
HAL Id: tel-01576703
https://theses.hal.science/tel-01576703

Submitted on 23 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Subclonal evolution in neuroblastoma
Paul Deveau

To cite this version:
Paul Deveau. Subclonal evolution in neuroblastoma. Cancer. Université Paris Saclay (COmUE),
2017. English. �NNT : 2017SACLS140�. �tel-01576703�

https://theses.hal.science/tel-01576703
https://hal.archives-ouvertes.fr


NNT : 2017SACLS140

1

Thèse de doctorat

de l'Université Paris-Saclay

préparée à l'Institut Curie

Ecole doctorale n◦582
École doctorale de Cancérologie : biologie - médecine - santé

Spécialité de doctorat: Recherche clinique, innovation
technologique, santé publique

par

M. Paul Deveau

Évolution sous-clonale dans le neuroblastome

Thèse présentée et soutenue à l'Institut Curie, le 27 Juin 2017.

Composition du Jury :

Mme. Valentina Boeva Chargée de recherche (Co-Directrice de thèse)
Institut Cochin

M. Olivier Delattre DRCE (Co-Directeur de thèse)
Institut Curie

Mme. Gudrun Schleiermacher Practicien Hospitalier (Co-Directrice de thèse)
Institut Curie

M. Christian Auclair Professeur des universités (Président du jury)
Gustave Roussy

M. Fabien Calvo Professeur des universités -
practicien hospitalier (Examinateur)
Gustave Roussy

M. Jan Koster Postdoctoral fellow (Rapporteur)
Universiteit van Amsterdam

M. Hugues Roest Crollius Directeur de recherche (Rapporteur)
École Normale Supérieure



Titre : Évolution sous-clonale dans le neuroblastome
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Résumé : Le neuroblastome est le cancer solide
extra-cranial le plus fréquent chez l'enfant. Il est
caractérisé par une très grande hétérogénéité tant
au niveau clinique que moléculaire.
Alors que certains patients rentrent spontanément
en rémission, on peut se demander quels facteurs
permettent la réémergence du cancer chez d'autres
malgré traitement.
Pour répondre à cette question, il convient
d'identi�er chez les patients ayant rechuté, les dif-
férentes populations clonales coexistant au diagnos-
tic et/ou à la rechute. Cela permet, entre autre,

d'étudier les voies di�éremment altérées entre ces
deux temps.
Dans cette optique, nous présentons ici Quantum-
Clone, un algorithme de reconstruction clonal à
partir de données de séquençage, ainsi que son ap-
plication à une cohorte de patients sou�rant d'un
neuroblastome. Sur ces données, l'application de
notre méthode a permis d'identi�er des di�érences
dans le ratio de variants prédits fonctionnels par
rapport à ceux prédits passagers entre les popula-
tions ancestrales, enrichies à la rechute ou appau-
vries à la rechute.

Title : Subclonal evolution in neuroblastoma

Keywords : WGS, clonal evolution, neuroblastoma

Abstract : Neuroblastoma is the most frequent
solid extra-cranial cancer of childhood. This can-
cer displays a high heterogeneity both at clinical
and molecular levels.

Even though in some patients spontaneous remis-
sion can be observed, some others relapse despite
treatment and surgical resection. It may be won-
dered which are the factors that distinguish these
two cases.
In order to answer this question, identi�cation of
populations coexisting at diagnosis and/or relapse
in the patients which have relapsed is a prerequi-
site. This would allow, between other things, to

study the pathways di�erently altered in clones
that are speci�c to each time point.
With this in mind, we hereby present Quantum-
Clone, a clonal reconstruction algorithm from se-
quencing data. In addition, we applied this method
to a cohort of patients su�ering from neuroblas-
toma.

On these data, our method identi�ed di�erences
in the functional mutation rate, i.e. the number
of putative functional variants by total number of
variants, between the ancestral clones, clones ex-
panding at relapse, and clones shrinking at relapse.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery
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this adventure.
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L’ADN se cache depuis des millions d’années dans nos cellules. Nous
sommes en train de le dérouler.

— Frank Thilliez, GATACA, 2011

L’homme n’est qu’un enfant dans l’échelle de l’évolution. Une bête
sauvage qui se croit évoluée.

— Maxime Chattam, Prédateurs, 2007

Les lapins courent plus vite que les renards simplement parce qu’ils
courent pour survivre.

— Frank Thilliez, GATACA, 2011
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¢ for cellularity
L for the likelihood
` for the log-likelihood
`2 for the norm derived from the scalar product
ω for weights
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Synthèse

Que l’on me donne six heures pour couper un arbre, j’en passerai
quatre à préparer ma hache.

—Abraham Lincoln

Le neuroblastome est le cancer extra-cranial solide le plus fréquent chez
l’enfant. Il est caractérisé par une très grande hétérogénéité tant au niveau clin-
ique que moléculaire. En effet, on observe une rémission spontanée chez cer-
tains patients alors que la maladie peut progresser pour d’autres malgré une in-
tervention thérapeutique chirurgicale et médicamenteuse. Dans ces conditions,
on peut se demander quels facteurs différencient les premiers de ceux dont la
maladie survient à nouveau aprés traitement.

Pour répondre à cette question, nous nous sommes attachés aux différentes
populations cellulaires constituant la tumeur au diagnostic et à la rechute. Pour
cela nous disposons de vingt-deux patients pour lesquels l’ADN constitutif, la
tumeur au diagnostic et celle à la rechute ont été séquencés par séquençage à
haut débit de génome complet.

Afin de détecter au mieux les différentes populations coexistantes, il a été
nécessaire de développer un algorithme de reconstruction adapté à la problé-
matique du neuroblastome. C’est-à-dire un algorithme prenant en compte les
possibles altérations chromosomiques (gains et pertes), tout en se satisfaisant
d’un faible nombre de variations de nucléotides uniques. Dans ce cadre, nous
présentons QuantumClone, ainsi que les différentes techniques mathématiques
permettant la résolution efficace du problème de reconstruction clonale. Les
améliorations par rappot à l’existant, tant au niveau de la qualité de la prédic-
tion du clustering que de la vitesse de calcul, ont été validés par comparaison
sur des simulations numériques avec deux méthodes déjà publiées, nommément
sciClone et pyClone.

Cependant, au travers d’une compétition — le DREAM Meta challenge —
nous montrons d’une part que le nombre de variants appelés par les outils de

xvii



Clonal evolution in neuroblastoma

variant calling contiennent un nombre important de faux positifs, et d’autre part
qu’il est difficile de recréer les erreurs recontrées dans les données biologiques.
En effet, nous mettons en exergue la grande disparité existante dans cette com-
pétition entre les échantillons simulés et les échantillons issus de patients. Pour
cette raison, nous proposons une série de filtres permettant de retirer les faux
positifs et reposant sur des raisonnements biologiques pour pallier le manque de
résultats des algorithmes d’apprentissage supervisés.

Une fois les différentes populations clonales extraites des données, il est im-
portant de pouvoir caractériser leurs particularités biologiques. Pour cette raison,
nous proposons de diviser les variations génomiques en deux groupes non ex-
clusifs : celles à faible variance et haute qualité qui seront utilisés pour le cluster-
ing d’une part, et celles ayant un impact biologique connu ou prédit d’autre part.
En effet, par attribution a posteriori des variations ayant un intérêt biologique,
nous pensons pouvoir mettre en avant les mécanismes biologiques expliquant
l’apparition ou la disparition de populations clonales entre le diagnostic et la
rechute — l’une des forces étant la sélection négative par le traitement.

Cependant, très peu de gènes comportent des mutations récurrentes dans
le neuroblastome. Nous pouvons citer comme exemple les plus fréquents ALK
(avec une fréquence d’occurrence de 6 à 12% en fonction des cohortes), ou
ATRX (inférieur à 10%). Il apparaît alors comme raisonnable de s’intéresser non
pas à des gènes uniques mais à des ensembles de gènes, qui eux peuvent être
touchés de façon récurrente par la maladie. Pour ce faire, il a fallu dans un pre-
mier déterminer les gènes candidats. Nous avons donc utilisé plusieurs outils de
prédiction d’impact de variations dans les régions codantes (SIFT, Polyphen-2) et
non codantes (Funseq2). En utilisant la liste des gènes contenant au moins une
variation prédite délétère, nous avons pu comparer le nombre de gènes mutés
dans un processus biologique et le nombre attendu par hasard. Cette compara-
ison a été réalisée en utilisant ACSNMineR, développé et publié pendant cette
thése, et qui repose sur les connaissances biologiques agrégées dans l’Atlas of
Cancer Signalling Network (ACSN). Nous montrons que différents processus bi-
ologiques déjà connus sont à l’œuvre dans le neuroblastome touchant aussi bien
le cycle cellulaire, l’apoptose, la transition épithélio-mésenchymateuse, la répara-
tion de l’ADN, la survie cellulaire ou la neurogenése. Plus spécifiquement, nous
pouvons citer les voies de signalisation WNT (canonique et non-canonique), AK-
T/mTOR, ou enfin les MAPKinases.

Finalement, nous avons pu comparer les différentes voies affectées dans
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les clones occupant une plus grande fraction de la tumeur au diagnostic ou
à la rechute. Alors que le nombre de variations double entre le diagnostic et
la rechute, le nombre de variations prédites délétères dans des processus bi-
ologiques enrichis en variations reste stable. De la même manière, les mêmes
processus sont ciblés au diagnostic et à la rechute.

Afin d’expliquer ces résultats, nous formulons l’hypothése suivante : sachant
que la capacité d’adaptation des cellules diminue avec l’accumulation de varia-
tions fonctionnelles, les populations ayant un avantage sélectif au diagnostic —
du fait d’un grand nombre de mutations dans les processus cancérogènes —
sont sélectionnées négativement par le traitement. Après traitement, seules des
populations ayant un faible de taux de variations fonctionnelles ont survécu. La
pression de sélection dûe au traitement étant relâchée, une nouvelle compétition
intratumorale peut prendre place. Les populations accumulent alors à nouveau
des variations fonctionnelles dans les mécanismes liés à la tumorigenèse, ex-
pliquant le nombre comparable de variations fonctionnelles au diagnostic et à la
rechute.Le fait que les cellules accumulent de manière régulière des variations
avec chaque division permet quant à lui d’expliquer que le taux de mutation fonc-
tionnel est réduit à la rechute par rapport au diagnostic.
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General overview

We detail below the structure of the thesis and the interdependence of chapters
to one another.

• Chapter 1 is an introduction to the relevant concepts of biology that will be
used and developed in the following work.

• Chapter 2 introduces the machine learning concepts that will be used through-
out the manuscript, such as clustering and classification. We will also
detail the clonal reconstruction problem and the existing literature on that
subject.

• Chapter 3 details the mathematical aspect of QuantumClone, the algorithm
developed to solve the clonal reconstruction task. This chapter assumes
that all variants provided are true positives. In the next chapter we will see
how to remove the noise from the sequencing output.

• Chapter 4 illustrates the fact that data from biological sequencing and shows
that High Throughput Sequencing contains a high proportion of false pos-
itives. The DREAM meta challenge was used to illustrate the difficulty of
finding correct features to discriminate true and false positives. Knowledge
derived from this experience is then applied to the results of whole genome
sequencing from 23 patients.

• Chapter 5 focuses on the extraction of biological meaning from sequencing
data. For that reason, we detail functional annotation tools and pathway
enrichment analyses. This lead to the development of ACSNMineR, an R
package to compute enrichment of variants in a biological module.

• Chapter 6 is the specific application of all previous chapters to the neurob-
lastoma cohort presented in chapter 4, and the biological conclusions and
hypothesis resulting from this application.

• Chapter 7 concludes this work and gives possible tracks to continue and
expand it.
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Figure 1: From data to biological results. We represent the interaction be-
tween the different chapters of the manuscript. Biological knowledge and ma-
chine learning are prerequisites to this work and intervene at different stages of
the manuscripts, highlighted by specific points. The workflow in the middle repre-
sents the general chronology of a data analysis project, which may not reflect the
structure of the manuscript presented here or the chronology of the thesis itself.

xxii



Chapter 1

Biological preamble

I have called this principle, by which each slight variation, if useful, is
preserved, by the term of Natural Selection, in order to mark its
relation to man’s power of selection.

— Charles Darwin, The Origin of Species, 1859

In this work, many different aspects of cancer biology and computational biol-
ogy are described. Although this introduction may not be as detailed as a biologist
or a data scientist would like, it is provided so that both can exchange with the
same vocabulary. We will first introduce the topic of cancer and detail the char-
acteristics of neuroblastoma. Then we will describe the sequencing techniques
called "High Throughput Sequencing" (HTS), and we will finally conclude with a
brief discussion of statistics applied to genomic data.

1.1 A small history of cancer

The first historical description of cancer date as far back as 3000 b.c. in ancient
Egypt, with treatments of breast cancer by cauterization1. Hippocrates is believed
to be the first user of the word "carcinoma" to describe uncontrolled proliferative
swellings [1]. It is only in the 18th century that John Hunter developed the idea
that cancer could be cured through surgery, only when the tumor had not invaded
nearby tissues.

1.1.1 Hallmarks of cancer

It is difficult to talk about cancer and not cancers, as many different diseases are
classified under this name: from liquid tumors such as leukemia, pediatric can-

1American Cancer Society. 2009
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cers such as Ewing Sarcoma, adult cancers such as the prostate cancer, sporadic
or hereditary breast cancers. First classifications were based on the localization
of the tumor, and are still used for some specific cancers: we are all too familiar
with the terminology of colon, breast or prostate cancer. However a dissection of
these tumors leads to a molecular classification of tumors based on cellular (think
of Non-Small Cell lung cancer) or molecular (Estrogen Receptor positive breast
cancer) markers. We can then wonder what all these diseases have in common.

In January 2000, one of the most renown reviews in oncology (attracting more
than 15,000 citations) was published by Douglas Hanahan and Robert Weinberg
[2]. This review defines eight hallmarks of cancer and was followed by an up-
date 11 years later [3], adding four new hallmarks, bringing the figure to twelve
key mechanisms for cancer development: sustaining proliferative signaling, evad-
ing growth suppressors, activating invasion and metastasis, enabling replicative
immortality, inducing angiogenesis, resisting cell death, avoiding immune destruc-
tion, tumor promoting inflammation, deregulating cellular energetics and genome
instability and mutation.

In this thesis, we will focus on the analysis of a pediatric cancer called neu-
roblastoma.

1.1.2 The oncological context: neuroblastoma

Pediatric tumors are less frequent than in adults, and represent only 1% of diag-
nosed cancers2. Neuroblastoma is the most common extra-cranial solid cancer
of childhood, representing 7.6% of pediatric cancers in Europe [4]. This cancer
stems from neural crest cells, and is characterized as sympaticoadrenal lineage
neural-crest derived tumors [5, 6, 7]. This leads to a wide range of tumor local-
ization such as the adrenal gland, neck or pelvis (Fig. 1.1).

In the next paragraphs we address the specificity of this disease both as het-
erogeneity between patients and within a patient.

Heterogeneity between patients

Neuroblastoma landscape is characterized by a small number of recurrent al-
terations, whether copy number alterations or mutations. In fact, recurrent alter-
ations are MYCN amplifications (16%), 17q gain (48%), 11q loss (21%) or 1p loss

2www.e-sante.fr
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Figure 1.1: Neuroblastoma localization. Neuroblastoma primary tumors derive
from precursor cells of the peripheral (sympathetic) nervous system and can arise
anywhere along the sympathetic chain, most frequently in the adrenal gland (po-
sition 8 as shown). Neuroblastoma may also develop from spinal cord of neck (po-
sition 6) and pelvis (position 10). Neuroblastomas mainly metastasize to lymph
nodes (position 3), liver (position 4), bone and bone marrow (position 5), and also
spread to central nervous system (position 1) and lungs (position 2) in infants.[5]

(23%) [7], while mutations occur in ALK (6 - 12%) [8] or ATRX (< 10%) genes [9].

This diversity is also represented in the prognosis of patients where sponta-
neous remission can be observed in younger patients, while older children (> 2

years old) with chromosomal imbalance have a poor outcome prognosis despite
chemotherapy and ablative treatments. In addition, only an estimated 1 to 5% of
neuroblastoma cases appear as hereditary [10, 5], with mutations in PHOX2B or
ALK genes[11, 12] and predisposition loci in chromosomes 16p12–13 and 4p16
[5]. This has to be put in perspective with other cancers with a high hereditary
burden such as retinoblastoma. Indeed, in retinoblastoma, RB1 gene mutations
are often dominant with near complete penetrance (> 99%)[13, 14]

Intratumoral heterogeneity

Cancer is one of the very few times in a lifetime where one can be confronted
to the principle of Natural Selection. Evolution is usually set on a time scale of
multiple generations, and it is difficult to experience this in a single lifetime except
with microorganisms or smaller organisms such as Drosophila Melanogaster or
C. Elegans. An example of these reported phenomena is the change of color of
the Peppered Moth, Biston Betularia, where the melanic phenotype of the moth
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was associated to a lower predation by birds in regions with high atmospheric
pollution, as first hypothesized in 1896 by J.W. Tutt [15]. Even in this occurence,
it took decades for the natural selection to shift the most frequent allele from the
typical to the melanic.

We can assume that our body is an ecosystem of its own, with bacteria and
cells of different types coexisting, competing, and collaborating for the sake of the
organism. Mutations are one of the driving forces of evolution in species, as new
traits with potential benefits are more likely to be passed on to the next genera-
tions. It is also one of the forces underlying cancer development, and will push the
cell toward an uncontrolled proliferative state - similar to what can be observed
with invasive species.

It is then important to understand what are the signals that deregulated the
cell, this means to be able to figure out the phylogeny of the cells and find the
common ancestor to all these (Fig. 1.2). While it may not be useful to reconstruct
the whole tree, some essential nodes may be of interest, for example the geno-
type of the cell that gave rise to the relapse could give clues and insights in the
mechanisms of resistance to treatment.

1.2 High throughput sequencing analysis

Next generation sequencing (NGS) is a set of technologies that allowed faster
and cheaper sequencing of the DNA molecule. We will focus here on the Illumina
technology that is used for the whole exome (WES) and whole genome (WGS)
analyses.

1.2.1 Principle

The modern sequencing methods rely on the reaction set up by Frederick Sanger
in 1977, for which he received the Nobel Prize in 1980. For this reason, we will
first explain the historical sequencing reaction, now dubbed "Sanger sequencing",
before moving on to the Illumina protocol.

Sanger sequencing

Sanger sequencing mainly relies on the Polymerase Chain Reaction (PCR), which
is used to amplify a DNA sequence (Fig. 1.3). This reaction can be terminated
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Figure 1.2: Phylogenetic tree of a cancer. Colors represent the different al-
terations characterizing each cell. With each division alterations accumulate so
that each cell is distinct from all others be it from the same generation, from its
ancestry or progeny.

during the elongation by the use of dideoxynucleotides triphosphate (ddNTP)
which cannot form the phosphodiester bond required to link a nucleotide with
the following. As a result, the reaction will create chains of various sizes, de-
pending on where the ddNTP was incorporated. Having a different radioactively
labeled ddNTP in each reaction mix allows to reveal the order in which adenine
(A), thymine (T), guanine (G), and cytosine (C) are incorporated by electophoresis
on a polyacrylamide gel. This has now been simplified with each ddNTP labeled
with a fluorophore re-emitting at a different wavelength. The sequence can then
be automatically read by monitoring light re-emission of the migrating molecules.

Illumina

In order to reduce costs and increase speed of sequencing alternative meth-
ods had to be designed to sequence the genome. Indeed, the Human Genome
Project, which aimed at sequencing the first human genome, cost approximately
300 million USD for the first draft and an additional 150 million USD to refine this
draft, using cloning and Sanger sequencing. With refined techniques, the same
draft would have cost an estimated 14 million dollars in 2006 and can now be
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Figure 1.3: Polymerase Chain Reaction. The PCR mainly consists of three
steps forming one cycle. First the denaturation at high temperature ensures that
the DNA fragments are single stranded. Then the annealing phase at lower tem-
perature allows the PCR primers to bind the DNA fragment to replicate. Finally
the elongation allows the polymerase to synthesize the complementary strand
of DNA with the available deoxynucleotides. This cycle is repeated several
times - usually 10 to 30. Adapted from Enzoklop - Own work, CC BY-SA 3.
https://commons.wikimedia.org/w/index.php?curid=32003643

achieved for 4000USD3 in 2016, as shown in figure 1.4.
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Figure 1.4: Cost of sequencing Evolution of the cost of sequencing of 1 million
bases (Mb, left) or a full human genome (right) in USD, from September 2001 to
October 2015, based on data from genome.gov. In addition, an equivalent of the
Moore law (blue) is added on the right chart, to show a price divided by two every
18 months, and periods annotated with the technology used.

3https://www.genome.gov/27565109/the-cost-of-sequencing-a-human-genome
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Illumina sequencing relies on the reversible terminated chemistry concept de-
scribed in Canard et al [16]. First the DNA fragments are digested to small frag-
ments, and adapters are attached. These adapters will then be used to anchor
the fragment on one end of the flow cell. Using a primer, the sequence is then
amplified, with all copies of the sequence being localized in the neighborhood of
the first fragment, due to the anchoring. This creates a cluster of identical se-
quences - forward and reverse strands. To sequence these clusters, a nucleotide
engineered with reversible termination and a chromophore is added to the plate.
Unused reactants are washed away, and a picture of the chip is taken. The de-
blocking step allows the incorporated nucleotide to bind to another nucleotide and
the cycle is repeated until the full DNA molecule is sequenced.

This sequencing technique can be used to read the sequence from a sin-
gle end of the molecule (single end sequencing), or from both ends (paired end
sequencing, see Figure 1.5). Another technique, called mate pair sequencing
circularizes the DNA fragment before fragmentation. Because of circularization,
two sequences separated by more than 1kb can be brought together, which can
be useful to detect complex genomic rearrangements.

In the case of paired end sequencing, the expected distance between the
two pairs is known, and can be used by the aligner to map the sequence on the
reference genome, as we will see in the next subsection.

Complete Genomics

Complete Genomics (CG) uses a proprietary technology optimized for human
sequencing. In the cohort of neuroblastoma samples provided by John Marris
from the Children’s Hospital of Philadelphia, paired end sequencing was used.
It is to be noted that the reads coming from this technology bear a deletion of
a few base pairs (see Figure 1.6), limiting possible operations (such as indel
realignment) on the file.

1.2.2 Read alignment

The sequences obtained from Illumina or Sanger are small fragments of the donor
genome, with a length of 36 to 600 base pairs (bp). This is to be compared to the
3 × 109 bp of the human reference genome. It is thus required to align the donor
sequences on the reference genome.

Chapter 1 7
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Figure 1.5: Illustration of paired end sequencing read mapping. Reads
aligned on the genome from left to right are shown in red, those from right to
left in blue. A grey line links the pair of read. Depth of coverage (number of
reads overlapping the position) is shown on top in grey. Visualization of the reads
and sequences made with the Integrative Genomics Viewer (IGV) [17]. Image
courtesy of Léo Colmet-Daage.

Principle of read mapping

In theory, for a combination of 4 letters and length 100, a total of 4100 = 1.61×1060

unique sequences exist. This number is far superior to the size of the genome
and should guarantee that each sequence of 100 bp can be accurately attributed
to its position.
However, our genome may have emerged from two whole genome duplications
[18] at vertebrate stage, meaning that many genes have paralogs with very sim-
ilar sequences4. Approximately 811, 737, 329 bp are identified as a part of seg-
mental duplication and 319, 296, 434 bp as simple repeated element in the human
genome assembly hg19.5 We will detail further repeated elements and duplica-
tions in chapter 3.

4This is termed the 2R hypothesis, for two rounds of duplications, or Ohno’s hypothesis.
5Numbers are based on the UCSC genome browser tracks Segmental Duplication and Simple

Repeats.
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Figure 1.6: Illustration of Complete Genomics sequencing output. Contrary
to the previous figures, lines here show a deletion inside a read. Purple brackets
denote an insertion compared to the reference genome. From top to bottom:
germline sequence, tumor at diagnosis, and tumor at relapse from patient PAR-
BAJ. Highlighted is a variant (C to A) specific to the relapse sample.

Moreover, we align the sequences on a reference, and, on average 3.3 million
differences [19] exist between any individual human genome and the reference.
They correspond to Single Nucleotide Polymorphisms (SNPs) or private varia-
tions. This does not include sequencing errors. As a result, a number of allowed
mismatches between the reference and the read sequence has to be set. This
is especially of interest in the case of insertions or deletions, which will introduce
many changes between the sequence read and the reference, as shown in table
1.1, if a gapless alignment is used or if the correct alignment was missed by the
aligner.

Reference ATACGACGAAGCTAC

1 mismatch ATACGAGGAAGCTAC

2 mismatches ACACGAGGAAGCTAC

1bp deletion ATACGAC�AAGCTACA

2bp insertion ATACGACGGCAAGCT

Table 1.1: Example of variation impact on a sequence. All sequences have the
same length, the mutation is represented in red and subsequent changes in the
gapless alignment are shown in orange. We can see that a deletion or insertion
inserts many mismatches in the local alignment, such errors can be resolved
through various techniques.

Chapter 1 9
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Variant calling

Once that reads have been mapped to the closest sequence of the reference, we
can look for positions where it differs from the reference. This is done thanks to
the variant calling.

In tumoral context, it is important to distinguish variations that would come
from the tumor, called somatic, and the variants that are also present in the
healthy tissue, termed germline. The former may give indications on the course
of development of the disease while the latter may be linked to predisposition. A
third type of variants exist, but will not be discussed in this manuscript: germinal
mutations that appear in gonadal tissues, and that can potentially be passed to
the descendants.

As a result, somatic variant callers first look for differences between the reads
aligned at a given position and the reference, and if there is a difference, it will dig
into the matching germline sample to see if the same variation can be found in its
genome.

Many different algorithms have been developed to do so, among which we can
cite Varscan2 [20], Mutect [21] or Strelka [22].

Varscan2, that will be used for the whole genome analysis, uses Fisher’s ex-
act test [23] on the number of reads supporting the variant in the germline and
tumoral samples to distinguish somatic and germline variants.

1.3 Available and relevant data

1.3.1 Is it big data?

In the recent years, an unprecedented stream of information poured in different
domains of computer science, including bioinformatics. We detailed in previous
sections the principles of High Throughput Sequencing technologies. It can be
noted that one sequenced read has to store the information about the sequence
of each nucleotide as well as the confidence in the result of the nucleotide read
being correctly guessed — called base quality. After mapping, we also have to
encode the position of the genome where the sequence has been mapped, and
the confidence in the mapping of this specific read on the reference genome —-
called mapping quality. As a result, a whole genome sequenced with an aver-
age depth of 100× and stored in a compressed format (called BAM), represents
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∼ 500GB of data.

However, we have said that roughly a million positions are supposed to be
different from the reference genome, so less than one in a thousand. With reads
of only 100bp, with the hypothesis of variants being heterozygous and a depth of
sequencing of 100×, this would lead to as little as a read for 20 being informative.
The mutated positions not being known a priori, this cost to efficacy can hardly be
compressed. In practice, whole exome sequencing (WES) (where only the exonic
regions are sequenced, based on a capture technique) or targeted sequencing
(where only predetermined regions are sequenced) can be used. However, these
techniques introduce a bias in the data and the analysis. In whole exomes, a
bias in read distribution is often observed, meaning that the probability to ob-
serve reads in G/C poor or G/C rich regions is lowered. In addition, the regions
captured will depend on the capture technology used. This will lead to a different
coverage of genes and exons. Targeted sequencing is biased towards genes that
have already been shown to have an interest in the disease, and will be less likely
to be used in a prospective study.

At a time where "big data" has become a buzzword and marketing strategy,
the disparity between useful and total information has been dubbed "Fat data".
Indeed, data quantity is often understood as an increase in quality. The relevant
information in our data for this study can be downsized to a few gigabytes worth,
with the copy number alterations on the one hand and variant calling results on
the other hand.

Another layer of information could be retrieved by looking at structural variants.
Structural variants can be detected using dedicated algorithms such as SVDetect
[24] or BreakDancer [25]. This aspect will not be further detailed in this thesis.

In chapter 2 we will see how to analyze genomic data with respect to the
question of clonal evolution in cancer. We have seen here that the genomic data
could be described as "fat data", reaching large sizes with little information con-
tained. We also describe here another limitation of biological data: the scarcity of
samples often outweighs the number of parameters to test.

1.3.2 The small p large n curse

Machine learning problems often require that the number of observations largely
exceed the number of parameters to tune. This is required to avoid spurious
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Clonal evolution in neuroblastoma

correlations.
In genomic, this assumption cannot be held true, and this is referred to as

the "Small p large n" issue. This can be easily illustrated in Genome Wide As-
sociation Studies (GWAS), where a million polymorphisms (SNPs) are tested for
association with a disease, and to a lower extent in cancer, where the association
of the 19,033 protein coding genes with the disease is tested, to which we can
add an extra 6,732 non-coding RNA genes (number correspond to unique HUGO
symbols)6. These SNPs can be associated with (and sometimes responsible of)
an increased risk of a few percents. To uncover association of a SNP that has a
10% increase of the risk, and a cohort of 1,000,000 participants equally affected
by the disease or healthy, the p-value associated with the SNP will be ∼ 0.1 (see
table 1.2 for details).

Minor allele Major allele total

Healthy 4, 762 95, 238 105

Disease 5, 238 94, 762 105

Total 1× 104 1.9× 105 2× 105

Table 1.2: Allelic imbalance: for a cohort of 2 × 105 individuals, with an allele
in 1% of the population and 10% more frequent in the disease population. This
SNP would have a p-value computed by fisher test of 1.092× 10−6. After Bonfer-
roni correction, and considering that SNP arrays currently have ∼ 106 positions
covered, we can estimate the corrected p-value to be: 0.1, higher than the 0.05
threshold, even though the cohort has 200,000 individuals.

The evolution of the cohort needed to estimate a linkage between a SNP and
a disease depending on the cohort size, is shown in figure 1.7. It is important
to note that this kind of studies cannot uncover low risk factors even in studies
with large cohorts. For example, a SNP associated with a risk factor of 1% in the
example cannot be found significant, even for a cohort of 108 persons.

As a result, it may be difficult to extract relevant features, i.e. explicative vari-
ables, from the data, especially in the case of low risk factors. In our case, with
a cohort of ∼ 20 patients, the relevance of a variant in the disease can hardly be
detected, and we will limit the scope of our study to descriptive results.

6Detection of pathways enriched in somatic variants will be further detailed in chapter 5
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Figure 1.7: p-value and cohort size Evolution of significance of a SNP given
the risk factor and the cohort size. An equal partition of healthy and disease
patients is assumed. For readability p-values below 10−30 are not shown. The
light blue line corresponds to the traditional 0.05 threshold, and the dark blue
line corresponds to the threshold taking into account one million test (Bonferroni
correction)
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Chapter 2

Mathematical perspective of the
clonal reconstruction

All models are wrong but some are useful.

— George Box, Robustness in the strategy of scientific model building,
1979

Machine learning is translated in French as "apprentissage statistique", or
"statistical learning". This terminology accurately represents the idea that com-
puters do not learn by themselves, but that we fit a statistical model to the data
that is gathered.

2.1 Introduction to machine learning

Machine learning is the field of study that gives computers the ability to
learn without being explicitly programmed

— attributed to Arthur l. Samuel, circa 1959

A more recent definition of machine learning has been given by Mitchell in
1997: "A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P if its performance at tasks in
T, as measured by P, improves with experience E." [26]

In these 40 years, machine learning had been applied to various tasks, such
as classification (when groups are known beforehand), regression, or clustering
(where groups are unknown beforehand).

The task of finding clones using a group of variants is a clustering issue:
the number and characteristics in terms of mutations and cellular prevalence are
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unknown before the clustering (see chapter 3). Looking for relevant features ex-
plaining if a variant called is a true or false positive is a classification task (see
chapter 4). In the following sections we will provide background for classification
task first then for clustering.

2.1.1 Classification: supervised learning

"The term ‘supervised learning’ is rooted in statistical learning/machine learning
parlance, where it describes the analysis of data via a focused structure. "[27]

In the data used for training, the groups or classes are known beforehand and
usually provided by a human expert — hence the supervised denomination. A
classification algorithm will then learn on a set of characteristics (or features) that
are given for each entry, and will combine them in a way to try to predict the out-
come. The algorithm will try to minimize the error given a metric which can be
accuracy or recall for example.

Many classes of algorithms can be used to classify data, among which we
can cite logistic regressions, Support Vector Machines (SVM), partition trees (and
their extension random forests), and neural networks.

Recent trends in machine learning: neural networks

Neural networks have received a lot of attention from the media in the last years
due to their progress in image recognition1, transformation (generating dreams2),
natural language processing3, or beating human champions at Go games4.

However, neural networks do not represent the entirety of classification algo-
rithms. In fact, Kaggle — a data science competition platform — shows that the
gradient boosted random forest package XGboost was dominating discussions
in 2016, in front of Keras, a neural network library. Both these methods have
reached this status because of their ease of use and efficiency in solving tasks.

1The Revolutionary Technique That Quietly Changed Machine Vision Forever, MIT Technology
review, September 9th, 2014

2On a testé pour vous. . . Deep Dream, la machine à « rêves » psychédéliques de Google, Le
Monde, July 9th, 2015

3Computer Wins on ‘Jeopardy!’: Trivial, It’s Not, The New York Times, February 6th, 2015
4Google’s AI Wins Fifth And Final Game Against Go Genius Lee Sedol, Wired, March 15th,

2016

16 Chapter 2



Clonal evolution in neuroblastoma

We will see that simpler model can provide insights on the data, insights that
can then be used as guidelines for patient handling for example. In more complex
models, the structure of the classification is difficult to apprehend. This can be
illustrated by the difficulty to understand what a specific neuron in the network
sees from the image, except by extracting image parts that activate such neuron
[28].

Focus on Random forests

We describe in the rest of this paragraph a standard procedure for classification
tasks, that will illustrate the use of random forests, that will be subsequently used
in chapter 4.
We will use the Wisconsin Breast Cancer data set [29, 30, 31, 32] as a toy exam-
ple. In this data set, the classification task should discriminate between benign
and malignant tumors, using nine features, such as uniformity of cell shape and
size or the clump thickness. All features are evaluated on a scale of 1 to 10. This
data set has been curated, and contains 699 entries, of which 16 contain at least
one unobserved feature. These 16 entries have been removed from our analysis.

Previous studies have shown that based on these features an accuracy of up
to 95.9% could be achieved [29, 33], using 2/3 of the data set as training and the
remaining as validation.

The principle of a partition tree is to find a feature that best separates between
the classes. In our case, we would like to find the relevant features that separate
between malignant and benign tumor (see Figure 2.1). For each partition, the
algorithm will try to find the best value to separate between malignant and benign,
and repeat the procedure until either:

• Adding a partition does not increase prediction metric - here the metric is
the accuracy;

• The complexity of the tree is higher than parameters given by user.
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Figure 2.1: Partition tree on Wisconsin breast cancer data. This tree was
trained on two thirds of the the Wisconsin data set. The label of the nodes shows
the prediction, with the proportion of the malignant entries in the partition. The
percentage of entries in the partition is shown on the third row. The representation
of the partition tree was made using rpart.plot

In order to find the optimal complexity of the tree, a five-fold cross-validation
is used. This means that for each value of the complexity, five random samplings
of the training set will be done and accuracy will tested. Finally only the most
accurate model will be kept, corresponding to the model presented in Figure 2.1.
In our case, the best model achieved an accuracy of 94.8%, relatively close to the
state of the art in 1992.

An extension of partition trees is random forest. Instead of training a single
tree, multiple trees are trained on the data set. To prevent generation of identical
trees, only a fraction of the features is used for training. The number of features
simultaneously used is a parameter chosen by the user, and is tuned in our case
using three folds of cross-validation. For prediction, each generated tree will give
its prediction, weighted by its accuracy. With an "out-of-the-box" method, a 98.28%

accuracy was reached on the same set of training and validation as previously.
This in particular shows the quick progresses that have been made in the recent
years. Such pace has also been highlighted in Jeremy Howard’s course on neural
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networks5, with few lines of code achieving better predictions than state-of-the-art
publication few years before.

This increase in accuracy is detrimental to the intelligibility of the model. While
it is easy to grasp the model underlying a partition tree, which makes it easily im-
plementable in diagnostic or every-day life, random forests are much more com-
plex and require a prediction from the machine to classify new data.

2.1.2 Clustering

Clustering is the way to create groups based on the intrinsic architecture of the
data. These groups are not necessarily known beforehand - but knowledge can
be used to test accuracy of the method. The number of clusters k can be a param-
eter of the model, or can be selected using an information criterion. Information
criteria balance the complexity of the clustering and the power of the model to
explain accurately the data.

We describe in the two next parts two common clustering methods that will be
used in chapter 3 and chapter 4 for clonal reconstruction and detection of similar
pipelines.

Hierarchical clustering

Hierarchical clustering is a technique that aims at reconstructing a tree, which
gives information on the whole structure of the dataset. Once the tree is com-
pleted, k clusters can be created by cutting the tree at a point where it contains
exactly k branches, each branch defining a cluster.

The hierarchical clustering relies on a simple algorithm, described in algo-
rithm 1. We can separate agglomerative and divisive clustering. Agglomerative
clustering will start with as many classes as there are observations and groups
classes by merging observations (bottom-up), whereas divisive clustering starts
from a single class and removes observations one at a time (top-down).

Either two groups are merged together because they have minimal distance
or dissimilarity, or they are split because they have maximal distance. The way
the distance between clusters is computed can vary. In single-link clustering, the
distance between two classes is the distance between two observations (one from
each cluster) that are the closest from one another. In contrast, with complete-link

5http://course.fast.ai/
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the distance used is the one between two observations of the clusters that have
maximal distance[27] (see Figure 2.2). These two methods have shown to lead to
extreme cases due to the chaining problem with single-link, and tightly contained
clusters with complete link.

Complete-linkage

Single-linkage

Figure 2.2: Example of single linkage and complete linkage inter-cluster
distance. Two clusters (grey and orange), containing multiple observations are
shown. For single linkage, the distance between the two clusters corresponds
to the distance between the closest points, whereas the distance for complete
linkage corresponds to the distance between the two farthest points.

A compromise of the two methods for inter-cluster distance computation is the
average-link that approximates the average dissimilarity of the two clusters. The
same intuition is used in the Ward method [34], where two clusters are merged if
they minimize intra-cluster dissimilarity.

A combination of direction (bottom-up or top-down) and inter-cluster distance
computation methods creates the algorithm, an example of which described in
algorithm 1.

To compute the heterogeneity between two classes, a distance has to be cho-
sen. Usual choices are `2 for numeric values, or Jaccard for binary values. We
can write the Jaccard distance for two binary vectors of length n, with the number
of events where both vectors equal 1 (respectively 0) M1,1 (respectively M0,0):

J = 1− M1,1

n−M0,0

In chapter 3 we will also show a distance derived from the probability of two
observations to belong to the same cluster).
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Algorithm 1: Agglomerative hierarchical clustering pseudo-algorithm
Each observation is in its own class ;

A distance is defined: Jaccard, `2, ... ;

A method to compute inter-cluster distance is defined: Ward,

single-link, ... ;

while Number of classes > 1; do
for i,j ∈ classes; do

Compute distance between i and j;
end
Merge classes i and j that have the minimal distance to one

another;

end

We refer the reader to chapter 11 of Statistical data analysis[27] or chapter 9
of the book Data mining et statistique décisionnel [35] for more details.

k-means and k-medoid

k-means is a widespread method used for clustering. A point will be attributed to
a cluster if it is closest to the cluster center.

In the k-means clustering[36], the number of clusters is a user input. It gener-
ally comes from knowledge or previous analyses. The pseudo algorithm for the
k-means is shown in algorithm 2.

Algorithm 2: k-means pseudo-algorithm, as described in Piegorsh
(2015)[27]

Initialization: k points designated as centroids ;

while Cluster assignment changes; do
for i observations; do

Compute distance between observation i and centroids;

Attribute observation to cluster with closest centroid;
end
Update centroids as mean of observations in the cluster;

end

k-means can be highly sensitive to outliers, and an alternative has been pro-
posed by using medoids6 instead of means, resulting in the k-medoid algorithm[37].

6A medoid is a point of the cluster that minimizes intra-cluster dissimilarity.
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Evaluation of number of clusters and information criteria

The number of clusters is usually unknown before clustering. In order to select
a correct number of clusters based on the data, several approaches have been
proposed, including silhouette analysis [38] and information criterion.

From the latest, we present the two most widely used criteria that are Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC). Informa-
tion criterion rely on the idea that with more parameters it is easier to create a
model that will explain the data. However, this can result in overfitting the data,
which means that the statistical model has learned features that are specific to
the dataset and do not reflect the general behavior (see Figure 2.3).

0.0

0.1

0.2

0.00 0.25 0.50 0.75 1.00
x

y

Figure 2.3: Example of overfitting the data The black dots represent obser-
vations, they have been generated by adding a small amount of noise to the
function f(x) = x × (1 − x), shown in pink. The blue line represents overfitting,
as the function goes through each point of the training dataset. The algorithm
thus has learned the model and the noise, which may not be relevant for future
applications.

In order to limit overfitting by addition of new parameters, the information crite-
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rion introduces a balance between the increase in parameters and the accuracy
of the model. Mathematically, the BIC is written:

BIC = k × log(n)− 2 log(L) (2.1)

With k the number of parameters, n the number of observations, and (L the
likelihood of the model.

Similarly, the AIC is written:

AIC = 2× k − 2 log(L) (2.2)

We can see that the BIC uses information from the number of observations
of the model, which is not true for the AIC. In both cases, the model that will be
chosen is the one that minimizes the information criterion.

Usage of clustering in biology

Clustering in biology has often been used for patient stratification [39], or extract-
ing signature of variants[40] or differentially expressed pathways [41].

In our case, clustering will be use to differentiate between clonal populations
that coexist in the tumor. We detail our model and published algorithms in the
next section.

2.2 The clonal reconstruction task

2.2.1 Phylogeny

Phylogenetics is the study of the evolutionary structure underlying evolution of or-
ganisms. We can represent a set of cancer cells as different organisms evolving
under a pressure of selection, be it selection by a strive for nutrients, escaping
the immune system, or simply accumulation of deleterious mutations.

The phylogeny of a cancer holds information on the mutations that arise first,
or those that confer an advantage to the population, expanding the population
that carries them.

Imagine an experiment where one throws a handful of bouncing balls. At first,
most of them would have the same trajectory, behaving in the same way. But as
time passes, they would differentiate and move in different directions. With the
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same idea, cells that have the same genotype would behave in the same fash-
ion, yet they would accumulate mutations with each cells division. This leads to
a differential evolution between the populations given enough generations (Fig-
ure 2.4).

Treatment

Figure 2.4: Left: Bouncing balls: two ball are simultaneously let loose. During
the free fall stage, the trajectories are identical. Due to internal differences, when
they meet the ground the trajectories differ. Right: evolution of the clonal pop-
ulation. Both clones expand when there is no pressure of selection. However,
the red clone disappears after treatment, while the blue one resists treatment and
expands afterwards.

2.2.2 Assumptions used for the clonal reconstruction

In order to identify different cell populations we have to rely on a set of axioms, or
assumptions, that rely on biological insights of the tumor mechanistic:

• Infinite loci: The probability that a mutation appears twice is null. This
is justified by the randomness of mutations, and the very large size of the
human genome [42, 43].

• Diploid contamination: the cells infiltrating the tumor exclusively have a
diploid genome.

• Cellular prevalence and observed allele frequency are proportional to
one another, given correction by the number of alleles mutated and the num-
ber of copies of the locus in the tumor
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2.2.3 Mathematical model of clonal reconstruction

Read sampling during the sequencing process

Modeling the link between the proportion of reads carrying an alternative allele
(and a fortiori the number of chromosomes) and the observed number of reads
is a sampling issue. The easiest way to model this phenomenon is to use a
binomial law, where the probability to draw an alternative allele is the proportion
of alternative alleles in the population (figure 2.5).
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Figure 2.5: Sampling model. Alleles from paternal and maternal alleles are
represented in blue and green. Mutations are represented with orange and red
boxes. We here show what would be the result of a perfect sampling of alleles (i.e.
if the proportions of the different alleles was exactly preserved), and an example
of realistic sampling.

The sampling of reads can be affected by experimental conditions, for example
depth of coverage in WGS data is highly linked to the G/C content of the reads.
For a given depth of coverage, we model the sampling issue by a binomial law:

Alt ∼ B (n, p) (2.3)

Where:
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• Alt is the number of reads supporting alternative allele;

• n is the depth of coverage at the positions;

• p is the proportion of alternative alleles in the sampling populations. The
observed p, often noted p̂ in statistics, is the Variant Allele Frequency (VAF)
in our problem.

In the case of a mixture of diploid populations without loss of heterozygosity
(LoH), the proportion of alternative alleles is directly linked to the cellular preva-
lence of a variant, i.e. the fraction of cells bearing the variant (¢alt):

p =
¢alt
2

(2.4)

However in the case of multiple populations with different number of copies of
the locus, the probability of drawing the alternative allele has to be re-written:

p =

∑
iNi × ¢i∑
iGi × ¢i

(2.5)

With:

• Ni the number of copies of the variant allele in the cell population i;

• ¢i the fraction of cells with genotype i;

• Gi the number of copies of the locus in the population i.

In the hypothesis that the tumor has only one genotype in the sampled popu-
lation, and that infiltrating cells all are diploid, we can rewrite the equation as:

p =
¢×N

(1− ¢conta)×G+ ¢conta × 2
(2.6)

Where ¢conta is the fraction of normal cells infiltrating the tumor, ¢ is the faction
of cells bearing the alternative variant, N the number of copies of the variant, and
G the number of copies of the locus in the tumoral cells. We can verify that in a
triploid tumor AAB, without contamination (¢conta → 0, the variant in the ancestral
clones will have probability 1/3 if N = 1 or 2/3 if N = 2, as expected.

Given that the number of copies of the locus can be inferred through statistical
analysis of the data [44, 45, 46, 47], the problem to solve is to detect the different
populations in the data and the number of copies of the variant in hyperdiploid
loci.

Overview of the literature

Many different mathematical solutions have been proposed to solve the clonal re-
construction task [48, 49, 50, 51]. A summary and comparison of these methods
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is the subject of a DREAM challenge7 as well as a review[52].

We reproduced the list from Beerenwinkel et al. [52] summarizing the different
algorithms and their principles (Table 2.1).

Software Data Model/Inference
PhyloSub[53] SNV Tree-stick-breaking process, binomial / MCMC
PyClone[49] SNV Dirichlet Process, beta-binomial / MCMC
SciClone[48] SNV Beta mixture model
Clomial[54] SNV Binomial / EM
Trap[55] SNV Exhaustive search under constraints
CloneHD[56] SNV + CNA HMM, EM, Variational Bayes
ThetA[45] CNA Maximum likelihood
cancerTiming[57] CNA Maximum likelihood
GRAFT[58] CNA Partial maximum likelihood
MEDICC[59] CNA Finite state transducer, Minimum-event distance
TuMult[60] CNA Breakpoint distance
TITAN[46] CNA HMM / EM

Table 2.1: Existing algorithms: we here reproduce the list of table from Beeren-
winkel et al[52].SNV: Single Nucleotide Variant; CNA: Copy Number Aberration;
MCMC: Markov-Chain Monte Carlo; EM: expectation maximization: HMM: Hid-
den Markov Model.

CNA based algorithms

In this section we will discuss the principles of the class of algorithms dealing with
CNA that use two possible inputs: coverage and B-allele frequency (BAF).

This class of algorithms heavily relies on segmentation algorithms: the goal is
to detect breakpoints (i.e. changes in the signal).
The depth of coverage of a portion of the genome heavily depends on intrinsic
factors of the region (GC content, mappability), as well as experimental factors
(sequencing kit). As a result, the data has to be normalized by a control, usually
the constitutive DNA of the patient sequenced with the same protocol. After nor-
malization and segmentation, changes in the depth of coverage indicate changes
in the number of copies of the locus compared to a baseline. Tumors, however,
can be hyperdiploid, meaning that the average number of copies of the tumor is
higher than two.

7ICGC-TCGA-DREAM Somatic Mutation Calling Challenge – Tumor Heterogeneity and Evolu-
tion
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Moreover, the median B-allele frequency can help distinguishing regions with
allelic imbalance, as the B-allele frequencies will be shifted from the 50% position,
as explained by Equation 2.6. The algorithm thus has to estimate the following
parameters that best fit the model:

• ¢conta : the proportion of normal cells;

• AiBi : the number of copies A and B alleles of segment i that explain both
BAF and depth of coverage.

Usually, numbers of A and B alleles are coerced to integer values, and the
output then is the profile of the major clone (see Figure 2.6). For example, an
heterozygous SNV in a triploid (AAB) locus without contamination should be ob-
served either at 33% (B-allele) or 66% (A-allele). If we add contamination, we
have to consider that normal cells contribute to the BAF by bringing one copy of
the B-allele but also one copy of the A-allele. We can then write:

BAFi =
¢conta + (1− ¢conta)Bi

2× ¢conta + (1− ¢conta)(Ai +Bi)
(2.7)

This formula can also be used to estimate the contamination on loci with odd
number of copies. However, detection of sub-optimal solutions on segments can
reveal subclonal copy number changes. The algorithm then has to estimate:

• ¢conta : the proportion of normal cells;

• n : the number of populations;

• ¢j : the fraction of cells with genotype j;

• Ai,jBi,j : the number of copies A and B alleles of segment i in population j
so that

∑
j ¢jAi,jBi,j explains both BAF and depth of coverage.
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Figure 2.6: Illustration of the copy number reconstruction for sample
NB1361-D (diagnosis) of chromosomes 1 to 5. (A) Copy number status of
the different loci. The normal, diploid, state is shown in green, losses in blue and
gains in red. The 1p loss is associated in this case with the 17q gain (not shown).
(B) B-allele frequency: for each SNP, the VAF of the minor allele (in the popu-
lation) is shown. For an heterozygous position in a diploid locus a VAF of 50%
is observed. For odd number of copies, two states are shown, corresponding to
major and minor alleles (see Equation 2.7). Due to contamination, the median
BAF for single copy locus is higher than 0, and higher than 33% in triploid locus.

SNV based algorithms

While CNA class can function on their own, SNV based algorithms require that
variants are called first to estimate the number of alternative and reference allele
of the variant in all related samples (i.e. samples coming from the same patient).
In addition, some algorithms require information from copy number and contam-
ination as input, as we have seen in Equation 2.6 that the probability to draw a
variant is related to its copy number status and contamination by normal cells.

We detail here two methods that will be used for comparison to our clonal
reconstruction algorithm: sciClone[48] and pyClone [49]. These algorithms have
been selected because of their widespread use [61, 62, 63, 64, 65].

These two methods rely on approximate inference. Markov Chain Monte Carlo
(MCMC), used in pyClone, is a stochastic technique. ‘Given infinite computational
resource, they [stochastic techniques] can generate exact results’[66]. Variational
techniques, on the contrary, are based on a deterministic approximation of the
posterior distribution.

Markov Chain Monte Carlo and pyClone
Before detailing complex Bayesian model, we first describe the basic concept

of a graphical model as it can be easier to represent complex Bayesian models
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using a graphical model. For the joint distribution p(a,b) of the two variables a and
b, we can write:

p(a,b) = p(b|a)p(a)

This would be represented by Figure 2.7A. If we extend to three variables,
adapting the example from Bishop et al [66], we can write (using Bayes Theorem):

p(a,b,c) = p(c|a,b)p(b|a)p(a)

a b

A
a bB

c

Figure 2.7: Graphical model representation (A) Representation of p(b|a)p(a) (B)
Representation of p(c|a,b)p(b|a)p(a). The c variable is colored to show that it is ob-
served.

Using this representation, the model for pyClone can be written as in Fig-
ure 2.8.

This model shows (on the left hand side), that a proposed cellular prevalence
for variant m will first be sampled from a Dirichlet process with uniform distribu-
tion (in [0; 1]), and accepted or rejected based on the user defined parameters aα
and bα. Due to the Dirichlet process, even though an infinite number of states
exists, those states are discrete. As a result, a variant can either take a cellular
prevalence Φm that is new or used. If two variants use the same cellular preva-
lence, they are considered to belong to the same cluster. More details about the
implementation of pyClone can be found in the supplentary Figure 3 and supple-
mentary note of Roth et al[49].

We can note that this sampling method gives access to the whole distribu-
tion of cellular prevalence in the sample. However, the first pass of the algorithm
requires O(sm2) operations, and each subsequent pass will require O(skm) op-
erations, where k is the number of remaining clusters, m the number of variants,
and s the number of samples. This high complexity of the model illustrate the note
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Figure 2.8: Graphical representation of the pyClone model. This represen-
tation shows how genotype information, user defined parameters and observed
depth of a variant in a sample are used to estimate the cellular prevalence of a
clone. This figure has been adapted from Roth et al[49] for consistency with no-
tations and clarity. In their model Φm and sh are combined using a beta binomial
distribution.

Chapter 2 31



Clonal evolution in neuroblastoma

from Bishop et al[66]: ‘In practice, sampling methods can be computationally de-
manding, often limiting their use to small-scale problems.’

Variational Bayesian Mixture Model and sciClone

sciClone relies on a variational bayesian mixture model (VBMM)[66]. Varia-
tional inference is a deterministic method, that can find approximate solutions.
The log marginal probability can be decomposed as following:

log p(X) = L(q) +KL(q||p) (2.8)

Where KL is the Kullback-Leibler divergence:

KL(q||p) = −
∫
q(Z) log

(
p(Z|X)

q(Z)

)
dZ (2.9)

and
L(q) =

∫
q(Z) log

(
p(X,Z)

q(Z)

)

Here X is the random variable and Z is a set of latent variables.

Variational inference will then minimize the Kullback-Leibler divergence for a
given class of functions q. sciClone makes the assumption that the data follows
a beta-binomial mixture model to take into account possibly higher variability in
the observed VAF. Miller et al make the classic assumption that the q distributions
can be factorized (Supplementary Text S1 section C[48]), but add the condition
that latent variables must be independent and non-overlapping.

In the section C of supplementary text S1, Miller et al. [48] also define the
expectation with respect to the distributions qj (j 6= i) of the approximate posterior
distribution:

Ej 6=i[log p(X,Z)] ≡
∫

log p(X,Z)
∏

j 6=i

qj∂Zj

From this, they conclude that at each pass, the value of qi that minimizes the
KL divergence is:

log qi ∝ Ej 6=i[log p(X,Z)]

The algorithm reaches convergence when the maximal difference between
two passes is lower than 10−4.

Contrary to pyClone, sciClone voluntarily restricts clonal reconstruction to vari-
ants in copy neutral and LoH-free regions. In the next chapter we will present a
new solution to the clonal reconstruction task that relies on an expectation maxi-
mization procedure, called QuantumClone.
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Efficient solving of the clonal
reconstruction task

Can a genetic accident of unpredictable biological properties be taken
into account in the Seldon plan?

— Isaac Asimov, Second Foundation, 1953

In this chapter we will detail our implementation of a clonal reconstruction
algorithm: QuantumClone.

3.1 Implementation

In this section we will extensively explain the implementation of QuantumClone.

3.1.1 Expectation Maximization

In order to uncover the parameters of the clonal populations in the data, we chose
to use an EM method.

We use the algorithm described in algorithm 3 in diploid cases.
We define a stopping threshold η ∈ R∗+, and we say that the convergence

criterion is reached,if between two rounds of optimization we have:

max
k

(
|¢k,s,n − ¢k,s,n+1|, |ωk,nωk,n+1|

)
< η

Where ¢k,s,n is cellular prevalence of a cluster k in sample s for iteration n,
and ωk,n is the weight of cluster k at iteration n. This principle is illustrated in
figure 3.1, which shows updates of probabilities on E-steps and changes in clone
centers and weights during M-steps. The exact values after each step are given
in Table 3.1.

If we look at the clone centers and weights after each maximization step we
see:
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Figure 3.1: Example of EM convergence. Two clones are generated with cellular
prevalence 0.6 and 0.3 for clone 1 and 0.4 and 0.8 for clone 2. Clone 1 bears 65%
of the 5000 generated variants, all with a depth of 200×.
In yellow we show centers of the clusters, with the size of the point proportional
to the weight of the cluster. The color of the variant shows the relative probability
of a variant to belong to cluster 1 or 2, given by the following law:
p = p2−p1

p2+p1
, where p2 (respectively p1) is the probability to belong to cluster 2 (resp.

1)
The trajectory of each clone center is shown after each update (M steps).
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Algorithm 3: Expectation Maximization algorithm underlying Quantum-
Clone

for c in number of clones; do
for I in initializations; do

initialize distribution parameter: ¢k,0, ωk,0 the cellularity

and weight of clone k;

while not converged; do
E-step: update fi,k probability of variant i to belong

to k;

M-step: find ¢k,n, ωk,n to maximize log-likelihood `,
knowing fi,k;

end
end

end

Iteration Clone1 S1 C1 S2 Clone2 S1 C2 S2 Weight C1 Weight C2

Ground truth 0.600 0.300 0.400 0.800 0.650 0.350

Start 0.600 0.590 0.400 0.520 0.500 0.500
M1 0.531 0.588 0.413 0.662 0.521 0.479
M2 0.601 0.302 0.399 0.800 0.652 0.348
M3 0.601 0.303 0.399 0.801 0.651 0.349

Table 3.1: Cluster values for EM example The algorithm converges toward the
real position of the clone centers. Simultaneously, the proportion of cells belong-
ing to a clone converges to the weights used to generate the data. Finally, the
algorithms stops when the difference between two observations is smaller than
1%. Abbreviations: Clone, Sample

Solving the unknown number of copies of a variant

Equation 2.6 shows that the number of copies of the variant is required to compute
the probability of a variant to belong to a clone. The status of each variant is
unknown before the clustering unfortunately. As a consequence, the algorithm
has to find the correct number of copies of the variant among all possible statuses,
as shown in figure 3.2.

To do so, all possible states of a variant are described and will be used in a
first round of EM. Then, only the values that are the most likely — i.e. the ones
with the highest probability to belong to a clone — are kept, as shown in figure
3.3. In order to avoid that contribution increases with the number copy status pos-
sibilities, the contribution of each variant to the model is normalized to 1. Then
another round of EM is started with only the selected value for the copy number
of the variant.
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A

Figure 3.2: Copy number status of a variant. (A) In this example, a variant
is detected on 1/3 of the reads, and the genotype of the locus is AAB. (B) With
these information, several cases fitting the data are shown.

In the case of polyploid tumors, the algorithm uses two rounds of EM, as
described in algorithm 4.

Finally the best model from the c × I computed is chosen thanks to an infor-
mation criterion, either Akaike (AIC), Bayesian (BIC), or modified Bayesian.

3.1.2 Incremental upgrades to the maximization step

In order to converge, we needed to maximize the log-likelihood function that can
be written in our case:

` =
∑

i∈variant

∑

k∈clones

∑

s∈samples

∑

p∈possibilities(i)

β(i,p)f(i,k) log
(
Pi,s,p

(
¢i,s|¢k,s

))
(3.1)

With β(i,p) a coefficient so that for a given variant i,
∑

p β(i,p) = 1. This has been
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Figure 3.3: Principle of selection of variant cellularity for variants in poly-
ploid regions. Mutations located in regions of copy number aberration can be
present on several chromosomal copies; they can thus be assigned to several cel-
lular prevalence values (panel A). After the Expectation Maximization (EM) step
each mutation is attributed the most likely cellular prevalence value (panel B).
Each mutation is represented by a specific color. Mutations located in AB regions
(circles); mutations located at relapse in regions of gain (squares), mutations lo-
cated in regions of gain both at diagnosis and relapse (triangles).

added to prevent higher contribution to the model from variants with higher copy
number status. Indeed, as shown in Figure 3.2, a variant in a triploid region has
two possible copy status whereas a variant in a diploid region only has one. With-
out this correction, a variant in a triploid region would contribute twice as much to
the model, but only one of the two possibilities would be true.

At first, the maximization step used the optim function in R, using Broyden-
Fletcher-Goldfarb-Shanno (‘BFGS ’) algorithm. This method relied on a numeric
differentiation of the log-likelihood function. This box constrained optimization on
the [0; 1]n×s space, where n is the number of clones and s the number of samples,
requires many calls to the computation function.

In order to reduce the computational time, the exact gradient was provided
(see annex 8.1 for computation). This can effectively decrease computational
time when variants are in hyperdiploid loci. However, looking at the exact formula
of the gradient (see 8.1), we can see that when all variants have the same adjust-
ing factor to go from VAF to cellular prevalence, then it is easy to find the exact
0 of the function 3.2. This is only possible when all variants are in either haploid
or diploid regions. Then, the adjusting factor simply is a transition from observed
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Algorithm 4: Expectation Maximization algorithm underlying Quantum-
Clone, when at least one variant lies in hyperdiploid or LoH region.

for c in searched clone value; do
for I in initializations; do

initialize distribution parameter: ¢k,0, ωk,0 the cellularity

and weight of clone k;

while not converged; do
E-step: update fi,k probability of possibility i to

belong to k;

M-step: find ¢k,n, ωk,n to maximize log-likelihood `,
knowing fi, k;

end
select most likely position

while not converged; do
E-step: update fi,k probability of variant i to belong

to k;

M-step: find ¢k,n, ωk,n to maximize log-likelihood `,
knowing fi, k;

end
end

end

VAF to cellular prevalence and is the same for all variants.

∂`

∂¢k,s
= 0⇔ ¢k,s =

∑
i∈variants ti,k,s × Alti,s

α×∑i∈variants ti,k,s ×Depthi,s
(3.2)

With ti,k,s the contribution of possibility p to cluster k and α the adjusting factor,
as explained in section 8.1.

Effectively computing the zero of the function has allowed a decrease in com-
putational time of orders of magnitude, and explains the gains in performance
compared to other published methods as we will see in the following part.

3.1.3 Improvements in the initialization procedure

It is a common practice to use the result of a k-mean clustering algorithm to ini-
tialize EM algorithms1. We first used a k-medoid algorithm from fpc R package.

In order to improve clustering results, we came with a new initialization pro-
cedure. We use a hierarchical clustering of the variants using as dissimilarity the
p-value obtained from the z-score of two variants being from the same population.

1Francis Bach, K-means, EM, Mélanges de Gaussiennes, Théorie des graphes, http://www.
di.ens.fr/~fbach/courses/fall2010/cours3.pdf
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The number of clusters to look for is a parameter provided by the user — as a
range of values. For each tested value n, we can initialize the algorithm with n

centers found by cutting the hierarchical tree in n groups. The value of the centers
is then taken as an average of the cellular prevalence of variants from the cluster
weighted by the depth of sequencing of each variant (see Equation 8.1 in chap-
ter 8). This second method provided more accurate starting points, reducing the
number of steps required to converge — and doing so, the computational time. It
also provides better results with a decreased chance of falling in a local minimum.

3.2 Experimental comparison of methods

In this section we will focus on the validation of our method, called QuantumClone,
through simulated data, and we will compare it to sciClone and pyClone.

3.2.1 Comparison methodology

Simulating cancer samples

The simulations of genomic data from cancer samples have been made using
QuantumCat, part of the QuantumClone R package. First, a phylogenetic tree is
created with the following set of properties:

• In this tree, in a given sample the summed cellular prevalence of progeny
cannot be higher than its ancestor;

• The number of clones — nodes and leaves of the tree bearing at least one
observed variant — is a parameter of the simulation;

• As clones can be nodes of the tree, a variant can only belong to a single
clone;

• The tumor stems from a single ancestral clone.

Then, for each variant in each sample, a depth of coverage of the position is
simulated using a negative binomial distribution using the chosen mean depth of
coverage and parameters fitted on experimental data: coverage of variants called
from the patients published in Eleveld et al [67]. In hyperdiploid cases, the geno-
type and number of copies of each variant is also simulated.

Then the number of alternative reads for each variant is drawn with a binomial
law, as explained in 2.3.
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To validate this model, we hereby present the simulations of a 50× average
depth of sequencing, where all simulated variants are heterozygous, and the ob-
served germline VAF distribution from patient NB0784 (see Figure 3.4).

Figure 3.4: Distribution of variant allele frequency (VAF). Left: VAF distribu-
tion for variants called in the diagnosis sample from patient NB0784 and anno-
tated as germline by varscan 2. Right: the simulated VAF distribution of het-
erozygous variants for a 50× average coverage (106 simulated variants).

Evaluation of algorithms

The clonal reconstruction by the three algorithms is then assessed using normal-
ized mutual information (NMI), euclidian distance error (`2 error), and computa-
tional time. NMI and `2 will be detailed below.

The NMI assesses the mutual information of two group partitions, one being
the classes created by the simulation and the second being the reconstructed
clusters. In this section we will note Ω the set of clusters ωk and C the set of
clones cj . Note that for NMI, the two sets are interchangeable. Also, we will note
|X| the cardinal of set X , i.e. the number of elements in X. The NMI can then
be written:

NMI(Ω,C) = −2×
∑

k

∑
j
|ωk∩cj |
N

log
(
N×|ωk∩cj |
|ωk||cj |

)

∑
k
|ωk|
N

log
(
|ωk|
N

)
+
∑

j
|cj |
N

log
(
|cj |
N

) , (3.3)
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Where N is the number of observations (variants used for the clustering in our
case). NMI is a positive function of the reconstruction quality and is bounded by 0
(no mutual information between reconstruction and ground truth) and 1 —- case
of a perfect clustering.

The average `2 error measures the average distance in `2 norm between the
cellular prevalence of the cluster center attributed to the variant and the real cel-
lular prevalence of this variant.

For each parameter tested, 50 simulations were generated. Each simulation
was stored and given as input to all three algorithms. In our simulation experi-
ments, the following parameters varied within realistic ranges: depth of sequenc-
ing (100× to 1000×), fraction of contamination by normal cells (from 0 to 70%),
number of variants used for the clonal reconstruction (from 50 to 200), number of
tumor samples used for each patient (from 1 to 5) and number of distinct clones
per cancer (from 2 to 10).

3.2.2 Results from in silico experiments

This section has been adapted from Clonal assessment of functional mutations
in cancer based on a genotype-aware method for clonal reconstruction, Deveau
et al (see section 9.2).
Our analysis showed that QuantumClone is equivalent to or better than the best
published algorithm in clustering quality (Figure 3.5A) for diploid genomes. Al-
though in terms of NMI QuantumClone showed similar performances compared
to pyClone, QuantumClone generally outcompeted sciClone for NMI (p− value <
2.2 × 10−16, Welch two sample t-test). In particular, in samples with 50% con-
tamination by normal cells QuantumClone drastically outperformed sciClone (p−
value = 3.6 × 10−10 Welch one-side two-sample t-test). On average, Quan-
tumClone decreased the `2 mean error by 69% compared to sciClone and 22%
compared to pyClone, significantly improving predictions compared to both meth-
ods (p − value < 2.2 × 10−16). At high values of sequencing depth, all meth-
ods accurately estimated prevalence of variants (Figure 3.5B, `2 mean error <
0.059 at 1000× for all methods). However, at depth of sequencing of 100×,
which is the depth of sequencing currently used for the majority of WES and
WGS experiments, QuantumClone consistently gave better predictions than py-
Clone (p − value = 1.5 × 10−6, Welch one-sided two-sample t-test) and sciClone
(p − value = 4.9 × 10−9). In addition, compared to the other methods, Quantum-
Clone took the best advantage of data when multiple samples were provided for
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the analysis (p− value = 2.4× 10−10 and < 2.2× 10−16 for pyClone and sciClone
respectively, Welch one-sided two-sample t-test, for simulated tumors with five
samples).

Also, the average computational time was significantly decreased using Quan-
tumClone compared to sciClone (median 35 fold improvement), or pyClone (me-
dian 46 fold improvement, Figure 3.5C). In the case of highly heterogeneous tu-
mors (e.g. tumors with 10 simulated clones), the gain in computational time was
of 41 fold (p − value < 2.2 × 10−16) compared sciClone and 44 fold (p − value <
2.2 × 10−16) compared to pyClone. Similarly, when five samples were provided,
we observed a 74.1 fold (p− value < 2.2× 10−16) compared to pyClone and 74.2
fold (p− value < 2.2× 10−16) compared to sciClone.

We expect that in addition to the parameters discussed above, the degree
of genome rearrangement and chromosome duplication significantly affects the
quality of the mutation clustering and consecutive clonal reconstruction. Indeed,
values of cellular prevalence are linked to VAF values through the parameters
representing the number of copies of the variant and the number of copies of the
reference allele. Given an observed VAF value, a variant occurring in a high copy
number locus has more possibilities for values of cellular prevalence: a variant
with an observed allele frequency of 25% can only be linked to a cellular preva-
lence of 50% in a AB locus, while this variant can arise from cellular prevalence
values of 33.3%, 50% or 100% if the genotype at this locus is AAAB.

In order to validate QuantumClone on diploid and hyper-diploid genomes, we
simulated variants in loci of genotype AB, AAB, AABB, and in a nearly diploid
genome, where all possible genotypes can be observed (Figure 3.6). We ex-
cluded sciClone from this experiment as it cannot use variants from non-diploid
regions.

In all types of regions, QuantumClone and pyClone performed equally in terms
of NMI ( Figure 3.6A), but QuantumClone outperformed pyClone in terms of mean
`2 error with an improvement of 31% (Figure 3.6B, p − value = 5.7 × 10−11). In
addition, QuantumClone without parallelization was faster than pyClone in three
out of four setting (from 6.3 fold slower to 61.5 faster; 15.6 times faster on aver-
age), while the distributed algorithm outcompeted pyClone in all settings (average
computational time decreased by a 43 fold compared to pyClone, Figure 3.6C).

In addition, in the majority of cases QuantumClone correctly assumed the ex-
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Figure 3.5: Comparison of QuantumClone to existing methods.
(A)Normalized Mutual Information (NMI) is used to assess the quality of
variant clustering on simulated data, with a single parameter varying in each test.
This measure evaluates correct assignment of two variants to the same cluster.
QuantumClone (red) shows equivalent performance to the best tool in each
settings. (B) L2 average error is used to assess the error for each clustered
variants between its simulated position and its reconstructed position. (C)
Computational time necessary to complete the clustering with each algorithm.
Default parameters: two tumor samples without contamination sequenced at
100×; 6 clones; 100 mutations used for clustering.
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Figure 3.6: Quality of clonal reconstruction for mutations located in regions
of altered copy number. (A) Normalized Mutual Information shows equivalent
performances of pyClone and QuantumClone in diploid, triploid and tetraploid
tumors, or nearly diploid (ND), whereas the average L2 error (B) shows signifi-
cantly better results for QuantumClone.(C) QuantumClone can use parallelization
to handle longer computations that can be due to visiting all possible variant copy
states.

act number of copies of a variant in polyploid regions (average accuracy = 68.9%,
p− value < 2.2× 10−16, Figure 3.7).

3.2.3 Validation of the algorithm for hyperdiploid genomes

In order to demonstrate the validity of our approach on hyperdiploid samples, we
hereby show results from the comparison of QuantumClone to a version that is
forced to predict all variants at the single copy level, extending the results from
Figure 3.7.

As suggested by figure Figure 3.7, the correct selection of copy number sta-
tus by QuantumClone greatly improves clustering quality with higher NMI, and
decreases the average `2 error (see Figure 3.8).

3.2.4 Improvements in the QuantumClone algorithm

In this section, we illustrate the improvements made in QuantumClone through
time on simulated data. Even though the reconstruction algorithm has been highly
modified during the three years, the QuantumCat function for data generation has
been mostly conserved. This allows comparison of the different versions of the
tool.

As `2 average error was only considered as a possible metric between July
2016 and January 2017, it is not displayed in Figure 3.9.
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Figure 3.7: Fraction of correct guesses: QuantumClone is compared to a pre-
dictor that would assume that all variants are at the single copy state. As only a
single state is available for AB regions, both predictors achieve 100% accuracy. In
hyperdiploid regions, the maximal number of copies is determined by the number
of copies of the A-allele.

The first thing to notice is that the latest version is the one that has been the
most thoroughly evaluated.

Secondly, it may be surprising that the first version better dealt with single
sample data. This was in fact due to an error in the phylogenetic tree generation
for single samples that also prevented correct evaluation of QuantumClone on
this parameter a year later. For all other parameters we can see the incremental
gain in reconstruction quality. This is especially brought to light by the varying
number of simulated clones. This is also due to the fact that the default number
of simulated clones has changed between 2016 and 2017, and went from four to
six clones.

If the increase in quality between 2015 and 2016 was detrimental to compu-
tational time — as the gradient descent step was becoming more complex — by
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Figure 3.8: QuantumClone vs QuantumCloneSingle: QuantumClone is com-
pared to a its derivative where all variants are predicted at the single copy state.
(A) Comparison on normalized mutual information shows poorer performance of
the Single algorithm, with decreased NMI, especially in the case of nearly diploid
tumors (B) The `2 error shows drastically increased error when the algorithm
is forced to select the single copy level, especially in strictly triploid and stricly
tetraploid tumors.

switching to an accurate computation of gradient zeros we were able to drastically
decrease the computational time. Another factor that can explain the changes
between the penultimate and final versions of QuantumClone is the initialization
procedure, as described in subsection 3.1.3.

Last but not least, the total computational time for the simulated tests depicted
here (i.e. QuantumClone on diploid simulations only) amounts to 362,134.8 s or
∼ 100h.

3.3 QuantumClone guidelines harnessed from sim-

ulations

In this section, we will distinguish intrinsic factors of the tumor, that cannot be
known a priori, such as the fraction of normal cells in the sample, the number of
mutations or the number of clones in the sample, and the extrinsic factors: depth
of sequencing or number of samples sequenced. We provide guidelines to chose
appropriate values for factors extrinsic to the tumor.
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Figure 3.9: Comparison of QuantumClone versions. (A) Normalized Mutual
Information (NMI) is used to assess the quality of variant clustering on simulated
data, with a single parameter varying in each test. This measure evaluates cor-
rect assignment of two variants to the same cluster. (B) Computational time
necessary to complete the clustering with each algorithm. Default parameters:
two tumor samples without contamination sequenced at 100×; 100 mutations
used for clustering.
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3.3.1 Impact of extrinsic factors on the reconstruction

From the simulations, we can extract a few rules of thumb. First, doubling the
sequencing depth — going from 100× to 200×, only increases the NMI by an av-
erage of 8.7% (from 0.85 to 0.92) whereas doubling the number of samples (going
from two to four samples) results in an increase of 13.1% (from 0.85 to 0.96). In
addition, using several samples from the same patient can ease uncovering the
phylogenetic tree of the tumor. Note that the samples may not necessarily come
from different time points but can also come from different localization of the same
tumor, or a combination of both space and time changes. Note that the observed
`2 error decreases of 46% (from 0.041 to 0.022) for a doubling of sequencing depth
compared to 7% (from 0.041 to 0.038) if the number of samples is doubled.

It should be stressed that the decrease in `2, is affected by the number of
dimensions (d) of the working space. If a model makes an ε error in each direction,
the `2 error will be:

`2 =
√
d× ε2 = |ε|

√
d

As a result, if the error in each direction stays the same, doubling the number
of dimensions would multiply the `2 error by

√
2 ≈ 1.41. To accurately compare

the error between two dimensions, we define ε the average error per dimension:

ε =
`2

√
d

We recapitulate the results in Table 3.2. There, we can see that the average ε
decrease for a doubling of the number of samples (34% ) is only slightly smaller
than the average decrease for a doubling of sequencing depth (45%) .

Sequencing depth Number of samples `2 ε `2 decrease ε decrease

100× 2 0.041 0.029
200× 2 0.022 0.016 46% 45%
100× 4 0.038 0.019 7% 34%

Table 3.2: Sequencing depth and number of samples comparison The `2 error
can partially mask an improvement when the number of dimensions increases. To
accurately compare the error decrease we show ε the decrease in `2 normalized
by the number of dimensions.

The Pearson correlation between the sequencing depth and NMI was of ρ =

0.611, compared to ρ = 0.816. for the increase in the number of samples and NMI
(both p-values < 2.2 × 10−16). In terms of `2 error, the correlation between the
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depth of sequencing and `2 was of −0.714 (p-value < 2.2 × 10−16), compared to
−0.422 between number of samples and `2 (p-value= 3.1× 10−12).

As a result, we can conclude that an increase in the number of samples should
be favored when possible compared to an increase in the sequencing depth.

3.3.2 Impact of intrinsic factors on the reconstruction

The contamination by normal cells in the sequenced sample remains uncertain
before sequencing, but can be estimated by pathologists. The number of variants
in the tumor or the heterogeneity of the tumor are also unknown prior to the anal-
ysis.

We here show that the number of variants used to reconstruct the tumor barely
affects the quality of the clustering, with a Spearman ρ equal to −0.263 (p-value
= 2.4× 10−5) for the `2 error and ρ = −0.075 (p-value = 0.24) for the NMI.

With an opposite behavior, the fraction of contaminating cells negatively im-
pacted both NMI (ρ = −0.629, p-value < 2.2 × 10−16), and `2 (ρ = 0.738, p-value
< 2.2×10−16). In the same way, the clonal heterogeneity negatively impacted NMI
(ρ = −0.629, p-value < 2.2×10−16), and `2 error (ρ = 0.738, p-value < 2.2×10−16).

We will see in subsection 5.2.2 how to deal with higly remodeled tumors with-
out loss of accuracy.
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Chapter 4

Contributions to variant calling

The real risk with AI isn’t malice but competence. A superintelligent AI
will be extremely good at accomplishing its goals, and if those goals
aren’t aligned with ours, we’re in trouble.

— Stephen Hawking, Reddit Ask Me Anything, 2015

Biological data have several issues in machine learning. We already men-
tioned the ‘small p large n’issue, where the number of observations is largely
inferior to the number of features. The second issue is the rather high variability
and noise that exists in the data from biological experiments. One such example
can be highlighted by the use of zero-inflated mixture models in the case of single
cell experiments for example. In this part, we will focus on the noise associated
to variant calling from DNA sequencing.

4.1 DREAM Challenge

In this section I will detail insights and models elaborated as a part of a team
participating in a DREAM challenge. Only the models I personally implemented
will be described, logistic regression and Negative Matrix Factorization models
developed by Judith Abecassis will not be presented.

The ICGC-TCGA SMC-DNA Meta challenge1 is an expansion of the ICGC-
TCGA Dream Mutation calling challenge. It was organized by Paul C. Boutros
(Ontario Institute for Cancer Research), Josh Stuart (University of California,
Santa Cruz), Gustavo Stolovitzky (IBM, DREAM), Stephen Friend (Sage Bionet-
works), and Thea Norman (Sage Bionetworks).

In the ‘original’ Mutation calling challenge, participants were asked to design

1https://www.synapse.org/
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the best variant calling pipelines, meaning that they would be ranked both on
precision and recall for the variants called, starting from BAM files.

The Mutation calling challenge was divided in subchallenges, either at differ-
ent time points, or on different data (simulated vs patient, SNV vs SV). If we
focus on the SNV challenges, the timeline allowed competitors to improve their
pipelines between two subchallenges by using the results of the previous one. As
a consequence, there is no evidence that the same pipeline would be used in all
subchallenges, and it is reasonable to assume that no two submissions used the
same pipelines between two subchallenges.

The organizers from the mutation calling challenge had found that, for each
subchallenge, using a majority vote of the five best ranked submissions to predict
true positives always outcompeted the best submissions from participants. In or-
der to further improve results from variant calling, the Meta challenge aimed at
finding the true positives among the calls made by participants of the Mutation
calling challenge using machine learning techniques to aggregate predictions —
by either using five or fifty pipelines. The ranking was made using the F1 score,
which is defined by the harmonic mean of precision and recall. The true positives
were given for the simulated samples to be able to train a supervised algorithm,
and the predictions were assessed on the data from both simulation and real pa-
tients.

From the pipeline, only the number of the submission was provided, which
could be linked to a team, but could not give information on the tools or parame-
ters used.

It is to be noted that, as the pipelines used for the submissions in the Muta-
tion calling challenge differed between two samples, it was impossible to learn
features for a given pipeline — such as weighing prediction of the pipeline by its
accuracy or recall.

4.1.1 Description

Data features provided by organizers

The data provided by organizers of the challenge contained 14 samples (four
from simulations, five from colorectal cancer, and five from prostate cancer), and
for each sample the organizers provided:

• All positions called by at least one pipeline;
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• For each pipeline (referenced by its submission number), the status of each
position;

• 13 genomic features at this position, such as base quality, number of refer-
ence and alternative reads, mapping quality, and strand bias.

In addition, ground truth was provided for the four simulated samples, and
users could add any relevant biological feature. We chose to add information
about the localization of the SNV inside a repeated region.

Synthetic samples 1 to 4 (noted IS1–4) are of increasing difficulty, with addi-
tion of contamination by normal cells, structural variants, and subclonal variants.
In addition, the number of variants called in each sample varied by orders of
magnitude (see Table 4.1).

Sample Number of calls Number of true positives Number of pipelines

IS1 214541 3535 119
IS2 51108 4303 69
IS3 22884 7709 67
IS4 129091 15163 223

Table 4.1: Overview of DREAM training dataset. We here give the number of calls
made at least by one pipeline, the number of these that are true positives, and
the number of pipelines available.

We can see that progresses are made in terms of accuracy with time. This
refinement of pipelines is also illustrated in Figure 4.1, for S1 to S3.
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Figure 4.1: F1 evolution in DREAM data set. The F1 score on the simulated
data set increased with each iteration — IS1 through IS3 — except for IS4. In
that case the increased complexity between IS3 and IS4 drastically reduced F1
score.

A first data exploration also shows that the predictions of pipelines were highly
conserved within each teams (Figure 4.2). This is visualized using a hierarchical
tree clustering on all variants of a sample. We can also note that the consensus
obtained by majority vote of all pipelines are close to one another, despite the
poor performance of multiple pipelines.

In Figure 4.2 we can also see submissions from a team tends to cluster to-
gether, showing incremental changes in the pipeline.
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Figure 4.2: Hierarchical clustering of pipelines based on predicted posi-
tions. This clustering is based on a Jaccard distance between the pipelines. A
ward method is then used to combine classes. The consensus obtained by ma-
jority vote of all the pipelines and the ground truth are also shown. The different
colors of submission names reveal the team which has made the submission.
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Feature augmentation and selection

Biological data can be error prone. The human genome contains repeated se-
quences that only have few nucleotides of difference. The mapping to such parts
of the genome can be highly difficult, and wrongfully attributed sequences will re-
sult in predicted mismatches.

In order to avoid such bias, we added information from the UCSC repeated
regions track. We also included the GC content (percentage of G and C nu-
cleotides in a 50bp region around the variant), the variant allele frequency, and
the homopolymer rate, defined by the sum of squared homopolymer lengths nor-
malized by the length of the sequence. For example, the AAATTGAGG would
have a homopolymer rate of 32+22+12+12+22

9
= 19

9
≈ 2.11. These features are there

to indicate the potential sequencing error in sequences that integrate a high de-
gree of repetitions.

In addition, we integrate the read base quality. The base quality per position
was provided by challenge organizers.

Finally, we added the consensus ratio, as the number of selected pipelines
that predicted a variant at this position. This feature assumes that the selection
of pipelines will collectively behave in a similar trend in all samples. Nonetheless,
the fact that pipelines changed between samples prevented learning directly on
the pipelines.

4.1.2 Proposed model and cross-validation

Two challenges were created, one using five or less pipelines. In the second
challenge participants could use a maximum of 50 pipelines. The selection of
pipelines was left to the competitors.

In order to maximize the potential recall, we chose to select the pipelines max-
imizing the number of variants called.

In order to test models, we trained a model on three samples and tested on
the fourth. This procedure was applied to all samples consecutively, and mean
F1 as well as the median absolute divergence (MAD) was used to evaluate the
model.

56 Chapter 4



Clonal evolution in neuroblastoma

Pipeline selection

In the two sub-challenges, the maximal number of pipelines that could be used
for predictions was lower than the number of submissions provided. This has for
consequence that the first step of the analysis will be a selection of a given num-
ber of pipelines.

Two different strategies had to be balanced: one could provide pipelines with
a very high accuracy - further filtering refining the selection of variants - or a very
high recall. The variants that were not called by at least one of the selected
pipelines could not be used for predictions.

We define a fictional consensus pipeline, as the hypothesized pipeline that for
each tumor sample independently, only the variants predicted by a majority of
pipelines are considered as called.

In order to maximize the accuracy, we selected pipelines that were the closest
to the consensus - in terms of Manhattan distance. The strategy to maximize the
recall was to select the pipeline with the highest number of variants, remove all
these positions, then repeat until the desired number of pipelines is reached.

First models only learned on pipelines close to consensus, limiting recall. Max-
imizing recall however lead to numerous false positives. Balance was achieved
by training three models: one on a few very stringent pipelines, the second on ex-
tensive pipelines, and the third on the aggregation of both stringent and extensive
models (see Figure 4.3).

4.1.3 Results from the different pipelines

In this section, we will discuss results as provided by DREAM challenge organiz-
ers.

In silico data

The simplest idea tested was the majority vote of pipelines close to the consensus
(see Table 4.2).

We here show that the majority vote of the five pipelines closest to consensus
achieved a high F1 score, that was only lightly decreased by a higher thresh-
old, mainly due to a decrease in sensitivity not balanced by the increased preci-
sion. Using 50 pipelines achieved an even higher F1 score, even if this procedure
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Initial pipelines

Consensus

Selected pipelines
Closest to 
consensus

Maximizing
variants set

RF consensus RF mixt RF lax

RF on 
predictions

Figure 4.3: Random forest (RF) model for DREAM. The consensus pipeline
is generated by majority vote of all pipelines. From the initial pipelines only a
fraction of the closest to the consensus will be taken. To reach 5 or 50 pipelines,
the set of pipelines is completed by addition of pipelines maximizing the set of
variants called. Three different models are trained using the fraction of pipelines
that have called a variant as well as other features - such as mappability or variant
allele frequency. The prediction of the three models is aggregated using another
random forest.
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Number of pipelines Threshold for prediction F1 MAD

5 0.5 0.9451 0.0269
5 0.8 0.9414 0.0294
50 0.5 0.9572 0.0124

Table 4.2: Results from majority vote in silico.The threshold for prediction is
the fraction of the pipelines agreeing on a true positive to predictive a variant at
this position. MAD: Median Absolute Deviation.

seems highly unlikely to be used in diagnosis, as the use of 50 different pipelines
would be too much time-consuming for a single sample.

The score could be increased by using features from genomic context and
variant context, as shown in Table 4.3. For the first three models, the training
was realized on the same samples as the test, this means that the measure only
shows how close to the training is the fit, and can result in overfitting the data.
The line marked with a ∗ has been trained only on sample IS4. With this, we
show that by training the sample of higher complexity, it was possible to learn the
model behind the simulation.

Number of Consensus/Recall Filter F1 MAD Feature
pipelines ratio set

5 0.4 0.4 0.9754 0.0250 A
50 0.3 0.4 0.9774 0.0177 A
50 0.3 0.3 0.9679 0.0091 B
50∗ 0.3 0.3 0.9571 0.0415 B

Table 4.3: Results from random forest models in silico.Training for set A con-
tains mean base quality, allele frequency, tumor coverage, variant inside or out-
side of a repeated region, mean mapping quality, homopolymer rate and GC con-
tent. Set B additionally contained distance to closest SNP, and if the variant was
inside intergenic or intronic regions. ∗ Training was only realized on tumor sample
IS4.

4.1.4 Discussion: difference between in silico and real data

First, we can note that results provided for real sequencing data were assessed
using specificity and not F1 score contrary to simulated data. Specificity (also
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called true negative rate) is the fraction of true negatives correctly identified as
such. The issue with specificity is that it can be "hacked" by predicting many false
positives.

We can see the poor performance of the pipelines in this setting, with a speci-
ficity twice as low as the F1 score from the previous experiment (Table 4.4). The
fact that we did not use a supervised method for these submissions shows that
there is an important discrepancy between simulated and real data in this chal-
lenge. This discrepancy is highlighted in Table 4.5, with performances lower than
the consensus alone.

Number of pipelines Threshold for prediction Specificity MAD

5 0.5 0.4104 0.0620
5 0.8 0.4160 0.0560
50 0.5 0.4224 0.0649

Table 4.4: Results from majority vote cancer samples.The threshold for pre-
diction is the fraction of the pipelines agreeing on a true positive to predictive a
variant at this position. MAD: Median Absolute Deviation.

Number of Consensus/Recall Filter F1 MAD Feature
pipelines ratio set
5 0.4 0.4 0.3796 0.1508 A
50 0.3 0.4 0.3723 0.0431 A
50 0.3 0.3 0.3693 0.0343 B
50∗ 0.3 0.3 0.3577 0.0179 B

Table 4.5: Results from random forest models cancer samples.Training for set
A contains mean base quality, allele frequency, tumor coverage, variant inside or
outside of a repeated region, mean mapping quality, homopolymer rate and GC
content. Set B additionally contained distance to closest SNP, and if the variant
was inside intergenic or intronic regions. ∗ Training was only realized on tumor
sample IS4.

From these we can conclude that the model used to generate the data did
not fit reality closely enough to extract relevant features for filtering. This is also
illustrated by the fact that training on three simulated samples and testing on the
fourth resulted in an F1 score of 0.979 (MAD = 0.005) for our more complex
model.
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As a result, for the clonal reconstruction problem, filters had to be redesigned
to select only high quality variants. Final results of the challenge are not available
yet.

4.2 Filters for clonal reconstruction

In this section we will detail the filters used for to limit the number of false pos-
itives in the variant calling for clonal reconstruction without necessity for visual
inspection.

4.2.1 Presentation of the neuroblastoma WGS cohort

The cohort used in Clonal assessment of functional variants in cancer based on
a genotype-aware method for clonal reconstruction consists of 22 patients (see
Table 4.6) for which the germline DNA and tumoral DNA both at diagnosis and
relapse were sequenced. Patients whose ids start with ‘NB’come from the French
cohort. Samples were sequenced at 50× for the germline DNA, and 100× for the
tumoral DNA. Samples of patients NB308, NB3099, NB804, NB1224, NB1269
and NB1382 were sequenced at the Beijing Genomic Institute (BGI), the remain-
ing NB patients were sequenced at the Centre National de Génotypage (CNG).
Samples whose ids start with ‘PA’come from the US cohort and were sequenced
at 100× both for germline DNA and tumoral DNA at Complete Genomics (CG).

For these patients, estimation of copy number status was realized using Control-
FREEC (version 7.2, see Figure 4.4) which also gave an estimation of the con-
tamination by normal cell of the samples. This estimation is in agreement with
purity estimation given by pathologist (Table 4.7).

4.2.2 Raw output of variant calling

Variant calling was performed using Varscan2 version 2.3.6[20]. Due to the very
large size of the data, performing multiple variant callings and then aggregat-
ing them by majority vote was out of line because of both time and size con-
straints. For example, Strelka[22] requires an estimated 50 cpu-hours to com-
plete a variant calling for an exome sequenced at 40 to 60×. With 44 whole
genomes sequenced at 100× (roughly 200× the size of the reference provided
by Strelka authors), and assuming that the time required is linear with the size of
the data, we can estimate the time for a single variant calling of the full cohort to
be 44× 50× 200 = 440, 000 hours, or the equivalent of 50 years of computation.

Chapter 4 61



Clonal evolution in neuroblastoma

P
atient

R
isk

S
tage

M
Y

C
N

G
ender

A
ge

at
Tim

e
to

Tim
e

to
S

tatus
D

iagnosis
stratification

status
diagnosis

relapse
lastreport

N
B

1178
H

4
N

/A
m

p
M

30
21

24
D

ead
R

etroperitoneum
N

B
1224

L
2

N
/A

m
p

M
15

8
18

A
live

M
ediastinum

N
B

1269
H

4
A

m
p

M
14

9
11

D
ead

R
etroperitoneum

N
B

1382
H

4
A

m
p

M
4

50
64

D
ead

A
bdom

en
N

B
308

L
2

N
/A

m
p

F
2

21
91

A
live

A
bdom

en
N

B
399

L
4s

N
/A

m
p

M
0

7
134

D
ead

S
ubcutaneous

nodule
N

B
804

I
4

N
/A

m
p

F
2

26
56

A
live

S
ubcutaneous

nodule
PA

P
V

E
B

L
2

N
/A

m
p

M
57

9
40

D
ead

A
drenalgland

PA
R

B
A

J
I

3
N

/A
m

p
M

1
10

88
A

live
R

etroperitoneum
PA

R
H

A
M

I
4

N
/A

m
p

F
11

1
81

D
ead

Pelvis
PA

S
H

FA
H

3
A

m
p

F
13

7
11

D
ead

A
drenalgland

PA
S

N
P

G
I

3
N

/A
m

p
F

10
10

63
A

live
R

etroperitoneum
PATN

K
P

H
4

N
/A

m
p

M
113

20
40

A
live

R
etroperitoneum

PATY
IL

I
4

N
/A

m
p

F
11

8
16

D
ead

A
bdom

en
PAU

D
D

K
I

3
N

/A
m

p
M

12
11

38
A

live
Pelvis

N
B

0784
4

N
/A

m
p

F
26

12
94

A
live

Pelvis
N

B
1177

4s
N

/A
m

p
M

13
10

49
A

live
S

ubcutaneous
-para

vertebralleft
N

B
1361

L
4s

N
/A

m
p

M
27

16
27

D
ead

S
urrenalm

ass
N

B
1385

H
4

A
m

p
M

147
8

14
D

ead
M

D
N

B
1434

H
4

A
m

p
F

26
10

27
D

ead
Leftm

andibula
N

B
1457

L
L2

N
/A

m
p

M
12

6
22

A
live

R
etro-pharyngal

N
B

1471
1

N
/A

m
p

M
64

7
20

A
live

Thorax

Table
4.6:

N
euroblastom

a
cohort:

C
haracteristics

ofneuroblastom
a

sam
ples

used
for

data
analysis.

A
ges

atdiagnosis
is

given
in

m
onths.H

:H
igh;I:Interm

ediate;L:Low
;N

/A
m

p;N
on

am
plified;A

m
p:

A
m

plified;M
:M

ale;F:Fem
ale.

62 Chapter 4



Clonal evolution in neuroblastoma

Figure 4.4: Copy number summary. Summary of the copy number profiles for
all samples determined by Control-FREEC. The copy number is represented by
a color, with the genomic position in abscissa and the sample on the y-axis
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The raw output from Varscan shows that a bias exists between sequencing
platforms (CNG vs BGI) and sequencing technology (Illumina vs Complete Ge-
nomics) (see Figure 4.5). Complete genomics reads have the particularity to bear
a deletion in the middle of the read, making impossible to remap the reads or do
a realignment around indels except with proprietary tools.
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Figure 4.5: Number of calls from Varscan2. The number of variants has been
previously correlated with the age of the patient in pediactric tumors [9]. Here we
demonstrate a sequencing platform effect between samples sequenced at the
BGI, CG, or CNG.

The goal of filters is then to:

1. Filter out false positives;

2. Reach a comparable number of variants called independently of the plat-
form and technology.

4.2.3 Retrieving high fidelity variants

We define high fidelity variants as variants with low variance on the observed VAF,
and lowest probability to be false positive as possible (see section 9.2).
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To do so, we selected variants with at least 50× coverage at the position and
required that a minima 10% of reads support the variant allele.
In addition, variants were required to be located in regions of maximal mappabil-
ity, assessed by the UCSC 100bp mappability track.
Local mappability does not exclude regions that can be highly similar to other
regions of the genomes. To exclude a bias coming from mismapping, we only
included variants outside of repeat and duplicated genomic regions (assessed
by the UCSC repeat masker, simple repeat, and segmental duplication region
tracks).
We further filtered mutations that created a stretch of four or more identical nu-
cleotides. By this we mean an A>C transition in a CCACC sequence for example,
or T>G in GGGT (see Figure 4.6).

Figure 4.6: Example of a likely false positive call extending a stretch of
polynucleotides. In the relapse sample we can observe a G>A substitution be-
fore a stretch of As. Reads with the substitution also present mappability issues,
as shown by the high number of variants on those reads. The fact that the varia-
tion is specific to the relapse shows the variability of the mapping step.

We filtered out variants corresponding to polymorphisms present in more than
1% of the population (present in snp138, 1000Genomes, esp6500) except if it was
a known cancer related variant (COSMIC database for coding and non-coding
mutations). An usual way of filtering out sequencing and mapping artifacts is to
remove all variants called in at least one sample of germline origin. However, it
should be noted that this way of doing does not scale with cohort size (the big-
ger the cohort the more positions will be filtered out), and may introduce biases.
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Indeed, ALK mutations have already been observed as germline variants, espe-
cially in hereditary neuroblastomas[11, 12].

Finally, we only kept mutations located in regions where the genotype evalu-
ated by Control-FREEC was available.

4.2.4 Assessment of applied filters

It should be noted that no re-sequencing of the variants predicted as high fidelity
has been realized. This can be legitimately explained by the cost and time of
such procedure, and the scarcity of biological material. As a result, validation of
the filters have been made by visual inspection of the sequences by Integrative
Genome Viewer (IGV) [68, 17].

In addition, we used the correlation between age of patient and number of
variants[9] to evaluate the quality of the filtering as reducing platform biases. Af-
ter all filters, a significant correlation between age and variants called is found
Figure 4.8.
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Figure 4.7: Effect of filtering on the number of somatic variants called.
The initial number of variants corresponds to the raw output from Varscan2;
the “VAF_Depth” filter selects variants with at least 10% of the reads supporting
each variant and at least 50 reads mapping at the position of each variant; the
“Mappability_100bp” filter requires the mappability of a 100 bp DNA sequence
to be 1 at the position of the variant (the UCSC genome browser 100 bp map-
pability track); the "Germline" filter removes variants found at germline level in
other patients of the cohort; the “Stretches” filter removes variants that would
create a homopolymer of three or more identical bases; the “SNPs” filter re-
moves variants that are present in the SNP databases at a frequency higher
than 1% except when the variant is listed in the COSMIC database; finally,
the “UCSC_RM”,“UCSC_SM”,“UCSC_SegDup” filter removes variants that are
present in respectively repeat masker, simple repeat and segmental duplication
regions from the corresponding UCSC genome browser track.
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Figure 4.8: After filtering, number of variants correlates with age. As previ-
ously published[9], this effect is also found after filtering in our cohort: Spearman’s
ρ = 0.44, p − value = 6.3 × 10−3. Note that the number of variants at relapse is
highly correlated to the number of variants at diagnosis (Spearman’s ρ = 0.93,
p− value = 3.4× 10−6).
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Chapter 5

Combining enrichment and clonal
reconstruction results

EVERYTHING IS DEEPLY INTERTWINGLED. In an important sense
there are no “subjects” at all; there is only all knowledge, since the
cross-connections among the myriad topics of this world simply cannot
be divided up neatly.

— Theodor Holm Nelson, Computer Lib/Machine Dreams, 1974

As exposed in the introduction, neuroblastoma has only very few recurrent
genomic alterations, especially at the single nucleotide level. This raises the pos-
sibility that it is not specific genes that are altered but pathways. This implies that
mutational signal should not be observed at the gene level but at a larger level.

5.1 How to find pathways enriched in mutations

Enrichment of a pathway will depend on the method of description of the path-
way. In the case of networks (directed or undirected), diffusion strategies have
been developed [69, 70, 71]. However, when the pathway is defined as a list of
genes, and only discrete events are observed - such as mutations - the simplest
model is to compare the number of mutations observed in genes from the path-
way compared to the expected number of genes expected to be mutated if all
pathways had equal distribution [72]. Finally, the last method consists in group-
ing genes by ontology, which is equivalent to the previous method except for the
fact that it does not work directly with gene networks but with the ontology of
genes[73, 74, 75, 76].

Nonetheless, all these methods require that variants with a functional impact
are given as input, as passenger variants are not considered relevant for the
analysis of disrupted pathways.

71



Clonal evolution in neuroblastoma

5.1.1 Finding variants with biological impact

In this section we will differentiate substitutions that are in protein coding regions
(exons), or in non-coding regions (intronic, intergenic regions). In protein coding
regions, substitutions can be silent (the amino acid is not changed), missense
(the amino acid is changed for another one), or non-sense (also called stop-gain
as the trinucleotide is replaced by a stop codon, truncating the protein). While,
arguably, silent mutations are thought to be benign, in reality these mutations can
be deleterious due to changes in the RNA and protein structure [77]. Stop-gain
substitutions are often thought as highly deleterious for the protein. However,
translation and transcription mechanisms can lead to a functionally active pro-
tein even in the case of a stop codon. For example, exon skipping (when the
exon bearing the mutation is removed from the RNA by splicing events), stop
readthrough (when the stop is ignored), or reinitiation (when the starts from a
new ATG trinucleotide) [78, 79] events can potentially reduce the impact of a stop
gain.

This shows that even in the simplest cases, it is difficult to assess the impact
of a variation on the protein function. To solve this issue, we relied on prediction
algorithms presented in the next paragraphs.

Predicting impact on protein structure

SIFT and Polyphen are two widely used prediction tools that help prioritizing can-
didate genes with putative deleterious variants. Kumar et al. [80] summarizes
the differences between SIFT [81] and Polyphen [82] by the fact that SIFT solely
uses sequence homology whereas Polyphen uses both sequence homology and
protein structure from SWISS-Prot.

In more details, SIFT uses sequence homology, as described in Figure 5.1.
It does not directly try to reconstruct the 3D structure of the protein, but looks at
local conservation of a protein sequence to establish if the substituted amino acid
has the same characteristics as a given proportion of homologous and paralo-
gous sequences. Amino acid can be electrically charged, which often leads to an
hydrophilic behavior, and would preferentially located at the surface of the pro-
tein, whereas neutral amino acids tend to have a more lipophilic and hydrophobic
behavior, which would be more often found on the inside of proteins. As a result,
change in those characteristics can lead to different structures which in turn could
change the activity of the protein.
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Figure 5.1: SIFT workflow, from [80]. For the protein sequence IRRLRPMD,
first SIFT looks for sequences with high homology in homologous and paralo-
gous genes. After alignment of the sequences, a conservation score for each
position is computed, telling if the position requires a highly conserved amino
acid, an hydrophobic / hydrophilic amino acid, or if the position is not conserved.
The probability to observe the amino acid coming from the substitution is then
compared to a threshold to separate benign, possibly damaging and damaging
mutations.

Polyphen2 uses sequence conservation, protein structure and protein function
annotation. These pieces of information are combined by a classifier to predict
the probability of a variant being deleterious (Figure 5.2).

Funseq2

We detailed in the previous section, the prediction of impact of variants in the
protein coding regions. In whole genome sequencing, we also have access to
non-coding sequences, that could be altered by a genetic event and impact the
behavior of the tumor. One such possibility is the disruption of transcription factor
binding sites (TFBS), which could lead to a change in the gene expression level
in the tumor (Figure 5.3).

Testing all possible motifs of all transcription factors would be extremely te-
dious, and would necessitate important statistical corrections. In order to avoid
these issues, we relied on Funseq2, which estimates the impact of variations both
in coding and non-coding regions.

The first step of Funseq2 [84, 85] relies on aggregating data from databases
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Probabilistic classifier
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Figure 5.2: Polyphen-2 workflow from [82]. Polyphen-2 uses as features for
the probabilistic classifier 11 features, some of which are extracted from the
multiple sequences alignment, whereas some others are physical (fluctuation of
molecule around its position, also called B-factor) or biological properties (Pfam
is a database of protein function domains). In the end, a prediction ranging from
benign to deleterious and a confidence in the prediction are provided.

such as 1000Genomes, COSMIC, or GERP, to establish a list of genes that are
conserved between species or targeted in cancer. After this step, the scoring
(see Figure 5.4) uses information such as breaking or gaining motifs (consensus
sequence of a TFBS), or centrality of the gene in a gene network.

All these information can be aggregated to predict variants of potential inter-
est. However, the total number of variants predicted to be deleterious by at least
one of the three algorithms is rather high, and not all deleterious variants can be
of interest for the disease studied. In order to focus on highly relevant genes, and
due to the very low frequency of recurrently altered genes in neuroblastoma, we
extracted genes in pathways recurrently altered at the cohort level.

5.1.2 Diffusion networks and network based stratification

Introduction to networks

We define a biological network as a network of species represented as nodes and
biological interactions represented by edges. The nodes in the graphs can be the
DNA sequence of a gene, the transcribed RNA, or, when relevant, the protein
associated with the gene. A biological interaction can be a direct interaction, for
example two proteins that bind together, or can be through activation or repres-
sion of a gene.

Networks that use information from activation or repression tend to be di-
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Consensus 
sequence

Non-stable binding

RNA expression

Destruction Creation

Mutation

Figure 5.3: Transcription factor binding site conversion. A mutation in a se-
quence can either create a TFBS, leading to expression of the RNA, or disrupt
the sequence, leading to loss of expression of the RNA. Adapted from In pursuit
of design principles of regulatory sequences, [83]
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Figure 5.4: Funseq2 prioritization. The variant prioritization step will annotate
input variants and then score them using the weighted scoring scheme. Features
used in the weighted scoring scheme can be classified into ‘functional annota-
tions’, ‘conservation’, ‘nucleotide-level analysis’, ‘network analysis’, and ‘recur-
rence’. ‘Recurrence’ feature could be detected from user-input cancer samples
and also from ‘Recurrence DB’ (* means optional. User can choose to use the
‘Recurrence DB’ or not). Different from other features, ‘recurrence’ depends on
the user-input (for example, if user only uploads one sample and chooses not
to use the ‘Recurrence DB’, then ‘recurrence’ feature will not be observed for
any variant). Each feature is assigned a weighted score (Material and methods).
Scores obtained from the top grey panel are called ‘core scores’, which is inde-
pendent of the user’s choice (see above for ‘recurrence’ feature). Variants with
the ‘recurrence’ feature are assigned an additional score in the final output. In ad-
dition to features used in the scoring scheme, other features are used to highlight
potentially interesting variants, such as variants associated with known cancer
genes. Figure and legend from Fu et al [85]
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rected, as a gene can effect its targets, but this effect is often unidirectional.
The action of A on B will be written as A → B. Protein-protein interaction are
undirected as they only depict the fact that two proteins can be found spatially
interacting. While it is always possible to convert a directed network to an undi-
rected one, the opposite is false.

It can be difficult to assess the role of a perturbation in a network and general
idea relies on diffusion equations. In the same idea that heat sources can diffuse
energy through physical links, the perturbation of the network can be passed to
neighboring chemical species through interaction. For example, if A is responsi-
ble for the expression of B and we disrupt A, we expect B not to be expressed
anymore.

Diffusion networks [86, 87] rely on the idea that a variant affecting the func-
tional properties of a protein or non-coding RNA (ncRNA) will not only affect the
protein itself but also neighboring genes of the network (see Figure 5.5).
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Figure 5.5: Disruption of a linear pathway. The biological network shows the
healthy pathway. With gene B deleted, all downstream genes are also affected, as
shown in the damaged network. When using a diffusion model with low diffusion
rate, only genes A and C will also appear affected by deletion of gene B (network
A), while a higher diffusion rate will lead to gene D also being affected (network
B).
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This class of algorithms requires as minimal knowledge an undirected net-
work, meaning that interactions occur both in direction A → B and B → A.
However, testing all possible sub-networks of k genes for a network of N genes
requires testing

(
k
N

)
= N !

k!(N−k)!
possibilities. Consequently, testing all possible

sub-networks of sizes 1 to N would ask for
∑N

k=1

(
k
N

)
= 2N − 1 evaluations1.

Diffusion model in linear (signaling) pathway

If we take the example of a linear pathway Figure 5.5, which can model a signal-
ing pathway, the deletion of a gene in the middle of the pathway should lead to
a disruption of the pathway integrity due to the lack of redundancy (Figure 5.5).
A diffusion network will not predict that all genes downstream of the deletion are
affected, but only neighbors, with an effect decreasing with the distance to the
gene, the rate of the decrease being a parameter of the algorithm.

However, most of the time, pathways have more complex architectures, and
the deletion of a gene may not be sufficient to disrupt the pathway. Some genes
in the network play a more fundamental role than others, as they are used in
the cross-talk between different elements of the network. These genes, termed
hub genes, should be considered as good candidates of genes being targeted by
cancer, if the pathway has to be shut down. TP53 is one such example of gene
recurrently altered in cancers and is also central to many pathways [88, 89, 90]
(see Figure 5.6).

Other times, however proxy genes (genes that have many neighboring genes
somatically mutated, but non altered themselves) can be more relevant to un-
derstand the disease or be used as predictors of the disease [71]. This case is
depicted in Figure 5.7, where the gene with the highest impact is not mutated
itself, but has mutated neighbors.

Use of diffusion network assumes a high reliability in the edges of the graph,
as the diffusion process can only occur between two entities that are linked to
one another. In addition, this process can be computationally intensive in large
networks as previously described. In order to bypass these restrictions, we detail
enrichment of molecular mechanisms in the next subsection.

1Demonstration of this comes from the development of (X + 1)N =
∑N

k=0

(
k
N

)
× 1k × 1(N−k).

For X = 1, we find 2N =
∑N

k=0

(
k
N

)
× 1k × 1(N−k)
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Figure 5.6: The p53 network, adapted from Liu et al [91].

5.1.3 Gene ontology

Two widely used algorithms to detect over represented pathways in a gene set
are Panther [73, 74] and DAVID[75, 76]. Both rely on gene ontology (GO), which
is defined as ‘the framework for the model of biology. The GO defines concept-
s/classes used to describe gene function, and relationships between these con-
cepts. It classifies functions along three aspects: molecular function [...], cellular
component [...], [and] biological process.’2

Panther uses a binomial test to assess the over-representation or under-representation
of a class in the input list [92]. An example is given in box 3 from Mi et al. [92], 440
genes map to the term ‘induction of apoptosis’out of the roughly 20,000 genes of
the human genome. This means that about Papoptosis2.2% of the genes are con-
sidered as linked to this process. This means that for a gene list of K = 500 items,
we would expect about kapoptosis = 11 of them to be related to apoptosis. If more
(respectively less) than that are found, we can estimate if this list is statistically
enriched (respectively depleted). The corresponding p-value is computed with
the formulas:

Penriched =
K∑

k=k(C)

K

k
PK

(C)(1− P(C))
K−k (5.1)

2http://www.geneontology.org/
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Functional Damaged

Figure 5.7: Explanation of diffusion models: case of hub genes. In this net-
work, two genes were altered. By diffusion, the highest score will be found in a
gene that is unaltered but central to the network. This gene can then be further
studied, and linked to different aspect of the disease such as survival.

Pdepleted =

k(C)∑

k=0

K

k
PK

(C)(1− P(C))
K−k (5.2)

DAVID uses a Fisher exact test to compute enrichment or depletion of a class
in the list. It also incorporates annotations from databases outside of GO, such
as KEGG [93] and BioCarta [94]. The results of the different databases are then
aggregated using a κmeasure, which evaluates agreement between the two sets.
Both DAVID and Panther enrichment analysis have been used to assess the en-
richment results in neuroblastoma from the ACSNMineR which will be presented
in the next section.

5.1.4 Enrichment analysis of gene sets

N.B.: Gene Set Enrichment Analysis (GSEA) is a computational method main-
tained by the BROAD Institute. Here we describe enrichment analysis of gene
sets, without capitals to avoid confusion.

Enrichment analysis of gene sets use ass input list(s) of genes or variants, and
looks for statistical enrichment in this list. Contrary to diffusion networks, as the
input is a list of genes, there are no information coming from interaction between
two genes - which can be seen as more robust, but also as losing knowledge from
the network.
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Statistical model of gene enrichment

The goal of statistical is to compare a gene set, or module, to a control group.
Usually, a module is compared to the statistical universe, which is the list of genes
that can be observed in the experiment. For example, the universe from a chip
analysis will depend on the probes of the chip, and will be limited to the genes
that are quantified by the probe set.

The assumption behind gene set enrichment analysis is that all genes have
the same probability to be mutated. As a result the observed proportion of genes
mutated within a module can be compared to the proportion of genes outside the
module.

Further refinement of the model can include the size of the genes to remove
a possible bias towards modules with longer genes. Indeed, if we consider a
model where the mutations are strictly random with uniform distribution along the
genome - this corresponds to a random process of mutation without biological
selection - then the probability to mutate a gene will be directly linked to its size.
The direct consequence of this is that the probability of mutating a module will not
only depend on the size (as the number of genes) of the module but on the total
length of the genes making the module (this can be for example the sum of all
gene transcript lengths).

A possibility to correct for that would be to compare the results to simulated
sampling: given N variants, N being the observed number of variants in the bio-
logical data, and the probability to draw a gene being proportional to its size, it is
possible to assess if the sampling is different from the observation.

This refinement however can be rendered difficult if not impossible when we
take into account genetic events such as motif gain or disruption. Then the size
of the gene should not only include its transcript, but also promoter regions. For
transcription factors, a mutation in its targets could also be evaluated. This would
mean that counting TFBS would artificially increase the length of the gene. In
addition, regulatory regions could also be taken into account in the size of the
‘gene’. Super enhancers are regions that can cover a few megabases, and are
much longer than regular enhancers. Taking into account super enhancers would
thus result in a drastic increase of the size of the gene. Taking into account all
these possibilities would lead to a high variability in the ‘gene‘size, for that reason
we limited the model to a uniform probability to mutate a gene independently of
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its transcript size.

ACSN and ACSNMineR

This section has been adapted from Calculating Biological Module Enrichment or
Depletion and Visualizing Data on Large-scale Molecular Maps with ACSNMineR

and RNaviCell Packages, Deveau et al [72] (see section 9.1).

The Atlas of Cancer Signaling Network (ACSN) is a web-based database
which describes signaling and regulatory molecular processes that occur in a
healthy mammalian cell but that are frequently deregulated during cancerogen-
esis [95]. The ACSN atlas aims to be a comprehensive description of cancer-
related mechanisms retrieved from the most recent literature.

Currently, ACSN maps cover signaling pathways involved in DNA repair, cell
cycle, cell survival, cell death, epithelial-to-mesenchymal transition (EMT) and
cell motility. Each of these large-scale molecular maps is decomposed in a num-
ber of functional modules. The maps themselves are merged into a global ACSN
map. Thus the information included in ACSN is organized in three hierarchi-
cal levels: a global map, five individual maps, and several functional modules.
Each ACSN map covers hundreds of molecular players, biochemical reactions
and causal relationships between the molecular players and cellular phenotypes.
ACSN represents a large-scale biochemical reaction network of 4,826 reactions
involving 2,371 proteins (as of today), and is continuously updated and expanded.

We have included the three hierarchical levels in the ACSNMineR package, in
order to be able to calculate enrichments at all three levels. The calculations
are made by counting the number of occurences of gene symbols (HUGO gene
names) from a given list of genes of interest in all ACSN maps and modules. Table
5.1 is detailling the number of gene symbols contained in all the ACSN maps.

The statistical significance of the counts in the modules is assessed by using
either the Fisher exact test [23, 96] or the hypergeometric test, which are equiva-
lent for this purpose [97].

The current ACSN maps are included in the ACSNMineR package, as a list of
character matrices.

For each matrix, rows represent a module, with the name of the module in the
first column, followed by a description of the module (optional), and then followed
by all the gene symbols of the module. The maps will be updated according to
every ACSN major release.

The main function of the ACSNMineR package is the enrichment function, which
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Map Total Nb mod. Min Max Mean

ACSN global 2239 67 2 629 79
Survival 1053 5 208 431 328
Apoptosis 667 7 19 382 136
EMT & Cell motility 634 9 18 629 137
DNA repair 345 21 3 171 45
Cell cycle 250 25 2 130 20

Table 5.1: ACSN maps included in the ACSNMineR package. Map: map name,
Total: total number of gene symbols (HUGO) used to construct the map, Nb mod.:
number of modules, Min: minimum number of gene symbols in the modules,
Max: maximum number of gene symbols in the modules, Mean: average number
of gene sybols per module. N.B.: one gene symbol may be present in several
modules of the map.

is calculating over-representation or depletion of genes in the ACSN maps and
modules. We have included a small list of 12 Cell Cycle related genes in the
package, named genes_test that can be used to test the main enrichment func-
tion and to get familiar with its different options.

genes_test

[1] "ATM" "ATR" "CHEK2" "CREBBP" "TFDP1" "E2F1" "EP300"

[8] "HDAC1" "KAT2B" "GTF2H1" "GTF2H2" "GTF2H2B"

The example shown below is the simplest command that can be done to test
a gene list for over-representation on the six included ACSN maps. With the list
of 12 genes mentionned above and a default p-value cutoff of 0.05, we have a set
of 8 maps or modules that are significantly enriched. The results are structured
as a data frame with nine columns displaying the module name, the module size,
the number of genes from the list in the module, the names of the genes that are
present in the module, the size of the reference universe, the number of genes
from the list that are present in the universe, the raw p-value, the p-value corrected
for multiple testing and the type of test performed. The module field in the results
data frame indicate the map name and the module name separated by a column
character. If a complete map is significantly enriched or depleted, then only the
map name is shown, without any module or column character. For instance, the
third line of the results object below concern the E2F1 module of the CellCycle
map.

library(ACSNMineR)

results <- enrichment(genes_test)

dim(results)
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[1] 8 9

results[3,]

module module_size nb_genes_in_module

V161 CellCycle:E2F1 19 12

genes_in_module

V161 ATM ATR CHEK2 CREBBP TFDP1 E2F1 EP300 HDAC1 KAT2B GTF2H1 GTF2H2

GTF2H2B

universe_size nb_genes_in_universe p.value p.value.corrected test

V161 2237 12 3.735018e-21 2.353061e-19 greater

The enrichment function can take up to nine arguments: the gene list (as a
character vector), the list of maps that will be used to calculate enrichment or
depletion, the type of statistical test (either the Fisher exact test or the hypergeo-
metric test), the module minimal size for which the calculations will be done, the
universe, the p-value threshold, the alternative hypothesis ("greater" for calculat-
ing over-representation, "less" for depletion and "both" for both tests) and a list of
genes that should be removed from the universe (option "Remove_from_universe").
This option may be useful for instance if we know beforehand that a number of
genes are not expressed in the samples considered.

Only the gene list is mandatory to call the enrichment function, all the other
arguments have default values. The maps argument can either be a dataframe im-
ported from a GMT file with the format_from_gmt function or a list of dataframes
generated by the same procedure. The GMT format corresponds to the Broad
Institute’s Gene Matrix Transposed file format, a convenient and easy way to en-
code named sets of genes of interest in tab-delimited text files (it is not a graph or
network format). By default, the function enrichment uses the ACSN maps pre-
viously described. The correction for multiple testing is set by default to use the
method of Benjamini & Hochberg, but can be changed to any of the usual correc-
tion methods (Bonferroni, Holm, Hochberg, Holm, or Benjamini & Yekutieli [98]),
or even disabled . The minimal module size represents the smallest size value of
a module that will be used to compute enrichment or depletion. This is meant to
remove results of low significance for module of small size. The universe in which
the computation is made by default is defined by all the gene symbols contained
in the maps. All the genes that were given as input and that are not present on
the maps will be discarded. To keep all genes, the user can change the universe
to HUGO, and in that case, the complete list of HUGO gene symbols will be used
as the reference (> 39,000 genes). The threshold corresponds to the maximal
value of the corrected p-value (unless the user chose not to correct for multiple
testing) that will be displayed in the result table.

It may be of interest to compare enrichment of pathways in different cohorts or
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experiments. For example, enrichment of highly expressed pathways can reveal
differences between two cancer types or two cell lines. To facilitate such compar-
isons, ACSNMineR provides a multisample_enrichment function. It relies on the
enrichment function but takes a list of character vector genes. The name of each
element of the list will be assumed to be the name of the sample for further anal-
ysis. Most of the arguments given to multisample_enrichment are the same as
the ones passed to enrichment. However, the cohort_threshold is designed to
filter out modules which would not pass the significance threshold in all samples.

Finally, to facilitate visualization of results, ACSNMineR integrates a represen-
tation function based on ggplot2 syntax [99]. It allows representation of results
from enrichment or multisample_enrichment with a limited number of param-
eters. Two types of display are available: heat-map tiles or bars. For multiple
samples using a barplot representation, the number of rows used can be pro-
vided, otherwise all plots will be on the same row. For the heatmap, the color of
the non-significant modules, and boundaries of the gradient for significant values
can also be tuned.

We previously computed the p-value of the genes_test list with default pa-
rameters. The number of modules which have a p-value below 0.05 was 8, that
can be compared to the 16 obtained without correction with the simple command
shown below (some of the results are displayed in Table 5.2).

enrichment(genes_test,correction_multitest = FALSE)

Module Mod. size Genes in module p-value Test

CellCycle 242 ATM ATR CHEK2 5.4× 10−7 greater
CREBBP TFDP1 E2F1
EP300 HDAC1 KAT2B

GTF2H1 GTF2H2 GTF2H2B
CellCycle:APOPTOSIS_ENTRY 10 ATM ATR CHEK2 E2F1 3.5× 10−7 greater
CellCycle:CYCLINB 7 ATM 0.04 greater

Table 5.2: First rows of the results from enrichment analysis without correction.
Module : name of the module. Mod. size: size of the module. Genes in module:
genes from input which are found in the module. p-value: uncorrected p-value.
Test : null hypothesis used, greater is synonym of enrichment.

We can now plot the first six rows of the results obtained for corrected and
uncorrected fisher test with heatmap format (5.1.4) or barplot (Figure 5.1.4) with
the following commands:

# heatmap
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represent_enrichment(enrichment = list(Corrected = results[1:6,],

Uncorrected = results_uncorrected[1:6,]),

plot = "heatmap", scale = "reverselog",

low = "steelblue" , high ="white", na.value =

"grey")

# barplot

represent_enrichment(enrichment = list(Corrected = results[1:6,],

Uncorrected = results_uncorrected[1:6,]),

plot = "bar", scale = "reverselog",

nrow = 1)

CellCycle

CellCycle:APOPTOSIS_ENTRY

CellCycle:CYCLINB

CellCycle:E2F1

CellCycle:E2F1_TARGETS

CellCycle:E2F4

DNA_repair

DNA_repair:G1_S_CHECKPOINT

DNA_repair:G2_M_CHECKPOINT
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Figure 5.8: Representation of the enriched modules (first six rows for each set-
ting), with either Bonferroni correction or no correction. Grey tiles means that the
data is not available for this module in this sample. P-values of low significance
are in white, whereas p-values of high significance are represented in blue.
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Figure 5.9: Representation of the enriched modules (first six rows for each set-
ting), with either Bonferroni correction (left) or no correction (right). The modules
are on the X axis and the p-values are on the Y axis.

5.2 A pipeline to combine enrichment and clonal

reconstruction

5.2.1 Rationale and description

Previous publications have applied the same filters to variants used for the clonal
reconstruction and those of biological relevance [100, 51, 61]. This approach
masks the fact that the two different sets have very different purposes.

On the one hand, the clonal reconstruction set should have very low VAF dis-
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persion and as few false positives as possible in order to achieve a very accurate
clustering. Precisely pinpointing the cluster centers can facilitate interpretation of
tumor evolution, and implies reliability of further results. Yet, those variants are
not necessarily biologically relevant (passenger variants for example).

On the other hand, biologically relevant variants (variants with a known driver
effect, such as ALK mutations in neuroblastoma), can be poorly covered by the
sequencing. Stringent filtering of those variants would be detrimental to the un-
derstanding of the selection mechanisms that happen in the tumor.

In order to avoid compromises between the two approaches, we designed
an original pipeline (Figure 5.10, adapted from ‘Clonal assessment of functional
variants in cancer based on a genotype-aware method for clonal reconstruc-
tion’section 9.2)
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Figure 5.10: Overview of the general clonal reconstruction workflow. (1) Vari-
ants are filtered to remove false positive calls; stringent filters are used to produce
mutations that are further employed for clonal reconstruction (step 2), tolerant fil-
ters are used to detect functional mutations. (2) Variants that pass stringent filters
and have genotype information assigned to the corresponding genomic loci are
used as input to QuantumClone to reconstruct clonal populations. (3) Finally, pos-
sibly damaging mutations belonging to frequently altered pathways are mapped
to the reconstructed clones.

The stringent filters were previously described in subsection 4.2.3. We pro-
pose to define informative variants as variants in a pathway enriched in variants
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predicted deleterious by at least one of the three algorithms (i.e. SIFT, Polyphen-
2 or Funseq2). This approach would be especially benefit cancers with few genes
mutated recurrently or those for which the recurrent genes are found in a small
fraction of patients (e.g. neuroblastoma).

As a result of our definition, a variant will be considered deleterious in our
study if at least one of the three predictive algorithm (i.e. SIFT, Polyphen-2 or
Funseq2) predicts it as deleterious, and it is in a gene from a module recurrently
altered, as predicted by ACSNMineR.

5.2.2 Validation of the pipeline on simulated data

We used simulations to validate the well-founded of our original pipeline design.
The following subsection is adapted from ‘Clonal assessment of functional vari-
ants in cancer based on a genotype-aware method for clonal reconstruction ’(see
section 9.2)

In silico validation data were generated using the QuantumCat method from
package QuantumClone (version 1.0.0.3). We simulated variants coming from
six clones observed in two samples per patient, with a purity of 70% for the first
sample and 60% for the second. We created 150 variants that pass stringent
filters, and an additional 150 variants passing tolerant filters but not stringent fil-
ters. All variants passing stringent filters were simulated in diploid regions, with a
depth of coverage higher than 50×, whereas mutations passing permissive filters
were located either in AB regions with a coverage between 30× and 50× (ap-
proximately 1/4 of permissive variants), or in AAB regions with coverage ≥ 30×
(approximately 1/2 of permissive variants), or in AABB regions with coverage
≥ 50×. We then attributed the ‘driver ’characteristic to 100 variants, by sampling
without replacement with probability 10/11 to be selected from the variants pass-
ing permissive filters and probability 1/11 to be selected from stringent filtering.

Pipelines

The ‘classical’pipeline used all 300 simulated variants as input for the clonal re-
construction, using direct clustering by QuantumClone. The ‘selective’pipeline
used the 150 variants passing stringent filters as well as all variants qualified
as drivers from the permissive filters as input for direct clustering. The ‘two-
step’pipeline first used the 150 stringent variants as input for direct clustering,
and then attributed the variants qualified as drivers a posteriori to the clusters,

Chapter 5 89



Clonal evolution in neuroblastoma

using the characteristics of the clones found by the initial QuantumClone cluster-
ing of high confidence variants. All three pipelines searched for two to ten clones,
running with two different initializations, on four threads. Computational time was
measured on a computer running Windows 10, with an Intel i7 at 2.7Gb with 8Gb
of RAM, Rstudio 1.0.44 and R version 3.3.2.

Evaluation

Evaluation of the L2 error and NMI was made using only variants from the strin-
gent and driver groups. The displayed computational time takes into account data
processing, clustering and when necessary a posteriori attribution to the clonal
structure.

Results

Comparison of the pipelines is summarized in Figure 5.11.
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Figure 5.11: Comparison of the three pipelines. The pipeline aforementioned
(two step), or a clustering using all variants called (classic) or a pipeline using only
variants of biological interest and variants of high quality (selective) are assessed
in terms of NMI (A), average `2 error (B) or computational time (C). The pipelines
are evaluated on 20 simulations.

We demonstrate that the proposed two-step approach allows for a better re-
construction of the tumor, as well as an important decrease in computational time
(Figure 5.11C). To test our pipeline, we compared it to two common pipelines:
the first one, termed ‘classic’, uses all variants as input for the clustering. The
second one, called ‘selective’, only uses variants passing the stringent filters and
informative variants as input for the clustering. The third pipeline, termed ‘two-
step’, uses a posteriori attribution of the putative drivers to the clones found using
only variants passing stringent filters. While all three pipelines had similar out-
comes when we compared the quality of reconstruction using normalized mutual
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information (Figure 5.11A), the selective and two step pipelines fared significantly
better than the classical pipeline in terms of `2 error (p − value < 8 × 10−6, one-
sided Welch two-sample t-test, Figure 5.11B). In addition, the two step analysis
resulted in an average 4.9 fold decrease in computational time compared to the
classical pipeline and an average 2.7 fold decrease compared to the selective
pipeline (Figure 5.11C). Furthermore, separating both steps facilitates iterative
improvement of the clonal reconstruction. Once achieved, this reconstruction can
be reused to answer questions about the evolution of different pathways sepa-
rately, while previous pipelines required re-running the whole reconstruction with
the new set of data.
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Chapter 6

Application to neuroblastoma

It is only by means of the sciences of life that the quality of life can be
radically changed.

— Aldous Huxley, Foreword to Brave New World, 1947

In this chapter we will aggregate methodology from all previous chapters in
order to extract knowledge from the neuroblastoma WGS dataset.

6.1 Pathway enrichment results

The following subsection is adapted from ‘Clonal assessment of functional vari-
ants in cancer based on a genotype-aware method for clonal reconstruction ’(see
section 9.2)

In our framework, we assumed that functional mutations (i.e. putative drivers)
in a given cancer type should target specific signaling pathways or pathway mod-
ules (Figure 5.10, Step 2). We attributed annotated deleterious variants obtained
with tolerant filters (Figure 5.10, section 9.2) to the ACSN maps and detected
recurrently altered gene modules using the ACSNmineR package [72]. Overall,
six general gene maps (apoptosis, cell cycle, DNA repair, EMT / cell motility, cell
survival and neuritogenesis) and their 53 gene modules were found to be en-
riched in mutations (threshold 0.01 on the p-value, one-sided exact Fisher test,
corrected to account for multiple testing with the Benjamini-Hochberg False Dis-
covery Rate correction, corresponding to the q-value) (Table 6.1). The enrich-
ment of pathways in ACSN was corroborated by enrichment of similar pathways
from two other methods [75, 76, 73, 74] (not shown). In further analysis, dele-
terious mutations were annotated as functional when corresponding genes were
included in the enriched pathways, or when such genes belonged to the Cancer
Census list. The resulting number of functional mutations per patient varied from
2 to 147, with a median of 51.
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Module Module Number of genes Universe size Number of genes p- value p-value corrected
Size in module in universe

Apoptosis 666 132 25637 466 7.11E-86 9.38E-85
AKT_MTOR 79 24 25637 466 1.29E-22 3.88E-22
APOPTOSIS_GENES 189 51 25637 466 7.74E-43 4.26E-42
CASPASES 77 21 25637 466 6.53E-19 1.80E-18
HIF1 19 7 25637 466 2.88E-08 5.14E-08
MITOCH_METABOLISM 381 58 25637 466 1.16E-33 5.11E-33
MOMP_REGULATION 102 34 25637 466 8.11E-33 3.35E-32
TNF_RESPONSE 105 20 25637 466 8.07E-15 1.90E-14

CellCycle 239 57 25637 466 2.83E-44 1.87E-43
APC 15 4 25637 466 1.29E-04 1.74E-04
APOPTOSIS_ENTRY 10 3 25637 466 6.63E-04 8.10E-04
CYCLIND 9 3 25637 466 4.70E-04 5.86E-04
E2F1 17 3 25637 466 3.41E-03 4.02E-03
E2F4 8 2 25637 466 8.65E-03 9.68E-03
E2F1_TARGETS 129 31 25637 466 3.10E-25 1.02E-24
E2F2_TARGETS 35 4 25637 466 3.71E-03 4.29E-03
E2F3_TARGETS 51 5 25637 466 2.38E-03 2.86E-03
E2F4_TARGETS 100 22 25637 466 1.52E-17 4.01E-17
E2F5_TARGETS 6 3 25637 466 1.17E-04 1.60E-04
E2F6_TARGETS 34 5 25637 466 3.65E-04 4.63E-04
RB 12 4 25637 466 4.90E-05 6.89E-05

DNA_repair 343 80 25637 466 5.91E-60 5.57E-59
CELL_CYCLE 82 19 25637 466 7.97E-16 2.02E-15
G1_CC_PHASE 25 8 25637 466 1.05E-08 1.98E-08
G1_S_CHECKPOINT 32 13 25637 466 7.12E-15 1.74E-14
G2_M_CHECKPOINT 67 22 25637 466 1.03E-21 2.95E-21
M_CC_PHASE 24 7 25637 466 1.82E-07 3.17E-07
S_CC_PHASE 46 7 25637 466 1.98E-05 2.84E-05
S_PHASE_CHECKPOINT 44 14 25637 466 3.62E-14 8.25E-14
SPINDLE_CHECKPOINT 28 7 25637 466 5.85E-07 9.65E-07

DNA_REPAIR 169 36 25637 466 5.20E-27 1.91E-26
DR_REGULATORS 136 39 25637 466 1.86E-34 8.79E-34
HR 54 13 25637 466 1.55E-11 3.09E-11
MMR 18 3 25637 466 4.04E-03 4.59E-03
NER 54 13 25637 466 1.55E-11 3.09E-11
BER 49 10 25637 466 1.87E-08 3.43E-08
SSA 8 3 25637 466 3.18E-04 4.11E-04
A_NHEJ 18 5 25637 466 1.44E-05 2.11E-05
C_NHEJ 16 5 25637 466 7.55E-06 1.16E-05
FANCONI 41 8 25637 466 7.11E-07 1.12E-06

EMT_motility 628 167 25637 466 2.83E-128 6.23E-127
ADHERENS_JUNCTIONS 33 12 25637 466 3.77E-13 8.03E-13
CELL_CELL_ADHESIONS 107 31 25637 466 5.78E-28 2.25E-27
CELL_MATRIX_ADHESIONS 73 24 25637 466 1.51E-23 4.73E-23
CYTOSKELETON_POLARITY 153 34 25637 466 2.85E-26 9.90E-26
DESMOSOMES 29 12 25637 466 5.91E-14 1.30E-13
ECM 147 44 25637 466 1.73E-39 8.76E-39
EMT_REGULATORS 624 167 25637 466 9.03E-129 2.98E-127
GAP_JUNCTIONS 18 5 25637 466 1.44E-05 2.11E-05
TIGHT_JUNCTIONS 41 8 25637 466 7.11E-07 1.12E-06

Survival 1035 240 25637 466 3.49E-163 2.30E-161
HEDGEHOG 276 60 25637 466 6.28E-44 3.77E-43
MAPK 207 63 25637 466 7.22E-56 5.96E-55
PI3K_AKT_MTOR 293 89 25637 466 2.98E-77 3.28E-76
WNT_CANONICAL 424 81 25637 466 1.78E-53 1.30E-52
WNT_NON_CANONICAL 415 112 25637 466 1.69E-89 2.80E-88

Neuritogenesis 26 9 25637 466 5.59E-10 1.08E-09
Neuritogenesis_mutated 17 6 25637 466 3.92E-07 6.63E-07
Neuritogenesis_substrate 8 3 25637 466 3.18E-04 4.11E-04

Table 6.1: Results from gene set enrichment analysis on the Atlas of Cancer
Signalling Network. Each component of the table is related to a map of ACSN
(in bold), other lines correspond to modules of the map. Module Size: number of
unique HUGO symbols in the module. Number of genes in module: number of
genes from the input list in the tested module. Universe size: Size of the universe
tested (here all HUGO symbols related to coding and non coding RNAs). Number
of genes in universe: Number of unique symbols from the input list inside of the
universe. p-value: p-value computed by Fisher test. p-value corrected: p-value
after

At this step, the cell survival map registered the highest enrichment in putative
drivers, and among its modules, the highest enrichment in putative driver muta-
tions was observed for the non-canonical WNT pathway (q−value ≤ 10−88). In ad-
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dition, we also detected significant enrichment in functional mutations of the WNT
canonical and the MAPK pathways (q − value ≤ 10−51 and ≤ 10−54, respectively),
and of the PI3K/AKT/mTOR and Hedgehog gene modules (q− value ≤ 10−75 and
≤ 10−43, respectively). As for the modules of other maps, genes coding for the
EMT regulators were also significantly affected by the deleterious mutations in
our cohort of relapsed neuroblastoma patients (q − value ≤ 10−126).

6.1.1 Discussion of enrichment results

General agreement between the enrichment tools validated the results from ACSN
maps. However, one can wonder how from the 67 modules from ACSN, 59 items
were found enriched. First, the three neuritogenesis maps and modules derived
from Molenaar et al [9] are not part of the canonical ACSN, and have to be re-
moved from the comparison, as well as the five different maps. This leaves a total
of 51 modules from the 67 original found enriched, which is a rather high number.

One explanation for the high number of modules enriched in damaging vari-
ants stems from the intrinsic nature of ACSN that had been built to pick up signals
from pathways deregulated in cancer. Moreover, we expect a slight bias towards
cancer related genes as Funseq2 had been trained on the COSMIC database,
meaning that this prediction tool could more easily detect variants biologically
relevant for cancer.

6.2 Clonal structure in neuroblastoma

The following section is adapted from ‘Clonal assessment of functional variants
in cancer based on a genotype-aware method for clonal reconstruction ’(see sec-
tion 9.2)

6.2.1 Clonal reconstruction

We applied QuantumClone on high fidelity variants we defined using stringent
filters (Figure 6.1A,). Across our cohort, we did not observe a significant associ-
ation between the predicted number of clones and the number of mutations per
patient (Spearman’s rho = −0.23, p − value = 0.35). In addition, the number of
clones at relapse was similar to that at diagnosis, even despite the fact that the
relapse samples had about twice as many mutations as the diagnosis samples
(number of mutation clusters varied from one to four with a median of three for
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both time points).

In 79% of reconstructed clonal structures (15 out of 19 patients, we identified
mutations coming from the ancestral clone (Fig. 4A), i.e. the clone that gave rise
to all cells in both diagnosis and relapse samples.

Assignment of functional mutations to the identified clonal struc-
ture

Using the results of the mapping of functional mutations on the clonal structure
detected for each patient by QuantumClone (Figure 5.10, Step 3), we annotated
mutations as (i) those belonging to expanding clones - corresponding to a two-fold
cellular prevalence increase between diagnosis and relapse, (ii) those belonging
to shrinking clones - cellular prevalence halved between diagnosis and relapse,
and (iii) those belonging to ancestral clones - cellular prevalence higher than
70% in both samples (Figure 6.1A). Overall, 36%, 30% and 9.6% of all functional
mutations fell in these three categories.

Analysis of pathways enriched in functional mutations in shrinking and ex-
panding clones

Assignment of mutations to clones shrinking or expanding after the treatment re-
sulted in the identification of 336 and 400 possible driver mutations in these clone
types, respectively. Expanding clones had more deleterious mutations targeting
genes from all six general maps (apoptosis, cell cycle, DNA repair, EMT/cell motil-
ity, cell survival and neuritogenesis) than the shrinking clones (Fig. Figure 6.1B).
Similarly, in these expanding clones, most of the corresponding gene modules
(e.g., MAPK, WNT canonical or PI3K/AKT/mTOR) were also more frequently tar-
geted. An extreme example of this behavior can be given with the neuritogenesis
substrates module, the RB pathway or the E2F1 pathway in which genes are only
found mutated in the expanding clones. The increase in functional variants can
partly be explained by the observed doubling of variants at relapse compared to
diagnosis.

We define µ the functional mutation rate in a module as the number of func-
tional variants per high fidelity variants of the patient by number of genes in a
module. The functional mutation rate across modules was significantly different
between the three classes of clones according to the z-score computed as sug-
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Figure 6.1: Annotation of clones in neuroblastoma and pathway enrichment
analysis. (A) Illustration with data from patient NB1361 of the rules for assign-
ment of variants to (i) the ancestral clone (cellular prevalence of the mutation clus-
ter exceeds 70% both at diagnosis and relapse), (ii) clones expanding after the
treatment (cellular prevalence of the mutation cluster increases at least two-fold
at relapse) and (iii) shrinking clones (cellular prevalence of such mutation clus-
ters decreases at least two-fold). (B) Evolution of the total number of functional
variants for enriched maps and modules, across all 19 patients. The majority of
modules show an increase in the number of functional variants between two time
points.
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gested by Paternoster et al. [101] (Figure 6.2, p − value = 8.35 × 10−5 between
ancestral and shrinking, p−value = 2.84×10−3 between ancestral and expanding
and p − value = 4.98 × 10−2 between expanding and shrinking). This functional
mutation rate has been previously linked to the fitness of a clone [102], and it is in-
teresting to notice that the functional mutation rate is lower in the ancestral clone
(µ = 5.803 functional variations per 1,000 variants per 1,000 genes in module,
standard error s.e = 1.322), than in the shrinking clones (µ = 15.78, s.e. = 1.919)
or expanding clones (µ = 10.92, s.e. = 0.7583). The change in functional muta-
tion rate suggests different selection mechanisms. The fact that there are fewer
functional variants in the ancestral population than in the shrinking or expanding
populations and that the expanding population has a lower functional mutation
rate suggests that a clone with fewer functional variants had better adaptive ca-
pabilities, as proposed by Chen et al [103].

6.2.2 Model for clonal evolution

For some of our samples, we did not succeed in uncovering an ancestral clone
despite the fact that copy number breakpoints were consistent between samples,
ensuring a common phylogeny [104] (Figure 4.4). Disappearance at relapse of
many potential driver mutations seemingly present in the ancestral clone at diag-
nosis, may be due to tumor heterogeneity and the fact that biopsies were taken
from different tumor sites. This situation has been termed "illusion of clonality"
[105].

Previous studies have shown that the number of variants was linked to the
number of divisions a cell undergoes [106]. The observed doubling of variants
between diagnosis and relapse suggests that cells have undergone as many di-
visions between diagnosis and relapse as between cancer origin and diagnosis -
with the assumption that the mutational rate remains constant. This would in par-
ticular exclude the possibility of the relapse emerging from a quiescent population.

We showed that in neuroblastoma, the functional mutation rate was signifi-
cantly lower in the ancestral populations compared to the clones expanding or
shrinking at relapse. Chen et al [103] have shown that wild-type cells have more
adaptive capabilities than mutants, even though a mutant can appear fitter than
the wild-type lineage in a specific culture condition. Applied to our results, their
finding could suggest that a clone with a low level of functional variants would
be more likely to adapt to environment changes during and after treatment. After
this selection round and once the tumor environment has returned to physiological
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Figure 6.2: Ancestral, shrinking and expanding clones exhibit different mu-
tation patterns in neuroblastoma relapse tumors. Functional mutation rate
is higher in shrinking and expanding clones compared to the ancestral ones. We
define the functional mutation rate as a ratio of the number of functional mutations
to the number of high fidelity variants. For a given gene module the number of
functional mutations in each patient is supposed to linearly depend on the product
of the module size and the total number of detected variants. Therefore, we used
the product of the module size and number of high fidelity variants as a covariate
in a linear regression model evaluating functional mutation rate for neuroblastoma
tumors. The rate was defined as the slope of the linear regression.
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state, another set of functional variants would appear, giving selective advantage
to the expanding clone.
A direct consequence of this assumption is that the functional mutation rate should
be lower at relapse compared to diagnosis, as a period of low functional mutation
rate before treatment would be followed by a period of higher functional mutation
rate during disease progression (Figure 6.3). This consequence is in line with the
29% functional mutation rate decrease observed between expanding and shrink-
ing clones in neuroblastoma.
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Figure 6.3: Model for clonal evolution in neuroblastoma. Given the differences
in functional mutation rates observed in neuroblastoma relapse tumors we pro-
pose the following model for clonal selection in this type of cancer: (1) Clones
with high functional mutation rate (red) disappear after the chemotherapy; lower
mutational burden provides an advantage in escape from treatment; (2) lower val-
ues for functional mutation rate in clones expanding at relapse (blue) compared
to the shrinking clones (red) is due to a lower frequency of functional mutations
before treatment, followed by a gradual accumulation of functional mutations at
relapse. From top to bottom: the number of variants in the clone, number of func-
tional variants in the clone, and population size in the tumor; a.u. (arbitrary units).
The change in color hue represents the changes in time of the genotype with the
accumulation of variants.
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Chapter 7

Conclusion and perspectives

May all your dreams but one come true, for what is life without a
dream?

— David Gemmell, The First Chronicles of Druss the Legend, 1993

We contributed in this thesis to different fields of computational biology.

The first contribution, the development of a new clonal reconstruction method
using HTS data, is at the core of this manuscript. We have demonstrated that de-
spite the existence of many different competing algorithms, there was room for im-
provement both in terms of clustering quality and computation time. Our method,
QuantumClone, is now available as a CRAN package as well as its source code
and code to reproduce all simulations presented in this manuscript. This code
diffusion is not only made in an effort of making reproducible research, but also
to enable continuous improvements of existing tools.

The second contribution presented here was to the variant calling field, through
participation to a DREAM challenge, in order to gather new insights on the sources
of error from variant caller, and through the development of filtering pipeline to ex-
tract high confidence variants.

The third topic raised was systems biology. In the same way that Quantum-
Clone was made public, the R package ACSNMineR is freely available both from
CRAN and GitHub, allowing anyone to contribute to this effort either by adding to
the code or by integrating new maps.

Finally, the last contribution presented here was to the understanding of neu-
roblastoma biology. In addition to the usual description of clonal architecture, we
also proposed a model derived from these observations to explain different mu-
tational rates in the ancestral clones, clones shrinking or expanding at relapse.
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Figure 7.1: Number of downloads of ACSNMineR and QuantumClone pack-
ages from CRAN repository.The numbers are either displayed weekly (A), or
cumulative (B) The figures for the RNaviCell package, also described in Deveau
et al[72], are given as a reference.

Hopefully, this story will not end with this conclusion. As of today, at least two
other projects are being developed on clonal reconstruction and use our algo-
rithm. The first one, in the translational unit of Fabien Reyal, focuses on evolution
after treatment in breast cancer using whole exome sequencing. The second
project, supported by Isabelle Janoueix and Simon Durand, aims at finding the
different populations coexisting in a cell line derived from a patient. Once iden-
tified, the populations will be monitored under different treatments. The tool dif-
fusion can also be observed by the number of downloads of each package from
CRAN servers (this is not taking into account the github repository), as shown in
Figure 7.1.

This figure also shows that simpler tools such as ACSNMineR can have a
much broader echo in the scientific community than specialized tools. Intereset-
ingly, we can also see that the publication in December 2016 in the R Journal of
the ACSNMineR and RNaviCell packages did not increase the download rate.
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In the application of our framework to neuroblastoma sequencing data, we ex-
cluded information about translocations and indels. The reason for this was that
the analysis of clonal structure is based on the number of sequencing reads sup-
porting each genetic variant. While we suppose that the number of reads with a
mismatch mutation is proportional to the number of DNA molecules harboring this
variant, we expect that due to read mapping issues the fraction of reads indicating
an indel or a translocations will be generally lower than the actual proportion of
DNA molecules with the rearrangement. Eviction of large and small SVs seem-
ingly resulted in a decrease in sensitivity of the detection of genetic driver events.
A possible way to solve this issue would be to estimate the cellular prevalence of
these event using specific tools and attribute such events to the most likely clone.

The proposed framework can be applied in the future to any type of cancer.
The pre-requirements are sufficient number of candidate mutations (at least 50
mutations per sample) and a minimal read depth of coverage of 50×. These re-
quirements are usually met by WGS or whole exome sequencing datasets. Our
simulation results show that increasing the number of mutations used for clonal
reconstruction above 50 does not improve significantly the clonal reconstruction
accuracy provided that mutations specific for every clone are present in the input.
This technique would suit the breakthrough of cell-free DNA (i.e. the DNA com-
ing from apoptotic cells and carried in the bloodstream) sequencing can lead to a
surge in the samples available to track the disease. Indeed, with this non-invasive
technique, it should be possible to track the evolution of the tumor during treat-
ment using only a blood sample. With this increase in sample availability from
a patient, not only could the resolution of the clonal architecture be improved,
but also warnings could be raised for the possible reemergence of the tumor af-
ter treatment. It could also help distinguishing variants that confer resistance to
treatment to a subclonal population.
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Chapter 8

Annexes

8.1 Computation of the exact gradient

Starting from the equation 3.1, we can compute the exact gradient of the partial
log-likelihood:

` =
∑

i∈variant

∑

k∈clones

∑

s∈samples

∑

p∈possibilities(i)

ω(i,p)t(i,k,p) log
(
P
(
Alti,s,p|¢k,s

))

With:

• Alt : the number of alternative reads;

• ω(i,p) : the weight of possibility p, so that for a variant the sum of possibilities
is 1;

• t(i,k,p): the contribution of possibility p to cluster k computed during the E-
step;

• ¢k,s: the cellular prevalence of cluster k in sample s

In addition, in the case of a binomial model, we have:

P
(
Alti,s,p|¢k,s

)
=
(
αi,s,p¢k,s

)Alti,s (1− αi,s,p¢k,s
)Refi,s

With Ref the number of reads supporting the reference allele and alpha:

αi,s,p =
Ni,s,p

Gi,s

Where N is the number of copies of the variant i in possibility p, and G the number
of copies of the locus.
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⇒ ∂`

∂¢k,s
=

∂

∂¢k,s


 ∑

i∈variant

∑

k∈clones

∑

s∈samples

∑

p∈possibilities(i)

ω(i,p)t(i,k) log
(
P
(
Alti,s,p|¢k,s

))



=
∑

i∈variant

∑

p∈possibilities(i)

ω(i,p)t(i,k)
∂

∂¢k,s

(
log
(
P
(
Alti,s,p|¢k,s

)))

=
∑

i∈variant

∑

p∈possibilities(i)

ω(i,p)t(i,k)
∂

∂¢k,s

(
log
((
αi,s,p¢k,s

)Alti,s (1− αi,s,p¢k,s
)Refi,s))

=
∑

i∈variant

∑

p∈possibilities(i)

ω(i,p)t(i,k)
∂

∂¢k,s
(Alti,s(log(αi,s,p) + log(¢k,s)

+Refi,s log(1− αi,s,p¢k,s)))

=
∑

i∈variant

∑

p∈possibilities(i)

ω(i,p)t(i,k)

(
Alti,s
¢k,s

− Refi,s × αi,s,p
1− αi,s,p × ¢k,s

)

=
∑

i∈variant

∑

p∈possibilities(i)

ω(i,p)t(i,k)

Alti,s − αi,s (Alti,s +Refi,s) ¢k,s
¢k,s

(
1− αi,s¢k,s

)

In addition, for diploid or haploid cases - where αi,s is independant of i and s-
the solutions for ∇` = 0 are :

∑

i∈variant

∑

p∈possibilities(i)

ω(i,p)t(i,k)

8.2 Dissimilarity matrix and weighted average ini-

tialization

For two variants i and j, characterized by:

• their number of reads supporting each (Alti and Altj);

• their total number of reads overlapping the position (Di and Dj);

• their number of copies of the locus (NLi and NLj);

• their tested number of copies of the variant (Ni and Nj).

We can compute a normalized number of alternative reads (which would be
the number of alternative reads expected for a diploid variant):

Altdiplo = round(
Alt×NL
2×NC

108 Chapter 8



Clonal evolution in neuroblastoma

In addition, we define the observed probability for each variant:

px =
Altdiplo,x
Depthx

As well as the weighted probability for both variants:

p =
Altdiplo,i + Altdiplo,j
Depthi +Depthj

Then

z =
(pi − pj)2

p× (1− p) ×
(

1

Depthi
+

1

Depthj

)

We can then obtain the p-value associated with such score:

p− value = 2× pnorm(−√z)

With pnorm the distribution of the Gaussian of mean 0 and standard deviation
1.

After hierarchical clustering, we obtain n clusters. The initialization weights are
simply the ratio of the number of variants in a cluster divided by the total number
of variants. The center of each cluster in a sample is defined by:

¢k,s = 2×
∑

i∈variantsAlti,normalized∑
i∈variantsDepthi

(8.1)

WhereAlti,normalized is the number of alternative reads that should be observed
if the variant was in a diploid locus.
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Chapter 9

Publications

9.1 ACSNMineR

ACSNMineR is an R package that can be used to compute statistical enrichment
of mutations in a pathway. By default it relies on the maps from the Atlas of Can-
cer Signaling Network (ACSN), and was published together with RNaviCell in the
R Journal in the December 2016 volume.

As of March, 15th 2017, it has been downloaded 5075 on CRAN, which corre-
sponds to 224 downloads a month on average.
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Calculating Biological Module
Enrichment or Depletion and Visualizing
Data on Large-scale Molecular Maps with
ACSNMineR and RNaviCell Packages
by Paul Deveau, Emmanuel Barillot, Valentina Boeva, Andrei Zinovyev and Eric Bonnet

Abstract Biological pathways or modules represent sets of interactions or functional relationships
occurring at the molecular level in living cells. A large body of knowledge on pathways is organized in
public databases such as the KEGG, Reactome, or in more specialized repositories, the Atlas of Cancer
Signaling Network (ACSN) being an example. All these open biological databases facilitate analyses,
improving our understanding of cellular systems. We hereby describe ACSNMineR for calculation of
enrichment or depletion of lists of genes of interest in biological pathways. ACSNMineR integrates
ACSN molecular pathways gene sets, but can use any gene set encoded as a GMT file, for instance
sets of genes available in the Molecular Signatures Database (MSigDB). We also present RNaviCell,
that can be used in conjunction with ACSNMineR to visualize different data types on web-based,
interactive ACSN maps. We illustrate the functionalities of the two packages with biological data
taken from large-scale cancer datasets.

Introduction

Biological pathways and networks comprise sets of interactions or functional relationships, occurring
at the molecular level in living cells (Adriaens et al., 2008; Barillot et al., 2012). A large body of
knowledge on cellular biochemistry is organized in publicly available repositories such as the KEGG
database (Kanehisa et al., 2011), Reactome (Croft et al., 2014) and MINT (Zanzoni et al., 2002). All
these biological databases facilitate a large spectrum of analyses, improving our understanding of
cellular systems. For instance, it is a very common practice to cross the output of high-throughput
experiments, such as mRNA or protein expression levels, with curated biological pathways in order
to visualize the changes, analyze their impact on a network and formulate new hypotheses about
biological processes. Many biologists and computational biologists establish list of genes of interest
(e.g. a list of genes that are differentially expressed between two conditions, such as normal vs disease)
and then evaluate if known biological pathways have significant overlap with this list of genes.

We have recently released the Atlas of Cancer Signaling Network (ACSN), a web-based database
which describes signaling and regulatory molecular processes that occur in a healthy mammalian
cell but that are frequently deregulated during cancerogenesis (Kuperstein et al., 2015). The ACSN
atlas aims to be a comprehensive description of cancer-related mechanisms retrieved from the most
recent literature. The web interface for ACSN is using the NaviCell technology, a software framework
dedicated to web-based visualization and navigation for biological pathway maps (Kuperstein et al.,
2013). This environment is providing an easy navigation of maps through the use of the Google Maps
JavaScript library, a community interface with a web blog system, and a comprehensive module for
visualization and analysis of high-throughput data (Bonnet et al., 2015).

In this article, we describe two packages related to ACSN analysis and data visualization. The
package ACSNMineR is designed for the calculation of gene enrichment and depletion in ACSN
maps (or any user-defined gene set via the import function), while RNaviCell is dedicated to
data visualization on ACSN maps. Both packages are available on the Comprehensive R Archive
Network (https://cran.r-project.org/web/packages/ACSNMineR/ and https://cran.r-project.
org/web/packages/RNaviCell/), and on the GitHub repository (https://github.com/sysbio-curie/
ACSNMineR and https://github.com/sysbio-curie/RNaviCell). For the remainder of this article, we
describe the organization of each package and illustrate their capacities with several concrete examples
demonstrating their capabilities.

Packages organization

ACSNMineR

Currently, ACSN maps cover signaling pathways involved in DNA repair, cell cycle, cell survival,
cell death, epithelial-to-mesenchymal transition (EMT) and cell motility. Each of these large-scale
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molecular maps is decomposed in a number of functional modules. The maps themselves are merged
into a global ACSN map. Thus the information included in ACSN is organized in three hierarchical
levels: a global map, five individual maps, and several functional modules. Each ACSN map covers
hundreds of molecular players, biochemical reactions and causal relationships between the molecular
players and cellular phenotypes. ACSN represents a large-scale biochemical reaction network of 4,826
reactions involving 2,371 proteins (as of today), and is continuously updated and expanded. We have
included the three hierarchical levels in the ACSNMineR package, in order to be able to calculate
enrichments at all three levels. The calculations are made by counting the number of occurences
of gene symbols (HUGO gene names) from a given list of genes of interest in all ACSN maps and
modules. Table 1 is detailling the number of gene symbols contained in all the ACSN maps.

Table 1: ACSN maps included in the ACSNMineR package. Map: map name, Total: total number of
gene symbols (HUGO) used to construct the map, Nb mod.: number of modules, Min: mimimum
number of gene symbols in the modules, Max: maximum number of gene symbols in the modules,
Mean: average number of gene sybols per module. N.B.: one gene symbol may be present in several
modules of the map.

Map Total Nb mod. Min Max Mean

ACSN global 2239 67 2 629 79
Survival 1053 5 208 431 328
Apoptosis 667 7 19 382 136
EMT & Cell motility 634 9 18 629 137
DNA repair 345 21 3 171 45
Cell cycle 250 25 2 130 20

The statistical significance of the counts in the modules is assessed by using either the Fisher exact
test (Fisher, 1922, 1934) or the hypergeometric test, which are equivalent for this purpose (Rivals et al.,
2007).

The current ACSN maps are included in the ACSNMineR package, as a list of character matrices.

> length(ACSN_maps)
[1] 6
> names(ACSN_maps)
[1] "Apoptosis" "CellCycle" "DNA_repair" "EMT_motility" "Master"
[6] "Survival"

For each matrix, rows represent a module, with the name of the module in the first column,
followed by a description of the module (optional), and then followed by all the gene symbols of the
module. The maps will be updated according to every ACSN major release.

The main function of the ACSNMineR package is the enrichment function, which is calculating
over-representation or depletion of genes in the ACSN maps and modules. We have included a small
list of 12 Cell Cycle related genes in the package, named genes_test that can be used to test the main
enrichment function and to get familiar with its different options.

> genes_test
[1] "ATM" "ATR" "CHEK2" "CREBBP" "TFDP1" "E2F1" "EP300"
[8] "HDAC1" "KAT2B" "GTF2H1" "GTF2H2" "GTF2H2B"

The example shown below is the simplest command that can be done to test a gene list for over-
representation on the six included ACSN maps. With the list of 12 genes mentionned above and a
default p-value cutoff of 0.05, we have a set of 8 maps or modules that are significantly enriched. The
results are structured as a data frame with nine columns displaying the module name, the module
size, the number of genes from the list in the module, the names of the genes that are present in the
module, the size of the reference universe, the number of genes from the list that are present in the
universe, the raw p-value, the p-value corrected for multiple testing and the type of test performed.
The module field in the results data frame indicate the map name and the module name separated by
a column character. If a complete map is significantly enriched or depleted, then only the map name
is shown, without any module or column character. For instance, the third line of the results object
below concern the E2F1 module of the CellCycle map.

> library(ACSNMineR)
> results <- enrichment(genes_test)
> dim(results)
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[1] 8 9
> results[3,]

module module_size nb_genes_in_module
V161 CellCycle:E2F1 19 12

genes_in_module
V161 ATM ATR CHEK2 CREBBP TFDP1 E2F1 EP300 HDAC1 KAT2B GTF2H1 GTF2H2 GTF2H2B

universe_size nb_genes_in_universe p.value p.value.corrected test
V161 2237 12 3.735018e-21 2.353061e-19 greater

The enrichment function can take up to nine arguments: the gene list (as a character vector), the
list of maps that will be used to calculate enrichment or depletion, the type of statistical test (either
the Fisher exact test or the hypergeometric test), the module minimal size for which the calculations
will be done, the universe, the p-value threshold, the alternative hypothesis ("greater" for calculating
over-representation, "less" for depletion and "both" for both tests) and a list of genes that should be
removed from the universe (option "Remove_from_universe"). This option may be useful for instance
if we know beforehand that a number of genes are not expressed in the samples considered.

Only the gene list is mandatory to call the enrichment function, all the other arguments have
default values. The maps argument can either be a dataframe imported from a GMT file with the
format_from_gmt function or a list of dataframes generated by the same procedure. The GMT format
corresponds to the Broad Institute’s Gene Matrix Transposed file format, a convenient and easy way to
encode named sets of genes of interest in tab-delimited text files (it is not a graph or network format).
By default, the function enrichment uses the ACSN maps previously described. The correction for
multiple testing is set by default to use the method of Benjamini & Hochberg, but can be changed to
any of the usual correction methods (Bonferroni, Holm, Hochberg, Holm, or Benjamini & Yekutieli
(Reiner et al., 2003)), or even disabled . The minimal module size represents the smallest size value of
a module that will be used to compute enrichment or depletion. This is meant to remove results of
low significance for module of small size. The universe in which the computation is made by default
is defined by all the gene symbols contained in the maps. All the genes that were given as input and
that are not present on the maps will be discarded. To keep all genes, the user can change the universe
to HUGO, and in that case, the complete list of HUGO gene symbols will be used as the reference (>
39,000 genes). The threshold corresponds to the maximal value of the corrected p-value (unless the
user chose not to correct for multiple testing) that will be displayed in the result table.

It may be of interest to compare enrichment of pathways in different cohorts or experiments. For
example, enrichment of highly expressed pathways can reveal differences between two cancer types
or two cell lines. To facilitate such comparisons, ACSNMineR provides a multisample_enrichment
function. It relies on the enrichment function but takes a list of character vector genes. The name of
each element of the list will be assumed to be the name of the sample for further analysis. Most of the
arguments given to multisample_enrichment are the same as the ones passed to enrichment. How-
ever, the cohort_threshold is designed to filter out modules which would not pass the significance
threshold in all samples.

Finally, to facilitate visualization of results, ACSNMineR integrates a representation function
based on ggplot2 syntax (Wickham, 2009). It allows representation of results from enrichment or
multisample_enrichment with a limited number of parameters. Two types of display are available:
heat-map tiles or bars. For multiple samples using a barplot representation, the number of rows
used can be provided, otherwise all plots will be on the same row. For the heatmap, the color of the
non-significant modules, and boundaries of the gradient for significant values can also be tuned.

We previously computed the p-value of the genes_test list with default parameters. The number
of modules which have a p-value below 0.05 was 8, that can be compared to the 16 obtained without
correction with the simple command shown below (some of the results are displayed in table 2).

enrichment(genes_test,correction_multitest = FALSE)

We can now plot the first six rows of the results obtained for corrected and uncorrected fisher test
with heatmap format (Figure 1) or barplot (Figure 2) with the following commands:

# heatmap

represent_enrichment(enrichment = list(Corrected = results[1:6,],
Uncorrected = results_uncorrected[1:6,]),

plot = "heatmap", scale = "reverselog",
low = "steelblue" , high ="white", na.value = "grey")

# barplot
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Table 2: First rows of the results from enrichment analysis without correction. Module : name of the
module. Mod. size: size of the module. Genes in module: genes from input which are found in the
module. p-value: uncorrected p-value. Test : null hypothesis used, greater is synonym of enrichment.

Module Mod. size Genes in module p-value Test

CellCycle 242 ATM ATR CHEK2 5.4× 10−7 greater
CREBBP TFDP1 E2F1
EP300 HDAC1 KAT2B

GTF2H1 GTF2H2 GTF2H2B
CellCycle:APOPTOSIS_ENTRY 10 ATM ATR CHEK2 E2F1 3.5× 10−7 greater
CellCycle:CYCLINB 7 ATM 0.04 greater

represent_enrichment(enrichment = list(Corrected = results[1:6,],
Uncorrected = results_uncorrected[1:6,]),
plot = "bar", scale = "reverselog",
nrow = 1)

Figure 1: Representation of the enriched modules (first six rows for each setting), with either Bonferroni
correction or no correction. Grey tiles means that the data is not available for this module in this
sample. P-values of low significance are in white, whereas p-values of high significance are represented
in blue.
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RNaviCell

The NaviCell Web Service provides a server mode, which allows automating visualization tasks and
retrieving data from molecular maps via RESTful (standard http/https) calls. Bindings to different
programming languages are provided in order to facilitate the development of data visualization
workflows and third-party applications (Bonnet et al., 2015). RNaviCell is the R binding to the NaviCell
Web Service. It is implemented as a standard R package, using the R object-oriented framework known
as Reference Classes (Wickham, 2015). Most of the work done by the user using graphical point-and-
click operations on the NaviCell web interface are encoded as functions in the library encapsulating
http calls to the server with appropriate parameters and data. Calls to the NaviCell server are
performed using the library RCurl (Lang and the CRAN team, 2015), while data encoding/decoding
in JSON format is performed with the RJSONIO library (Lang, 2014).

Once the RNaviCell library is installed and loaded, the first step is to create a NaviCell object
and launch the browser session. This will automatically create a unique session ID with the NaviCell
server. Once the session is established, various functions can be called to send data to the web
session, set graphical options, visualize data on a map or get data from the map. There are 125
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Figure 2: Representation of the enriched modules (first six rows for each setting), with either Bonferroni
correction (left) or no correction (right). The modules are on the X axis and the p-values are on the Y
axis.
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functions available in the current version of RNaviCell. All of them are described with their different
options in the RNaviCell documentation, and we provide a tutorial on the GitHub repository wiki
(https://github.com/sysbio-curie/RNaviCell/wiki/Tutorial).

In the simple example detailed below, we create a NaviCell session, then load an expression data
set from a local (tab-delimited) file. The data represent gene expression measured in a prostate cancer
cell line resistant to hormonal treatment (agressive), and is taken from the Cell Line Encyclopedia
project (Barretina et al., 2012). We visualize the data values on the Cell Cycle map (the default map),
using heat maps. With this visualization mode, gene expression values are represented as a color
gradient (green to red) in squares positioned next to the entities where the gene has been mapped
(Figure 3). Note that the map is displayed in a browser and is interactive, i.e. users can zoom in to
display more information and for example look in what reactions are involved the genes selected to be
displayed, and lots of other informations (see Bonnet et al. (2015) and Kuperstein et al. (2015) for more
details).

# a short RNaviCell script example

# load RNaviCell library

library(RNaviCell)

# create a NaviCell object and launch a server session
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Figure 3: Gene expression values from a prostate cancer cell line visualized on the cell cycle map
as heat map plots. The figure is a screenshot of the NaviCell map browser, with the map set at the
top (the less detailed) zoom level. The essential phases of the cell cycle are indicated on the map
(G1/S/G2/M). Note that on the web browser the map is interactive and the user can zoom in and out,
change the graphical parameters, import additional data and perform functional analysis.

# this will automatically open a browser on the client

navicell <- NaviCell()
navicell$launchBrowser()

# import a gene expression matrix and
# send the data to the NaviCell server
# NB: the data_matrix object is a regular R matrix

data_matrix <- navicell$readDatatable('DU145_data.txt')
navicell$importDatatable("mRNA expression data", "DU145", data_matrix)

# set data set and sample for heat map representation

navicell$heatmapEditorSelectSample('0','data')
navicell$heatmapEditorSelectDatatable('0','DU145')
navicell$heatmapEditorApply()

Case studies

Analysis of breast cancer expression data

In a study published in 2008, Schmidt and colleagues analyzed gene expression patterns of 200 breast
cancer patients not treated by systemic therapy after surgery using discovery approach to reveal
additional prognostic motifs (Schmidt et al., 2008). Estrogen receptor (ER) expression and proliferative
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activity of breast carcinomas are well-known and described prognostic markers. Patients with ER-
positive carcinomas have a better prognosis than those with ER-negative carcinomas, and rapidly
proliferating carcinomas have an adverse prognosis. Knowledge about the molecular mechanisms
involved in the processes of estrogen-dependent tumor growth and proliferative activity has led to the
successful development of therapeutic concepts, such as antiendocrine and cytotoxic chemotherapy.

The dataset corresponding to this study is available as a Bioconductor package. The code shown
below is creating a list of differentially expressed genes between ER positive and ER negative samples,
and calculates the enrichment in ACSN maps from this list of genes. As seen in Table 3, there is one
map (DNA repair) and seven modules (belonging to the Cell Cycle, DNA repair and Apoptosis maps)
enriched.

# load all necessary packages
library(breastCancerMAINZ)
library(Biobase)
library(limma)
library(ACSNMineR)
library(hgu133a.db)
library(RNaviCell)

# load data and extract expression and phenotype data
data(mainz)
eset <- exprs(mainz)
pdat <- pData(mainz)

# Create list of genes differentially expressed between ER positive and
# ER negative samples using moderated t-test statistics
design <- model.matrix(~factor(pdat$er == '1'))
lmFit(eset, design) -> fit
eBayes(fit) -> ebayes
toptable(ebayes, coef=2,n=25000) -> tt
which(tt$adj < 0.05) -> selection
rownames(tt[selection,]) -> probe_list
mget(probe_list, env = hgu133aSYMBOL) -> symbol_list
symbol_list <- as.character(symbol_list)

# calculate enrichment in ACSN maps

enrichment(symbol_list) -> results

dim(results)
[1] 8 9

Table 3: ACSN maps enrichment for genes differentially expressed between ER positive and ER
negative samples in breast cancer. Module : name of the map/module. Mod. size: size of the module.
Nb genes: number of genes from input which are found in the module. pval: raw p-value. Cor. pval:
corrected p-value.

Module Mod. size Nb genes pval Cor. pval

Apoptosis:AKT_MTOR 79 47 0.00043 0.0068
CellCycle:E2F2_TARGETS 35 22 0.0055 0.043
CellCycle:E2F3_TARGETS 51 31 0.0023 0.025
CellCycle:E2F4_TARGETS 100 60 5.8× 10−5 0.0037
DNA_repair 346 172 0.00038 0.0068
DNA_repair:CELL_CYCLE 82 49 0.00029 0.0068
DNA_repair:G1_CC_PHASE 25 18 0.0013 0.016
DNA_repair:S_CC_PHASE 46 28 0.0036 0.033

The Molecular Signatures Database (MSigDB) is one of the most widely used repository of well-
annotated gene sets representing the universe of biological processes (Liberzon et al., 2011). We
downloaded the canonical pathways set, counting more than 1,300 gene sets representing canonical
pathways compiled by domain experts. The dataset is encoded with the GMT format, and can be
imported within ACSNMineR with the format_from_gmt function. We calculate the enrichment for the
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breast cancer differentially expressed gene list, simply specifying the MSigDB data we just imported
as the maps option. Table 4 is displaying the pathways having a corrected p-value < 0.05. The prefix is
indicating the database source, so we see that we have pathways from the KEGG, Reactome and PID
databases. Consistent with our previous results, most of the enriched pathways are related to the cell
cycle regulation.

# Import MSigDB canonical pathways and calculate enrichment on this database

mtsig <- format_from_gmt('c2.cp.v5.0.symbols.gmt')
enrichment(symbol_list, maps = mtsig)

Table 4: MSigDB canonical pathway database enrichment for genes differentially expressed between
ER positive and ER negative samples in breast cancer. This table presents the 10 modules with lowest
p-value out of 125 with corrected p-value lower than 0.05. Module : name of the module. Mod. size:
size of the module. Nb genes: number of genes from input which are found in the module. Cor. pval:
corrected p-value.

Pathway Mod. size Nb genes Cor. pval

KEGG_CELL_CYCLE 128 76 3.9× 10−8

REACTOME_CELL_CYCLE_MITOTIC 325 159 3.9× 10−8

REACTOME_DNA_REPLICATION 192 98 4.9× 10−6

PID_FOXM1PATHWAY 40 29 3.1× 10−5

REACTOME_MITOTIC_M_M_G1_PHASES 172 87 3.1× 10−5

REACTOME_CELL_CYCLE 421 182 5× 10−5

REACTOME_MITOTIC_G1_G1_S_PHASES 137 71 9× 10−5

PID_AURORA_B_PATHWAY 39 27 0.0002
REACTOME_S_PHASE 109 58 0.00024
PID_SYNDECAN_1_PATHWAY 46 30 0.00026

At last, we visualize the mean expression values for ER negative samples for all genes differentially
expressed on the ACSN master (global) map using RNaviCell commands to create heatmaps.

# Select ER negative samples and calculate mean expression values

apply(eset[probe_list,pdat$er == 0],1,mean) -> er_minus_mean
names(er_minus_mean) <- symbol_list
er_minus_mean <- as.matrix(er_minus_mean)
colnames(er_minus_mean) <- c('exp')

# create a NaviCell session, import the expression matrix on the map and create
# heatmaps to represent the data points.

navicell <- NaviCell()
navicell$proxy_url <- "https://acsn.curie.fr/cgi-bin/nv_proxy.php"
navicell$map_url <- "https://acsn.curie.fr/navicell/maps/acsn/master/index.php"

navicell$launchBrowser()
navicell$importDatatable("mRNA expression data", "GBM_exp", er_minus_mean)
navicell$heatmapEditorSelectSample('0','exp')
navicell$heatmapEditorSelectDatatable('0','GBM_exp')
navicell$heatmapEditorApply()

The Figure 4 is displaying the map for genes having a corrected p-value < 0.05.

Analysis of glioblastoma mutation frequencies

Recent years have witnessed a dramatic increase in new technologies for interrogating the activity
levels of various cellular components on a genome-wide scale, including genomic, epigenomic, tran-
scriptomic, and proteomic information (Hawkins et al., 2010). Integrating these heterogeneous datasets
provides more biological insights than performing separate analyses. For instance, international con-
sortia such as The Cancer Genome Atlas (TCGA) have launched large-scale initiatives to characterize
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Figure 4: Mean expression values for ER negative differentially expressed genes in breast cancer
visualized as heatmaps on the ACSN master map.

multiple types of cancer at different levels on hundreds of samples. These integrative studies have
already led to the identification of novel cancer genes (McLendon et al., 2008).

Malignant gliomas, the most common subtype of primary brain tumors, are aggressive, highly
invasive, and neurologically destructive tumors considered to be among the deadliest of human
cancers. In its most aggressive manifestation, glioblastoma (GBM), median survival ranges from 9 to 12
months, despite maximum treatment efforts (Maher et al., 2001). In this study we have analyzed whole-
genome mutation data generated by the TCGA project on hundreds of patients. More specifically, we
parsed the MAF (Mutation Annotation Format) GBM files produced by different sequencing centers to
count and calculate gene mutation frequencies. We kept the mutations having a status likely to disturb
the target protein’s function (i.e. Frame_Shift_Del, Nonstop_Mutation, In_Frame_Del, In_Frame_Ins,
Missense_Mutation, Nonsense_Mutation, Splice_Site, Translation_Start_Site). In total, we collected
mutations for more than 13,000 genes in a total of 379 mutated samples. In order to retain the most
frequently mutated genes, we calculated frequencies across all mutated samples, and kept genes
having a frequency greater than 1% (3,293 genes). We further labelled genes having a frequency greater
than 1% and less than 5% as "1" and genes highly mutated (frequency higher than 5%) as "2".

We loaded the data as a matrix in R and calculated the enrichment in ACSN maps with the ACSN-
MineR function enrichment. The results are displayed in table 5. There are 6 modules significantly
enriched in the DNA repair and EMT motility maps. Cell matrix adhesions and ECM (extra cellular
matrix), part of the EMT motility map, are the modules with highest significance. The EMT motility
map is significantly enriched at the global map level (second line in the table).

Table 5: ACSN maps enrichment for frequently mutated glioblastoma genes. Module : name of the
module. Mod. size: size of the module. Nb genes: number of genes from input which are found in the
module. Cor. pval: corrected p-value.

module Mod. size Nb genes Cor. pval

DNA_repair:S_PHASE_CHECKPOINT 45 19 0.008
EMT_motility 635 181 0.0002
EMT_motility:CELL_MATRIX_ADHESIONS 73 45 3.73e-12
EMT_motility:CYTOSKELETON_POLARITY 154 47 0.022
EMT_motility:DESMOSOMES 29 15 0.002
EMT_motility:ECM 147 69 9.77e-11
EMT_motility:EMT_REGULATORS 629 178 0.0002

Visualization of the list of glioblastoma mutated genes is shown on figure 5. This figure was
generated with the ACSNMineR commands detailed below. Results of the enrichment test correlate
well with the visualization on the map, with a high density of low and high frequency mutated genes
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in the EMT motility and DNA repair regions (maps) of the global ACSN map. Although they are not
statistically significant, quite high densities can also be seen in other regions of the map.

library(RNaviCell)

# Create a NaviCell object, point it to the ACSN master map and launch
# a session.

navicell <- NaviCell()
navicell$proxy_url <- "https://acsn.curie.fr/cgi-bin/nv_proxy.php"
navicell$map_url <- "https://acsn.curie.fr/navicell/maps/acsn/master/index.php"
navicell$launchBrowser()

# Read the GBM data file and import it into the session.

mat <- navicell$readDatatable('gbm.txt')
navicell$importDatatable("Mutation data", "GBM", mat)

# set datatable and sample names for the glyph editor

navicell$drawingConfigSelectGlyph(1, TRUE)
navicell$glyphEditorSelectSample(1, "categ")
navicell$glyphEditorSelectShapeDatatable(1, "GBM")
navicell$glyphEditorSelectColorDatatable(1, "GBM")
navicell$glyphEditorSelectSizeDatatable(1, "GBM")
navicell$glyphEditorApply(1)

# set color, shape and size parameters for glyphs

navicell$unorderedConfigSetDiscreteShape("GBM", "sample", 0, 1)
navicell$unorderedConfigSetDiscreteShape("GBM", "sample", 1, 5)
navicell$unorderedConfigApply("GBM", "shape")

navicell$unorderedConfigSetDiscreteColor("GBM", "sample", 0, "398BC3")
navicell$unorderedConfigSetDiscreteColor("GBM", "sample", 1, "CC5746")
navicell$unorderedConfigApply("GBM", "color")

navicell$unorderedConfigSetDiscreteSize("GBM", "sample", 0, 4)
navicell$unorderedConfigSetDiscreteSize("GBM", "sample", 1, 14)

navicell$unorderedConfigApply("GBM", "size")

Summary and perspectives

In this work, we presented the R package ACSNMineR, a novel package for the calculation of p-
values for enrichment or depletion of genes in biological pathways. The package includes the six
large-scale molecular maps and 67 functional modules of the Atlas of Cancer Signaling Network
(ACSN) . Enrichment can be calculated for those maps and modules with several options to play with,
but can also be calculated for other databases of molecular pathways, that can be imported from GMT
formated files.

We also describe in this work the RNaviCell package, a R package convenient to use with ACSN-
MineR. This package is dedicated to create web-based and interactive data visualization on ACSN
maps. Users can use this tools to represent genes of interest that have been shown to be related to the
maps by calculating enrichment with ACSNMineR. Creating maps with the graphical user interface
of the ACSN website can be a tedious task if the user has multiple samples or gene lists, and wants to
compare their representations on ACSN maps. The RNaviCell package can be used to automate the
process of creating the graphical representations automatically. The maps are displayed in a browser
and are interactive, with the possibility for the user to zoom in and out, search for genes or molecular
species, and see the details of the molecular reactions (what partners are involved, what is the state
of a given species, etc.). For more details on how to use the interface and the different possibilities,
see Kuperstein et al. (2013), Bonnet et al. (2015) and Kuperstein et al. (2015). We have shown how
the packages ACSNMineR and RNaviCell can be combined to analyze expression data from breast
cancer samples, and also to analyze the frequency of mutated genes in glioblastoma cancer samples.
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Figure 5: Glioblastoma gene mutation frequency categories represented as glyphs on the ACSN global
cancer map. High frequency mutated genes are pictured as large red circles, while low frequency
mutated genes are depicted as small blue squares.

Of course, ACSNMineR is not the only R package for enrichment calculations. For instance,
GOstats (Falcon and Gentleman, 2007) is probably one of the first packages that was created to
calculate enrichment for Gene Ontology categories. GOstats can also be used to calculate enrichment
for other biological pathways categories, such as KEGG pathways (by using an instance of the class
KEGGHyperGParams) or PFAM protein families (using PFAMHyperGParams). However, its usage might
not be as straightforward as ACSNMineR, and it does not seem possible to test user-defined biological
pathways. Furthermore, other authors have pointed out that the KEGG database used by this package
has not been updated since 2012. clusterProfiler is a recent R package released for enrichment analysis
of Gene Ontology and KEGG with either hypergeometric test or Gene Set Enrichment Analysis (GSEA)
(Yu et al., 2012). Via other packages, support for analysis of Disease Ontology and Reactome Pathways
is possible. Interestingly, this package also offers the possibility to import user-defined gene set,
through tab-delimited pairwise definition files. Other notable packages for enrichment calculations
are ReactomePA for Reactome molecular pathways (Yu and He, 2016), miRNApath for microRNA
pathways (Cogswell et al., 2008) and gage (Luo et al., 2009). We believe that the main advantages of
ACSNMineR compared to other packages are a direct access to the full set of ACSN maps (updated
on a regular basis) and an easy way to test MSigDB gene sets or any user-defined gene set formatted
appropriately.

In order to improve ACSNMineR, we may in the near future try to improve the speed of cal-
culation, which might be a problem if a very large number of samples or experiments have to be
analyzed rapidly. For instance, we could use the foreach and %dopar% operator to parallelize the most
computationally demanding operations. It could also be useful to implement more sensitive methods
of gene set enrichment measures, such as the Gene Set Enrichment Analysis (GSEA) method.

RNaviCell relies on standard HTTP calls to provide informations and calculations, and we have
developped a number of bindings for popular programming languages such as R, Java and Python
(Bonnet et al., 2015). This open architecture is designed to facilitate the development of utilities by other
programmers and to facilitate the integration of ACSN maps in existing frameworks. The development
of such services, sometimes called “microservices" (Fowler, 2014) is in expansion. Furthermore, this
kind of open architecture could clear the way for a more unified and general access to reaction
networks database, including for example WikiPathways (Kelder et al., 2012), Reactome (Croft et al.,
2014) and other databases. The PSICQUIC project is a successfull example of such an architecture
(Aranda et al., 2011). It is an effort of the HUPO proteomics standard initiative to standardize the
access to molecular interaction databases programmatically, based on the specification of web services
(using REST and SOAP calls) and a common query language (MIQL).
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Clonal evolution in neuroblastoma

9.2 QuantumClone

QuantumClone is an R package to reconstruct and visualize clonal populations
from HTS data.

As of March, 15th 2017, it has been downloaded 4164 times, which corre-
sponds to 221 downloads a month on average.

Chapter 9 138



Clonal assessment of functional variants in cancer based

on a genotype-aware method for clonal reconstruction

Paul Deveau1-3, Leo Colmet Daage2, Derek Oldridge4-6, Virginie Bernard7, Angela Bellini2, Mathieu

Chicard2, Nathalie Clement2, Eve Lapouble8, Valérie Combaret9, Anne Boland10, Vincent Meyer10,

Jean-François Deleuze10, Isabelle Janoueix-Lerosey11, Emmanuel Barillot1, Olivier Delattre11, John

Maris4-6, Gudrun Schleiermacher2,12,†,* and Valentina Boeva1,13,†,*

1Institut Curie, PSL Research University, Mines Paris Tech, INSERM U900, 75005, Paris, France

2Institut Curie, PSL Research University, INSERM U830, Laboratoire RTOP (Recherche Translationelle en

Oncologie Pédiatrique), Département de recherche translationnelle, 75005, Paris, France

3Univ. Paris-Sud, Orsay, France

4Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA

5Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania,

USA

6Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia,

Pennsylvania, USA

7Institut Curie, PSL Research University, ICGex, 75005, Paris, France

8Institut Curie, PSL Research University, Unité de Génétique Somatique, 75005, Paris, France

9Centre Léon-Bérard, Laboratoire de Recherche Translationnelle Lyon, France

10Centre National de Génotypage, Institut de Génomique, CEA, Evry, 91057, France.

11Institut Curie, PSL Research University, INSERM U830, Paris, 75005, France

12Institut Curie, PSL Research University, Département de Pédiatrie, Paris, 75005, France

13Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes UMR-S1016, 75014,

Paris, France

†These authors jointly supervised this work.

*Correspondance should be addressed to valentina.boeva@inserm.fr or gudrun.schleiermacher@curie.fr

Running title: Framework for clonal reconstruction in cancer

Keywords: Clonal inference, Cancer, Algorithms, Neuroblastoma, Whole genome sequencing

1



Abstract

In cancer, clonal evolution is assessed based on information coming from single nucleotide variants and copy

number alterations. Nonetheless, previous methods often fail to accurately combine information from both

sources to truthfully reconstruct clonal populations in a given tumor sample or in a set of tumor samples

coming from the same patient. Moreover, existing methods detect clones from a single set of variants. As a

result, compromises have to be done between stringent variant �ltering (reducing VAF dispersion) and using

all biologically relevant variants. Here, we present a framework for de�ning cancer clones using most reliable

variants of high depth of coverage and assigning functional mutations to the detected clones. The key element

of our framework is QuantumClone, a method for variant clustering into clones based on VAFs, genotypes of

corresponding regions and information about tumor purity. We validated QuantumClone and our framework

on simulated data. We then applied our framework to whole genome sequencing data for 19 neuroblastoma

trios each including constitutional, diagnosis and relapse samples. In this cohort, we con�rmed an enrichment

of damaging variants within such pathways as MAPK, neuritogenesis, epithelial-mesenchymal transition, cell

survival and DNA repair. Most pathways had more damaging variants in the expanding clones compared

to shrinking ones, which can be explained by the increased total number of variants between these two

populations. Functional mutational rate varied for ancestral clones and clones shrinking or expanding upon

treatment, suggesting changes in clone selection mechanisms at di�erent time points of tumor evolution.
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Introduction1

The principal cause of cancer is believed to be the accumulation of somatic variants and structural variations2

(SVs) in the genome. Recently, many e�orts have focused on the identi�cation of driver mutations; nonethe-3

less, passenger variants, although they are not directly linked to the disease, may provide additional evidence4

from which to infer the phylogeny of a tumor and so help uncover the basis for its proliferative activity5

(Marusyk et al., 2014). Indeed high con�dence passenger set of variants shared by a clonal population should6

be observed at the same cellular prevalence at any given point in time, allowing statistical models to cluster7

variants together and de�ne a clone.8

9

To understand the role that driver mutations play in clonal expansion and cancer progression, it is essen-10

tial to accurately reconstruct the clonal structure and assign functional variants to it. We de�ne a clone as11

a cell population that harbors a unique pattern of mutations and SVs. Such clones are related to each other12

and share a common ancestor. A hierarchical phylogenetic tree, which represents the ancestry of clones, can13

be constructed to re�ect the order of appearance of new sets of mutations de�ning each clone. Each such14

set of mutations is expected to contain at least one driver mutation or SV giving a selective advantage to15

the clone compared to its ancestry. A clone can thus have a di�erent behavior from its ancestral clone when16

facing the same stimuli. With accumulation of driver mutations, clones are likely to gain hallmarks of can-17

cer such as evading growth suppressors and activating invasion and metastasis (Hanahan andWeinberg, 2011).18

19

High-Throughput Sequencing (HTS) of bulk tumor tissues has allowed uncovering genetic di�erences at20

the clonal level in primary and relapse/metastatic tumors. Modern computational methods provide ways to21

reconstruct the structure of the phylogenetic tree from variant allele frequencies (VAFs) in sequenced reads,22

where VAF is a proportion of reads supporting each given variant among all reads spanning the position of23

interest (Fischer et al., 2014; Jiao et al., 2014; Kepler, 2013; Malikic et al., 2015; Miller et al., 2014; Qiao et al.,24

2014; Schwarz et al., 2014). However, existing methods for clonal reconstruction often neglect information25

about the genotype of each position, which refers to the paternal or maternal inheritance of a locus and the26

number of copies of each allele. Accounting for the genotype information is especially crucial in the case27

of hyper-diploid cancers and cancers with highly rearranged genomes, as the cellular prevalence � measured28

as the proportion of cancer cells carrying a variant � is linked to VAF through such parameters as copy29

number of the locus and the number of chromosome bearing the mutation. Computationally, we can detect30

di�erent clones based on the clustering of VAF values (Miller et al., 2014; Roth et al., 2014; Qiao et al., 2014).31

However, identifying the correct hierarchical tree is a complex task, and this problem often does not have a32

3



unique solution. Therefore, in this paper, clones and variant clusters are considered as synonyms.33

34

Here we show that by combining the genotype and VAF information it is possible to correctly cluster35

variants and assign them to speci�c clones, thus reconstructing the clonal architecture of an individual cancer.36

This may be done with our novel method, QuantumClone, designed to reconstruct clones based on both VAF37

and genotype information; so we call it "genotype-aware". We demonstrate that our algorithm accurately38

clusters variants on simulated data, even when cancer is hyper-diploid or contaminated by normal cells. We39

also propose a general framework based on QuantumClone to detect driver mutations of clonal evolution. This40

general approach is applied to 19 neuroblastoma cases; each case includes whole genome sequencing (WGS)41

data from a sample at diagnosis and relapse. We show that mutations possibly a�ecting the expression level42

or the structure of the protein (here called damaging or deleterious) in neuroblastoma accumulate at relapse43

in speci�c pathways such as cell motility (e.g., cell-matrix adhesion and regulation of epithelial�mesenchymal44

transition, EMT) and cell survival (e.g., PI3K/AKT/mTOR, MAPK or noncanonical Wnt pathways).45

46

Results47

The QuantumClone method presented here applies an expectation-maximization (EM) algorithm and allows48

for accurate inference of clonal structure using VAFs from one or several tumor samples sequenced using49

WGS. It can analyze variants coming from highly rearranged and hyper-diploid cancer genomes. We exten-50

sively validated QuantumClone on simulated data, where we compared it with recently published methods51

(Miller et al., 2014; Roth et al., 2014). We complement QuantumClone with a robust framework for the52

functional assessment of mutations based on signaling pathway analysis combined with the assignment of53

functional variants to the reconstructed clones.54

55

This framework was applied to WGS neuroblastoma datasets: 19 patients' primary and relapse samples56

including 7 new triplets. Novel and previously published samples (Eleveld et al., 2015) have an average57

sequencing depth of ∼ 100× (Methods). Application of the QuantumClone-based framework allowed us to58

discover pathways recurrently altered by mutations in neuroblastoma at diagnosis and relapse.59

60
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Assessment of clonal reconstruction accuracy of QuantumClone61

For clonal reconstruction using VAFs, we developed an approach that applies an EM algorithm (Methods).62

QuantumClone utilizes genotype information and assigns variants to clones providing the most likely values63

of cellular prevalence (Methods).64

65

Comparison of QuantumClone with existing methods66

Using in silico data, we compared the performance of QuantumClone, sciClone (Miller et al., 2014) and67

pyClone (Roth et al., 2014) in order to infer the clonal structure of a set of tumors derived from the same68

patient. sciClone is based on variational Bayesian Mixture Models, while pyClone relies on a hierarchical69

Bayes statistical model. Similarly to QuantumClone, pyClone leverages copy number information to better70

infer clonal architecture.71

72

We generated a phylogenetic tree for each simulated tumor, which was used to compute observed alterna-73

tive allele read count given the cell fraction of the clone, the ploidy, and the depth of coverage at this position74

(Methods). In our simulation experiments, the following parameters varied within realistic ranges: depth of75

sequencing (100× to 1000×), fraction of contamination by normal cells (from 0 to 70%), number of variants76

used for the clonal reconstruction (from 50 to 200), number of tumor samples used for each patient (from 177

to 5) and number of distinct clones per cancer type (from 2 to 10) (Fig. 1).78

79

For each set of parameters, we performed and analyzed 50 independent simulation experiments (Meth-80

ods). The accuracy of clonal reconstruction was assessed by evaluating the normalized mutual information81

(NMI) (Manning et al., 2008) and the average error in distance between the estimated cellularity of a clone82

and its theoretic value. Perfect variant clustering would result in a L2 (or Euclidean distance) mean error83

of 0, and a NMI value of 1, which would correspond to an identi�cation of the exact number of clones and84

correct assignment of all the variants of a clone to the same cluster.85

86

Our analysis showed that QuantumClone is equivalent to or better than the best published algorithm87

in clustering quality (Fig. 1A) for diploid genomes. In terms of NMI QuantumClone showed similar88

performances compared to pyClone. However, QuantumClone generally outcompeted sciClone for NMI89

(p−value < 2.2×10−16, one-sided Welch two-sample t-test). In samples with 50% contamination by normal90

cells QuantumClone drastically outperformed sciClone (p− value = 3.6× 10−10 Welch one-sided two-sample91
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Figure 1: Comparison of QuantumClone to existing methods. (A) Normalized Mutual Informa-
tion (NMI) is used to assess the quality of variant clustering on simulated data, with a single parameter
varying in each test. This measure evaluates correct assignment of two variants to the same cluster. Quan-
tumClone (red) shows equivalent performance to the best tool in each settings. (B) L2 average error
is used to assess the error for each clustered variants between its simulated position and its reconstructed
position. (C) Computational time necessary to complete the clustering with each algorithm. Default
parameters: two tumor samples without contamination sequenced at 100×; 6 clones; 100 mutations used for
clustering.
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t-test). On average, QuantumClone decreased the L2 mean error by 69% compared to sciClone and 22% com-92

pared to pyClone, signi�cantly improving predictions compared to both methods (p− value < 2.2× 10−16).93

At high values of sequencing depth, all methods accurately estimated prevalence of variants (Fig 1B, L294

mean error < 0.059 at 1000× for all methods). However, a sequencing depth of 100×, which is the depth of95

sequencing currently used for the majority of WES and WGS experiments, QuantumClone consistently gave96

better predictions than pyClone (p − value = 1.5 × 10−6,Welch one-sided two-sample t-test) and sciClone97

(p− value = 4.9× 10−9). In addition, compared to the other methods, QuantumClone took the best advan-98

tage of data when multiple samples were provided for the analysis (p−value = 2.4×10−10 and < 2.2×10−16
99

for pyClone and sciClone respectively, Welch one-sided two-sample t-test, for simulated tumors with �ve100

samples).101

102

Also, the average computational time was signi�cantly decreased using QuantumClone compared to sci-103

Clone (median 35 fold improvement), or pyClone (median 46 fold improvement, Figure 1C). In the case of104

highly heterogeneous tumors (e.g. tumors with 10 simulated clones), the gain in computational time was of105

41 fold (p−value < 2.2×10−16) compared to sciClone and 44 fold (p−value < 2.2×10−16) compared to py-106

Clone. Similarly, when �ve samples were provided, we observed a 74.1 fold decrease (p−value < 2.2×10−16)107

compared to pyClone and 74.2 fold decrease(p− value < 2.2× 10−16) compared to sciClone.108

109

Assessment of clonal reconstruction accuracy in hyper-diploid cancers or cancers with highly110

rearranged genomes111

We expect that in addition to the parameters discussed above, the degree of genome rearrangement and112

chromosome duplication signi�cantly a�ects the quality of the mutation clustering and consecutive clonal113

reconstruction. Indeed, values of cellular prevalence are linked to VAF values through the parameters rep-114

resenting the number of copies of the variant and the number of copies of the reference allele. Given an115

observed VAF value, a variant occurring in a high copy number locus has more possibilities for values of116

cellular prevalence: a variant with an observed allele frequency of 25% can only be linked to a cellular preva-117

lence of 50% in a AB locus, while this variant can arise from cellular prevalence values of 33.3%, 50% or118

100% if the genotype at this locus is AAAB (Methods).119

120

In order to validate QuantumClone on diploid and hyper-diploid genomes, we simulated variants in loci121

of genotype AB, AAB, AABB, and in a nearly diploid genome, where all possible genotypes can be observed122

(Fig. 2). In addition to QuantumClone, we tested the performance of pyClone (Methods). We excluded123

7



sciClone from this experiment as it cannot use variants from non-diploid regions.124

125

In all types of regions, QuantumClone and pyClone performed equally in terms of NMI (Fig. 2A), but126

QuantumClone outperformed pyClone in terms of mean L2 error with an improvement of 31% (Fig. 2B,127

p − value = 5.7 × 10−11). In addition, QuantumClone without parallelization was faster than pyClone in128

three out of four settings (from 6.3 fold slower to 61.5 faster; 15.6 times faster on average), while the dis-129

tributed algorithm outcompeted pyClone in all settings (average computational time decreased by a 43 fold130

compared to pyClone, Fig. 2C).131

132

In addition, in the majority of cases QuantumClone correctly assumed the exact number of copies of a133

variant in polyploid regions (average accuracy = 68.9%, p− value < 2.2× 10−16, Supplementary Figure 1).134
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Figure 2: Quality of clonal reconstruction for mutations located in regions of altered copy
number. (A) Normalized Mutual Information shows equivalent performances of pyClone and Quan-
tumClone in diploid, triploid and tetraploid tumors, or nearly diploid (ND) tumors, whereas the average L2
error (B) shows signi�cantly better performance of QuantumClone. (C) Parallel computing implemented in
QuantumClone allows it to signi�cantly decrease computational time and makes QuantumClone remarkably
faster than pyClone.

We demonstrated that when a mutation can have a single or multiple copy status (AAB and AABB re-136

gions), QuantumClone performed better than the other methods. This validated our computational strategy137

for hyper-diploid cancers.138

139

Overall, validation on simulated data showed that (1) QuantumClone can be applied to cancer samples140

with hyperploid or rearranged genomes and (2) QuantumClone generally performs better than its peers in141

di�cult settings, for example when the number of clones is higher than or equal to six, or when the contam-142
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number of chromosomal copies with a variant on the clonal reconstruction accuracy. ND, near diploid genome.

ination by normal cells is higher than or equal to 30%.143

144

9



Creating a robust framework for clonal assignment of functional mutations145

We proposed a novel concept of reconstruction of the clonal architecture in cancer. Our method combines the146

identi�cation of clones, using high con�dence variants, with the attribution of functional variants (potential147

drivers) to identi�ed clones (Fig.3). The approach is based on the di�erent usage of `functional' variants148

which can potentially a�ect cell phenotype and `high �delity' variants that are used to de�ne clones. High149

�delity variants can be either drivers or passengers; however, they should have high depth of coverage150

(> 50× in our implementation), have no strand bias and should not coincide with annotated single-nucleotide151

polymorphisms (SNPs). As we showed in the simulation studies (Fig. 1), 50 high �delity variants are su�cient152

for an accurate clonal reconstruction (Methods). High �delity variants, because they have a lower dispersion153

of observed VAF compared with other variants, are applied to de�ne clones, i.e., high �delity variants serve as154

input to QuantumClone or to an alternative method. Functional mutations are de�ned here as variants that155

can possibly alter protein function as predicted by commonly used annotation tools (Adzhubei et al., 2013;156

Khurana et al., 2013; Ng and Heniko�, 2003) and that can a�ect either genes reported in the Cancer Census157

List (Futreal et al., 2004) or genes from gene modules/signaling pathways that are enriched in deleterious158

variants (Methods). At the last step of our framework, functional variants are mapped to the clonal structure159

inferred from high �delity variants based on the likelihood values.160

161

Here we have demonstrated that having the proposed two-step approach allows for a better reconstruc-162

tion of the tumor, as well as an important decrease in computational time (Fig. 3D). To test our pipeline,163

we compared it to two common pipelines: the �rst one, termed `classic', uses all variants as input for the164

clustering. The second one, called `selective', only uses variants passing the stringent �lters and informative165

variants as input for the clustering. The third pipeline, termed `two-step', uses a posteriori attribution of166

the putative drivers to the clones found using only variants passing stringent �lters. While all three pipelines167

had similar outcomes when we compared the quality of reconstruction using normalized mutual informa-168

tion (Figure 3B), the selective and two step pipelines fared signi�cantly better than the classical pipeline169

( p − value < 8 × 10−6, one-sided Welch two-sample t-test, Figure 3C). In addition, the two step analysis170

resulted in an average 4.9 fold decrease in computational time compared to the classical pipeline and an171

average 2.7 fold decrease compared to the selective pipeline (Figure 3D). Furthermore, separating both steps172

eases iterative improvement of the clonal reconstruction. Once achieved, this reconstruction can be reused173

to answer questions about the evolution of di�erent pathways separately, while previous pipelines required174

re-running the whole reconstruction with the new set of data.175

176

10



• Depth >50x

1. Variant filtering
2. Clonal 

reconstruction
3. Clonal 

assessment

Filters include:
• Mappability
• Polynucleotide 

stretches
• Duplicated 

regions

• Depth > 30x
• Predicted

deleterious
• Enriched

pathways

Cellularity at diagnosis

C
el

lu
la

ri
ty

 a
t 

re
la

p
se

C
lu

st
er

in
g 

va
ri

an
ts

In
fo

rm
at

iv
e 

va
ri

an
ts

Cellularity at diagnosis

C
el

lu
la

ri
ty

 a
t 

re
la

p
se

0.00

0.25

0.50

0.75

1.00

Clas
sic

Sele
cti

ve

Tw
o 

ste
p

N
o

rm
al

iz
ed

 M
u

tu
al

 In
fo

rm
at

io
n

B

0.0

0.1

0.2

0.3

0.4

0.5

Clas
sic

Sele
cti

ve

Tw
o 

ste
p

A
ve

ra
g

e
L

2
er

ro
r

C

5

10

20

50

Clas
sic

Sele
cti

ve

Tw
o 

ste
p

T
im

e 
(s

)

D

A

Figure 3: Assessment of the pipeline. (A) Overview of the general clonal reconstruction work-
�ow: steps 1-3. (1) Variants are �ltered to remove false positive calls; stringent �lters are used to produce
mutations that are further employed for clonal reconstruction (step 2), tolerant �lters are used to detect
functional mutations. (2) Variants that pass stringent �lters and have genotype information assigned to
the corresponding genomic loci are used as input to QuantumClone to reconstruct clonal populations. (3)
Finally, possibly damaging mutations belonging to frequently altered pathways are mapped to the recon-
structed clones. Quality of reconstruction. The pipeline aforementioned (two step), or a clustering using
all variants called (classic) or a pipeline using only variants of biological interest and variants of high quality
(selective) are assessed in terms of NMI (B), average L2 error (C) or computational time (D). The pipelines
are evaluated on 20 simulations (Methods).

Characterization of neuroblastoma clonal evolution from diagnosis to relapse:177

application of the QuantumClone-based framework178

We applied our framework to investigate the clonal composition of neuroblastoma primary and relapse tu-179

mors and to study their clonal evolution. We performed WGS of constitutive DNA, diagnosis and relapse180

tumor samples for each patient with an average depth of coverage of ∼ 100×. Datasets for 15 out of 22181

patients came from a previously published study (Eleveld et al., 2015). Sequencing was carried out using182

either Illumina HiSeq 2500 and Complete Genomics platforms. Reads were mapped to the reference hg19183

genome using BWA-aln (Li and Durbin, 2009) (Illumina reads) and the internal Complete Genomics mapping184

tool (Complete Genomics reads). Variant calling was performed using Varscan2 version 2.3.6 (Koboldt et al.,185

2013).186
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187

The level of contamination by normal cells (i.e. non-tumoral cells from the patient) varied from 0%188

to 90%, and three samples from three distinct patients had contamination levels higher than 70%. These189

patients were excluded from the clonal reconstruction analysis. (clinical data available in Suppl. Table 1).190

Consequently, we characterized clonal structure of tumors of 19 out of 22 neuroblastoma patients.191

192

Application of �lters uni�es variant call numbers across di�erent sequencing platforms193

In order to remove false positive variant calls, we used a set of stringent �lters (Fig. 3, Methods). The194

initial number of variants in the Varscan2 output was highly dependent on the sequencing technology and195

platform (Suppl. Fig. 2). The number of variants called for samples sequenced by the Beijing Genomics196

Institute (BGI) sequencing platform was an order of magnitude higher than the number of mutations called197

for samples processed by the Centre National de Génotypage (CNG). Application of a set of stringent �lters198

based on read depth of coverage, read mappability, and annotated repetitive regions (listed in Fig. 3A and199

Methods) allowed us to remove platform bias for further analysis. After all �lters, the number of variants per200

sample correlated with the age of the patient (Suppl. Fig. 3, Spearman's rho = 0.93, p−value = 3.4×10−6)201

which was consistent with previous studies (Molenaar et al., 2012).202
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Figure S3: Statistics on numbers of somatic variants called using stringent �lters for diagnosis
and relapse samples from 19 neuroblastoma patients. The number of somatic variants is correlated
with the age of the patient at the time of the biopsy (Spearman correlation test rho = 0.93, p − value =
3.4 × 10−6). Final variant numbers after the �ltering step do not depend on the sequencing center or
sequencing technology used.

Clonal reconstruction203

We applied QuantumClone on high �delity variants we de�ned using stringent �lters (Fig. 3A, Methods).204

Across our cohort, we did not observe a signi�cant association between the predicted number of clones and205

the number of mutations per patient (Spearman's rho = −0.23, p− value = 0.35). In addition, the number206

of clones at relapse was similar to that at diagnosis, even despite the fact that the relapse samples had about207

twice as many mutations as the diagnosis samples (number of mutation clusters varied from one to four with208

a median of three for both time points).209

210

In 79% of reconstructed clonal structures (15 out of 19 patients, we identi�ed mutations coming from the211

ancestral clone (Fig. 4A), i.e. the clone that gave rise to all cells in both diagnosis and relapse samples.212

Annotation of functional mutations in each sample based on the global pathway enrichment213

analysis214

In our framework, we assumed that functional mutations (i.e. putative drivers) in a given cancer type should215

target speci�c signaling pathways or pathway modules (Fig. 3, Step 2). We attributed annotated deleterious216

variants obtained with tolerant �lters (Fig. 3, Methods) to the ACSN maps and detected recurrently altered217

14
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Figure 4: Annotation of clones in neuroblastoma and pathway enrichment analysis. (A) Illustra-
tion with data from patient NB1361 of the rules for assignment of variants to (i) the ancestral clone (cellular
prevalence of the mutation cluster exceeds 70% both at diagnosis and relapse), (ii) clones expanding after
the treatment (cellular prevalence of the mutation cluster increases at least two-fold at relapse) and (iii)
shrinking clones (cellular prevalence of such mutation clusters decreases at least two-fold). (B) Evolution of
the total number of functional variants for enriched maps and modules, across all 19 patients. The majority
of modules show an increase in the number of functional variants between the two time points.
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gene modules using the ACSNmineR package (Deveau et al., 2016). Overall, six general gene maps (apopto-218

sis,cell cycle, DNA repair, EMT / cell motility, cell survival and neuritogenesis) and their 53 gene modules219

were found to be enriched in mutations (threshold 0.01 on the p-value, one-sided exact Fisher test, corrected220

to account for multiple testing with the Benjamini-Hochberg False Discovery Rate correction, corresponding221

to the q-value) (Supp. Table 2). The enrichment of pathways in ACSN was corroborated by enrichment of222

similar pathways from two other methods (Huang et al., 2009b,a; Thomas et al., 2003; Mi et al., 2010) (Supp.223

Table 3 and 4). In further analysis, deleterious mutations were annotated as functional when corresponding224

genes were included in the enriched pathways, or when such genes belonged to the Cancer Census list. The225

resulting number of functional mutations per patient varied from 2 to 147, with a median of 51.226

227

At this step, the cell survival map registered the highest enrichment in putative drivers, and among228

its modules, the highest enrichment in putative driver mutations was observed for the non-canonical WNT229

pathway (q − value ≤ 10−88). In addition, we also detected signi�cant enrichment in functional mutations230

of the WNT canonical and the MAPK pathways (q − value ≤ 10−51 and ≤ 10−54, respectively), and of the231

PI3K/AKT/mTOR and Hedgehog gene modules (q − value ≤ 10−75 and ≤ 10−43, respectively). As for the232

modules of other maps, genes coding for the EMT regulators were also signi�cantly a�ected by the deleterious233

mutations in our cohort of relapsed neuroblastoma patients (q − value ≤ 10−126).234

235

Assignment of functional mutations to the identi�ed clonal structure236

Using the results of the mapping of functional mutations on the clonal structure detected for each patient237

by QuantumClone (Fig. 3A, Step 3), we annotated mutations as (i) those belonging to expanding clones -238

corresponding to a two-fold cellular prevalence increase between diagnosis and relapse, (ii) those belonging239

to shrinking clones - cellular prevalence halved between diagnosis and relapse , and (iii) those belonging to240

ancestral clones - cellular prevalence higher than 70% in both samples (Fig. 4A). Overall, 36%, 30% and241

9.6% of all functional mutations fell in these three categories.242

243

Analysis of pathways enriched in functional mutations in shrinking and expanding clones244

Assignment of mutations to clones shrinking or expanding after the treatment resulted in the identi�cation245

of 336 and 400 possible driver mutations in these clone types, respectively. Expanding clones had more246

deleterious mutations targeting genes from all six general maps (apoptosis, cell cycle, DNA repair, EMT/cell247

motility, cell survival and neuritogenesis) than the shrinking clones (Fig. 4B). Similarly, in these expanding248
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clones, most of the corresponding gene modules (e.g., MAPK, WNT canonical or PI3K/AKT/mTOR) were249

also more frequently targeted. An extreme example of this behavior can be given with the neuritogenesis250

substrates module, the RB pathway or the E2F1 pathway in which genes are only found mutated in the251

expanding clones. The increase in functional variants can partly be explained by the observed doubling of252

variants at relapse compared to diagnosis. We de�ne µ the functional mutation rate in a module as the253

number of functional variants per high �delity variants of the patient by number of genes in a module. The254

functional mutation rate across modules was signi�cantly di�erent between the three classes of clones accord-255

ing to the z-score computed as suggested by Paternoster et al. (1998) and described in Methods (Fig. 5A,256

p − value = 8.35 × 10−5 between ancestral and shrinking, p − value = 2.84 × 10−3 between ancestral and257

expanding and p − value = 4.98 × 10−2 between expanding and shrinking). This functional mutation rate258

has been previously linked to the �tness of a clone (McFarland et al., 2013), and it is interesting to notice259

that the functional mutation rate is lower in the ancestral clone (µ = 5.803 functional variations per 1,000260

variants per 1,000 genes in module, standard error s.e = 1.322), than in the shrinking clones (µ = 15.78,261

s.e. = 1.919) or expanding clones (µ = 10.92, s.e. = 0.7583). The change in functional mutation rate suggests262

di�erent selection mechanisms.263

264

Overall, we proposed a new method to reconstruct clonal populations. We applied it to neuroblastoma265

samples obtained at diagnosis and relapse. The fact that there are fewer functional variants in the ancestral266

population than in the shrinking or expanding populations and that the expanding population has a lower267

functional mutation rate suggests that a clone with fewer functional variants had better adaptive capabilities,268

as proposed by Chen et al. (2015).269

Discussion270

Here we propose a pathway-based framework to detect functional mutations in cancer samples and associate271

the mutations to their corresponding clonal structure. The central part of our framework is represented by272

the QuantumClone method, which allows reconstruction of clonal populations based on both variant allele273

frequencies and genotype information. QuantumClone showed stable results on simulated data signi�cantly274

outperforming other methods in di�cult settings such as highly contaminated samples, heterogeneous tumors275

and relatively low depth of sequencing coverage.276

277

The central idea of our analysis framework is to use high �delity variants to reconstruct the clonal struc-278

ture of tumor samples; then, map low coverage functional mutations (with high variance in VAFs) onto the279
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Figure 5: Ancestral, shrinking and expanding clones exhibit di�erent mutation patterns in
neuroblastoma relapse tumors. (A) Functional mutation rate is higher in shrinking and expanding
clones compared to the ancestral ones. We de�ne the functional mutation rate as a ratio of the number
of functional mutations to the number of high �delity variants. For a given gene module the number of
functional mutations in each patient is supposed to linearly depend on the product of the module size and
the total number of detected variants. Therefore, we used the product of the module size and number
of high �delity variants as a covariate in a linear regression model evaluating functional mutation rate for
neuroblastoma tumors. The rate was de�ned as the slope of the linear regression. (B) Given the di�erences
in functional mutation rates observed in neuroblastoma relapse tumors we propose the following model for
clonal selection in this type of cancer: (1) Clones with high functional mutation rate (red) disappear after the
chemotherapy; lower mutational burden provides an advantage in escape from treatment; (2) lower values
for functional mutation rate in clones expanding at relapse (blue) compared to the shrinking clones (red)
is due to a lower frequency of functional mutations before treatment, followed by a gradual accumulation
of functional mutations at relapse. From top to bottom: the number of variants in the clone, number of
functional variants in the clone, and population size in the tumor; a.u. (arbitrary units).
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inferred clonal structure. Also, we suggest limiting the set of functional mutations to those in genes known280

to be associated with cancer (e.g., Cancer Census genes) or to those in genes from gene modules/pathways281

that are frequently disrupted in a given cancer type (Fig. 3).282

283

We apply the proposed analysis framework to decipher clonal structure in neuroblastoma and assign to284

clones possible driver mutations. We detect 53 modules as being altered by mutations in neuroblastoma.285

We identify genes associated with DNA repair, cell motility, apoptosis and survival to be enriched in func-286

tional mutations in neuroblastoma. For relapsed neuroblastoma samples, we recover the previously reported287

enrichment of mutations in the MAPK signaling pathway (Eleveld et al., 2015), while complementing this288

knowledge with discovery of accumulation of functional mutations at the relapse in such functional gene289

modules as PI3K/AKT/mTOR, WNT, Hedgehog signaling and modules consisting of genes responsible for290

cell-matrix adhesion and epithelial�mesenchymal transition (EMT).291

292

For some of our samples, we did not succeed in uncovering an ancestral clone despite the fact that copy293

number breakpoints were consistent between samples, ensuring a common phylogeny (Bollet et al., 2008)294

(Supp. Fig 4). Disappearance at relapse of many potential driver mutations seemingly present in the an-295

cestral clone at diagnosis, may be due to tumor heterogeneity and the fact that biopsies were taken from296

di�erent tumor sites. This situation has been termed "illusion of clonality" (Bruin et al., 2014). It should be297

noted that our framework does not intend to reconstruct the exact phylogeny of the tumor, but focuses on298

the architecture of the samples. If needed, possible phylogenetic trees can be obtained using existing methods299

based on the pre-clustered VAFs (Hajirasouliha et al., 2014).300

301

In the application of our framework to neuroblastoma sequencing data, we excluded information about302

translocations and indels. The reason for this was that the analysis of clonal structure is based on the num-303

ber of sequencing reads supporting each genetic variant. While we suppose that the number of reads with a304

mismatch mutation is proportional to the number of DNA molecules harboring this variant, we expect that305

due to read mapping issues the fraction of reads indicating an indel or a translocations will be generally306

lower than the actual proportion of DNA molecules with the rearrangement. Eviction of large and small SVs307

seemingly resulted in a decrease in sensitivity of the detection of genetic driver events. A possible way to308

solve this issue would be to estimate the cellular prevalence of these event using speci�c tools and attribute309

such events to the most likely clone.310

311

The proposed framework can be applied in the future to any type of cancer. The pre-requirements are312
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su�cient number of candidate mutations (at least 50 mutations per sample) and a minimal read depth of313

coverage of 50×. These requirements are usually met by WGS or whole exome sequencing datasets. Our314

simulation results show that increasing the number of mutations used for clonal reconstruction above 50 does315

not improve signi�cantly the clonal reconstruction accuracy provided that mutations speci�c for every clone316

are present in the input.317

318

Previous studies have shown that the number of variants was linked to the number of divisions a cell un-319

dergoes (Tomasetti and Vogelstein, 2015). The observed doubling of variants between diagnosis and relapse320

suggests that cells have undergone as many divisions between diagnosis and relapse as between cancer origin321

and diagnosis - with the assumption that the mutational rate remains constant. This would in particular322

exclude the possibility of the relapse emerging from a quiescent population.323

324

In addition, the functional mutation rate was signi�cantly lower in the ancestral populations compared to325

the clones expanding or shrinking at relapse. Chen et al. (2015) have shown that wild-type cells have more326

adaptive capabilities than mutants, even though a mutant can appear �tter than the wild-type lineage in a327

speci�c culture condition. Applied to our results, their �nding could suggest that a clone with a low level328

of functional variants would be more likely to adapt to environment changes during and after treatment.329

After this selection round and once the tumor environment has returned to physiological state, another set330

of functional variants would appear, giving selective advantage to the expanding clone.331

332

A direct consequence of this assumption is that the functional mutation rate should be lower at relapse333

compared to diagnosis, as a period of low functional mutation rate before treatment would be followed by a334

period of higher functional mutation rate during disease progression (Fig. 5B). This consequence is in line335

with the 29% functional mutation rate decrease observed between expanding and shrinking clones.336

337

Study of the clonal evolution and its processes can be highly relevant for drug design. We described a338

framework and an algorithm that performed better than previously published methods, which should allow339

for a better analysis of existing data. In addition, we showed that the same processes are at play throughout340

the course of the disease in our neuroblastoma cohort, targeting similar pathways in diagnosis and relapse.341
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Methods342

Datasets343

Patient inclusion criteria and collection of tumor samples. The inclusion criteria for this study were histopatho-344

logical con�rmation of neuroblastoma at original diagnosis and the presence of biopsy material from a sub-345

sequent relapse specimen. Patients were included in this study after an informed consent was obtained from346

parents or guardians, with oversight from the ethics committees 'Comité de Protection des Personnes Sud-Est347

IV', reference L07-95/L12-171, and 'Comité de Protection des Personnes Ile-de-France', reference 0811728 in348

France, the review board at the Children's Hospital of Philadelphia and review boards at other Children's349

Oncology Group sites that submitted samples for patients on this study in the United States. In total we350

obtained material for 22 neuroblastoma patients (tumor tissue at diagnosis, relapse and constitutional DNA,351

Suppl. Table 1).352

353

Whole-genome sequencing of neuroblastoma samples. In the framework of this study, we carried out354

Illumina paired-end sequencing for 7 novel neuroblastoma patients (the total of 21 patients corresponding to355

a tumor at diagnosis and relapse, and a matching blood sample per patient). Data for 15 patients were taken356

and reanalyzed from the previous study (Eleveld et al., 2015). DNA from 7 patients from the previous study357

and 7 new ones have been sequenced using Illumina HiSeq 2500 instruments to an average depth of coverage358

of 80× by Beijing Genomics Institute (BGI) and the Centre National de Génotypage (CNG) respectively. For359

8 patients out of 15 previously reported, whole-genome sequencing was performed by Complete Genomics360

with an average read depth of coverage of 50×. DNA material for each patient (lymphocytes, primary tumors361

and relapse tumors) was in each case sequenced using the same sequencing platform (see Suppl. Table 1 for362

more detail).363

364

Data processing. Sequenced reads were mapped to the human genome hg19 using BWA and the internal365

Complete Genomics tools for Illumina and Complete Genomics datasets respectively. Reads from datasets366

sequenced using the Illumina platform were realigned around indels with the Genome Analysis ToolKit367

(GATK) (McKenna et al., 2010), followed by a base recalibration. Due to the inherent structure of Complete368

Genomics reads, which contain an e�ective deletion relative to their corresponding genomic library, the indel369

realignment step was skipped for the Complete Genomics samples.370

371
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Variant calling and �ltering372

Mutations were called using Varscan2 (Koboldt et al., 2013). Two sets of variants were created for each373

patient (Fig. 3A) using tolerant and stringent �ltering options. The `high con�dence' set of variants ob-374

tained using stringent �lters was further used for clonal reconstruction, while the set of variants obtained375

with tolerant �lters was used for inference of recurrently altered pathways.376

377

Tolerant �lters for somatic variants included those on minimal depth of coverage (30×), minimal percent-378

age of reads supporting the mutation (10%). In addition, variants were required to be located in regions of379

high local mappability (based on the 100 bp mappability track), and outside of repeat and duplicated genomic380

regions. The latter was assessed using the UCSC repeat masker, simple repeat, and segmental duplication381

regions. We further �ltered variants that created a stretch of four or more identical nucleotides. Finally, we382

only kept mutations located in regions where the genotype evaluated by Control-FREEC was available.383

384

To obtain a set of high con�dence variants, in addition to the aforementioned �lters, we required the385

minimal depth of coverage of 50×. We �ltered out variants corresponding to polymorphisms present in more386

than 1% of the population (snp138, 1000Genomes, esp6500) except if it was a known cancer related variant387

(COSMIC database for coding and non-coding mutations).388

389

Copy number analysis390

Copy number alterations in patients were detected using the Control-FREEC method (Boeva et al., 2012)391

(version 7.2) (Suppl. Fig. 4). We selected the main ploidy value so that the predicted copy number and392

B-allele frequency pro�les were consistent. Control-FREEC also provided estimations of the level of contam-393

ination by normal cells, which, after manual con�rmation, was further used for the clonal reconstruction.394

395

Out of 40 tumor samples, three had estimated proportion of contamination by normal cells higher than396

70% were excluded from the further analysis (NB0784:diagnosis, NB1434:relapse and NB1471:relapse).397

398
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Comparison of clonal reconstruction between QuantumClone and existing meth-399

ods400

Data simulation. In silico validation data were generated using the QuantumCat method from package401

QuantumClone (version 1.0.0.3). QuantumCat simulates genomic variants, copy number alterations and402

corresponding VAFs. It relies on the following set of rules:403

1. A binary phylogenetic tree is created to simulate the clonal architecture of the tumor. The mutation404

cellular prevalence values correspond to the nodes and leaves of the phylogenetic tree.405

2. Cellular prevalence values of mutations from each clone are independent across tumor samples. However,406

the cellular prevalence of each clone should always be coherent with the phylogenetic tree.407

3. The allelic copy number of all mutation loci was set to AB in the tests carried out to compare Quan-408

tumClone, sciClone and pyClone (Fig. 1). For QuantumClone validation on triploid, tetraploid and409

nearly diploid genomes (Fig. 2), the number of chromosomal copies bearing each mutation was ran-410

domly assigned between one and the number of A-alleles for the locus considered. Generation of the411

genotype, number of chromosomal copies, normal contamination and cellular prevalence of a mutation412

allows for the computation of the exact VAF, which is the cellular prevalence (taking into account the413

contamination by normal cells) multiplied by the number of copies of the mutations and then divided414

by the number of copies of the locus in each cell. On the other hand, the observed VAF is determined415

by the ratio of the number of reads supporting the mutations divided by the read depth of coverage.416

Local depth of coverage at each given position was generated by the negative binomial distribution cen-417

tered on the target depth of sequencing, �tted on experimental data. The number of reads supporting418

a mutation was simulated from the binomial distribution with the probability of success equal to the419

exact VAF.420

Program versions and parameters. We used SciClone version 1.1.0 with the following changes to the default421

parameters: maximal number of clusters was set to 10 and the minimal depth of coverage was set to 0.422

423

PyClone version 0.13.0 was used with the following parameters : 10,000 iterations of the Markov chain424

Monte Carlo, alpha and beta parameters in the Beta base measure for Dirichlet Process set to 1, concentra-425

tion prior shape set to 1 and the rate parameter in the Gamma prior on the concentration parameter set to426

0.001. We used the default Beta binomial distribution with precision parameter set to 1000, prior shape set427

to 1, rate to 0.0001, and proposal precision set to 0.01.428

429
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We used an implementation of the k -medoids algorithm provided by the R package �fpc�, version 2.1.10,430

with a range of clusters between 2 and 10.431

432

For clonal reconstruction, QuantumClone version 1.0.0.3 was used with default parameters except for433

the the maximal number of clusters, which was set to 10. For clonal reconstruction of neuroblastoma data,434

variants used to compute centers of clusters (corresponding to clones) were selected using the stringent set of435

�lters. Copy number information from Control-FREEC (version 7.2) was also passed to the QuantumClone436

algorithm as well as the predicted value of contamination by normal cells.437

438

For simulated data, quality of clustering was assessed by using Normalized Mutual Information (NMI)439

(Manning et al., 2008), which is given for a group of clones Ω and a group of reconstructed clusters C:440

NMI(Ω,C) = −2×
∑

k

∑
j
|ωk∩cj |

N log
(

N×|ωk∩cj |
|ωk||cj |

)

∑
k
|ωk|
N log

(
|ωk|
N

)
+
∑

j
|cj |
N log

(
|cj |
N

) , (1)

where N is the number of variants observed, |ωk| the number of variants in clone k , and |cj | the number441

of variants attributed to cluster j.442

Reproducibility. All scripts necessary to reproduce the results can be found at: https://github.com/443

DeveauP/QuantumClone/tree/master/tests/reproducible_testing/Comparison_other_methods444

Pipeline comparison445

Data simulation. In silico validation data were generated using the QuantumCat method from package446

QuantumClone (version 1.0.0.3). We simulated variants coming from six clones observed in two samples per447

patient, with a purity of 70% for the �rst sample and 60% for the second. We create 150 variants that pass448

stringent �lters, and an additional 150 variants passing tolerant �lters but not stringent �lters. All variants449

passing stringent �lters were simulated in diploid regions, with a depth of coverage higher than 50×, whereas450

mutations passing permissive �lters were located either in AB regions with a coverage between 30× and 50×451

(approximately 1/4 of permissive variants), or in AAB regions with coverage ≥ 30× (approximately 1/2 of452

permissive variants), or in AABB regions with coverage ≥ 50×. We then attributed the `driver' characteristic453

to 100 variants, by sampling without replacement with probability 10/11 to be selected from the variants454

passing permissive �lters.455

456

Pipelines The `classical' pipeline used all 300 simulated variants as input for the clonal reconstruction,457
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using direct clustering by QuantumClone. The `selective' pipeline used the 150 variants passing stringent458

�lters as well as all variants quali�ed as drivers from the permissive �lters as input for direct clustering. The459

`two-step' pipeline �rst used the 150 stringent variants as input for direct clustering, and then attributed460

the variants quali�ed as drivers a posteriori to the clusters, using the characteristics of the clones found by461

the initial QuantumClone clustering of high con�dence variants. All three pipelines searched for two to ten462

clones, running with two di�erent initializations, on four threads. Computational time was measured on a463

computer running Windows 10, with an Intel i7 at 2.7GHz with 8Gb of RAM, Rstudio 1.0.44 and R version464

3.3.2.465

Evaluation Evaluation of the L2 error and NMI was made using only variants from the stringent and466

driver groups. The displayed computational time takes into account data processing, clustering and when467

necessary a posteriori attribution to the clonal structure.468

Reproducibility. All results shown in �gure 3 can be reproduced using the Figure3.Rmd �le that can be down-469

loaded from https://github.com/DeveauP/QuantumClone/tree/master/tests/reproducible_testing/470

Rscript.471

Clonal reconstruction472

In this section, we describe QuantumClone, a method we have developed for the clonal reconstruction of a473

tumor. QuantumClone performs clustering of cellular prevalence values θ of variants de�ned by:474

θ =
V AF ×NCh

NC × P , (2)

where NCh is the number of copies of the corresponding locus, NC the (a priori unknown) number of475

chromosomal copies bearing the variant, and P the tumor purity. For instance, the cellular prevalence is476

equal to 2 × V AF only in the case of a purely diploid tumor without loss of heterozygosity (LOH) regions,477

with no contamination of the sample by normal cells. The latter assumption has been frequently used in478

cancer studies (Schramm et al., 2015; Williams et al., 2016). As we do not have information about the479

number of chromosomal copies bearing a variant, our approach was to compute each possible value of cellular480

prevalence associated with the variant allele frequency. For example, a mutation can have a VAF of 1/3 in a481

locus of genotype AAB when it is present in 100% of tumor cells on a single chromosome copy and when it482

is present in 50% of tumor cells on two chromosomes. Yet the latter case is rather unlikely. Each mutation483

thus corresponds to several possible values of cellular prevalence; each solution is associated with a value484

of NC. In order to address the problem of non-uniqueness of a solution, we use an EM algorithm based485

on the probability to observe a speci�c number of reads con�rming a mutation given the number of reads486
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overlapping the position, the contamination and the cellularity of a clone. In more detail, we attribute to487

each possibility a probability P (f |θ) to observe f reads supporting the variant given that the latter belongs488

to a clone of cellular prevalence θ, based on a binomial distribution:489

P (f |θ) =

(
d

f

)(
θ ×NC (1− c)

NCh

)f

×
(

1− (θ ×NC (1− c))
NCh

)d−f
, (3)

where490

• d the depth of coverage of the variation;491

• f the number of reads supporting the variant;492

• c the sample contamination by normal cells.493

We can then write the log likelihood function to maximize:494

L =
∑

i∈mutations

∑

k∈clones

∑

s∈samples

∑

p∈possibilities(i)

ω(i,p)t(i,k)log (Pi,s,p (fi,s,p|θk,s)) , (4)

where ωi,p are weights of the possibility computed for a corresponding genotype xAyB (major allele A is

present x times and the minor allele B is present y times):

ωi,p =
∏

s∈samples

(
xs

NCi,s,p

)
+
(

ys

NCi,s,p

)

2NChs
.

By adding weights that, for each variant, sum up to one, we include in our model the fact that variants495

in low copy number regions bear more information than those in hyper diploid regions. Each variant is then496

attributed to its most likely possibility, which is the possibility with highest probability to belong to a clone.497

In the situation described above (a variant in a AAB region with the VAF of 1/3), this approach would498

assign probabilities of 2/3 and 1/2 to the presence of the mutation in 100% and 50% of cells respectively.499

However, if there is a second mutation present, for example, in a locus of genotype AB with a VAF of 1/2500

and thus having unambiguously cellular prevalence of 100%, the �rst mutation will have a high density of501

probability for a cellular prevalence of 100% and our approach will assign both mutations to the same cluster502

corresponding to the same cellular prevalence (100%).503

504

The number of clones is determined by minimization of the Bayesian Information Criterion (BIC). Priors505

can be provided by the user, randomly generated, determined by the k -medoids clustering on mutations in506

A and AB sites when the latter contain enough mutations, or using a hierarchical clustering based on the507
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probability of two variants to belong to the same distribution (default).508

509

Analysis of mutation enrichment in signaling pathways and gene modules510

ACSNMineR (Deveau et al., 2016) version 0.17.1.6 was used to detect gene modules and pathways enriched511

in deleterious mutations. Gene modules included by default in ACSNMineR come from the manually curated512

Atlas of Cancer Signalling Networks (ACSN) (Kuperstein et al., 2015). In addition to the ACSN modules, we513

calculated variant enrichment in a set of neuritogenesis genes frequently mutated in neuroblastoma (Molenaar514

et al. (2012), Suppl. Table 8). We called deleterious mutations all stop-gain mutations or variants that were515

predicted to be possibly damaging or deleterious by SIFT (Ng and Heniko�, 2003), PolyPhen-2 (Adzhubei516

et al., 2013), or FunSeq2 (Khurana et al., 2013).517

518

To get a list of genes to use as an input to ACSNMineR, we pooled mutations from all neuroblastoma519

patients; genes mutated at least once were included in the �nal list. Modules with a p-value lower than 0.01520

after Benjamini-Hochberg correction were considered as enriched.521

522

Statistical comparison of regression parameters523

Regression parameters were found using a linear model in R. The z-score was calculated as recommended by

(Paternoster et al., 1998):

Z =
µ1 − µ2√
σ2

1 + σ2
2

With µ the number of functional variant per module per variant and σ the standard error of the regression.

The p-value is then computed with a two-sided option:

p = 2× P(X≤|Z|)

Where P is the probability of the normal distribution of mean 0 and standard deviation 1.524

Data access525

The whole-genome sequencing data have been deposited at the European Genome-phenome Archive (EGA)526

under accession number EGAS00001001184 for the French cases sequenced at BGI and under accession num-527
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ber EGAS00001001825 for the French cases sequenced at CNG. Sequence data for the US cases are available528

in the database of Genotypes and Phenotypes (dbGaP) under accession number phs000467.529

530

QuantumClone is available at https://github.com/DeveauP/QuantumClone/ and can be downloaded as531

an R package from the CRAN repository.532
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