G. Cottet and E. Maitre, A level set method for fluid-structure interactions with imme surfaces. Mathematical models and methods in applied sciences, pp.415-438, 2006.

Y. Liu, L. Zhang, X. Wang, and W. Liu, Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics, International Journal for Numerical Methods in Fluids, vol.85, issue.12, pp.1237-1252, 2004.
DOI : 10.1002/fld.798

E. Maitre, T. Milcent, G. Cottet, A. Raoult, and Y. Usson, Applications of level set methods in computational biophysics, Mathematical and Computer Modelling, vol.49, issue.11-12, pp.492161-492163, 2009.
DOI : 10.1016/j.mcm.2008.07.026

URL : https://hal.archives-ouvertes.fr/hal-00177593

B. Neu, J. Herbert, and . Meiselman, Depletion-Mediated Red Blood Cell Aggregation in Polymer Solutions, Biophysical Journal, vol.83, issue.5, pp.2482-2490, 2002.
DOI : 10.1016/S0006-3495(02)75259-4

S. Aleksander, . Popel, C. Paul, and . Johnson, Microcirculation and hemorheology. Annual review of fluid mechan 37, p.43, 2005.

U. Seifert, Configurations of fluid membranes and vesicles Advances in physics, pp.13-137, 1997.

J. Stoltz, M. Singh, and P. Riha, Hemorheology in practice, p.199

T. Watanabe, M. Oka, and . Yamamoto, A phenomenological theory of the sigma eect, pp.25-32, 1968.

S. Blair, The importance of the sigma phenomenon in the study of the flow of blood, Rheologica Acta, vol.36, issue.2-3, pp.123-126, 1958.
DOI : 10.1080/00325481.1951.11691514

G. Cottet and E. Maitre, A level set method for fluid-structure interactions with immersed surfaces. Mathematical models and methods in applied sciences, pp.415-438, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00103198

Y. Liu, L. Zhang, X. Wang, and W. Liu, Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics, International Journal for Numerical Methods in Fluids, vol.85, issue.12, pp.1237-1252, 2004.
DOI : 10.1002/fld.798

E. Maitre, T. Milcent, G. Cottet, A. Raoult, and Y. Usson, Applications of level set methods in computational biophysics, Mathematical and Computer Modelling, vol.49, issue.11-12, pp.2161-2169, 2009.
DOI : 10.1016/j.mcm.2008.07.026

URL : https://hal.archives-ouvertes.fr/hal-00177593

B. Neu, J. Herbert, and . Meiselman, Depletion-Mediated Red Blood Cell Aggregation in Polymer Solutions, Biophysical Journal, vol.83, issue.5, pp.2482-2490, 2002.
DOI : 10.1016/S0006-3495(02)75259-4

S. Aleksander, . Popel, C. Paul, and . Johnson, Microcirculation and hemorheology. Annual review of fluid mechanics, p.43, 2005.

U. Seifert, Configurations of fluid membranes and vesicles Advances in physics, pp.13-137, 1997.

J. Stoltz, M. Singh, and P. Riha, Hemorheology in practice, 1999.

T. Watanabe, M. Oka, and . Yamamoto, A phenomenological theory of the sigma eect, Proceedings of the Faculty of Science of Tokai University, pp.25-32, 1968.

S. Blair, The importance of the sigma phenomenon in the study of the flow of blood, Rheologica Acta, vol.36, issue.2-3, pp.123-126, 1958.
DOI : 10.1080/00325481.1951.11691514

G. Cottet and E. Maitre, A level set method for fluid-structure interactions with immersed surfaces. Mathematical models and methods in applied sciences, pp.415-438, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00103198

Y. Liu, L. Zhang, X. Wang, and W. Liu, Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics, International Journal for Numerical Methods in Fluids, vol.85, issue.12, pp.1237-1252, 2004.
DOI : 10.1002/fld.798

E. Maitre, T. Milcent, G. Cottet, A. Raoult, and Y. Usson, Applications of level set methods in computational biophysics, Mathematical and Computer Modelling, vol.49, issue.11-12, pp.2161-2169, 2009.
DOI : 10.1016/j.mcm.2008.07.026

URL : https://hal.archives-ouvertes.fr/hal-00177593

B. Neu, J. Herbert, and . Meiselman, Depletion-Mediated Red Blood Cell Aggregation in Polymer Solutions, Biophysical Journal, vol.83, issue.5, pp.2482-2490, 2002.
DOI : 10.1016/S0006-3495(02)75259-4

S. Aleksander, . Popel, C. Paul, and . Johnson, Microcirculation and hemorheology. Annual review of fluid mechanics, p.43, 2005.

U. Seifert, Configurations of fluid membranes and vesicles Advances in physics, pp.13-137, 1997.

J. Stoltz, M. Singh, and P. Riha, Hemorheology in practice, 1999.

T. Watanabe, M. Oka, and . Yamamoto, A phenomenological theory of the sigma eect References [1] GW Scott Blair. The importance of the sigma phenomenon in the study of the flow of blood, Proceedings of the Faculty of Science of Tokai University, pp.25-32123, 1958.

G. Cottet and E. Maitre, A level set method for fluid-structure interactions with immersed surfaces. Mathematical models and methods in applied sciences, pp.415-438, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00103198

Y. Liu, L. Zhang, X. Wang, and W. Liu, Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics, International Journal for Numerical Methods in Fluids, vol.85, issue.12, pp.1237-1252, 2004.
DOI : 10.1002/fld.798

E. Maitre, T. Milcent, G. Cottet, A. Raoult, and Y. Usson, Applications of level set methods in computational biophysics, Mathematical and Computer Modelling, vol.49, issue.11-12, pp.2161-2169, 2009.
DOI : 10.1016/j.mcm.2008.07.026

URL : https://hal.archives-ouvertes.fr/hal-00177593

B. Neu, J. Herbert, and . Meiselman, Depletion-Mediated Red Blood Cell Aggregation in Polymer Solutions, Biophysical Journal, vol.83, issue.5, pp.2482-2490, 2002.
DOI : 10.1016/S0006-3495(02)75259-4

S. Aleksander, . Popel, C. Paul, and . Johnson, Microcirculation and hemorheology. Annual review of fluid mechanics, p.43, 2005.

U. Seifert, Configurations of fluid membranes and vesicles Advances in physics, pp.13-137, 1997.

J. Stoltz, M. Singh, and P. Riha, Hemorheology in practice, 1999.

T. Watanabe, M. Oka, and . Yamamoto, A phenomenological theory of the sigma eect, Proceedings of the Faculty of Science of Tokai University, pp.25-32, 1968.

S. Blair, The importance of the sigma phenomenon in the study of the flow of blood, Rheologica Acta, vol.36, issue.2-3, pp.123-126, 1958.
DOI : 10.1080/00325481.1951.11691514

G. Cottet and E. Maitre, A level set method for fluid-structure interactions with immersed surfaces. Mathematical models and methods in applied sciences, pp.415-438, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00103198

Y. Liu, L. Zhang, X. Wang, and W. Liu, Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics, International Journal for Numerical Methods in Fluids, vol.85, issue.12, pp.1237-1252, 2004.
DOI : 10.1002/fld.798

E. Maitre, T. Milcent, G. Cottet, A. Raoult, and Y. Usson, Applications of level set methods in computational biophysics, Mathematical and Computer Modelling, vol.49, issue.11-12, pp.2161-2169, 2009.
DOI : 10.1016/j.mcm.2008.07.026

URL : https://hal.archives-ouvertes.fr/hal-00177593

B. Neu, J. Herbert, and . Meiselman, Depletion-Mediated Red Blood Cell Aggregation in Polymer Solutions, Biophysical Journal, vol.83, issue.5, pp.2482-2490, 2002.
DOI : 10.1016/S0006-3495(02)75259-4

S. Aleksander, . Popel, C. Paul, and . Johnson, Microcirculation and hemorheology. Annual review of fluid mechanics, p.43, 2005.

U. Seifert, Configurations of fluid membranes and vesicles Advances in physics, pp.13-137, 1997.

J. Stoltz, M. Singh, and P. Riha, Hemorheology in practice, 1999.

T. Watanabe, M. Oka, and . Yamamoto, A phenomenological theory of the sigma eect, Proceedings of the Faculty of Science of Tokai University, pp.25-32, 1968.

S. Blair, The importance of the sigma phenomenon in the study of the flow of blood, Rheologica Acta, vol.36, issue.2-3, pp.123-126, 1958.
DOI : 10.1080/00325481.1951.11691514

G. Cottet and E. Maitre, A level set method for fluid-structure interactions with immer surfaces. Mathematical models and methods in applied sciences, pp.415-438, 2006.

Y. Liu, L. Zhang, X. Wang, and W. Liu, Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics, International Journal for Numerical Methods in Fluids, vol.85, issue.12, pp.1237-1252, 2004.
DOI : 10.1002/fld.798

E. Maitre, T. Milcent, G. Cottet, A. Raoult, and Y. Usson, Applications of level set methods in computational biophysics, Mathematical and Computer Modelling, vol.49, issue.11-12, pp.492161-492182, 2009.
DOI : 10.1016/j.mcm.2008.07.026

URL : https://hal.archives-ouvertes.fr/hal-00177593

B. Neu, J. Herbert, and . Meiselman, Depletion-Mediated Red Blood Cell Aggregation in Polymer Solutions, Biophysical Journal, vol.83, issue.5, pp.2482-2490, 2002.
DOI : 10.1016/S0006-3495(02)75259-4

S. Aleksander, . Popel, C. Paul, and . Johnson, Microcirculation and hemorheology. Annual review of fluid mechan 37, p.43, 2005.

U. Seifert, Configurations of fluid membranes and vesicles Advances in physics, pp.13-137, 1997.

J. Stoltz, M. Singh, and P. Riha, Hemorheology in practice, p.199

T. Watanabe, M. Oka, and . Yamamoto, A phenomenological theory of the sigma eect, pp.25-32, 1968.

S. Blair, The importance of the sigma phenomenon in the study of the flow of blood, Rheologica Acta, vol.36, issue.2-3, pp.123-126, 1958.
DOI : 10.1080/00325481.1951.11691514

G. Cottet and E. Maitre, A level set method for fluid-structure interactions with immers surfaces. Mathematical models and methods in applied sciences, pp.415-438, 2006.

Y. Liu, L. Zhang, X. Wang, and W. Liu, Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics, International Journal for Numerical Methods in Fluids, vol.85, issue.12, pp.1237-1252, 2004.
DOI : 10.1002/fld.798

E. Maitre, T. Milcent, G. Cottet, A. Raoult, and Y. Usson, Applications of level set methods in computational biophysics, Mathematical and Computer Modelling, vol.49, issue.11-12, pp.492161-492182, 2009.
DOI : 10.1016/j.mcm.2008.07.026

URL : https://hal.archives-ouvertes.fr/hal-00177593

B. Neu, J. Herbert, and . Meiselman, Depletion-Mediated Red Blood Cell Aggregation in Polymer Solutions, Biophysical Journal, vol.83, issue.5, pp.2482-2490, 2002.
DOI : 10.1016/S0006-3495(02)75259-4

S. Aleksander, . Popel, C. Paul, and . Johnson, Microcirculation and hemorheology. Annual review of fluid mechani 37, p.43, 2005.

U. Seifert, Configurations of fluid membranes and vesicles Advances in physics, pp.13-137, 1997.

J. Stoltz, M. Singh, and P. Riha, Hemorheology in practice, 1999.

T. Watanabe, M. Oka, and . Yamamoto, A phenomenological theory of the sigma eect Proceedings of t References [1] GW Scott Blair. The importance of the sigma phenomenon in the study of the flow of blood, Rheologica Acta, vol.1, issue.2-3, pp.123-126, 1958.

G. Cottet and E. Maitre, A level set method for fluid-structure interactions with immersed surfaces. Mathematical models and methods in applied sciences, pp.415-438, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00103198

Y. Liu, L. Zhang, X. Wang, and W. Liu, Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics, International Journal for Numerical Methods in Fluids, vol.85, issue.12, pp.1237-1252, 2004.
DOI : 10.1002/fld.798

E. Maitre, T. Milcent, G. Cottet, A. Raoult, and Y. Usson, Applications of level set methods in computational biophysics, Mathematical and Computer Modelling, vol.49, issue.11-12, pp.2161-2169, 2009.
DOI : 10.1016/j.mcm.2008.07.026

URL : https://hal.archives-ouvertes.fr/hal-00177593

B. Neu, J. Herbert, and . Meiselman, Depletion-Mediated Red Blood Cell Aggregation in Polymer Solutions, Biophysical Journal, vol.83, issue.5, pp.2482-2490, 2002.
DOI : 10.1016/S0006-3495(02)75259-4

S. Aleksander, . Popel, C. Paul, and . Johnson, Microcirculation and hemorheology. Annual review of fluid mechanics, p.43, 2005.

U. Seifert, Configurations of fluid membranes and vesicles Advances in physics, pp.13-137, 1997.

J. Stoltz, M. Singh, and P. Riha, Hemorheology in practice, 1999.

T. Watanabe, M. Oka, and . Yamamoto, A phenomenological theory of the sigma eect, Proceedings of the Faculty of Science of Tokai University, pp.25-32, 1968.

M. Abkarian, C. Lartigue, and A. Viallat, Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Physical review letters, pp.68103-138, 2002.

Z. Adamczyk, T. Adamczyk, and . Van-de-ven, Resistance coefficient of a solid sphere approaching plane and curved boundaries, Journal of Colloid and Interface Science, vol.96, issue.1, pp.204-213, 1983.
DOI : 10.1016/0021-9797(83)90022-X

D. Anderson, G. B. Mcfadden, A. Adam, and . Wheeler, Diffuse-interface methods in fluid mechanics. Annual review of fluid mechanics, pp.139-165, 1998.

P. Angot, C. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, vol.81, issue.4, pp.497-520, 1999.
DOI : 10.1007/s002110050401

C. Antoci, S. Gallati, and . Sibilla, Numerical simulation of fluid???structure interaction by SPH, Computers & Structures, vol.85, issue.11-14, pp.879-890, 2007.
DOI : 10.1016/j.compstruc.2007.01.002

S. Bertoluzza, B. Ismail, and . Maury, Analysis of the fully discrete fat boundary method, Numerische Mathematik, vol.210, issue.1, pp.49-77, 2011.
DOI : 10.1016/j.jcp.2005.04.009

URL : https://hal.archives-ouvertes.fr/hal-00665644

T. Biben, C. Kassner, and . Misbah, Phase-field approach to three-dimensional vesicle dynamics, Physical Review E, vol.440, issue.4, pp.41921-141, 2005.
DOI : 10.1209/0295-5075/23/1/012

T. Biben and C. Misbah, An advected-field method for deformable entities under flow, The European Physical Journal B - Condensed Matter, vol.29, issue.2, pp.311-316, 2002.
DOI : 10.1140/epjb/e2002-00307-6

T. Biben and C. Misbah, Tumbling of vesicles under shear flow within an advected-field approach, Physical Review E, vol.5, issue.3, pp.31908-140, 2003.
DOI : 10.1209/0295-5075/23/1/012

B. Gw-scott, The importance of the sigma phenomenon in the study of the flow of blood, Rheologica Acta, vol.1, issue.2-3, pp.123-126, 1958.

J. Bogovic, J. Prince, and P. Bazin, A multiple object geometric deformable model for image segmentation, Computer Vision and Image Understanding, vol.117, issue.2, pp.145-157, 2013.
DOI : 10.1016/j.cviu.2012.10.006

C. Bost, Méthodes Level-Set et pénalisation pour le calcul d'interactions fluidestructure, p.149, 2008.

F. Bouchon, N. Dubois, and . James, A second-order cut-cell method for the numerical simulation of 2D flows past obstacles, Computers & Fluids, vol.65, pp.80-91, 2012.
DOI : 10.1016/j.compfluid.2012.02.011

URL : https://hal.archives-ouvertes.fr/hal-00570049

J. Boussinesq, Théorie analytique de la chaleur: mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière, p.24, 1903.

J. Brackbill, B. Douglas, C. Kothe, and . Zemach, A continuum method for modeling surface tension, Journal of Computational Physics, vol.100, issue.2, pp.335-354, 1992.
DOI : 10.1016/0021-9991(92)90240-Y

H. Brenner, The slow motion of a sphere through a viscous fluid towards a plane surface, Chemical Engineering Science, vol.16, issue.3-4, pp.242-251, 1961.
DOI : 10.1016/0009-2509(61)80035-3

W. Breugem, A Combined Soft-Sphere Collision/Immersed Boundary Method for Resolved Simulations of Particulate Flows, ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 1, Symposia ??? Parts A, B, and C, pp.2381-2392, 2010.
DOI : 10.1115/FEDSM-ICNMM2010-30634

W. Breugem, A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows, Journal of Computational Physics, vol.231, issue.13, pp.4469-4498, 2012.
DOI : 10.1016/j.jcp.2012.02.026

M. Jonathan, . Bricker, E. Jason, and . Butler, Oscillatory shear of suspensions of noncolloidal particles, Journal of Rheology, vol.50, issue.5, pp.711-728, 1978.

J. Caltagirone, Sur l'intéraction fluide-milieu poreux; application au calcul des efforts exercés sur un obstacle par un fluide visqueux. Comptes rendus de l'Académie des sciences, Série II, issue.5, pp.318571-577, 1994.

P. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, Journal of Theoretical Biology, vol.26, issue.1, pp.61-81, 1970.
DOI : 10.1016/S0022-5193(70)80032-7

I. Cantat and C. Misbah, Lift force and dynamical unbinding of adhering vesicles under shear flow. Physical review letters, pp.880-138, 1999.

V. Caselles, . Catté, F. Coll, and . Dibos, A geometric model for active contours in image processing, Numerische Mathematik, vol.36, issue.4, pp.1-31, 1993.
DOI : 10.1007/BF01385685

P. Chatelain, A. Curioni, M. Bergdorf, D. Rossinelli, W. Andreoni et al., Billion vortex particle direct numerical simulations of aircraft wakes, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.13-16, pp.1296-1304, 2008.
DOI : 10.1016/j.cma.2007.11.016

Y. Cheny and O. Botella, The LS-STAG method: A new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties, Journal of Computational Physics, vol.229, issue.4, pp.1043-1076, 2010.
DOI : 10.1016/j.jcp.2009.10.007

B. Cichocki, E. Je?ewska, and . Wajnryb, Lubrication corrections for three-particle contribution to short-time self-diffusion coefficients in colloidal dispersions, The Journal of Chemical Physics, vol.113, issue.7, pp.3265-3273, 1999.
DOI : 10.1063/1.866914

D. Clarke, H. Hassan, and M. Salas, Euler calculations for multielement airfoils using Cartesian grids, AIAA Journal, vol.24, issue.3, pp.353-358, 1986.
DOI : 10.2514/3.7617

A. Colagrossi and M. Landrini, Numerical simulation of interfacial flows by smoothed particle hydrodynamics, Journal of Computational Physics, vol.191, issue.2, pp.448-475, 2003.
DOI : 10.1016/S0021-9991(03)00324-3

C. Conca, J. Osses, and . Planchard, Added mass and damping in fluid-structure interaction. Computer methods in applied mechanics and engineering, pp.387-405, 1997.

M. Cooley and M. , On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere, Mathematika, vol.16, issue.01, pp.37-49, 1969.
DOI : 10.1016/0095-8522(63)90109-0

M. Coquerelle and G. Cottet, A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies, Journal of Computational Physics, vol.227, issue.21, pp.9121-9137, 2008.
DOI : 10.1016/j.jcp.2008.03.041

URL : https://hal.archives-ouvertes.fr/hal-00297673

G. Cottet and E. Maitre, A level-set formulation of immersed boundary methods for fluid???structure interaction problems, Comptes Rendus Mathematique, vol.338, issue.7, pp.581-586, 2004.
DOI : 10.1016/j.crma.2004.01.023

G. Cottet and E. Maitre, A level set method for fluid-structure interactions with immersed surfaces. Mathematical models and methods in applied sciences, pp.415-438, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00103198

G. Cottet and P. Poncet, Advances in direct numerical simulations of 3D wall-bounded flows by Vortex-in-Cell methods, Journal of Computational Physics, vol.193, issue.1, pp.136-158, 2004.
DOI : 10.1016/j.jcp.2003.08.025

R. Cox, The motion of suspended particles almost in contact, International Journal of Multiphase Flow, vol.1, issue.2, pp.343-371, 1974.
DOI : 10.1016/0301-9322(74)90019-6

A. Dagan, Numerical consistency and spurious boundary layer in the projection method, Computers & Fluids, vol.32, issue.9, pp.1213-1232, 2003.
DOI : 10.1016/S0045-7930(02)00091-9

J. Bart and . Daly, Numerical study of two fluid rayleigh-taylor instability, Physics of Fluids, vol.10, issue.2, pp.297-307, 1958.

. Sl-dance, M. Climent, and . Maxey, Collision barrier effects on the bulk flow in a random suspension, Physics of Fluids, vol.152, issue.3, pp.828-831, 1994.
DOI : 10.1017/S0022112087001046

S. Dance and M. Maxey, Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow, Journal of Computational Physics, vol.189, issue.1, pp.212-238, 2003.
DOI : 10.1016/S0021-9991(03)00209-2

C. Kh-de-haas, . Blom, . Van-den-ende, J. Duits, and . Mellema, Deformation of giant lipid bilayer vesicles in shear flow, Physical Review E, vol.44, issue.6, pp.7132-138, 1997.
DOI : 10.1103/PhysRevA.44.8356

J. De-hart, . Baaijens, P. Peters, and . Schreurs, A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve, Journal of Biomechanics, vol.36, issue.5, pp.699-712, 2003.
DOI : 10.1016/S0021-9290(02)00448-7

A. Decoene, B. Martin, and . Maury, Microscopic Modelling of Active Bacterial Suspensions, Mathematical Modelling of Natural Phenomena, vol.106, issue.4, pp.98-129, 2011.
DOI : 10.1073/pnas.0811662106

URL : https://hal.archives-ouvertes.fr/hal-00601842

C. Diaz-goano, P. Minev, and K. Nandakumar, A Lagrange Multipliers/Fictitious Domain Approach for Particulate Flow, International Conference on Large-Scale Scientific Computing, pp.409-416, 2001.
DOI : 10.1007/3-540-45346-6_43

J. Donea, J. Giuliani, and . Halleux, An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions. Computer methods in applied mechanics and engineering, pp.689-723, 1982.

V. Doyeux, Modelisation et simulation de systemes multi-fluides. Application aux ecoulements sanguins, p.144, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01469871

G. Drazer, J. Koplik, B. Khusid, and A. Acrivos, Deterministic and stochastic behaviour of non-Brownian spheres in sheared suspensions, Journal of Fluid Mechanics, vol.460, pp.307-335, 2002.
DOI : 10.1017/S0022112002008261

L. Durlofsky, J. Brady, and G. Bossis, Dynamic simulation of hydrodynamically interacting particles, Journal of Fluid Mechanics, vol.115, issue.-1, pp.21-49, 1987.
DOI : 10.1063/1.865384

M. Ellero, M. Serrano, and P. Espanol, Incompressible smoothed particle hydrodynamics, Journal of Computational Physics, vol.226, issue.2, pp.1731-1752, 2007.
DOI : 10.1016/j.jcp.2007.06.019

D. Enright, . Fedkiw, I. Ferziger, and . Mitchell, A Hybrid Particle Level Set Method for Improved Interface Capturing, Journal of Computational Physics, vol.183, issue.1, pp.83-116, 2002.
DOI : 10.1006/jcph.2002.7166

S. Faure, B. Lefebvre-lepot, and . Semin, Dynamic Numerical Investigation of Random Packing for Spherical and Nonconvex Particles, ESAIM: Proceedings, pp.13-32, 2009.
DOI : 10.1051/proc/2009037

M. Fernández, Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit, SeMA Journal, vol.40, issue.12, pp.59-108, 2011.
DOI : 10.1016/j.jbiomech.2007.01.008

M. Fernández, Incremental displacement-correction schemes for incompressible fluid-structure interaction, Numerische Mathematik, vol.17, issue.6, pp.21-65, 2013.
DOI : 10.1142/S0218202507002170

M. Fernández, J. Gerbeau, and C. Grandmont, A projection algorithm for fluid???structure interaction problems with strong added-mass effect, Comptes Rendus Mathematique, vol.342, issue.4, pp.279-284, 2006.
DOI : 10.1016/j.crma.2005.12.017

M. Fernández, J. Gerbeau, and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, International Journal for Numerical Methods in Engineering, vol.9, issue.4, pp.794-821, 2007.
DOI : 10.1007/978-1-4757-4355-5

M. Fernández, M. Landajuela, and . Vidrascu, Fully decoupled time-marching schemes for incompressible fluid/thin-walled structure interaction, Journal of Computational Physics, vol.297, pp.156-181, 2015.
DOI : 10.1016/j.jcp.2015.05.009

M. Fernández, J. Mullaert, and M. Vidrascu, Generalized Robin-Neumann explicit coupling schemes for incompressible fluid-structure interaction: Stability analysis and numerics, International Journal for Numerical Methods in Engineering, vol.38, issue.6-7, pp.199-229, 2015.
DOI : 10.1007/s00466-006-0066-5

A. Fogelson and C. Peskin, A fast numerical method for solving the three-dimensional stokes' equations in the presence of suspended particles, Journal of Computational Physics, vol.79, issue.1, pp.50-69, 1988.
DOI : 10.1016/0021-9991(88)90003-4

F. Antonio, . Fortes, D. Daniel, . Joseph, S. Thomas et al., Nonlinear mechanics of fluidization of beds of spherical particles, Journal of Fluid Mechanics, vol.177, issue.103, pp.467-483, 1987.

T. Franke, H. Ronald, C. Hoppe, L. Linsenmann, C. Schmid et al., Numerical simulation of the motion of red blood cells and vesicles in microfluidic flows. Computing and visualization in science, pp.167-180, 2011.

C. Galusinski and P. Vigneaux, Level-Set method and stability condition for curvature-driven flows, Comptes Rendus Mathematique, vol.344, issue.11, pp.703-708, 2007.
DOI : 10.1016/j.crma.2007.05.001

URL : https://hal.archives-ouvertes.fr/hal-00193189

M. Gazzola, P. Chatelain, M. Wim, P. Van-rees, and . Koumoutsakos, Simulations of single and multiple swimmers with non-divergence free deforming geometries, Journal of Computational Physics, vol.230, issue.19, pp.7093-7114, 2011.
DOI : 10.1016/j.jcp.2011.04.025

G. Ghigliotti, C. Biben, and . Misbah, Rheology of a dilute two-dimensional suspension of vesicles, Journal of Fluid Mechanics, vol.292, pp.489-518, 2010.
DOI : 10.1039/b716612e

G. Ghigliotti, . Rahimian, C. Biros, and . Misbah, Vesicle migration and spatial organization driven by flow line curvature. Physical review letters, pp.28101-139, 2011.
DOI : 10.1103/physrevlett.106.028101

R. Gingold and J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly notices of the royal astronomical society, pp.375-389, 1977.
DOI : 10.1093/mnras/181.3.375

URL : https://academic.oup.com/mnras/article-pdf/181/3/375/3104055/mnras181-0375.pdf

R. Glowinski, T. Pan, and D. Hesla, A distributed Lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, vol.25, issue.5, pp.755-794, 1999.
DOI : 10.1016/S0301-9322(98)00048-2

R. Glowinski, T. Pan, and J. Periaux, A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.112, issue.1-4, pp.133-148, 1994.
DOI : 10.1016/0045-7825(94)90022-1

R. Glowinski, . Tw-pan, . Hesla, J. Joseph, and . Periaux, A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow past Moving Rigid Bodies: Application to Particulate Flow, Journal of Computational Physics, vol.169, issue.2, pp.363-426, 2001.
DOI : 10.1006/jcph.2000.6542

R. Glowinsky, A. J. Kearsley, T. Pan, and J. Periaux, Fictitious domain methods for viscous flow simulation, p.19, 1995.
DOI : 10.21236/ADA445628

URL : http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA445628&Location=U2&doc=GetTRDoc.pdf

A. Goldman, R. Cox, and H. Brenner, Slow viscous motion of a sphere parallel to a plane wall???I Motion through a quiescent fluid, Chemical Engineering Science, vol.22, issue.4, pp.637-651, 1967.
DOI : 10.1016/0009-2509(67)80047-2

D. Goldstein, L. Handler, and . Sirovich, Modeling a No-Slip Flow Boundary with an External Force Field, Journal of Computational Physics, vol.105, issue.2, pp.354-366, 1993.
DOI : 10.1006/jcph.1993.1081

D. Goldstein, L. Handler, and . Sirovich, Direct numerical simulation of turbulent flow over a modeled riblet covered surface, Journal of Fluid Mechanics, vol.81, issue.10, pp.333-376, 1995.
DOI : 10.1146/annurev.fl.23.010191.003125

J. Gomes and O. Faugeras, Reconciling Distance Functions and Level Sets, Journal of Visual Communication and Image Representation, vol.11, issue.2, pp.209-223, 2000.
DOI : 10.1006/jvci.1999.0439

URL : https://hal.archives-ouvertes.fr/inria-00073006

C. Grandmont and Y. Maday, Fluid-structure interaction: a theoretical point of view. Revue européenne des éléments finis, pp.633-653, 2000.

J. Han and G. Tryggvason, Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force, Physics of Fluids, vol.40, issue.12, pp.3650-3667, 1999.
DOI : 10.1063/1.857322

H. Francis, . Harlow, and . Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Physics of fluids, vol.8, issue.12, pp.2182-2208, 1965.

W. Helfrich, Abstract, Zeitschrift f??r Naturforschung C, vol.28, issue.11-12, pp.11-12693, 1973.
DOI : 10.1515/znc-1973-11-1209

M. Hillairet, Lack of Collision Between Solid Bodies in a 2D Incompressible Viscous Flow, Communications in Partial Differential Equations, vol.336, issue.9, pp.1345-1371, 2007.
DOI : 10.1142/S0218202506001303

M. Hillairet and T. Takahashi, Collision in 3d fluid structure interactions problems, SIAM J. Math. Anal, p.51, 2009.

C. Hirt and B. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, vol.39, issue.1, pp.201-225, 1981.
DOI : 10.1016/0021-9991(81)90145-5

J. Hron and S. Turek, A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics, p.13, 2006.
DOI : 10.1007/3-540-34596-5_7

H. Howard and . Hu, Direct simulation of flows of solid-liquid mixtures, International Journal of Multiphase Flow, vol.22, issue.9, pp.335-352, 1996.

X. Hu, A. Nikolaus, and . Adams, An incompressible multi-phase SPH method, Journal of Computational Physics, vol.227, issue.1, pp.264-278, 2007.
DOI : 10.1016/j.jcp.2007.07.013

Z. Huang, M. Abkarian, and A. Viallat, Sedimentation of vesicles: from pear-like shapes to microtether extrusion, New Journal of Physics, vol.13, issue.3, pp.35026-153, 2011.
DOI : 10.1088/1367-2630/13/3/035026

S. Huberson and A. Jolles, Correction de l'erreur de projection dans les méthodes particules/maillage, La Recherche aérospatiale, vol.4, pp.1-6, 1990.

A. Morton and . Hyman, Non-iterative numerical solution of boundary-value problems, Applied Scientific Research, Section B, vol.2, issue.1, pp.325-351, 1952.

M. Ismail, Méthode de la frontière élargie pour la résolution de problèmes elliptiques dans des domaines perforés. Application aux écoulements fluides tridimensionnels, p.17, 2004.

D. Jacqmin, Calculation of Two-Phase Navier???Stokes Flows Using Phase-Field Modeling, Journal of Computational Physics, vol.155, issue.1, pp.96-127, 1999.
DOI : 10.1006/jcph.1999.6332

J. Janela, B. Lefebvre, and . Maury, A penalty method for the simulation of fluidrigid body interaction, ESAIM: Proceedings, pp.115-123, 2005.

D. Jeffrey, Low-Reynolds-number flow between converging spheres, Mathematika, vol.17, issue.01, p.54, 1982.
DOI : 10.1017/S0305004100045138

A. Johnson and T. Tezduyar, Simulation of multiple spheres falling in a liquid-filled tube, Computer Methods in Applied Mechanics and Engineering, vol.134, issue.3-4, pp.351-373, 1996.
DOI : 10.1016/0045-7825(95)00988-4

G. Kabacaoglu, G. Quaife, and . Biros, Low-resolution simulations of vesicle suspensions in 2d. arXiv preprint, p.139, 2017.

V. Kantsler, V. Segre, and . Steinberg, Dynamics of interacting vesicles and rheology of vesicle suspension in shear flow, EPL (Europhysics Letters), vol.82, issue.5, pp.58005-138, 2008.
DOI : 10.1209/0295-5075/82/58005

V. Kantsler and V. Steinberg, Orientation and dynamics of a vesicle in tank-treading motion in shear flow. Physical review letters, pp.258101-138, 2005.

V. Kantsler and V. Steinberg, Transition to tumbling and two regimes of tumbling motion of a vesicle in shear flow. Physical review letters, pp.36001-138, 2006.

B. Kaoui, . Tahiri, H. Biben, . Ez-zahraouy, . Benyoussef et al., Complexity of vesicle microcirculation, Physical Review E, vol.6, issue.4, pp.41906-139, 2011.
DOI : 10.1103/PhysRevE.84.011902

G. Em-karniadakis, S. Israeli, and . Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, Journal of Computational Physics, vol.97, issue.2, pp.414-443, 1991.
DOI : 10.1016/0021-9991(91)90007-8

S. Keller and R. Skalak, Motion of a tank-treading ellipsoidal particle in a shear flow, Journal of Fluid Mechanics, vol.33, issue.-1, pp.27-47, 1982.
DOI : 10.1016/0005-2736(79)90215-3

T. Kempe and J. Fröhlich, An improved immersed boundary method with direct forcing for the simulation of particle laden flows, Journal of Computational Physics, vol.231, issue.9, pp.3663-3684, 2012.
DOI : 10.1016/j.jcp.2012.01.021

J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, Journal of Computational Physics, vol.59, issue.2, pp.308-323, 1985.
DOI : 10.1016/0021-9991(85)90148-2

S. Kim and S. Karrila, Microhydrodynamics: Principles and Selected Applications, p.62, 1991.

Y. Kim and M. Lai, Simulating the dynamics of inextensible vesicles by the penalty immersed boundary method, Journal of Computational Physics, vol.229, issue.12, pp.4840-4853, 2010.
DOI : 10.1016/j.jcp.2010.03.020

W. Klip, Effect of Vagal Stimulation and Acetylcholine on the Ventricle: Anomalous Viscosity of Blood and the "Summation Phenomenon", Circulation Research, vol.9, issue.6, pp.1380-1383, 1961.
DOI : 10.1161/01.RES.9.6.1380

P. Koumoutsakos, MULTISCALE FLOW SIMULATIONS USING PARTICLES, Annual Review of Fluid Mechanics, vol.37, issue.1, pp.457-487, 2005.
DOI : 10.1146/annurev.fluid.37.061903.175753

P. Koumoutsakos and A. Leonard, High-resolution simulations of the flow around an impulsively started cylinder using vortex methods, Journal of Fluid Mechanics, vol.29, issue.-1, pp.1-38, 1995.
DOI : 10.1016/0021-9991(80)90049-2

A. Lefebvre, Fluid-Particle simulations with FreeFem++, ESAIM: Proceedings, pp.120-132, 2007.
DOI : 10.1051/proc:071810

URL : https://hal.archives-ouvertes.fr/hal-00728387

A. Lefebvre, Modélisation numérique d'écoulements fluide/particules, p.58, 2007.

A. Lefebvre, Numerical simulation of gluey particles, ESAIM: Mathematical Modelling and Numerical Analysis, vol.51, issue.1, pp.53-80, 2009.
DOI : 10.1002/fld.1129

URL : https://hal.archives-ouvertes.fr/hal-00257510

A. Lefebvre-lepot, T. Merlet, and . Nguyen, An accurate method to include lubrication forces??in numerical simulations of dense Stokesian??suspensions, Journal of Fluid Mechanics, vol.66, pp.369-386, 2015.
DOI : 10.1016/S0301-9322(99)00100-7

R. Leveque and Z. Li, The Immersed Interface Method for Elliptic Equations with Discontinuous Coefficients and Singular Sources, SIAM Journal on Numerical Analysis, vol.31, issue.4, pp.1019-1044, 1994.
DOI : 10.1137/0731054

X. Li, D. Barthes-biesel, and A. Helmy, Large deformations and burst of a capsule freely suspended in an elongational flow, Journal of Fluid Mechanics, vol.102, issue.-1, pp.179-196, 1988.
DOI : 10.1098/rspa.1922.0078

Z. Li, AN OVERVIEW OF THE IMMERSED INTERFACE METHOD AND ITS APPLICATIONS, Taiwanese Journal of Mathematics, vol.7, issue.1, pp.1-15, 2003.
DOI : 10.11650/twjm/1500407515

X. Liu, T. Osher, and . Chan, Weighted Essentially Non-oscillatory Schemes, Journal of Computational Physics, vol.115, issue.1, pp.200-212, 1994.
DOI : 10.1006/jcph.1994.1187

URL : http://www.math.ucsb.edu/~xliu/publication/paper/weno.ps

M. Mader, . Vitkova, . Abkarian, T. Viallat, and . Podgorski, Dynamics of viscous vesicles in shear flow, The European Physical Journal E, vol.19, issue.4, pp.389-397, 2006.
DOI : 10.1140/epje/i2005-10058-x

URL : https://hal.archives-ouvertes.fr/hal-01261886

E. Maitre, G. Milcent, A. Cottet, Y. Raoult, and . Usson, Applications of level set methods in computational biophysics, Mathematical and Computer Modelling, vol.49, issue.11-12, pp.2161-2169, 2009.
DOI : 10.1016/j.mcm.2008.07.026

URL : https://hal.archives-ouvertes.fr/hal-00177593

E. Maitre, C. Misbah, P. Peyla, and A. Raoult, Comparison between advected-field and level-set methods in the study of vesicle dynamics, Physica D: Nonlinear Phenomena, vol.241, issue.13, pp.2411146-1157, 2012.
DOI : 10.1016/j.physd.2012.03.005

URL : https://hal.archives-ouvertes.fr/hal-00460668

S. Majumdar, Slow motion of an incompressible viscous liquid generated by the rotation of two spheres in contact, Mathematika, vol.14, issue.01, pp.43-46, 1967.
DOI : 10.1112/plms/s2_14.1.327

A. Mammoli, The treatment of lubrication forces in boundary integral equations, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp.855-881, 2006.
DOI : 10.1098/rspa.2005.1600

A. Markvoort, P. Van-santen, and . Hilbers, Vesicle Shapes from Molecular Dynamics Simulations, The Journal of Physical Chemistry B, vol.110, issue.45, pp.22780-22785, 2006.
DOI : 10.1021/jp064888a

A. D_ and M. , End effects in a falling-sphere viscometer, British Journal of Applied Physics, vol.12, issue.6, pp.293-53, 1961.

B. Maury, A many-body lubrication model Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, pp.1053-1058, 1997.

B. Maury, Direct Simulations of 2D Fluid-Particle Flows in Biperiodic Domains, Journal of Computational Physics, vol.156, issue.2, pp.325-351, 1999.
DOI : 10.1006/jcph.1999.6365

B. Maury, A fat boundary method for the poisson problem in a domain with holes, Journal of Scientific Computing, vol.16, issue.3, pp.319-339, 2001.
DOI : 10.1023/A:1012821728631

B. Maury, A time-stepping scheme for inelastic collisions, Numerische Mathematik, vol.102, issue.4, pp.649-679, 2006.
DOI : 10.1007/s00211-005-0666-6

URL : https://hal.archives-ouvertes.fr/hal-01473592

B. Maury, A gluey particle model, ESAIM: Proceedings, pp.133-142, 2007.
DOI : 10.1051/proc:071811

B. Maury, Numerical Analysis of a Finite Element/Volume Penalty Method, SIAM Journal on Numerical Analysis, vol.47, issue.2, pp.1126-1148, 2009.
DOI : 10.1137/080712799

B. Maury and J. Venel, Handling of contacts in crowd motion simulations. Traffic and Granular Flow'07, pp.171-180, 2009.

A. Meunier and G. Bossis, The influence of surface forces on shear-induced tracer diffusion in mono and bidisperse suspensions, The European Physical Journal E, vol.27, issue.2, pp.187-199, 2008.
DOI : 10.1140/epje/i2007-10279-y

T. Milcent, Une approche eulérienne du couplage fluide-structure, analyse mathématique et applications en biomécanique, p.142, 2009.

P. Moin and J. Kim, On the numerical solution of time-dependent viscous incompressible fluid flows involving solid boundaries, Journal of Computational Physics, vol.35, issue.3, pp.381-392, 1980.
DOI : 10.1016/0021-9991(80)90076-5

J. Monaghan, Simulating Free Surface Flows with SPH, Journal of Computational Physics, vol.110, issue.2, pp.399-406, 1994.
DOI : 10.1006/jcph.1994.1034

J. Monaghan, Extrapolating B splines for interpolation, Journal of Computational Physics, vol.60, issue.2, pp.253-262, 1985.
DOI : 10.1016/0021-9991(85)90006-3

S. Nasseri, N. Phan-thien, and X. Fan, Lubrication approximation in completed double layer boundary element method, Computational Mechanics, vol.26, issue.4, pp.388-397, 2000.
DOI : 10.1007/s004660000188

M. Oneill and S. Majumdar, Asymmetrical slow viscous uid motions caused by the translation or rotation of two spheres. part ii: Asymptotic forms of the solutions when the minimum clearance between the spheres approaches zero, Z. Angew. Math. Phys, vol.21, pp.180187-54, 1970.

M. O-'neill and K. Stewartson, On the slow motion of a sphere parallel to a nearby plane wall, Journal of Fluid Mechanics, vol.1, issue.04, pp.705-724, 1967.
DOI : 10.1017/S0022112067002551

S. Orszag, M. Israeli, and . Deville, Boundary conditions for incompressible flows, Journal of Scientific Computing, vol.96, issue.1, pp.75-111, 1986.
DOI : 10.1007/BF01061454

S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces, p.28, 2006.
DOI : 10.1115/1.1760520

S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

N. Parolini, Computational fluid dynamics for naval engineering problems. Doctoral dissertation, p.31, 2004.

N. Patankar, A formulation for fast computations of rigid particulate flows. Center for Turbulence Research Annual Research Briefs, pp.185-196, 2001.

C. Peskin, Flow patterns around heart valves, p.14, 1972.
DOI : 10.1007/BFb0112697

C. Peskin, Flow patterns around heart valves: A numerical method, Journal of Computational Physics, vol.10, issue.2, pp.252-271, 1972.
DOI : 10.1016/0021-9991(72)90065-4

C. Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics, vol.25, issue.3, pp.220-252, 1977.
DOI : 10.1016/0021-9991(77)90100-0

C. Pozrikidis, The axisymmetric deformation of a red blood cell in uniaxial straining Stokes flow, Journal of Fluid Mechanics, vol.102, issue.-1, pp.231-254, 1990.
DOI : 10.1017/S0022112067002381

C. Pozrikidis, On the transient motion of ordered suspensions of liquid drops, Journal of Fluid Mechanics, vol.88, issue.-1, pp.301-320, 1993.
DOI : 10.1146/annurev.fl.16.010184.000401

C. Pozrikidis, Effect of membrane bending stiffness on the deformation of capsules in simple shear flow, Journal of Fluid Mechanics, vol.440, issue.13, pp.269-291, 2001.
DOI : 10.1017/S0022112001004657

B. Quaife and G. Biros, High-volume fraction simulations of two-dimensional vesicle suspensions, Journal of Computational Physics, vol.274, pp.245-267, 2014.
DOI : 10.1016/j.jcp.2014.06.013

S. Ramanujan and C. Pozrikidis, Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities, Journal of Fluid Mechanics, vol.361, pp.117-143, 1998.
DOI : 10.1017/S0022112098008714

T. Richter and T. Wick, Finite elements for fluid???structure interaction in ALE and fully Eulerian coordinates, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.41-44, pp.2633-2642, 2010.
DOI : 10.1016/j.cma.2010.04.016

W. Rider and D. Kothe, Reconstructing Volume Tracking, Journal of Computational Physics, vol.141, issue.2, pp.112-152, 1998.
DOI : 10.1006/jcph.1998.5906

E. Rouy and A. Tourin, A Viscosity Solutions Approach to Shape-From-Shading, SIAM Journal on Numerical Analysis, vol.29, issue.3, pp.867-884, 1992.
DOI : 10.1137/0729053

E. Saiki and S. Biringen, Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual Boundary Method, Journal of Computational Physics, vol.123, issue.2, pp.450-465, 1996.
DOI : 10.1006/jcph.1996.0036

D. Salac and M. Miksis, A level set projection model of lipid vesicles in general flows, Journal of Computational Physics, vol.230, issue.22, pp.8192-8215, 2011.
DOI : 10.1016/j.jcp.2011.07.019

V. Saul-'ev, On the solution of some boundary value problems on high performance computers by fictitious domain method, Siberian Math. J, vol.4, issue.4, pp.912-925, 1963.

U. Seifert, Configurations of fluid membranes and vesicles Advances in physics, pp.13-137, 1997.

J. Sethian, A fast marching level set method for monotonically advancing fronts., Proceedings of the National Academy of Sciences, vol.93, issue.4, pp.1591-1595, 1996.
DOI : 10.1073/pnas.93.4.1591

URL : http://www.pnas.org/content/93/4/1591.full.pdf

J. Sethian, Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, p.28, 1999.

N. Sharma and N. Patankar, A fast computation technique for the direct numerical simulation of rigid particulate flows, Journal of Computational Physics, vol.205, issue.2, pp.439-457, 2005.
DOI : 10.1016/j.jcp.2004.11.012

C. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics, vol.77, issue.2, pp.439-471, 1988.
DOI : 10.1016/0021-9991(88)90177-5

C. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shockcapturing schemes, ii, Upwind and High-Resolution Schemes, pp.328-374, 1989.

E. Sifakis and G. Tziritas, Moving object localisation using a multi-label fast marching algorithm, Signal Processing: Image Communication, pp.963-976, 2001.
DOI : 10.1016/S0923-5965(00)00056-4

P. Singh, D. Hesla, and . Joseph, Distributed Lagrange multiplier method for particulate flows with collisions, International Journal of Multiphase Flow, vol.29, issue.3, pp.495-509, 2003.
DOI : 10.1016/S0301-9322(02)00164-7

A. Smolianski, Finite-element/level-set/operator-splitting (felsos) approach for computing two-fluid unsteady flows with free moving interfaces. International journal for numerical methods in fluids, pp.231-269, 2005.

S. Sukumaran and U. Seifert, Influence of shear flow on vesicles near a wall: A numerical study, Physical Review E, vol.120, issue.1, pp.11916-138, 2001.
DOI : 10.1017/S0022112082002651

M. Sussman, S. Ann, J. B. Almgren, L. Colella, M. Howell et al., An Adaptive Level Set Approach for Incompressible Two-Phase Flows, Journal of Computational Physics, vol.148, issue.1, pp.81-124, 1999.
DOI : 10.1006/jcph.1998.6106

M. Sussman, G. Elbridge, and . Puckett, A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows, Journal of Computational Physics, vol.162, issue.2, pp.301-337, 2000.
DOI : 10.1006/jcph.2000.6537

M. Sussman, S. Smereka, and . Osher, A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, Journal of Computational Physics, vol.114, issue.1, pp.146-159, 1994.
DOI : 10.1006/jcph.1994.1155

P. Swarztrauber and R. Sweet, Efficient FORTRAN subprograms for the solution of elliptic partial differential equations, National Center for Atmospheric Research Boulder, p.40, 1975.

R. Temam, Navier-stokes equations, p.65, 1984.
DOI : 10.1090/chel/343

A. Ten-cate, C. Nieuwstad, H. Jj-derksen, and . Van-den-akker, Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity, Physics of Fluids, vol.313, issue.11, pp.144012-4025, 1994.
DOI : 10.1017/S0022112096002212

G. Tryggvason, Numerical simulations of the Rayleigh-Taylor instability, Journal of Computational Physics, vol.75, issue.2, pp.253-282, 1988.
DOI : 10.1016/0021-9991(88)90112-X

J. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Transactions on Automatic Control, vol.40, issue.9, pp.1528-1538, 1995.
DOI : 10.1109/9.412624

H. Udaykumar, W. Shyy, and M. Rao, Elafint-a mixed eulerian-lagrangian method for fluid flows with complex and moving boundaries, 6th Joint Thermophysics and Heat Transfer Conference, pp.1996-2015, 1996.

H. Udaykumar, . Mittal, A. Rampunggoon, and . Khanna, A Sharp Interface Cartesian Grid Method for Simulating Flows with Complex Moving Boundaries, Journal of Computational Physics, vol.174, issue.1, pp.345-380, 2001.
DOI : 10.1006/jcph.2001.6916

M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flows, Journal of Computational Physics, vol.209, issue.2, pp.448-476, 2005.
DOI : 10.1016/j.jcp.2005.03.017

M. Uhlmann, Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime, Physics of Fluids, vol.20, issue.5, pp.53305-53320, 1994.
DOI : 10.1103/PhysRevLett.90.014501

S. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of Computational Physics, vol.100, issue.1, pp.25-37, 1992.
DOI : 10.1016/0021-9991(92)90307-K

S. Veerapaneni, . Gueyffier, G. Zorin, and . Biros, A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D, Journal of Computational Physics, vol.228, issue.7, pp.2334-2353, 2009.
DOI : 10.1016/j.jcp.2008.11.036

S. Veerapaneni, . Rahimian, D. Biros, and . Zorin, A fast algorithm for simulating vesicle flows in three dimensions, Journal of Computational Physics, vol.230, issue.14, pp.5610-5634, 2011.
DOI : 10.1016/j.jcp.2011.03.045

N. Verdon, P. Laure, L. Lefebvre-lepot, and . Lobry, Problèmes de contact pour des particules en écoulement cisaillé, 10e colloque national en calcul des structures, p.56, 2011.

P. Vigneaux, Méthodes Level Set pour des problèmes d'interface en microfluidique, p.34, 2007.

R. Vignjevic, D. Vuyst, and J. Campbell, The use of a homogeneous repulsive force for contact treatment in sph, p.12, 2002.

V. Vitkova, T. Mader, and . Podgorski, Deformation of vesicles flowing through capillaries, Europhysics Letters (EPL), vol.68, issue.3, pp.398-138, 2004.
DOI : 10.1209/epl/i2004-10211-9

URL : https://hal.archives-ouvertes.fr/hal-01261887

M. Wang and X. Wang, ???Color??? level sets: a multi-phase method for structural topology optimization with multiple materials, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.6-8, pp.469-496, 2004.
DOI : 10.1016/j.cma.2003.10.008

T. Watanabe, M. Oka, and . Yamamoto, A phenomenological theory of the sigma effect, Proceedings of the Faculty of Science of Tokai University, pp.25-32, 1968.
DOI : 10.3233/BIR-1963-1304

E. Weinan and J. Liu, Vorticity boundary condition and related issues for finite difference schemes, Journal of computational physics, vol.124, issue.2, pp.368-382, 1996.

T. Wick, Fluid-structure interactions using different mesh motion techniques, Computers & Structures, vol.89, issue.13-14, pp.1456-1467, 2011.
DOI : 10.1016/j.compstruc.2011.02.019

H. Wilson, Stokes flow past three spheres, Journal of Computational Physics, vol.245, pp.302-316, 2013.
DOI : 10.1016/j.jcp.2013.03.020

J. Yang and F. Stern, A highly scalable massively parallel fast marching method for the Eikonal equation, Journal of Computational Physics, vol.332, pp.333-362, 2017.
DOI : 10.1016/j.jcp.2016.12.012

T. Ye, . Mittal, W. Udaykumar, and . Shyy, An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries, Journal of Computational Physics, vol.156, issue.2, pp.209-240, 1999.
DOI : 10.1006/jcph.1999.6356

K. Yeo and M. Maxey, Simulation of concentrated suspensions using the force-coupling method, Journal of Computational Physics, vol.229, issue.6, pp.2401-2421, 2010.
DOI : 10.1016/j.jcp.2009.11.041

Z. Yu, Y. Wachs, and . Peysson, Numerical simulation of particle sedimentation in shear-thinning fluids with a fictitious domain method, Journal of Non-Newtonian Fluid Mechanics, vol.136, issue.2-3, pp.126-139, 2006.
DOI : 10.1016/j.jnnfm.2006.03.015

S. Yuu and Y. Fukui, Measurement of fluid resistance correction factor for a sphere moving through a viscous fluid toward a plane surface, AIChE Journal, vol.27, issue.1, pp.168-170, 1981.
DOI : 10.1002/aic.690270125

J. Zhang, P. Johnson, and A. Popel, An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows, Physical Biology, vol.4, issue.4, pp.285-140, 2007.
DOI : 10.1088/1478-3975/4/4/005

H. Zhao, A. Hg-isfahani, L. Olson, and J. Freund, A spectral boundary integral method for flowing blood cells, Journal of Computational Physics, vol.229, issue.10, pp.3726-3744, 2010.
DOI : 10.1016/j.jcp.2010.01.024

H. Zhao and E. Shaqfeh, The dynamics of a vesicle in simple shear flow, Journal of Fluid Mechanics, vol.28, pp.578-604, 2011.
DOI : 10.1515/znc-1973-11-1209

H. Zhou and C. Pozrikidis, Deformation of liquid capsules with incompressible interfaces in simple shear flow, Journal of Fluid Mechanics, vol.61, issue.-1, pp.175-200, 1995.
DOI : 10.1016/0045-7930(94)90040-X