A. , R. Desvillettes, L. Villani, C. And-wennberg, and B. , Entropy dissipation and long-range interactions, Arch. Rational Mech. Anal, vol.152, issue.4, pp.327-355, 2000.

A. , A. Bacry, E. Jaffard, S. And-muzy, and J. , Singularity spectrum of multifractal functions involving oscillating singularities, J. Fourier Anal. Appl, vol.4, issue.2, pp.159-174, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01557117

B. , J. Fournier, N. Jaffard, S. And-seuret, and S. , A pure jump Markov process with a random singularity spectrum, Ann. Probab, vol.38, issue.5, pp.1924-1946, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00693014

B. , J. And-seuret, and S. , The singularity spectrum of Lévy processes in multifractal time, Adv. Math, vol.214, issue.1, pp.437-468, 2007.

R. Bass, Stochastic differential equations with jumps, Probability Surveys, vol.1, issue.0, pp.1-19, 2004.
DOI : 10.1214/154957804100000015

B. , V. And-velani, and S. , A mass transference principle and the Duffin- Schaeffer conjecture for Hausdorff measures, Ann. of Math, issue.2, pp.164-971, 2006.

A. Bhatt and R. And-karandikar, Invariant Measures and Evolution Equations for Markov Processes Characterized Via Martingale Problems, The Annals of Probability, vol.21, issue.4, pp.2246-2268, 1993.
DOI : 10.1214/aop/1176989019

B. , R. M. And-getoor, and R. K. , Sample functions of stochastic processes with stationary independent increments, J. Math. Mech, vol.10, pp.493-516, 1961.

M. Bossy and D. And-talay, Convergence rate for the approximation of the limit law of weakly interacting particles: application to the Burgers equation, The Annals of Applied Probability, vol.6, issue.3, pp.818-861, 1996.
DOI : 10.1214/aoap/1034968229

URL : https://hal.archives-ouvertes.fr/inria-00074265

C. , E. And-lépingle, and D. , Brownian particles with electrostatic repulsion on the circle: Dyson's model for unitary random matrices revisited, ESAIM Probab. Statist, vol.5, pp.203-224, 2001.

C. , R. And-fontbona, and J. , Quantitative uniform propagation of chaos for Maxwell molecules, 2015.

L. Desvillettes, Boltzmann's kernel and the spatially homogeneous Boltzmann equation Fluid dynamic processes with inelastic interactions at the molecular scale, Riv. Mat. Univ. Parma, issue.6, pp.4-5, 2000.

D. , L. And-mouhot, and C. , Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions, Arch. Ration. Mech. Anal, vol.193, issue.2, pp.227-253, 2009.

E. , S. And-kurtz, and T. , Markov processes Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, 1986.

F. , J. Guérin, H. And-méléard, and S. , Measurability of optimal transportation and convergence rate for Landau type interacting particle systems, Probab. Theory Related Fields, vol.143, pp.3-4, 2009.

F. , N. And-guérin, and H. , On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity, J. Stat. Phys, vol.131, issue.4, pp.749-781, 2008.

F. , N. And-guillin, and A. , On the rate of convergence in Wasserstein distance of the empirical measure, Probab. Theory Related Fields, vol.162, pp.3-4, 2015.

F. , N. And-hauray, and M. , Propagation of chaos for the Landau equation with moderately soft potentials, Ann. Probab, vol.44, issue.6, pp.3581-3660, 2016.

F. , N. Hauray, M. And-mischler, and S. , Propagation of chaos for the 2D viscous vortex model, J. Eur. Math. Soc. (JEMS), vol.16, issue.7, pp.1423-1466, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00762286

F. , N. And-jourdain, and B. , Stochastic particle approximation of the keller-segel equation and two-dimensional generalization of bessel processes. Accepted by Ann, Appl. Probab

F. , N. And-méléard, and S. , A Markov process associated with a Boltzmann equation without cutoff and for non-Maxwell molecules, J. Stat. Phys, vol.104, pp.1-2, 2001.

F. , N. And-méléard, and S. , A stochastic particle numerical method for 3D Boltzmann equations without cutoff, Math. Comp, vol.71, pp.238-583, 2002.

F. , N. And-mischler, and S. , Rate of convergence of the Nanbu particle system for hard potentials and Maxwell molecules, Ann. Probab, vol.44, issue.1, pp.589-627, 2016.

F. , N. And-mouhot, and C. , On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity, Comm. Math. Phys, vol.289, issue.3, pp.803-824, 2009.

G. , D. And-quiñinao, and C. , Propagation of chaos for a subcritical Keller-Segel model, Ann. Inst. Henri Poincaré Probab. Stat, vol.51, issue.3, pp.965-992, 2015.

G. , C. And-méléard, and S. , Stochastic particle approximations for generalized Boltzmann models and convergence estimates, Ann. Probab, vol.25, issue.1, pp.115-132, 1997.

H. , M. And-jabin, and P. , Particle approximation of Vlasov equations with singular forces: propagation of chaos, Ann. Sci. Éc. Norm. Supér, vol.48, issue.4, pp.891-940, 2015.

H. , J. And-karandikar, and R. , Martingale problems associated with the Boltzmann equation, Seminar on Stochastic Processes, pp.75-122, 1989.

J. , J. And-shiryaev, and A. , Limit theorems for stochastic processes, 1987.

L. , X. And-mouhot, and C. , On measure solutions of the Boltzmann equation, part I: moment production and stability estimates, J. Differential Equations, vol.252, issue.4, pp.3305-3363, 2012.

M. , S. And-mouhot, and C. , Kac's program in kinetic theory, Invent. Math, vol.193, issue.1, pp.1-147, 2013.

M. , S. And-wennberg, and B. , On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol.16, issue.4, pp.467-501, 1999.

O. , S. And-taylor, and S. , How often on a Brownian path does the law of iterated logarithm fail?, Proc. London Math. Soc. (3), pp.174-192, 1974.

T. , G. And-villani, and C. , Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas, J. Statist. Phys, vol.94, pp.3-4, 1999.