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INTRODUCTION

This work is dedicated to investigations of generalizations of one famous result
for classical linear codes obtained by a pioneer of coding theory, Florence Jessie
MacWilliams. In her thesis, she proved the following extension theorem: “each
linear map of a linear code that preserves the Hamming distance extends to a
monomial map.” Recall that a linear map is called monomial if it acts by per-
mutation of the coordinates and multiplication of each coordinate by a nonzero
scalar. The original proof of MacWilliams was refined by Bogart, Goldberg and
Gordon. It was later simplified by Ward and Wood using a character-theoretic
approach. As it was noted by Goldberg, the MacWilliams Extension Theorem is
itself an analogue of the famous Witt’s Extension Theorem for quadratic forms.
Indeed, the group of monomial maps coincide with the group of linear Hamming
isometries of the whole Hamming space.

In the past decades many researches studied linear codes over various module
alphabets. In this context an alphabet is a finite module over a ring with
identity, a code is a module and maps are module homomorphisms. Varying
the ring and the alphabet one gets such important classes of codes as: codes
over a ring alphabet, classical linear codes, additive codes. Many other cases
covered by the general settings are observed by Greferath in [32] and Schmidt
in [36], Hammons, Kumar, Calderbank, Sloane and Solé in [38], Satyanarayana
in [53].

However, analogues of the MacWilliams Extension Theorem do not always
exist in general. Unlike the classical linear codes, there exist linear codes over
a module alphabet with unextendable linear Hamming isometries.

In this thesis I consider the general context of linear codes over a module
alphabet and study the extendability of weight preserving maps of the codes.

Let us observe several known results on extension properties of linear codes
over a module alphabet. In [64] Wood proved that an extension property holds
for codes over Frobenius ring alphabets, using a character-theoretic approach.
The same result was also proved in [35] by Greferath and Schmidt, using a
combinatorial approach.

The extension problem for module alphabets was partially translated to the
case of matrix rings and matrix modules in [16] by Dinh and López-Permouth.
There the authors proved the necessary conditions for the existence of a code
over a matrix module alphabet with an unextendable Hamming isometry. An
explicit construction appeared in the work of Wood [61]. The author developed
the ideas of [16] and he found sufficient and necessary conditions under which
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an alphabet has an extension property.

Besides the Hamming distance, the properties of codes equipped with other
distances and weights are often studied. A general weight is a function defined on
an alphabet with numeric values. A weight of a codeword is a sum of weights of
each coordinate. The Hamming weight is a particular example of such a weight
function, as well as the Lee weight (introduced in [45]), the Euclidean weight
and the homogeneous weight, defined by Constantinescu and Heise in [14].

In the present thesis I also study extension properties of general weight
preserving maps on linear codes over a module alphabet. By the analogy with
the case of the Hamming weight, extendability to monomial maps is studied.
Below, a brief description of known results concerning the extension theorem
for general weights is given.

The first universal extension criterion for finite ring alphabets equipped with
a general weight function was proved in [65] by Wood, where he characterizes an
extension property in terms of determinant of a special matrix. The subject was
developed by Barra in [5] where various properties and examples are introduced.

Of a particular interest is a special weight, the symmetrized weight compo-
sition, which is built on a subgroup of the group of alphabet automorphisms.
This weight was introduced by Goldberg in [31] (as a coset weight) for classi-
cal linear codes, where he proved an analogue of the extension theorem. The
definition of symmetrized weight composition was extended for the case of ring
alphabets in [63] by Wood and in [28] by ElGarem and Megahed for module
alphabets. The authors found sufficient conditions for an extension property to
hold for module alphabets equipped with the symmetrized weight composition.
Later, in [2], Assem proved that under several additional assumptions the found
conditions are also necessary.

Some other interesting result of Greferath, Langevin, Honold, Fadden and
Wood, concerning extension properties of general weights and some particular
weights can be found in [26, 33, 44].

One of results of the present work is related to extension problems for com-
binatorial codes, i.e., codes without any algebraic structure. In these settings
I study extendability of Hamming isometries to monomial maps, which are de-
fined in a similar to the classical case way. Despite the fact that for none of
the set alphabets an extension property holds, for some classes of combinato-
rial codes analogue of the extension theorem exist. For example, in [4], [41] and
[55] Avgustinovich, Solov’eva, Kovalevskaya, Honold and Heise described several
families of combinatorial codes with all Hamming isometries extendable. There
they also observed various classes of codes that have unextendable isometries.
Among the studied families there are some subclasses of codes that achieve the
Singleton bound, some subclasses of equidistant codes and some perfect codes.

The present thesis is organized in the following way. Chapter 1 contains a
collection of basic facts of ring and module theories, character theory and coding
theory.
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Chapter 2 explains a new geometric approach to an extension property of
linear codes over a module alphabet. It also contains the known results and our
improvements concerning extension properties of module alphabets equipped
with the Hamming weight. In Chapter 3 I prove an extension theorem for short
linear codes over a matrix module alphabet and give examples for additive codes.
It appears that to have an unextendable Hamming isometry, a code should have
its length to be greater than some frontier value. The exact bound on the code
length is found. Chapter 4 deals with extension properties of special type of
codes: MDS codes. Strong geometric properties of MDS codes in many cases
are sufficient for the extension property to hold. Some of the results presented
in Chapter 2, Chapter 3 and Chapter 4 are published in [19], [23] and [24].

The case of codes over alphabets equipped with symmetrized weight com-
position and general weight functions is observed in Chapter 5. In this context
I improve the known results and I prove a new one. They are published in [22]
and [25]. The main contribution of this chapter is a construction of a special
linear code and a weight preserving map of the code with the following property:
on every codeword the map acts by a permutation of coordinates but there is
no monomial map that acts on the code in the same way.

Chapter 6 contains some results on the G-pseudo-injectivity of vector spaces,
which is defined in the precedent chapters. The solved problem is related to the
extension properties of additive codes. These results can be found in [22].

In Chapter 8 my attention is focused on combinatorial codes. A group of
isometries of a classical linear code is the group of those linear bijections from the
code to itself that preserve the Hamming distance. For the case of combinatorial
codes, along with the group of isometries of a code there is observed the subgroup
of those isometries that extend to monomial maps. The two groups may not be
the same. In [62] Wood investigated the question of how different the two groups
of a linear code over a matrix module alphabet can be. He showed, under certain
assumptions, that there exists a linear code over a matrix module alphabet
with predefined group of isometries and group of monomial isometries. The
main result of the chapter characterizes two isometry groups of a combinatorial
codes and is an analogue of the mentioned result of Wood. The material of this
chapter appears in [20].

Chapter 7 is related to extension properties of quantum codes and Gabidulin
codes.



LIST OF NOTATIONS

Fq finite field with q elements, where q is a prime power.
S(X) group of all permutations of a set X.
Sn the group S({1, . . . , n}).
X ⊆ Y set X is a subset of Y .
X ⊂ Y set X is a proper subset of Y .
F(X,Y ) set of maps from a set X to a set Y .
1Y indicator function of a subset Y ⊆ X, i.e., a map 1Y : X →

{0, 1} such that 1Y (x) = 1 if x ∈ Y and 1Y (x) = 0 if x 6∈ Y .
Ma×b(Fq) set of all a× b matrices over the finite field Fq.
GLn(Fq) group of invertible n× n matrices over the finite field Fq.(
n
k

)
the binomial coefficient; the number of k-element subsets of
an n-element set.[

n
k

]
q

the Gaussian binomial (q-binomial) coefficient, where q is
a prime power, n and k are nonnegative integers (see Sec-
tion 3.1).

HomR(M,N) set of R-linear homomorphisms from an R-module M to an
R-module N .

EndR(M) set of R-linear endomorphisms of an R-module M ; the same
as HomR(M,M).

AutR(M) group of R-linear automorphisms of an R-module M .
ann(M) annihilator of an R-module M .
soc(M) socle of an R-module M , see Definition 2.1.3.
kerσ kernel of the map σ.
imσ image of the map σ.
ρH the Hamming distance.
wtH the Hamming weight.
swcG symmetrized weight composition, see Definition 5.0.1.
H ≤ G group H is a subgroup of G.
H < G group H is a proper subgroup of G.
F the Fourier transform, see Section 1.2.

Ĝ group of characters of a group G, see Section 1.2.

M̂ character right(left) R-module of a left(right) R-module M ,
see Section 1.2.

H⊥ group annihilator of a group H, see Section 1.2.
G closure of a group G, see Section 5.1.



1. PRELIMINARIES

1.1 Rings and modules

Definition 1.1.1. A ring is a non-empty set R with two operations +, · :
R×R→ R with the properties:

• (R,+) is an abelian group (zero element 0);

• (R, ·) is a semigroup, i.e., the multiplication is associative;

• for all a, b, c ∈ R the distributivity rules are valid:

(a+ b)c = ac+ bc, a(b+ c) = ab+ ac.

If there exists an element 1 in a ring R such that for all a ∈ R, 1a = a1 = a,
then R is called a ring with identity. In the present thesis we will only consider
rings with identity.

Example 1.1.1. The set of all integer numbers Z with usual operations of
multiplication and addition is a ring with identity. Any field is a ring. The set
of k × k matrices over a field together with the operations of matrix addition
and matrix multiplication is a ring with the identity Ik, where Ik is a diagonal
k × k matrix with 1s on the diagonal and 0s elsewhere.

Let R be a ring with identity.

Definition 1.1.2. A left R-module M is an abelian group together with a
multiplication · : R×M →M , such that, for all m,m1,m2 ∈M and r, r1, r2 ∈
R,

• r(m1 +m2) = rm1 + rm2;

• (r1 + r2)m = r1m+ r2m;

• 1m = m;

• r1(r2m) = (r1r2)m.

A right R-module M is defined similarly, except that the ring acts on the
right.
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Example 1.1.2. A left ideal I of a ring R is an abelian subgroup of (R,+)
such that for all r ∈ R and a ∈ I, ra ∈ I. A left ideal I ⊆ R is a left R-module.

Any abelian group is both left and right Z-module. The set M = Mk×m(Fq)
of k ×m matrices over the finite field Fq with the operation of matrix addition
is a left Mk×k(Fq)-module and a right Mm×m(Fq)-module.

The basic properties of rings, ideals and modules can be found in chapters
II and III of [43] and in [60]. All the R-modules observed in the thesis are left
R-modules, except the cases where it is stated explicitly. All the definitions,
statements and results remain correct if “left” is substituted in place of “right”
and “right” is substituted in place of “left”.

1.2 Characters and the Fourier transform

Consider the abelian group of nonzero complex numbers with complex multipli-
cation, (C∗,×). Let G be a finite abelian group. Recall that an abelian group
is a Z-module. Denote by

Ĝ := HomZ(G,C∗)

the group of characters of G. The isomorphism holds, Ĝ ∼= G, see [39, Theorem
5.1].

The Fourier transform of a map f : G→ C is a map F(f) : Ĝ→ C defined
as

F(f)(χ) =
∑
g∈G

f(g)χ(g).

For a subgroup H ≤ G,

F(1H) = |H|1H⊥ , (1.1)

where the group annihilator H⊥ ≤ Ĝ is defined as

H⊥ = {χ ∈ Ĝ | ∀g ∈ H,χ(g) = 1} = {χ ∈ Ĝ | kerχ ≤ H}.

Indeed, for every χ ∈ Ĝ,

F(1H)(χ) =
∑
g∈G

1H(g)χ(g) =
∑
g∈H

χ(g) = |H|1H⊥ ,

where the last equality comes from [39, Lemma 5.4]. Note that the Fourier
transform is invertible, see [57, p. 168]. In [39, Theorem 5.6] the following two

facts were proven. For all subgroups H ≤ G, N ≤ Ĝ,

H⊥⊥ ∼= H, N⊥⊥ ∼= N.

For all subgroups H1, H2 ≤ G, N1, N2 ≤ Ĝ,

(H1 ∩H2)⊥ = H⊥1 +H⊥2 , (N1 ∩N2)⊥ = N⊥1 +N⊥2 . (1.2)
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From [39, Theorem 5.5], for two abelian groups H ≤ G,

Ĥ ∼= Ĝ/H⊥. (1.3)

Let R be a ring with identity. A finite left R-module M is an abelian group. The
group of characters M̂ has a natural structure of a right R-module. The ring
multiplication is defined as, (χr)(m) = χ(rm), for χ ∈ M̂ , r ∈ R and m ∈ M
(see [34, Section 2.2]).

1.3 Hamming space and codes

An alphabet A is a finite set with at least two elements. Let n be a positive
integer. The Hamming distance is the function ρH : An × An → {0, . . . , n},
defined as, for x, y ∈ An,

ρH(x, y) = |{i | xi 6= yi}|.

The set An equipped with the Hamming distance is a metric space called the
Hamming space. A code C is a nonempty subset of the Hamming space An.
The elements of C are codewords.

A Hamming isometry is a map f : C → An such that for each two codewords
x, y ∈ C, ρH(x, y) = ρH(f(x), f(y)), i.e., the map f preserves the Hamming
distance.

The alphabet A and the code C may additionally have algebraic structures.
For example, the classical coding theory study the case of a finite field alphabet
A, where a code is a linear subspace of An.

If an alphabet A has the structure of a group, it is convenient to use the
Hamming weight wtH : An → {0, . . . , n}, defined as, for x ∈ An,

wtH(x) = {i | xi 6= e},

where e is the identity element of A. If A is an abelian group, then the identity
element is denoted by 0, and the weight of a codewords counts the number of
nonzero coordinates. Obviously, the equality holds, for every x, y ∈ An,

ρH(x, y) = wtH(xy−1).

When A is abelian, the corresponding equality is ρH(x, y) = wtH(x− y).

1.4 Categories of codes

In [3] Assmus introduced a categorical approach to the error-correcting codes.
As it is mentioned before, a code is considered as a nonempty set with some
algebraic structure (optional) and a structure of a metric space. An object of
the category of codes is a code itself and a morphism ψ : C → D is a map
between two codes that preserves the algebraic structure and for all x, y ∈
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C, ρH(ψ(x), ψ(y)) ≤ ρH(x, y). In such a way an isomorphism of codes is a
Hamming isometry.

In the present thesis we consider the codes with the following algebraic struc-
tures.

Linear codes over a module alphabet. Let R be a ring with identity and let
A be a finite R-module. A code C is a submodule of the R-module An.
Consequently, a morphism of C is an R-linear Hamming isometry, f ∈
HomR(C,An).

Linear codes over a matrix module alphabet. A particular case of linear codes
over a module alphabet with the matrix ring R = Mk×k(Fq) and the
matrix module alphabet A = Mk×`(Fq), where k, ` are positive integers
and q is a power of prime.

Linear codes over a vector space alphabet. A particular case of linear codes
over a matrix module alphabet with k = 1.

Classical linears codes. A particular case of linear codes over a matrix module
alphabet with k = 1 and ` = 1.

Group codes over a group alphabet. An alphabet A is a finite group. A code C is
a subgroup of An. Morphisms of group codes are the Hamming isometries
that are the group homomorphisms.

Combinatorial codes. An alphabet A is a finite set. A code is a subset of An.
A morphism of a code is a Hamming isometry.

Further in the text we will always specify the context that is used.

1.5 Additive codes

Consider the finite field alphabet A = Fq, where q = pm, p is a prime and m
is a positive integer. A subset C ⊆ Fnq is called an additive code if C contains
the sum of any two its codewords, i.e., C is an abelian group under addition.
Alternatively, C is additive if it is an Fp-linear subspace in Fnq .

A finite field Fq is a vector space over Fp since it is a finite field extension of
Fp. Hence, additive codes can be observed as linear codes over a vector space
alphabet, where the ground field is Fp.
Remark 1.5.1. Let A be an Fq-linear `-dimensional vector space. There exists
an extension field Fq` of Fq of degree of extension `, which is isomorphic to A as
an Fq-linear vector space. Thus, we can consider on A the structure of a finite
field.

Let A be an Fq-linear `-dimensional vector space alphabet. A linear code
C ⊆ An can be seen as an Fq-linear code in the Hamming space Fnq` and it is
additive since it is an abelian group.
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In such a way, additive codes and codes over a vector space alphabet repre-
sent the same set of codes. In the thesis we identify additive codes and linear
codes over a vector space alphabet.

In the case ` = 1, an Fq-linear code is linear in the classical sense. If
additionally q = p, where p is prime, the notions of additive and linear codes
coincide.

Example 1.5.1. Let q = 2 and let A = F4 be a field extension of F2, where
F4 = {0, 1, ω, ω2} and ω + 1 = ω2. Note that A is a two-dimensional Fq-linear
vector space. Consider two F2-linear codes

C1 = {(0, 0, 0), (1, 1, 0), (ω, 0, 1), (ω2, 1, 1)},

C2 = {(0, 0, 0), (0, ω2, ω), (1, 0, 1), (1, ω2, ω2)},

in F3
4. Define a map f : C1 → C2 in the following way: f

(
(0, 0, 0)

)
= (0, 0, 0),

f
(
(1, 1, 0)

)
= (0, ω2, ω), f

(
(ω, 0, 1)

)
= (1, 0, 1) and f

(
(ω2, 1, 1)

)
= (1, ω2, ω2).

Evidently, the map f is F2-linear and it preserves the Hamming distance. There-
fore f is an F2-linear Hamming isometry of the F2-linear code C1 in F3

4. Both
codes C1 and C2 are not F4-linear.



2. EXTENSION CRITERION

2.1 MacWilliams Extension Theorem

Consider the context of classical linear codes with a finite field alphabet A. A
map h : An → An that acts by permutation of coordinates and by multiplication
of coordinates by nonzero scalars in A is called monomial. A monomial map
is a linear Hamming isometry of the Hamming space. An essential question is
whether all the linear code isometries act as monomial maps.

The MacWilliams Extension Theorem describes all the linear isometries of
linear codes in An.

Theorem 2.1.1 (MacWilliams Extension Theorem, see [48] and [49]). Let
C ⊆ Fnq be an Fq-linear code. Each Fq-linear Hamming isometry f : C → Fnq
extends to a monomial map, i.e., there exist a permutation π ∈ Sn and scalars
c1, . . . , cn ∈ Fq \ {0} such that, for all a ∈ C,

f
(
(a1, . . . , an)

)
= (c1aπ(1), . . . , cnaπ(n)).

The proof of the theorem appeared in the Ph.D. thesis of F. J. MacWilliams.
The original proof was later refined by other researchers in [8] and [58] using
different approaches.

We give a definition of a monomial map for the contexts of a module al-
phabet observed in Section 1.4. Let R be a ring with identity and let A be
a finite R-module alphabet. Let AutR(A) denote the group of all R-module
automorphisms of A.

Definition 2.1.1. A map h : An → An is called monomial if there exist a
permutation π ∈ Sn and automorphisms g1, . . . , gn ∈ AutR(A) such that, for
any a ∈ An,

h ((a1, . . . , an)) =
(
g1(aπ(1)), . . . , gn(aπ(n))

)
.

The given definition generalizes the definition of a classical monomial map
for linear codes. Indeed, for a finite field Fq, the group AutFq (Fq) consists of
multiplications by nonzero elements of the field.

Remark 2.1.1. Note that the group AutFq (Fq) of module automorphisms of a
finite field and the group Gal(Fq) of automorphisms of a finite field are different.
In the first case we consider the bijections Fq → Fq that preserve addition
and multiplication by scalars and in the second case we consider the bijections
that preserve addition and multiplication. It is known that the group Gal(Fq)
consists of the Frobenius automorphisms, see [47, p. 113].
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The set of monomial maps forms a group, isomorphic to the semi-direct
product (AutR(A))n oSn, which is equal, by definition, to the wreath product
Sn oAutR(A), see [17, Section 2.6].

The definition of the monomial map for the contexts of group codes and
combinatorial codes can be obtained from Definition 2.1.1 by replacing AutR(A)
with the corresponding automorphism group: the group Aut(A) of group auto-
morphisms of A for group codes, and the group S(A) of permutations of A for
combinatorial codes.

For the combinatorial codes, a full description of the Hamming isometries of
An is given.

Theorem 2.1.2 (see [9, 13]). Let A be a finite set alphabet and let n be a
positive integer. A map h : An → An is a Hamming isometry if and only if h
is a monomial map.

An analogue of this theorem holds for the Hamming isometries of An in all
the contexts. We formulate the statement and give the proof for the context
of module alphabets. The same statement with a similar proof holds for group
codes.

Proposition 2.1.1. Let A be a finite R-module alphabet and let n be a positive
integer. A map h ∈ EndR(An) is a Hamming isometry if and only if h is a
monomial map.

Proof. It is easy to see that a monomial map is R-linear and preserves the
Hamming distance. Conversely, if h preserves the Hamming distance, then,
considering A as a set, from Theorem 2.1.2, the map h acts by permutation of
columns π ∈ Sn and by permutation of coordinates σ1, . . . , σn ∈ S(A). Since
h is R-linear, each map σi : A → A is an R-linear automorphism of A. Hence,
σi ∈ AutR(A). Therefore, h is a monomial map.

Except for the case of classical linear codes, a general analogue of the
MacWilliams Extension Theorem does not exist for other contexts. That is,
there exists a code and there exists a Hamming isometry of this code that does
not extend to a monomial map. The following example of an unextendable code
isometry for combinatorial codes can be found in [4].

Example 2.1.1. Let A = {0, 1}. The two codes in A4

C = {(0, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0)}

and
D = {(0, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}

are isometric, i.e. there exists a Hamming isometry f : C → D. Indeed, in both
codes the Hamming distance between two different codewords is 2, thus any
bijection f : C → D is a Hamming isometry. For any position, there exist two
different codewords in D that have different values in this position. But all the
codewords in C have equal values on the fourth position. Hence, any Hamming
isometry between these two codes cannot be extended to a monomial map.
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In the thesis there are presented various examples of unextendable Hamming
isometries for other contexts.

Definition 2.1.2. We say that anR-linear alphabetA has an extension property
if for any positive integer n and for any R-linear code C ⊆ An each R-linear
Hamming isometry f ∈ HomR(C,An) extends to a monomial map.

One can easily get similar definitions of an extension property for group
and combinatorial codes. Note that in the context of classical linear codes, the
MacWilliams Extension Theorem can be formulated as follows: every finite field
alphabet A has an extension property.

Despite the fact that in general an extension property does not always hold,
for some alphabets it is still possible to prove an analogue of the extension
theorem.

Theorem 2.1.3 (see [67]). Let R be a finite ring with identity. A finite R-
module A has an extension property if and only if A is pseudo-injective with a
cyclic socle.

The definition of pseudo-injective modules is given in Section 2.2. For the
definition of the socle, recall that a nonzero R-submodule is called simple (or
irreducible) if it does not contain any submodule other than 0 and itself, see [60,
p. 38]. A nonzero R-submodule is called semisimple (or completely reducible)
if it is a direct sum of simple submodules, see [60, p. 166].

Definition 2.1.3 ([60, p. 174]). The socle of a finite R-module M , denoted
soc(M), is the sum of all simple submodules of M .

An R-module M is called cyclic if there exists m ∈ M such that M = Rm.
For elements m1, . . . ,mr of an R-module M by 〈m1, . . . ,mr〉 we denote the R-
submodule of M generated by m1, . . . ,mr, i.e., 〈m1, . . . ,mr〉 = Rm1+· · ·+Rmr.

Example 2.1.2. Consider the ring R = Z and let M = Z4 ⊕ Z2 be a left
R-module. Calculate soc(M). The R-module M has three simple submodules:
〈(2, 1)〉, 〈(0, 1)〉 and 〈(2, 0)〉. The socle is equal to the sum of all the three simple
submodules, soc(M) = 〈2〉⊕Z2

∼= Z2⊕Z2. The R-module soc(M) is not cyclic.

2.2 Pseudo-injective modules

Following the original definition of [54], we give the following definition of
pseudo-injectivity.

Definition 2.2.1. An R-module M is called pseudo-injective, if for each sub-
module N ⊆M , each injective homomorphism f ∈ HomR(N,M) extends to an
endomorphism h ∈ EndR(M).

M

N M

hι

f
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There exists a connection between injective and pseudo-injective modules.

Example 2.2.1. Injective modules are pseudo-injective. Following the def-
inition in [43, p. 782], a module M is called injective, if for every two R-
modules N and Q, for every injective map g ∈ HomR(N,Q) and every map
f ∈ HomR(N,M), there exists a map h ∈ HomR(Q,M) such that hg = f .

Q

N M

h
g

f

Put Q = M , N ⊆M and define g = ι ∈ HomR(N,M) as a canonical embedding
of N into M . If M is injective, then for every submodule N ⊆ M and every
map f ∈ HomR(N,M), there exists a map h ∈ EndR(M) such that hι = f , i.e.,
f extends to h. Hence M is pseudo-injective.

Example 2.2.2. Let R = Z be the ring of integer numbers. Consider the
following Z-module M = Z4⊕Z2 and Z-submodule N = 〈2〉⊕Z2 ⊂M . The Z2-
linear injective map f : N →M , defined as f(0, 1) = (2, 0) and f(2, 0) = (0, 1),
does not extend to a Z-linear homomorphism h : M → M . Indeed, defining
h(1, 0) = (x, y) for some x ∈ Z4 and y ∈ Z2, h(2, 0) = (2x, 2y) = (2x, 0) 6=
f(2, 0). Therefore M is not pseudo-injective.

In [67], the author proved, based on the original proof for rings in [15] (where
ring is considered a module over itself), the following fact.

Proposition 2.2.1 ([67, Proposition 5.1]). A finite R-module M is pseudo-
injective if and only if for every submodule N ⊆M each injective homomorphism
σ ∈ HomR(N,M) extends to an automorphism g ∈ AutR(M).

We prove the following property of pseudo-injective modules.

Lemma 2.2.1. Let N be an R-module and let M be a finite pseudo-injective
R-module. Let σ, τ be two maps in HomR(N,M). If kerσ = ker τ , then there
exists an automorphism g ∈ AutR(M) such that τ = gσ.

N M

M

τ

σ
g

Proof. Since the kernels are equal, consider two canonical injective homomor-
phisms σ̄, τ̄ : N/ kerσ → M . Note that imσ = im σ̄ and imσ ∼= N/ kerσ as R-
modules. The map τ̄ σ̄−1 : imσ →M is an injective homomorphism defined on
the submodule imσ ⊆M . From pseudo-injectivity of M and Proposition 2.2.1,
there exists g ∈ AutR(M) such that τ̄ σ̄−1 = g on imσ. It is easy to check
that τ = gσ. Indeed, for every x ∈ N , τ(x) = τ̄(x̄) = gσ̄(x̄) = gσ(x), where
x̄ = x+ kerσ, x̄ ∈ N/ kerσ.
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2.3 Extension criterion

Consider the context of a module alphabet. Let R be a ring with identity, let
A be a finite R-module alphabet, let C ⊆ An be an R-module code and let
f ∈ HomR(C,An).

We use the following notations in this and the next three chapters.

Let M be an R-module isomorphic to C, called a message set. Let λ ∈
HomR(M,An) be an encoding map of C, i.e., an injective map such that
imλ = C, in the form

λ = (λ1, . . . , λn),

where λi ∈ HomR(M,A) is the projection on the ith coordinate, for i ∈
{1, . . . , n}. Consider the following R-modules, for i ∈ {1, . . . , n},

Vi = kerλi ⊆M.

Define µ = fλ ∈ HomR(M,An) and denote

Ui = kerµi ⊆M.

Denote the n-tuples of modules V = (V1, . . . , Vn) and U = (U1, . . . , Un).

We say that V = U if they represent the same multiset of modules. In other
words, V = U if and only if there exists π ∈ Sn such that for each i ∈ {1, . . . , n},
Ui = Vπ(i).

The following proposition characterizes extendable Hamming isometries in
terms of the n-tuples V and U .

Proposition 2.3.1 (see [19]). The map f ∈ HomR(C,An) is a Hamming isom-
etry if and only if the equality below holds,

n∑
i=1

1Vi =

n∑
i=1

1Ui . (2.1)

If f extends to a monomial map, then V = U . If A is pseudo-injective and
V = U , then f extends to a monomial map.

Proof. It is easy to see that the map f is a Hamming isometry if and only
if for each x ∈ C, wtH(f(x)) = wtH(x), or, equivalently, for each w ∈ M ,
wtH(λ(w)) = wtH(µ(w)). Note that for all w ∈M ,

n− wtH(λ(w)) =

n∑
i=1

(1− wtH(λi(w))) =

n∑
i=1

1kerλi(w),

and the same for the map µ. Hence, f is a Hamming isometry if and only if
eq. (2.1) holds.

If f extends to a monomial map, then there exist a permutation π ∈ Sn and
automorphisms gi ∈ AutR(A) such that λi = giµπ(i), which implies kerλi =
kerµπ(i), for all i ∈ {1, . . . , n}. Hence V = U .
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Let V = U and let A be a pseudo-injective module. There exists π ∈ Sn

such that kerλi = kerµπ(i), for i ∈ {1, . . . , n}. From Lemma 2.2.1, there exists
an automorphism gi ∈ AutR(A) such that λi = giµπ(i). Hence, f extends to a
monomial map.

Calculating the Fourier transform of eq. (2.1), using eq. (1.1), we get the

equality of functions defined on the right R-module M̂ ,

n∑
i=1

|Vi|1V ⊥i =

n∑
i=1

|Ui|1U⊥i . (2.2)

Since the Fourier transform is invertible, eq. (2.1) holds if and only if eq. (2.2)
holds.

2.4 General extension theorem

The original proof of the “if part” of Theorem 2.1.3 is mainly character theoret-
ical. In this section we show how to use a geometric approach and the Fourier
transform to prove the theorem (the if part) in a different way. Also we show
that the condition of the finiteness of the ring can be omitted.

Lemma 2.4.1. Let n be a positive integer and let a1, . . . , an, b1, . . . , bn ∈ Q
be positive numbers. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two n-
tuples of cyclic R-submodules of some ambient finite R-module M . Assume
that Xi = Xj implies ai = aj, Yi = Yj implies bi = bj, and Xi = Yj implies
ai = bj, for i, j ∈ {1, . . . , n}. If the equality

n∑
i=1

ai1Xi =

n∑
j=1

bj1Yj

holds, then X = Y .

Proof. Simplify the equality by combining terms with equal modules in the left
and right hand sides and eliminating terms with equal modules in different hand
sides. After renaming the variables, the resulting equality have the following
form,

n1∑
i=1

a′i1X′i =

n2∑
j=1

b′j1Y ′j ,

where n1, n2 ≥ 0, a′i, b
′
j > 0, and all the modules X ′i, Y

′
j ⊆M , for i ∈ {1, . . . , n1}

and j ∈ {1, . . . , n2}, are distinct.
Assume that n1 > 0 or n2 > 0. Among the modules X ′1, . . . , X

′
n1

, Y ′1 , . . . , Y
′
n2

choose one that is maximal with respect to the inclusion, suppose it is X ′1. Then
X ′1 =

⋃n2

j=1(X ′1 ∩ Y ′j ), where {0} ⊆ X ′1 ∩ Y ′j ⊆ X ′1, j ∈ {1, . . . , n2}. Since
X ′1 is cyclic with a generator x ∈ X ′1, there exists j ∈ {1, . . . , n2} such that
x ∈ X ′1 ∩ Y ′j , which implies X ′1 = Y ′j . By contradiction, n1 = n2 = 0.
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Hence, for every submodule Z ⊆ M , considering the assumption of the
lemma on equal coefficients, the submodule Z appears in the n-tuples X and Y
the same number of times, and thus X = Y .

Let N and M be two finite R-modules. For a map σ ∈ HomR(M,N) define
a map

σ̂ : N̂ → M̂, χ 7→ χσ.

Note that σ̂ ∈ HomR(N̂ , M̂). The following fact appears in [64, Sections 2-3]
and is related to Morita’s theory of duality for modules (see [1, Chapter 6]).

Proposition 2.4.1. Let R be a finite ring. The functor ∧ on the category of
finite R-modules is exact contravariant.

Exact means that ∧ preserves exact sequences, and contravariant means
that it reverses the direction of arrows.

Proposition 2.4.2 ([67, Proposition 5.3]). Let R be a finite ring with identity
and let A be a finite R-module. The socle soc(A) is cyclic if and only if there

exists an injective homomorphism of left R-modules ι : A→ R̂.

Note that for a finite ring R, both R and R̂ are R-bi-modules over itself.
Prove that for all σ ∈ HomR(M,N),

(kerσ)⊥ = im σ̂. (2.3)

Indeed, consider the isomorphism of groups ψ : N → ̂̂
N , defined as ψ(x)(χ) =

χ(x) for all χ ∈ N̂ , x ∈ N . Assume that for all χ ∈ N̂ , χ(x) = 1 for some x.

Then ψ(x)(χ) = 1 for all χ ∈ N̂ that means ψ(x) is a trivial character in
̂̂
N .

Therefore x = ψ−1(ψ(x)) = 0. Calculate, kerσ = {m ∈M | σ(m) = 0} = {m ∈
M | ∀χ ∈ N̂ , χ(σ(m)) = 1} = (im σ̂)⊥. Hence, (kerσ)⊥ = (im σ̂)⊥⊥ = im σ̂.

Proof of Theorem 2.1.3, the if part. Let A be a finite pseudo-injective left R-
module with a cyclic socle. From Proposition 2.4.2, there exists an injective
homomorphism of left R-modules φ : A → R̂. From Proposition 2.4.1, the last
is equivalent to the fact that the map φ̂ : R→ Â is a surjective homomorphism
of right R-modules, i.e., Â is a cyclic right R-module.

Let C ⊂ An be a code and let f ∈ HomR(C,An) be a Hamming isometry.

Recall the notations of Section 2.3. Since Â is a cyclic right R-module, for
all i ∈ {1, . . . , n} the right R-modules V ⊥i = im λ̂i and U⊥i = im µ̂i are cyclic.
Applying Lemma 2.4.1 to eq. (2.2), there exists a permutation π ∈ Sn such that
V ⊥i = U⊥π(i), for all i ∈ {1, . . . , n}. Equivalently, V = U . By Proposition 2.3.1,
f extends to a monomial map.

The proof of the only if part remains the same as in [67]. However, we can
improve the statement of Theorem 2.1.3 by omitting the finiteness assumption
on the ring R.
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Let R be a ring with identity (not necessary finite). Let M be a finite R-
module. The annihilator ann(M) = {r ∈ R | rM = 0} of M is a two-sided ideal
in R. Denote the quotient ring RM = R/ ann(M).

Consider the canonical projection R → RM , r 7→ r, where r is the class
of r in RM . Any R-module N ⊆ M can be seen as an RM -module with the
well-defined action ra = ra, for r ∈ R, a ∈ N . Conversely, any RM -module
N ⊆ M is an R-module, where the action is defined as ra = ra for all r ∈ R,
a ∈ N .

For any positive integer n, it is easy to see that ann(Mn) = ann(M), and
hence, RM = RMn . From the arguments above, any R-submodule N ⊆ Mn is
an RM -module and vice versa. For any two R-modules A,B ⊆M (A,B ⊆Mn),
HomR(A,B) = HomRM (A,B).

Lemma 2.4.2. The ring RM = R/ ann(M) is finite.

Proof. For any element r ∈ RM , the map hr : M → M , a 7→ ra is an element
of the ring of endomorphisms EndZ(M). Prove that the map RM → EndZ(M),
r 7→ hr is an injection. Assume that for some elements r1, r2 ∈ RM , hr1 = hr2 ,
or equivalently, r1m = r2m, for all m ∈ M . Hence r1 = r2. Since RM can be
embedded into a finite set EndZ(M), it is finite itself.

Theorem 2.4.1 (see [19]). Let R be a ring with identity, not necessary finite.
A finite R-module A has an extension property if and only if A is a pseudo-
injective R-module with a cyclic socle.

Proof. By definition, an R-module A has an extension property if for every
positive integer n, for every R-linear code C ⊆ An, each R-linear Hamming
isometry f ∈ HomR(C,An) extends to an R-linear monomial map. Hence, the
R-module A has an extension property if and only if the RA-module A has an
extension property, where RA = R/ ann(A).

In the same way, A is pseudo-injective as an R-module if and only if it
is pseudo-injective RA-module. The socle soc(A) is the same for the module
A considered both as an R-module and as an RA-module. It is cyclic as an
R-module if and only if it is cyclic as an RA-module.

From Lemma 2.4.2, the ring RA is finite and thus from Theorem 2.1.3 and
the arguments above, we have the statement of the theorem.

Consider the context of linear codes over a vector space alphabet, see also
Section 1.5. Since it is a particular example of linear codes over module alphabet,
we placed below several valuable examples to help the reader to get familiar with
the notions and objects defined in Section 2.3.

Let Fq be a finite field and let the alphabet A be a vector space over Fq of
dimension `. Consider a structure of a finite field Fq` on A (see Remark 1.5.1).
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Example 2.4.1. Let q = 2 and let A = F4. Let M = F3
2 and let λ ∈

HomF2(M,An) be defined as λ(w) = wG, for w ∈M , where

G =

1 1 0
ω ω 0
1 0 1

 .

Consider the 3-tuple of vector spaces V = (V1, V2, V3) that corresponds to the
map λ. The spaces are: V1 = kerλ1 = 〈(1, 0, 1)〉F2

, V2 = kerλ2 = 〈(0, 0, 1)〉F2

and V3 = kerλ3 = 〈(1, 0, 0), (0, 1, 0)〉F2
.

For vector space alphabets the last part of the statement of Proposition 2.3.1
can be refined.

Proposition 2.4.3 (see [24]). Let C ⊆ An be an Fq-linear code and let f : C →
An be an Fq-linear map. The map f is a Hamming isometry if and only if the
following equality holds,

n∑
i=1

1Vi =

n∑
i=1

1Ui . (2.1 revisited)

The map f is extendable if and only if V = U .

Proof. The proof follows directly from Proposition 2.3.1 and the fact that the
vector space A, as a module over a finite field, is injective and hence pseudo-
injective, see Example 2.2.1.

To illustrate Proposition 2.4.3 we consider the following example.

Example 2.4.2. We continue Example 2.4.1. Define an F2-linear map f : C →
F3

4 on the generators in the following way: f
(
(1, 1, 0)

)
= (1, 1, 0), f

(
(ω, ω, 0)

)
=

(1, 0, 1) and f
(
(1, 0, 1)

)
= (ω, ω, 0). Consider the following matrices G and G′,

G =

1 1 0
ω ω 0
1 0 1

 f−→

1 1 0
1 0 1
ω ω 0

 = G′ .

The map µ = fλ can be presented as µ(w) = wG′, w ∈ M . Calculate the
3-tuple of spaces U = (U1, U2, U3). The spaces are: U1 = 〈(1, 1, 0)〉F2

, U2 =
〈(0, 1, 0)〉F2 , U3 = 〈(1, 0, 0), (0, 0, 1)〉F2 . One can verify that the spaces V1, V2, V3

and U1, U2, U3 satisfy eq. (2.1). By Proposition 2.4.3, the map f : C → F3
4 is

an F2-linear Hamming isometry. Since (V1, V2, V3) 6= (U1, U2, U3), the map f is
unextendable.

The developed geometric representation can be used to prove the original
extension theorem of MacWilliams even without the Fourier transform, which
we used in the proof of Theorem 2.1.3. This proof also appears in [24].
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Proof of the classical MacWilliams Extension Theorem 2.1.1. For classical Fq-
linear codes dimFq A = 1. Due to Proposition 2.4.3 it is enough to show that if
the pair (U ,V) satisfies eq. (2.1), then U = V. For all i ∈ {1, . . . , n}, dimFq Vi =
dimFq kerλi ≥ dimFq M −dimFq A = dimFq M −1. In the same way, dimFq Ui ≥
dimFq M − 1. Therefore the spaces in U and V are either hyperplanes of M or
the space M itself.

In eq. (2.1) eliminate equal terms from different sides. Then, group equal
terms on each side and make a renumbering of the spaces on both sides of the
equation. We did the same operations in the proof of Lemma 2.4.1. After this
procedure we get the reduced equality,

r∑
i=1

ai1U ′i =

s∑
j=1

bj1V ′j ,

where U ′i , V
′
j ⊆ M are Fq-linear spaces, ai, bj > 0, and the spaces U ′i , V

′
j are

all different, for i ∈ {1, . . . , r}, j ∈ {1, . . . , s}. Note that r, s ≤ n, and if
U 6= V, then r, s > 0. Evaluated in {0} the reduced equality gives the following,∑r
i=1 ai =

∑s
j=1 bj .

Consider the reduced equality and assume that U 6= V. Without loss of
generality, assume that U ′1 is maximal with respect to inclusion among all the
spaces that appear in the reduced equality. Calculate the restriction of the
equality on the space U ′1,

a11U ′1
+

r∑
i=2

ai1U ′i∩U ′1 =

s∑
j=1

bj1V ′j∩U ′1 .

Now calculate the sum over all the points in M of the left and the right side.
Denote k = dimFq U

′
1. Since U1 is either M or a hyperplane of M we directly

calculate the size of all the intersections,

a1q
k +

r∑
i=2

aiq
k−1 =

s∑
j=1

bjq
k−1 .

Note that in both cases the formula is the same. Thus, using the equality∑r
i=1 ai =

∑s
j=1 bj , we get a1(q − 1) = 0, which is impossible. Therefore

U = V.

Remark 2.4.1. The MacWilliams Extension Theorem describes the linear isome-
tries of classical linear codes but does not apply to additive isometries of classical
linear codes. In other words, the classical linear code over a finite field Fq` can
be considered as an additive code over a finite field Fq, where Fq is a subfield of
Fq` . We observe extension properties of such codes in Section 4.2.2.

2.5 Module alphabets over PIDs

A nonzero commutative ring in which a product of every two nonzero elements
is nonzero is called an integral domain (or entire ring). A commutative ring R
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is called a principal ideal ring if every ideal I ⊆ R is of the form Rx for some
x ∈ R. Combining these two definition, a ring R is called a PID (principal
integral domain) if it is an integral domain and a principal ideal ring.

Examples of PIDs include fields, the ring of integers Z and the ring of poly-
nomials in one variable with coefficients in a field. The ring of polynomials with
integer coefficients or the ring of multi-variable polynomials with coefficients in
a field are not PIDs.

Let R be a PID. To prove the extension theorem for R-module alphabets we
need the following two lemmas.

Lemma 2.5.1. A finite R-module M is cyclic if and only if soc(M) is cyclic.

Proof. Since R is PID, if M is cyclic, then soc(M) ⊆ M is cyclic, so prove the
converse. Let M be a finite R-module with a cyclic socle. For a prime p ∈ R, let
M(p) denote the set of those elements x in M such that there exists a positive
integer t with ptx = 0.

The R-module M is isomorphic to the sum
⊕

pM(p) over all primes p ∈ R
with M(p) 6= 0 (see [43, p. 149]). From [60, p. 175], the socle of a direct sum of
modules equals to the direct sum of socles of summands,

soc(M) ∼=
⊕
p

soc(M(p)).

Thus, soc(M) is cyclic if and only if each summand soc(M(p)) is cyclic.
For a prime p ∈ R, the R-module M(p) is isomorphic to a product of cyclic

R-modules R/(pt1)⊕· · ·⊕R/(ptr ), where t1, . . . , tr are positive integers, (see [43,
p. 149]). Note that soc(R/(pti)) ∼= R/(p), for i ∈ {1, . . . , r}. Calculate the socle,

soc(M(p)) ∼= R/(p)⊕ · · · ⊕R/(p)︸ ︷︷ ︸
r

,

that is cyclic if and only if r = 1, i.e., M(p) ∼= R/(pt) for some integer t.
Therefore M is cyclic.

Lemma 2.5.2. A finite cyclic R-module M is pseudo-injective.

Proof. Prove the statement for the R-module M = R/(pt). Let N be a sub-
module of M and let f : N → M be an injective R-linear homomorphism. All
the divisors of pt are of the form pv for some integer v < t. There exists a
correspondence between the submodules of M and divisors of pt and therefore,
there exists an integer v < t such that N ∼= R/(pv). Consider the canonical
embedding R/(pv) → M , 1 + (pv) 7→ pt−v + (pt). Let x ∈ R be such that
f(pt−v + (pt)) = x+ (pt). Since f is an injective R-linear homomorphism, there
exists y ∈ R coprime with p such that x = ypt−v. The map h : M →M , defined
by h(1+(pt)) = y+(pt) is then an endomorphism (moreover, an automorphism)
of M and f extends to h.

Now, let M be arbitrary cyclic R-module. Then M ∼= R/(pt11 )⊕· · ·⊕R/(ptrr ),
where pi ∈ R are different primes and ti are positive integers. Let N be a
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submodule of M . The R-module N is isomorphic to R/(ps11 ) ⊕ · · · ⊕ R/(psrr ),
where si ≤ ti for i ∈ {1, . . . , r}. Let f : N →M be an injective homomorphism.
The map f splits into the product of injective homomorphisms f = f1×· · ·×fr,
where fi : R/(psii )→ R/(ptii ), i ∈ {1, . . . , r}. We have already showed that each
fi extends to an automorphism hi of R/(ptii ), i ∈ {1, . . . , r}, and therefore f
extends to a map h1 × · · · × hr, which is an automorphism of M .

The following theorem for the case R = Z was proved in [19].

Theorem 2.5.1. Let R be a PID. A finite R-module alphabet A has an exten-
sion property if and only if A is cyclic.

Proof. From Lemma 2.5.1 and Lemma 2.5.2 the conditions of Theorem 2.4.1
are satisfied and thus the statement holds.



3. SHORT CODES

In [16] Dinh and López-Permouth partially translated the extension problem
for a module alphabet to the case of matrix rings and matrix modules. They
proved the necessary conditions for the existence of a code over a matrix module
alphabet with an unextendable Hamming isometry. An explicit construction
appeared later in the proof of the following theorem. For a positive integer x
define the integer Nx,

Nx =

x∏
i=1

(1 + qi).

Theorem 3.0.1 (see [67]). Let R = Mk×k(Fq) and let A = Mk×`(Fq) be the
left R-module.
If ` ≤ k, then the alphabet A has an extension property.
If ` > k, then there exist a linear code C ⊂ An of the length n = N`−1, and a
map f ∈ HomR(C,An) that is a Hamming isometry, but there is no monomial
map extending f .

Note that Theorem 3.0.1 does not claim if the code has the minimum possible
length. We improve the result above by giving the exact bound for all k. That
is, in the context of matrix modules, we found the minimum code length for
which a code with an unextendable Hamming isometry exists.

Theorem 3.0.2 (see [19]). Let R = Mk×k(Fq) and let A = Mk×`(Fq) be the
left R-module. Let n < Nk be a positive integer and let C ⊆ An be an R-linear
code. Each Hamming isometry f ∈ HomR(C,An) extends to a monomial map.

If ` > k and n ≥ Nk, then there exists a linear code C ⊂ An, and a map
f ∈ HomR(C,An) that is a Hamming isometry, but there is no monomial map
extending f .

Note that the code length N`−1 in Theorem 3.0.1 depends on the dimension
of the alphabet, whereas in Theorem 3.0.2 the code length Nk depends on
the dimension of the ring, considered as a module over itself. If ` > k, then
N`−1 ≥ Nk.

3.1 Matrix modules

Consider the matrix ring R = Mk×k(Fq) of k × k matrices over the finite field
Fq, where k is a positive integer and q is a prime power. The ring R is simple,
i.e., it is a non-zero ring that has no two-sided ideals besides the zero ideal and
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itself. Each simple R-module is isomorphic to the R-module T = Mk×1(Fq)
(see [43, Theorem 5.5]). Each matrix module M is isomorphic to Mk×m(Fq) for
some nonnegative integer m. In such a way,

M ∼= mT = T ⊕ T ⊕ · · · ⊕ T︸ ︷︷ ︸
m

.

Call m the dimension of M and denote dimM = m. For an m-dimensional
R-module M ,

|M | = qkm.

Remark 3.1.1. Recall the definition of a poset (partially ordered set, see Defi-
nition 5.4.1). Consider the poset of all submodules of M with the partial order
“⊆”. In [70, Lemma 6.2] the author proved that there exists an isomorphism
between the poset of subspaces of an m-dimensional vector spaces and the poset
of submodules of an m-dimensional matrix module. For example, one such poset
isomorphism can be obtained by identifying an R-module N ⊆M with the sum
of row spaces of all matrices in N .

In such a way the defined poset isomorphism maps t-dimensional submodules
of M to t-dimensional subspaces of an m-dimensional vector space. When k = 1,
R = M1×1(Fq) = Fq and R-modules are vector spaces, so the defined dimension
of an R-module and the dimension of a vector space are identical.

Recall the definition of a q-ary Gaussian binomial coefficient, for nonnegative
integers u ≤ v, [

v

u

]
q

=

u−1∏
i=0

qv−i − 1

qu−i − 1
.

Lemma 3.1.1. Let V be a v-dimension submodule of an m-dimensional matrix
module M . Then,

|{U ⊆M | U ∩ V = {0}, dimU = u}| = qvu
[
m− v
u

]
q

.

In particular,

|{U ⊆M | dimU = u}| =
[
m

u

]
q

.

Proof. See [11, Lemma 9.3.2] and [70, Lemma 6.2].

3.2 Codes over a matrix module alphabet

Lemma 3.2.1. For any positive integer t the following equalities hold,

t−1∑
i=0

(−1)iq(
i
2)
[
t

i

]
q

= (−1)t−1q(
t
2),

t∑
i=0

q(
i
2)
[
t

i

]
q

=

t−1∏
i=0

(1 + qi).
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Proof. Use the q-binomial theorem, see [56, p. 74],

t∑
i=0

q(
i
2)
[
t

i

]
q

xi =

t−1∏
i=0

(1 + xqi).

To get the equalities in the statement, put x = −1 and x = 1.

Let R = Mk×k(Fq) and let M be a left m-dimensional R-module. For a
positive integer n, consider the equation

n∑
i=1

1Xi =

n∑
i=1

1Yi , (3.1)

where the unknowns are n-tuples X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) of sub-
modules of M . Recall that X = Y if there exists a permutation π ∈ Sn such
that Xi = Yπ(i) for all i ∈ {1, . . . , n}. We prove the following.

Lemma 3.2.2. If a pair of n-tuples (X,Y ) satisfies eq. (3.1) and X 6= Y , then
n ≥ Nk.

Proof. To prove the statement of the lemma we consider a pair of n-tuples
(X,Y ) that have the smallest length and the smallest maximum dimension of
submodules among all the pairs that satisfy eq. (3.1) and X 6= Y . Then, we
show that the considered pair is of a particular form. After this we can find
precisely the smallest value of n. The details are given below.

Let n∗ be the smallest positive integer such that there exists a solution of
eq. (3.1) with X 6= Y . For a pair of n∗-tuples (X,Y ) define

r(X,Y ) = max{dimXi, dimYi | i ∈ {1, . . . , n∗}}.

Let r∗ be the minimum value of r(X,Y ) over all the pairs of n∗-tuples (X,Y )
that satisfy eq. (3.1) and X 6= Y . Let (X ′, Y ′) be one such pair of n∗-tuples
with r(X ′, Y ′) = r∗ and dimX ′1 = r∗.

Consider the pair of n∗-tuples (X∗, Y ∗), which equals to the pair (X ′, Y ′)
restricted on the submodule X ′1, i.e., X∗i = X ′i ∩ X ′1 and Y ∗i = Y ′i ∩ X ′1, for
i ∈ {1, . . . , n∗}. One can verify that (X∗, Y ∗) is a solution of eq. (3.1). Moreover,
X∗ 6= Y ∗. Indeed, if X∗ = Y ∗, then there exists j ∈ {1, . . . , n∗} such that X ′1 =
Y ′j , which implies X ′ = Y ′, because otherwise the reduced pair (X ′\X ′1, Y ′\Y ′j )
is a solution of eq. (3.1) of the length n < n∗ and X ′ \X ′1 6= Y ′ \Y ′j . Since n∗ is
the minimum, from the contradiction, X∗ 6= Y ∗. Also, r(X∗, Y ∗) = r∗ and for
all i ∈ {1, . . . , n∗}, X∗i , Y ∗i ⊆ X∗1 .

Now we are going to find explicitly the pair (X∗, Y ∗). Introduce some addi-
tional notations. Denote Ij = {i | dimX∗i < r∗− j}, Jj = {i | dimY ∗i < r∗− j}
and

Σj =
∑

dimV=r∗−j

1V ,

for j ∈ {0, . . . , r∗}, where the summation is over all the submodules V of X∗1 of
the given dimension.
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Prove by induction that for all t, 0 ≤ t ≤ r∗, eq. (3.1) with X = X∗ and
Y = Y ∗ can be transformed to

a

t∑
i=0

(−1)iq(
i
2)Σi =

∑
i∈Jt

1Y ∗i
−
∑
i∈It

1X∗i
, (3.2)

for some positive integer a, by changing the order of terms and substituting the
values, which is found on previous steps of the induction.

Prove the base step, t = 0. Calculate the restriction of eq. (3.1) on the
module X∗1 and put all the terms 1X∗1 = Σ0 to the left hand side of the equality
and all other terms to the right hand side. We get,

aΣ0 =
∑
i∈J0

1Y ∗i
−
∑
i∈I0

1X∗i
,

where a = |{i | X∗i = X∗1}|, which is exactly eq. (3.2) for t = 0.
Assume that eq. (3.2) holds for some t ∈ {0, . . . , r∗ − 1}. Let Z ⊂ X∗1 be a

submodule of dimension r∗ − t− 1. Restrict eq. (3.2) on Z,

a

t∑
i=0

(−1)iq(
i
2)

∑
dimV=r∗−i

1V ∩Z =
∑
i∈Jt

1Y ∗i ∩Z −
∑
i∈It

1X∗i ∩Z . (3.3)

The dimension of Z is the largest among all the submodules that appear in
eq. (3.3) and it is smaller than r∗. For the pair of n∗-tuples X ∩ Z = (X∗1 ∩
Z, . . . ,X∗n∗ ∩Z) and Y ∩Z = (Y ∗1 ∩Z, . . . , Y ∗n∗ ∩Z), r(X ∩Z, Y ∩Z) < r∗. Also,
(X ∩ Z, Y ∩ Z) satisfies eq. (3.1), and therefore X ∩ Z = Y ∩ Z.

Denote b = |{i ∈ Jt | Z = Y ∗i }| and c = |{i ∈ It | Z = X∗i }|. Prove that
either b = 0 or c = 0. Assume the opposite. Then there exist i, j ∈ {1, . . . , n∗}
such that Y ∗i = X∗j . The n∗ − 1-tuples X∗ \ X∗j and Y ∗ \ Y ∗i form a solution
of eq. (3.1) such that X∗ \X∗j 6= Y ∗ \ Y ∗i . But then the length of the pairs is
n∗ − 1 < n∗. By contradiction, b = 0 or c = 0.

Calculate the number of 1Z terms from the left and from the right hand sides
of eq. (3.3). Since X ∩ Z = Y ∩ Z, the numbers are equal. From Lemma 3.1.1
there are

[
t+1
i

]
q

submodules of dimension r∗ − i of X∗1 that contain the module

Z of dimension r∗ − t− 1. Using Lemma 3.2.1,

a

t∑
i=0

(−1)iq(
i
2)
[
t+ 1

i

]
q

= a(−1)tq(
t+1
2 ) = b− c,

and therefore c = 0 if t is even and b = 0 if t is odd.
All the submodules of X∗1 of dimension r∗ − t − 1 are present in the right

hand side of eq. (3.2) with positive or negative sign, depending on the parity of
t, with the same multiplicity. Move all the terms that correspond to submodules
of dimension r∗− t−1 from the right hand side to the left hand side of eq. (3.2).
Now, it has the form of eq. (3.2) calculated for t+ 1,

a

t+1∑
i=0

(−1)iq(
i
2)Σi =

∑
i∈Jt+1

1Y ∗i
−
∑
i∈It+1

1X∗i
.
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By induction, for t = r∗, we get, that eq. (3.1) is equivalent to the following
equality,

a

r∗∑
i=0

(−1)iq(
i
2)Σi =

∑
i∈Jr∗=∅

1Y ∗i
−

∑
i∈Ir∗=∅

1X∗i
≡ 0.

After moving all the summands with negative coefficients to the right hand side,
we get the equality in the form of eq. (3.1). Note that |Σi| =

[
r∗

r∗−i
]
q

=
[
r∗

i

]
q
.

Calculate,

n∗ = a
∑

0≤i≤r∗
i even

q(
i
2)
[
r∗

i

]
q

= a
∑

0≤i≤r∗
i odd

q(
i
2)
[
r∗

i

]
q

=
1

2
a

r∗∑
i=0

q(
i
2)
[
r∗

i

]
q

.

If we assume r∗ ≤ k, then all the submodules are cyclic and X∗ = Y ∗, see
Lemma 2.4.1 applied to eq. (3.1) with X = X∗ and Y = Y ∗. Hence, r∗ = k+ 1.
Also, a = 1, and from Lemma 3.2.1,

n∗ =
1

2

k+1∑
i=0

q(
i
2)
[
k + 1

i

]
q

=
1

2

k∏
i=0

(1 + qi) =

k∏
i=1

(1 + qi) = Nk.

Hence, n ≥ n∗ = Nk.

Remark 3.2.1. A similar bound to those proved in Lemma 3.2.2 is observed in
[12] by Cho for the minimum size of a support of a nonzero null t-design for
vector spaces (see the definition in [12]). Though the problems are somewhat
different, we believe that the proof of Lemma 3.2.2 can be simplified using the
results of Cho.

The proof of the main result of this chapter follows.

Proof of Theorem 3.0.2. Let C ⊆ An be an R-linear code with an unextendable
Hamming isometry. According to the main result of [51], every module over
a finite simple ring is injective. Since the matrix ring R is simple, the R-
module A is injective and thus A is pseudo-injective (see Example 2.2.1). By
Proposition 2.3.1, for the n-tuples U and V, eq. (2.1) holds and U 6= V. From
Lemma 3.2.2, n ≥ Nk.

Prove the second part of the statement. Let C be the code over the alphabet
B = Mk×(k+1)(Fq) and let f ∈ HomR(C,BNk) be the unextendable Hamming
isometry that are constructed in the original proof of Theorem 3.0.1 in [61]. The
mentioned code C has an all-zero coordinate and f(C) does not. Note that the
length of C is exactly Nk. Since ` > k, in A there exists a submodule isomorphic
to B, so C can be considered as a code in ANk and f ∈ HomR(C,ANk). Since
C and f(C) have different number of all-zero coordinates, the map f is an
unextendable Hamming isometry.

Let us observe the case of a vector space alphabet.
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Example 3.2.1. Let n = q + 1. Let the alphabet A = Fq` be a field ex-
tension of Fq of degree ` > 1 (see Remark 1.5.1). Label all the elements
in Fq, x1, x2, . . . , xq ∈ Fq. Let ω ∈ Fq` \ Fq. Consider the Fq-linear codes
C1 = 〈v1, v2〉Fq and C2 = 〈u1, u2〉Fq in Fnq` with(

v1

v2

)
=

(
1 1 . . . 1 0
x1 x2 . . . xq 1

)
f−→
(

1 1 . . . 1 0
ω ω . . . ω 0

)
=

(
u1

u2

)
.

The Fq-linear map f : C1 → C2, defined by f(v1) = u1 and f(v2) = u2, is a
Hamming isometry. Indeed, let αv1 + βv2 be an arbitrary element in C1 \ {0},
where α, β ∈ Fq. If β = 0, then wt(αv1+βv2) = n−1. If β 6= 0 then the equation
α + βxi = 0, where i ∈ {1, . . . , q}, has exactly one solution xi = −αβ−1 ∈ Fq
and thus wt(αv1 +βv2) = n−1. Therefore, all nonzero elements in C1 have the
weight equal to n−1. It is easy to see that all nonzero codewords in C2 also have
the weight n− 1. The map f maps nonzero elements of C1 to nonzero elements
of C2 and hence is an isometry. At the same time, there is no monomial map
that acts on C1 in the same way as f . The last coordinates of all vectors in C2

are always zero, but there is no such all-zero coordinate in C1.

This example provides a counterpoint to the examples of unextendable Ham-
ming isometries for linear codes over non-Frobenius rings in [35] and [61]. It is
a particular case of the code from Theorem 3.0.1.

For vector space alphabet we have the following corollary of Theorem 3.0.2.

Corollary 3.2.1 (see [24]). Let Fq be a finite field and let A be an Fq-linear
vector space of dimension greater than one. Let n ≤ q and let C ⊆ An be a
Fq-linear code. Any Fq-linear Hamming isometry of C extends to a monomial
map. Moreover, for any n > q there exists a code in An that has an unextendable
Fq-linear Hamming isometry.

Proof. See Theorem 3.0.2 with the ring R = M1×1(Fq) = Fq and a left Fq-
module A = M1×`(Fq) = F`q. The value N1 =

∏1
i=1(1 + qi) = 1 + q.

Our original proof of Corollary 3.2.1 given in [24] uses other combinatorial
techniques related to covering of vector spaces, discussed in [10] and [46].
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Let A be a finite set alphabet and let C be a code in An. A well-known result
of Singleton claims that,

|C| ≤ |A|n−d+1,

where d is the minimum distance of the code. Note that the bound is valid for
codes that are not necessarily linear in a classical sense. When a code attains
the bound, it is called a maximum distance separable code, or shortly, an MDS
code. Denote k = n− d+ 1. We say that C is an (n, k)A MDS code. Note that
k = log|A| |C| represents an analogue of the dimension of a code in linear case.

In this chapter we discuss an analogue of the extension theorem for MDS
codes over a module alphabet. The following theorem is our main result.

Theorem 4.0.1 (see [19]). Let R be a ring with identity and let A be a finite
left R-module. Let C be an R-linear (n, k)A MDS code, k 6= 2. Each R-linear
Hamming isometry f : C → An extends to a monomial map.

Also, in this chapter we make a more precise description of extension prop-
erties of additive MDS codes and classical linear codes. Among the developed
geometric tools we provide a result on the minimum size of a multi-fold partition
of a vector space, see Theorem 4.2.1.

4.1 Codes over a module alphabet

Consider the general module alphabet context and recall the notations of Sec-
tion 2.3. Before using the properties of MDS codes, one general property of the
n-tuple V of the code C is the following. Since the encoding map λ is injective,
kerλ =

⋂n
i=1 kerλi = {0}. Hence,

n⋂
i=1

Vi = {0}.

Lemma 4.1.1. Let C be an R-linear (n, k)A MDS code. For each k-element
subset I ⊆ {1, . . . , n}, the equality of right R-modules hold,⊕

i∈I
V ⊥i = M̂.

Moreover, |V ⊥i | = |A|, for all i ∈ {1, . . . , n}.
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Proof. It is a well-known fact that deleting any n − k coordinates of C we get
a code of the same cardinality, see for example the proof for classical linear
codes, [47, p. 319].

Let I ⊆ {1, . . . , n} be a subset with k elements. Let C ′ be a code obtained
from C by keeping only coordinates from I. Since C is MDS, the map λ′ =
(λi)i∈I , λ

′ : M → Ak is an encoding map of C ′ and thus
⋂
i∈I Vi = {0}.

Calculating the annihilators of both sides, we get
∑
i∈I V

⊥
i = M̂ .

All the modules M , C and C ′ are isomorphic to Ak. Thus the dual modules
M̂ and Âk are isomorphic as right R-modules. Since for all i ∈ {1, . . . , n},
V ⊥i = im λ̂i (see eq. (2.3)), we have |V ⊥i | = |im λ̂i| ≤ |Â|. Consider the following
inequalities,

|Â|k = |M̂ | =

∣∣∣∣∣∑
i∈I

V ⊥i

∣∣∣∣∣ ≤∏
i∈I
|V ⊥i | ≤ |Â|k.

Therefore there are equalities everywhere in the expression above. We get
|V ⊥i | = |Â| = |A| and the equality of the statement.

Next lemma shows that for an MDS code the condition of pseudo-injectivity
of the alphabet in Proposition 2.3.1 can be omitted.

Lemma 4.1.2. Let C be an R-linear (n, k)A MDS code and let f : C → An be
an R-linear map. If V = U , then f extends to a monomial map.

Proof. The proof is almost identical to the second part of the proof of Proposi-
tion 2.3.1. Let σ, τ ∈ HomR(M,A) be two maps that encode a column in C and
a column in f(C) correspondingly. Since C is an MDS code, from Lemma 4.1.1,
imσ = A, because |imσ| = |M/ kerσ| = |(kerσ)⊥| = |A|.

Let kerσ = ker τ = N ⊆ M . Then |im τ | = |imσ| = |A|, which means
im τ = A. Consider the canonical isomorphisms σ̄, τ̄ : M/N → A. The map
h ∈ AutR(A), defined as h = τ̄ σ̄−1, satisfies the equality hσ = τ .

Note that the statement of the lemma remains correct if we only require
each map λi to be onto, for i ∈ {1, . . . , n}.

Recall the two equivalent equations,

n∑
i=1

1Vi =

n∑
i=1

1Ui . (2.1 revisited)

n∑
i=1

|Vi|1V ⊥i =

n∑
i=1

|Ui|1U⊥i . (2.2 revisited)

Proof of Theorem 4.0.1. By contradiction, assume that there exists an unex-
tendable Hamming isometry f ∈ HomR(C,An). From Proposition 2.3.1 and
Lemma 4.1.2, U 6= V and (U ,V) satisfies eq. (2.1), or equivalently, (U ,V) satis-
fies (2.2). It is clear that f(C) is also an MDS code.

The proof is obvious for the case k = 1, so let k ≥ 3. This means, from
Lemma 4.1.1, for any different i, j, l ∈ {1, . . . , n}, V ⊥i ∩ (V ⊥j + V ⊥l ) = {0}.
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Without loss of generality, assume that U⊥1 is nontrivially covered by the mod-
ules V ⊥1 , . . . , V ⊥t , t > 1, i.e. U⊥1 =

⋃t
i=1 V

⊥
i , {0} ⊂ V ⊥i ⊂ U⊥1 , for i ∈ {1, . . . , t}

and no module is contained in another.
Take a nonzero element a ∈ U⊥1 ∩ V ⊥1 and a nonzero element b ∈ U⊥1 ∩ V ⊥2 .

Obviously, since V ⊥1 ∩ V ⊥2 = {0}, a+ b 6∈ V ⊥1 ∪ V ⊥2 . But a+ b ∈ U⊥1 and hence
t > 2. There exists an index i, let it be 3, such that a + b ∈ U⊥1 ∩ V ⊥3 . Then
a+ b ∈ (V ⊥1 + V ⊥2 ) ∩ V ⊥3 6= {0}, which gives a contradiction.

We observe the case of MDS codes of dimension 2 in Section 4.2.3, where R is
a finite field and the alphabet A is a vector space. In Section 4.3 we generalize
an extension property for MDS codes over a group alphabet. Recall that a
nontrivial partition of a finite abelian group G is a set of proper subgroups
H1, . . . ,Ht with the property that for any g ∈ G \ {0} there exists unique
i ∈ {1, . . . , t}, such that g ∈ Hi.

Theorem 4.1.1 (see [50]). If there exists a nontrivial partition of a finite abelian
group G, then G is a non-simple elementary abelian group, i.e., G ∼= Zmp for
some prime p and integer m ≥ 2.

Proposition 4.1.1 (see [19]). Let R be a ring with identity and let A be a
finite left R-module such that A, considered as an abelian group, is not non-
simple elementary. Let C be an (n, 2)A MDS code. Each Hamming isometry
f ∈ HomR(C,An) extends to a monomial map.

Proof. By contradiction, assume that there exists an unextendable Hamming
isometry f ∈ HomR(C,An). From Proposition 2.3.1 and Lemma 4.1.2, the
corresponding solution U 6= V and (U ,V) satisfies eq. (2.2). From Lemma 4.1.1,
V ⊥i ∩ V ⊥j = U⊥i ∩ U⊥j = {0} for all i 6= j ∈ {1, . . . , n}. Also, since U 6= V,

there exists t ∈ {1, . . . , n} such that V ⊥t =
⋃n
j=1 V

⊥
t ∩ U⊥j and the covering

is nontrivial. Obviously, (V ⊥t ∩ U⊥j ) ∩ (V ⊥t ∩ U⊥i ) = {0}. Hence, the module

V ⊥t has a nontrivial partition. Considering V ⊥t as a finite abelian group, from
Theorem 4.1.1, it is isomorphic to Zmp , where p is a prime and m ≥ 2.

Since C is MDS, imλt = A and M ∼= A2. Hence, A2/Vt ∼= A as abelian

groups. Therefore, Vt ∼= A. From eq. (1.3), V̂t ∼= M̂/V ⊥t . Since an abelian

group and its character dual are isomorphic, A ∼= V̂t ∼= M̂/V ⊥t
∼= A2/V ⊥t and

V ⊥t
∼= A thereby. From the contradiction, the map f extends to a monomial

map.

Remark 4.1.1. In Theorem 4.0.1 and Proposition 4.1.1 the ring R may not be
finite.

4.2 Additive codes

The general result of the previous section particularly implies the extension
theorem for MDS additive codes of dimension different than two. Consider the
context of codes over a vector space alphabet. The alphabet A is a vector space
over a finite field Fq.
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Corollary 4.2.1 (see [23]). Let C be a Fq-linear (n, k)A MDS code, k 6= 2.
Each Fq-linear Hamming isometry of C extends to a monomial map.

Proof. See Theorem 4.0.1.

In Section 4.2.3 we solve the extension problem for additive MDS codes
with k = 2. Also, we develop and use tools to investigate more deeply the
extension property of classical linear codes and particularly, near-MDS codes
(see Section 4.2.2).

4.2.1 Multi-fold partitions of vector spaces

Definition 4.2.1. Let Λ be a positive integer. A Λ-fold partition of an Fq-linear
vector space V is a multiset of vector spaces {U1, . . . , Un}, where Ui ⊆ V , such
that for each v ∈ V \ {0}, |{i | v ∈ Ui}| = Λ.

The condition from the definition can be rewritten as, for all v ∈ V \ {0},∑n
i=1 1Ui(v) = Λ. We call a Λ-fold partition of the space V nontrivial if it

contains at least one proper subspace of V .
There is a well known bound on the minimum size of the partition. In [7,

Lemma 5] it was proved that for a nontrivial 1-fold partition of anm-dimensional
vector space V the inequality holds,

n ≥ qdm2 e + 1.

In [27, Theorem 4], it was proven that if dimUi ≥ m−r, for all i ∈ {1, . . . , n},
then n ≥ qr + Λ, where r = maxi∈{1,...,n} dimUi < m. However, it appears that
the restriction on the dimensions of subspaces is not necessary. Following the
ideas of [7] and [27], we prove the following.

Theorem 4.2.1. For a nontrivial Λ-fold partition of an m-dimensional vector
space the equality holds,

n ≥ qdm2 e + Λ.

Proof. See the proof in [23].

Theorem 4.2.1 is used to get two technical lemmas that will be used in the
proofs of propositions in the next sections. Recall that for the context of additive
codes, the modules in the n-tuples U and V are vector spaces and recall again
the dual equation,

n∑
i=1

|Vi|1V ⊥i =

n∑
i=1

|Ui|1U⊥i . (2.2 revisited)

Lemma 4.2.1. Let eq. (2.2) holds and U 6= V and let for all i, j ∈ {1, . . . , n},
V ⊥i = V ⊥j or V ⊥i ∩ V ⊥j = {0}. Denoting m = min{dimFq V

⊥
i | V ⊥i 6= {0}}, we

have n > qd
m
2 e + 1.

Proof. See the proof in [23].
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Lemma 4.2.2. Let n ≥ 3 and let (U ,V) satisfies eq. (2.2). If for any different
i, j, k ∈ {1, . . . , n}, dimFq (V

⊥
i +V ⊥j +V ⊥k ) = dimFq V

⊥
i +dimFq V

⊥
j +dimFq V

⊥
k ,

then U = V.

Proof. See the proof in [23].

4.2.2 Additive isometries of classical linear codes

Let Fq be a finite field and let Fq` be a finite field extension of Fq. Whereas the
classical MacWilliams Extension Theorem describes linear isometries of linear
codes in Fnq` it does not apply to Fq-linear isometries of Fq` -linear codes. On

the vector space alphabet A consider a structure of the finite field Fq` (see
Remark 1.5.1).

Theorem 4.2.2 (see [23]). Let C be an Fq`-linear code in Fnq` with n ≤ qd
`
2 e.

Each Fq-linear Hamming isometry of C extends to an Fq-linear monomial map
on Fnq` .

Proof. Assume that f : C → An is an unextendable Fq-linear isometry and thus
the pair (U ,V) is a solution of eq. (2.2) and U 6= V. Let i 6= j ∈ {1, . . . , n}. If
one or both of ith or jth columns of C are all-zero, then V ⊥i ∩ V ⊥j = {0}. If

V ⊥i 6= {0} and V ⊥j 6= {0}, then there are two possible cases. In the first case,
the ith column and jth column are linearly dependent, which means that they
differs by a nonzero scalar from Fq` . Since multiplication by a nonzero scalar
in Fq` is an Fq-linear automorphism of Fq` , considered as an Fq-linear vector
space, V ⊥i = V ⊥j . Since the maps λi, λj are onto, |V ⊥i | = |V ⊥j | = |A|.

In the second case the ith and jth columns are linearly independent over
Fq` , the set {(xi, xj) | (x1, . . . , xn) ∈ C} ⊆ A2 has q2` = |A2| elements. Then
the map λi,j = (λi, λj) : M → A2 is onto. It is easy to calculate that |Vi ∩ Vj | =
|M |/|A2| and hence |V ⊥i + V ⊥j | = |A2|. Since |V ⊥i | = |V ⊥j | = |A| we get V ⊥i ∩
V ⊥j = {0}. The conditions of Lemma 4.2.1 are satisfied and hence n ≥ qd

`
2 e +

1.

It is clear that much more large class of codes, not only MDS codes, satisfy
the extension theorem. For example, in the case of Fq` -linear codes, the following
holds.

Theorem 4.2.3 (see [23]). Let C ⊆ Fnq` be an Fq`-linear code such that any
3 columns of a generator matrix of C are linearly independent over Fq` . Each
Fq-linear Hamming isometry of C extends to an Fq-linear monomial map on
Fnq` .

Proof. As in the proof of Theorem 4.2.2, by contradiction, let (U ,V) be a so-
lution of eq. (2.2) with U 6= V. For every different i, j, t ∈ {1, . . . , n} the set
{(xi, xj , xt) | (x1, . . . , xn) ∈ C} ⊆ A3 has |A3| elements, because every three
columns of C are linearly independent. In the same way as in the proof of
Theorem 4.2.2, we get the isomorphism of vector spaces V ⊥i ⊕ V ⊥j ⊕ V ⊥t ∼= F3

q`
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and the equalities of cardinalities |V ⊥i | = |V ⊥j | = |V ⊥t | = q`. The conditions of
Lemma 4.2.2 holds, thus U = V and we get a contradiction.

We can now easily prove an analogue of the extension theorem for near-MDS
codes. According to [18, Corollary 3.3], we can give the following definition. An
Fq` -linear code C ⊆ Fnq` is called near-MDS if d(C) + d(C⊥) = n, where d(C)

is the minimum distance and C⊥ is the orthogonal code, with respect to a dot
product.

Corollary 4.2.2 (see [23]). Let C ⊆ Fnq` be an Fq`-linear [n, k]F
q`

near-MDS
code with k ≥ 4. Each Fq-linear Hamming isometry of C extends to an Fq-linear
monomial map on Fnq` .

Proof. In [18, p. 33] it was proved that for a near-MDS [n, k]F
q`

code any k− 1
columns of its generator matrix are linearly independent. Since k − 1 ≥ 3,
Theorem 4.2.3 proves the statement.

4.2.3 MDS codes of dimension two

For MDS codes of dimension k = 2, the approach presented in the proof of
Theorem 4.0.1 fails. But we still can improve the result of Corollary 3.2.1,
which states that an Fq-linear code in An with unextendable Hamming isometry
should have its length greater than q + 1. Recall that dimFq A = `.

Theorem 4.2.4 (see [23]). Let C be a Fq-linear (n, 2)A MDS code, where n ≤
qd

`
2 e. Each Fq-linear Hamming isometry of C extends to a monomial map.

Proof. Assume that f : C → An is an unextendable Fq-linear Hamming isome-
try. By Proposition 2.3.1, the pair (U ,V) is a solution of eq. (2.2) and U 6= V.
From Lemma 4.1.1, the spaces V ⊥i , i ∈ {1, . . . , n} intersect each other in zero

and max{dimV ⊥i | V ⊥i 6= {0}} = `. Thus, from Lemma 4.2.1, n > qd
`
2 e.

The value qd
`
2 e can be presented in a more clear way. If ` is even, then it is

equal to
√
|A| and if ` is odd, then it is equal to

√
q|A|. The bounds presented

in Theorem 4.2.4 and Theorem 4.2.2 are accurate for the case of an alphabet of
even dimension over Fq.

Example 4.2.1. Let ` = 2t be a positive even integer. Let Fqt be a finite field
extension of Fq of degree t and let Fq` be a quadratic extension of Fqt . In such
a way, [Fq` : Fq] = 2t = `. Consider an Fqt-linear code C = 〈~v1, ~v2, ~v3, ~v4〉Fqt ⊂
Fnq` , where n = qt + 1 =

√
q` + 1,

~v1

~v2

~v3

~v4

 =


0 1 . . . 1
1 x1 . . . xqt
0 ω . . . ω
ω x1ω . . . xqtω

 f−→


0 1 . . . 1
0 ω . . . ω
1 x1 . . . xqt
ω x1ω . . . xqtω

 =


~v1

~v3

~v2

~v4

 ,
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the elements xi, i ∈ {1, . . . , qt}, are all different and ω ∈ Fq` \ Fqt . Let f : C →
Fnq` be an Fqt-linear map that acts by fixing ~v1 and ~v4 and permuting ~v2 and
~v3.

Calculate the weights of elements of C. It is clear that ~v1, . . . , ~v4 have the
Hamming weight n−1 and for all α1, . . . , α4 ∈ Fqt , with at most one equals zero,
wtH(α1~v1 + · · ·+α4~v4) = n. Note that for all α, β ∈ Fqt \{0}, wtH(α~v1 +β~v4) =
wtH(α~v2+β~v3) = n and wtH(α~v1+β~v2) = wtH(α~v3+β~v4) = wtH(α~v1+β~v3) =
wtH(α~v2 + β~v4) = n− 1.

One can verify that f is a Hamming isometry, the minimum weight in C is
n − 1, and hence C is a (qt + 1, 2)F

q`
MDS code. Moreover, f is an Fqt-linear

Hamming isometry of C to itself. Note that in the left matrix there is no column
with zeros in the first two positions, but the first column in the right matrix
have zeros in the first two positions. Therefore, being also an Fq-linear Hamming
isometry, f does not extend even to an Fq-linear monomial map. Finally, one
additional property of the constructed code is that C is an Fq` -linear code since
~v3 = ω~v1 and ~v4 = ω~v2.

The example was first obtained by finding a solution of eq. (2.2) with U 6= V,
using the geometric techniques. However, once found, it is easier to prove the
specified properties of the code in the example explicitly, rather than giving a
geometric proof.

The case of an odd alphabet dimension is more difficult. Here we only give
an example of an MDS code of dimension 2 and length 5 with an unextendable
isometry for the case q = 2 and ` = 3.

Example 4.2.2. Let A = F3
2 and let x, y, z ∈ A be three linearly independent

vectors. Consider an F2-linear code C generated by the rows of the left matrix,
x 0 x x x
y 0 y y y
z 0 z z z
0 x x x+ y y
0 y y z x+ y + z
0 z z x+ z x+ y


f−→


x 0 x x x
y 0 y y y
0 x x x+ y y
z 0 z z z
0 y y z x+ y + z
0 z z x+ z x+ y

 .

Let f : C → A5 be an F2-linear map that fixes 1st, 2nd, 5th and 6th rows and
permute 3rd and 4th rows of the matrix. It can be directly verified that C is an
F2-linear (5, 2)A MDS code, f is a Hamming isometry and f is not extendable.

We think that the bound presented in Theorem 4.2.4 is accurate for any
odd ` > 1 and any finite field Fq, however, for the moment we only have a
proof in characteristics 2. The construction of the example is much less elegant
and requires more geometrical background than the construction presented in
Example 4.2.1.
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4.3 Group codes

In this section we prove the extension theorem for MDS codes over a group
alphabet. A finite abelian group is a Z-module. Using the results of the previous
sections it is possible to get the complete extension theorem for MDS codes over
a group alphabet, both abelian and nonabelian.

For the case of a nonabelian group G we use a nice result by Forney con-
cerning MDS group codes.

Theorem 4.3.1 (see [29]). If C is an (n, k) MDS code over a nonabelian group
alphabet, then k = 1 or k = n.

Lemma 4.3.1. Let C be an (n, n)G or (n, 1)G MDS code. Every code homomor-
phism f : C → Gn that preserves the Hamming distance extends to a monomial
map.

Proof. Let G be a finite group. Let C be an (n, n)G MDS code. Then C = Gn

and a Hamming isometry f : C → Gn is a Hamming isometry of the group Gn to
itself. Using Theorem 2.1.2, f is monomial (in the context of group codes), i.e.,
acts by a permutation of coordinates and by an alphabet automorphism on each
coordinate. Now, let C be an (n, 1)G MDS code and let f : C → Gn be a code
isometry. Since C is MDS, C ∼= G and the projection on the ith coordinate
fi : G ∼= C → G is an injective map. Hence fi is in Aut(G). Therefore, by
defining π ∈ Sn to be a trivial permutation and φi = fi, the map f extends to
a monomial map.

Theorem 4.3.2 (see [19]). Let G be a finite group. Let C be an (n, k)G MDS
group code over an alphabet G. Every homomorphism f : C → Gn that preserves
the Hamming distance extends to a monomial map, except for the case k = 2
and G ∼= Zmp for a prime p and m ≥ 2. In this case, the map f extends if

n ≤ pdm2 e.
Proof. Consider consequently the cases. If G is nonabelian, from Theorem 4.3.1,
k = 1 or k = n. From Lemma 4.3.1, the statement of the theorem holds. Let
G be an abelian group. If k 6= 2, from Theorem 4.0.1, considering R = Z, the
statement holds again. Let k = 2. If G not isomorphic to Zmp for some prime
p and integer m ≥ 2, then the statement holds according to Proposition 4.1.1.
Finally, let G ∼= Zmp , m ≥ 2. The group Zp can be seen as a finite field of order
p and the group G then has a structure of an m-dimensional vector space. In
Theorem 4.2.4 we proved that n ≤ pdm2 e.

Remark 4.3.1. Note that Theorem 4.3.2 is a generalization of Theorem 4.0.1 for
the case of a group alphabet. In both cases, the value k of an MDS code that
differs from 2 always leads to an extension property. However, an attempt to
generalize these results for MDS codes over an arbitrary alphabet, i.e. without
any algebraic structure, fails. In [55] an example of a combinatorial (4, 3) MDS
binary code with an unextendable Hamming isometry is given . Though, except
this case, all Hamming isometries of combinatorial (n, n − 1) MDS codes over
arbitrary alphabet, n 6= 4, are extendable.



5. SYMMETRIZED WEIGHT COMPOSITION AND
GENERAL WEIGHTS

In previous chapters we put our attention on extension properties of different
classes of codes over module alphabets equipped with the Hamming weight.
However, there exist other weight functions that are used in coding theory. In
this chapter we observe general weight functions and particularly one special
weight, namely the symmetrized weight composition.

Consider the context of a module alphabet. Let R be a ring with identity and
let A be a finite left R-module. Let n be a positive integer and let C ⊆ An be an
R-module code. Consider the group AutR(A) of all R-linear automorphisms of
A and a subgroup G ≤ AutR(A). The group AutR(A) acts on A and G inherits
the action. Denote by A/G the set of the orbits of the action of the group G on
the alphabet A.

Definition 5.0.1 (see [28]). A symmetrized weight composition built on G is a
map swcG : An ×A/G→ {0, . . . , n} such that for each a ∈ An, O ∈ A/G,

swcG(a,O) = |{i | ai ∈ O}|.

We say that f ∈ HomR(C,An) is an swcG-preserving map if for all orbits
O ∈ A/G, for all a ∈ C, swcG(a,O) = swcG(f(a), O).

Definition 5.0.2. An R-linear map h : An → An is called G-monomial if there
exist a permutation π ∈ Sn and automorphisms g1, . . . , gn ∈ G such that for
every a ∈ An,

h(a) =
(
g1(aπ(1)), . . . , gn(aπ(n))

)
.

The alphabet A is said to have an extension property with respect to swcG
if for every positive integer n and every R-linear code C ⊆ An, each swcG-
preserving map f ∈ HomR(C,An) extends to a G-monomial map.

An extension theorem for classical linear codes equipped with the sym-
metrized weight composition was proved by Goldberg in [31]. He proved that for
any subgroup G ≤ F∗q , the alphabet Fq has an extension property with respect
to swcG.

Recall that the socle of A, denoted soc(A), is the sum of all simple submod-
ules of A.

Theorem 5.0.1 (see [28, Theorem 3]). Let R be a finite ring with identity and
let A be a finite left R-module. If A has a cyclic socle, then, for each subgroup
G ≤ AutR(A), the alphabet A has an extension property with respect to swcG.
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The question of the converse, i.e., whether an alphabet A has an extension
property with respect to swcG only if A has a cyclic socle, is asked in in [28].

In this direction, a partial answer is given in [2] where the author showed,
with some additional assumptions and for the subgroup G = AutR(A), that if
A does not have a cyclic socle, then A does not have an extension property with
respect to swcG.

In this chapter we improve Theorem 5.0.1, for the case of infinite rings and
give a complete answer on the question. The main result follows.

Theorem 5.0.2 (see [25]). Let R be a ring with identity and let A be a finite left
R-module. For each subgroup G ≤ AutR(A), the alphabet A has an extension
property with respect to swcG if and only if the socle of A is cyclic.

There is also one additional improvement that can be made by weakening
the definition of an extension property, see Remark 5.6.2.

Using Theorem 5.0.2, we can say when an extension property fails to hold
for general weight functions. We define a general weight function as a map
ω : A → Qt, where t is a positive integer. For every a ∈ An the weight ω(a) is
defined as the sum

∑n
i=1 ω(ai).

We say that a map f ∈ HomR(C,An) is an ω-preserving map if for any
a ∈ C, ω(a) = ω(f(a)).

Note that swcG can be seen as a general weight function, by indexing the
orbits of A/G with numbers {1, . . . , t}, where t = |A/G|, we redefine swcG :
A→ Qt as (swcG(a))k = swcG(a,Ok), for k ∈ {1, . . . , t}.

Let U(ω) = {g ∈ AutR(A) | ∀a ∈ A, ω(g(a)) = ω(a)} be the symmetry
group of the weight ω. An alphabet A is said to have an extension property with
respect to ω if for any positive integer n and for any R-linear code C ⊆ An, each
ω-preserving map f ∈ HomR(C,An) extends to an U(ω)-monomial map. For
general weight functions we prove the following.

Theorem 5.0.3 (see [25]). Let R be a ring with identity, let A be a finite left
R-module and let ω be a general weight function. If A has a non-cyclic socle,
then A does not have an extension property with respect to ω.

Unlike the particular case of symmetrized weight compositions, for general
weight functions an extension property does not always hold even when the socle
is cyclic. Counterexamples are given in [5, 65]. For instance, it is still an open
question if an extension property holds for a cyclic group alphabet equipped
with the Lee weight. In this direction, in recent works [26, 44], the authors
solved the problem for cyclic groups of prime power order.

5.1 Closure of a group

Let G be a group acting on a set X. The closure of a subgroup H ≤ G with
respect to the action on X, denoted H, is defined as,

H = {g ∈ G | ∀O ∈ X/H, g(O) = O}.
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Evidently, H is a subgroup of H. The group is called closed with respect to the
action on X when H = H. In other words, H ≤ G is closed with respect to the
action on X if H consists of all those elements in G that preserve the orbits of

H. Note that the closure of a group is closed, i.e., H = H.
This definition of closure is introduced by Wood in [62], however a similar

definition of a closed group and a definition of a closure of a group were intro-
duced by Wielandt in his 2-closure theory (see [59]). More results on the closure
can be found in [17, Section 2.4] and [69].

Example 5.1.1. Let n be a positive integer, let X = {1, . . . , n}. The symmetric
group Sn acts on X in a natural way. Consider the cyclic group H = 〈(1 . . .m)〉
generated by the cycle of length m, where m ≤ n. The subgroup H has n−m+1
orbits acting on X, X/H = {{1, . . . ,m}, {m+ 1}, . . . , {n}}. Every permutation
g ∈ Sn that fixes all i ∈ {n−m+ 1, . . . , n} preserves the orbits in X/H. Hence
H ∼= Sm and H is not closed with respect to the action on X, unless m ≤ 2.

In this chapter we consider the subgroups of AutR(A) that acts on the al-
phabet A in a natural way, and the notion of a closed group and a closure is
defined in the group AutR(A) with respect to this action.

Example 5.1.2. Let R = Z and let A = Z2 ⊕ Z2. The group AutZ(Z2 ⊕ Z2)
consists of 6 elements and is isomorphic to the symmetric group S3. Let H
be a cyclic subgroup generated by the automorphism φ, φ((1, 0)) = (0, 1) and
φ((0, 1)) = (1, 1). Obviously, |H| = 3 and A/H has two orbits, {(0, 0)} and
A \ {(0, 0)}. Thus, H = AutR(A) and the group H is not closed.

Example 5.1.3. The subgroups {e} and AutR(A) of AutR(A) are closed.
For every weight function ω its symmetry group U(ω) is closed. Indeed, if

g ∈ AutR(A) preserves the orbits of U(ω), then ω(g(a)) = ω(a), for all a ∈ O
and O ∈ A/U(ω), and thus g ∈ U(ω).

5.2 Extension criterion

In this section we prove propositions for the symmetrized weight composition
that are similar to Proposition 2.1.1 and Proposition 2.3.1 for the Hamming
weight.

Proposition 5.2.1. A map f ∈ EndR(An) is an swcG-preserving map if and
only if it is a G-monomial map.

Proof. Note that the set A/G always contains the zero orbit {0}. For every
a ∈ An, swcG(a, {0}) = |{i | ai = 0}| = n−wtH(a), where wtH is the Hamming
weight. Thus, if f is an swcG-preserving map, then f is a Hamming isometry.
From Proposition 2.1.1, f is an AutR(A)-monomial map (or the same, mono-
mial), with permutation π ∈ Sn and automorphisms g1, . . . , gn ∈ AutR(A).

For each i ∈ {1, . . . , n} and b ∈ A, let a = (0, . . . , 0, b, 0, . . . , 0) ∈ An be
the element with b in the ith position and 0 elsewhere. Then, for a nonzero
orbit O ∈ A/G, swcG(a,O) equals 1 if b ∈ O and 0 otherwise. From the
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other side, swcG(f(a), O) = 1 if gπ−1(i)(b) ∈ O and 0 otherwise. Since f is an
swcG-preserving map, gπ−1(i) preserves the orbits of A/G. Therefore, for each

j ∈ {1, . . . , n}, gj ∈ G and thus f is a G-monomial map.
Conversely, if f is a G-monomial map, then f preserves the orbits of A/G

on each coordinate and hence, it preserves swcG.

Proposition 5.2.2 (see [25]). The map f ∈ HomR(C,An) preserves swcG if
and only if for each orbit O ∈ A/G, the following equality holds,

n∑
i=1

1λ−1
i (O) =

n∑
i=1

1µ−1
i (O). (5.1)

If f extends to a G-monomial map, then there exists a permutation π ∈ Sn

such that for each orbit O ∈ A/G, the equality holds,

λ−1
π(i)(O) = µ−1

i (O). (5.2)

Proof. For every w ∈M and O ∈ A/G,

swcG(λ(w), O) =

n∑
i=1

1O(λi(w)) =

n∑
i=1

1λ−1
i (O)(w).

Therefore, f is an swcG-preserving map if and only if eq. (5.1) holds.
If f extends to a G-monomial map with a permutation π ∈ Sn and auto-

morphisms g1, . . . , gn ∈ G, then for all i ∈ {1, . . . , n}, µi = giλπ(i). Hence, for

all O ∈ A/G, µ−1
i (O) = λ−1

π(i)(g
−1
i (O)) = λ−1

π(i)(O).

5.3 G-pseudo-injective modules

For the completeness of the extension criterion, we introduce the following new
notion.

Definition 5.3.1. Let A be a finite R-module and let G be a subgroup of
AutR(A). An R-module A is called G-pseudo-injective, if for every submodule
B ⊆ A, each injective map f ∈ HomR(B,A), such that for every O ∈ A/G,
f(O ∩B) ⊆ O, extends to an element of G.

A

B A

h∈G
ι

f

Example 5.3.1. The Fq-module Fq is G-pseudo-injective for all G ≤ F∗q , since
it has only two Fq-submodules, {0} and Fq itself.

Consider the vector space A = F3
3. The group AutF3

(F3
3) is isomorphic to

the group GL3(Fq) of 3 × 3 invertible matrices over Fq. The vector space A
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is not G-pseudo-injective for a cyclic subgroup G < GL3(F3) generated by the
matrix 0 1 0

1 1 0
0 0 −1

 .

Indeed, the property fails for the subspace B = 〈(1, 0, 0), (0, 1, 0)〉F3
and the

map f ∈ HomF3
(B,F3

3), f(1, 0, 0) = (0, 1, 0), f(0, 1, 0) = (1, 0, 0). The proof of
this fact is detailed in Proposition 6.3.3.

An analogue of the last statement of Proposition 2.3.1 for the swcG follows.

Proposition 5.3.1 (see [25]). If A is G-pseudo-injective and eq. (5.2) holds for
all orbits O ∈ A/G, then f extends to a G-monomial map.

Proof. Fix i ∈ {1, . . . , n}. From eq. (5.2) calculated in the orbit {0}, kerλπ(i) =

kerµi = N ⊆ M . Consider the canonical injective maps λπ(i), µi : M/N → A

such that λπ(i)(w) = λπ(i)(w) and µi(w) = µi(w) for all w ∈ M , where w =
w +N .

Let O ∈ A/G. Since λ−1
π(i)(O) = µ−1

i (O), λπ(i)(w) ∈ O if and only if µi(w) ∈
O, for w ∈M . Therefore, λπ(i)(w) ∈ O if and only if µi(w) ∈ O, for w ∈M/N .

Equivalently, λ−1
π(i)(O) = µ−1

i (O).

Note that imλπ(i) = imλπ(i). For the injective map

hi = µiλ
−1
π(i) ∈ HomR(imλπ(i), A),

the inclusion hi(O ∩ imλπ(i)) ⊆ O holds for all O ∈ A/G. Since A is G-pseudo-

injective, there exists an element gi ∈ G such that gi = hi on imλπ(i) ⊆ A.
The map φ : An → An given by φ(a1, . . . , an) = (g1(aπ(1)), . . . , gn(aπ(n))) is

a G-monomial map extending f . The map φ extends f because we see from
gi = hi on imλπ(i) that µi = giλπ(i).

Proposition 5.3.2 (see [25]). An R-module A is G-pseudo-injective if and
only if for every code C ⊆ A1 of length one, each swcG-preserving map f ∈
HomR(C,A) extends to a G-monomial map.

Proof. Prove the contrapositive. By definition, A is not G-pseudo-injective if
there exists a module C ⊆ A and an injective map f ∈ HomR(C,A), such that
for each O ∈ A/G, f(O ∩ C) ⊆ O, but f does not extend to an element of G.
Equivalently, swcG(x,O) = swcG(f(x), O) for all x ∈ C and O ∈ A/G, yet f
does not extend to an element of G.

Remark 5.3.1. Based on Proposition 5.3.2, for a weight function ω we can easily
get the following statement. If A is not U(ω)-pseudo-injective, then there exists
a code C ⊂ A1 and there exists an ω-preserving map f ∈ HomR(C,A) that does
not extend to a G-monomial map.

In [15, 67] the authors used the property of pseudo-injectivity to describe an
extension property for the Hamming weight. They showed that an alphabet is
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not pseudo-injective if and only if there exists an R-linear code C ⊂ A1 with an
unextendable Hamming isometry. Proposition 5.3.2 is an analogue of this fact.

From Theorem 5.0.1 and Proposition 5.3.2, it follows that if A has a cyclic
socle, then A is G-pseudo-injective, for all G ≤ AutR(A). Not all the modules
are G-pseudo-injective. It is even true that not all pseudo-injective modules are
G-pseudo-injective, for some G ≤ AutR(A). In Chapter 6 we give a description
of G-pseudo-injectivity of finite vector spaces.

5.4 Posets and Möbius function

Definition 5.4.1. A partial order � is a binary relation over a set X, such
that for all x, y, z ∈ X the following holds,

• reflexivity: x � x,

• antisymmetry: if x � y and y � x, then x = y,

• transitivity: if x � y and y � z, then x � z.
The pair (X,�) is called a partially ordered set (poset).

Let (X,�) be a poset, where X is finite. For x, y ∈ X, denote x ≺ y if x � y
and x 6= y. Its Möbius function µ : X ×X → Z is defined in a recursive way,

µ(x, y) =


1 , if x = y;
−
∑
x�z≺y µ(x, z) , if x ≺ y;

0 , if x 6� y.

Do not confuse the Möbius function µ with the encoding map µ : M → An of
the image f(C). From the definition, for any x ≺ y ∈ X,∑

x�z�y

µ(x, z) = 0.

Consider the poset (X,�), where � is the inverted partial order, i.e., such
that x � y if and only if y � x, for all x, y ∈ X. Let µ∗ be the Möbius function
of this poset. The functions µ and µ∗ are related.

Proposition 5.4.1 ([52, Proposition 3]). Let (X,�) be the poset obtained by
inverting the order of a finite poset (X,�), and let µ∗ and µ be the Möbius
functions of (X,�) and (X,�) correspondingly. Then, for all x, y ∈ X,

µ∗(x, y) = µ(y, x).

Recall the basic definitions and results of matrix modules from Section 3.1.
Let R = Mk×k(Fq) be the matrix ring, where k is a positive integer and q is a
prime power. Let M be a left m-dimensional R-module. Considering the ring
R as a left R-module over itself,

dimR = k.

Let L(M) be the set of submodules of M and let µ be the Möbius function of
the poset (L(M),⊆).
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Lemma 5.4.1. For every V ∈ L(M), if dimV > k, then∑
U∈L(M)

µ(U, V )1U = 0.

Proof. For a submodule U ⊆ M and an element w ∈ M the inclusion w ∈ U
holds if and only if for the cyclic module Rw the inclusion Rw ⊆ U holds. For
every V ∈ L(M) and w ∈M ,∑

U∈L(M)

µ(U, V )1U (w) =
∑
U⊆V

µ(U, V )1U (w) =
∑

Rw⊆U⊆V

µ(U, V ).

If Rw 6⊆ V , then the sum is empty and the equality from the statement holds.
Suppose Rw ⊆ V . Since dimRw ≤ dimR = k < dimV , Rw ⊂ V . Using the
duality of the Möbius function, see Proposition 5.4.1,∑

Rw⊆U⊆V

µ(U, V ) =
∑

V⊇U⊇Rw

µ∗(V,U) = 0.

Remark 5.4.1. Since the poset (L(M),⊆) is isomorphic to the poset of subspaces
of an m-dimensional vector space, see Remark 3.1.1, based on the result for
vector spaces, see [56, Example 3.10.2], for every U, V ∈ L(M),

µ(U, V ) =

{
(−1)dimV−dimUq(

dimV−dimU
2 ) , if U ⊆ V ;

0 , otherwise.

5.5 Code construction

In this section we construct a code over a matrix module alphabet with an
swc{e}-preserving map that does not extend to an AutR(A)-monomial map.
We will use this construction in the next section to prove extension theorems
for the symmetrized weight compositions and general weight functions.

An swc{e}-preserving map is of particular interests because it acts on each
codeword in An by permuting the coordinates. Such a map preserves the com-
plete weight enumerator of a code.

Lemma 5.5.1. For every positive integer ` there exists an integer m > ` such
that

`−1∑
i=0

[
m

i

]
q

< q`(m−`).

Proof. If ` = 1 the inequality holds for each m > 1. Let ` ≥ 2. If m ≥ 2`, then

`−1∑
i=0

[
m

i

]
q

< `

[
m

`− 1

]
q

= `

`−2∏
i=0

qm−i − 1

q`−1−i − 1
< `

`−2∏
i=0

qm = q(`−1)m+logq `,
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where the first inequality holds because
[
m
i

]
q
<
[
m
`−1

]
q

for i ∈ {0, . . . , `− 1} and

m ≥ 2`. The inequality q(`−1)m+logq ` ≤ q`(m−`) holds for all m ≥ `2 + logq `.
The value m = `2 + dlogq `e ≥ 2` satisfies the inequality in the statement.

Let R = Mk×k(Fq) be the matrix ring, where k is a positive integer and q
is a prime power. Let ` be a positive integer greater than k. Let M be an m-
dimensional left R-module, wherem > ` is an integer that satisfies the inequality
in Lemma 5.5.1. The dual module M̂ is a right R-module of dimension m.

Fix a submodule X in L(M̂) of dimension m − ` and define two subsets of

L(M̂),

S1 =
{
P ∈ L(M̂) | dimP = `, P ∩X = {0}

}
,

S2 =
{
P ∈ L(M̂) | dimP < `, P ∩X = {0}

}
.

Calculate the cardinalities of these sets. From Lemma 3.1.1,

|S1| = ql(m−l)
[
l

l

]
q

= ql(m−l).

Since S2 ⊂ {P ∈ L(M̂) | dimP < `} and
[
m
i

]
q

is the number of i-dimensional

submodules of M̂ ,

|S2| <
`−1∑
i=0

[
m

i

]
q

.

Since we chose m to satisfy the inequality in Lemma 5.5.1, |S1| > |S2|.
Let F(X,Y ) denote the set of all maps from the set X to the set Y . Consider

the poset (L(M̂),⊆) with the Möbius function µ and define the map,

∆ : F(S1,Q)→ F(S2,Q), ∆(φ)(Q) =
∑
P∈S1

φ(P )µ(Q,P ),

for Q ∈ S2, φ ∈ F(S1,Q). The map ∆ is a Q-linear homomorphism of Q-linear
vector spaces and the inequality holds,

dimQ ker ∆ ≥ dimQ F(S1,Q)− dimQ F(S2,Q) = |S1| − |S2| > 0.

Let
ξ ∈ ker ∆

be a nonzero map with integer values.
For any module V ∈ L(M) the annihilator module V ⊥ is in L(M̂), and

for any module P ∈ L(M̂), P⊥ ∈ L(M). Define the map η ∈ F(L(M),Q) as
follows, for V ∈ L(M),

η(V ) =

{
ξ(V ⊥) , if V ⊥ ∈ S1;
0 , otherwise.
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Note that η is a nonzero map that has only integer values, since so is ξ. Define
the map

W : F(L(M),Q)→ F(M,Q), ζ 7→
∑

U∈L(M)

ζ(U)1U .

A similar map was observed in [66, 67].

Proposition 5.5.1. The equality W (η) = 0 holds.

Proof. For every P ∈ S1, dimV = ` > k, and thus, from Lemma 5.4.1,

0 =
∑

Q∈L(M̂)

µ(Q,P )1Q =
∑
Q⊆P

µ(Q,P )1Q = 1P +
∑
Q⊂P

µ(Q,P )1Q.

If P ∈ S1 and Q ⊂ P , then dimQ < dimP = ` and Q ∩ X ⊆ P ∩ X = {0}.
Hence Q ∈ S2 and the equality holds,

1P = −
∑
Q⊂P

µ(Q,P )1Q = −
∑
Q∈S2

µ(Q,P )1Q.

Recall that the map ξ is in the kernel of ∆. Then,∑
P∈S1

ξ(P )1P = −
∑
P∈S1

ξ(P )
∑
Q∈S2

µ(Q,P )1Q

= −
∑
Q∈S2

(∑
P∈S1

ξ(P )µ(Q,P )

)
1Q

= −
∑
Q∈S2

∆(ξ)(Q)1Q = 0.

The Fourier transform is a Q-linear map. For all P ∈ S1, dimP = `,
|P | = qk` and |P⊥| = q(m−`)k. Calculate,

F(W (η)) =
∑

U∈L(M)

η(U)F(1U )
(1.1)
=

∑
U⊥∈S1

ξ(U⊥)|U |1U⊥

=
∑
P∈S1

|P⊥|ξ(P )1P = q(m−`)k
∑
P∈S1

ξ(P )1P = 0.

The Fourier transform is invertible, thus W (η) = F−1(0) = 0.

Define two maps η+, η− ∈ F(L(M),Q), as

η+(V ) = max{η(V ), 0}, η−(V ) = max{−η(V ), 0},

for V ∈ L(M). Obviously, η = η+ − η− and the maps η+ and η− have non-
intersecting supports. From Proposition 5.5.1, W (η+) = W (η + η−) = W (η) +
W (η−) = W (η−).
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Define a positive integer n = W (η+)(0) = W (η−)(0). Let (Vi)
n
i=1 and

(Ui)
n
i=1, be two n-tuples of submodules of M , such that,

|{i | Vi = V }| = η+(V ), |{i | Ui = V }| = η−(V ),

for all V ∈ L(M). Such n-tuples of modules exist since η+ and η− have non-
negative integer values.

Proposition 5.5.2. For all i ∈ {1, . . . , n}, Vi ⊕X⊥ = M and Ui ⊕X⊥ = M .

Proof. Let V ∈ L(M) be such that η+(V ) > 0 or η−(V ) > 0. Then η(V ) 6= 0,
which means V ⊥ ∈ S1, and hence dimV ⊥ = ` and V ⊥ ∩ X = {0}. From the
first equality, dimV = dimM − dimV ⊥ = m − `. From the second equal-
ity, calculating the annihilators of both sides, V + X⊥ = M . Recall that
dimX⊥ = m− (m− `) = `, and therefore V ∩X⊥ = {0}. Hence M = V ⊕X⊥.
The statement of the proposition follows from the inequalities, η+(Vi) > 0 and
η−(Ui) > 0, for i ∈ {1, . . . , n}.

Let A be an `-dimensional left R-module. Since ` = dimX⊥ = dimA there
exists an isomorphism of matrix modules ψ : X⊥ → A. For every i ∈ {1, . . . , n},
using Proposition 5.5.2, define λi, µi ∈ HomR(M,A),

λi : M = Vi ⊕X⊥ → A, (v, x) 7→ ψ(x),

µi : M = Ui ⊕X⊥ → A, (u, x) 7→ ψ(x).

Then, kerλi = Vi, kerµi = Ui and for all a ∈ A,

λ−1
i (a) = ψ−1(a) + Vi, µ−1

i (a) = ψ−1(a) + Ui.

Calculate, for a ∈ A, for w ∈M ,

n∑
i=1

1λ−1
i (a)(w) =

n∑
i=1

1ψ−1(a)+Vi(w) =
∑

V ∈L(M)

η+(V )1ψ−1(a)+V (w)

=
∑

V ∈L(M)

η+(V )1V (w − ψ−1(a)) = W (η+)(w − ψ−1(a)),

and in the same way,

n∑
i=1

1µ−1
i (a)(w) = W (η−)(w − ψ−1(a)).

Evidently, since W (η+) = W (η−), for every orbit O = {a} ∈ A/{e}, eq. (5.1)
holds. In particular, for the orbit O = {0},

n∑
i=1

1kerλi =

n∑
i=1

1kerµi .
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Also, for all i, j ∈ {1, . . . , n}, Vi = kerλi 6= kerµj = Uj , since the supports of
η+ and η− are disjoint.

Define the maps λ, µ ∈ HomR(M,An) as λ = (λ1, . . . , λn), µ = (µ1, . . . , µn).
Since eq. (5.1) holds for O = {0}, we have

kerλ =

n⋂
i=1

kerλi =

n⋂
i=1

kerµi = kerµ.

Denote N = kerλ ⊆ M . Let λ, µ be two canonical injective maps λ, µ ∈
HomR(M/N,An) such that λ(w) = λ(w) and µ(w) = µ(w) for all w ∈ M ,
where w = w +N .

Define the code C ⊂ An as the image C = imλ = imλ. Define a map
f ∈ HomR(C,An) as f = µλ−1, so that fλ = µ.

Proposition 5.5.3. Let R = Mk×k(Fq) and let A = Mk×`(Fq), where ` > k.
The defined map f ∈ HomR(C,An) preserves swc{e} and does not extend to an
AutR(A)-monomial map.

Proof. From Proposition 5.2.2, f is an swc{e}-preserving map, because eq. (5.1)
holds for every O = {a} ∈ A/{e}. The map f does not extend to an AutR(A)-
monomial map, since eq. (5.2) does not hold for the zero orbit O = {0}.

5.6 Proof of the main results

In order to prove Theorem 5.0.2, we use the approach of [16] and reduce the
problem to the case of matrix module alphabets. Recall some necessary results.

The Jacobson radical of R, denoted rad(R), is an ideal, which equals to the
intersection of all maximal left ideals, see [60, p. 178]. It is proved there that
rad(R) is a two-sided ideal and the notion is left-right symmetric. The quotient
ring R/ rad(R) is semisimple, see [60, p. 181]. Recall that a non-zero ring is
called semisimple if it is semisimple as a left R-module over itself.

Denote by Mr×r(Fq) the ring of r× r matrices over the finite field Fq, where
r is a positive integer and q is a prime power. If the ring R is finite, then there
exists an isomorphism of rings,

R/ rad(R) ∼= R1 × · · · ×Rn,

where Ri = Mri×ri(Fqi), for positive integers n, r1, . . . , rn and prime powers
q1, . . . , qn, see [42, Theorem 13.1]. Indeed, from the Wedderburn–Artin theorem,
see [42, Theorem 3.5], any semisimple ring is isomorphic to the product of
matrix rings over division rings. Since the ring R is finite, the division rings are
finite, and it is known that finite division rings are fields, see the Wedderburn
theorem [42, Theorem 13.1].

Since the canonical projection R→ R/ rad(R) is a ring homomorphism, any
R/ rad(R)-module can be considered as an R-module. For simple R-modules
the converse holds: in [60, p. 179] it is shown that for any simple R-module T ,
rad(R)T = 0, and hence any simple R-module is a simple R/ rad(R)-module.
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Let R be finite and let M be an R-module. Since soc(M) is defined as a
sum of simple submodules in M , there exist nonnegative integers s1, . . . , sn such
that,

soc(M) ∼= s1T1 ⊕ · · · ⊕ snTn.

Recall that an R-module M is called cyclic if there exists x ∈ M such that
Rx = M .

Proposition 5.6.1 ([67, Proposition 5.2]). Let R be a finite ring. The socle
soc(M) is cyclic if and only if si ≤ ri, for all i ∈ {1, . . . , n}.

Example 5.6.1. Consider the ring R = Z4 and let M = Z4 ⊕ Z2 be a left R-
module. The ring R has three ideals: {0}, I = {0, 2} and R itself. Consequently,
rad(R) = I, since I is the only maximal ideal, and R/ rad(I) ∼= M1×1(F2) =
R1
∼= Z2. The R1-module T1 = Z2 is a simple R1-module and r1 = 1.
In the same way as we calculated in Example 2.1.2, the socle soc(M) is

isomorphic to Z2 ⊕ Z2. Since T1
∼= Z2, soc(M) ∼= 2T1 so that s1 = 2. From the

other side, r1 = 1. From Proposition 5.6.1, since s1 > r1, the socle soc(Z4 ⊕
Z2) ∼= Z2 ⊕ Z2 is not a cyclic Z4-module.

Now we are ready to give a proof of the complete extension theorem for
symmetrized weight composition.

Proof of Theorem 5.0.2. For the case of a finite ring our proof repeats the idea
of [61, Theorem 4.1]. Let R be a finite ring. Theorem 5.0.1 states that if A has
a cyclic socle, then A has an extension property with respect to swcG, for any
G ≤ AutR(A). We prove that if the socle of the alphabet is not cyclic, then A
does not have an extension property.

From Proposition 5.6.1, if soc(A) is not cyclic, then there exists an index i
with si > ri. Of course, siTi ⊆ soc(A) ⊆ A. Recall that siTi is the pullback to
R of the Ri-module B = Mri×si(Fq).

Because ri < si, Proposition 5.5.3 implies the existence of an Ri-linear code
C ⊂ Bn and an swc{e}-preserving map f ∈ HomRi(C,B

n) that does not extend
to an AutRi(B)-monomial map.

Denote V = kerλ1. Define a subcode C ′ = λ(V ) ⊆ imλ = C. The first
column of C ′ is a zero-column, because λ1(V ) = {0}. Assume that the code
f(C ′) has a zero-column. Then there exists j ∈ {1, . . . , n} such that V ⊆ kerµj .
From the construction of Section 5.5, dimV = dimM − si = dim kerµj for all
j ∈ {1, . . . , n}. Also, kerλj 6= kerµk for all j, k ∈ {1, . . . , n}. Therefore it is
impossible to have V ⊆ kerµj for some j ∈ {1, . . . , n} and thus f(C ′) does not
have a zero-column.

The projection mappings R→ R/ rad(R)→ Ri allow us to consider C ′ and
f as an R-module and an R-linear homomorphism correspondingly.

We have C ′ ⊂ (siTi)
n ⊆ soc(A)n ⊆ An as R-modules. The map f thus

preserves swc{e} on the R-linear code C ′ ⊂ An. Since {e} ≤ G, f is an swcG-
preserving map. The codes C ′ and f(C ′) have different number of zero columns
and hence f does not extend to an AutR(A)-monomial map. Finally, A does
not have an extension property with respect to swcG for any G ≤ AutR(A).
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Now we prove the statement of the theorem for the case of arbitrary ring.
Recall the notation RA = R/ ann(A) observed in Section 2.4 on p. 13. We follow
the idea of the proof of Theorem 2.4.1. By definition, an R-module A has an
extension property with respect to swcG if for any positive integer n, for any
R-linear code C ⊆ An, each R-linear swcG-preserving map f ∈ HomR(C,An)
extends to a G-monomial map. Hence, R-module A has an extension property
with respect to swcG if and only if RA-module A has an extension property with
respect to swcG, where G ≤ AutRA(A) = AutR(A).

The socle soc(A) is the same for the module A considered both as R-module
and RA-module. It is cyclic as an R-module if and only if it is cyclic as an
RA-module.

From Lemma 2.4.2, the ring RA is finite and hence the theorem holds for
RA. From the arguments above, the statement of the theorem also holds for the
case of an infinite ring.

The extension theorem for general weight functions now is straightforward.

Proof of Theorem 5.0.3. Let ω be a general weight function defined on A. Let
C ⊆ An be a code and let f ∈ HomR(C,An) be an unextendable swcU(ω)-
preserving map that exists due to Theorem 5.0.2. The map f is then an ω-
preserving map and it does not extend to an U(ω)-monomial map.

Remark 5.6.1. The length of the code, constructed in Section 5.5 and used in
the proofs of Theorem 5.0.2 and Theorem 5.0.3, can be large. For the ring
R = Mk×k(Fq) and a matrix module alphabet A, we can give a lower bound

on the code length, n ≥
∏k
i=1(1 + qi), which is obtained in Theorem 3.0.2.

In Section 5.7 we show that for the special case k = 1 there exists an explicit
construction that attains the bound. Moreover the resulting unextendable swcG-
preserving map can be a module automorphism of C.

Remark 5.6.2. We can modify the definition of an extension property to improve
Theorem 5.0.2. Let G be a subgroup of AutR(A). We say that A has the
extension property with respect to swcG, if for any positive integer n and for any
linear code C ⊆ An, each swcG-preserving map f ∈ HomR(C,An) extends to a
G-monomial map. The new definition is weaker than the original one, since the
class of G-monomial maps contains all G-monomial maps.

One can verify that the symmetrized weight compositions built on groups G
and G are the same, so it is logical to expect that the definition of an extension
property must be the same for both groups. Also, from Proposition 5.2.1, A has
an extension property with respect to swcG if and only if any swcG-preserving
map f ∈ HomR(C,An) extends to an R-linear swcG-preserving map of An.

Independently from the definition we choose, Theorem 5.0.1 and Theo-
rem 5.0.2 remain correct. Note that for the case of general weight functions
the two definition are the same, since the symmetry group of a weight function
is closed.

Example 5.6.2. To illustrate Theorem 5.0.2 and Theorem 5.0.3, consider a
finite R-module alphabet A, where R is a PID (see the definition in Section 2.5).
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From Lemma 2.5.1, A has a cyclic socle if and only if A is cyclic itself. Thus,
A has an extension property with respect to swcG, for all G ≤ AutR(A), if and
only if A is cyclic. Also, if A is a noncyclic R-module, then A does not have an
extension property with respect to any general weight function.

5.7 Additive codes

In the previous section we showed that an extension property holds for linear
codes over a finite module alphabet with respect to the symmetrized weight
composition if and only if the socle of the alphabet is cyclic. For alphabets with
a noncyclic socle we prove the existence of an unextendable swcG-preserving
map. However, our construction is implicit.

Below we give an explicit construction of a code with an unextendable swc{e}-
preserving map. Moreover, the constructed code and the map have nice addi-
tional properties, see Proposition 5.7.1. Unlike the general case, where we do
not know the length of the constructed code, for vector space alphabet we show
that the length can be relatively small.

Let Fq be a finite field and let A be an Fq-linear vector space of dimension
` = 2, where q is a prime power. The group AutFq (A) is isomorphic to the group
GL2(Fq) of 2× 2 invertible matrices with entries in Fq. By introducing a basis
of A we identify AutFq (A) and GL2(Fq).

Let M be an Fq-linear 4-dimensional vector space. Fix bases of A and M .
Consider the trivial subgroup {I2} < GL2(Fq), where I2 is the 2 × 2 identity
matrix. Each orbit of {I2} contains only one point and the group {I2} is closed
in GL2(Fq).

Let χ(x) = x2+αx+β be an irreducible polynomial over Fq, where β, α ∈ Fq.
Then Q : Fq × Fq → Fq, (a, b) 7→ a2 + αab + βb2 is a quadratic form and
Q(a, b) = 0 ⇐⇒ a = b = 0.

Let P1(Fq) be a projective line, |P1(Fq)| = q + 1. For any [a : b] ∈ P1(Fq),
define a matrix Λ[a:b] ∈ M4×2(Fq),

Λ[a:b] =
1

Q(a, b)


−ba −b2
a2 ab
βb2 −αb2 − ab
−βab a2 + αab

 ,

and let Ω[a:b] ∈ M4×2(Fq) be a matrix obtained from Λ[a:b] by swapping the
second and the third row,

Ω[a:b] =
1

Q(a, b)


−ba −b2
βb2 −αb2 − ab
a2 ab
−βab a2 + αab

 .

The matrices are well-defined, i.e. they do not depend on the choice of class
representatives in P1(Fq).
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For any p ∈ P1(Fq), define Fq-linear maps λp, µp : M → A as λp(w) = wΛp
and µp(w) = wΩp, for all vectors w ∈ M . Let λ, µ ∈ HomF (M,An) be defined
as λ = (λp)p∈P1(Fq) and µ = (µp)p∈P1(Fq). Note that the map λ is injective.
Define an Fq-linear code C ⊂ An as the image C = imλ. Define an Fq-linear
map f : C → An as f = µλ−1. The generator matrix of C can be presented as
a concatenation of the Λ-matrices and the generator matrix of the image f(C)
is a concatenation of the Ω-matrices.

Consider the irreducible polynomial χ̄(x) = χ(−x) = x2 − αx + β and
consider a finite field extension Fq2 of Fq, Fq2 = Fq[x]/(χ̄(x)). Choose the basis
1, ω in Fq2 , where χ̄(ω) = 0, and identify A and Fq2 , as vector spaces (see
Remark 1.5.1).

Proposition 5.7.1. The code C is an Fq2-linear [q + 1, 2]Fq2 MDS code. The
map f is an Fq-linear swc{I2}-preserving automorphism of C that does not ex-
tend to a GL2(Fq)-monomial map.

Proof. Prove that the map f is an swc{I2}-preserving map. For each (x, y) ∈ A,
[a : b] ∈ P1(Fq) denote

V[a:b] = 〈(a, b, 0, 0), (0, 0, a, b)〉Fq ,
U[a:b] = 〈(a, 0, b, 0), (0, a, 0, b)〉Fq ,

and check that,

λ−1
[a:b]({(x, y)}) = (−αx− βy, x, x, y) + V[a:b],

µ−1
[a:b]({(x, y)}) = (−αx− βy, x, x, y) + U[a:b].

Indeed, for λ[a:b] calculate,

(a, b, 0, 0)Λ[a:b] =
1

Q(a, b)
(−ba2 + ba2,−ab2 + ab2) = (0, 0),

(0, 0, a, b)Λ[a:b] =
1

Q(a, b)
(βab2 − βa2b,−αab2 − ba2 + ba2 + αab2) = (0, 0),

(−α, 1, 1, 0)Λ[a:b] =
1

Q(a, b)
(αba+ a2 + βb2, αb2 + ab− αb2 − ab) = (1, 0),

(−β, 0, 0, 1)Λ[a:b] =
1

Q(a, b)
(βba− βab, βb2 + a2 + αab) = (0, 1).

In the same way make calculations for the maps µ[a:b]. The constructed q + 1-
tuples of spaces correspond to the solution of Type 3 observed in [21], where
we prove that

∑
p∈P1(Fq) 1Vp =

∑
p∈P1(Fq) 1Up . One can verify this equality by

hand. Also, for every (x, y) ∈ A eq. (5.1) holds,∑
[a:b]∈P1(Fq)

1(−αx−βy,x,x,y)+V[a:b]
=

∑
[a:b]∈P1(Fq)

1(−αx−βy,x,x,y)+U[a:b]
.

Hence, by Proposition 5.2.2, f is an swc{I2}-preserving map. However, f does
not extend even to a GL2(Fq)-monomial map since condition (5.2) does not hold
for the zero orbit {0} ∈ A/{I2}.
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Prove that f(C) = C. Denote ~vi = λ(~ei), i ∈ {1, 2, 3, 4}, where ~ei ∈ M is
the vector with 1 on the ith position and zeros elsewhere. The map f fixes ~v1

and ~v4 and swaps ~v2 and ~v3, hence f(C) = C.
The code C is a Fq-linear code in Fnq2 . Note that ~v3 = ω~v1 and ~v4 = ω~v2.

Indeed, for any [a : b] ∈ P1(Fq),

(−ba− b2ω)ω = −baω − b2(αω − β) = βb2 − (αb2 + ab)ω,

(a2 + abω)ω = a2ω + ab(αω − β) = −βab− (a2 + αab)ω.

So, C is an Fq2-linear code. However, f : C → C is not an Fq2-linear map.
Considering C as a code in a Hamming space Fnq2 , it is equivalent, with a

GL2(Fq)-monomial equivalence, to a code observed in Example 4.2.1, where we
proved that C is a [q + 1, 2]Fq2 MDS code.

From Proposition 5.7.1, since f is an Fq-linear swc{I2}-preserving map, it
acts locally as a permutation of each codeword. Nevertheless, since f is not
extendable to a {I2}-monomial map, which acts by permutation of columns,
there is no general permutation that acts globally as f .

To illustrate the constructions we give an example for the finite field F2.

Example 5.7.1. Let q = 2. Consider the quadratic form Q : F2 × F2 → F2,
Q(a, b) = a2 + ab + b2, where a, b ∈ F2. Consider the projective line P1(F2) =
{[0 : 1], [1 : 0], [1 : 1]}. Write down the matrix Λ[a:b], for each [a : b] ∈ P1(F2),

Λ[0:1] =


0 1
0 0
1 1
0 0

 ,Λ[1:1] =


1 1
1 1
1 0
1 0

 ,Λ[1:0] =


0 0
1 0
0 0
0 1

 .

Define an F2-linear code C ⊆ (F2
2)3 as an F2-span of rows in the left matrix,

01 11 00
00 11 10
11 10 00
00 10 01

 f−→


01 11 00
11 10 00
00 11 10
00 10 01

 ,

and define an F2-linear map f : C → (F2
2)3 as it is shown in the main construc-

tion above. It is easy to check that f is an unextendable swc{I2}-preserving
map.
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Recall our Definition 5.3.1 of G-pseudo-injectivity,. Let A be a finite R-module
and let G be a subgroup in AutR(A). The R module A is called G-pseudo-
injective, if for any submodule B ⊆ A, each injective map f ∈ HomR(B,A),
such that for any O ∈ A/G, f(O∩B) ⊆ O, extends to an element of the closure
G.

In this chapter we investigate the G-pseudo-injectivity of vector spaces. Ap-
parently, despite the fact that vector spaces are pseudo-injective (as injective
modules, see Example 2.2.1), almost all vector spaces, except a few families, are
not G-pseudo-injective for some G. The main result of this chapter is formulated
in the following theorem.

Theorem 6.0.1 (see [22]). Let Fq be a finite field and let V be an n-dimensional
Fq-linear vector space. The space V is G-pseudo-injective for every subgroup
G ≤ GLn(Fq) if and only if n < 3 or V = F3

2.

6.1 General properties

Proposition 6.1.1. Every n-dimensional Fq-linear vector space V is GLn(Fq)-
pseudo-injective and {In}-pseudo-injective, where In is the identity n×n matrix.

Proof. Note that these two subgroups are closed in GLn(Fq) with respect to the
action on V . The set V/GLn(Fq) has only two orbits, {0} and V \ {0}. Since
V is pseudo-injective, for every subspace U ⊆ V an Fq-linear injective map
f : U → V extends to an element in GL3(Fq). It is easy to see that f(0) = 0
and 0 6∈ f(U \ {0}).

Since V/{In} = {{x} | x ∈ V }, for any subspace U ⊆ V , any injective map
f : U → V , such that f(x) = x, for all x ∈ U , extends to the map that
corresponds to In.

Lemma 6.1.1. Let U ⊆ V be a subspace of dimension smaller than 2 and let
G be a subgroup of GLn(Fq). Any injective map f : U → V that preserves the
orbits of G extends to an element of G.

Proof. If U = {0}, then f : {0} → V is a zero map and hence extends to the
trivial map that corresponds to In ∈ G. If U is one-dimensional, let u ∈ V \{0}
be such that U = 〈u〉Fq . Let O be an orbit in V/G that contains u. Since
f preserves the orbits of G, there exists v ∈ O such that v = f(u) and there
exists g ∈ G such that v = g(u). Then, for any x ∈ Fq, f(xu) = xf(u) = xv =
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xg(u) = g(xu). But {xu | x ∈ Fq} = U and therefore f extends to an element
of G

Remark 6.1.1. In the same way as in the proof of Lemma 6.1.1 we can prove
the following generalized fact. Consider a ring R with identity and a finite R-
module A. It is true that for any cyclic submodule U ⊆ A any injective map
f ∈ HomR(U,A) which preserves the orbits of G ≤ AutR(A), extends to an
element of G.

6.2 Poset of orbit partitions

Definition 6.2.1. A partition α of a finite set X is a set of subsets of X,

α = {c1, . . . , ct},

such that c1 t · · · t ct = X, where ci ⊆ X, for all i ∈ {1, . . . , t}, t is a positive
integer and the operation t denotes the disjoint union of sets.

A partition α1 of the set X is said to be finer than a partition α2 of the
same set X, denoted α1 � α2, if each set in α2 is a disjoint union of sets from
α1. The binary relation “finer” is a partial order on the set of all partitions of
X.

Example 6.2.1. Let X = {1, 2, 3}. Then for the three partitions α1 =
{{1, 2, 3}}, α2 = {{1, 2}, {3}} and α3 = {{1}, {2}, {3}} the relations hold,
α3 � α2 � α1.

Let X be a finite set and let G be a finite group acting on X (from the right
side). The set of orbits of the action, denoted as X/G, induces a partition of
the set X into a union of disjoint subsets, denoted αG.

Let H be a subgroup of G. The subgroup H inherits an action on X from
G. Obviously, αH � αG.

Recall Definition 5.4.1 of a partially ordered set (poset). Denote by PG
the poset ({αH | H ≤ G},�). Define the union of the partitions αH1

and αH2
,

denoted αH1
∪αH2

, as the finest element in PG such that αH1
, αH2

� αH1
∪αH2

.
Note that such an element exists and is unique.

Proposition 6.2.1. Let H = 〈h1, . . . , hk〉 ≤ G. Then αH =
⋃k
i=1 α〈hi〉.

Proof. Since 〈hi〉 ≤ H, it is true that α〈hi〉 � αH , for all i ∈ {1, . . . , k}, and

thus α =
⋃k
i=1 α〈hi〉 � αH .

Let J be a subgroup of G that contains all elements in G that preserves all
classes in α. The subgroup J is closed with respect to the action on X and
α = αJ . It is easy to see that hi ∈ J , for all i ∈ {1, . . . , k}, which means H ≤ J .
Thereby, αH � αJ = α.

Proposition 6.2.2. Let H ≤ G be a subgroup that is closed with respect to the
action on X and let J = {g ∈ H | g(x) = x} for some x ∈ X. The subgroup J
is closed with respect to the action on X and αJ � αH .
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Proof. The group J is a subgroup of H, which means αJ � αH . Let g ∈ G be
an element that preserves all orbits in αJ . Then g ∈ H and g(x) = x, so g ∈ J .
Therefore J = J .

6.3 Proof of the main result

Let V be an Fq-linear vector space of dimension n. Consider the right action of
GLn(Fq) on V by the right matrix multiplication.

6.3.1 Spaces of dimension that differs from 3

Proposition 6.3.1. If dimFq V ≤ 2, then for every subgroup G ≤ GLn(Fq) the
space V is G-pseudo-injective.

Proof. Let U be a subspace of V and let f : U → V be a map that preserves
the orbits of G. If U = V , then f is an element of G. If U is a proper subspace,
dimFq U < 2 and from Lemma 6.1.1, f extends to an element of G ≤ G. Hence
V is G-pseudo-injective.

Since in this section we consider the case n 6= 3 and the case n ≤ 2 is already
observed, let n ≥ 4.

Let m ≥ 2 be an integer such that m ≤
√
n, for instance, m = 2. Consider

the following block-diagonal m2 ×m2 matrix,

T =


M 0 . . . 0
0 M . . . 0
...

...
. . .

...
0 0 . . . M

 ,

consisting of m blocks on the diagonal, where M ∈ GLm(Fq). The matrix T
generates the cyclic subgroup 〈T 〉 < GLm2(Fq). Consider the block diagonal
n× n matrix,

T ′ =

(
T 0
0 In−m2

)
,

where In−m2 ∈ GLn−m2(Fq) is the identity matrix.

Lemma 6.3.1. The cyclic group 〈T ′〉 ≤ GLn(Fq) is closed with respect to the
action on V .

Proof. Let B ∈ GLm2(Fq) be an element that preserves the orbits of 〈T 〉, i.e.,

B ∈ 〈T 〉. For all vectors v = (x1, . . . , xm) ∈ Fm2

q , where each xi is an m-
dimensional vector, there exists an integer pv such that

vB = vT pv .
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Let B has the block form, B = (Bij)i,j∈{1,...,m}, where each Bij ∈ Mm×m(Fq).
Put v = vi = (0, . . . , 0, x, 0, . . . , 0) with the vector x ∈ Fmq on ith position,
i ∈ {1, . . . ,m}. Then the equality becomes,

(xBi1, xBi2, . . . , xBim) = (0, . . . , 0, xMpvi , 0, . . . , 0).

Since the vector x ∈ Fmq is arbitrary, Bij = 0 for all i 6= j ∈ {1, . . . ,m}.
Put v = vi,j ∈ Fm2

q , the vector with x ∈ Fmq on ith and jth positions,
i 6= j ∈ {1, . . . ,m}, and 0 everywhere else. We get then two equalities,

xBii = xMpvi,j and xBjj = xMpvi,j ,

for each x ∈ Fmq . Therefore, Bii = Bjj for all i, j ∈ {1, . . . ,m}.
Put v = v0 = (e1, e2, . . . , em), where ei ∈ Fmq is a vector with 1 on the ith

position and 0 everywhere else. Then, for any i ∈ {1, . . . ,m},

eiB11 = eiM
pv0 ,

which implies B11 = Mpv0 , for some integer pv0 . Hence B = T pv0 , B ∈ 〈T 〉 and

thus 〈T 〉 ⊆ 〈T 〉. Therefore, 〈T 〉 is closed with respect to the action on Fm2

q .
It is easy to see that the group 〈T ′〉 is closed subgroup of GLn(Fq) with

respect to the action on V ∼= Fnq .

Let m = 2. Note that the matrix T ′ ∈ GLn(Fq) depends on the choice of
the matrix M ∈ GL2(Fq). In next proposition we suppose that M is a matrix of
multiplicative order q2−1. Such a matrix exists: chooseM to be a multiplication
matrix of an element ω ∈ Fq2 , where Fq2 is a finite field extension of Fq and ω
is a primitive element of Fq2 .

Proposition 6.3.2. If dimFq V ≥ 4, then V is not 〈T ′〉-pseudo-injective.

Proof. Denote G = 〈T ′〉 and denote by U the subspace of V of dimension
2 generated by the vectors a = (1, 0, 0, . . . , 0) and b = (0, 1, 0, . . . , 0). The
subspace U intersects only 2 orbits of V/G: {0} and U \ {0}. Indeed, since
we chose M to be a multiplication matrix of a generator ω ∈ F∗q2 , any nonzero
vector in U can by mapped by some element of G to any nonzero vector in U .

A linear map f : U → V defined by, f(a) = b and f(b) = a, is an automor-
phism of the vector space U ⊂ V . It preserves the orbits in V/G.

By contradiction, assume that f extends to an element of G. As we proved
in Lemma 6.3.1, G = G. From the construction, the elements of G acts by a
multiplication on the first pair of coordinates. Since we are interested in only
two first coordinates, let c ∈ Fq2 be an element that corresponds to the vector
(1, 0) and let d ∈ Fq2 corresponds to (0, 1). Hence, there exists an element
x ∈ Fq2 such that f(c) = xc and f(d) = xd. But from the other side, f(c) = d
and f(d) = c. Combining these equalities we get,

xc = d and xd = c.

From this, x2 = 1 and c2 = d2. Rewriting the last equality, c2 − d2 = (c −
d)(c + d) = 0 that implies c = d or c = −d which is impossible, since c and d
are linearly independent over Fq. From the contradiction, f does not extend to
an element of G and hence V is not G-pseudo-injective.
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6.3.2 Three-dimensional spaces

Observe the case q 6= 2 and consider the following matrix X ∈ GL3(Fq),

X =

(
M 0
0 detM

)
,

where M is a multiplication matrix of a primitive element ω ∈ Fq2 . Additionally
assume that M is represented in the Fq-linear basis 1, ω.

Proposition 6.3.3. Let V be a 3-dimensional Fq-linear vector space, q 6= 2.
The space V is not 〈X〉-pseudo-injective.

Proof. Denote G = 〈X〉 < GL3(Fq). Since det : GL2(Fq) → F∗q is a multi-
plicative function, (detM)n = detMn, and thus every element of G is of the
form

Xk =

(
Mk 0
0 detMk

)
,

for some positive integer k.
Consider a subspace U = 〈(1, 0, 0), (0, 1, 0)〉Fq ⊂ V . Define an Fq-linear map

f : U → V by f((1, 0, 0)) = (0, 1, 0) and f((0, 1, 0)) = (1, 0, 0). As in the proof
of Proposition 6.3.2, f(U) = U and U intersects only two orbits of V/G: {0}
and U \ {0}.

By contradiction, assume that there exists g ∈ G such that g = f on U .
Then g has the following form,

g =

0 1 0
1 0 0
α β γ

 ,

for some α, β ∈ Fq, γ ∈ F∗q . Use the fact that g preserves the orbits of G. There
exists an integer p1 such that (0, 0, 1)g = (0, 0, 1)Xp1 , or the same, (α, β, γ) =
(0, 0, (detM)p1). Hence α = β = 0.

For v = (x, y, z) ∈ V there exists an integer pv such that (x, y, z)g =
(y, x, γz) = (x, y, z)Xpv = ((x, y)Mpv , z(detM)pv ). Put v = v1 = (1, 1, 1).
Then

((1, 1), γ) = ((1, 1)Mpv1 ,detMpv1 ) .

Since Mpv1 is a multiplication matrix, it fixes a nonzero element in F2
q if and

only if Mpv1 = I2. From the equality on the third coordinate, γ = det I2 = 1.
Put v = v2 = (1, 0, 1). Then we have

((0, 1), 1) = ((1, 0)Mpv2 ,detMpv2 ) .

We chose M to be such that (1, 0)M = (0, 1) and therefore Mpv2 = M . Hence
detMpv2 = detM = 1. Recall ω is a generator of F∗q2 . It is a well-known fact

that the norm N : F∗q2 → F∗q , defined as N(ωk) = (detM)k is an onto map

(see [43, pp. 284 – 291]). Since Fq 6= F2, F∗q 6= {1}, we get a contradiction.
Therefore, V is not G-pseudo-injective.
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Now, observe the case q = 2 and V = F3
2.

Proposition 6.3.4. For each subgroup G ≤ GL3(F2) the space F3
2 is G-pseudo-

injective.

Proof. Prove by contradiction. Suppose that there exist a subgroup G, a sub-
space U ⊆ V and an injective F2-linear map f : U → V such that f preserves
the orbits of G but does not extend to an element of G.

Note that such a subspace and a map exist for some group G means that
they also exist for the closure G. Hence, without loss of generality, we assume
that G is closed with respect to the action on V .

From Lemma 6.1.1 we know that if dimF2
U ≤ 1, then f extends to an

element of G. The same for U = V . Therefore dimF2 U = 2, U = 〈a, b〉F2 =
{0, a, b, a+ b} for some a, b ∈ V .

Let h ∈ GL3(F2) be a matrix of change of basis such that ah = (1, 0, 0) and
bh = (0, 1, 0). Then the map hf : hU → V preserves the orbits of the group

Gh = {h−1gh | g ∈ G} and does not extend to an element of Gh. Thus, without
loss of generality, we may assume that a = (1, 0, 0) and b = (0, 1, 0).

Since a and f(a) are in the same orbit of G, there exists an element g ∈ G
such that g(f(a)) = a. Then, the map gf preserves the orbits of G but does not
extend to an element of G. Again, without loss of generality, we may assume
that f(a) = a.

Let Ga ≤ G be a subgroup that contains all the elements of G that fix a.
From Proposition 6.2.2, Ga is closed. The map f does not extend to an element
of Ga. Therefore we can assume that G is a closed subgroup that fixes a.

Denote f(b) = c. Then f(a+ b) = a+ c. The map f preserves the orbits of
G if and only if the elements b, c and a+ b, a+ c belong to the same orbits.

The final computational problem that we have to solve is the following.

1. Find all closed subgroups G of GL3(F2) that have a one-element orbit
Oa = {(1, 0, 0)}.

2. For all such G, let Ob ⊆ F3
2 be an orbit of G that contains (0, 1, 0). Check

that for any c ∈ Ob, such that (1, 0, 0) + c and (1, 1, 0) are in the same
orbit of G, there exists g ∈ G such that (0, 1, 0)g = c.

To compute all the closed subgroups of GL3(F2) use the fact that the closed
subgroups are in relation with the partition of F3

2 into orbits of subgroups in
GL3(F2), see Proposition 6.2.1. The idea is the following, we first compute the
orbits of all cyclic subgroup, then we calculate all the elements in the poset
PGL3(F2). Now, having all possible partitions into orbits we can easily calculate
all closed subgroups.

The result is computed. See p. 83 for a SAGE source code.
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7.1 Stabilizer quantum codes

Error-correcting codes are used for the secure information transmission. In the
same way quantum error-correcting codes are used for the secure transmission
of quantum-information in quantum channels. There exist several models and
approaches to construct quantum error-correcting codes. In this section we are
discussing the stabilizer quantum error-correcting codes (see [37, Section 7.4.5]).

In [40] the authors show that there exists a relation between the stabilizer
quantum codes and special additive codes and one can define a stabilizer quan-
tum code as an additive code with an additional condition of self-orthogonality.
In this section we use this model.

Consider the context of codes over a vector space alphabet with an Fq-linear
vector space alphabet A = F2

q equipped with the Hamming weight wtH . Let p
be a characteristic of Fq. Fix an Fq-linear basis in A. Every element a ∈ A can
be represented as a pair a = (a1, a2), for some a1, a2 ∈ Fq. On An define the
trace-symplectic antisymmetric Fp-bilinear form, 〈−,−〉s : An ×An → Fp,

〈x, y〉s =

n∑
i=1

trFq/Fp(xi1yi2 − xi2yi1),

where trFq/Fp : Fq → Fp is the trace function (see [43, p. 284]).

Let C be an Fp-linear code C ⊆ An. Define the orthogonal code C⊥s = {x ∈
An | ∀y ∈ C, 〈x, y〉s = 0}.

Definition 7.1.1. An Fp-linear code C ⊆ An is called a stabilizer quantum code
if C ⊆ C⊥s .

The error-correcting capability of a quantum code is defined by the minimum
Hamming weight of the set C⊥s \C if C ⊂ C⊥s , and the set C \{0} if C⊥s = C.

In this section we observe linear quantum stabilizer codes. For this class of
codes we define an extension property and show that it does not hold for almost
all codes except for one family.

A quantum code C is called linear if it is an Fq2 -linear subspace of An,
where on the vector space A = F2

q we consider a structure of a finite field Fq2
(see Remark 1.5.1).
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Considering A = Fq2 , recall that the hermitian form 〈−,−〉h : An × An →
Fq2 is an Fq-bilinear form that is defined in the following way,

〈x, y〉h =

n∑
i=1

xqi yi.

For every α ∈ Fq2 , 〈αx, y〉h = αq〈x, y〉h = 〈x, αqy〉h.
Note that the norm N : F∗q2 → F∗q , ω → ωq+1 is an onto map, see [43, pp. 284

– 291]. Norm of 0 is equal to 0. Also note that since ω 7→ ωq is a Frobenius
automorphism, the equality ωq = ω implies ω ∈ Fq.

In [40, Lemma 14 and 18] the authors prove that if the quantum code C is
linear, then C⊥s = C⊥h , where the hermitian orthogonal is defined in a similar
way. The set C⊥h is an Fq2 -linear subspace of An.

Definition 7.1.2. Let C be a linear quantum code. We say that an Fq2 -linear
map f : C⊥h → An is a quantum isometry, if

• f is a Hamming isometry on C⊥h .

• f preserves the hermitian orthogonality on C, i.e., for all x, y ∈ C,

〈x, y〉h = 0 ⇐⇒ 〈f(x), f(y)〉h = 0,

Such definition of a quantum isometry represents the fact that a map that
preserves a quantum code should preserve its metric parameters, algebraic struc-
ture and hermitian self-orthogonality. If f is a linear quantum isometry of a
quantum code C, then f(C) is a linear quantum code with the same error-
correcting capability.

To study an extension property of quantum codes we need to define a uni-
versal group of morphisms that acts on the ambient space and preserves the
elements of the category of quantum codes. Unlike the case of classical additive
or linear codes we cannot define directly the quantum isometry of an ambient
space, since the code C = An is not self-orthogonal. That’s why we define the
universal group of such maps as the set of linear maps h : An → An such that
for every quantum code C ⊂ An, h restricted on C is a quantum isometry. One
can easily verify that this set coincides with the set of linear maps An → An

that preserves the Hamming weight and hermitian orthogonality.

Definition 7.1.3. We say that an Fq2-linear map h : An → An is quantum
monomial, if there exist a permutation π ∈ Sn and nonzero scalars a1, . . . , an ∈
F∗q2 , with N(ai) = N(aj) for all i, j ∈ {1, . . . , n}, such that

h(x1, . . . , xn) =
(
a1xπ(1), . . . , anxπ(n)

)
.

The following proposition holds.

Proposition 7.1.1. An Fq2-linear map h : An → An is a Hamming isometry
that preserves the hermitian orthogonality on An if and only if h is quantum
monomial.
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Proof. From the MacWilliams Extension Theorem (see Theorem 2.1.1), h is a
linear Hamming isometry if and only if there exist a permutation π ∈ Sn and
nonzero scalars a1, . . . , an ∈ F∗q2 such that

h(x1, . . . , xn) =
(
a1xπ(1), . . . , anxπ(n)

)
.

Calculate,

〈h(x), h(y)〉h =

n∑
i=1

aixπ(i)a
q
i y
q
π(i) =

n∑
i=1

N(ai)〈xπ(i), yπ(i)〉h.

Put x = (1, 1, 0, . . . , 0) and y = (1,−1, 0, . . . , 0). Then 〈x, y〉h = 0. Since h
preserves hermitian orthogonality, 0 = 〈h(x), h(y)〉h = N(aπ−1(1))−N(aπ−1(2)).
In the same way, for all i, j ∈ {1, . . . , n}, N(ai) = N(aj).

Conversely, if h is a quantum monomial map, then,

〈h(x), h(y)〉h = N(a1)〈x, y〉h,

and hence h preserves hermitian orthogonality.

Now we can naturally define an extension property for quantum codes.

Definition 7.1.4. We say that an extension property holds for Fq2-linear quan-
tum codes if for every Fq2-linear quantum code C ⊂ Fnq2 each Fq2 -linear quantum
isometry f of C extends to a quantum monomial map.

Proposition 7.1.2. An extension property holds for F4-linear quantum codes.

Proof. From the MacWilliams Extension Theorem, a Hamming isometry f ex-
tends to a monomial map with a permutation π ∈ Sn and nonzero scalars
a1, . . . , an ∈ F4. Since F∗2 = {1}, N(ai) = 1, for every i ∈ {1, . . . , n}. Thus f
extends to a quantum monomial map.

For q > 2 we show that an extension property does not hold.
At first, consider the case q > 3. Let n = 3 and let C = 〈(1, x, y)〉Fq2 be

a linear quantum code, where x, y ∈ F∗q2 , N(x) 6= −1 and N(y) = −1 − N(x).
Such x and y exist because N is onto. Since,

N(1) +N(x) +N(y) = 0,

we have C ⊂ C⊥h . Also, C⊥h = 〈(1, x, y), (−xq, 1, 0)〉Fq2 , because

〈(1, x, y), (−xq, 1, 0)〉h = −xq
2

+ x+ 0 = −x+ x = 0.

Define an Fq2-linear map f : C⊥h → F3
q2 , as

f(1, x, y) = (1, a, b), f(−xq, 1, 0) = (−xq, a
x
, 0),
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where a, b ∈ Fq2 are such that N(a) 6= 0,−1, N(x) and N(b) = −1−N(a). Such
a and b exist because N is onto and q > 3. By the construction, f is a linear
quantum isometry of C.

Prove that f does not extend to a quantum monomial map by contradiction.
Assume that there exist a permutation π ∈ S3 and nonzero scalars a1, a2, a3,
with N(a1) = N(a2) = N(a3) such that

f(x1, x2, x3) = (a1xπ(1), a2xπ(2), a3xπ(3)).

From the form of f , π is either trivial or π = (12)(3). If π is trivial, then a1 = 1,
a2 = a

x and a3 = b
y . Thus, 1 = N(1) = N(a2) = N(a)/N(x), which means

N(a) = N(x) that contradicts to the assumption N(a) 6= N(x).
If π = (12)(3), then a1 = −xq = 1

x that leads to −xq+1 = 1 or the same
N(x) = −1. But N(x) 6= −1, so, from the contradiction, f does not extend to
a quantum monomial map.

For the case q = 3, define C = 〈(x, x, x, x, x, x)〉F9 , where N(x) = 1 and
define

f(x1, x2, x3, x4, x5, x6) = (x1, x2, x3,−x4,−x5,−x6).

Hence f(x, x, x, x, x, x) = (x, x, x,−x,−x,−x). One can easily verify that f is
a linear quantum isometry of C. However, f does not extend to a quantum
monomial map. Indeed, for every permutation we consider, there exist at least
two nonzero scalars ai and aj that have different values 1 or −1.

7.2 Gabidulin codes

We finish this chapter observing the rank weight, for which the results of Chap-
ter 5 do not apply.

Let Fq be a finite field and let Fqm be a finite field extension of Fq of order m.
On Fqm we consider a structure of an m-dimensional Fq-linear vector space by
fixing a basis u1, . . . , um ∈ Fqm . Let n be a positive integer and let (x1, . . . , xn)
be a vector in Fnqm . For every i ∈ {1, . . . ,m} the element xi has the expansion in
the basis xi = a1iu1 + · · ·+ amium. The rank weight is a function wtR : Fnqm →
{0, . . . ,min(n,m)} defined as the maximum number of Fq-linearly independent
coordinates, or equivalently, as the rank of the following matrix,

wtR(x1, . . . , xn) = rank

a11 . . . a1n

...
. . .

...
am1 . . . amn

 .

We observe Fqm-linear codes in Fnqm with the rank metric. Such codes are
called the Gabidulin codes. The theory of rank metric codes was introduced in
[30].

In the group GLn(Fqm) ∼= AutFqm (Fnqm) we distinguish the subgroup G gen-
erated by two subgroups: {xIn | x ∈ F∗qm} and GLn(Fq). The weight preserving
maps of the ambient space are described in the following theorem.
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Theorem 7.2.1 (see [6]). A map f : Fnqm → Fnqm is an Fqm-linear wtR-
preserving map if and only if f ∈ G.

To describe extension properties of Gabidulin codes we cannot directly use
the results of Chapter 5 for general weight function. The main reason is that
the rank weight does not splits in the sum of weights of coordinates, i.e.,

wtR(x1, . . . , xn) 6= wtR(x1) + · · ·+ wtR(xn),

in general, where xi ∈ Fqm . The same holds, for example, for the poset weight
and the Rosenbloom-Tsfasman weight.

However, we can put the alphabet A to be equal Fnqm and in such a way
consider all Gabidulin codes as R = Fqm-linear codes over the alphabet A =
Fnqm of length one. This is the case of the vector space alphabet. Then, from
Theorem 7.2.1 the symmetry group of the rank weigh wtR : A→ Q, U(wtR) =
G, which particularly means that the defined group G is closed with respect to
the action on Fnqm .

Proposition 7.2.1. An extension theorem holds for Gabidulin codes, i.e., for
every Fqm-linear code C ⊆ Fnqm each Fqm-linear wtR-preserving map f : C →
Fnqm extends to an element of G, if and only if the Fqm-linear vector space Fnqm
is G-pseudo-injective.

Proof. It is clear that the map f : C → A is a wtR-preserving map if and only if
f is a swcG-preserving map. The statement follows from Proposition 5.3.2.

For the moment we cannot give positive or negative answer on the question if
an extension property holds for the Gabidulin codes. One can notice that similar
characterization of an extension properties in terms of G-pseudo-injectivity can
be obtained for arbitrary module alphabets equipped with general weights as
long as the symmetry group of the weight on the full R-module An is known.

In particular, if the alphabet A is a vector space the problem is related to
G-pseudo-injectivity of vector spaces.
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A group of isometries of a classical linear code is the group of those linear
bijections from the code to itself that preserve the Hamming distance. In par-
ticular, from the classical MacWilliams Extension Theorem (see Theorem 2.1.1)
it follows that each isometry of a linear code to itself extends to a monomial
map.

As it is discussed in previous chapters, for linear codes over module alphabets
an analogue of the MacWilliams Extension Theorem does not hold in general.
This means that there exist codes with isometries to itself that do not extend to
monomial maps (see Example 4.2.1). In the context of combinatorial codes, that
is, codes without any algebraic structure, the situation is similar, see [4, 41, 55].

Along with the group of isometries of a code we observe the subgroup of
those isometries that extend to monomial maps. Except the case of classical
linear codes, the two groups may not be the same.

In [62] and [68] Wood investigated the question of how different the two
groups of a linear code over a matrix module alphabet can be. He showed,
under certain assumptions, that there exists a linear code over a matrix module
alphabet with predefined group of isometries and group of monomial isometries.
In this chapter we prove a similar statement for combinatorial codes.

8.1 Preliminaries

Recall the context of combinatorial codes. Let A be a finite set alphabet and
let n be a positive integer. The map ρH : An × An → {0, . . . , n} denotes the
Hamming distance. A map h : An → An is called monomial if there exists a
permutation π ∈ Sn and permutations σ1, . . . , σn ∈ S(A) such that for each
a ∈ An,

h(a) =
(
σ1(aπ(1)), . . . , σn(aπ(n))

)
.

Let C ⊆ An be a code with m ≥ 3 codewords. Consider the message set
M = {1, . . . ,m}, and consider an encoding map λ : M → An of the code C,
that is, an injective map such that λ(M) = C. For every g ∈ S(M) the map
λgλ−1 : C → C is a well-defined bijection.

Definition 8.1.1. The group of isometries of C is the set

Iso(C) := {g ∈ S(M) | λgλ−1 is a Hamming isometry},

and the group of monomial isometries of C is the set

Mon(C) := {g ∈ S(M) | λgλ−1 extends to a monomial map}.
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The group Mon(C) is a subgroup of Iso(C) since every monomial map is a
Hamming isometry.

Remark 8.1.1. In coding theory the notion of the automorphism group Aut(C)
of those monomial maps that preserve C is often used. The set of all monomial
maps of An form a group, which is isomorphic to the wreath product Sn o
S(A), see [17, Section 2.6]. Note that Mon(C) and Aut(C) are different objects:
Mon(C) is a subgroup of S(M) and Aut(C) is a subgroup of the full group of
monomial maps. However, there exists a connection. For a monomial map
h ∈ Aut(C) the map λ−1hλ is in Iso(C). By defining the map restr : Aut(C)→
Iso(C), h 7→ λ−1hλ, we have the equality of groups Mon(C) = restr(Aut(C)).
The groups Mon(C) and Aut(C) are isomorphic unless the homomorphism restr
has a nontrivial kernel. The last holds if and only if the code has two columns
that differ by a permutation of the alphabet.

From Theorem 2.1.2, Iso(An) = Mon(An). However, in general, for codes in
An the equality of the groups does not hold.

Example 8.1.1. Suppose A = {0, 1}, M = {1, . . . , 5}. Consider the code C of
cardinality 5 in A4,

C = {(0, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0)},

where the encoding map λ : M → C is defined in the presented order. The
group Iso(C) < S5 is generated by the cycles (12), (123) and (4, 5) and has 12
elements. From the other side, Mon(C) is a subgroup of Iso(C) generated by
permutations (12) and (123). For example, denoting g0 = (45) ∈ Iso(C), the
map λg0λ

−1 is an isometry of C that does not extend to a monomial map,

0 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0

λg0λ
−1

−−−−−→

0 0 0 0
1 1 0 0
1 0 1 0
0 1 1 0
1 0 0 1

.

Indeed, one can easily check that λg0λ
−1 : C → C is a Hamming isometry. Also,

the fourth column from the right hand side has equal first four elements, but
there is no such column from the left hand side. Hence, the code isomorphism
λg0λ

−1 does not extend to a monomial map.
Therefore, Mon(C) 6= Iso(C). Note that the group Aut(C) is generated by

two elements. One acts by swapping the second and the third column of C and
another acts by inverting the symbols in the first two columns and then swapping
the first two columns. Both groups Aut(C) and Mon(C) have 6 elements and
are isomorphic to the symmetric group S3.

There exist more complex examples. Recall that a code C ⊆ An is an
(n,K, d) q-ary code if it has cardinality K, minimum distance d and the alphabet
has q elements. According to [55], if C is (q, q2, q−1) or (q+1, q2, q) q-ary MDS
code with q 6= 2, then |Iso(C)| > |Mon(C)|, and thus Iso(C) 6= Mon(C). The
same holds, for example, for (q, (q − 1)2, q − 1) q-ary equidistant codes, where
q ≥ 5 and both q and q − 1 are prime powers (see [41]).
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8.2 Main result

Let q denote the cardinality of the alphabet A, q ≥ 2. Recall that M =
{1, . . . ,m}. Consider the set P of all the partitions of the set M that have
at most q classes,

P :=
{
{c1, . . . , ct} | c1 t · · · t ct = M, t ≤ q

}
,

where ci ⊆M , for i ∈ {1, . . . , t}, and t denotes the disjoint union of sets.
The canonical action of the group S(M) on the set P is defined in the

following way, for g ∈ S(M), for α = {c1, . . . , ct} ∈ P,

g(α) := {g(c1), . . . , g(ct)}.

In P we distinguish a subset

P2 :=
{{
{i, j}, {M \ {i, j}}

} ∣∣∣ i 6= j ∈M
}
.

Since each partition in P2 has two classes, which is not greater than q, P2 ⊂ P.
The group S(M) naturally acts on P2 and P \ P2. The main result of this
chapter follows.

Theorem 8.2.1 (see [20]). Let m be a positive integer, m ≥ 5 or m = 3. Let
A be a finite set alphabet and let C be a code over the alphabet A of cardinality
m. The following statements hold.

(i) The group Iso(C) ≤ S(M) is closed with respect to the action on P2.

(ii) The group Mon(C) is equal to an intersection of Iso(C) with a subgroup
of S(M) that is closed with respect to the action on P \ P2.

(iii) For each subgroup H1 ≤ S(M) that is closed with respect to the action on
P \ P2, for each subgroup H2 ≤ S(M) that is closed with respect to the
action on P2, there exists a code C of cardinality m such that

Mon(C) = H1 ∩ Iso(C) and Iso(C) = H2.

From the fact that, for m ≥ 5, the trivial subgroup {e} and the full group
S(M) are closed with respect to the action on P \ P2 and P2 respectively, we
get the first corollary.

Corollary 8.2.1. For every integer m ≥ 5, there exists a code C of cardinality
m with the maximal group Iso(C) = S(M) and the minimal group Mon(C) =
{e}.

Remark 8.2.1. For the case m = 3, P \ P2 has two partitions: {{1, 2, 3}} and
{{1}, {2}, {3}}. The trivial group {e} fixes both of them, but also so does every
permutation in S3 and hence {e} is not closed with respect to the action on
P \ P2.
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By using Theorem 8.2.1 (iii) with H1 = S(M), which is closed with respect
to the action on P \ P2, we get the second corollary.

Corollary 8.2.2. For every integer m ≥ 5 or m = 3, for each subgroup H ≤
S(M) that is closed with respect to the action on P2, there exists a code C of
cardinality m such that the groups Mon(C) and Iso(C) coincide and are both
equal to H.

Example 8.2.1. For m = 5 and q = 2, consider the code C of the following
form.

0 0 1 2 3 4 6 5 4 3 4 3 2 2 1 0
0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

The numbers over the header line represent the number of occurrences of the
column under the line in the code. For instance, in this example, the third
column appears once in the code, the fourth column appears twice in the code
and the second column does not appear anywhere in the code.

We indicated several columns that does not appear in the code for the com-
pleteness. In fact, all possible columns (up to a permutation of the alphabet)
are presented in the table. The vertical lines separate the columns with different
numbers of 1s.

One can check that the code C is a (40, 5, 22) equidistant binary code with
the maximal group of isometries Iso(C) = S(M) and the minimal group of
monomial isometries Mon(C) = {e}.

Remark 8.2.2. In general, for m ≥ 5, there is no direct relation between the
subgroups of S(M) closed with respect to the action on P2 and P \ P2. There
exists a subgroup that is closed with respect to the action on P \ P2 but not
closed with respect to the action on P2. For example, if m = 5, q = 3 and the
group is G = 〈(12)(34), (12)(35)〉 < S5. There also exists a subgroup that is
closed with respect to the action on P2 but not closed with respect to the action
on P \ P2. Consider m = 5, q = 2 and G = 〈(12)(34)〉 < S5.

For codes with m = 4 codewords the statement of the theorem does not hold
in general and needs to be refined. This case is observed in Section 8.5. The
proof of the main result is given in the next sections.

8.3 Auxiliary results

8.3.1 Multiplicity function

Recall that for sets X,Y , let F(X,Y ) denote the set of all maps from X to Y .
Consider the map Ψ : F(M,A)→ P,

x 7→ Ψ(x) := {x−1(a) | a ∈ A} \ {∅}.
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The number of classes in Ψ(x) is at most |A| = q, so Ψ(x) ∈ P and hence the
map is defined.

Recall that λ : M → An is an encoding map of C. Let λk : M → A denote
the projection of λ on kth coordinate for k ∈ {1, . . . , n}. Define the multiplicity
function ηλ ∈ F(P,Q), as follows, for α ∈ P,

ηλ(α) := |{k | Ψ(λk) = α}|.

Proposition 8.3.1. For every non-zero function η ∈ F(P,Q) with nonnegative
integer values there exist a positive integer n and a map λ : M → An, such that
ηλ = η. If P2 is a subset of the support of η, then such map λ is injective.

Proof. Define n =
∑
α∈P η(α) and let α1, . . . , αn ∈ P be the n-tuple of parti-

tions such that for all α ∈ P,

η(α) = |{k | α = αk}|.

Enumerate the elements of the alphabet A = {a1, . . . , aq} and fix k ∈
{1, . . . , n}. Let αk = {c1, . . . , ct}, for some t ≤ q. Define the map λk ∈ F(M,A)
as

∀i ∈ {1, . . . , t},∀j ∈ ci, λk(j) = ai.

It is easily seen that Ψ(λk) = αk. Define λ = (λ1, . . . , λn) : M → An. Then, for
all α ∈ P, ηλ(α) = |{k | Ψ(λk) = α}| = |{k | αk = α}| = η(α).

Assume that λ is not injective. Then there exist i 6= j ∈ M such that
λ(i) = λ(j), or equivalently, for all k ∈ {1, . . . , n}, λk(i) = λk(j). This means
that for all k ∈ {1, . . . , n}, i and j belong to the same class of αk. The partition
α′ = {{i, i′},M \ {i, i′}} ∈ P2 has i and j in different classes, where i′ ∈ M \
{i, j} 6= ∅. Since P2 is a subset of the support of η, there exists k′ ∈ {1, . . . , n}
such that αk′ = α′. From the contradiction, λ is injective.

Note that the set P2 in the statement of the proposition can be replaced,
for example, by a smaller set of partitions of the form {{i},M \ {i}}, i ∈ M ,
or any other set that satisfies the property observed in the proof. We use the
already defined set P2 in order to avoid new notations.

8.3.2 Extension criterion and stabilizers

Let O denote the set of pairs of elements of M ,

O :=
{
{i, j}

∣∣ {i, j} ⊂M}.
The group S(M) acts on O in the following way, for g ∈ S(M),

g({i, j}) := {g(i), g(j)}.

Consider the action of S(M) on the vector spaces F(P,Q) and F(O,Q), so that,
for g ∈ S(M), η ∈ F(P,Q) and α ∈ P,

g(η)(α) := η(g−1(α)),
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and for x ∈ F(O,Q) and p ∈ O,

g(x)(p) := x(g−1(p)).

The group S(M) acts on the vector spaces by automorphisms, i.e., a map
φ : V → V , associated to the action of g on V , is a Q-linear bijection, where V
is either F(P,Q) or F(O,Q).

For α ∈ P and p = {i, j} ∈ O, define the function ∆α ∈ F(O,Q) as

∆α(p) :=

{
0, if i and j belong to the same class in α;
1, otherwise.

Consider the Q-linear map,

W : F(P,Q)→ F(O,Q), W (η)(p) :=
∑
α∈P

η(α)∆α(p),

where η ∈ F(P,Q), p ∈ O. A similar map was observed in [66, 67].

Proposition 8.3.2. A map f : C → An is a Hamming isometry if and only
if W (ηλ) = W (ηfλ). The map f extends to a monomial map if and only if
ηλ = ηfλ.

Proof. Calculate the Hamming distance, for all p = {i, j} ∈ O,

ρH(λ(i), λ(j)) = |{k | λk(i) 6= λk(j)}|
= |{k | ∆Ψ(λk)(p) = 1}|

=
∑
α∈P
|{k | Ψ(λk) = α}|∆α(p)

=
∑
α∈P

ηλ(α)∆α(p) = W (ηλ)(p).

The map f is a Hamming isometry if and only if for all {i, j} ⊂M ,

ρH(λ(i), λ(j)) = ρH(fλ(i), fλ(j)),

which is equivalent to the equality W (ηλ) = W (ηfλ).
The map f extends to a monomial map if and only if there exist a permuta-

tion π ∈ Sn and permutations σ1, . . . , σn ∈ S(A) such that fλk = σkλπ(k), for
all k ∈ {1, . . . , n}.

It is an easy exercise to verify that Ψ(x) = Ψ(y) for two maps x, y ∈ F(M,A),
if and only if there exists a permutation σ ∈ S(A) such that σx = y.

If f extends to a monomial map, then for all α ∈ P,

ηfλ(α) = |{k | Ψ(fλk) = α}|
= |{k | Ψ(σkλπ(k)) = α}|
= |{k | Ψ(λπ(k)) = α}| = ηλ(α).
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Conversely, let ηfλ = ηλ. Then for all α ∈ P the cardinality of sets Xα = {k |
Ψ(λk) = α} and Yα = {k | Ψ(fλk) = α} are equal. The set {1, . . . , n} is then a
disjoint union of the subsets Xα for α ∈ P. It is also equal to a disjoint union
of the subsets Yα for α ∈ P. Thus, there exists π ∈ Sn such that for all α ∈ P,
π(Xα) = Yα. Therefore, for all k ∈ {1, . . . , n}, Ψ(λπ(k)) = Ψ(fλk). From this,
for every k ∈ {1, . . . , n} there exists σk ∈ S(A) such that σkλπ(k) = fλk, which
means that f extends to a monomial map.

For a map η ∈ F(P,Q) define two stabilizers,

Stab(η) := {g ∈ S(M) | g(η) = η},
StabW (η) := {g ∈ S(M) |W (g(η)) = W (η)}.

Proposition 8.3.3. If C is a code with an encoding map λ : M → An, then

Mon(C) = Stab(ηλ), Iso(C) = StabW (ηλ).

Proof. For all g ∈ S(M), for all α ∈ P,

ηλg(α) = |{k | Ψ(λkg) = α}|
= |{k | Ψ(λk) = g−1(α)}|
= ηλ(g−1(α)) = g(ηλ)(α).

The statement of the proposition follows directly from Proposition 8.3.2 applied
for the map λgλ−1 : C → An.

8.3.3 Two matrices

For two pairs p, t ∈ O, the intersection p ∩ t ⊂M can have at most 2 elements.
On O fix an order. Let B be the |O| × |O| matrix defined over Q and indexed
by the elements of O. For p, t ∈ O,

Bp,t :=

{
1, if |p ∩ t| = 1;
0, if |p ∩ t| 6= 1.

Let m ≥ 5 or m = 3. Define the |O| × |O| matrix D as follows, for p, t ∈ O,

2(m−2)(m−4)×Dp,t :=

 −m
2 + 8m− 14, if |p ∩ t| = 2 (⇐⇒ p = t);

m− 4, if |p ∩ t| = 1;
−2, if |p ∩ t| = 0 (⇐⇒ p ∩ t = ∅).

Lemma 8.3.1. If m ≥ 5 or m = 3, then BD = DB = I, where I is the identity
|O| × |O| matrix.

Proof. For p, t ∈ O,

(BD)p,t =
∑
r∈O

Bp,rDr,t = Bp,tDt,t +
∑
|r∩p|=1
|r∩t|=1

Dr,t +
∑
|r∩p|=1
|r∩t|=0

Dr,t.
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If p = t, then

(BD)p,p = 0 +
∑
|r∩p|=1

Dr,p + 0 =
1

2(m− 2)
|{r ∈ O | |r ∩ p| = 1}| = 1.

If |p ∩ t| = 1, then

(BD)p,t =
−m2 + 8m− 14

2(m− 2)(m− 4)
+

1

2(m− 2)
|{r ∈ O | |r ∩ p| = 1; |r ∩ t| = 1}|

+
−1

(m− 2)(m− 4)
|{r ∈ O | |r ∩ p| = 1; |r ∩ t| = 0}|

=
−m2 + 8m− 14

2(m− 2)(m− 4)
+

1

2(m− 2)
(m− 2)

+
−1

(m− 2)(m− 4)
(m− 3) = 0.

If |p ∩ t| = 0, then

(BD)p,t = 0 +
1

2(m− 2)
|{r ∈ O | |r ∩ p| = 1; |r ∩ t| = 1}|

+
−1

(m− 2)(m− 4)
|{r ∈ O | |r ∩ p| = 1; |r ∩ t| = 0}|

=
4

2(m− 2)
+

−1

(m− 2)(m− 4)
2(m− 4) = 0.

Hence, BD = I, the matrices B and D are invertible and B−1 = D.

8.3.4 Properties of the map W

For a partition α ∈ P let 1α ∈ F(P,Q) be the map defined as follows, for β ∈ P,

1α(β) :=

{
1, if β = α;
0, if β 6= α.

Note that, for a partition α ∈ P,

W (1α) =
∑
β∈P

1β(α)∆β = ∆α. (8.1)

From now we assume that m ≥ 5 or m = 3. For every map x ∈ F(O,Q)
define the map in F(P,Q),

ξx :=
∑
r∈O

x(r)
∑
p∈O

Dr,p1{p,M\p},
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where D is the matrix defined previously. Using Lemma 8.3.1, for x ∈ F(O,Q)
and t ∈ O,

W (ξx)(t)
(8.1)
=
∑
r∈O

x(r)
∑
p∈O

Dr,p∆{p,M\p}(t)

=
∑
r∈O

x(r)
∑
p∈O

Dr,pBp,t =
∑
r∈O

x(r)(DB)r,t = x(t).
(8.2)

For every α ∈ P \ P2 define the function in F(P,Q),

ζα := 1α − ξ∆α
.

Recall that for a partition α ∈ P, the function ∆α is in F(O,Q). For α ∈ P,

W (ζα)
(8.1)
= ∆α −W (ξ∆α)

(8.2)
= ∆α −∆α = 0. (8.3)

Consider the subspace V0 of F(P,Q) of those functions that take zero values
on the partitions in P \ P2 (i.e., functions that have the support in P2),

V0 := {η ∈ F(P,Q) | ∀α ∈ P \ P2, η(α) = 0}.

The subspace V0 is the image of the canonical embedding of F(P2,Q) into
F(P,Q).

Proposition 8.3.4. If m ≥ 5 or m = 3, then F(P,Q) = V0 ⊕ kerW .

Proof. From eq. (8.2), the map ξx ∈ F(P,Q) is a pre-image of a map x ∈ F(O,Q)
under the map W , and hence W : F(P,Q) → F(O,Q) is onto. The dimension
of the kernel of W is equal to |P|− |O| = |P|− |P2| = |P \ P2|, which is true for
m 6= 4. Obviously, the maps ζα for α ∈ P \P2, are linearly independent over Q
and thus form a basis of kerW : see eq. (8.3). The dimension of V0 is equal to
|P2|. Also, kerW ∩ V0 = {0}. Therefore, F(P,Q) = V0 ⊕ kerW .

8.4 Proof of the main result

Before starting to prove the main theorem, let us prove several necessary equal-
ities.

For g ∈ S(M) and p = {i, j} ∈ O, the value g(∆α)(p) = ∆α(g−1(p)) is 0 if
g−1(i) and g−1(j) belong to the same class in α, and the value is 1 otherwise.
Obviously, g−1(i) and g−1(j) are in the same class of α if and only if i and j
are in the same class of g(α). Thus we have the equality

∆g(α) = g(∆α). (8.4)

For g ∈ S(M), for η ∈ F(P,Q) and p ∈ O,

W (g(η))(p) =
∑
α∈P

g(η)(α)∆α(p) =
∑
α∈P

η(g−1(α))∆α(p)

=
∑
β∈P

η(β)∆g(β)(p)
(8.4)
=

∑
β∈P

η(β)∆β(g−1(p))

= W (η)(g−1(p)).

(8.5)
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For g ∈ S(M) and for all β ∈ P, the value g(1α)(β) = 1α(g−1(β)) is 1, if
g(α) = β, and is 0 otherwise. Hence we have the equality

g(1α) = 1g(α). (8.6)

For g ∈ S(M), for x ∈ F(O,Q),

g(ξx) =
∑
r∈O

x(r)
∑
p∈O

Dr,p1{g(p),M\g(p)} =
∑
r∈O

x(r)
∑

g−1(p)∈O

Dr,g−1(p)1{p,M\p}

=
∑
r∈O

x(r)
∑
p∈O

Dg(r),p1{p,M\p} =
∑

g−1(r)∈O

x(g−1(r))
∑
p∈O

Dr,p1{p,M\p}

=
∑
r∈O

g(x)(r)
∑
p∈O

Dr,p1{p,M\p} = ξg(x).

(8.7)

For g ∈ S(M) and α ∈ P,

g(ζα) = g(1α)− g(ξ∆α
) = 1g(α) − ξ∆g(α)

= ζg(α), (8.8)

where the equality in the middle holds due to eq. (8.4), eq. (8.6) and eq. (8.7).

Lemma 8.4.1. If η0 ∈ kerW and η1 ∈ V0, then the equalities hold,

Stab(η0 + η1) = Stab(η0) ∩ Stab(η1),

StabW (η0 + η1) = StabW (η1) = Stab(η1).

Proof. We first show that the spaces kerW and V0 are invariant under the action
of S(M). Indeed, for g ∈ S(M), if η ∈ kerW , then for all p ∈ O,

W (g(η))(p)
(8.5)
= W (η)(g−1(p)) = 0,

and hence g(η) ∈ kerW . If η ∈ V0, then for all α ∈ P \ P2, g(η)(α) =
η(g−1(α)) = 0, and thus g(η) ∈ V0.

Now we prove the first equality. If g ∈ Stab(η0) ∩ Stab(η1), then g(η0) = η0

and g(η1) = η1. Hence g(η0 + η1) = g(η0) + g(η1) = η0 + η1 and thus g ∈
Stab(η0 + η1). Conversely, if g ∈ Stab(η0 + η1), then g(η0 + η1) = η0 + η1.
Since g(η0) ∈ kerW and g(η1) ∈ V0, by the uniqueness of the decomposition
(see Proposition 8.3.4) g(η0) = η0 and g(η1) = η1, which means g ∈ Stab(η0) ∩
Stab(η1). Therefore, Stab(η0) ∩ Stab(η1) = Stab(η0 + η1).

The second equality follows from the fact that W (η0 + η1) = W (η0) +
W (η1) = W (η1) and for all g ∈ S(M), W (g(η0 +η1)) = W (g(η0))+W (g(η1)) =
W (g(η1)).

Finally, we prove the third equality. The restriction of W on the subspace V0

is a bijection by Proposition 8.3.4. If g ∈ StabW (η1), then W (g(η1)) = W (η1).
The map g(η1) is in V0. Hence, applying W−1 to both sides of equality, we get
g(η1) = η1 and thus g ∈ Stab(η1). Since Stab(η1) ≤ StabW (η1) ≤ Stab(η1), we
get the third equality in the statement.
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Recall that P2 is a set of partitions of the form {p,M \ p}, p ∈ O. Define
the map 1P2 ∈ F(P,Q),

1P2 =
∑
α∈P2

1α.

Lemma 8.4.2. Let η ∈ F(P,Q). For all c ∈ Q,

Stab(η) = Stab(η + c1P2),

StabW (η) = StabW (η + c1P2).

Proof. For all g ∈ S(M),

g(1P2
) =

∑
α∈P2

g(1α)
(8.6)
=

∑
α∈P2

1g(α) =
∑

g−1(α)∈P2

1α = 1P2
.

We prove the second equality of the statement. If g ∈ StabW (η), then

W (g(η + c1P2
)) = W (g(η) + cg(1P2

)) = W (g(η)) +W (cg(1P2
))

= W (η) +W (c1P2
) = W (η + c1P2

).

Hence g ∈ StabW (η+ c1P2) and therefore StabW (η) ⊆ StabW (η+ c1P2). From
this, StabW (η + c1P2

) ⊆ StabW ((η + c1P2
) + (−c)1P2

)) = StabW (η). The first
equality is proven in the same way.

Now we are ready to prove the main theorem of the chapter.

Proof of Theorem 8.2.1. Part (i). Let λ ∈ F(M,An) be an encoding map of the
code C. From Proposition 8.3.3, we have to show that Iso(C) = StabW (ηλ) is
closed with respect to the action on P2. Since the bijection O → P2, p 7→ {p,M\
p} preserves the action of the group S(M), we have to show that StabW (ηλ)
is closed with respect to the action on O. If g ∈ S(M) preserves the orbits of
StabW (ηλ) on O, then so does g−1, and for all p ∈ O,

W (g(ηλ))(p)
(8.5)
= W (ηλ)(g−1(p)) = W (ηλ)(p).

Hence g ∈ StabW (ηλ), which means that StabW (ηλ) is closed with respect to
the action on O.

Part (ii). Let λ ∈ F(M,An) be an encoding map of the code C. From Propo-
sition 8.3.4, there exists the unique decomposition of the multiplicity function
ηλ ∈ F(P,Q) into the sum of two maps η0 ∈ kerW and η1 ∈ V0 with ηλ = η0+η1.

From Proposition 8.3.3, Stab(ηλ) = Mon(C) and StabW (ηλ) = Iso(C). From
Lemma 8.4.1, Stab(ηλ) = Stab(η0) ∩ StabW (ηλ). Finally, we have Mon(C) =
Stab(η0) ∩ Iso(C).

Let us prove that Stab(η0) is closed with respect to the action on P \ P2.
Let g ∈ S(M) preserve the orbits of Stab(η0) acting on P \ P2. This means
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that η0(α) = η0(g(α)) for all α ∈ P \P2. Consider the expansion of the map η0

in the basis ζβ , β ∈ P \ P2,

η0 =
∑

β∈P\P2

η0(β)ζβ .

For α ∈ P,

g−1(η0)(α) = η0(g(α)) =
∑

β∈P\P2

η0(β)ζβ(g(α))
(8.8)
=

∑
β∈P\P2

η0(β)ζg−1(β)(α)

=
∑

β∈P\P2

η0(g(β))ζβ(α) =
∑

β∈P\P2

η0(β)ζβ(α) = η0(α).

Hence g ∈ Stab(η0), and therefore Stab(η0) is closed with respect to the action
on P \ P2.

Part (iii). Let x ∈ F(O,Q) be a function that takes equal values on each
orbit and different values on different orbits of H2 acting on O. From eq. (8.2)
and eq. (8.7), StabW (ξx) = {g ∈ S(M) | W (g(ξx)) = W (ξx)} = {g ∈ S(M) |
g(x) = x}. For every g ∈ H2, g(x) = x and thus H2 ⊆ StabW (ξx). Conversely,
if g ∈ StabW (ξx), then g(x) = x and thus g preserves the orbits of H2. As in
the proof of part (i), the group H2 is closed with respect to the action on O,
and hence g ∈ H2. Finally, StabW (ξx) = H2.

Let {X1, . . . , Xt} be the set of orbits of H1 acting on the set P \ P2. Let
c1, . . . , ct ∈ Q be different nonnegative numbers and define the map

η0 =

t∑
i=1

ci
∑
α∈Xi

ζα.

For all g ∈ H1,

g(η0) =

t∑
i=1

ci
∑
α∈Xi

g(ζα)
(8.8)
=

t∑
i=1

ci
∑
α∈Xi

ζg(α) =

t∑
i=1

ci
∑

g−1(α)∈Xi

ζα = η0,

and thus H1 ≤ Stab(η0). Conversely, if g ∈ Stab(η0), then, for every i ∈
{1, . . . , t} and every β ∈ Xi, η0(g−1(β)) = g(η0)(β) = η0(β) = ci. Hence
g−1(β) ∈ Xi and thus g−1(Xi) = Xi. Since H1 is closed with respect to the
action on P \ P2, we have g−1 ∈ H1 and thus g ∈ H1. Hence H1 = Stab(η0).

Since η0 ∈ kerW and ξx ∈ V0, from Lemma 8.4.1, StabW (η0 + ξx) =
StabW (ξx) = H2 and Stab(η0 + ξx) = Stab(η0) ∩ StabW (ξx) = H1 ∩H2.

There exist two nonnegative integers c, c′ such that c′(η0 + ξx) + c1P2
is

non-zero, takes nonnegative integer values and its support contains P2. From
Lemma 8.4.2, StabW (c′(η0 + ξx) + c1P2

) = StabW (c′(η0 + ξx)) = StabW (η0 +
ξx) = H2 and Stab(c′(η0 + ξx) + c1P2) = Stab(c′(η0 + ξx)) = Stab(η0 + ξx) =
H1 ∩H2.

From Proposition 8.3.1, there exists an injective map λ : M → An such that
ηλ = c′(η0 + ξx) + c1P2

. Define C = λ(M). By Proposition 8.3.3, Iso(C) =
StabW (ηλ) = H2 and Mon(C) = Stab(ηλ) = H1 ∩H2 = H1 ∩ Iso(C).
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8.5 Codes with 4 elements

There are two main reasons why the general approach fails for m = 4. The
first reason is that for m = 4 the sets P2 and O have 3 and 6 elements corre-
spondingly, whereas for m ≥ 5 or m = 3, |P2| = |O| = m(m−1)

2 , which is crucial
in several places in the proof. The second reason is that the matrix B is not
invertible and the matrix D is not defined.

However, if m = 4 and q ≥ 3, we still can use the basic idea and an analogue
of Theorem 8.2.1 holds. For this, let us make several changes in the text of the
chapter. Replace P2 with

P ′2 :=
{{
{i}, {j}, {M \ {i, j}}

} ∣∣∣ {i, j} ⊂M}.
The set P ′2 is well-defined since each of its elements has 3 classes, which is not
greater than q.

Replace the matrices B and D with B′ and D′, for p, t ∈ O, where

B′p,t :=

{
1, if |p ∩ t| 6= 0;
0, if |p ∩ t| = 0.

D′p,t :=

{
1
5 , if |p ∩ t| 6= 0;
− 4

5 , if |p ∩ t| = 0.

And replace the map ξx with

ξ′x :=
∑

p={i,j}∈O

∑
r∈O

D′r,px(r)1{{i},{j},M\p}.

In such a way |P ′2| = |O| = 6 and the bijection P ′2 → O, {{i}, {j},M \ {i, j}} 7→
{i, j} preserves the action of the group S4. Also, B′ is invertible and B′D′ =
D′B′ = I, where I is the 6× 6 identity matrix.

One can verify that Theorem 8.2.1, all the statements, equalities and proofs
remain correct with these changes.

Consider the case m = 4 and q = 2. The set P contains 8 partitions and
the set O contains 6 pairs. Fixing bases in F(P,Q) and F(O,Q), look at the
Q-linear map W as the following 6× 8 matrix over Q:

W =


0 1 1 0 0 0 1 1
0 1 0 1 0 1 0 1
0 1 0 0 1 1 1 0
0 0 1 1 0 1 1 0
0 0 1 0 1 1 0 1
0 0 0 1 1 0 1 1

 .

The vertical lines separate the columns labeled by partitions from three different
orbits under the action of S4 on the set P.

Proposition 8.5.1. Let C be a binary code with 4 codewords. The groups
Iso(C) ≤ S4 and Mon(C) ≤ S4 are equal and are closed with respect to the
action on O. For every subgroup H ≤ S4 that is closed with respect to the
action on O, there exists a binary code C with 4 codewords such that Iso(C) =
Mon(C) = H.



8. Isometry groups of combinatorial codes 72

Proof. It is easy to calculate that kerW is a subspace of dimension 2 gener-
ated by (1, 0, 0, 0, 0, 0, 0, 0)T and (0, 1, 1, 1, 1,−1,−1,−1)T . Note that kerW is
invariant under the action of S4.

Let λ : M → {0, 1}n be an encoding map of C. Assume that W (ηλ) =
W (ηgλ), or equivalently, ηλ − ηgλ ∈ kerW , for some g ∈ S4. In the proof
of Proposition 8.3.3 we showed that ηgλ = g(ηλ). Then, 24(ηλ − ηgλ) =∑
h∈S4

h(ηλ − g(ηλ)) =
∑
h∈S4

h(ηλ) −
∑
h∈S4

h(ηλ) = 0. Hence, W (ηλ) =
W (ηgλ) implies ηλ = ηgλ for all g ∈ S4. By Proposition 8.3.2 and Proposi-
tion 8.3.3, Iso(C) = Mon(C).

The fact that the groups Iso(C) = Mon(C) are closed with respect to the
action on O is proven in the same way as in Theorem 8.2.1 (i).

To prove the last statement, for each subgroup of S4 closed with respect
to the action on O we give the explicit code construction. Any binary code of
cardinality 4, up to a monomial equivalence, has the following form,

x1 x2 x3 x4 x5 x6 x7 x8

0 1 0 0 0 1 1 1
0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1

,

where x1, . . . , x8 are nonnegative integers; see Example 8.2.1 for more details.
There exist 7, up to an automorphism of S4, non-equivalent subgroups in S4

that are closed with respect to the action on O. The groups and corresponding
multiplicity functions of the codes are given below.

Group ηλ = (x1, . . . , x8)
{e} (0,1,2,3,4,0,0,0)

〈(12)〉 ∼= S2 (0,1,1,2,3,0,0,0)
〈(12), (123)〉 ∼= S3 (0,1,1,1,2,0,0,0)
〈(12), (34)〉 ∼= K4 (0,1,1,2,2,0,0,0)

〈(12)(34), (13)(24)〉 ∼= K4 (0,0,0,0,0,2,1,0)
〈(1234), (13)〉 ∼= D8 (0,0,0,0,0,1,0,1)

S4 (0,1,1,1,1,0,0,0)
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Summarizing the work done in my thesis, a new geometric approach for the
extension problems in coding theory is introduced. The developed techniques
allow to describe a linear code over a module alphabet in terms of configurations
of submodules in an ambient module. The usage of this geometric language
makes possible to reveal new properties of codes and weight preserving maps.

In particular, I prove an extension theorem for short codes over matrix mod-
ule alphabets, for a large family of MDS codes, for codes over a PID module
alphabet, and also I give alternative proofs for some well-known results in the
subject. When an alphabet does not have an extension property, the geometric
approach helps to build a code with unextendable isometry or weight preserving
map.

A nice example of an unextendable linear code isometry that permutes co-
ordinates of each codeword is given in Chapter 5. To show its existence, geom-
etry, abstract algebra and combinatorics are combined together. The existence
of such a code isometry automatically proves several very general properties of
extendability of general weight preserving maps.

Another example of connections between linear algebra and combinatorics
is given in Chapter 8. Describing a combinatorial code as a point in a vector
space, I get the results similar to those obtained by Wood for linear codes. I
think that the theory developed in Chapter 8 can be used in its order to improve
the original result.

We end this conclusion by proposing several open problems that arose while
preparing the present manuscript. The first two sections contain problems with a
detailed explanation and some investigations that have not yet give any valuable
result. The third section contains a list of other problems related to the subject
of the thesis.

9.1 Weight preserving maps of the full space

In Chapter 5 we defined an extension property for a module alphabet equipped
with a weight function ω : An → Qt as an extension to a monomial map
that preserves the weight ω, i.e., an U(ω)-monomial map. However, it is not
mentioned neither in the present thesis nor in other papers on this subject, that
the given class of monomial maps is maximal that preserves the weight ω.

For the Hamming weight it is true that every Hamming isometry of the
ambient space An is a monomial map both for combinatorial and linear cases
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(see Theorem 2.1.2 and Proposition 2.1.1). A similar statement holds for the
symmetrized weight composition (see Proposition 5.2.1). But it is not always
the case for general weight functions. Consider the following example.

Example 9.1.1. Let m = ab be a composite positive integer, where a, b are
coprime. Let ψ : Za⊕Zb → Zm be an isomorphism of groups. Let ωa : Za → Qt
and ωb : Zb → Qt be two weights. Define for every x ∈ Zm such that x = ψ(y, z),
where y ∈ Za, z ∈ Zb,

ωm(x) = ωa(y) + ωb(z).

Define a Zm-linear map f : Z2
m → Z2

m in the following way,

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

f−→

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

,

where the decomposition is from the isomorphism Z2
m = Zm ⊕ Zm

ψ×ψ←−−− Za ⊕
Zb ⊕ Za ⊕ Zb.

The map f preserves ωm. Indeed, let α, β, γ, δ ∈ Zm, calculate,

ωm((α, β), (γ, δ)) = ωm(α, β) + ωm(γ, δ) = ωa(α) + ωb(β) + ωa(γ) + ωb(δ)

= ωa(α) + ωb(δ) + ωa(γ) + ωb(β) = ωm(α, δ) + ωm(γ, β)

= ωm((α, δ), (γ, β)) = ωm(f((α, β), (γ, δ)))

But f is not U(ωm)-monomial, since, for example f maps ((1, 1), (0, 0)) to
((1, 0), (0, 1)).

Variations of the example for Znm, where n > 2, also exist. In the follow-
ing statement we prove that the full group of ω-preserving linear maps on the
ambient set is a subgroup of monomial maps for local ring alphabets.

Proposition 9.1.1. Let R be a local ring (with identity), i.e., it has unique
maximal ideal. Let ω : R→ Q+ be a weight function with ω(r) = 0 ⇐⇒ r = 0.
Every ω-preserving R-linear invertible map h : Rn → Rn is U(ω)-monomial.

Proof. Let I be the maximal ideal in R. Note that the group of units U(R) =
R \ I. Let ei ∈ Rn denote the vector with 1 on the ith position and 0 elsewhere.
Assume that h(ei) = (a1, . . . , an), where ai ∈ I. Then for every r ∈ annR(I),
h(rei) = 0, which means that kerh 6= 0 and h is not invertible.

Without loss of generality, suppose that h(e1) = (a1, . . . , an) and a1 ∈ U(R).
Let r ∈ U(R) has the minimum weight ω(r) among all the elements in U(R).
Calculate,

ω(r) = ω(h(re1)) ≥ ω(ra1).

Since ra1 ∈ U(R), ω(ra1) = ω(r) and thus a2 = · · · = an = 0. The equality
h(e1) = r−1a1e1 = g1e1 holds for g1 = r−1a1 ∈ U(R).

For every r ∈ R, ω(r) = ω(h(re1)) = ω(rg1e1) = ω(rg1). Considering the
ring R as a module over itself, the group AutR(R) is isomorphic to the group
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U(R), that is, linear automorphisms of R acts by multiplication on invertible
elements in R. Hence g1 ∈ U(ω) = {g ∈ U(R) | ∀r ∈ R, ω(r) = ω(rg)}.

Using the same arguments for other coordinates, h is an U(ω)-monomial
map.

We suggest a new definition of an extension property for linear codes over
a module alphabet bases on the categorical approach of [3]. We say that an
R-module alphabet A has a ∗-extension property if for every positive integer n,
every R-linear weight preserving map of a code C ⊆ An extends to an R-linear
weight preserving map of An. This definition differ from the classical definition
of an extension property for some cases (see Example 9.1.1). The suggested
problems are the following.

Problem 9.1.1. Describe those R-module alphabets that have a ∗-extension
property.

Problem 9.1.2. Describe sufficient and necessary conditions on an R-module
alphabet A and a weight function ω such that every R-linear ω-preserving map
h : An → An is U(ω)-monomial.

9.2 MDS combinatorial codes

In Chapter 4 we proved some facts about an extension property of MDS linear
and group codes. However, as we mentioned in Remark 4.3.1, an analogue of the
extension theorem may hold for some MDS combinatorial codes. Though we do
not have any results for the moment, we give an idea of one possible approach
to the solution of the extension problem for MDS combinatorial codes. For this
we combine the geometric approach of Chapter 2 and combinatorial approach
of Chapter 8.

Recall the notations of Chapter 8. Let C ⊆ An be a code with m-elements
and let λ : M → An be an encoding map of C, where M = {1, . . . ,m}.

Let α1, . . . , αn be partitions that correspond to the map λ (see Section 8.3.1
for more details). Let f : C → An be a map and let µ = fλ. In the same way
let β1, . . . , βn be partitions that correspond to the map µ. All the partitions are
in P.

Recall that the map ∆α : O → {0, 1} maps a pair p = {i, j} ∈ O to 0 if i
and j belong to the same class in α, and to 1 otherwise. The map ∆α can be
seen as a subset of O, with ∆α(p) = 1 means that p ∈ ∆α.

It is easy to see, according to Proposition 8.3.2, that the map f : C → An

is a Hamming isometry if and only if

n∑
i=1

1∆αi
=

n∑
i=1

1∆βi
,

as functions on O, and the map f extends to a monomial map if and only if the
n-tuples (∆α1

, . . . ,∆αn) and (∆β1
, . . . ,∆βn) are equal. The last is equivalent
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to the equality, (α1, . . . , αn) = (β1, . . . , βn). This statement is similar to the
statement of Proposition 2.3.1 for linear codes.

In the same way as we did in Chapter 4, we can characterize MDS combi-
natorial codes in terms of partitions αi, i ∈ {1, . . . , n}. The following we give
without a proof. If the code C is (n, k) MDS, then for every set I ⊆ {1, . . . , n}
of cardinality k, ⋃

i∈I
∆αi = ∆⋂

i∈I αi
= O,

that holds if and only if
⋂
i∈I αi = {{1}, {2}, . . . {n}}. Here we assume that αi

is an element of the poset of all partitions with the partial order � “finer” (see
Section 6.2).

Despite the fact that the properties of linear and combinatorial MDS codes
are similar, an analogous result to Theorem 4.0.1 for MDS combinatorial codes
does not hold in general. For the moment we do not have a general extension
theorem for MDS combinatorial codes. The problem is the following.

Problem 9.2.1. Prove that an extension property holds for some classes of
MDS combinatorial codes using the given characterization of MDS codes in
terms of n-tuples of partitions.

9.3 Other problems

Problem 9.3.1. In Lemma 3.2.2 we proved that the length of the solutions
(X,Y ) of eq. (3.1) with X 6= Y is not smaller than Nk. For k = 1, which corre-
sponds to the case of vector spaces, we have a description of all such solutions
with n = N1 = q + 1. Describe for all k ≥ 2 all such solution of the minimum
length n = Nk.

Problem 9.3.2. For two-dimensional linear MDS codes over a vector space
alphabet we found a bound on the minimum code length for which there exists
an unextendable Hamming isometry (see Theorem 4.2.4). Find a similar bound
for two-dimensional linear MDS codes over a module alphabet.

Problem 9.3.3. For every positive integer n describe all subgroups in GLn(Fq)
that are closed with respect to the action on an n-dimensional vector space.

Problem 9.3.4. In Theorem 6.0.1 we showed that vector spaces does not have a
G-pseudo-injectivity property, except for a few families. Describe the subgroups
G ≤ GLn(Fq) and subspaces in an n-dimensional vector space that violate the
G-pseudo-injectivity property for vector spaces.

Problem 9.3.5. Find a connection between pseudo-injectivity and G-pseudo-
injectivity. In particular, find a G-pseudo-injective module that is not pseudo-
injective.

Problem 9.3.6. Prove or disprove extension theorem for weights that do not
split into a sum of weight on coordinates (as for example, the rank weight) using
the G-pseudo-injectivity criterion from Section 7.2.
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Problem 9.3.7. Describe all the subgroups of Sn that are closed with respect
to the action on the sets of partitions P, P2 and P \ P2, which are defined in
Chapter 8.

The reader may notice that in the present thesis the designed geometric
tools are not applied properly for the case of linear codes over module alpha-
bets equipped with general weight functions (except some negative results in
Chapter 5). However it is possible, though it is more complicated than in the
case of the Hamming weight. I also give (without a proof) two problems con-
cerning classical linear codes but with different weight functions and cyclic group
alphabets with the Lee weight. The statements seem to be correct, however,
in the thesis they are considered as open problems. The complete result may
appear in a future paper.

A classical linear code C is projective if every two different columns of C are
linearly independent.

Problem 9.3.8. Let C be a projective Fq-linear code in Fnq with a non-constant
weight ω : Fq → Q. Each Fq-linear ω-preserving map extends to an U(ω)-
monomial map.

We call a Zm-linear code C projective if for every two different columns u, v
of C (as elements of the Zm-module M) the following hold: for every c ∈ Z∗m,
u 6= cv and for every nonzero c ∈ Zm, cv 6= 0 ∈M . Alternatively, C is projective
if for every two different columns u, v of C the isomorphism holds 〈u, v〉 ∼= Z2

m.

Problem 9.3.9. Let m ≥ 2 be a positive integer. Let C be a projective Zm-
linear code in Znm. Each Zm-linear map that preserves the Lee weight extends
to a {±1}-monomial map.
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G-pseudo-injectivity of F3
2

#DEFINITIONS

import i t e r t o o l s
import copy

# This func t i on re turns a p a r t i t i o n in t o o r b i t s
# of an element g o f a group G.
# Orb i t s are s u b s e t s o f a v ec t o r space V.
def orbitsOfGroupElement (g , V, G) :

t = l i s t (V)
#i n i t i a t i n g the r e s u l t i n g p a r t i t i o n
pa r t i t i o n = [ ]
while len ( t )>0:

o r b i t = [ ]
#running through a c y c l i c subgroup genera ted by g
for h in G. subgroup ( [ g ] ) :

x = t [ 0 ] ∗ h
i f not x in o rb i t :

o r b i t . append (x )
o rb i t . s o r t ( )
p a r t i t i o n . append ( o rb i t )
for v in o rb i t :

t . remove (v )
p a r t i t i o n . s o r t ( )
return pa r t i t i o n

#removes d u p l i c a t e s from a ( nonhashab le ) t u p l e
def removeDupl icates ( a ) :

b=[ ]
for x in a :

i f x not in b :
b . append (x )

return b

# uni t e two o r b i t s in a p a r t i t i o n
def uniteTwoOrbits ( pa r t i t i on , orb i t1 , o rb i t 2 ) :

i=pa r t i t i o n . index ( o rb i t 1 )
j=pa r t i t i o n . index ( o rb i t 2 )
i f i != j :

p a r t i t i o n [ i ]= l i s t ( removeDupl icates ( o rb i t 1 + orb i t 2 ) )
del pa r t i t i o n [ j ]

# re turns an o r b i t t h a t con ta ins the g iven element x
def f i nd ( pa r t i t i on , x ) :

for o rb i t in pa r t i t i o n :
i f x in o rb i t :

return o rb i t
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#merges two p a r t i t i o n in t o o r b i t s
def mergePart i t i ons ( pa r t i t i on1 , p a r t i t i o n 2 ) :

p a r t i t i o n 3 = copy . deepcopy ( pa r t i t i o n 1 )
for o rb i t in pa r t i t i o n 2 :

for i in range ( len ( o r b i t )−1):
uniteTwoOrbits ( pa r t i t i on3 ,\

f i nd ( pa r t i t i on3 , o r b i t [ i ] ) , \
f i nd ( pa r t i t i on3 , o r b i t [ i +1]))

return pa r t i t i o n 3

#re turns True i f g p r e s e r v e s the o r b i t s o f orbs
def f i x e s ( g , p a r t i t i o n ) :

for o rb i t in pa r t i t i o n :
for x in o rb i t :

i f x∗g not in o rb i t :
return False

return True

#re turns a c l o s ed group wi th the g i v e s s e t o f o r b i t s
def makeClosure ( pa r t i t i on , G) :

group = [ ]
for g in G:

i f f i x e s ( g , p a r t i t i o n ) :
group . append ( g )

return group

#checks i f two e lements are in same o r b i t
def inSameOrbit (x , y , p a r t i t i o n ) :

for o rb i t in pa r t i t i o n :
i f x in o rb i t and y in o rb i t :

return True
return False

#check i f the map f ex tends to an element o f the group
def i sExtendab le (x , fx , y , fy , group ) :

for g in group :
i f x∗g == fx and y∗g == fy :

return [ g , True ]
return [ 0 , Fa l se ]

#MAIN PROGRAM

print ( ” I n i t i a l i z i n g . . . ” )
#the dimension o f the space
n=3
#the s i z e o f the f i n i t e f i e l d
q=2
#dec l a r a t i on o f the f i n i t e f i e l d
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F=GF(q )
#n by n i n v e r t i b l e matr ices over the f i n i t e f i e l d F
G=GL(n ,F)
#space o f n by n matr ices over the f i n i t e f i e l d F
M=MatrixSpace (F , n , n)
#vec to r space Fˆn
V=VectorSpace (F , n)
#dec l a r i n g two e lements o f the v ec t o r space a = (1 ,0 ,0)
#and b = (0 ,1 ,0)
a=V( [ 1 , 0 , 0 ] )
b=V( [ 0 , 1 , 0 ] )

print ( ” I n i t i a l i z a t i o n o f ba s i c ob j e c t s i s f i n i s h e d \n”+
”Bui ld ing p a r t i t i o n s in to o r b i t s f o r c y c l i c groups . . . ” )

#Creat ing a d i c t i ona r y o f o r b i t p a r t i t i o n s f o r qu i ck acces s
P=dict ( )
for g in G:

i f a∗g==a :
orb=orbitsOfGroupElement (g ,V,G)
P[ str ( orb )]= orb

print ( ”There are ”+str ( len (P))+
” d i f f e r e n t p a r t i t i o n s in to o r b i t s f o r c y c l i c groups .\n”+
”Developing p a r t i t i o n s in to o r b i t s . . . ” )

#ca l c u l a t i n g a l l p o s s i b l e o r b i t s
f l a g=True
checked =[ ]
while ( f l a g ) :

f l a g=False
t=dict ( )
for key1 , key2 in i t e r t o o l s . combinat ions (P, r =2):

i f not [ key1 , key2 ] in checked :
p a r t i t i o n 3=mergePart i t i ons (P[ key1 ] ,P [ key2 ] )
checked . append ( [ key1 , key2 ] )
for orb in pa r t i t i o n 3 :

orb . s o r t ( )
p a r t i t i o n 3 . s o r t ( )
key3=str ( p a r t i t i o n 3 )
i f key3 not in P:

t [ key3 ]= pa r t i t i o n 3
f l a g=True

for key in t :
P [ key ]= t [ key ]

print ( ”There are ”+str ( len (P))+
” d i f f e r e n t p a r t i t i o n s in to o r b i t s \nBui ld ing groups . . . ” )

#Now we s t a r t to b u i l d c l o s e d group f o r each o r b i t
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setOfClosedGroups =[ ]
for key in P:

setOfClosedGroups . append ( [P [ key ] ,\
makeClosure (P[ key ] ,G) ] )

print ( ”Al l groups are bu i l t .\ nChecking each group . . . ” )

exampleFound = False
for pa r t i t i on , group in setOfClosedGroups :

for c in V:
i f inSameOrbit (b , c , p a r t i t i o n ) and\

inSameOrbit ( a+b , a+c , p a r t i t i o n ) :
g , ans=isExtendab le ( a , a , b , c , group )
i f not ans :

print ( c , g )
exampleFound = True
break

i f not exampleFound :
print ( ”No counterexample found . ” )

print ( ”The program f i n i s h e d . ” )

”””
I n i t i a l i z i n g . . .
I n i t i a l i z a t i o n o f b a s i c o b j e c t s i s f i n i s h e d
Bui l d ing p a r t i t i o n s in t o o r b i t s f o r c y c l i c groups . . .
There are 17 d i f f e r e n t p a r t i t i o n s in t o o r b i t s
f o r c y c l i c groups .
Deve loping p a r t i t i o n s in t o o r b i t s . . .
There are 22 d i f f e r e n t p a r t i t i o n s in t o o r b i t s
Bu i l d ing groups . . .
A l l groups are b u i l t .
Checking each group . . .
No counterexample found .
The program f i n i s h e d .
”””

The SAGE source code can be found at https://github.com/dyshko/thesis.

https://github.com/dyshko/thesis/blob/master/pseudo-injectivity-of-vector-spaces.sage
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Isometry groups of combinatorial binary codes

#t h i s program c a l c u l a t e s the groups Mon(C) and Iso (C)
#and outpu t s t h e i r s i z e s . The input code i s r epre sen t ed
#by the s e t o f columns and a mu l t i p l i c i t y f unc t i on :
#a vec t o r t ha t says how many columns o f the corresponding
#type be long to the code .
#Since the cons idered codes have sma l l c a r d i n a l i t y
#and are over the b inary a l phabe t {0 ,1} , i t i s
#implemented the brute−f o r c e a l gor i thm

import i t e r t o o l s

#re turns the Hamming d i s t ance between two codewords
def hamming distance ( cw1 , cw2 , mlt ) :

return sum( [ mlt [ i ] for i in range ( len (mlt ) ) i f \
cw1 [ i ] != cw2 [ i ] ] )

#check i f t h e r e i s a Hamming isometry between two codes
#( second d i s t ance d i s t r i b u t i o n i s p r e c a l c u l a t e d )
def i sometry ( code new , code d i s t , mlt ) :

m = len ( code new ) #the number o f rows
for i in range (m) :

for j in range ( i +1, m) :
i f hamming distance\
( code new [ i ] , code new [ j ] , mlt )!= cod e d i s t [ i ] [ j ] :

return False
return True

#act ion o f permutat ion
def act perm ( code , p ) :

m = len ( code )
r e s = [ ]
for i in range (m) :

r e s . append ( code [ p [ i ] ] )
return r e s

#code to s t r i n g
def c o d e t o s t r ( code , mlt ) :

m = len ( code ) #the number o f rows
columns = [ l i s t ( x ) for x in zip (∗ code ) ]
for c o l in columns :

i f c o l [0]==1:
for i in range (m) :

c o l [ i ]ˆ=1
columns , new mlt = zip (∗ sorted ( zip ( columns , mlt ) ) )
return ”” . j o i n ( [ str ( c o l ) \
for c o l in columns ])+ str ( new mlt )
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#main
def s i z e s o f g r o u p s ( code , mlt ) :

MON = [ ]
ISO = [ ]
N = len ( code [ 0 ] ) #s i z e o f the suppor t
m = len ( code ) #the number o f rows

c od e d i s t = [ [ 0 ] ∗m for i in range (m) ]
for i in range (m) :

c od e d i s t [ i ] [ i ] = 0
for j in range ( i +1,m) :

c od e d i s t [ i ] [ j ] =\
c od e d i s t [ i ] [ j ] =\
hamming distance ( code [ i ] , code [ j ] , mlt )

c od e s t r = c od e t o s t r ( code , mlt )

for p in i t e r t o o l s . permutat ions ( l i s t ( range (m) ) ) :
code new = act perm ( code , p)
i f i sometry ( code new , code d i s t , mlt ) :

ISO+=[p ]
i f c o d e t o s t r ( code new , mlt )\
==code s t r :

MON+=[p ]
print ( ”#Mon(C) = ”+str ( len (MON))+ ”\ t #I so (C)=”\
+str ( len ( ISO ) ) )

########## INPUTS #####################

C1 = [
[ 1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ] ,
[ 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 ] ,
[ 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 0 ] ,
[ 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 1 ] ,
[ 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 ]

]

mlt11 = [0 , 1 , 2 , 3 , 4 , 6 , 5 , 4 , 3 , 4 , 3 , 2 , 2 , 1 , 0 ]

##############

C2 = [
[ 1 , 0 , 0 , 0 , 1 , 1 , 1 ] ,
[ 0 , 1 , 0 , 0 , 1 , 0 , 0 ] ,
[ 0 , 0 , 1 , 0 , 0 , 1 , 0 ] ,
[ 0 , 0 , 0 , 1 , 0 , 0 , 1 ]

]

mlt21 =[1 , 2 , 3 , 4 , 0 , 0 , 0 ]



Appendix 89

mlt22 =[1 , 1 , 2 , 3 , 0 , 0 , 0 ]

mlt23 =[1 , 1 , 1 , 2 , 0 , 0 , 0 ]

mlt24 =[1 , 1 , 2 , 2 , 0 , 0 , 0 ]

mlt25 =[0 , 0 , 0 , 0 , 2 , 1 , 0 ]

mlt26 =[0 , 0 , 0 , 0 , 1 , 1 , 0 ]

mlt27 =[1 , 1 , 1 , 1 , 0 , 0 , 0 ]

#############

C3 = [
[ 0 , 0 , 0 , 0 ] ,
[ 1 , 1 , 0 , 0 ] ,
[ 1 , 0 , 1 , 0 ] ,
[ 1 , 0 , 0 , 1 ] ,
[ 0 , 1 , 1 , 0 ]

]

mlt31 = [ 1 , 1 , 1 , 1 ]

########## OUTPUT #####################

print ( ”Code 1 : ” )
s i z e s o f g r o u p s (C1 , mlt11 )
print ( ”Code 2 : ” )
s i z e s o f g r o u p s (C2 , mlt21 )
print ( ”Code 3 : ” )
s i z e s o f g r o u p s (C2 , mlt22 )
print ( ”Code 4 : ” )
s i z e s o f g r o u p s (C2 , mlt23 )
print ( ”Code 5 : ” )
s i z e s o f g r o u p s (C2 , mlt24 )
print ( ”Code 6 : ” )
s i z e s o f g r o u p s (C2 , mlt25 )
print ( ”Code 7 : ” )
s i z e s o f g r o u p s (C2 , mlt26 )
print ( ”Code 8 : ” )
s i z e s o f g r o u p s (C2 , mlt27 )
print ( ”Code 9 : ” )
s i z e s o f g r o u p s (C3 , mlt31 )

”””
Code 1 :
#Mon(C) = 1 #Iso (C)=120
Code 2 :
#Mon(C) = 1 #Iso (C)=1
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Code 3 :
#Mon(C) = 2 #Iso (C)=2
Code 4 :
#Mon(C) = 6 #Iso (C)=6
Code 5 :
#Mon(C) = 4 #Iso (C)=4
Code 6 :
#Mon(C) = 4 #Iso (C)=4
Code 7 :
#Mon(C) = 8 #Iso (C)=8
Code 8 :
#Mon(C) = 24 #Iso (C)=24
Code 9 :
#Mon(C) = 6 #Iso (C)=12
”””

The Python source code can be found at https://github.com/dyshko/thesis.

https://github.com/dyshko/thesis/blob/master/isometry-groups-of-combinatorial-binary-codes.py
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Généralisations du Théorème d’Extension de MacWilliams 

 

Résumé en français 

Le fameux Théorème d’Extension de MacWilliams affirme que, pour les codes classiques, toute isométrie de 

Hamming linéaire d'un code linéaire se prolonge en une application monomiale. Cependant, pour les codes 

linéaires sur les alphabets de module, l'existence d'un analogue du théorème d'extension n'est pas garantie. 

Autrement dit, il existe des codes linéaires sur certains alphabets de module dont les isométries de Hamming 

ne sont pas toujours extensibles. Il en est de même pour un contexte plus général d'un alphabet de module muni 

d'une fonction de poids arbitraire. Dans la présente thèse, nous prouvons des analogues du théorème 

d'extension pour des codes construits sur des alphabets et fonctions de poids arbitraires. La propriété 

d'extension est analysée notamment pour les codes de petite longueur sur un alphabet de module de matrices, 

les codes MDS généraux, ou encore les codes sur un alphabet de module muni de la composition de poids 

symétrisée. Indépendamment de ce sujet, une classification des deux groupes des isométries des codes 

combinatoires est donnée. Les techniques développées dans la thèse sont prolongées aux cas des codes 

stabilisateurs quantiques et aux codes de Gabidulin dans le cadre de la métrique rang. 

 

Mot clés : Théorème d’Extension de MacWilliams, application monomiale, isométrie de Hamming, code non-

linéaire, codes sur alphabets de module, code additif, fonction de poids arbitraire, code quantique. 

  
Generalizations of the MacWilliams Extension Theorem 

Résumé en anglais 

The famous MacWilliams Extension Theorem states that for classical codes each linear Hamming isometry of 

a linear code extends to a monomial map. However, for linear codes over module alphabets an analogue of the 

extension theorem does not always exist. That is, there may exists a linear code over a module alphabet with an 

unextendable Hamming isometry. The same holds in a more general context of a module alphabet equipped 

with a general weight function. Analogues of the extension theorem for different classes of codes, alphabets 

and weights are proven in the present thesis. For instance, extension properties of the following codes are 

studied: short codes over a matrix module alphabet, maximum distance separable codes, codes over a module 

alphabet equipped with the symmetrized weight composition. As a separate result, a classification of two 

isometry groups of combinatorial codes is given. The thesis also contains applications of the developed 

techniques to quantum stabilizer codes and Gabidulin codes. 

 

Keywords : MacWilliams Extension Theorem, monomial map, Hamming isometry, nonlinear code, code over 

a module alphabet, additive code, general weight function, quantum code. 
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