.. Différents-mécanismes-de-réactivation-de-la-télomérase-dans-la-carcinogénèse-hépatique, 308 ? Mutations du promoteur de TERT dans les cancers solides, p.310

N. Razumilava, G. J. Gores, and . Cholangiocarcinoma, Cholangiocarcinoma, The Lancet, vol.383, issue.9935, pp.2168-79, 2014.
DOI : 10.1016/S0140-6736(13)61903-0

P. Bioulac-­?sage, H. Laumonier, C. Laurent, J. F. Blanc, and C. Balabaud, Benign and Malignant Vascular Tumors of the Liver in Adults, Seminars in Liver Disease, vol.28, issue.03, pp.302-316, 2008.
DOI : 10.1055/s-0028-1085098

H. B. El-­?serag and K. L. Rudolph, Hepatocellular Carcinoma: Epidemiology and Molecular Carcinogenesis, Gastroenterology, vol.132, issue.7, pp.2557-76, 2007.
DOI : 10.1053/j.gastro.2007.04.061

A. Forner, J. M. Llovet, J. Bruix, and . Hepatocellular-carcinoma, Hepatocellular carcinoma, The Lancet, vol.379, issue.9822, pp.1245-55, 2012.
DOI : 10.1016/S0140-6736(11)61347-0

URL : https://hal.archives-ouvertes.fr/hal-01134844

H. B. El-­?serag and A. C. Mason, Rising Incidence of Hepatocellular Carcinoma in the United States, New England Journal of Medicine, vol.340, issue.10, pp.745-50, 1999.
DOI : 10.1056/NEJM199903113401001

F. Borie, Primitive liver cancers: epidemiology and geographical study in France, European Journal of Gastroenterology & Hepatology, vol.21, issue.9, pp.984-993, 2009.
DOI : 10.1097/MEG.0b013e3283293783

V. Grando-­?lemaire, C. Guettier, S. Chevret, M. Beaugrand, and J. C. Trinchet, Hepatocellular carcinoma without cirrhosis in the West: epidemiological factors and histopathology of the non-tumorous liver, Journal of Hepatology, vol.31, issue.3, pp.508-521, 1999.
DOI : 10.1016/S0168-8278(99)80044-0

J. C. Trinchet, Complications and competing risks of death in compensated viral cirrhosis (ANRS CO12 CirVir prospective cohort), Hepatology, vol.55, issue.2 Suppl 1, 2015.
DOI : 10.1002/hep.24794

URL : https://hal.archives-ouvertes.fr/hal-01201948

N. Ganne-­?carrie, Predictive score for the development of hepatocellular carcinoma and additional value of liver large cell dysplasia in Western patients with cirrhosis, Hepatology, vol.23, issue.5, pp.1112-1120, 1996.
DOI : 10.1002/hep.510230527

J. C. Nault, Pathogenesis of hepatocellular carcinoma according to aetiology, Best Practice & Research Clinical Gastroenterology, vol.28, issue.5, pp.937-984, 2014.
DOI : 10.1016/j.bpg.2014.08.006

F. Degos, Hepatitis C virus related cirrhosis: time to occurrence of hepatocellular carcinoma and death, Gut, vol.47, issue.1, pp.131-137, 2000.
DOI : 10.1136/gut.47.1.131

M. S. Ascha, The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis, Hepatology, vol.155, issue.Suppl. 1, pp.1972-1980, 2010.
DOI : 10.1093/aje/155.4.323

E. E. Calle, C. Rodriguez, K. Walker-­?thurmond, and M. J. Thun, Overweight, Obesity, and Mortality from Cancer in a Prospectively Studied Cohort of U.S. Adults, New England Journal of Medicine, vol.348, issue.17, pp.1625-1663, 2003.
DOI : 10.1056/NEJMoa021423

C. Emerging-risk-factors, Diabetes Mellitus, Fasting Glucose, and Risk of Cause-Specific Death, New England Journal of Medicine, vol.364, issue.9, pp.829-870, 2011.
DOI : 10.1056/NEJMoa1008862

V. Paradis, Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liver fibrosis: A pathological analysis, Hepatology, vol.11, issue.3, pp.851-860, 2009.
DOI : 10.1002/9781444312775

C. C. Hsia, Mutations of p53 Gene in Hepatocellular Carcinoma: Roles of Hepatitis B Virus and Aflatoxin Contamination in the Diet, JNCI Journal of the National Cancer Institute, vol.84, issue.21, pp.1638-1679, 1992.
DOI : 10.1093/jnci/84.21.1638

J. C. Trinchet, Ultrasonographic surveillance of hepatocellular carcinoma in cirrhosis: A randomized trial comparing 3- and 6-month periodicities, Hepatology, vol.127, issue.6, pp.1987-97, 2011.
DOI : 10.1053/j.gastro.2004.09.014

J. Bruix and M. Sherman, Management of hepatocellular carcinoma: An update, Hepatology, vol.10, issue.Suppl 1, pp.1020-1022, 2011.
DOI : 10.1016/S1470-2045(08)70285-7

A. Forner, Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: Prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma, Hepatology, vol.25, issue.1, pp.97-104, 2008.
DOI : 10.1002/hep.1840220341

J. Bruix, Clinical decision making and research in hepatocellular carcinoma: Pivotal role of imaging techniques, Hepatology, vol.365, issue.Suppl, 2011.
DOI : 10.1056/NEJMp1106984

M. Torbenson and P. Schirmacher, Liver cancer biopsy-­?-­?back to the future?! Hepatology, pp.431-434, 2015.
DOI : 10.1002/hep.27545

D. Tommaso and L. , Advanced precancerous lesions in the liver, Best Practice & Research Clinical Gastroenterology, vol.27, issue.2, pp.269-84, 2013.
DOI : 10.1016/j.bpg.2013.03.015

D. Tommaso and L. , Diagnostic value of HSP70, glypican 3, and glutamine synthetase in hepatocellular nodules in cirrhosis, Hepatology, vol.82, issue.3, pp.725-759, 2007.
DOI : 10.1016/0016-5085(94)90024-8

D. Tommaso and L. , The application of markers (HSP70 GPC3 and GS) in liver biopsies is useful for detection of hepatocellular carcinoma, Journal of Hepatology, vol.50, issue.4, pp.746-54, 2009.
DOI : 10.1016/j.jhep.2008.11.014

D. Tommaso and L. , Diagnostic accuracy of clathrin heavy chain staining in a marker panel for the diagnosis of small hepatocellular carcinoma, Hepatology, vol.49, issue.5, pp.1549-57, 2011.
DOI : 10.1002/hep.22709

M. Y. Cai, EZH2 protein: a promising immunomarker for the detection of hepatocellular carcinomas in liver needle biopsies, Gut, vol.60, issue.7, pp.967-76, 2011.
DOI : 10.1136/gut.2010.231993

M. E. Pittman and E. M. Brunt, Anatomic Pathology of Hepatocellular Carcinoma, Clinics in Liver Disease, vol.19, issue.2, pp.239-59, 2015.
DOI : 10.1016/j.cld.2015.01.003

V. Paradis, Histopathology of Hepatocellular Carcinoma, Recent Results Cancer Res, vol.190, pp.21-32, 2013.
DOI : 10.1007/978-3-642-16037-0_2

J. M. Llovet, C. Bru, and J. Bruix, Prognosis of Hepatocellular Carcinoma: The BCLC Staging Classification, Seminars in Liver Disease, vol.19, issue.03, pp.329-367, 1999.
DOI : 10.1055/s-2007-1007122

S. Chevret, A new prognostic classification for predicting survival in patients with hepatocellular carcinoma, Journal of Hepatology, vol.31, issue.1, pp.133-174, 1999.
DOI : 10.1016/S0168-8278(99)80173-1

T. Yau, Development of Hong Kong Liver Cancer Staging System With Treatment Stratification for Patients With Hepatocellular Carcinoma, Gastroenterology, vol.146, issue.7, pp.1691-700, 2014.
DOI : 10.1053/j.gastro.2014.02.032

J. M. Llovet, J. Fuster, and J. Bruix, Intention-to-treat analysis of surgical treatment for early hepatocellular carcinoma: Resection versus transplantation, Hepatology, vol.221, issue.6, pp.1434-1474, 1999.
DOI : 10.1002/hep.510300629

M. D. Kluger, Liver resection for hepatocellular carcinoma in 313 Western patients: Tumor biology and underlying liver rather than tumor size drive prognosis, Journal of Hepatology, vol.62, issue.5, pp.1131-1171, 2015.
DOI : 10.1016/j.jhep.2014.12.018

A. Villanueva, New Strategies in Hepatocellular Carcinoma: Genomic Prognostic Markers, Clinical Cancer Research, vol.16, issue.19, pp.4688-94, 2010.
DOI : 10.1158/1078-0432.CCR-09-1811

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3395071

O. Seror, Percutaneous hepatic ablation: What needs to be known in 2014, Diagnostic and Interventional Imaging, vol.95, issue.7-8, 2014.
DOI : 10.1016/j.diii.2014.04.002

URL : http://doi.org/10.1016/j.diii.2014.04.002

N. Kontchou and G. , Radiofrequency ablation of hepatocellular carcinoma: Long-term results and prognostic factors in 235 Western patients with cirrhosis, Hepatology, vol.92, issue.5, pp.1475-83, 2009.
DOI : 10.1002/bjs.4986

V. Mazzaferro, Liver Transplantation for the Treatment of Small Hepatocellular Carcinomas in Patients with Cirrhosis, New England Journal of Medicine, vol.334, issue.11, pp.693-702, 1996.
DOI : 10.1056/NEJM199603143341104

C. Duvoux, Liver Transplantation for Hepatocellular Carcinoma: A Model Including ??-Fetoprotein Improves the Performance of Milan Criteria, Gastroenterology, vol.143, issue.4, pp.986-94, 2012.
DOI : 10.1053/j.gastro.2012.05.052

URL : https://hal.archives-ouvertes.fr/inserm-00865368

V. Mazzaferro, Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis, The Lancet Oncology, vol.10, issue.1, pp.35-43, 2009.
DOI : 10.1016/S1470-2045(08)70284-5

J. Zucman-­?rossi, A. Villanueva, J. C. Nault, and J. M. Llovet, Genetic Landscape and Biomarkers of Hepatocellular Carcinoma, Gastroenterology, vol.149, issue.5, 2015.
DOI : 10.1053/j.gastro.2015.05.061

A. Forner, M. Gilabert, J. Bruix, and J. L. Raoul, Treatment of intermediate-stage hepatocellular carcinoma, Nature Reviews Clinical Oncology, vol.32, issue.9, pp.525-560, 2014.
DOI : 10.1016/S0140-6736(11)61347-0

J. M. Llovet and J. Bruix, Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival, Hepatology, vol.36, issue.2, pp.429-471, 2003.
DOI : 10.1053/jhep.2003.50047

R. Salem, Radioembolization for Hepatocellular Carcinoma Using Yttrium-90 Microspheres: A Comprehensive Report of Long-term Outcomes, Gastroenterology, vol.138, issue.1, pp.52-64, 2010.
DOI : 10.1053/j.gastro.2009.09.006

R. Salem, Radioembolization Results in Longer Time-to-Progression and Reduced Toxicity Compared With Chemoembolization in Patients With Hepatocellular Carcinoma, Gastroenterology, vol.140, issue.2, pp.497-507, 2011.
DOI : 10.1053/j.gastro.2010.10.049

J. Lammer, Prospective Randomized Study of Doxorubicin-Eluting-Bead Embolization in the Treatment of Hepatocellular Carcinoma: Results of the PRECISION V Study, CardioVascular and Interventional Radiology, vol.31, issue.1, pp.41-52, 2010.
DOI : 10.1016/0016-5085(88)90436-2

H. Van-malenstein, A Randomized Phase II Study of Drug-Eluting Beads versus Transarterial Chemoembolization for Unresectable Hepatocellular Carcinoma, Onkologie, vol.34, issue.7, pp.368-76, 2011.
DOI : 10.1159/000329602

J. M. Llovet, Sorafenib in Advanced Hepatocellular Carcinoma, New England Journal of Medicine, vol.359, issue.4, pp.378-90, 2008.
DOI : 10.1056/NEJMoa0708857

A. L. Cheng, Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial, The Lancet Oncology, vol.10, issue.1, pp.25-34, 2009.
DOI : 10.1016/S1470-2045(08)70285-7

C. Verslype, O. Rosmorduc, P. Rougier, and E. G. Group, Hepatocellular carcinoma: ESMO-ESDO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Annals of Oncology, vol.23, issue.suppl 7, pp.41-49, 2012.
DOI : 10.1093/annonc/mds225

P. J. Johnson, Brivanib Versus Sorafenib As First-Line Therapy in Patients With Unresectable, Advanced Hepatocellular Carcinoma: Results From the Randomized Phase III BRISK-FL Study, Journal of Clinical Oncology, vol.31, issue.28, pp.3517-3541, 2013.
DOI : 10.1200/JCO.2012.48.4410

J. M. Llovet, Brivanib in Patients With Advanced Hepatocellular Carcinoma Who Were Intolerant to Sorafenib or for Whom Sorafenib Failed: Results From the Randomized Phase III BRISK-PS Study, Journal of Clinical Oncology, vol.31, issue.28, 2013.
DOI : 10.1200/JCO.2012.47.3009

J. M. Llovet and V. Hernandez-­?gea, Hepatocellular Carcinoma: Reasons for Phase III Failure and Novel Perspectives on Trial Design, Clinical Cancer Research, vol.20, issue.8, pp.2072-2081, 2014.
DOI : 10.1158/1078-0432.CCR-13-0547

P. Legoix, Beta-catenin mutations in hepatocellular carcinoma correlate with a low rate of loss of heterozygosity, Oncogene, vol.18, issue.27, pp.4044-4050, 1999.
DOI : 10.1038/sj.onc.1202800

P. Laurent-­?puig, Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis, Gastroenterology, vol.120, issue.7, pp.1763-73, 2001.
DOI : 10.1053/gast.2001.24798

C. Guichard, Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma, Nature Genetics, vol.44, issue.6, pp.694-702, 2012.
DOI : 10.1006/meth.2001.1262

URL : https://hal.archives-ouvertes.fr/inserm-00719917

K. Schulze, Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets, Nature Genetics, vol.30, issue.5, pp.505-516, 2015.
DOI : 10.1371/journal.pone.0038686

URL : https://hal.archives-ouvertes.fr/inserm-01159736

Y. Totoki, Trans-ancestry mutational landscape of hepatocellular carcinoma genomes, Nature Genetics, vol.35, issue.12, pp.1267-73, 2014.
DOI : 10.1186/1471-2105-11-189

A. Fujimoto, Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators, Nature Genetics, vol.36, issue.7, pp.760-764, 2012.
DOI : 10.1093/nar/gkn518

S. P. Cleary, Identification of driver genes in hepatocellular carcinoma by exome sequencing, Hepatology, vol.359, issue.5, 2013.
DOI : 10.1056/NEJMoa0804525

Z. Kan, Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma, Genome Research, vol.23, issue.9, 2013.
DOI : 10.1101/gr.154492.113

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759719

U. Mcdermott, J. R. Downing, and M. R. Stratton, Genomics and the continuum of cancer care, N Engl J Med, vol.364, pp.340-50, 2011.

M. R. Stratton, P. J. Campbell, and P. A. Futreal, The cancer genome, Nature, vol.12, issue.7239, pp.719-743, 2009.
DOI : 10.1182/asheducation-2008.1.400

B. Vogelstein, Cancer Genome Landscapes, Science, vol.4, issue.127, pp.1546-58, 2013.
DOI : 10.1126/scitranslmed.3003218

URL : http://science.sciencemag.org/content/sci/339/6127/1546.full.pdf

H. Clevers and R. Nusse, Wnt/??-Catenin Signaling and Disease, Cell, vol.149, issue.6, pp.1192-205, 2012.
DOI : 10.1016/j.cell.2012.05.012

T. Decaens, Stabilization of ??-catenin affects mouse embryonic liver growth and hepatoblast fate, Hepatology, vol.68, issue.1, pp.247-58, 2008.
DOI : 10.1002/hep.21952

S. Benhamouche, Apc Tumor Suppressor Gene Is the ???Zonation-Keeper??? of Mouse Liver, Developmental Cell, vol.10, issue.6, pp.759-70, 2006.
DOI : 10.1016/j.devcel.2006.03.015

M. D. Thompson and S. P. Monga, WNT/??-catenin signaling in liver health and disease, Hepatology, vol.26, issue.5, pp.1298-305, 2007.
DOI : 10.1016/S0002-9440(10)65496-X

A. De-la-coste, Somatic mutations of the ??-catenin gene are frequent in mouse and human hepatocellular carcinomas, Proceedings of the National Academy of Sciences, vol.155, issue.3, pp.8847-51, 1998.
DOI : 10.1016/0076-6879(87)55032-7

B. Terris, Close correlation between ??-catenin gene alterations and nuclear accumulation of the protein in human hepatocellular carcinomas, Oncogene, vol.18, issue.47, pp.6583-6591, 1999.
DOI : 10.1038/sj.onc.1203051

S. Boyault, Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets, Hepatology, vol.12, issue.1, pp.42-52, 2007.
DOI : 10.1111/j.1471-0528.1980.tb04458.x

URL : https://hal.archives-ouvertes.fr/inserm-00130313

B. Cieply, G. Zeng, T. Proverbs-­?singh, D. A. Geller, and S. P. Monga, Unique phenotype of hepatocellular cancers with exon-3 mutations in beta-catenin gene, Hepatology, vol.100, issue.3, pp.821-852, 2009.
DOI : 10.1093/jnci/djn134

J. C. Nault, High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions, Nature Communications, vol.45, p.2218, 2013.
DOI : 10.1002/hep.21467

A. Cadoret, Hepatomegaly in transgenic mice expressing an oncogenic form of beta-­?catenin, Cancer Res, vol.61, pp.3245-3254, 2001.

S. Colnot, Liver-targeted disruption of Apc in mice activates ??-catenin signaling and leads to hepatocellular carcinomas, Proceedings of the National Academy of Sciences, vol.13, issue.2, pp.17216-17237, 2004.
DOI : 10.1016/0168-8278(91)90819-W

N. Harada, Hepatocarcinogenesis in Mice with ??-Catenin and Ha-Ras Gene Mutations, Cancer Research, vol.64, issue.1, pp.48-54, 2004.
DOI : 10.1158/0008-5472.CAN-03-2123

S. Satoh, AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1, Nature Genetics, vol.16, issue.3, pp.245-50, 2000.
DOI : 10.1128/MCB.16.3.745

J. Zucman-­?rossi, Differential effects of inactivated Axin1 and activated ??-catenin mutations in human hepatocellular carcinomas, Oncogene, vol.274, issue.5, pp.774-80, 2007.
DOI : 10.1016/S0002-9440(10)65168-1

R. Pinyol, J. C. Nault, I. M. Quetglas, J. Zucman-­?rossi, and J. M. Llovet, Molecular Profiling of Liver Tumors: Classification and Clinical Translation for Decision Making, Seminars in Liver Disease, vol.34, issue.04, pp.363-75, 2014.
DOI : 10.1055/s-0034-1394137

M. Wade, Y. C. Li, and G. M. Wahl, MDM2, MDMX and p53 in oncogenesis and cancer therapy, Nature Reviews Cancer, vol.107, issue.2, pp.83-96, 2013.
DOI : 10.1073/pnas.1008930107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161369

B. Bressac, M. Kew, J. Wands, and M. Ozturk, Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa, Nature, vol.350, issue.6317, pp.429-460, 1991.
DOI : 10.1038/350429a0

I. C. Hsu, Mutational hot spot in the p53 gene in human hepatocellular carcinomas, Nature, vol.350, issue.6317, pp.427-435, 1991.
DOI : 10.1038/350427a0

S. P. Hussain and C. Harris, p53 mutation spectrum and load: the generation of hypotheses linking the exposure of endogenous or exogenous carcinogens to human cancer, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.428, issue.1-2, pp.23-32, 1999.
DOI : 10.1016/S1383-5742(99)00028-9

H. G. Woo, Association of TP53 Mutations With Stem Cell-Like Gene Expression and Survival of Patients With Hepatocellular Carcinoma, Gastroenterology, vol.140, issue.3, pp.1063-70, 2011.
DOI : 10.1053/j.gastro.2010.11.034

S. M. Ahn, A genomic portrait of resectable hepatocellular carcinomas: Implications of RB1 and FGF19 aberrations for patient stratification, Hepatology, 2014.

E. T. Sawey, Identification of a Therapeutic Strategy Targeting Amplified FGF19 in Liver Cancer by Oncogenomic Screening, Cancer Cell, vol.19, issue.3, pp.347-58, 2011.
DOI : 10.1016/j.ccr.2011.01.040

B. G. Wilson and C. W. Roberts, SWI/SNF nucleosome remodellers and cancer, Nature Reviews Cancer, vol.56, issue.7, pp.481-92, 2011.
DOI : 10.1136/mp.56.5.299

I. Versteege, Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer, Nature, vol.380, issue.6689, pp.203-209, 1998.
DOI : 10.1038/28212

M. Li, Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma, Nature Genetics, vol.43, issue.9, pp.828-837, 2011.
DOI : 10.1128/JVI.00459-06

N. Waddell, Whole genomes redefine the mutational landscape of pancreatic cancer, Nature, vol.16, issue.7540, pp.495-501, 2015.
DOI : 10.1158/1078-0432.CCR-10-1027

K. Saigo, Integration of hepatitis B virus DNA into the myeloid/lymphoid or mixed-lineage leukemia (MLL4) gene and rearrangements of MLL4 in human hepatocellular carcinoma, Human Mutation, vol.11, issue.5, pp.703-711, 2008.
DOI : 10.1158/1078-0432.CCR-04-2055

W. K. Sung, Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma, Nature Genetics, vol.12, issue.7, pp.765-774, 2012.
DOI : 10.1186/gb-2011-12-4-r41

M. B. Sporn and K. Liby, NRF2 and cancer: the good, the bad and the importance of context, Nature Reviews Cancer, vol.101, issue.8, pp.564-71, 2012.
DOI : 10.1074/jbc.M501279200

M. Ramos-­?gomez, Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice, Proceedings of the National Academy of Sciences, vol.96, issue.14, pp.3410-3415, 2001.
DOI : 10.1073/pnas.96.14.7624

T. Shibata, Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy, Proceedings of the National Academy of Sciences, vol.67, issue.2, pp.13568-73, 2008.
DOI : 10.1158/0008-5472.CAN-06-2401

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533230

T. Shibata, Genetic Alteration of Keap1 Confers Constitutive Nrf2 Activation and Resistance to Chemotherapy in Gallbladder Cancer, Gastroenterology, vol.135, issue.4, pp.1358-1368, 1368.
DOI : 10.1053/j.gastro.2008.06.082

M. Eichenmuller, The genomic landscape of hepatoblastoma and their progenies with HCC-like features, Journal of Hepatology, vol.61, issue.6, pp.1312-1332, 2014.
DOI : 10.1016/j.jhep.2014.08.009

G. M. Denicola, Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis, Nature, vol.8, issue.7354, pp.106-115, 2011.
DOI : 10.1371/journal.pone.0006158

D. A. Fruman and C. Rommel, PI3K and cancer: lessons, challenges and opportunities, Nature Reviews Drug Discovery, vol.286, issue.2, pp.140-56, 2014.
DOI : 10.1126/science.286.5445.1741

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994981

A. Villanueva, Pivotal Role of mTOR Signaling in Hepatocellular Carcinoma, Gastroenterology, vol.135, issue.6, pp.1972-83, 1983.
DOI : 10.1053/j.gastro.2008.08.008

H. Lavoie and M. Therrien, Regulation of RAF protein kinases in ERK signalling, Nature Reviews Molecular Cell Biology, vol.267, issue.5, pp.281-98, 2015.
DOI : 10.1126/science.7811320

C. Trepo, H. L. Chan, and A. Lok, Hepatitis B virus infection, The Lancet, vol.384, issue.9959, pp.2053-63, 2014.
DOI : 10.1016/S0140-6736(14)60220-8

URL : https://hal.archives-ouvertes.fr/hal-00313741

S. Locarnini and F. Zoulim, Molecular genetics of HBV infection, Antiviral Therapy, vol.15, issue.Suppl 3, pp.3-14, 2010.
DOI : 10.3851/IMP1619

C. Neuveut, Y. Wei, and M. A. Buendia, Mechanisms of HBV-related hepatocarcinogenesis, Journal of Hepatology, vol.52, issue.4, pp.594-604, 2010.
DOI : 10.1016/j.jhep.2009.10.033

URL : http://doi.org/10.1016/j.jhep.2009.10.033

F. Guerrieri, L. Belloni, N. Pediconi, and M. Levrero, Molecular Mechanisms of HBV-Associated Hepatocarcinogenesis, Seminars in Liver Disease, vol.33, issue.02, pp.147-56, 2013.
DOI : 10.1055/s-0033-1345721

H. Tang, N. Oishi, S. Kaneko, and S. Murakami, Molecular functions and biological roles of hepatitis B virus x protein, Cancer Science, vol.24, issue.10, pp.977-83, 2006.
DOI : 10.1093/emboj/cdg210

M. Seifer, M. Hohne, S. Schaefer, and W. Gerlich, In vitro tumorigenicity of hepatitis B virus DNA and HBx protein, Journal of Hepatology, vol.13, pp.61-66, 1991.
DOI : 10.1016/0168-8278(91)90026-8

S. Kim, HBV X protein targets hBubR1, which induces dysregulation of the mitotic checkpoint, Oncogene, vol.2, issue.24, pp.3457-64, 2008.
DOI : 10.1016/j.ccr.2006.12.003

K. Gottlob, S. Pagano, M. Levrero, and A. Graessmann, Hepatitis B virus X protein transcription activation domains are neither required nor sufficient for cell transformation, Cancer Res, vol.58, pp.3566-70, 1998.

R. Schuster, W. H. Gerlich, and S. Schaefer, Induction of apoptosis by the transactivating domains of the hepatitis B virus X gene leads to suppression of oncogenic transformation of primary rat embryo fibroblasts, Oncogene, vol.19, issue.9, pp.1173-80, 2000.
DOI : 10.1038/sj.onc.1203417

C. M. Kim, K. Koike, I. Saito, T. Miyamura, and G. Jay, HBx gene of hepatitis B virus induces liver cancer in transgenic mice, Nature, vol.351, issue.6324, pp.317-337, 1991.
DOI : 10.1038/351317a0

K. Reifenberg, Long-term expression of the hepatitis B virus core-e- and X-proteins does not cause pathologic changes in transgenic mice, Journal of Hepatology, vol.26, issue.1, pp.119-149, 1997.
DOI : 10.1016/S0168-8278(97)80018-9

G. Amaddeo, C. Q. Ladeiro, Y. Imbeaud, S. Nault, J. Jaoui et al., Integration of tumour and viral genomic characterisations in HBV-­?related hepatocellular carcinomas. Gut Published Online First, pp.10-1136, 2014.

C. Brechot, C. Pourcel, A. Louise, B. Rain, and P. Tiollais, Presence of integrated hepatitis B virus DNA sequences in cellular DNA of human hepatocellular carcinoma, Nature, vol.75, issue.5772, pp.533-538, 1980.
DOI : 10.1038/286533a0

X. Li, The function of targeted host genes determines the oncogenicity of HBV integration in hepatocellular carcinoma, Journal of Hepatology, vol.60, issue.5, pp.975-84, 2014.
DOI : 10.1016/j.jhep.2013.12.014

Z. Jiang, The effects of hepatitis B virus integration into the genomes of hepatocellular carcinoma patients, Genome Research, vol.22, issue.4, pp.593-601, 2012.
DOI : 10.1101/gr.133926.111

J. Wang, X. Chenivesse, B. Henglein, and C. Brechot, Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma, Nature, vol.343, issue.6258, pp.555-562, 1990.
DOI : 10.1038/343555a0

P. Paterlini-­?brechot, Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene, Oncogene, vol.22, issue.25, pp.3911-3917, 2003.
DOI : 10.1038/sj.onc.1206492

P. Martinez and M. A. Blasco, Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins, Nature Reviews Cancer, vol.279, issue.3, pp.161-76, 2011.
DOI : 10.1074/jbc.M409047200

J. Shampay, J. W. Szostak, and E. H. Blackburn, DNA sequences of telomeres maintained in yeast, Nature, vol.43, issue.5973, pp.154-161, 1984.
DOI : 10.1101/SQB.1979.043.01.013

C. Gunes and K. L. Rudolph, The Role of Telomeres in Stem Cells and Cancer, Cell, vol.152, issue.3, pp.390-393, 2013.
DOI : 10.1016/j.cell.2013.01.010

Y. Deng, S. S. Chan, and S. Chang, Telomere dysfunction and tumour suppression: the senescence connection, Nature Reviews Cancer, vol.21, issue.6, pp.450-458, 2008.
DOI : 10.4161/cc.5.7.2636

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688269

M. Armanios and E. H. Blackburn, The telomere syndromes, Nature Reviews Genetics, vol.12, issue.10, pp.693-704, 2012.
DOI : 10.1128/MCB.24.15.6631-6634.2004

J. Nandakumar and T. R. Cech, Finding the end: recruitment of telomerase to telomeres, Nature Reviews Molecular Cell Biology, vol.39, issue.2, pp.69-82, 2013.
DOI : 10.1093/nar/gkr164

R. T. Calado, N. S. Young, and . Telomere, Telomere Diseases, New England Journal of Medicine, vol.361, issue.24, pp.2353-65, 2009.
DOI : 10.1056/NEJMra0903373

Y. Urabe, Telomere length in human liver diseases, Liver, vol.266, issue.5, pp.293-300, 1996.
DOI : 10.1128/MCB.9.6.2761

J. Y. Scoazec, Focal nodular hyperplasia of the liver: Composition of the extracellular matrix and expression of cell-cell and cell-matrix adhesion molecules, Human Pathology, vol.26, issue.10, pp.1114-1139, 1995.
DOI : 10.1016/0046-8177(95)90274-0

S. U. Wiemann, Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis, The FASEB Journal, vol.16, issue.9, pp.935-977, 2002.
DOI : 10.1096/fj.01-0977com

D. Hartmann, Telomerase gene mutations are associated with cirrhosis formation, Hepatology, vol.5, issue.5, pp.1608-1625, 2011.
DOI : 10.1038/13495

R. T. Calado, Constitutional telomerase mutations are genetic risk factors for cirrhosis, Hepatology, vol.105, issue.5, pp.1600-1607, 2011.
DOI : 10.1073/pnas.0804280105

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082730

K. L. Rudolph, S. Chang, M. Millard, N. Schreiber-­?agus, and R. A. Depinho, Inhibition of Experimental Liver Cirrhosis in Mice by Telomerase Gene Delivery, Science, vol.287, issue.5456, pp.1253-1261, 2000.
DOI : 10.1126/science.287.5456.1253

P. A. Farazi, Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma, Cancer Res, vol.63, pp.5021-5028, 2003.

M. Meyerson, hEST2, the Putative Human Telomerase Catalytic Subunit Gene, Is Up-Regulated in Tumor Cells and during Immortalization, Cell, vol.90, issue.4, pp.785-95, 1997.
DOI : 10.1016/S0092-8674(00)80538-3

S. Ferlicot, V. Paradis, D. Dargere, G. Monges, and P. Bedossa, Detection of telomerase in hepatocellular carcinomas using a PCR ELISA assay: comparison with hTR expression, Journal of Clinical Pathology, vol.52, issue.10, pp.725-734, 1999.
DOI : 10.1136/jcp.52.10.725

P. A. Farazi and R. A. Depinho, Hepatocellular carcinoma pathogenesis: from genes to environment, Nature Reviews Cancer, vol.22, issue.9, pp.674-87, 2006.
DOI : 10.7150/ijms.3.41

J. C. Nault, High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions, Nature Communications, vol.45, 2013.
DOI : 10.1002/hep.21467

T. R. Golub, Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring, Science, vol.286, issue.5439, pp.531-538, 1999.
DOI : 10.1126/science.286.5439.531

J. S. Lee, Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling, Hepatology, vol.3, issue.3, pp.667-76, 2004.
DOI : 10.1002/hep.510280322

J. S. Lee, A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells, Nature Medicine, vol.149, issue.4, pp.410-416, 2006.
DOI : 10.1111/j.1349-7006.2003.tb01366.x

D. Y. Chiang, Focal Gains of VEGFA and Molecular Classification of Hepatocellular Carcinoma, Cancer Research, vol.68, issue.16, pp.6779-88, 2008.
DOI : 10.1158/0008-5472.CAN-08-0742

Y. Hoshida, Integrative Transcriptome Analysis Reveals Common Molecular Subclasses of Human Hepatocellular Carcinoma, Cancer Research, vol.69, issue.18, pp.7385-92, 2009.
DOI : 10.1158/0008-5472.CAN-09-1089

C. Coulouarn, V. M. Factor, and S. S. Thorgeirsson, Transforming growth factor-?? gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer, Hepatology, vol.24, issue.2, pp.2059-67, 2008.
DOI : 10.1172/JCI200215887

P. Kaposi-­?novak, Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype, Journal of Clinical Investigation, vol.116, issue.6, pp.1582-95, 2006.
DOI : 10.1172/JCI27236DS1

O. Shaked, E. S. Siegelman, K. Olthoff, and K. R. Reddy, Biologic and Clinical Features of Benign Solid and Cystic Lesions of the Liver, Clinical Gastroenterology and Hepatology, vol.9, issue.7, pp.547-62, 2011.
DOI : 10.1016/j.cgh.2011.03.007

J. Belghiti, F. Cauchy, V. Paradis, and V. Vilgrain, Diagnosis and management of solid benign liver lesions, Nature Reviews Gastroenterology & Hepatology, vol.97, issue.12, pp.737-786, 2014.
DOI : 10.1053/jhep.2003.50076

J. C. Nault, P. Bioulac-­?sage, and J. Zucman-­?rossi, Hepatocellular Benign Tumors???From Molecular Classification to Personalized Clinical Care, Gastroenterology, vol.144, issue.5, pp.888-902, 2013.
DOI : 10.1053/j.gastro.2013.02.032

H. A. Edmondson, B. Henderson, and B. Benton, Liver-Cell Adenomas Associated with Use of Oral Contraceptives, New England Journal of Medicine, vol.294, issue.9, pp.470-472, 1976.
DOI : 10.1056/NEJM197602262940904

J. B. Rooks, Epidemiology of hepatocellular adenoma. The role of oral contraceptive use, JAMA: The Journal of the American Medical Association, vol.242, issue.7, pp.644-652, 1979.
DOI : 10.1001/jama.242.7.644

J. B. Rooks, The Association Between Oral Contraception and Hepatocellular Adenoma - A Preliminary Report, International Journal of Gynecology & Obstetrics, vol.5, issue.2, pp.143-147, 1977.
DOI : 10.1016/0020-7101(74)90018-X

W. M. Christopherson, E. T. Mays, and G. Barrows, A clinicopathologic study of steroid-related liver tumors, The American Journal of Surgical Pathology, vol.1, issue.1, pp.31-41, 1977.
DOI : 10.1097/00000478-197701010-00004

H. Buhler, Regression of liver cell adenoma. A follow-­?up study of three consecutive patients after discontinuation of oral contraceptive use, Gastroenterology, vol.82, pp.775-82, 1982.

J. T. Henderson, J. Richmond, and M. D. Sumerling, ANDROGENIC-ANABOLIC STEROID THERAPY AND HEPATOCELLULAR CARCINOMA, The Lancet, vol.301, issue.7809, p.934, 1973.
DOI : 10.1016/S0140-6736(73)91384-6

S. Rebouissou, P. Bioulac-­?sage, and J. Zucman-­?rossi, Molecular pathogenesis of focal nodular hyperplasia and hepatocellular adenoma, Journal of Hepatology, vol.48, issue.1, pp.163-70, 2008.
DOI : 10.1016/j.jhep.2007.10.003

URL : https://hal.archives-ouvertes.fr/inserm-00187575

M. Svrcek, Regressive liver adenomatosis following androgenic progestin therapy withdrawal: a case report with a 10-year follow-up and a molecular analysis, European Journal of Endocrinology, vol.156, issue.6, pp.617-638, 2007.
DOI : 10.1530/EJE-07-0020

V. Paradis, Telangiectatic adenoma: An entity associated with increased body mass index and inflammation, Hepatology, vol.36, issue.1, pp.140-146, 2007.
DOI : 10.1053/jhep.2002.36126

J. Zucman-­?rossi, Genotype???phenotype correlation in hepatocellular adenoma: New classification and relationship with HCC, Hepatology, vol.41, issue.3, pp.515-539, 2006.
DOI : 10.1016/S0002-9440(10)65168-1

URL : https://hal.archives-ouvertes.fr/inserm-00130314

C. Sempoux, Hepatocellular nodules expressing markers of hepatocellular adenomas in Budd-Chiari syndrome and other rare hepatic vascular disorders, Journal of Hepatology, vol.63, issue.5, 2015.
DOI : 10.1016/j.jhep.2015.06.017

P. Labrune, P. Trioche, I. Duvaltier, P. Chevalier, and M. Odievre, Hepatocellular Adenomas in Glycogen Storage Disease Type I and III: A Series of 43 Patients and Review of the Literature, Journal of Pediatric Gastroenterology &amp Nutrition, vol.24, issue.3, pp.276-285, 1997.
DOI : 10.1097/00005176-199703000-00008

J. Calderaro, Molecular characterization of hepatocellular adenomas developed in patients with glycogen storage disease type I, Journal of Hepatology, vol.58, issue.2, pp.350-357, 2013.
DOI : 10.1016/j.jhep.2012.09.030

Y. Bacq, Familia liver adenomatosis associated with hepatocyte nuclear factor 1?? inactivation1 1The authors thank Leigh Pascoe for critical reading of the manuscript, H??l??ne Blanch?? and Hung Bui of the CEPH/Fondation Jean Dausset for technical help in sequencing, and Drs. A. Saillant, E. Akodjenou, and E. Urvoas (Pediatric and Radiology Units, H??pitaux de Chartres, France) for referring patient B1 to E.J. and for performing liver ultrasound screening in family B., Gastroenterology, vol.125, issue.5, pp.1470-1475, 2003.
DOI : 10.1016/j.gastro.2003.07.012

P. Chanson, S. Salenave, and P. Orcel, McCune-­?Albright syndrome in adulthood, Pediatr Endocrinol Rev, vol.4, pp.453-62, 2007.

P. Bioulac-­?sage, G. Cubel, C. Balabaud, and J. Zucman-­?rossi, Revisiting the Pathology of Resected Benign Hepatocellular Nodules Using New Immunohistochemical Markers, Seminars in Liver Disease, vol.31, issue.01, pp.91-103, 2011.
DOI : 10.1055/s-0031-1272837

J. F. Flejou, Liver adenomatosis, Gastroenterology, vol.89, issue.5, pp.1132-1140, 1985.
DOI : 10.1016/0016-5085(85)90220-3

S. Lepreux, The identification of small nodules in liver adenomatosis, Journal of Hepatology, vol.39, issue.1, pp.77-85, 2003.
DOI : 10.1016/S0168-8278(03)00145-4

E. J. Gyorffy, J. E. Bredfeldt, and W. Black, Transformation of Hepatic Cell Adenoma to Hepatocellular Carcinoma Due to Oral Contraceptive Use, Annals of Internal Medicine, vol.110, issue.6, pp.489-90, 1989.
DOI : 10.7326/0003-4819-110-6-489

S. M. Van-aalten, R. A. De-man, I. J. Jn, and T. Terkivatan, Systematic review of haemorrhage and rupture of hepatocellular adenomas, British Journal of Surgery, vol.55, issue.7, pp.911-917, 2012.
DOI : 10.1016/j.jhep.2010.10.030

L. Baranes, Imaging benign hepatocellular tumors: Atypical forms and diagnostic traps, Diagnostic and Interventional Imaging, vol.94, issue.7-8, pp.677-95, 2013.
DOI : 10.1016/j.diii.2013.05.002

URL : http://doi.org/10.1016/j.diii.2013.05.002

S. M. Van-aalten, C. D. Witjes, R. A. De-man, J. N. Ijzermans, and T. Terkivatan, Can a decision-making model be justified in the management of hepatocellular adenoma?, Liver International, vol.7, issue.Suppl 6, pp.28-37, 2012.
DOI : 10.1080/13651820510028954

S. Dokmak, A Single-Center Surgical Experience of 122 Patients With Single and Multiple Hepatocellular Adenomas, Gastroenterology, vol.137, issue.5, pp.1698-705, 2009.
DOI : 10.1053/j.gastro.2009.07.061

M. G. Van-vledder, Safety and Efficacy of Radiofrequency Ablation for Hepatocellular Adenoma, Journal of Vascular and Interventional Radiology, vol.22, issue.6, pp.787-93, 2011.
DOI : 10.1016/j.jvir.2011.02.024

P. Bioulac-­?sage, Hepatocellular adenoma management and phenotypic classification: The Bordeaux experience, Hepatology, vol.48, issue.4 Suppl, pp.481-490, 2009.
DOI : 10.1002/hep.22417

S. M. Van-aalten, Validation of a liver adenoma classification system in a tertiary referral centre: Implications for clinical practice, Journal of Hepatology, vol.55, issue.1, pp.120-125, 2011.
DOI : 10.1016/j.jhep.2010.10.030

J. Pan, Retrospective study of hepatocellular adenomas based on the phenotypic classification system: A report from China, Histol Histopathol, vol.29, pp.243-252, 2014.

C. O. Bellamy, The value of immunophenotyping hepatocellular adenomas: consecutive resections at one UK centre, Histopathology, vol.51, issue.3, pp.431-476, 2013.
DOI : 10.1002/1097-0142(19830515)51:10<1947::AID-CNCR2820511034>3.0.CO;2-5

M. Sasaki, N. Yoneda, S. Kitamura, Y. Sato, and Y. Nakanuma, Characterization of hepatocellular adenoma based on the phenotypic classification: The Kanazawa experience, Hepatology Research, vol.41, issue.457, pp.982-990, 2011.
DOI : 10.1016/j.jhep.2004.08.014

O. Bluteau, Bi-allelic inactivation of TCF1 in hepatic adenomas, Nature Genetics, vol.120, issue.2, pp.312-317, 2002.
DOI : 10.1038/35057062

E. Jeannot, Spectrum of HNF1A Somatic Mutations in Hepatocellular Adenoma Differs From That in Patients With MODY3 and Suggests Genotoxic Damage, Diabetes, vol.59, issue.7, pp.1836-1880, 2010.
DOI : 10.2337/db09-1819

K. Yamagata, Mutations in the hepatocyte nuclear factor-1?? gene in maturity-onset diabetes of the young (MODY3), Nature, vol.384, issue.6608, pp.455-463, 1996.
DOI : 10.1038/384455a0

L. Pelletier, Loss of hepatocyte nuclear factor 1?? function in human hepatocellular adenomas leads to aberrant activation of signaling pathways involved in tumorigenesis, Hepatology, vol.15, issue.2, pp.557-66, 2010.
DOI : 10.1038/modpathol.3880514

URL : https://hal.archives-ouvertes.fr/hal-01173782

M. Pontoglio, Hepatocyte Nuclear Factor 1 Inactivation Results in Hepatic Dysfunction, Phenylketonuria, and Renal Fanconi Syndrome, Cell, vol.84, issue.4, pp.575-85, 1996.
DOI : 10.1016/S0092-8674(00)81033-8

URL : http://doi.org/10.1016/s0092-8674(00)81033-8

Y. H. Lee, B. Sauer, and F. J. Gonzalez, ?? Knockout Mouse, Molecular and Cellular Biology, vol.18, issue.5, pp.3059-68, 1998.
DOI : 10.1128/MCB.18.5.3059

T. E. Akiyama, J. M. Ward, and F. J. Gonzalez, Regulation of the liver fatty acid-­? binding protein gene by hepatocyte nuclear factor, p.1

P. Bioulac-­?sage, Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry, Hepatology, vol.25, issue.3, pp.740-748, 2007.
DOI : 10.7326/0003-4819-105-4-547

H. Laumonier, Hepatocellular adenomas: Magnetic resonance imaging features as a function of molecular pathological classification, Hepatology, vol.241, issue.3, pp.808-826, 2008.
DOI : 10.3748/wjg.v13.i19.2649

V. Paradis, Telangiectatic focal nodular hyperplasia: a variant of hepatocellular adenoma, Gastroenterology, vol.126, issue.5, pp.1323-1332, 2004.
DOI : 10.1053/j.gastro.2004.02.005

P. Bioulac-­?sage, Clinical, Morphologic, and Molecular Features Defining So-Called Telangiectatic Focal Nodular Hyperplasias of the Liver, Gastroenterology, vol.128, issue.5, pp.1211-1219, 2005.
DOI : 10.1053/j.gastro.2005.02.004

S. Rebouissou, Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours, Nature, vol.31, issue.7226, pp.200-204, 2009.
DOI : 10.1053/jhep.2002.36126

URL : https://hal.archives-ouvertes.fr/inserm-00340859

S. Cunha and A. , Inflammatory syndrome with liver adenomatosis: the beneficial effects of surgical management, Gut, vol.56, issue.2, pp.307-316, 2007.
DOI : 10.1136/gut.2006.0106245

F. Schaper and S. Rose-­?john, Interleukin-6: Biology, signaling and strategies of blockade, Cytokine & Growth Factor Reviews, vol.26, issue.5, 2015.
DOI : 10.1016/j.cytogfr.2015.07.004

C. Pilati, Genomic Profiling of Hepatocellular Adenomas Reveals Recurrent FRK-Activating Mutations and the Mechanisms of Malignant Transformation, Cancer Cell, vol.25, issue.4, pp.428-469, 2014.
DOI : 10.1016/j.ccr.2014.03.005

C. Pilati, Somatic mutations activating STAT3 in human inflammatory hepatocellular adenomas, The Journal of Experimental Medicine, vol.208, issue.7, pp.1359-66, 2011.
DOI : 10.1002/hep.21068

URL : https://hal.archives-ouvertes.fr/inserm-00719918

J. C. Nault, GNAS-activating mutations define a rare subgroup of inflammatory liver tumors characterized by STAT3 activation, Journal of Hepatology, vol.56, issue.1, pp.184-91, 2012.
DOI : 10.1016/j.jhep.2011.07.018

URL : https://hal.archives-ouvertes.fr/hal-00724895

Y. W. Chen, Y. M. Jeng, S. H. Yeh, and P. J. Chen, p53 gene and Wnt signaling in benign neoplasms: ??-catenin mutations in hepatic adenoma but not in focal nodular hyperplasia, Hepatology, vol.13, issue.4, pp.927-962, 2002.
DOI : 10.1053/jhep.2002.36126

S. Van-der-borght, Nuclear ??-catenin staining and absence of steatosis are indicators of hepatocellular adenomas with an increased risk of malignancy, Histopathology, vol.51, issue.6, pp.855-861, 2007.
DOI : 10.1097/01.pap.0000194628.58501.71

O. Farges, Changing trends in malignant transformation of hepatocellular adenoma, Gut, vol.60, issue.1, pp.85-94, 2011.
DOI : 10.1136/gut.2010.222109

S. Fonseca, Histological and Immunohistochemical Revision of Hepatocellular Adenomas: A Learning Experience, International Journal of Hepatology, vol.32, issue.5, p.398308, 2013.
DOI : 10.1097/00000478-200010000-00015

F. W. Huang, Highly Recurrent TERT Promoter Mutations in Human Melanoma, Science, vol.38, issue.5, pp.957-966, 2013.
DOI : 10.1038/ng1777

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423787

S. Horn, TERT Promoter Mutations in Familial and Sporadic Melanoma, Science, vol.92, issue.11, pp.959-61, 2013.
DOI : 10.1038/sj.bjc.6602598

L. S. Weinstein, J. Liu, A. Sakamoto, T. Xie, and M. Chen, : Normal and Abnormal Functions, Endocrinology, vol.145, issue.12, pp.5459-64, 2004.
DOI : 10.1210/en.2004-0865

G. Mantovani, Biallelic Expression of the Gs?? Gene in Human Bone and Adipose Tissue, The Journal of Clinical Endocrinology & Metabolism, vol.89, issue.12, pp.6316-6325, 2004.
DOI : 10.1210/jc.2004-0558

C. M. Williamson, A cis-acting control region is required exclusively for the tissue-specific imprinting of Gnas, Nature Genetics, vol.225, issue.8, pp.894-903, 2004.
DOI : 10.1007/s00335-002-2188-1

R. T. Dorsam and J. S. Gutkind, G-protein-coupled receptors and cancer, Nature Reviews Cancer, vol.341, issue.2, pp.79-94, 2007.
DOI : 10.4049/jimmunol.172.5.2853

N. Wettschureck and S. Offermanns, Mammalian G Proteins and Their Cell Type Specific Functions, Physiological Reviews, vol.85, issue.4, pp.1159-204, 2005.
DOI : 10.1152/physrev.00003.2005

N. Dhanasekaran, L. E. Heasley, and G. L. Johnson, G Protein-Coupled Receptor Systems Involved in Cell Growth and Oncogenesis, Endocrine Reviews, vol.16, issue.3, pp.259-70, 1995.
DOI : 10.1210/edrv-16-3-259

C. A. Landis, GTPase inhibiting mutations activate the ?? chain of Gs and stimulate adenylyl cyclase in human pituitary tumours, Nature, vol.340, issue.6236, pp.692-698, 1989.
DOI : 10.1038/340692a0

L. Vallar, A. Spada, and G. Giannattasio, Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas, Nature, vol.330, issue.6148, pp.566-574, 1987.
DOI : 10.1038/330566a0

L. S. Weinstein, Activating Mutations of the Stimulatory G Protein in the McCune???Albright Syndrome, New England Journal of Medicine, vol.325, issue.24, pp.1688-95, 1991.
DOI : 10.1056/NEJM199112123252403

C. Muca and L. Vallar, Expression of mutationally activated G alpha s stimulates growth and differentiation of thyroid FRTL5 cells, Oncogene, vol.9, pp.3647-53, 1994.

L. S. Weinstein, M. Chen, T. Xie, and J. Liu, Genetic diseases associated with heterotrimeric G proteins, Trends in Pharmacological Sciences, vol.27, issue.5, pp.260-266, 2006.
DOI : 10.1016/j.tips.2006.03.005

S. Idziaszczyk, C. H. Wilson, C. G. Smith, D. J. Adams, and J. P. Cheadle, Analysis of the frequency of GNAS codon 201 mutations in advanced colorectal cancer, Cancer Genetics and Cytogenetics, vol.202, issue.1, pp.67-76, 2010.
DOI : 10.1016/j.cancergencyto.2010.04.023

S. Lumbroso, F. Paris, C. Sultan, and S. European-collaborative, Activating Gs?? Mutations: Analysis of 113 Patients with Signs of McCune-Albright Syndrome???A European Collaborative Study, The Journal of Clinical Endocrinology & Metabolism, vol.89, issue.5, pp.2107-2120, 2004.
DOI : 10.1210/jc.2003-031225

A. Parvanescu, Lessons From McCune-Albright Syndrome???Associated Intraductal Papillary Mucinous Neoplasms, JAMA Surgery, vol.149, issue.8, pp.858-62, 2014.
DOI : 10.1001/jamasurg.2014.535

J. W. Yuen, Activation of STAT3 by specific G?? subunits and multiple G???? dimers, The International Journal of Biochemistry & Cell Biology, vol.42, issue.6, pp.1052-1061, 2010.
DOI : 10.1016/j.biocel.2010.03.017

A. M. Liu, Distinctively Requires Protein Kinase A, JNK, and Phosphatidylinositol 3-Kinase, Journal of Biological Chemistry, vol.262, issue.47, pp.35812-35837, 2006.
DOI : 10.1074/jbc.271.32.19443

M. J. Levis and H. Bourne, Activation of the alpha subunit of Gs in intact cells alters its abundance, rate of degradation, and membrane avidity, The Journal of Cell Biology, vol.119, issue.5, pp.1297-307, 1992.
DOI : 10.1083/jcb.119.5.1297

M. Talpaz, Dasatinib in Imatinib-Resistant Philadelphia Chromosome???Positive Leukemias, New England Journal of Medicine, vol.354, issue.24, pp.2531-2572, 2006.
DOI : 10.1056/NEJMoa055229

H. Imamura, Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy, Journal of Hepatology, vol.38, issue.2, pp.200-207, 2003.
DOI : 10.1016/S0168-8278(02)00360-4

R. D. Riley, Prognosis Research Strategy (PROGRESS) 2: Prognostic Factor Research, PLoS Medicine, vol.56, issue.2, p.1001380, 2013.
DOI : 10.1371/journal.pmed.1001380.s002

URL : http://doi.org/10.1371/journal.pmed.1001380

L. M. Mcshane, Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK), JNCI Journal of the National Cancer Institute, vol.97, issue.16, pp.1180-1184, 2005.
DOI : 10.1093/jnci/dji237

A. Villanueva, Combining Clinical, Pathology, and Gene Expression Data to Predict Recurrence of Hepatocellular Carcinoma, Gastroenterology, vol.140, issue.5, pp.1501-1513, 2011.
DOI : 10.1053/j.gastro.2011.02.006

J. Ji, MicroRNA Expression, Survival, and Response to Interferon in Liver Cancer, New England Journal of Medicine, vol.361, issue.15, pp.1437-1484, 2009.
DOI : 10.1056/NEJMoa0901282

J. C. Nault, A Hepatocellular Carcinoma 5-Gene Score Associated With Survival of Patients After Liver Resection, Gastroenterology, vol.145, issue.1, pp.176-87, 2013.
DOI : 10.1053/j.gastro.2013.03.051

T. Yamashita, EpCAM and ??-Fetoprotein Expression Defines Novel Prognostic Subtypes of Hepatocellular Carcinoma, Cancer Research, vol.68, issue.5, pp.1451-61, 2008.
DOI : 10.1158/0008-5472.CAN-07-6013

Y. Hoshida, Gene Expression in Fixed Tissues and Outcome in Hepatocellular Carcinoma, New England Journal of Medicine, vol.359, issue.19, pp.1995-2004, 2008.
DOI : 10.1056/NEJMoa0804525

E. Villa, Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular carcinomas and worst survival. Results from a prospective study, Gut, vol.63, issue.5, 2015.
DOI : 10.1136/gutjnl-2014-307323

S. M. Kim, Sixty-five gene-based risk score classifier predicts overall survival in hepatocellular carcinoma, Hepatology, vol.67, issue.5 Suppl 1, pp.1443-52, 2012.
DOI : 10.1158/0008-5472.CAN-06-2344

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060518

J. H. Kim, Genomic Predictors for Recurrence Patterns of Hepatocellular Carcinoma: Model Derivation and Validation, PLoS Medicine, vol.30, issue.12, p.1001770, 2014.
DOI : 10.1371/journal.pmed.1001770.s021

A. Budhu, Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment, Cancer Cell, vol.10, issue.2, pp.99-111, 2006.
DOI : 10.1016/j.ccr.2006.06.016

S. Roessler, A Unique Metastasis Gene Signature Enables Prediction of Tumor Relapse in Early-Stage Hepatocellular Carcinoma Patients, Cancer Research, vol.70, issue.24, pp.10202-10214, 2010.
DOI : 10.1158/0008-5472.CAN-10-2607

H. G. Woo, Identification of a Cholangiocarcinoma-Like Gene Expression Trait in Hepatocellular Carcinoma, Cancer Research, vol.70, issue.8, pp.3034-3075, 2010.
DOI : 10.1158/0008-5472.CAN-09-2823

J. U. Marquardt, Human hepatic cancer stem cells are characterized by common stemness traits and diverse oncogenic pathways, Hepatology, vol.359, issue.3, pp.1031-1073, 2011.
DOI : 10.1056/NEJMoa0708857

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179780

A. Budhu, Identification of metastasis-related microRNAs in hepatocellular carcinoma, Hepatology, vol.40, issue.3, pp.897-907, 2008.
DOI : 10.1016/j.jhep.2003.09.027

C. Coulouarn, V. M. Factor, J. B. Andersen, M. E. Durkin, and S. S. Thorgeirsson, Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties, Oncogene, vol.372, issue.40, pp.3526-3562, 2009.
DOI : 10.4161/rna.1.2.1066

R. Wei, Clinical Significance and Prognostic Value of microRNA Expression Signatures in Hepatocellular Carcinoma, Clinical Cancer Research, vol.19, issue.17, pp.4780-91, 2013.
DOI : 10.1158/1078-0432.CCR-12-2728

C. Augello, MicroRNA profiling of hepatocarcinogenesis identifies C19MC cluster as a novel prognostic biomarker in hepatocellular carcinoma, Liver International, vol.50, issue.Suppl. XIX, pp.772-82, 2012.
DOI : 10.1016/j.jhep.2008.11.014

S. R. Viswanathan, Lin28 promotes transformation and is associated with advanced human malignancies, Nature Genetics, vol.77, issue.7, pp.843-851, 2009.
DOI : 10.1038/nature06866

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757943

W. Li, Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma, International Journal of Cancer, vol.179, issue.7, pp.1616-1638, 2008.
DOI : 10.4049/jimmunol.179.8.5082

J. Jiang, Association of MicroRNA Expression in Hepatocellular Carcinomas with Hepatitis Infection, Cirrhosis, and Patient Survival, Clinical Cancer Research, vol.14, issue.2, pp.419-446, 2008.
DOI : 10.1158/1078-0432.CCR-07-0523

L. Gramantieri, MicroRNA-221 Targets Bmf in Hepatocellular Carcinoma and Correlates with Tumor Multifocality, Clinical Cancer Research, vol.15, issue.16, pp.5073-81, 2009.
DOI : 10.1158/1078-0432.CCR-09-0092

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900721

A. Villanueva, DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma, Hepatology, vol.6, issue.6, pp.1945-56, 2015.
DOI : 10.1371/journal.pone.0016916

H. Hernandez-­?vargas, Hepatocellular Carcinoma Displays Distinct DNA Methylation Signatures with Potential as Clinical Predictors, PLoS ONE, vol.5, issue.3, p.9749, 2010.
DOI : 10.1371/journal.pone.0009749.s008

D. F. Calvisi, Ubiquitous Activation of Ras and Jak/Stat Pathways in Human HCC, Gastroenterology, vol.130, issue.4, pp.1117-1145, 2006.
DOI : 10.1053/j.gastro.2006.01.006

S. Lee, Aberrant CpG Island Hypermethylation Along Multistep Hepatocarcinogenesis, The American Journal of Pathology, vol.163, issue.4, pp.1371-1379, 2003.
DOI : 10.1016/S0002-9440(10)63495-5

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1868296

G. Y. Kwon, Promoter Methylation of E-cadherin in Hepatocellular Carcinomas and Dysplastic Nodules, Journal of Korean Medical Science, vol.20, issue.2, pp.242-249, 2005.
DOI : 10.3346/jkms.2005.20.2.242

C. Lou, Aberrant DNA methylation profile of hepatocellular carcinoma and surgically resected margin, Cancer Science, vol.89, issue.6, pp.996-1004, 2009.
DOI : 10.1111/j.1349-7006.2009.01138.x

B. Heidenreich, P. S. Rachakonda, K. Hemminki, and R. Kumar, TERT promoter mutations in cancer development, Current Opinion in Genetics & Development, vol.24, pp.30-37, 2014.
DOI : 10.1016/j.gde.2013.11.005

R. J. Bell, The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer, Science, vol.9, issue.4, pp.1036-1045, 2015.
DOI : 10.1038/nmeth.1923

S. Borah, TERT promoter mutations and telomerase reactivation in urothelial cancer, Science, vol.39, issue.suppl_1, pp.1006-1016, 2015.
DOI : 10.1093/nar/gkq1184

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640672

D. S. Huang, Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation, European Journal of Cancer, vol.51, issue.8, pp.969-76, 2015.
DOI : 10.1016/j.ejca.2015.03.010

P. J. Killela, TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal, Proceedings of the National Academy of Sciences, vol.360, issue.8, pp.6021-6027, 2013.
DOI : 10.1056/NEJMoa0808710

K. G. Griewank, TERT promoter mutations are frequent in atypical fibroxanthomas and pleomorphic dermal sarcomas, Modern Pathology, vol.24, issue.4, pp.502-510, 2014.
DOI : 10.1016/j.cell.2013.01.010

J. Vinagre, Frequency of TERT promoter mutations in human cancers, Nature Communications, vol.30, p.2185, 2013.
DOI : 10.1038/onc.2010.512

A. Tallet, Overexpression and promoter mutation of the TERT gene in malignant pleural mesothelioma, Oncogene, vol.10, issue.28, 2013.
DOI : 10.1111/j.1474-9726.2010.00599.x

K. G. Griewank, TERT Promoter Mutations Are Frequent in Cutaneous Basal Cell Carcinoma and Squamous Cell Carcinoma, PLoS ONE, vol.152, issue.11, p.80354, 2013.
DOI : 10.1371/journal.pone.0080354.t003

URL : http://doi.org/10.1371/journal.pone.0080354

A. Quaas, Frequency of TERT promoter mutations in primary tumors of the liver, Virchows Archiv, vol.65, issue.2, pp.673-680, 2014.
DOI : 10.1016/j.eururo.2013.10.038

D. Cevik, G. Yildiz, and M. Ozturk, Common telomerase reverse transcriptase promoter mutations in hepatocellular carcinomas from different geographical locations, World Journal of Gastroenterology, vol.21, issue.1, pp.311-318, 2015.
DOI : 10.3748/wjg.v21.i1.311

A. Dejean, L. Bougueleret, K. H. Grzeschik, and P. Tiollais, Hepatitis B virus DNA integration in a sequence homologous to v-erb-A and steroid receptor genes in a hepatocellular carcinoma, Nature, vol.281, issue.6074, pp.70-72, 1986.
DOI : 10.1128/MCB.3.10.1766

Y. Totoki, High-resolution characterization of a hepatocellular carcinoma genome, Nature Genetics, vol.1577, issue.5, pp.464-473, 2011.
DOI : 10.1093/bioinformatics/btp352

L. D. Wood, Chromophobe hepatocellular carcinoma with abrupt anaplasia: a proposal for a new subtype of hepatocellular carcinoma with unique morphological and molecular features, Modern Pathology, vol.26, issue.12, pp.1586-93, 2013.
DOI : 10.1038/modpathol.2010.207

J. C. Nault, Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis, Hepatology, vol.60, issue.Suppl 4, pp.1983-92, 2014.
DOI : 10.1136/gut.2010.231993

S. Goutagny, High Incidence of Activating TERT Promoter Mutations in Meningiomas Undergoing Malignant Progression, Brain Pathol, 2013.

A. Satyanarayana, M. P. Manns, and K. L. Rudolph, Telomeres and telomerase: A dual role in hepatocarcinogenesis, Hepatology, vol.16, issue.2, pp.276-83, 2004.
DOI : 10.3109/10428199809050942

C. Harley, Telomerase and cancer therapeutics, Nature Reviews Cancer, vol.22, issue.3, pp.167-79, 2008.
DOI : 10.1128/MCB.19.1.567

T. F. Greten, A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma, BMC Cancer, vol.8, issue.2, p.209, 2010.
DOI : 10.1158/1535-7163.MCT-08-1051

R. W. Atchison, B. C. Casto, and W. M. Hammon, Adenovirus-Associated Defective Virus Particles, Science, vol.149, issue.3685, pp.754-760, 1965.
DOI : 10.1126/science.149.3685.754

M. A. Goncalves, Adeno-­?associated virus: from defective virus to effective vector, Virology Journal, vol.2, issue.1, p.43, 2005.
DOI : 10.1186/1743-422X-2-43

R. H. Smith, Adeno-associated virus integration: virus versus vector, Gene Therapy, vol.73, issue.11, pp.817-839, 2008.
DOI : 10.1634/stemcells.2007-0039

T. R. Flotte and K. I. Berns, Adeno-Associated Virus: A Ubiquitous Commensal of Mammals, Human Gene Therapy, vol.16, issue.4, pp.401-408, 2005.
DOI : 10.1089/hum.2005.16.401

C. L. Halbert, Prevalence of Neutralizing Antibodies Against Adeno-Associated Virus (AAV) Types 2, 5, and 6 in Cystic Fibrosis and Normal Populations: Implications for Gene Therapy Using AAV Vectors, Human Gene Therapy, vol.17, issue.4, pp.440-447, 2006.
DOI : 10.1089/hum.2006.17.440

M. A. Kotterman and D. V. Schaffer, Engineering adeno-associated viruses for clinical gene therapy, Nature Reviews Genetics, vol.434, issue.7, pp.445-51, 2014.
DOI : 10.1016/j.ymthe.2006.05.009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393649

J. A. Chiorini, The Roles of AAV Rep Proteins in Gene Expression and Targeted Integration, Curr Top Microbiol Immunol, vol.218, pp.25-33, 1996.
DOI : 10.1007/978-3-642-80207-2_2

R. M. Kotin, Site-specific integration by adeno-associated virus., Proceedings of the National Academy of Sciences, vol.87, issue.6, pp.2211-2216, 1990.
DOI : 10.1073/pnas.87.6.2211

V. J. Mcalister and R. A. Owens, Preferential Integration of Adeno-Associated Virus Type 2 into a Polypyrimidine/Polypurine-Rich Region within AAVS1, Journal of Virology, vol.81, issue.18, pp.9718-9744, 2007.
DOI : 10.1128/JVI.00746-07

R. J. Samulski, Targeted integration of adeno-­?associated virus (AAV) into human chromosome 19, EMBO J, vol.10, pp.3941-50, 1991.

D. Huser, Integration Preferences of Wildtype AAV-2 for Consensus Rep-Binding Sites at Numerous Loci in the Human Genome, PLoS Pathogens, vol.9, issue.7, p.1000985, 2010.
DOI : 10.1371/journal.ppat.1000985.s002

B. C. Schnepp, R. L. Jensen, C. L. Chen, P. R. Johnson, and K. R. Clark, Characterization of Adeno-Associated Virus Genomes Isolated from Human Tissues, Journal of Virology, vol.79, issue.23, pp.14793-803, 2005.
DOI : 10.1128/JVI.79.23.14793-14803.2005

D. M. Mccarty, S. M. Young, . Jr, and R. J. Samulski, Integration of Adeno-Associated Virus (AAV) and Recombinant AAV Vectors, Annual Review of Genetics, vol.38, issue.1, pp.819-864, 2004.
DOI : 10.1146/annurev.genet.37.110801.143717

J. D. Tratschin, I. L. Miller, M. G. Smith, and B. J. Carter, Adeno-associated virus vector for high-frequency integration, expression, and rescue of genes in mammalian cells., Molecular and Cellular Biology, vol.5, issue.11, pp.3251-60, 1985.
DOI : 10.1128/MCB.5.11.3251

A. Vasileva and R. Jessberger, Precise hit: adeno-associated virus in gene targeting, Nature Reviews Microbiology, vol.8, issue.11, pp.837-884, 2005.
DOI : 10.1146/annurev.genet.38.072902.091500

C. H. Miao, The kinetics of rAAV integration in the liver, Nature Genetics, vol.39, issue.1, pp.13-18, 1998.
DOI : 10.1038/sj.gt.3300398

C. Kaeppel, A largely random AAV integration profile after LPLD gene therapy, Nature Medicine, vol.11, issue.7, pp.889-91, 2013.
DOI : 10.1038/nbt.1754

D. G. Miller, L. M. Petek, and D. W. Russell, Adeno-associated virus vectors integrate at chromosome breakage sites, Nature Genetics, vol.91, issue.7, pp.767-73, 2004.
DOI : 10.1038/sj.gt.3300938

H. Nakai, AAV serotype 2 vectors preferentially integrate into active genes in mice, Nature Genetics, vol.34, issue.3, pp.297-302, 2003.
DOI : 10.1038/ng1179

D. G. Miller, E. A. Rutledge, and D. W. Russell, Chromosomal effects of adeno-associated virus vector integration, Nature Genetics, vol.30, issue.2, pp.147-155, 2002.
DOI : 10.1038/ng824

S. Lamartina, E. Sporeno, E. Fattori, and C. Toniatti, Characteristics of the Adeno-Associated Virus Preintegration Site in Human Chromosome 19: Open Chromatin Conformation and Transcription-Competent Environment, Journal of Virology, vol.74, issue.16, pp.7671-7678, 2000.
DOI : 10.1128/JVI.74.16.7671-7677.2000

A. C. Nathwani, Adenovirus-Associated Virus Vector???Mediated Gene Transfer in Hemophilia B, New England Journal of Medicine, vol.365, issue.25, pp.2357-65, 2011.
DOI : 10.1056/NEJMoa1108046

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265081

P. A. Lewitt, AAV2-GAD gene therapy for advanced Parkinson's disease: a double-blind, sham-surgery controlled, randomised trial, The Lancet Neurology, vol.10, issue.4, pp.309-328, 2011.
DOI : 10.1016/S1474-4422(11)70039-4

J. W. Bainbridge, Long-Term Effect of Gene Therapy on Leber???s Congenital Amaurosis, New England Journal of Medicine, vol.372, issue.20, pp.1887-97, 2015.
DOI : 10.1056/NEJMoa1414221

P. S. Moore and Y. Chang, Why do viruses cause cancer? Highlights of the first century of human tumour virology, Nature Reviews Cancer, vol.4, issue.12, pp.878-89, 2010.
DOI : 10.3181/00379727-83-20376

D. Martin and J. S. Gutkind, Human tumor-associated viruses and new insights into the molecular mechanisms of cancer, Oncogene, vol.50, issue.2, pp.31-42, 2008.
DOI : 10.1016/j.virol.2008.11.046

M. Scheffner, B. A. Werness, J. M. Huibregtse, A. J. Levine, and P. M. Howley, The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53, Cell, vol.63, issue.6, pp.1129-1165, 1990.
DOI : 10.1016/0092-8674(90)90409-8

K. Munger, Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product, EMBO J, vol.8, pp.4099-105, 1989.

K. M. Shah and L. S. Young, Epstein???Barr virus and carcinogenesis: beyond Burkitt's lymphoma, Clinical Microbiology and Infection, vol.15, issue.11, pp.982-990, 2009.
DOI : 10.1111/j.1469-0691.2009.03033.x

Z. Hu, Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism, Nature Genetics, vol.34, issue.2, pp.158-63, 2015.
DOI : 10.1002/humu.10254

H. Feng, M. Shuda, Y. Chang, and P. S. Moore, Clonal Integration of a Polyomavirus in Human Merkel Cell Carcinoma, Science, vol.81, issue.3, pp.1096-100, 2008.
DOI : 10.1016/S0888-7543(02)00043-5

M. A. Epstein, B. G. Achong, and Y. M. Barr, VIRUS PARTICLES IN CULTURED LYMPHOBLASTS FROM BURKITT'S LYMPHOMA, The Lancet, vol.283, issue.7335, pp.702-705, 1964.
DOI : 10.1016/S0140-6736(64)91524-7

M. Durst, L. Gissmann, H. Ikenberg, and H. Zur-hausen, A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions., Proceedings of the National Academy of Sciences, vol.80, issue.12, pp.3812-3817, 1983.
DOI : 10.1073/pnas.80.12.3812

B. J. Poiesz, Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma, Proceedings of the National Academy of Sciences, vol.77, issue.12, pp.7415-7424, 1980.
DOI : 10.1038/227680a0

Y. Chang, Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma, Science, vol.266, issue.5192, pp.1865-1874, 1994.
DOI : 10.1126/science.7997879

B. S. Blumberg, H. J. Alter, S. A. Visnich, and . New, A "New" Antigen in Leukemia Sera, JAMA: The Journal of the American Medical Association, vol.191, issue.7, pp.541-547, 1965.
DOI : 10.1001/jama.1965.03080070025007

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.694.9135

Q. L. Choo, Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome, Science, vol.244, issue.4902, pp.359-62, 1989.
DOI : 10.1126/science.2523562

D. Ding, Recurrent Targeted Genes of Hepatitis B Virus in the Liver Cancer Genomes Identified by a Next-Generation Sequencing???Based Approach, PLoS Genetics, vol.10, issue.12, p.1003065, 2012.
DOI : 10.1371/journal.pgen.1003065.s013

A. Deshpande, P. Sicinski, and P. W. Hinds, Cyclins and cdks in development and cancer: a perspective, Oncogene, vol.88, issue.17, pp.2909-2924, 2005.
DOI : 10.4161/cbt.2.2.235

R. W. Johnstone, A. J. Frew, and M. J. Smyth, The TRAIL apoptotic pathway in cancer onset, progression and therapy, Nature Reviews Cancer, vol.3, issue.10, pp.782-98, 2008.
DOI : 10.1038/sj.leu.2403491

M. Baudard, Delivery via Liposomes, Human Gene Therapy, vol.7, issue.11, pp.1309-1331, 1996.
DOI : 10.1089/hum.1996.7.11-1309

R. P. Haberman, T. J. Mccown, and R. J. Samulski, Novel Transcriptional Regulatory Signals in the Adeno-Associated Virus Terminal Repeat A/D Junction Element, Journal of Virology, vol.74, issue.18, pp.8732-8741, 2000.
DOI : 10.1128/JVI.74.18.8732-8739.2000

A. Donsante, Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors, Gene Therapy, vol.8, issue.17, pp.1343-1349, 2001.
DOI : 10.1038/sj.gt.3301541

H. Li, Assessing the potential for AAV vector genotoxicity in a murine model, Blood, vol.117, issue.12, pp.3311-3320, 2011.
DOI : 10.1182/blood-2010-08-302729

A. Donsante, AAV Vector Integration Sites in Mouse Hepatocellular Carcinoma, Science, vol.92, issue.6, p.477, 2007.
DOI : 10.1093/hmg/ddl001

R. J. Chandler, Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy, Journal of Clinical Investigation, vol.125, issue.2, p.80, 2015.
DOI : 10.1172/JCI79213DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319425

L. E. Rosas, Patterns of scAAV Vector Insertion Associated With Oncogenic Events in a Mouse Model for Genotoxicity, Molecular Therapy, vol.20, issue.11, pp.2098-110, 2012.
DOI : 10.1038/mt.2012.197