Skip to Main content Skip to Navigation

Etude de liaisons SISO, SIMO, MISO et MIMO à base de formes d'ondes FBMC-OQAM et de récepteurs Widely Linear

Abstract : During the last two decades, the increase of wireless communications throughput has necessitated more and more complex equalization techniques. To solve this issue, multicarrier modulations have been massively adopted in high data rates wireless communications standards. A typical example of the wide use of these waveforms is the adoption of OFDM (Orthogonal Frequency Division Multiplexing) for the downlink of 4G mobile networks. However, for next-generation 5G networks, the expected increase of M2M (Machine-to-Machine) communications forbids the use of OFDM because of the tight time and frequency synchronization constraints imposed by this waveform. Additionally, efficient spectrum occupation through cognitive radio strategies are incompatible with the poor spectral localization of OFDM. In this context, FBMC-OQAM (Filter Bank Multi-Carrier - Offset Quadrature Amplitude Modulation) waveforms appeared as a potential solution to these issues. However, equalization of FBMC-OQAM in frequency selective channels and/or MIMO (Multiple Input Multiple Output) channels is not straightforward because of residual intrinsic interferences between FBMC-OQAM subcarriers. Thus, this thesis considers equalization techniques for these links. In particular, the study of WL (Widely Linear) receivers allowing the mitigation of interferences, with only a single antenna, among networks using second-order noncircular waveforms (e.g. ASK, GMSK, OQAM signals) is privileged. This work studied this technique, named SAIC (Single Antenna Interference Cancellation) and applied for the suppression of co-channel interferences in GSM networks in order to adapt it for the cancellation of FBMC-OQAM intercarrier interferences. SAIC, which was further extended to multiple receive antennas (MAIC - Multiple Antenna Interference Cancellation) benefits from its low complexity and does not generate error propagation at low SNR contrary to successive interference cancellation based solutions. A progressive approach is adopted, from SAIC/MAIC for the suppression of co-channel interferences where we emphasize the importance of considering the cyclostationary nature of OQAM communication signals. Based on this, the proposal of a new WL-FRESH (FREquency-SHift) filter based receiver for OQAM-like signals is made and its performance is characterized analytically and by numerical simulations asserting its superior performance with respect to the standard WL receiver. The extension of SAIC/MAIC for the mitigation of a frequency-shifted interference is then considered and reception structures are proposed and analyzed in detail. The ability of WL-FRESH filter based SAIC receivers to perform the suppression of multiple frequency-shifted interferences is assessed. In the context of FBMC-OQAM signals which frequently utilize the PHYDYAS pulse-shaping prototype filter, each subcarrier is polluted only by its adjacent subcarriers. However, to evaluate SAIC processing without having to consider neighboring subcarriers of the adjacent ones, a filtering operation prior to the SAIC processing is needed. For this reason, the impact of a reception filter on the performance gain provided by the SAIC processing was conducted and conditions on the filter bandwidth have been established which governs the potential performance gain of a WL filter based processing for SAIC of frequency-shifted interferences.In a last step, an alternative equalization approach for FBMC-OQAM is investigated. This proposed technique consists in the per-subcarrier joint demodulation of the subcarrier of interest and its interfering adjacent ones after a filtering step. This proposal is considered in the context of MIMO Alamouti FBMC-OQAM links.
Complete list of metadatas

Cited literature [100 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Friday, July 21, 2017 - 5:55:05 PM
Last modification on : Saturday, December 21, 2019 - 3:42:50 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01567131, version 1



Rémi Chauvat. Etude de liaisons SISO, SIMO, MISO et MIMO à base de formes d'ondes FBMC-OQAM et de récepteurs Widely Linear. Réseaux et télécommunications [cs.NI]. Conservatoire national des arts et metiers - CNAM, 2017. Français. ⟨NNT : 2017CNAM1093⟩. ⟨tel-01567131⟩



Record views


Files downloads