M. Amrein, R. Hans, and . Künsch, A variant of importance splitting for rare event estimation, ACM Transactions on Modeling and Computer Simulation, vol.21, issue.2, 2011.
DOI : 10.1145/1899396.1899401

C. Barry, N. Arnold, H. Balakrishnan, and . Nagaraja, A first course in order statistics, Siam, vol.54, 1992.

N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical Society, vol.68, issue.3, pp.337-404, 1950.
DOI : 10.1090/S0002-9947-1950-0051437-7

S. Au, L. James, and . Beck, Estimation of small failure probabilities in high dimensions by subset simulation, Probabilistic Engineering Mechanics, vol.16, issue.4, pp.263-277, 2001.
DOI : 10.1016/S0266-8920(01)00019-4

F. Bachoc, Parametric estimation of covariance function in Gaussian-process based Kriging models. Application to uncertainty quantification for computer experiments, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00881002

M. Balesdent, J. Morio, and J. Marzat, Kriging-based adaptive Importance Sampling algorithms for rare event estimation, Structural Safety, vol.44, pp.1-10, 2013.
DOI : 10.1016/j.strusafe.2013.04.001

A. Basudhar and S. Missoum, An improved adaptive sampling scheme for the construction of explicit boundaries. Structural and Multidisciplinary Optimization, pp.517-529, 2010.

J. Bect, D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez, Sequential design of computer experiments for the estimation of a probability of failure, Statistics and Computing, vol.34, issue.4, pp.773-793, 2012.
DOI : 10.2307/1269548

URL : https://hal.archives-ouvertes.fr/hal-00689580

J. Bect, R. Sueur, A. Gérossier, L. Mongellaz, S. Petit et al., Échantillonnage préférentiel et méta-modèles : méthodes bayésiennes optimale et défensive URL https, 47èmes Journées de Statistique de la SFdS -JdS 2015, 2015.

J. Bect, L. Li, and E. Vazquez, Bayesian subset simulation. arXiv preprint, 2016.
DOI : 10.1137/16m1078276

URL : https://hal.archives-ouvertes.fr/hal-01253706

J. Beirlant, F. Caeiro, and I. M. Gomes, An overview and open research topics in statistics of univariate extremes, REVSTAT-Statistical Journal, vol.10, issue.1, pp.1-31, 2012.

A. Beskos and A. Jasra, Nikolas Kantas, and Alexandre Thiery. On the convergence of adaptive sequential monte carlo methods, Annals of Applied Probability, vol.26, issue.2, p.2016

I. Bezáková, D. ?tefankovic, V. Vijay, E. Vazirani, and . Vigoda, Accelerating Simulated Annealing for the Permanent and Combinatorial Counting Problems, SIAM Journal on Computing, vol.37, issue.5, pp.1429-1454, 2008.
DOI : 10.1137/050644033

J. Barron, . Bichon, S. Michael, L. P. Eldred, S. Swiler et al., Efficient global reliability analysis for nonlinear implicit performance functions, AIAA journal, issue.10, pp.462459-2468, 2008.

G. Blatman, Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00440197

G. Blatman and B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probabilistic Engineering Mechanics, vol.25, issue.2, pp.183-197, 2010.
DOI : 10.1016/j.probengmech.2009.10.003

G. Blatman and B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression, Journal of Computational Physics, vol.230, issue.6, pp.2345-2367, 2011.
DOI : 10.1016/j.jcp.2010.12.021

I. Zdravko, . Botev, P. Dirk, and . Kroese, An efficient algorithm for rare-event probability estimation, combinatorial optimization, and counting, Methodology and Computing in Applied Probability, vol.10, issue.4, pp.471-505, 2008.

I. Zdravko, . Botev, P. Dirk, and . Kroese, Efficient monte carlo simulation via the generalized splitting method, Statistics and Computing, vol.22, issue.1, pp.1-16, 2012.

J. Bourinet, Rare-event probability estimation with adaptive support vector regression surrogates, Reliability Engineering & System Safety, vol.150, pp.210-221, 2016.
DOI : 10.1016/j.ress.2016.01.023

J. Bourinet, F. Deheeger, and M. Lemaire, Assessing small failure probabilities by combined subset simulation and support vector machines. Structural Safety, pp.343-353, 2011.
DOI : 10.1016/j.strusafe.2011.06.001

N. Bousquet, G. Defaux, B. Iooss, V. Moutoussamy, and C. Walter, mistral: Methods in Structural Reliability, 2015.

S. Boyd and L. Vandenberghe, Convex optimization, 2004.

C. Bréhier, Large deviations principle for the adaptive multilevel splitting algorithm in an idealized setting, ALEA, Latin American Journal of Probability and Mathematical Statistics, vol.12, pp.717-742, 2015.

C. Bréhier, M. Gazeau, L. Goudenege, T. Lelièvre, and M. Rousset, Unbiasedness of some generalized adaptive multilevel splitting algorithms, The Annals of Applied Probability, vol.26, issue.6, 2015.
DOI : 10.1214/16-AAP1185

C. Bréhier, L. Goudenege, and L. Tudela, Central limit theorem for adaptative multilevel splitting estimators in an idealized setting, Proceedings of the 14th MCQMC conference, 2015.

C. Bréhier, T. Lelièvre, and M. Rousset, Analysis of adaptive multilevel splitting algorithms in an idealized case, ESAIM: Probability and Statistics, vol.19, pp.361-394, 2015.
DOI : 10.1051/ps/2014029

K. Breitung, Asymptotic Approximations for Multinormal Integrals, Journal of Engineering Mechanics, vol.110, issue.3, pp.357-366, 1984.
DOI : 10.1061/(ASCE)0733-9399(1984)110:3(357)

J. Brendon, . Brewer, B. Livia, G. Pártay, and . Csányi, Diffusive nested sampling, Statistics and Computing, vol.21, issue.4, pp.649-656, 2011.

F. Cadini, F. Santos, and E. Zio, An improved adaptive kriging-based importance technique for sampling multiple failure regions of low probability, Reliability Engineering & System Safety, vol.131, pp.109-117, 2014.
DOI : 10.1016/j.ress.2014.06.023

F. Cérou and A. Guyader, Adaptive multilevel splitting for rare event analysis. Stochastic Analysis and Applications, pp.417-443, 2007.

F. Cérou and A. Guyader, Fluctuation analysis of adaptive multilevel splitting, Annals of Applied Probability, 2016.

F. Cérou, P. D. Moral, T. Furon, and A. Guyader, Rare event simulation for a static distribution, 2009.

F. Cérou, A. Guyader, R. Rubinstein, and R. Vaisman, On the use of smoothing to improve the performance of the splitting method. Stochastic Models, pp.629-650, 2011.

F. Cérou, P. D. Moral, T. Furon, and A. Guyader, Sequential Monte Carlo for rare event estimation, Statistics and Computing, vol.22, issue.4, pp.795-808, 2012.
DOI : 10.1017/CBO9780511802256

M. John, T. Chambers, and . Hastie, Statistical Models in S. Wadsworth & Brooks/Cole computer science series, 1992.

C. Chang and C. Lin, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3
DOI : 10.1145/1961189.1961199

P. Chauvet, Aide-mémoire de géostatistique linéaire, 2008.

C. Chevalier, Fast uncertainty reduction strategies relying on Gaussian process models, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00879082

C. Chevalier, J. Bect, D. Ginsbourger, E. Vazquez, V. Picheny et al., Fast Parallel Kriging-Based Stepwise Uncertainty Reduction With Application to the Identification of an Excursion Set, Technometrics, vol.13, issue.4, pp.455-465, 2014.
DOI : 10.1007/3-540-50871-6

URL : https://hal.archives-ouvertes.fr/hal-00641108

J. Chiles and P. Delfiner, Geostatistics: modeling spatial uncertainty, 2009.
DOI : 10.1002/9781118136188

URL : https://hal.archives-ouvertes.fr/hal-00795336

N. Chopin, A sequential particle filter method for static models, Biometrika, vol.89, issue.3, pp.539-552, 2002.
DOI : 10.1093/biomet/89.3.539

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Chopin and C. P. Robert, Properties of nested sampling, Biometrika, vol.97, issue.3, 2010.
DOI : 10.1093/biomet/asq021

URL : https://hal.archives-ouvertes.fr/hal-00216003

M. Robert, . Corless, H. Gaston, . Gonnet, E. David et al., On the lambertw function Advances in Computational mathematics, pp.329-359, 1996.

G. Damblin, M. Couplet, and B. Iooss, Numerical studies of space-filling designs: optimization of Latin Hypercube Samples and subprojection properties, Journal of Simulation, vol.82, issue.2, pp.276-289, 2013.
DOI : 10.1016/j.cpc.2012.07.002

URL : https://hal.archives-ouvertes.fr/hal-00848240

A. Dasgupta, Probability for statistics and machine learning: fundamentals and advanced topics, 2011.
DOI : 10.1007/978-1-4419-9634-3

G. Defaux and P. Evrard, Probabilistic analysis of a containment vessel subjected to dynamic pressure loading using surrogate models In Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures, pp.3203-3210, 2014.

F. Deheeger, Couplage mécano-fiabiliste: 2 SMART-méthodologie d'apprentissage stochastique en fiabilité, 2008.

P. Del and M. , Feynman-Kac Formulae, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00426415

J. Delmas and B. Jourdain, Modèles aléatoires: applications aux sciences de l'ingénieur et du vivant, 2006.

G. Deodatis, R. Bruce, D. M. Ellingwood, and . Frangopol, Safety, reliability, risk and life-cycle performance of structures and infrastructures, 2014.
DOI : 10.1201/b16387

A. Der-kiureghian and T. Dakessian, Multiple design points in first and second-order reliability, Structural Safety, vol.20, issue.1, pp.37-49, 1998.
DOI : 10.1016/S0167-4730(97)00026-X

P. Diaconis and S. Holmes, Three Examples of Monte-Carlo Markov Chains: At the Interface Between Statistical Computing, Computer Science, and Statistical Mechanics, 1995.
DOI : 10.1007/978-1-4612-0801-3_4

O. Ditlevsen, O. Henrik, and . Madsen, Structural reliability methods, 1996.

V. Dubourg, Adaptive surrogate models for reliability analysis and reliability-based design optimization, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00697026

V. Dubourg, F. Deheeger, and B. Sudret, Metamodel-based importance sampling for the simulation of rare events, Applications of Statistics and Probability in Civil Engineering, vol.26, p.192, 2011.
DOI : 10.1201/b11332-100

URL : https://hal.archives-ouvertes.fr/hal-00587029

V. Dubourg, F. Sudret, and . Deheeger, Metamodel-based importance sampling for structural reliability analysis, Probabilistic Engineering Mechanics, vol.33, pp.47-57, 2013.
DOI : 10.1016/j.probengmech.2013.02.002

URL : https://hal.archives-ouvertes.fr/hal-00590604

O. Richard, . Duda, E. Peter, . Hart, G. David et al., Pattern classification, 2012.

D. Dupuy, J. Franco, and X. Bay, Planification d'expériences numériques à partir du processus ponctuel de strauss, 12ème congrès de la société Française de Recherche Opérationnelle et d'Aide à la Décision, p.462, 2011.

D. Dupuy, C. Helbert, and J. Franco, Dicedesign and diceeval: Two r packages for design and analysis of computer experiments, Journal of Statistical Software, vol.65, issue.11, pp.1-38, 2015.

B. Echard, M. Gayton, and . Lemaire, AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation, Structural Safety, vol.33, issue.2, pp.145-154, 2011.
DOI : 10.1016/j.strusafe.2011.01.002

N. Echard, M. Gayton, N. Lemaire, and . Relun, A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models, Reliability Engineering & System Safety, vol.111, pp.232-240, 2013.
DOI : 10.1016/j.ress.2012.10.008

P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling of extremal events in insurance and finance, ZOR Zeitschrift f???r Operations Research Mathematical Methods of Operations Research, vol.73, issue.1, 1997.
DOI : 10.1007/978-3-662-02847-6

G. Oliver, A. Ernst, H. Mugler, E. Starkloff, and . Ullmann, On the convergence of generalized polynomial chaos expansions, ESAIM: Mathematical Modelling and Numerical Analysis, issue.02, pp.46317-339, 2012.

J. Michael and . Evans, Discussion of nested sampling for bayesian computations by john skilling, Bayesian Statistics, vol.8, pp.491-524, 2007.

K. Fang, R. Li, and A. Sudjianto, Design and modeling for computer experiments, 2005.
DOI : 10.1201/9781420034899

W. Fauriat and N. Gayton, AK-SYS: An adaptation of the AK-MCS method for system reliability, Reliability Engineering & System Safety, vol.123, pp.137-144, 2014.
DOI : 10.1016/j.ress.2013.10.010

J. Ferreira and V. Menegatto, Eigenvalues of integral operators defined by smooth positive definite kernels. Integral Equations and Operator Theory, pp.61-81, 2009.
DOI : 10.1007/s00020-009-1680-3

A. Forrester, A. Sobester, and A. Keane, Engineering design via surrogate modelling: a practical guide, 2008.
DOI : 10.1002/9780470770801

A. Froda, Sur la Distribution des Propriétés de Voisinage des Fonctions de Variables Réelles, 1929.

M. Garvels, The splitting method in rare event simulation, 2000.

R. Ghanem, D. Pol, and . Spanos, Polynomial Chaos in Stochastic Finite Elements, Journal of Applied Mechanics, vol.57, issue.1, pp.197-202, 1990.
DOI : 10.1115/1.2888303

R. Ghanem, D. Higdon, and H. Owhadi, Handbook of Uncertainty Quantification, 2017.

M. Dan, . Ghiocel, G. Roger, and . Ghanem, Stochastic finite-element analysis of seismic soil-structure interaction, Journal of Engineering Mechanics, vol.128, issue.1, pp.66-77, 2002.

B. Michael and . Giles, Multilevel monte carlo path simulation, Operations Research, vol.56, issue.3, pp.607-617, 2008.

P. Glasserman, P. Heidelberger, P. Shahabuddin, and T. Zajic, Splitting for rare event simulation, Proceedings of the 28th conference on Winter simulation , WSC '96, pp.302-308, 1996.
DOI : 10.1145/256562.256635

P. Glasserman, P. Heidelberger, P. Shahabuddin, and T. Zajic, A large deviations perspective on the efficiency of multilevel splitting, IEEE Transactions on Automatic Control, vol.43, issue.12, pp.1666-1679, 1998.
DOI : 10.1109/9.736061

P. Glasserman, P. Heidelberger, P. Shahabuddin, and T. Zajic, Multilevel Splitting for Estimating Rare Event Probabilities, Operations Research, vol.47, issue.4, pp.585-600, 1999.
DOI : 10.1287/opre.47.4.585

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

W. Peter, . Glynn, L. Donald, and . Iglehart, Importance sampling for stochastic simulations, Management Science, vol.35, issue.11, pp.1367-1392, 1989.

W. Peter, W. Glynn, and . Whitt, The asymptotic efficiency of simulation estimators, Operations Research, vol.40, issue.3, pp.505-520, 1992.

A. Guyader, N. Hengartner, and E. Matzner-løber, Simulation and Estimation of Extreme Quantiles and Extreme Probabilities, Applied Mathematics & Optimization, vol.22, issue.4, pp.171-196, 2011.
DOI : 10.1017/CBO9780511802256

URL : https://hal.archives-ouvertes.fr/hal-00911891

T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer, pp.83-85, 2005.

W. Keith and . Hastings, Monte carlo sampling methods using markov chains and their applications, Biometrika, vol.57, issue.1, pp.97-109, 1970.

B. Jonathan and . Hill, Robust estimation for average treatment effects Available at SSRN 2260573, 2013.

X. Huang, J. Chen, and H. Zhu, Assessing small failure probabilities by AK???SS: An active learning method combining Kriging and Subset Simulation, Structural Safety, vol.59, pp.86-95, 2016.
DOI : 10.1016/j.strusafe.2015.12.003

M. Huber and S. Schott, Using TPA for Bayesian Inference*, Bayesian Statistics, vol.9, issue.9, pp.257-282, 2011.
DOI : 10.1093/acprof:oso/9780199694587.003.0009

URL : https://dukespace.lib.duke.edu/dspace/bitstream/10161/6637/1/HuberSchott.pdf

M. Huber and S. Schott, Random Construction of Interpolating Sets for High-Dimensional Integration, Journal of Applied Probability, vol.14, issue.01, pp.92-105, 2014.
DOI : 10.1214/06-BA127

J. E. Hurtado, Structural reliability: statistical learning perspectives, 2013.
DOI : 10.1007/978-3-540-40987-8

T. Igusa and A. Der-kiureghian, Dynamic Characterization of Two???Degree???of???Freedom Equipment???Structure Systems, Journal of Engineering Mechanics, vol.111, issue.1, pp.1-19, 1985.
DOI : 10.1061/(ASCE)0733-9399(1985)111:1(1)

B. Iooss and P. Lemaître, A Review on Global Sensitivity Analysis Methods, Uncertainty Management in Simulation-Optimization of Complex Systems, pp.101-122, 2015.
DOI : 10.1007/978-1-4899-7547-8_5

URL : https://hal.archives-ouvertes.fr/hal-00975701

E. Pierre, . Jacob, H. Alexandre, and . Thiery, On nonnegative unbiased estimators. The Annals of Statistics, pp.769-784, 2015.

J. Johansson, Estimating the Mean of Heavy-Tailed Distributions, Extremes, vol.6, issue.2, pp.91-109, 2003.
DOI : 10.1023/B:EXTR.0000025668.95782.3d

E. Mark, . Johnson, M. Leslie, D. Moore, and . Ylvisaker, Minimax and maximin distance designs, Journal of statistical planning and inference, vol.26, issue.2, pp.131-148, 1990.

S. Juneja and P. Shahabuddin, Rare-event simulation techniques: an introduction and recent advances. Handbooks in operations research and management science, pp.291-350, 2006.
DOI : 10.1016/s0927-0507(06)13011-x

H. Kahn and T. Harris, Estimation of particle transmission by random sampling. National Bureau of Standards applied mathematics series, pp.27-30, 1951.

A. Keese, G. Hermann, and . Matthies, Hierarchical parallelisation for the solution of stochastic finite element equations, Computers & Structures, vol.83, issue.14, pp.1033-1047, 2005.
DOI : 10.1016/j.compstruc.2004.11.014

R. Charles and . Keeton, On statistical uncertainty in nested sampling, Monthly Notices of the Royal Astronomical Society, vol.414, issue.2, pp.1418-1426, 2011.

J. F. and C. Kingman, Poisson Processes, 1992.
DOI : 10.1002/0470011815.b2a07042

A. Der-kiureghian and M. D. Stefano, Efficient Algorithm for Second???Order Reliability Analysis, Journal of Engineering Mechanics, vol.117, issue.12, pp.2904-2923, 1991.
DOI : 10.1061/(ASCE)0733-9399(1991)117:12(2904)

P. Jack and . Kleijnen, Design and analysis of simulation experiments, 2008.

K. Hasan-ugur, R. Soren, and . Nielsen, New approximations for sorm integrals, Structural Safety, vol.13, issue.4, pp.235-246, 1994.

G. Daniel and . Krige, A statistical approach to some mine valuation and allied problems on the Witwatersrand, 1951.

G. François-le, Combined use of importance weights and resampling weights in sequential monte carlo methods, ESAIM: Proceedings, pp.85-100, 2007.

G. Loic-le, Multi-fidelity Gaussian process regression for computer experiments, 2013.

L. Olivier, . Maître, T. Matthew, . Reagan, N. Habib et al., A stochastic projection method for fluid flow: Ii. random process, Journal of computational Physics, vol.181, issue.1, pp.9-44, 2002.

L. Pierre, . Ecuyer, H. Jose, B. Blanchet, . Tuffin et al., Asymptotic robustness of estimators in rare-event simulation, ACM Transactions on Modeling and Computer SimulationTOMACS), vol.20, issue.1, p.6, 2010.

L. Li, J. Bect, and E. Vazquez, Bayesian Subset Simulation: a kriging-based subset simulation algorithm for the estimation of small probabilities of failure, 11th International Probabilistic Assessment and Management Conference (PSAM11) and The Annual European Safety and Reliability Conference (ESREL 2012), pages CD?ROM Proceedings, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00715316

L. Jason, J. Loeppky, . Sacks, J. William, and . Welch, Choosing the sample size of a computer experiment: A practical guide, Technometrics, 2012.

S. Martiniani, D. Jacob, . Stevenson, J. David, D. Wales et al., Superposition Enhanced Nested Sampling, Physical Review X, vol.18, issue.3, p.31034, 2014.
DOI : 10.1063/1.1472510

URL : http://doi.org/10.1103/physrevx.4.031034

G. Matheron, Principles of geostatistics, Economic Geology, vol.58, issue.8, pp.1246-1266, 1963.
DOI : 10.2113/gsecongeo.58.8.1246

G. Matheron, Le krigeage universel, 1969.

D. Mcleish, A general method for debiasing a Monte Carlo estimator, Monte Carlo Methods and Applications, vol.17, issue.4, 2011.
DOI : 10.3905/jod.1997.407982

J. Mercer, Functions of positive and negative type, and their connection with the theory of integral equations Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp.441-458415, 1909.

N. Merhav and E. Sabbag, Optimal Watermark Embedding and Detection Strategies Under Limited Detection Resources, IEEE Transactions on Information Theory, vol.54, issue.1, pp.255-274, 2008.
DOI : 10.1109/TIT.2007.911210

N. Metropolis and S. Ulam, The Monte Carlo Method, Journal of the American Statistical Association, vol.44, issue.247, pp.335-341, 1949.
DOI : 10.1080/01621459.1949.10483310

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch, e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071)

M. Mitzenmacher and E. Upfal, Probability and computing: Randomized algorithms and probabilistic analysis, 2005.
DOI : 10.1017/CBO9780511813603

T. Most, An adaptive response surface approach for structural reliability analyses based on support vector machines, Proceedings of the Eleventh International Conference on Civil, Structural and Environmental Engineering Computing, BHV Topping, 2007.
DOI : 10.4203/ccp.86.94

R. Motwani and P. Raghavan, Randomized algorithms, Chapman & Hall/CRC, 2010.

P. Mukherjee, D. Parkinson, R. Andrew, and . Liddle, A Nested Sampling Algorithm for Cosmological Model Selection, The Astrophysical Journal, vol.638, issue.2, p.51, 2006.
DOI : 10.1086/501068

URL : http://arxiv.org/abs/astro-ph/0508461

A. Necir, A. Rassoul, and R. Zitikis, Estimating the Conditional Tail Expectation in the Case of Heavy-Tailed Losses, Journal of Probability and Statistics, vol.45, issue.3, 2010.
DOI : 10.1007/BF00635964

A. Owen and Y. Zhou, Safe and Effective Importance Sampling, Journal of the American Statistical Association, vol.37, issue.2, pp.135-143, 2000.
DOI : 10.1016/0021-9991(77)90121-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Peng, Estimating the mean of a heavy tailed distribution, Statistics & Probability Letters, vol.52, issue.3, pp.255-264, 2001.
DOI : 10.1016/S0167-7152(00)00203-0

V. Picheny, D. Ginsbourger, O. Roustant, T. Raphael, N. Haftka et al., Adaptive Designs of Experiments for Accurate Approximation of a Target Region, Journal of Mechanical Design, vol.132, issue.7, p.71008, 2010.
DOI : 10.1115/1.4001873

URL : https://hal.archives-ouvertes.fr/hal-00319385

L. Pronzato, G. Werner, and . Müller, Design of computer experiments: space filling and beyond, Statistics and Computing, vol.44, issue.1, pp.681-701, 2012.
DOI : 10.1007/BF00048668

URL : https://hal.archives-ouvertes.fr/hal-00685876

J. Gary, P. , and D. B. Wilson, Exact sampling with coupled markov chains and applications to statistical mechanics. Random structures and Algorithms, pp.223-252, 1996.

R. Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing

C. Edward-rasmussen, K. Christopher, and . Williams, Gaussian processes for machine learning, 2006.

I. Sidney and . Resnick, Extreme values, regular variation and point processes, 2013.

. Chang-han-rhee, W. Peter, and . Glynn, Unbiased Estimation with Square Root Convergence for SDE Models, Operations Research, vol.63, issue.5, pp.1026-1043, 2015.
DOI : 10.1287/opre.2015.1404

P. Christian, G. Robert, and . Casella, Monte Carlo statistical methods, 2004.

M. Gareth-roberts-huber, S. Schott, J. M. In, M. J. Bernardo, and J. Bayarri, Using TPA for Bayesian inference, Bayesian Statistics 9, pp.257-282, 2011.

M. Claudio, J. Rocco, and . Moreno, Fast monte carlo reliability evaluation using support vector machine, Reliability Engineering & System Safety, vol.76, issue.3, pp.237-243, 2002.

O. Roustant, D. Ginsbourger, and Y. Deville, Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization, Journal of Statistical Software, vol.51, issue.1, pp.1-55, 2012.
DOI : 10.18637/jss.v051.i01

URL : https://hal.archives-ouvertes.fr/hal-00495766

G. Rubino and B. Tuffin, Rare event simulation using Monte Carlo methods, 2009.
DOI : 10.1002/9780470745403

URL : https://hal.archives-ouvertes.fr/hal-00787654

R. Rubinstein, The cross-entropy method for combinatorial and continuous optimization, Methodology And Computing In Applied Probability, vol.1, issue.2, pp.127-190, 1999.
DOI : 10.1023/A:1010091220143

R. Rubinstein, Entropy and Cloning Methods for Combinatorial Optimization, Sampling and Counting Using the Gibbs Sampler, Information Theory and Statistical Learning, pp.385-434, 2009.
DOI : 10.1007/978-0-387-84816-7_16

R. Rubinstein, The Gibbs Cloner for Combinatorial Optimization, Counting and Sampling, Methodology and Computing in Applied Probability, vol.32, issue.4, pp.491-549, 2009.
DOI : 10.1017/CBO9780511813603

R. Rubinstein, Randomized Algorithms with Splitting: Why the Classic Randomized Algorithms Do Not Work and How to Make them Work, Methodology and Computing in Applied Probability, vol.17, issue.1, pp.1-50, 2010.
DOI : 10.1002/9780470230381

R. Rubinstein, P. Dirk, and . Kroese, Simulation and the Monte Carlo method, 2011.

R. Rubinstein, A. Dolgin, and R. Vaisman, The Splitting Method for Decision Making, Communications in Statistics - Simulation and Computation, vol.41, issue.6, pp.905-921, 2012.
DOI : 10.1002/9780470230381

J. Sacks, B. Susannah, . Schiller, J. William, and . Welch, Designs for Computer Experiments, Technometrics, vol.15, issue.18, pp.41-47, 1989.
DOI : 10.1214/aos/1176350247

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni et al., Global sensitivity analysis: the primer, 2008.
DOI : 10.1002/9780470725184

URL : http://media.wiley.com/product_data/excerpt/74/04700599/0470059974.pdf

J. Thomas, . Santner, J. Brian, . Williams, I. William et al., The design and analysis of computer experiments, 2003.

R. Schöbi, S. Sudret, and . Marelli, Rare Event Estimation Using Polynomial-Chaos Kriging, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, vol.3, issue.2
DOI : 10.1061/AJRUA6.0000870

E. Simonnet, Combinatorial analysis of the adaptive last particle method, Statistics and Computing, vol.11, issue.4, pp.211-230, 2016.
DOI : 10.1109/WSC.1994.717150

J. Skilling, Nested sampling for general Bayesian computation, Bayesian Analysis, vol.1, issue.4, pp.833-859, 2006.
DOI : 10.1214/06-BA127

A. Smith, A. Doucet, N. Nando-de-freitas, and . Gordon, Sequential Monte Carlo methods in practice, 2013.

J. Alex, B. Smola, and . Schölkopf, A tutorial on support vector regression, Statistics and computing, vol.14, issue.3, pp.199-222, 2004.

C. Soize and R. Ghanem, Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure, SIAM Journal on Scientific Computing, vol.26, issue.2, pp.395-410, 2004.
DOI : 10.1137/S1064827503424505

URL : https://hal.archives-ouvertes.fr/hal-00686211

D. Straub and I. Papaioannou, Bayesian Updating with Structural Reliability Methods, Journal of Engineering Mechanics, vol.141, issue.3, p.4014134, 2014.
DOI : 10.1061/(ASCE)EM.1943-7889.0000839

URL : http://mediatum.ub.tum.de/doc/1276569/document.pdf

D. Straub, I. Papaioannou, and W. Betz, Bayesian analysis of rare events, Journal of Computational Physics, vol.314, pp.538-556, 2016.
DOI : 10.1016/j.jcp.2016.03.018

B. Sudret, Meta-models for Structural Reliability and Uncertainty Quantification, Proceedings of the 5th Asian-Pacific Symposium on Structural Reliability and its Applications
DOI : 10.3850/978-981-07-2219-7_P321

URL : https://hal.archives-ouvertes.fr/hal-00683179

V. Vapnik, Pattern recognition using generalized portrait method. Automation and remote control, pp.774-780, 1963.

V. Vapnik and A. Chervonenkis, A note on one class of perceptrons. Automation and remote control, 1964.

C. Vergé, C. Dubarry, P. D. Moral, and E. Moulines, On parallel implementation of sequential Monte Carlo methods: the island particle model, Statistics and Computing, vol.90, issue.420, pp.1-18, 2013.
DOI : 10.1080/01621459.1995.10476549

M. Villén-altamirano and J. Villén-altamirano, Restart: A method for accelerating rare event simulations, Analysis, vol.3, issue.3, 1991.

P. Waarts, Structural reliability using finite element methods: an appraisal of directional adaptive response surface sampling (DARS), 2000.

H. Wackernagel, Multivariate geostatistics: an introduction with applications, 2013.

G. Wahba, Support vector machines, reproducing kernel hilbert spaces and the randomized gacv Advances in Kernel Methods-Support Vector Learning, pp.69-87, 1999.

C. Walter, Moving particles: A parallel optimal Multilevel Splitting method with application in quantiles estimation and meta-model based algorithms, Structural Safety, vol.55, issue.0, pp.10-25, 2015.
DOI : 10.1016/j.strusafe.2015.02.002

C. Walter, Point process-based Monte Carlo estimation, Statistics and Computing, vol.55, issue.4
DOI : 10.1016/j.strusafe.2015.02.002

URL : http://arxiv.org/abs/1412.6368

C. Walter, Rare event simulation and splitting for discontinuous random variables, ESAIM: Probability and Statistics, vol.19, pp.794-811, 2015017.
DOI : 10.1051/ps/2015017

URL : http://arxiv.org/abs/1507.00919

C. Walter and G. Defaux, Rare event simulation: a point process interpretation with application in probability and quantile estimation, Proceedings of the 12 th International Conference on Applications of Statistics and Probability, 2015.

S. Weston, doMPI: Provides a parallel backend for the %dopar% function using the Rmpi package, 2015a. URL http

S. Weston, doParallel: Foreach Parallel Adaptor for the 'parallel' Package, 2015b. URL http://CRAN.R-project.org/package=doParallel

S. Weston, foreach: Provides Foreach Looping Construct for R, 2015c. URL http: //CRAN.R-project.org/package=foreach

D. Xiu, Fast numerical methods for stochastic computations: a review, Communications in computational physics, vol.5, issue.2-4, pp.242-272, 2009.

Y. Xiukai, L. Zhenzhou, and L. Yuanbo, Support vector machine response surface method based on fast markov chain simulation, Intelligent Computing and Intelligent Systems ICIS 2009. IEEE International Conference on, pp.279-282, 2009.

Y. Zhang and A. Der-kiureghian, Two Improved Algorithms for Reliability Analysis, Reliability and optimization of structural systems, pp.297-304, 1995.
DOI : 10.1007/978-0-387-34866-7_32