D. G. Amaral, C. M. Schumann, and C. W. , Neuroanatomy of autism, Trends in Neurosciences, vol.31, issue.3, pp.137-145, 2008.
DOI : 10.1016/j.tins.2007.12.005

E. Arias-castro, E. J. Candès, and Y. Plan, Global testing under sparse alternatives: ANOVA, multiple comparisons and the higher criticism, The Annals of Statistics, vol.39, issue.5, pp.2533-2556, 2011.
DOI : 10.1214/11-AOS910SUPP

URL : http://arxiv.org/abs/1007.1434

Z. Bai and J. W. Silverstein, Spectral analysis of large dimensional random matrices Springer Series in Statistics, pp.978-979, 2010.

Z. Bai and W. Zhou, Large sample covariance matrices without independence structures in columns, Statistica Sinica, vol.18, pp.425-442, 2008.

A. Bailey, A. Le-couteur, I. Gottesman, P. Bolton, and E. Simonoff, Autism as a strongly genetic disorder: evidence from a British twin study, Psychological Medicine, vol.134, issue.01, 1995.
DOI : 10.1111/j.1469-7610.1994.tb01164.x

A. Beinrucker, U. Dogan, and G. Blanchard, Extensions of stability selection using subsamples of observations and covariates, Statistics and Computing, vol.5, issue.1, 2014.
DOI : 10.1214/10-AOAS377

H. D. Bondell, A. Krishna, and S. K. Ghosh, Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models, Biometrics, vol.35, issue.4, pp.1069-1077, 2010.
DOI : 10.1214/009053607000000127

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895687

A. Bonnet, E. Gassiat, and C. Levy-leduc, Heritability estimation in high dimensional sparse linear mixed models, Electronic Journal of Statistics, vol.9, issue.2, pp.2099-2129, 2015.
DOI : 10.1214/15-EJS1069

URL : https://hal.archives-ouvertes.fr/hal-01540984

A. Bonnet, C. Lévy-leduc, E. Gassiat, R. Toro, and T. Bourgeron, Improving heritability by a variable selection approach in sparse high dimensional linear mixed models, 2016.

N. Breslow and D. Clayton, Approximate Inference in Generalized Linear Mixed Models, Journal of the American Statistical Association, vol.58, issue.421, pp.9-25, 1993.
DOI : 10.2307/2531734

G. Davies, A. Tenesa, A. Payton, J. Yang, S. E. Harris et al., Genome-wide association studies establish that human intelligence is highly heritable and polygenic, Molecular Psychiatry, vol.460, issue.10, pp.16996-1005, 2011.
DOI : 10.1007/s10709-008-9301-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182557

P. De-villemereuil, O. Gimenez, and B. Doligez, Comparing parent-offspring regression with frequentist and Bayesian animal models to estimate heritability in wild populations: a simulation study for Gaussian and binary traits, Methods in Ecology and Evolution, vol.3, issue.3, pp.260-275, 2013.
DOI : 10.1371/journal.pone.0001739

L. H. Dicker, Variance estimation in high-dimensional linear models, Biometrika, vol.101, issue.2, pp.269-284, 2014.
DOI : 10.1093/biomet/ast065

L. H. Dicker and M. A. Erdogdu, Maximum likelihood for variance estimation in highdimensional linear models, Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pp.159-167, 2016.

M. Eid, Estimation of heritability and genetic advance of yield traits in wheat (Triticum aestivum L.) under drought condition, International Journal of Genetics and Molecular Biology, vol.1, issue.7, pp.115-120, 2009.

D. S. Falconer, The inheritance of liability to certain diseases, estimated from the incidence among relatives, Annals of Human Genetics, vol.46, issue.1, pp.51-76, 1965.
DOI : 10.1111/j.1469-1809.1951.tb02476.x

J. Fan and J. Lv, Sure independence screening for ultrahigh dimensional feature space, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.36, issue.5, pp.849-911, 2008.
DOI : 10.1255/jnirs.271

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709408

Y. Fan and R. Li, Variable selection in linear mixed effects models, The Annals of Statistics, vol.40, issue.4, 2012.
DOI : 10.1214/12-AOS1028SUPP

A. Gilmour, R. Thompson, and B. Cullis, Average Information REML: An Efficient Algorithm for Variance Parameter Estimation in Linear Mixed Models, Biometrics, vol.51, issue.4, pp.1440-1450, 1995.
DOI : 10.2307/2533274

D. Golan and S. Rosset, Accurate estimation of heritability in genome wide studies using random effects models, Bioinformatics, vol.27, issue.13, pp.317-323, 2011.
DOI : 10.1093/bioinformatics/btr219

D. Golan, E. S. Lander, and S. Rosset, Measuring missing heritability: Inferring the contribution of common variants, Proceedings of the National Academy of Sciences, pp.5272-5281, 2014.
DOI : 10.1371/journal.pgen.1000678

Y. Guan and M. Stephens, Bayesian variable selection regression for genome-wide association studies and other large-scale problems. The Annals of Applied Statistics, pp.1780-181511
DOI : 10.1214/11-aoas455

URL : http://arxiv.org/abs/1110.6019

J. D. Hadfield, MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package, Journal of Statistical Software, vol.33, issue.2, pp.1-22, 2010.
DOI : 10.18637/jss.v033.i02

URL : http://doi.org/10.18637/jss.v033.i02

J. Hallmayer, S. Cleveland, A. Torres, J. Phillips, and B. Cohen, Genetic Heritability and Shared Environmental Factors Among Twin Pairs With Autism, Archives of General Psychiatry, vol.68, issue.11, pp.1095-102, 2011.
DOI : 10.1001/archgenpsychiatry.2011.76

URL : http://archpsyc.jamanetwork.com/data/journals/psych/22580/yoa15046_1095_1102.pdf

Y. I. Ingster, A. B. Tsybakov, and N. Verzelen, Detection boundary in sparse regression, Electronic Journal of Statistics, vol.4, issue.0, pp.1476-1526, 2010.
DOI : 10.1214/10-EJS589

URL : https://hal.archives-ouvertes.fr/hal-00516259

L. Janson, R. F. Barber, and E. Candes, Eigenprism: Inference for high-dimensional signal-tonoise ratios. arXiv preprint, 2015.
DOI : 10.1111/rssb.12203

URL : http://arxiv.org/abs/1505.02097

P. Ji and J. Jin, UPS delivers optimal phase diagram in high-dimensional variable selection, The Annals of Statistics, vol.40, issue.1, pp.73-103, 2012.
DOI : 10.1214/11-AOS947SUPP

URL : http://arxiv.org/abs/1010.5028

J. Jiang, C. Li, D. Paul, C. Yang, and H. Zhao, High-dimensional genome-wide association study and misspecified mixed model analysis. arXiv preprint, 2014.
DOI : 10.1214/15-aos1421

H. M. Kang, N. A. Zaitlen, C. M. Wade, A. Kirby, D. Heckerman et al., Efficient Control of Population Structure in Model Organism Association Mapping, Genetics, vol.178, issue.3, pp.1709-1723, 2008.
DOI : 10.1534/genetics.107.080101

S. H. Lee, N. R. Wray, M. E. Goddard, and P. M. Visscher, Estimating Missing Heritability for Disease from Genome-wide Association Studies, The American Journal of Human Genetics, vol.88, issue.3, pp.294-305, 2011.
DOI : 10.1016/j.ajhg.2011.02.002

URL : http://doi.org/10.1016/j.ajhg.2011.02.002

M. Lynch and B. Walsh, Genetics and Analysis of Quantitative Traits, 1998.

B. Maher, Personal genomes: The case of the missing heritability, Nature, vol.455, issue.7218, pp.18-21, 2008.
DOI : 10.1093/hmg/ddm175

V. Marchenko and L. Pastur, DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES, Mathematics of the USSR-Sbornik, vol.1, issue.4, pp.457-483, 1968.
DOI : 10.1070/SM1967v001n04ABEH001994

N. Meinshausen and P. Bühlmann, Stability selection, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.7, issue.4, pp.417-473, 2010.
DOI : 10.1186/1471-2105-9-307

S. Müller, J. L. Scealy, and A. H. Welsh, Model Selection in Linear Mixed Models, Statistical Science, vol.28, issue.2, pp.135-167
DOI : 10.1214/12-STS410

S. Nakagawa and H. Schielzeth, Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists, Biological Reviews, vol.60, issue.4, pp.935-956, 2010.
DOI : 10.1007/978-0-387-21706-2

H. Patterson and R. Thompson, Recovery of inter-block information when block sizes are unequal, Biometrika, vol.58, issue.3, pp.545-554, 1971.
DOI : 10.1093/biomet/58.3.545

M. Pirinen, P. Donnelly, and C. C. Spencer, Efficient computation with a linear mixed model on large-scale data sets with applications to genetic studies, The Annals of Applied Statistics, vol.7, issue.1, pp.369-39012
DOI : 10.1214/12-AOAS586SUPP

G. A. Poland and R. M. Jacobson, Understanding those who do not understand: a brief review of the anti-vaccine movement, Vaccine, vol.19, issue.17-19, pp.2440-2445, 2001.
DOI : 10.1016/S0264-410X(00)00469-2

S. Purcell, N. Wray, J. Stone, P. Visscher, M. O-'donovan et al., International Schizophrenia Consortium, and B. Pickard. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder, Nature, vol.460, issue.8, pp.748-752, 2009.

J. Schelldorfer, P. Bühlmann, G. De, and S. Van, Estimation for High-Dimensional Linear Mixed-Effects Models Using ???1-Penalization, Scandinavian Journal of Statistics, vol.35, issue.2, pp.197-214, 2011.
DOI : 10.1214/009053607000000127

R. Serfling, Approximation theorems of mathematical statistics Wiley series in probability and mathematical statistics, 1980.

R. G. Steen, C. Mull, R. Mcclure, R. M. Hamer, and J. A. Lieberman, Brain volume in first-episode schizophrenia: Systematic review and meta-analysis of magnetic resonance imaging studies, The British Journal of Psychiatry, vol.188, issue.6, pp.510-518, 2006.
DOI : 10.1192/bjp.188.6.510

H. Veltman, M. W. Walter, J. C. Weiner, M. A. Bis, A. V. Ikram et al., Identification of common variants associated with human hippocampal and intracranial volumes, Nat Genet, vol.44, issue.5, pp.552-561, 2012.

A. Tenesa and C. Haley, The heritability of human disease: estimation, uses and abuses, Nature Reviews Genetics, vol.37, issue.2, pp.139-188, 2013.
DOI : 10.1093/ije/dyn019

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society, Series B, vol.58, issue.1, pp.267-288, 1996.
DOI : 10.1111/j.1467-9868.2011.00771.x

R. Toro, J. Poline, G. Huguet, E. Loth, V. Frouin et al., Genomic architecture of human neuroanatomical diversity, Molecular Psychiatry, issue.8, pp.201011-1016, 2015.
DOI : 10.1101/001198

Y. Uno, T. Uchiyama, M. Kurosawa, B. Aleksic, and N. Ozaki, The combined measles, mumps, and rubella vaccines and the total number of vaccines are not associated with development of autism spectrum disorder: The first case???control study in Asia, Vaccine, vol.30, issue.28, pp.304292-4298, 2012.
DOI : 10.1016/j.vaccine.2012.01.093

N. Verzelen, Minimax risks for sparse regressions: Ultra-high dimensional phenomenons, Electronic Journal of Statistics, vol.6, issue.0, pp.38-90, 2012.
DOI : 10.1214/12-EJS666SUPP

URL : https://hal.archives-ouvertes.fr/hal-00508339

N. Verzelen and E. Gassiat, Adaptive estimation of high-dimensional signal-to-noise ratios, 2016.

P. Visscher and M. Goddard, Genetic Parameters for Milk Yield, Survival, Workability, and Type Traits for Australian Dairy Cattle, Journal of Dairy Science, vol.78, issue.1, pp.205-220, 1995.
DOI : 10.3168/jds.S0022-0302(95)76630-9

P. Visscher, W. Hill, and N. Wray, Heritability in the genomics era ??? concepts and misconceptions, Nature Reviews Genetics, vol.66, issue.4, pp.255-266, 2008.
DOI : 10.1161/01.HYP.36.2.195

G. C. Wei and M. A. Tanner, A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms, Journal of the American Statistical Association, vol.51, issue.411, pp.699-704, 1990.
DOI : 10.1214/aos/1176346060

O. Weissbrod, C. Lippert, D. Geiger, and D. Heckerman, Accurate liability estimation improves power in ascertained case-control studies, Nature Methods, vol.447, issue.4, pp.332-334, 2015.
DOI : 10.1007/BF01441146

URL : http://arxiv.org/abs/1409.2448

J. Yang, B. Benyamin, B. P. Mcevoy, S. Gordon, A. K. Henders et al., Common SNPs explain a large proportion of the heritability for human height, Nature Genetics, vol.31, issue.7, pp.565-569, 2010.
DOI : 10.1007/BF01066731

J. Yang, S. H. Lee, M. E. Goddard, and P. M. Visscher, GCTA: A Tool for Genome-wide Complex Trait Analysis, The American Journal of Human Genetics, vol.88, issue.1, pp.76-82, 2011.
DOI : 10.1016/j.ajhg.2010.11.011

URL : http://doi.org/10.1016/j.ajhg.2010.11.011

X. Zhou and M. Stephens, Genome-wide efficient mixed-model analysis for association studies, Nature Genetics, vol.23, issue.7, pp.821-824, 2012.
DOI : 10.1186/1297-9686-23-1-67

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386377

X. Zhou, P. Carbonetto, and M. Stephens, Polygenic Modeling with Bayesian Sparse Linear Mixed Models, PLoS Genetics, vol.4, issue.2, p.1003264, 2013.
DOI : 10.1371/journal.pgen.1003264.s010

URL : http://doi.org/10.1371/journal.pgen.1003264