P. Ailliot and V. Monbet, Markov-switching autoregressive models for wind time series, Environmental Modelling & Software, vol.30, pp.92-101, 2012.
DOI : 10.1016/j.envsoft.2011.10.011

URL : https://hal.archives-ouvertes.fr/hal-01083071

J. H. Albert and S. Chib, Bayesian Analysis of Binary and Polychotomous Response Data, Journal of the American Statistical Association, vol.85, issue.422, pp.669-679, 1993.
DOI : 10.1016/0304-4076(84)90007-1

J. L. Anderson, A Method for Producing and Evaluating Probabilistic Forecasts from Ensemble Model Integrations, Journal of Climate, vol.9, issue.7, pp.1518-1530, 1996.
DOI : 10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2

B. C. Bates and E. P. Campbell, A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall-runoff modeling, Water Resources Research, vol.33, issue.1, pp.937-947, 2001.
DOI : 10.1029/96WR02840

G. Box and G. Jenkins, Time Series Analysis: Forecasting and Control, 1970.
DOI : 10.1002/9781118619193

G. E. Box and D. R. Cox, An analysis of transformations, Journal of the Royal Statistical Society. Series B (Methodological), pp.211-252, 1964.

S. Chib, Calculating posterior distributions and modal estimates in Markov mixture models, Journal of Econometrics, vol.75, issue.1, pp.79-97, 1996.
DOI : 10.1016/0304-4076(95)01770-4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.4348

J. Collet, X. Epiard, C. , and P. , Simulating hydraulic inflows using PCA and ARMAX, The European Physical Journal Special Topics, vol.174, issue.1, pp.125-134, 2009.
DOI : 10.1140/epjst/e2009-01095-5

A. P. Dempster, N. M. Laird, R. , and D. B. , Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society. Series B (methodological), pp.1-38, 1977.

K. Engeland, B. Renard, I. Steinsland, and S. Kolberg, Evaluation of statistical models for forecast errors from the HBV model, Journal of Hydrology, vol.384, issue.1-2, pp.142-155, 2010.
DOI : 10.1016/j.jhydrol.2010.01.018

G. Evin, D. Kavetski, M. Thyer, and G. Kuczera, Pitfalls and improvements in the joint inference of heteroscedasticity and autocorrelation in hydrological model calibration, Water Resources Research, vol.24, issue.3, pp.4518-4524, 2013.
DOI : 10.1016/j.envsoft.2008.09.005

G. Evin, M. Thyer, D. Kavetski, D. Mcinerney, and G. Kuczera, Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity, Water Resources Research, vol.44, issue.7, pp.2350-2375, 2014.
DOI : 10.1029/2008WR006833

V. Fortin, Le modèle météo-apport HSAMI: historique, théorie et application, 2000.

E. M. Furrer, C. Jacques, and A. Favre, Short term discharge prediction using a Markovian regime switching model, pp.INRS-ETE, 2006.

J. Gailhard, Algorithme de recalage associéassocié`associéà MORDOR diagnostic et proposition d'améliorations. Note Technique Interne, 2014.

R. Garçon, Prévision opérationnelle des apports de la Durancè a Serre-PonçonPonçon`Ponçonà l'aide du modèle MORDOR. bilan de l'année 1994-1995, pp.71-76, 1996.

A. E. Gelfand and A. F. Smith, Sampling-Based Approaches to Calculating Marginal Densities, Journal of the American Statistical Association, vol.4, issue.410, pp.398-409, 1990.
DOI : 10.1080/01621459.1986.10478240

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.512.2330

T. Gneiting, A. E. Raftery, A. H. Westveld, and T. Goldman, Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Monthly Weather Review, vol.133, issue.5, pp.1098-1118, 2005.
DOI : 10.1175/MWR2904.1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.9212

S. Hemri, F. Fundel, and M. Zappa, Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resources Research, vol.100, issue.1-2, pp.6744-6755, 2013.
DOI : 10.1016/j.atmosres.2010.12.005

S. Hemri, D. Lisniak, and B. Klein, Multivariate postprocessing techniques for probabilistic hydrological forecasting, Water Resources Research, vol.15, issue.1, pp.7436-7451, 2015.
DOI : 10.5194/hess-15-255-2011

H. Hersbach, Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems, Weather and Forecasting, vol.15, issue.5, pp.559-570, 2000.
DOI : 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2

R. Krzysztofowicz, Bayesian system for probabilistic river stage forecasting, Journal of Hydrology, vol.268, issue.1-4, pp.16-40, 2002.
DOI : 10.1016/S0022-1694(02)00106-3

G. Kuczera, Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty, Water Resources Research, vol.18, issue.4, pp.1151-1162, 1983.
DOI : 10.1029/WR018i004p00947

M. Li, Q. Wang, J. Bennett, and D. Robertson, A strategy to overcome adverse effects of autoregressive updating of streamflow forecasts, Hydrology and Earth System Sciences, vol.19, issue.1, pp.1-15, 2015.
DOI : 10.5194/hess-19-1-2015

T. A. Louis, Finding the observed information matrix when using the EM algorithm, Journal of the Royal Statistical Society. Series B, vol.44, issue.2, pp.226-233, 1982.

Z. Lu and L. M. Berliner, Markov switching time series models with application to a daily runoff series, Water Resources Research, vol.147, issue.2, pp.523-534, 1999.
DOI : 10.2307/2981736

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.6193

J. E. Matheson and R. L. Winkler, Scoring Rules for Continuous Probability Distributions, Management Science, vol.22, issue.10, pp.1087-1096, 1976.
DOI : 10.1287/mnsc.22.10.1087

T. Mathevet, Erreur empirique de modèle. Note Technique Interne D4165, 2010.

M. Morawietz, C. Xu, L. Gottschalk, and L. M. Tallaksen, Systematic evaluation of autoregressive error models as post-processors for a probabilistic streamflow forecast system, Journal of Hydrology, vol.407, issue.1-4, pp.58-72, 2011.
DOI : 10.1016/j.jhydrol.2011.07.007

L. Perreault, R. Garçon, and J. Gaudet, Analyse de séquences de variables aléatoires hydrologiquesàhydrologiques`hydrologiquesà l'aide de modèles de changement de régime exploitant des variables atmosphériques, pp.111-123, 2007.
DOI : 10.1051/lhb:2007091

F. Pianosi and L. Raso, Dynamic modeling of predictive uncertainty by regression on absolute errors, Water Resources Research, vol.14, issue.12, 2012.
DOI : 10.5194/hess-14-2545-2010

A. E. Raftery, T. Gneiting, F. Balabdaoui, and M. Polakowski, Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review, vol.133, issue.5, 2005.
DOI : 10.1175/mwr2906.1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.9558

B. Schaefli, D. B. Talamba, and A. Musy, Quantifying hydrological modeling errors through a mixture of normal distributions, Journal of Hydrology, vol.332, issue.3-4, pp.303-315, 2007.
DOI : 10.1016/j.jhydrol.2006.07.005

G. Schoups and J. A. Vrugt, A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors, Water Resources Research, vol.44, issue.8, p.46, 2010.
DOI : 10.1029/2008WR006833

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

S. Sorooshian and J. A. Dracup, Stochastic parameter estimation procedures for hydrologie rainfall-runoff models: Correlated and heteroscedastic error cases, Water Resources Research, vol.20, issue.5, pp.430-442, 1980.
DOI : 10.1177/003754977302000504

O. Talagrand, R. Vautard, and B. Strauss, Evaluation of probabilistic prediction systems, Proc. ECMWF Workshop on Predictability, p.25, 1997.

M. Thyer, G. Kuczera, W. , and Q. , Quantifying parameter uncertainty in stochastic models using the Box???Cox transformation, Journal of Hydrology, vol.265, issue.1-4, pp.246-257, 2002.
DOI : 10.1016/S0022-1694(02)00113-0

E. Todini, A model conditional processor to assess predictive uncertainty in flood forecasting, International Journal of River Basin Management, vol.15, issue.1, pp.123-137, 2008.
DOI : 10.1098/rsta.2002.1008

J. A. Vrugt and B. A. Robinson, Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging, Water Resources Research, vol.40, issue.1-4, 2007.
DOI : 10.1029/2003WR002557

Q. Wang, D. L. Shrestha, D. Robertson, and P. Pokhrel, A log-sinh transformation for data normalization and variance stabilization, Water Resources Research, vol.340, issue.3-4, 2012.
DOI : 10.1016/j.jhydrol.2007.04.006

K. Aas, C. Czado, A. Frigessi, and H. Bakken, Pair-copula constructions of multiple dependence, Insurance: Mathematics and Economics, vol.44, issue.2, pp.182-198, 2009.
DOI : 10.1016/j.insmatheco.2007.02.001

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.3984

J. H. Albert and S. Chib, Bayesian Analysis of Binary and Polychotomous Response Data, Journal of the American Statistical Association, vol.85, issue.422, pp.669-679, 1993.
DOI : 10.1016/0304-4076(84)90007-1

D. Allard, Modeling Spatial and Spatio-Temporal Non Gaussian Processes, Advances and Challenges in Space-time Modelling of Natural Events, pp.141-164
DOI : 10.1007/978-3-642-17086-7_7

E. A. Anderson, National Weather Service river forecast system: Snow accumulation and ablation model, 1973.

J. L. Anderson, A Method for Producing and Evaluating Probabilistic Forecasts from Ensemble Model Integrations, Journal of Climate, vol.9, issue.7, pp.1518-1530, 1996.
DOI : 10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2

V. Andreassian, S. Bergstrom, N. Chahinian, Q. Duan, Y. Gusev et al., Catalogue of the models used in MOPEX, IAHS publication, vol.307, p.41, 2004.

A. Azzalini, Further results on a class of distributions which includes the normal ones, Statistica, vol.46, issue.2, pp.199-208, 1986.

C. Babusiaux, Etude statistique de la loi des fuites, 1969.

S. Ballay, L. Perreault, and B. Bobée, Loi des fuites. Number R479 in Rapport de recherche, INRS-Eau, vol.593, 1996.

B. C. Bates and E. P. Campbell, A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall-runoff modeling, Water Resources Research, vol.33, issue.1, pp.937-947, 2001.
DOI : 10.1029/96WR02840

Z. and B. Bouallègue, Calibrated short-range ensemble precipitation forecasts using extended logistic regression with interaction terms. Weather and Forecasting, pp.515-524, 2013.

J. M. Bernardo, Expected information as expected utility. The Annals of Statistics, pp.686-690, 1979.
DOI : 10.1214/aos/1176344689

J. Bernier and D. Fandeux, Théorie du renouvellement. application à l'étude statistique des précipitations mensuelles, pp.75-87, 1970.

V. J. Berrocal, A. E. Raftery, and T. Gneiting, Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts, Monthly Weather Review, vol.135, issue.4, pp.1386-1402, 2007.
DOI : 10.1175/MWR3341.1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.143.1691

K. Beven and A. Binley, The future of distributed models: model calibration and uncertainty prediction. Hydrological processes, pp.279-298, 1992.

M. Boucher, L. Perreault, F. Anctil, and A. Favre, Exploratory analysis of statistical post-processing methods for hydrological ensemble forecasts, Hydrological Processes, vol.9, issue.1, pp.1141-1155, 2015.
DOI : 10.1175/2007JHM862.1

P. Bougeault, Z. Toth, C. Bishop, B. Brown, D. Burridge et al., The THORPEX Interactive Grand Global Ensemble, Bulletin of the American Meteorological Society, vol.91, issue.8, pp.911059-1072, 2010.
DOI : 10.1175/2010BAMS2853.1

G. Box and G. Jenkins, Time Series Analysis: Forecasting and Control, 1970.
DOI : 10.1002/9781118619193

G. E. Box and D. R. Cox, An analysis of transformations, Journal of the Royal Statistical Society. Series B (Methodological), pp.211-252, 1964.

G. E. Box and G. M. Jenkins, Time series analysis: forecasting and control, 1976.
DOI : 10.1002/9781118619193

L. Breiman, Bagging predictors, Machine Learning, vol.10, issue.2, pp.123-140, 1996.
DOI : 10.2307/1403680

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and regression trees, 1984.

J. Bremnes, Improved calibration of precipitation forecasts using ensemble techniques . Part 2: Statistical calibration methods. met, 2007.

J. Bröcker, Reliability, sufficiency, and the decomposition of proper scores, Quarterly Journal of the Royal Meteorological Society, vol.7, issue.5, pp.1512-1519, 2009.
DOI : 10.1515/9781400873173

J. Bröcker, Evaluating raw ensembles with the continuous ranked probability score, Quarterly Journal of the Royal Meteorological Society, vol.135, issue.667, pp.1611-1617, 2012.
DOI : 10.1175/MWR3441.1

M. Broniatowski, G. Celeux, and J. Diebolt, Reconnaissance de mélanges de densités par un algorithme d'apprentissage probabiliste. Data analysis and informatics, pp.359-373, 1983.

R. Buizza, The value of probabilistic prediction, Atmospheric Science Letters, vol.8, issue.2, pp.36-42, 2008.
DOI : 10.5194/hessd-3-3321-2006

R. Buizza, M. Leutbecher, and L. Isaksen, Potential use of an ensemble of analyses in the ECMWF Ensemble Prediction System, Quarterly Journal of the Royal Meteorological Society, vol.60, issue.637, pp.2051-2066, 2008.
DOI : 10.1002/qj.346

R. Burnash and V. Singh, The NWS river forecast system-catchment modeling. Computer models of watershed hydrology, pp.311-366, 1995.

G. Celeux and J. Diebolt, The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem, Computational statistics quarterly, vol.2, issue.1, pp.73-82, 1985.

S. Chatelain, L. Perreault, and S. Tardif, Vérification des prévisions hydrométéorologiques : expérience de simulation et application sur données réelles, 2015.

S. Chib, Calculating posterior distributions and modal estimates in Markov mixture models, Journal of Econometrics, vol.75, issue.1, pp.79-97, 1996.
DOI : 10.1016/0304-4076(95)01770-4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.4348

M. Clark, S. Gangopadhyay, L. Hay, B. Rajagopalan, and R. Wilby, The Schaake Shuffle: A Method for Reconstructing Space???Time Variability in Forecasted Precipitation and Temperature Fields, Journal of Hydrometeorology, vol.5, issue.1, pp.243-262, 2004.
DOI : 10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2

G. Coccia and E. Todini, Recent developments in predictive uncertainty assessment based on the model conditional processor approach, Hydrology and Earth System Sciences, vol.15, issue.10, pp.3253-3274, 2011.
DOI : 10.5194/hess-15-3253-2011

J. Collet, X. Épiard, and P. Coudray, Simulating hydraulic inflows using PCA and ARMAX, The European Physical Journal Special Topics, vol.174, issue.1, pp.125-134, 2009.
DOI : 10.1140/epjst/e2009-01095-5

W. Collischonn, R. Haas, I. Andreolli, and C. E. Tucci, Forecasting River Uruguay flow using rainfall forecasts from a regional weather-prediction model, Journal of Hydrology, vol.305, issue.1-4, pp.87-98, 2005.
DOI : 10.1016/j.jhydrol.2004.08.028

P. Coulibaly, F. Anctil, and B. Bobée, Pr??vision hydrologique par r??seaux de neurones artificiels : ??tat de l'art, Canadian Journal of Civil Engineering, vol.26, issue.3, pp.293-304, 1999.
DOI : 10.1139/l98-069

A. R. Da-paz, W. Collischonn, C. Tucci, R. Clarke, D. Allasia et al., Data assimilation in a large-scale distributed hydrological model for mediumrange flow forecasts, p.471, 2007.

A. P. Dawid, The Well-Calibrated Bayesian, Journal of the American Statistical Association, vol.144, issue.379, pp.605-610, 1982.
DOI : 10.2307/2981918

A. P. Dawid, Present Position and Potential Developments: Some Personal Views: Statistical Theory: The Prequential Approach, Journal of the Royal Statistical Society. Series A (General), vol.147, issue.2, pp.278-292, 1984.
DOI : 10.2307/2981683

B. De-finetti, Funzione caratteristica di un fenomeno aleatorio, 1931.

R. C. De-paiva, D. C. Buarque, W. Collischonn, M. Bonnet, F. Frappart et al., Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin, Water Resources Research, vol.436, issue.437, pp.1226-1243, 2013.
DOI : 10.1029/2012WR011869

C. M. Dechant and H. Moradkhani, Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting, Water Resources Research, vol.134, issue.3-4, p.2012
DOI : 10.1175/MWR3153.1

M. H. Degroot and S. E. Fienberg, Assessing probability assessors: Calibration and refinement, 1981.

M. H. Degroot and S. E. Fienberg, The comparison and evaluation of forecasters. The statistician, pp.12-22, 1983.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the royal statistical society. Series B (methodological), pp.1-38, 1977.

Q. Duan, N. K. Ajami, X. Gao, and S. Sorooshian, Multi-model ensemble hydrologic prediction using Bayesian model averaging, Advances in Water Resources, vol.30, issue.5, pp.1371-1386, 2007.
DOI : 10.1016/j.advwatres.2006.11.014

P. K. Dunn, Occurrence and quantity of precipitation can be modelled simultaneously, International Journal of Climatology, vol.24, issue.10, pp.1231-1239, 2004.
DOI : 10.1002/joc.1063

URL : http://eprints.usq.edu.au/2339/1/paper.pdf

K. Engeland, B. Renard, I. Steinsland, and S. Kolberg, Evaluation of statistical models for forecast errors from the HBV model, Journal of Hydrology, vol.384, issue.1-2, pp.142-155, 2010.
DOI : 10.1016/j.jhydrol.2010.01.018

G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, Journal of Geophysical Research, vol.109, issue.Part 4, pp.10143-10162, 1994.
DOI : 10.1175/1520-0493(1981)109<1367:ATILRW>2.0.CO;2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.930

G. Evin, D. Kavetski, M. Thyer, and G. Kuczera, Pitfalls and improvements in the joint inference of heteroscedasticity and autocorrelation in hydrological model calibration, Water Resources Research, vol.24, issue.3, pp.4518-4524, 2013.
DOI : 10.1016/j.envsoft.2008.09.005

G. Evin, M. Thyer, D. Kavetski, D. Mcinerney, and G. Kuczera, Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity, Water Resources Research, vol.44, issue.7, pp.2350-2375, 2014.
DOI : 10.1029/2008WR006833

F. M. Fan, W. Collischonn, A. Meller, and L. C. Botelho, Ensemble streamflow forecasting experiments in a tropical basin: The S??o Francisco river case study, Journal of Hydrology, vol.519, pp.2906-2919, 2014.
DOI : 10.1016/j.jhydrol.2014.04.038

V. Fortin, Le modèle météo-apport HSAMI: historique, théorie et application. Institut de recherche d'Hydro-Québec, 2000.

V. Fortin, A. Favre, and M. Said, Probabilistic forecasting from ensemble prediction systems: Improving upon the best-member method by using a different weight and dressing kernel for each member, Quarterly Journal of the Royal Meteorological Society, vol.131, issue.617, pp.1321349-1369, 2006.
DOI : 10.1256/qj.05.167

E. M. Furrer, C. Jacques, and A. Favre, Short term discharge prediction using a Markovian regime switching model, 2006.

J. Gailhard, Outil PREDICTOR notice methodologique. Note Technique Interne D4165, 2011.

J. Gailhard, Algorithme de recalage associé à MORDOR diagnostic et proposition d'améliorations. Note Technique Interne H-44200965, 2014.

F. Garavaglia, Méthode SCHADEX de prédétermination des crues extrêmes, 2011.

R. Garçon, Prévision opérationnelle des apports de la Durance à Serre-Ponçon à l'aide du modèle MORDOR. bilan de l'année 1994-1995, pp.71-76, 1996.

A. E. Gelfand and A. F. Smith, Sampling-Based Approaches to Calculating Marginal Densities, Journal of the American Statistical Association, vol.4, issue.410, pp.398-409, 1990.
DOI : 10.1080/01621459.1986.10478240

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.512.2330

C. Genest and A. Favre, Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask, Journal of Hydrologic Engineering, vol.12, issue.4, pp.347-368, 2007.
DOI : 10.1061/(ASCE)1084-0699(2007)12:4(347)

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.8266

T. Gneiting, Editorial: Probabilistic forecasting, Journal of the Royal Statistical Society: Series A (Statistics in Society), vol.46, issue.2, pp.319-321, 2008.
DOI : 10.1002/1099-131X(200007)19:4<231::AID-FOR771>3.0.CO;2-#

T. Gneiting and A. E. Raftery, Strictly Proper Scoring Rules, Prediction, and Estimation, Journal of the American Statistical Association, vol.102, issue.477, pp.359-378, 2007.
DOI : 10.1198/016214506000001437

T. Gneiting, A. E. Raftery, A. H. Westveld, and T. Goldman, Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Monthly Weather Review, vol.133, issue.5, pp.1098-1118, 2005.
DOI : 10.1175/MWR2904.1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.9212

T. Gneiting, F. Balabdaoui, and A. E. Raftery, Probabilistic forecasts, calibration and sharpness, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.19, issue.2, pp.243-268, 2007.
DOI : 10.1007/978-94-010-1276-8_10

URL : https://hal.archives-ouvertes.fr/hal-00363242

T. Gneiting, L. I. Stanberry, E. P. Grimit, L. Held, and N. A. Johnson, Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds, TEST, vol.28, issue.2, pp.211-235, 2008.
DOI : 10.1007/978-94-010-1276-8_10

N. J. Gordon, D. J. Salmond, and A. F. Smith, Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proceedings F-Radar and Signal Processing, pp.107-113, 1993.
DOI : 10.1049/ip-f-2.1993.0015

C. Guay, IREQ-2014 Modification de la modélisation des processus dans HSAMI : écoulements verticaux Institut de recherche d'Hydro-Québec, 2014.

C. Guay and I. Chartier, IREQ-2016 Stratégies de calage pour la paramétrisation opérationnelle d'un modèle hydrologique : déploiement et analyse sur les bassins versants d'Hydro-Québec, 2016.

H. V. Gupta, H. Kling, K. K. Yilmaz, and G. F. Martinez, Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, Journal of Hydrology, vol.377, issue.1-2, pp.80-91, 2009.
DOI : 10.1016/j.jhydrol.2009.08.003

T. M. Hamill and S. J. Colucci, Verification of Eta???RSM Short-Range Ensemble Forecasts, Monthly Weather Review, vol.125, issue.6, pp.1312-1327, 1997.
DOI : 10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2

T. M. Hamill, J. S. Whitaker, and S. L. Mullen, Reforecasts: An Important Dataset for Improving Weather Predictions, Bulletin of the American Meteorological Society, vol.87, issue.1, p.33, 2006.
DOI : 10.1175/BAMS-87-1-33

W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, pp.97-109, 1970.
DOI : 10.1093/biomet/57.1.97

S. Hemri, F. Fundel, and M. Zappa, Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resources Research, vol.100, issue.1-2, pp.6744-6755, 2013.
DOI : 10.1016/j.atmosres.2010.12.005

S. Hemri, D. Lisniak, and B. Klein, Multivariate postprocessing techniques for probabilistic hydrological forecasting, Water Resources Research, vol.15, issue.1, pp.7436-7451, 2015.
DOI : 10.5194/hess-15-255-2011

H. D. Herr and R. Krzysztofowicz, Generic probability distribution of rainfall in space: the bivariate model, Journal of Hydrology, vol.306, issue.1-4, pp.234-263, 2005.
DOI : 10.1016/j.jhydrol.2004.09.011

H. Hersbach, Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems, Weather and Forecasting, vol.15, issue.5, pp.559-570, 2000.
DOI : 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2

E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products. Transactions of the, pp.470-501, 1955.
DOI : 10.2307/1992999

D. Higdon, M. Kennedy, J. Cavendish, J. Cafeo, and R. Ryne, Combining Field Data and Computer Simulations for Calibration and Prediction, SIAM Journal on Scientific Computing, vol.26, issue.2, pp.448-466, 2004.
DOI : 10.1137/S1064827503426693

B. Houdant, Contribution à l'amélioration de la prévision hydrométéorologique opérationnelle . Pour l'usage des probabilités dans la communication entre acteurs, ENGREF (AgroParisTech), 2004.

D. Kavetski, S. W. Franks, and G. Kuczera, Confronting input uncertainty in environmental modelling. Calibration of watershed models, pp.49-68, 2002.
DOI : 10.1029/ws006p0049

P. K. Kitanidis and R. L. Bras, Adaptive filtering through detection of isolated transient errors in rainfall-runoff models, Water Resources Research, vol.21, issue.1, pp.740-748, 1980.
DOI : 10.1109/TAC.1976.1101146

R. Krzysztofowicz, Bayesian theory of probabilistic forecasting via deterministic hydrologic model, Water Resources Research, vol.8, issue.12, pp.2739-2750, 1999.
DOI : 10.1175/1520-0434(1993)008<0379:OEPATN>2.0.CO;2

R. Krzysztofowicz, Bayesian system for probabilistic river stage forecasting, Journal of Hydrology, vol.268, issue.1-4, pp.16-40, 2002.
DOI : 10.1016/S0022-1694(02)00106-3

R. Krzysztofowicz and C. J. Maranzano, Hydrologic uncertainty processor for probabilistic stage transition forecasting, Journal of Hydrology, vol.293, issue.1-4, pp.57-73, 2004.
DOI : 10.1016/j.jhydrol.2004.01.003

R. Krzysztofowicz and C. J. Maranzano, Bayesian processor of output for probabilistic quantitative precipitation forecasts, 2006.

R. Krzysztofowicz and Z. Toth, Bayesian processor of ensemble (BPE): Concept and implementation, Slides presented at the 4th NCEP/NWS Ensemble User Workshop, 2008.

G. Kuczera, Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty, Water Resources Research, vol.18, issue.4, pp.1151-1162, 1983.
DOI : 10.1029/WR018i004p00947

G. Kuczera and E. Parent, Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm, Journal of Hydrology, vol.211, issue.1-4, pp.69-85, 1998.
DOI : 10.1016/S0022-1694(98)00198-X

G. Kuczera, D. Kavetski, S. Franks, and M. Thyer, Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters, Journal of Hydrology, vol.331, issue.1-2, pp.161-177, 2006.
DOI : 10.1016/j.jhydrol.2006.05.010

M. Li, Q. Wang, J. Bennett, and D. Robertson, A strategy to overcome adverse effects of autoregressive updating of streamflow forecasts, Hydrology and Earth System Sciences, vol.19, issue.1, pp.1-15, 2015.
DOI : 10.5194/hess-19-1-2015

T. A. Louis, Finding the observed information matrix when using the EM algorithm, Journal of the Royal Statistical Society. Series B, vol.44, issue.2, pp.226-233, 1982.

Z. Lu and L. M. Berliner, Markov switching time series models with application to a daily runoff series, Water Resources Research, vol.147, issue.2, pp.523-534, 1999.
DOI : 10.2307/2981736

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.6193

C. J. Maranzano and R. Krzysztofowicz, Bayesian Reanalysis of the Challenger O-Ring Data, Risk Analysis, vol.78, issue.384, pp.1053-1067, 2008.
DOI : 10.1007/978-1-4899-3242-6

T. Mathevet, Erreur empirique de modèle. Note Technique Interne D4165, 2010.

T. Mathevet, F. Garavaglia, R. Garçon, J. Gailhard, and E. Paquet, Operational hydrological ensemble forecasts in france. recent development of the french hydropower company (edf), taking into account rainfall and hydrological model uncertainties, EGU General Assembly Conference Abstracts, p.10248, 2009.

N. Meinshausen, Quantile regression forests, Journal of Machine Learning Research, vol.7, pp.983-999, 2006.

J. W. Messner, G. J. Mayr, A. Zeileis, and D. S. Wilks, Heteroscedastic Extended Logistic Regression for Postprocessing of Ensemble Guidance, Monthly Weather Review, vol.142, issue.1, pp.448-456, 2014.
DOI : 10.1175/MWR-D-13-00271.1

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculations by fast computing machines. The journal of chemical physics, pp.1087-1092, 1953.

M. Minville, IREQ-2014-0104 Modification du modèle hydrologique HSAMI : Incorporation d'un modèle mixte degré-jour et bilan énergétique pour la modélisation du couvert nival, 2014.

M. Minville, IREQ-2106 Stratégies de calage pour la paramétrisation opérationnelle d'un modèle hydrologique : déploiement et analyse sur un échantillon de bassins versants, 2016.

A. Möller, A. Lenkoski, and T. L. Thorarinsdottir, Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas, Quarterly Journal of the Royal Meteorological Society, vol.135, issue.673, pp.982-991, 2009.
DOI : 10.1175/MWR3347.1

A. Montanari and A. Brath, A stochastic approach for assessing the uncertainty of rainfall-runoff simulations, Water Resources Research, vol.129, issue.6, 2004.
DOI : 10.1016/0169-2070(90)90103-I

H. Moradkhani, K. Hsu, H. Gupta, and S. Sorooshian, Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter, Water Resources Research, vol.12, issue.2, 2005.
DOI : 10.1098/rsta.2002.1008

H. Moradkhani, S. Sorooshian, H. V. Gupta, and P. R. Houser, Dual state???parameter estimation of hydrological models using ensemble Kalman filter, Advances in Water Resources, vol.28, issue.2, pp.135-147, 2005.
DOI : 10.1016/j.advwatres.2004.09.002

M. Morawietz, C. Xu, L. Gottschalk, and L. M. Tallaksen, Systematic evaluation of autoregressive error models as post-processors for a probabilistic streamflow forecast system, Journal of Hydrology, vol.407, issue.1-4, pp.58-72, 2011.
DOI : 10.1016/j.jhydrol.2011.07.007

J. Nash and J. Sutcliffe, River flow forecasting through conceptual models part I ??? A discussion of principles, Journal of Hydrology, vol.10, issue.3, pp.282-290, 1970.
DOI : 10.1016/0022-1694(70)90255-6

P. Naveau, R. De-fondeville, D. Cooley, and H. Benveniste, Scores CRPS, inference and extremes, Séminaire Statistique au Sommet de Rochebrune, 2014.

R. B. Nelsen, An introduction to copulas, 2007.
DOI : 10.1007/978-1-4757-3076-0

C. Obled, G. Bontron, and R. Garçon, Quantitative precipitation forecasts: a statistical adaptation of model outputs through an analogues sorting approach, Atmospheric Research, vol.63, issue.3-4, pp.303-324, 2002.
DOI : 10.1016/S0169-8095(02)00038-8

T. Pagano, Q. Wang, P. Hapuarachchi, and D. Robertson, A dual-pass error-correction technique for forecasting streamflow, Journal of Hydrology, vol.405, issue.3-4, pp.367-381, 2011.
DOI : 10.1016/j.jhydrol.2011.05.036

T. C. Pagano, F. Pappenberger, A. W. Wood, M. Ramos, A. Persson et al., Automation and human expertise in operational river forecasting, Wiley Interdisciplinary Reviews: Water, vol.17, issue.5, pp.692-705, 2016.
DOI : 10.1002/met.202

URL : https://hal.archives-ouvertes.fr/hal-01529615

F. Pappenberger, H. L. Cloke, D. J. Parker, F. Wetterhall, D. S. Richardson et al., The monetary benefit of early flood warnings in Europe, Environmental Science & Policy, vol.51, pp.278-291, 2015.
DOI : 10.1016/j.envsci.2015.04.016

L. Perreault, Vérification de prévisions hydrologiques probabilistes -Version 2. Rapport scientifique IREQ-2013-0149, Institut de recherche d'Hydro-Québec, 2013.

B. Renard, D. Kavetski, E. Leblois, M. Thyer, G. Kuczera et al., Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation, Water Resources Research, vol.74, issue.18, p.47, 2011.
DOI : 10.1080/00207170110089824

D. S. Richardson, Skill and relative economic value of the ECMWF ensemble prediction system, Quarterly Journal of the Royal Meteorological Society, vol.125, issue.563, pp.649-667, 2000.
DOI : 10.1175/1520-0493(1995)123<3565:PEVOEB>2.0.CO;2

D. Robertson, D. Shrestha, and Q. Wang, Post-processing rainfall forecasts from numerical weather prediction models for short-term streamflow forecasting, Hydrology and Earth System Sciences, vol.17, issue.9, pp.3587-3603, 2013.
DOI : 10.5194/hess-17-3587-2013

URL : http://doi.org/10.5194/hess-17-3587-2013

E. Roulin and S. Vannitsem, Post-processing of medium-range probabilistic hydrological forecasting: impact of forcing, initial conditions and model errors, Hydrological Processes, vol.8, issue.3, pp.1434-1449, 2015.
DOI : 10.5194/asr-8-135-2012

M. Roulston and L. A. Smith, Combining dynamical and statistical ensembles, Tellus A: Dynamic Meteorology and Oceanography, vol.125, issue.1, pp.16-30, 2003.
DOI : 10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2

P. Salamon and L. Feyen, Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter, Journal of Hydrology, vol.376, issue.3-4, pp.428-442, 2009.
DOI : 10.1016/j.jhydrol.2009.07.051

L. J. Savage, Elicitation of Personal Probabilities and Expectations, Journal of the American Statistical Association, vol.9, issue.2, pp.783-801, 1971.
DOI : 10.1175/1520-0450(1970)009<0143:NUATPS>2.0.CO;2

J. C. Schaake, T. M. Hamill, R. Buizza, and M. Clark, HEPEX: the hydrological ensemble prediction experiment. Bulletin of the, pp.1541-1547, 2007.
DOI : 10.1175/bams-88-10-1541

B. Schaefli, D. B. Talamba, and A. Musy, Quantifying hydrological modeling errors through a mixture of normal distributions, Journal of Hydrology, vol.332, issue.3-4, pp.303-315, 2007.
DOI : 10.1016/j.jhydrol.2006.07.005

R. Schefzik, A similarity-based implementation of the schaake shuffle. arXiv preprint, 2015.

R. Schefzik, T. L. Thorarinsdottir, and T. Gneiting, Uncertainty Quantification in Complex Simulation Models Using Ensemble Copula Coupling, Statistical Science, vol.28, issue.4, pp.616-640, 2013.
DOI : 10.1214/13-STS443SUPP

URL : http://arxiv.org/abs/1302.7149

M. Scheuerer, Probabilistic quantitative precipitation forecasting using Ensemble Model Output Statistics, Quarterly Journal of the Royal Meteorological Society, vol.LXI, issue.680, pp.1086-1096, 2014.
DOI : 10.1002/met.134

URL : http://arxiv.org/abs/1302.0893

G. Schoups and J. A. Vrugt, A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors, Water Resources Research, vol.44, issue.8, p.46, 2010.
DOI : 10.1029/2008WR006833

P. Schultz, H. Yuan, M. Charles, R. Krzysztofowicz, and Z. Toth, A continuous variable for the statistical processing of precipitation, 2008.

D. Schwanenberg, F. M. Fan, S. Naumann, J. I. Kuwajima, R. A. Montero et al., Short-Term Reservoir Optimization for Flood Mitigation under Meteorological and Hydrological Forecast Uncertainty, Water Resources Management, vol.34, issue.10, pp.1635-1651, 2015.
DOI : 10.1016/j.advwatres.2011.01.004

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

F. C. Schweppe, Uncertain dynamic systems, 1973.

D. Seo, H. Herr, and J. Schaake, A statistical post-processor for accounting of hydrologic uncertainty in short-range ensemble streamflow prediction, Hydrology and Earth System Sciences Discussions, vol.3, issue.4, pp.1987-2035, 2006.
DOI : 10.5194/hessd-3-1987-2006

URL : https://hal.archives-ouvertes.fr/hal-00298744

H. L. Shang and R. J. Hyndman, rainbow: Rainbow Plots, Bagplots and Boxplots for Functional Data, 2016. URL https

M. Sklar, Fonctions de répartition à n dimensions et leurs marges, 1959.

J. M. Sloughter, A. E. Raftery, T. Gneiting, and C. Fraley, Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging, Monthly Weather Review, vol.135, issue.9, pp.3209-3220, 2007.
DOI : 10.1175/MWR3441.1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.8388

D. P. Solomatine and D. L. Shrestha, A novel method to estimate model uncertainty using machine learning techniques, Water Resources Research, vol.8, issue.3, 2009.
DOI : 10.1016/S0019-9958(65)90241-X

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.569.2155

S. Sorooshian and J. A. Dracup, Stochastic parameter estimation procedures for hydrologie rainfall-runoff models: Correlated and heteroscedastic error cases, Water Resources Research, vol.20, issue.5, pp.430-442, 1980.
DOI : 10.1177/003754977302000504

G. Stoltz, Agrégation séquentielle de prédicteurs: méthodologie générale et applications à la prévision de la qualité de l'air et à celle de la consommation électrique, Journal de la Société française de Statistique, pp.66-106, 2010.

M. Taillardat, O. Mestre, M. Zamo, and P. Naveau, Calibrated Ensemble Forecasts Using Quantile Regression Forests and Ensemble Model Output Statistics, Monthly Weather Review, vol.144, issue.6, p.2016, 2016.
DOI : 10.1175/MWR-D-15-0260.1

O. Talagrand, R. Vautard, and B. Strauss, Evaluation of probabilistic prediction systems, Proc. ECMWF Workshop on Predictability, p.25, 1997.

A. Thiboult, F. Anctil, and M. Boucher, Accounting for three sources of uncertainty in ensemble hydrological forecasting, Hydrology and Earth System Sciences, vol.20, issue.5, pp.1809-1825, 2016.
DOI : 10.5194/hess-20-1809-2016-supplement

T. L. Thorarinsdottir, M. Scheuerer, and C. Heinz, Assessing the calibration of highdimensional ensemble forecasts using rank histograms, Journal of Computational and Graphical Statistics, pp.0-00, 2014.

M. Thyer, B. Renard, D. Kavetski, G. Kuczera, S. W. Franks et al., Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis, Water Resources Research, vol.43, issue.1, p.45, 2009.
DOI : 10.1029/2006WR005497

URL : https://hal.archives-ouvertes.fr/hal-00456158

E. Todini, A model conditional processor to assess predictive uncertainty in flood forecasting, International Journal of River Basin Management, vol.15, issue.1, pp.123-137, 2008.
DOI : 10.1098/rsta.2002.1008

J. Verkade and M. Werner, Estimating the benefits of single value and probability forecasting for flood warning, Hydrology and Earth System Sciences Discussions, vol.8, 2011.

J. A. Vrugt and B. A. Robinson, Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging, Water Resources Research, vol.40, issue.1-4, 2007.
DOI : 10.1029/2003WR002557

J. A. Vrugt, C. Ter-braak, C. Diks, B. A. Robinson, J. M. Hyman et al., Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling, International Journal of Nonlinear Sciences and Numerical Simulation, vol.39, issue.3, pp.273-290, 2009.
DOI : 10.1029/2002WR001642

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.453.2675

Q. Wang and D. Robertson, Multisite probabilistic forecasting of seasonal flows for streams with zero value occurrences, Water Resources Research, vol.14, issue.2, 2011.
DOI : 10.1089/cmb.2006.0151

Q. Wang, D. Robertson, and F. Chiew, A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites, Water Resources Research, vol.14, issue.4, 2009.
DOI : 10.1089/cmb.2006.0151

Q. Wang, D. L. Shrestha, D. Robertson, and P. Pokhrel, A log-sinh transformation for data normalization and variance stabilization, Water Resources Research, vol.340, issue.3-4, p.2012
DOI : 10.1016/j.jhydrol.2007.04.006

Q. Wang, J. C. Bennett, and D. E. Robertson, Error reduction and representation in stages (erris) in hydrological modelling for ensemble streamflow forecasting, Hydrology and Earth System Sciences, vol.20, issue.9, p.3561, 2016.

X. Wang and C. H. Bishop, Improvement of ensemble reliability with a new dressing kernel, Quarterly Journal of the Royal Meteorological Society, vol.83, issue.607, pp.965-986, 2005.
DOI : 10.1256/qj.04.120

A. Weerts, H. Winsemius, and J. Verkade, Estimation of predictive hydrological uncertainty using quantile regression: examples from the national flood forecasting system (england and wales) Hydrology and Earth System Sciences, p.15, 2011.

L. Alfieri, P. Burek, E. Dutra, B. Krzeminski, D. Muraro et al., GloFAS &ndash; global ensemble streamflow forecasting and flood early warning, Hydrology and Earth System Sciences, vol.17, issue.3, pp.1161-1175, 2013.
DOI : 10.5194/hess-17-1161-2013

URL : http://doi.org/10.5194/hessd-9-12293-2012

E. A. Anderson, National Weather Service river forecast system: Snow accumulation and ablation model, 1973.

V. Andreassian, S. Bergstrom, N. Chahinian, Q. Duan, Y. Gusev et al., Catalogue of the models used in MOPEX, p.41, 2004.

J. C. Bennett, D. E. Robertson, D. L. Shrestha, Q. Wang, D. Enever et al., A System for Continuous Hydrological Ensemble Forecasting (SCHEF) to lead times of 9days, Journal of Hydrology, vol.519, pp.2832-2846, 2014.
DOI : 10.1016/j.jhydrol.2014.08.010

P. Bougeault, Z. Toth, C. Bishop, B. Brown, D. Burridge et al., The THORPEX Interactive Grand Global Ensemble, Bulletin of the American Meteorological Society, vol.91, issue.8, pp.1059-1072, 2010.
DOI : 10.1175/2010BAMS2853.1

G. E. Box and D. R. Cox, An analysis of transformations, Journal of the Royal Statistical Society. Series B (Methodological), pp.211-252, 1964.

J. Bröcker, On reliability analysis of multi-categorical forecasts, Nonlinear Processes in Geophysics, vol.15, issue.4, pp.661-673, 2008.
DOI : 10.5194/npg-15-661-2008

R. Buizza, P. Houtekamer, G. Pellerin, Z. Toth, Y. Zhu et al., A Comparison of the ECMWF, MSC, and NCEP Global Ensemble Prediction Systems, Monthly Weather Review, vol.133, issue.5, pp.1076-1097, 2005.
DOI : 10.1175/MWR2905.1

R. Burnash and V. Singh, The NWS river forecast system-catchment modeling. Computer models of watershed hydrology, pp.311-366, 1995.

M. Clark, S. Gangopadhyay, L. Hay, B. Rajagopalan, and R. Wilby, The Schaake Shuffle: A Method for Reconstructing Space???Time Variability in Forecasted Precipitation and Temperature Fields, Journal of Hydrometeorology, vol.5, issue.1, pp.243-262, 2004.
DOI : 10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2

H. Cloke and F. Pappenberger, Ensemble flood forecasting: A review, Journal of Hydrology, vol.375, issue.3-4, pp.613-626, 2009.
DOI : 10.1016/j.jhydrol.2009.06.005

J. Collet, X. Epiard, and P. Coudray, Simulating hydraulic inflows using PCA and ARMAX, The European Physical Journal Special Topics, vol.174, issue.1, pp.125-134, 2009.
DOI : 10.1140/epjst/e2009-01095-5

W. Annexe-annexe-annexe-annexe-annexe-collischonn, R. Haas, I. Andreolli, and C. E. Tucci, Forecasting River Uruguay flow using rainfall forecasts from a regional weather-prediction model, Journal of Hydrology, vol.305, issue.1-4, pp.87-98, 2005.
DOI : 10.1016/j.jhydrol.2004.08.028

D. Paz, A. R. Collischonn, W. Tucci, C. Clarke, R. Allasia et al., Data assimilation in a large-scale distributed hydrological model for mediumrange flow forecasts, IAHS PUBLICATION 313, p.471, 2007.

D. Finetti and B. , La prévision : ses lois logiques, ses sources subjectives, Annales de l'institut Henri Poincaré, pp.1-68, 1937.

J. Demargne, L. Wu, S. K. Regonda, J. D. Brown, H. Lee et al., The Science of NOAA's Operational Hydrologic Ensemble Forecast Service, Bulletin of the American Meteorological Society, vol.95, issue.1, pp.79-98, 2014.
DOI : 10.1175/BAMS-D-12-00081.1

Q. Duan, N. K. Ajami, X. Gao, and S. Sorooshian, Multi-model ensemble hydrologic prediction using Bayesian model averaging, Advances in Water Resources, vol.30, issue.5, pp.1371-1386, 2007.
DOI : 10.1016/j.advwatres.2006.11.014

G. Evin, J. Merleau, and L. Perreault, Two-component mixtures of normal, gamma, and Gumbel distributions for hydrological applications, Water Resources Research, vol.10, issue.3, 2011.
DOI : 10.1198/106186001317115054

G. Evin, M. Thyer, D. Kavetski, D. Mcinerney, and G. Kuczera, Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity, Water Resources Research, vol.44, issue.7, pp.2350-2375, 2014.
DOI : 10.1029/2008WR006833

F. M. Fan, W. Collischonn, A. Meller, and L. C. Botelho, Ensemble streamflow forecasting experiments in a tropical basin: The S??o Francisco river case study, Journal of Hydrology, vol.519, pp.2906-2919, 2014.
DOI : 10.1016/j.jhydrol.2014.04.038

V. Fortin, Le modèle météo-apport HSAMI: historique, théorie et application, 2000.

V. Fortin, T. Ouarda, P. Rasmussen, and B. Bobée, Revue bibliographique des méthodes de prévision des débits. Revue des sciences de l'eau, Journal of Water Science, vol.10, pp.461-487, 1997.
DOI : 10.7202/705289ar

URL : http://www.erudit.org/fr/revues/rseau/1997-v10-n4-rseau3289/705289ar.pdf

R. Garçon, Prévision opérationnelle des apports de la Durancè a Serre-Ponçon Ponçonà l'aide du modèle MORDOR. Bilan de l'année 1994-1995, pp.71-76, 1996.

A. E. Gelfand and A. F. Smith, Sampling-Based Approaches to Calculating Marginal Densities, Journal of the American Statistical Association, vol.4, issue.410, pp.398-409, 1990.
DOI : 10.1080/01621459.1986.10478240

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.512.2330

C. Genest and A. C. Favre, Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask, Journal of Hydrologic Engineering, vol.12, issue.4, pp.347-368, 2007.
DOI : 10.1061/(ASCE)1084-0699(2007)12:4(347)

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.8266

T. Gneiting and A. E. Raftery, Strictly Proper Scoring Rules, Prediction, and Estimation, Journal of the American Statistical Association, vol.102, issue.477, pp.359-378, 2007.
DOI : 10.1198/016214506000001437

T. Gneiting, A. E. Raftery, I. Westveld, A. H. Goldman, and T. , Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Monthly Weather Review, vol.133, issue.5, pp.1098-1118, 2005.
DOI : 10.1175/MWR2904.1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.9212

C. Guay, M. Minville, and M. Braun, A global portrait of hydrological changes at the 2050 horizon for the province of Qu??bec, Canadian Water Resources Journal / Revue canadienne des ressources hydriques, vol.40, issue.3, pp.285-302, 2015.
DOI : 10.3137/ao.460204

R. Hagedorn and L. A. Smith, Communicating the value of probabilistic forecasts with weather roulette, Meteorological Applications, vol.271, issue.4, pp.143-155, 2009.
DOI : 10.1093/actrade/9780192853783.001.0001

S. Hemri, D. Lisniak, and B. Klein, Multivariate postprocessing techniques for probabilistic hydrological forecasting, Water Resources Research, vol.15, issue.1, 2015.
DOI : 10.5194/hess-15-255-2011

H. D. Herr and R. Krzysztofowicz, Generic probability distribution of rainfall in space: the bivariate model, Journal of Hydrology, vol.306, issue.1-4, pp.234-263, 2005.
DOI : 10.1016/j.jhydrol.2004.09.011

V. K. Jandhyala, P. Liu, and S. B. Fotopoulos, River stream flows in the northern Qu??bec Labrador region: A multivariate change point analysis via maximum likelihood, Water resources research 45, 2009.
DOI : 10.2307/2287990

I. T. Jolliffe and D. B. Stephenson, Forecast verification: a practitioner's guide in atmospheric science, 2012.
DOI : 10.1002/9781119960003

R. W. Katz and A. H. Murphy, Economic value of weather and climate forecasts, 1997.

R. Krzysztofowicz, Transformation and normalization of variates with specified distributions, Journal of Hydrology, vol.197, issue.1-4, pp.286-292, 1997.
DOI : 10.1016/S0022-1694(96)03276-3

R. Krzysztofowicz, Bayesian theory of probabilistic forecasting via deterministic hydrologic model, Water Resources Research, vol.8, issue.12, pp.2739-2750, 1999.
DOI : 10.1175/1520-0434(1993)008<0379:OEPATN>2.0.CO;2

URL : http://aurora.gmu.edu/wiki-common/images/Krzysztofowicz_1999.pdf

R. Krzysztofowicz, Bayesian system for probabilistic river stage forecasting, Journal of Hydrology, vol.268, issue.1-4, pp.16-40, 2002.
DOI : 10.1016/S0022-1694(02)00106-3

R. Krzysztofowicz and C. J. Maranzano, Bayesian system for probabilistic stage transition forecasting, Journal of Hydrology, vol.299, issue.1-2, pp.15-44, 2004.
DOI : 10.1016/j.jhydrol.2004.02.013

R. Krzysztofowicz and C. J. Maranzano, Bayesian processor of output for probabilistic quantitative precipitation forecasts, 2006.

K. Annexe-annexe-annexe-annexe-annexe-lewin, Field theory in social science: selected theoretical papers, 1952.

T. Mathevet, Erreur empirique de modèle. Note technique interne D4165, 2010.

T. Mathevet, F. Garavaglia, R. Garçon, J. Gailhard, and E. Paquet, Operational hydrological ensemble forecasts in france. recent development of the french hydropower company (edf), taking into account rainfall and hydrological model uncertainties, EGU General Assembly Conference Abstracts, p.10248, 2009.

A. Möller, A. Lenkoski, and T. L. Thorarinsdottir, Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas, Quarterly Journal of the Royal Meteorological Society, vol.135, issue.673, pp.982-991, 2009.
DOI : 10.1175/MWR3347.1

A. Montanari and A. Brath, A stochastic approach for assessing the uncertainty of rainfall-runoff simulations, Water Resources Research, vol.129, issue.6, 2004.
DOI : 10.1016/0169-2070(90)90103-I

G. Nason, Stationary and non-stationary times series, Statistics in Volcanology . Special Publications of IAVCEI, vol.1, pp.0-000, 2006.

C. Obled, G. Bontron, and R. Garçon, Quantitative precipitation forecasts: a statistical adaptation of model outputs through an analogues sorting approach Atmospheric research 63, pp.303-324, 2002.

T. Pagano, Q. Wang, P. Hapuarachchi, and D. Robertson, A dual-pass error-correction technique for forecasting streamflow, Journal of Hydrology, vol.405, issue.3-4, pp.367-381, 2011.
DOI : 10.1016/j.jhydrol.2011.05.036

R. C. De-paiva, D. C. Buarque, W. Collischonn, M. P. Bonnet, F. Frappart et al., Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin, Water Resources Research, vol.436, issue.437, pp.1226-1243, 2013.
DOI : 10.1029/2012WR011869

L. Perreault, J. Gaudet, L. Delorme, and S. Chatelain, Verification of mediumto-long range hydrological probabilistic forecasts, in: Handbook of Hydrometeorological Ensemble Forecasting, 2017.

L. Perreault, E. Parent, J. Bernier, B. Bobee, and M. Slivitzky, Retrospective multivariate Bayesian change-point analysis: A simultaneous single change in the mean of several hydrological sequences, Stochastic Environmental Research and Risk Assessment, vol.14, issue.4, pp.243-261, 2000.
DOI : 10.1007/s004770000051

C. Perrin, Vers une amélioration d'un modèle global pluie-débit, 2000.

C. Perrin, C. Michel, and V. Andréassian, Improvement of a parsimonious model for streamflow simulation, Journal of Hydrology, vol.279, issue.1-4, pp.275-289, 2003.
DOI : 10.1016/S0022-1694(03)00225-7

A. Pietroniro, V. Fortin, N. Kouwen, C. Neal, R. Turcotte et al., Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale, Hydrology and Earth System Sciences, vol.11, issue.4, pp.1279-1294, 2007.
DOI : 10.5194/hess-11-1279-2007

URL : https://hal.archives-ouvertes.fr/hal-00305073

A. E. Raftery, T. Gneiting, F. Balabdaoui, and M. Polakowski, Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review, vol.133, 2005.
DOI : 10.1175/mwr2906.1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.9558

D. Robertson, D. Shrestha, and Q. Wang, Post-processing rainfall forecasts from numerical weather prediction models for short-term streamflow forecasting, Hydrology and Earth System Sciences, vol.17, issue.9, pp.3587-3603, 2013.
DOI : 10.5194/hess-17-3587-2013

URL : http://doi.org/10.5194/hess-17-3587-2013

E. Roulin and S. Vannitsem, Post-processing of medium-range probabilistic hydrological forecasting: impact of forcing, initial conditions and model errors, Hydrological Processes, vol.8, issue.3, pp.1434-1449, 2015.
DOI : 10.5194/asr-8-135-2012

L. J. Savage, Elicitation of Personal Probabilities and Expectations, Journal of the American Statistical Association, vol.9, issue.2, pp.783-801, 1971.
DOI : 10.1175/1520-0450(1970)009<0143:NUATPS>2.0.CO;2

J. Schaake, J. Demargne, R. Hartman, M. Mullusky, E. Welles et al., Precipitation and temperature ensemble forecasts from single-value forecasts, Hydrology and Earth System Sciences Discussions Discussions 4, pp.655-717, 2007.
DOI : 10.5194/hessd-4-655-2007

URL : https://hal.archives-ouvertes.fr/hal-00298823

J. C. Schaake, T. M. Hamill, R. Buizza, and M. Clark, HEPEX: The Hydrological Ensemble Prediction Experiment, Bulletin of the American Meteorological Society, vol.88, issue.10, pp.1541-1547, 2007.
DOI : 10.1175/BAMS-88-10-1541

B. Schaefli, D. B. Talamba, and A. Musy, Quantifying hydrological modeling errors through a mixture of normal distributions, Journal of Hydrology, vol.332, issue.3-4, pp.303-315, 2007.
DOI : 10.1016/j.jhydrol.2006.07.005

R. Schefzik, Physically coherent probabilistic weather forecasts using multivariate discrete copula-based ensemble postprocessing methods. Master's thesis, 2015.
DOI : 10.1002/qj.2839

R. Schefzik, T. L. Thorarinsdottir, and T. Gneiting, Uncertainty Quantification in Complex Simulation Models Using Ensemble Copula Coupling, Statistical Science, vol.28, issue.4, pp.616-640, 2013.
DOI : 10.1214/13-STS443SUPP

URL : http://arxiv.org/abs/1302.7149

M. Scheuerer, Probabilistic quantitative precipitation forecasting using Ensemble Model Output Statistics, Quarterly Journal of the Royal Meteorological Society, vol.LXI, issue.680, pp.1086-1096, 2014.
DOI : 10.1002/met.134

URL : http://arxiv.org/abs/1302.0893

G. Schoups and J. A. Vrugt, A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors, Water Resources Research, vol.44, issue.8, 2010.
DOI : 10.1029/2008WR006833

D. Schwanenberg, F. M. Fan, S. Naumann, J. I. Kuwajima, R. A. Montero et al., Short-Term Reservoir Optimization for Flood Mitigation under Meteorological and Hydrological Forecast Uncertainty, Water Resources Management, vol.34, issue.10, pp.1635-1651, 2015.
DOI : 10.1016/j.advwatres.2011.01.004

D. J. Seo, H. Herr, and J. Schaake, A statistical post-processor for accounting of hydrologic uncertainty in short-range ensemble streamflow prediction, Hydrology and Earth System Sciences Discussions, vol.3, issue.4, pp.1987-2035, 2006.
DOI : 10.5194/hessd-3-1987-2006

URL : https://hal.archives-ouvertes.fr/hal-00298744

J. K. Sivillo, J. E. Ahlquist, and Z. Toth, An Ensemble Forecasting Primer, Weather and Forecasting, vol.12, issue.4, pp.809-818, 1997.
DOI : 10.1175/1520-0434(1997)012<0809:AEFP>2.0.CO;2

J. M. Sloughter, A. E. Raftery, T. Gneiting, and C. Fraley, Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging, Monthly Weather Review, vol.135, issue.9, pp.3209-3220, 2007.
DOI : 10.1175/MWR3441.1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.8388

D. J. Thomson, Jackknifing multiple-window spectra ICASSP-94, Acoustics, Speech, and Signal Processing IEEE International Conference on, p.73, 1994.
DOI : 10.1109/icassp.1994.389899

E. Todini, A model conditional processor to assess predictive uncertainty in flood forecasting, International Journal of River Basin Management, vol.15, issue.1, pp.123-137, 2008.
DOI : 10.1098/rsta.2002.1008

Q. Wang, D. Robertson, and F. Chiew, A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites, Water Resources Research, vol.14, issue.4, 2009.
DOI : 10.1089/cmb.2006.0151

Q. Wang, D. L. Shrestha, D. Robertson, and P. Pokhrel, A log-sinh transformation for data normalization and variance stabilization, Water Resources Research, vol.340, issue.3-4, 2012.
DOI : 10.1016/j.jhydrol.2007.04.006

D. S. Wilks, Extending logistic regression to provide full-probability-distribution MOS forecasts, Meteorological Applications, vol.135, issue.3, pp.361-368, 2009.
DOI : 10.1017/CBO9780511617652.010

L. Wu, D. J. Seo, J. Demargne, J. D. Brown, S. Cong et al., Generation of ensemble precipitation forecast from single-valued quantitative precipitation forecast for hydrologic ensemble prediction, Journal of Hydrology, vol.399, issue.3-4, pp.281-298, 2011.
DOI : 10.1016/j.jhydrol.2011.01.013