstruction ’(see
section 9.2)

In silico validation data were generated using the QuantumCat method from
package QuantumClone (version 1.0.0.3). We simulated variants coming from
six clones observed in two samples per patient, with a purity of 70% for the first
sample and 60% for the second. We created 150 variants that pass stringent
filters, and an additional 150 variants passing tolerant filters but not stringent fil-
ters. All variants passing stringent filters were simulated in diploid regions, with a
depth of coverage higher than 50 x, whereas mutations passing permissive filters
were located either in AB regions with a coverage between 30x and 50x (ap-
proximately 1/4 of permissive variants), or in AAB regions with coverage > 30x
(approximately 1/2 of permissive variants), or in AABB regions with coverage
> 50x. We then attributed the ‘driver 'characteristic to 100 variants, by sampling
without replacement with probability 10/11 to be selected from the variants pass-
ing permissive filters and probability 1/11 to be selected from stringent filtering.

Pipelines

The ‘classical’pipeline used all 300 simulated variants as input for the clonal re-
construction, using direct clustering by QuantumClone. The ‘selective’pipeline
used the 150 variants passing stringent filters as well as all variants qualified
as drivers from the permissive filters as input for direct clustering. The ‘two-
step’pipeline first used the 150 stringent variants as input for direct clustering,
and then attributed the variants qualified as drivers a posteriori to the clusters,
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using the characteristics of the clones found by the initial QuantumClone cluster-
ing of high confidence variants. All three pipelines searched for two to ten clones,
running with two different initializations, on four threads. Computational time was
measured on a computer running Windows 10, with an Intel i7 at 2.7Gb with 8Gb
of RAM, Rstudio 1.0.44 and R version 3.3.2.

Evaluation

Evaluation of the L2 error and NMI was made using only variants from the strin-
gent and driver groups. The displayed computational time takes into account data

processing, clustering and when necessary a posteriori attribution to the clonal
structure.

Results

Comparison of the pipelines is summarized in Figure 5.11.
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Figure 5.11: Comparison of the three pipelines. The pipeline aforementioned
(two step), or a clustering using all variants called (classic) or a pipeline using only
variants of biological interest and variants of high quality (selective) are assessed
in terms of NMI (A), average ¢? error (B) or computational time (C). The pipelines
are evaluated on 20 simulations.

We demonstrate that the proposed two-step approach allows for a better re-
construction of the tumor, as well as an important decrease in computational time
(Figure 5.11C). To test our pipeline, we compared it to two common pipelines:
the first one, termed ‘classic’, uses all variants as input for the clustering. The
second one, called ‘selective’, only uses variants passing the stringent filters and
informative variants as input for the clustering. The third pipeline, termed ‘two-
step’, uses a posteriori attribution of the putative drivers to the clones found using
only variants passing stringent filters. While all three pipelines had similar out-
comes when we compared the quality of reconstruction using normalized mutual
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information (Figure 5.11A), the selective and two step pipelines fared significantly
better than the classical pipeline in terms of ¢ error (p — value < 8 x 107%, one-
sided Welch two-sample t-test, Figure 5.11B). In addition, the two step analysis
resulted in an average 4.9 fold decrease in computational time compared to the
classical pipeline and an average 2.7 fold decrease compared to the selective
pipeline (Figure 5.11C). Furthermore, separating both steps facilitates iterative
improvement of the clonal reconstruction. Once achieved, this reconstruction can
be reused to answer questions about the evolution of different pathways sepa-
rately, while previous pipelines required re-running the whole reconstruction with
the new set of data.

Chapter 5 91



Clonal evolution in neuroblastoma

92 Chapter 5



Chapter 6

Application to neuroblastoma

It is only by means of the sciences of life that the quality of life can be
radically changed.

— Aldous Huxley, Foreword to Brave New World, 1947

In this chapter we will aggregate methodology from all previous chapters in
order to extract knowledge from the neuroblastoma WGS dataset.

6.1 Pathway enrichment results

The following subsection is adapted from ‘Clonal assessment of functional vari-
ants in cancer based on a genotype-aware method for clonal reconstruction ’(see
section 9.2)

In our framework, we assumed that functional mutations (i.e. putative drivers)
in a given cancer type should target specific signaling pathways or pathway mod-
ules (Figure 5.10, Step 2). We attributed annotated deleterious variants obtained
with tolerant filters (Figure 5.10, section 9.2) to the ACSN maps and detected
recurrently altered gene modules using the ACSNmineR package [72]. Overall,
six general gene maps (apoptosis, cell cycle, DNA repair, EMT / cell motility, cell
survival and neuritogenesis) and their 53 gene modules were found to be en-
riched in mutations (threshold 0.01 on the p-value, one-sided exact Fisher test,
corrected to account for multiple testing with the Benjamini-Hochberg False Dis-
covery Rate correction, corresponding to the g-value) (Table 6.1). The enrich-
ment of pathways in ACSN was corroborated by enrichment of similar pathways
from two other methods [75, 76, 73, 74] (not shown). In further analysis, dele-
terious mutations were annotated as functional when corresponding genes were
included in the enriched pathways, or when such genes belonged to the Cancer
Census list. The resulting number of functional mutations per patient varied from
2 to 147, with a median of 51.
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Module Module Number of genes Universe size Number of genes p- value p-value corrected
Size in module in universe

Apoptosis 666 132 25637 466 7.11E-86 9.38E-85
AKT_MTOR 79 24 25637 466 1.29E-22 3.88E-22
APOPTOSIS_GENES 189 51 25637 466 7.74E-43 4.26E-42
CASPASES 77 21 25637 466 6.53E-19 1.80E-18
HIF1 19 7 25637 466 2.88E-08 5.14E-08
MITOCH_METABOLISM 381 58 25637 466 1.16E-33 5.11E-33
MOMP_REGULATION 102 34 25637 466 8.11E-33 3.35E-32
TNF_RESPONSE 105 20 25637 466 8.07E-15 1.90E-14
CellCycle 239 57 25637 466 2.83E-44 1.87E-43
APC 15 4 25637 466 1.29E-04 1.74E-04
APOPTOSIS_ENTRY 10 3 25637 466 6.63E-04 8.10E-04
CYCLIND 9 3 25637 466 4.70E-04 5.86E-04
E2F1 17 3 25637 466 3.41E-03 4.02E-03
E2F4 8 2 25637 466 8.65E-03 9.68E-03
E2F1_TARGETS 129 31 25637 466 3.10E-25 1.02E-24
E2F2_TARGETS 35 4 25637 466 3.71E-03 4.29E-03
E2F3_TARGETS 51 5 25637 466 2.38E-03 2.86E-03
E2F4_TARGETS 100 22 25637 466 1.52E-17 4.01E-17
E2F5_TARGETS 6 3 25637 466 1.17E-04 1.60E-04
E2F6_TARGETS 34 5 25637 466 3.65E-04 4.63E-04
RB 12 4 25637 466 4.90E-05 6.89E-05
DNA_repair 343 80 25637 466 5.91E-60 5.57E-59
CELL_CYCLE 82 19 25637 466 7.97E-16 2.02E-15
G1_CC_PHASE 25 8 25637 466 1.05E-08 1.98E-08
G1_S_CHECKPOINT 32 13 25637 466 7.12E-15 1.74E-14
G2_M_CHECKPOINT 67 22 25637 466 1.03E-21 2.95E-21
M_CC_PHASE 24 7 25637 466 1.82E-07 3.17E-07
S_CC_PHASE 46 7 25637 466 1.98E-05 2.84E-05
S_PHASE_CHECKPOINT 44 14 25637 466 3.62E-14 8.25E-14
SPINDLE_CHECKPOINT 28 7 25637 466 5.85E-07 9.65E-07
DNA_REPAIR 169 36 25637 466 5.20E-27 1.91E-26
DR_REGULATORS 136 39 25637 466 1.86E-34 8.79E-34
HR 54 13 25637 466 1.55E-11 3.09E-11
MMR 18 3 25637 466 4.04E-03 4.59E-03
NER 54 13 25637 466 1.55E-11 3.09E-11
BER 49 10 25637 466 1.87E-08 3.43E-08
SSA 8 3 25637 466 3.18E-04 4.11E-04
A_NHEJ 18 5 25637 466 1.44E-05 2.11E-05
C_NHEJ 16 5 25637 466 7.55E-06 1.16E-05
FANCONI 41 8 25637 466 7.11E-07 1.12E-06
EMT_motility 628 167 25637 466 2.83E-128 6.23E-127
ADHERENS_JUNCTIONS 33 12 25637 466 3.77E-13 8.03E-13
CELL_CELL_ADHESIONS 107 31 25637 466 5.78E-28 2.25E-27
CELL_MATRIX_ADHESIONS 73 24 25637 466 1.51E-23 4.73E-23
CYTOSKELETON_POLARITY 153 34 25637 466 2.85E-26 9.90E-26
DESMOSOMES 29 12 25637 466 5.91E-14 1.30E-13
ECM 147 44 25637 466 1.73E-39 8.76E-39
EMT_REGULATORS 624 167 25637 466 9.03E-129 2.98E-127
GAP_JUNCTIONS 18 5 25637 466 1.44E-05 2.11E-05
TIGHT_JUNCTIONS 41 8 25637 466 7.11E-07 1.12E-06
Survival 1035 240 25637 466 3.49E-163 2.30E-161
HEDGEHOG 276 60 25637 466 6.28E-44 3.77E-43
MAPK 207 63 25637 466 7.22E-56 5.96E-55
PIBK_AKT_MTOR 293 89 25637 466 2.98E-77 3.28E-76
WNT_CANONICAL 424 81 25637 466 1.78E-53 1.30E-52
WNT_NON_CANONICAL 415 112 25637 466 1.69E-89 2.80E-88
Neuritogenesis 26 9 25637 466 5.59E-10 1.08E-09
Neuritogenesis_mutated 17 6 25637 466 3.92E-07 6.63E-07
Neuritogenesis_substrate 8 3 25637 466 3.18E-04 4.11E-04

Table 6.1: Results from gene set enrichment analysis on the Atlas of Cancer
Signalling Network. Each component of the table is related to a map of ACSN
(in bold), other lines correspond to modules of the map. Module Size: number of
unigue HUGO symbols in the module. Number of genes in module: number of
genes from the input list in the tested module. Universe size: Size of the universe
tested (here all HUGO symbols related to coding and non coding RNAs). Number
of genes in universe: Number of unique symbols from the input list inside of the
universe. p-value: p-value computed by Fisher test. p-value corrected: p-value
after

At this step, the cell survival map registered the highest enrichment in putative
drivers, and among its modules, the highest enrichment in putative driver muta-
tions was observed for the non-canonical WNT pathway (¢—value < 10-%). In ad-
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dition, we also detected significant enrichment in functional mutations of the WNT
canonical and the MAPK pathways (¢ — value < 10~°! and < 10754, respectively),
and of the PISK/AKT/mTOR and Hedgehog gene modules (¢ — value < 10~ and
< 107, respectively). As for the modules of other maps, genes coding for the
EMT regulators were also significantly affected by the deleterious mutations in
our cohort of relapsed neuroblastoma patients (¢ — value < 107126).

6.1.1 Discussion of enrichment results

General agreement between the enrichment tools validated the results from ACSN
maps. However, one can wonder how from the 67 modules from ACSN, 59 items
were found enriched. First, the three neuritogenesis maps and modules derived
from Molenaar et al [9] are not part of the canonical ACSN, and have to be re-
moved from the comparison, as well as the five different maps. This leaves a total
of 51 modules from the 67 original found enriched, which is a rather high number.

One explanation for the high number of modules enriched in damaging vari-
ants stems from the intrinsic nature of ACSN that had been built to pick up signals
from pathways deregulated in cancer. Moreover, we expect a slight bias towards
cancer related genes as Funseqg2 had been trained on the COSMIC database,
meaning that this prediction tool could more easily detect variants biologically
relevant for cancer.

6.2 Clonal structure in neuroblastoma

The following section is adapted from ‘Clonal assessment of functional variants
in cancer based on a genotype-aware method for clonal reconstruction ’(see sec-
tion 9.2)

6.2.1 Clonal reconstruction

We applied QuantumClone on high fidelity variants we defined using stringent
filters (Figure 6.1A,). Across our cohort, we did not observe a significant associ-
ation between the predicted number of clones and the number of mutations per
patient (Spearman’s rho = —0.23, p — value = 0.35). In addition, the number of
clones at relapse was similar to that at diagnosis, even despite the fact that the
relapse samples had about twice as many mutations as the diagnosis samples
(number of mutation clusters varied from one to four with a median of three for
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both time points).

In 79% of reconstructed clonal structures (15 out of 19 patients, we identified
mutations coming from the ancestral clone (Fig. 4A), i.e. the clone that gave rise
to all cells in both diagnosis and relapse samples.

Assignment of functional mutations to the identified clonal struc-
ture

Using the results of the mapping of functional mutations on the clonal structure
detected for each patient by QuantumClone (Figure 5.10, Step 3), we annotated
mutations as (i) those belonging to expanding clones - corresponding to a two-fold
cellular prevalence increase between diagnosis and relapse, (i:) those belonging
to shrinking clones - cellular prevalence halved between diagnosis and relapse,
and (zi7) those belonging to ancestral clones - cellular prevalence higher than
70% in both samples (Figure 6.1A). Overall, 36%, 30% and 9.6% of all functional
mutations fell in these three categories.

Analysis of pathways enriched in functional mutations in shrinking and ex-
panding clones

Assignment of mutations to clones shrinking or expanding after the treatment re-
sulted in the identification of 336 and 400 possible driver mutations in these clone
types, respectively. Expanding clones had more deleterious mutations targeting
genes from all six general maps (apoptosis, cell cycle, DNA repair, EMT/cell motil-
ity, cell survival and neuritogenesis) than the shrinking clones (Fig. Figure 6.1B).
Similarly, in these expanding clones, most of the corresponding gene modules
(e.g., MAPK, WNT canonical or PISBK/AKT/mTOR) were also more frequently tar-
geted. An extreme example of this behavior can be given with the neuritogenesis
substrates module, the RB pathway or the E2F1 pathway in which genes are only
found mutated in the expanding clones. The increase in functional variants can
partly be explained by the observed doubling of variants at relapse compared to
diagnosis.

We define p the functional mutation rate in a module as the number of func-
tional variants per high fidelity variants of the patient by number of genes in a
module. The functional mutation rate across modules was significantly different
between the three classes of clones according to the z-score computed as sug-
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Figure 6.1: Annotation of clones in neuroblastoma and pathway enrichment
analysis. (A) lllustration with data from patient NB1361 of the rules for assign-
ment of variants to (i) the ancestral clone (cellular prevalence of the mutation clus-
ter exceeds 70% both at diagnosis and relapse), (ii) clones expanding after the
treatment (cellular prevalence of the mutation cluster increases at least two-fold
at relapse) and (iii) shrinking clones (cellular prevalence of such mutation clus-
ters decreases at least two-fold). (B) Evolution of the total number of functional
variants for enriched maps and modules, across all 19 patients. The majority of
modules show an increase in the number of functional variants between two time
points.
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gested by Paternoster et al. [101] (Figure 6.2, p — value = 8.35 x 10~° between
ancestral and shrinking, p —value = 2.84 x 10~ between ancestral and expanding
and p — value = 4.98 x 1072 between expanding and shrinking). This functional
mutation rate has been previously linked to the fitness of a clone [102], and it is in-
teresting to notice that the functional mutation rate is lower in the ancestral clone
(. = 5.803 functional variations per 1,000 variants per 1,000 genes in module,
standard error s.e = 1.322), than in the shrinking clones (u = 15.78, s.e. = 1.919)
or expanding clones (¢ = 10.92, s.e. = 0.7583). The change in functional muta-
tion rate suggests different selection mechanisms. The fact that there are fewer
functional variants in the ancestral population than in the shrinking or expanding
populations and that the expanding population has a lower functional mutation
rate suggests that a clone with fewer functional variants had better adaptive ca-
pabilities, as proposed by Chen et al [103].

6.2.2 Model for clonal evolution

For some of our samples, we did not succeed in uncovering an ancestral clone
despite the fact that copy number breakpoints were consistent between samples,
ensuring a common phylogeny [104] (Figure 4.4). Disappearance at relapse of
many potential driver mutations seemingly present in the ancestral clone at diag-
nosis, may be due to tumor heterogeneity and the fact that biopsies were taken
from different tumor sites. This situation has been termed "illusion of clonality"
[105].

Previous studies have shown that the number of variants was linked to the
number of divisions a cell undergoes [106]. The observed doubling of variants
between diagnosis and relapse suggests that cells have undergone as many di-
visions between diagnosis and relapse as between cancer origin and diagnosis -
with the assumption that the mutational rate remains constant. This would in par-
ticular exclude the possibility of the relapse emerging from a quiescent population.

We showed that in neuroblastoma, the functional mutation rate was signifi-
cantly lower in the ancestral populations compared to the clones expanding or
shrinking at relapse. Chen et al [103] have shown that wild-type cells have more
adaptive capabilities than mutants, even though a mutant can appear fitter than
the wild-type lineage in a specific culture condition. Applied to our results, their
finding could suggest that a clone with a low level of functional variants would
be more likely to adapt to environment changes during and after treatment. After
this selection round and once the tumor environment has returned to physiological
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Figure 6.2: Ancestral, shrinking and expanding clones exhibit different mu-

tation patterns in neuroblastoma relapse tumors.

Functional mutation rate

is higher in shrinking and expanding clones compared to the ancestral ones. We
define the functional mutation rate as a ratio of the number of functional mutations
to the number of high fidelity variants. For a given gene module the number of
functional mutations in each patient is supposed to linearly depend on the product
of the module size and the total number of detected variants. Therefore, we used
the product of the module size and number of high fidelity variants as a covariate
in a linear regression model evaluating functional mutation rate for neuroblastoma

tumors. The rate

Chapter 6

was defined as the slope of the linear regression.
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state, another set of functional variants would appear, giving selective advantage
to the expanding clone.

A direct consequence of this assumption is that the functional mutation rate should
be lower at relapse compared to diagnosis, as a period of low functional mutation
rate before treatment would be followed by a period of higher functional mutation
rate during disease progression (Figure 6.3). This consequence is in line with the
29% functional mutation rate decrease observed between expanding and shrink-
ing clones in neuroblastoma.
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Figure 6.3: Model for clonal evolution in neuroblastoma. Given the differences
in functional mutation rates observed in neuroblastoma relapse tumors we pro-
pose the following model for clonal selection in this type of cancer: (1) Clones
with high functional mutation rate (red) disappear after the chemotherapy; lower
mutational burden provides an advantage in escape from treatment; (2) lower val-
ues for functional mutation rate in clones expanding at relapse (blue) compared
to the shrinking clones (red) is due to a lower frequency of functional mutations
before treatment, followed by a gradual accumulation of functional mutations at
relapse. From top to bottom: the number of variants in the clone, number of func-
tional variants in the clone, and population size in the tumor; a.u. (arbitrary units).
The change in color hue represents the changes in time of the genotype with the
accumulation of variants.
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Chapter 7

Conclusion and perspectives

May all your dreams but one come true, for what is life without a
dream?
— David Gemmell, The First Chronicles of Druss the Legend, 1993

We contributed in this thesis to different fields of computational biology.

The first contribution, the development of a new clonal reconstruction method
using HTS data, is at the core of this manuscript. We have demonstrated that de-
spite the existence of many different competing algorithms, there was room for im-
provement both in terms of clustering quality and computation time. Our method,
QuantumClone, is now available as a CRAN package as well as its source code
and code to reproduce all simulations presented in this manuscript. This code
diffusion is not only made in an effort of making reproducible research, but also
to enable continuous improvements of existing tools.

The second contribution presented here was to the variant calling field, through
participation to a DREAM challenge, in order to gather new insights on the sources
of error from variant caller, and through the development of filtering pipeline to ex-
tract high confidence variants.

The third topic raised was systems biology. In the same way that Quantum-
Clone was made public, the R package ACSNMineR is freely available both from
CRAN and GitHub, allowing anyone to contribute to this effort either by adding to
the code or by integrating new maps.

Finally, the last contribution presented here was to the understanding of neu-
roblastoma biology. In addition to the usual description of clonal architecture, we
also proposed a model derived from these observations to explain different mu-
tational rates in the ancestral clones, clones shrinking or expanding at relapse.
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Figure 7.1: Number of downloads of ACSNMineR and QuantumClone pack-
ages from CRAN repository.The numbers are either displayed weekly (A), or
cumulative (B) The figures for the RNaviCell package, also described in Deveau
et al[72], are given as a reference.

Hopefully, this story will not end with this conclusion. As of today, at least two
other projects are being developed on clonal reconstruction and use our algo-
rithm. The first one, in the translational unit of Fabien Reyal, focuses on evolution
after treatment in breast cancer using whole exome sequencing. The second
project, supported by Isabelle Janoueix and Simon Durand, aims at finding the
different populations coexisting in a cell line derived from a patient. Once iden-
tified, the populations will be monitored under different treatments. The tool dif-
fusion can also be observed by the number of downloads of each package from
CRAN servers (this is not taking into account the github repository), as shown in
Figure 7.1.

This figure also shows that simpler tools such as ACSNMineR can have a
much broader echo in the scientific community than specialized tools. Intereset-
ingly, we can also see that the publication in December 2016 in the R Journal of
the ACSNMineR and RNaviCell packages did not increase the download rate.
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In the application of our framework to neuroblastoma sequencing data, we ex-
cluded information about translocations and indels. The reason for this was that
the analysis of clonal structure is based on the number of sequencing reads sup-
porting each genetic variant. While we suppose that the number of reads with a
mismatch mutation is proportional to the number of DNA molecules harboring this
variant, we expect that due to read mapping issues the fraction of reads indicating
an indel or a translocations will be generally lower than the actual proportion of
DNA molecules with the rearrangement. Eviction of large and small SVs seem-
ingly resulted in a decrease in sensitivity of the detection of genetic driver events.
A possible way to solve this issue would be to estimate the cellular prevalence of
these event using specific tools and attribute such events to the most likely clone.

The proposed framework can be applied in the future to any type of cancer.
The pre-requirements are sufficient number of candidate mutations (at least 50
mutations per sample) and a minimal read depth of coverage of 50x. These re-
quirements are usually met by WGS or whole exome sequencing datasets. Our
simulation results show that increasing the number of mutations used for clonal
reconstruction above 50 does not improve significantly the clonal reconstruction
accuracy provided that mutations specific for every clone are present in the input.
This technique would suit the breakthrough of cell-free DNA (i.e. the DNA com-
ing from apoptotic cells and carried in the bloodstream) sequencing can lead to a
surge in the samples available to track the disease. Indeed, with this non-invasive
technique, it should be possible to track the evolution of the tumor during treat-
ment using only a blood sample. With this increase in sample availability from
a patient, not only could the resolution of the clonal architecture be improved,
but also warnings could be raised for the possible reemergence of the tumor af-
ter treatment. It could also help distinguishing variants that confer resistance to
treatment to a subclonal population.
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Chapter 8

Annexes

8.1 Computation of the exact gradient

Starting from the equation 3.1, we can compute the exact gradient of the partial
log-likelihood:

(= > > > > waplirp log (P (Altispley,))

t€variant k€clones s€samples pcpossibilities(i)
With:
e Alt : the number of alternative reads;

* w(;p) - the weight of possibility p, so that for a variant the sum of possibilities
is1;

1y the contribution of possibility p to cluster k computed during the E-
step;

e ¢, the cellular prevalence of cluster k in sample s

In addition, in the case of a binomial model, we have:

P (Alti,57p|¢k,s) — (ai,s7p¢k7S)Alti’s (1 B %,s,pﬁ;k,S)Reﬁ’s

With Ref the number of reads supporting the reference allele and alpha:

Ni,s,p

Ojsp =
o G
1,8

Where N is the number of copies of the variant i in possibility p, and G the number
of copies of the locus.
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(]

In addition, for diploid or haploid cases - where «; ; is independant of i and s-
the solutions for V/ = 0 are :

> . wentan

i€variant pEpossibilities(i)

8.2 Dissimilarity matrix and weighted average ini-
tialization

For two variants i and j, characterized by:
e their number of reads supporting each (Alt; and Alt;);
e their total number of reads overlapping the position (D, and D,);
e their number of copies of the locus (NL; and NL;);
e their tested number of copies of the variant (V; and N;).

We can compute a normalized number of alternative reads (which would be
the number of alternative reads expected for a diploid variant):

Alt x NL

Altdiplo = TOUTLCZ(W
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In addition, we define the observed probability for each variant:

o Altdiplo,x
Pa = Depth,
As well as the weighted probability for both variants:

o Altdiplo,i + Altdiplo,j
b= Depth; + Depth;

Then

2
= (pz - p]) % 1 + 1
px(1—p) Depth; = Depth,;
We can then obtain the p-value associated with such score:
p — value = 2 x pnorm(—+/z)

With pnorm the distribution of the Gaussian of mean 0 and standard deviation

After hierarchical clustering, we obtain n clusters. The initialization weights are
simply the ratio of the number of variants in a cluster divided by the total number
of variants. The center of each cluster in a sample is defined by:

Zi@)am’ants Alti,nor‘malized (8 1 )
Zievariants Depth’l ’

Where Alt; ,.ormaiizea 1S the number of alternative reads that should be observed
if the variant was in a diploid locus.

¢k,s =2 X
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