.. En-parallèle, 25 II10 (a) Bruit du profil de concentration pour le pas de temps 15000, 25000, 35000 et 45000. (b) Transformé de Fourier du bruit du profil de concentration, p.26

.. Schéma-des-itérations-de-l-'algorithme-de-connectivité, 39 III.6 Représentation de l'état initial d'une surface métallique en contact avec une solution neutre, p.40

D. Landolt, Corrosion and surface chemistry of metals, 2007.
DOI : 10.1201/9781439807880

C. F. Pérez-brokate, D. Di-caprio, D. Féron, J. De-lamare, and E. A. Chaussé, Overview of Cellular Automaton Models for Corrosion, numero 8751 dans Lecture Notes in Computer Science. (document), I, I.2.2, I.3.2, pp.187-196, 2014.
DOI : 10.1007/978-3-319-11520-7_20

H. H. Uhlig, Passivity in metals and alloys, Corrosion Science, vol.19, issue.11, pp.777-791, 1979.
DOI : 10.1016/S0010-938X(79)80104-3

M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, 1966.

D. Landolt, Corrosion et chimie de surfaces des métaux URL : https://books.google.fr/books?hl=fr&lr= &id=O-OYFePi2YwC&oi=fnd&pg=PA1&dq=landolt+corrosion+chimie&ots= amnu7E7InP&sig=eczUw3nLNmi6RzNWMT2Bm_nOPBM, 1997.

T. Okada, A Theory of Perturbation Initiated Pitting URL : http://jes.ecsdl.org/content, Journal of The Electrochemical Society, vol.132537, issue.1323, pp.537-544, 1985.

T. Shibata, Stochastic studies of passivity breakdown, Corrosion Science, vol.31, pp.413-423, 1990.
DOI : 10.1016/0010-938X(90)90140-Z

T. Shibata and T. Takeyama, Stochastic Theory of Pitting Corrosion, CORROSION, vol.33, issue.7, pp.243-251, 1977.
DOI : 10.5006/0010-9312-33.7.243

T. Suzuki, M. Yamabe, and Y. Kitamura, Composition of Anolyte Within Pit Anode of Austenitic Stainless Steels in Chloride Solution, CORROSION, vol.29, issue.1, pp.18-22, 1973.
DOI : 10.5006/0010-9312-29.1.18

J. Newman, D. N. Hanson, and E. K. Vetter, Potential distribution in a corroding pit, Electrochimica Acta, vol.22, issue.8, pp.829-831, 1977.
DOI : 10.1016/0013-4686(77)80005-4

J. N. Harb and R. C. Alkire, Transport and Reaction during Pitting Corrosion of Ni in 0.5m NaCl I . Stagnant Fluid, Journal of The Electrochemical Society, vol.138138, issue.9, pp.2594-2600, 1991.

D. B. Reiser and R. C. Alkire, The measurement of shape change during early stages of corrosion pit growth, Corrosion Science, vol.24, issue.7, pp.579-589, 1984.
DOI : 10.1016/0010-938X(84)90076-3

R. M. Pidaparti and R. K. Patel, Investigation of a single pit/defect evolution during the corrosion process, Corrosion Science, vol.52, issue.9, pp.3150-3153, 2010.
DOI : 10.1016/j.corsci.2010.05.029

D. , D. Caprio, C. Vautrin-ul, J. Stafiej, J. Saunier et al., Morphology of corroded surfaces : Contribution of cellular automaton modelling, Corrosion Science, vol.53, pp.418-425, 2011.

H. Strehblow, Nucleation and Repassivation of Corrosion Pits for Pitting on Iron and Nickel, Materials and Corrosion/Werkstoffe und Korrosion, vol.28, issue.11, pp.792-799, 1976.
DOI : 10.5006/0010-9312-28.10.388

T. P. Hoar, D. C. Mears, and G. P. Rothwell, The relationships between anodic passivity, brightening and pitting, Corrosion Science, vol.5, issue.4, pp.279-289, 1965.
DOI : 10.1016/S0010-938X(65)90614-1

T. E. Pou, O. J. Murphy, V. Young, J. O. Bockris, and L. L. Tongson, Passive Films on Iron: The Mechanism of Breakdown in Chloride Containing Solutions, Journal of The Electrochemical Society, vol.131, issue.6, pp.1243-1251, 1984.
DOI : 10.1149/1.2115795

P. Marcus and J. M. Herbelin, The entry of chloride ions into passive films on nickel studied by spectroscopic (ESCA) and nuclear (36Cl radiotracer) methods, Corrosion Science, vol.34, issue.7, pp.1123-1145, 1993.
DOI : 10.1016/0010-938X(93)90293-P

J. A. Bardwell, B. Macdougall, and G. I. Sproule, Use of SIMS to Investigate the Induction Stage in the Pitting of Iron, Journal of The Electrochemical Society, vol.136, issue.5, pp.1331-1336, 1989.
DOI : 10.1149/1.2096916

R. Goetz, B. Macdougall, and M. J. Graham, An aes and sims study of the influence of chloride on the passive oxide film on iron, Electrochimica Acta, vol.31, issue.10, pp.1299-1303, 1971.
DOI : 10.1016/0013-4686(86)80151-7

J. A. Richardson and G. C. Wood, A study of the pitting corrosion of Al byscanning electron microscopy, Corrosion Science, vol.10, issue.5, pp.313-323, 1970.
DOI : 10.1016/S0010-938X(70)80023-3

D. H. Evans, K. M. O-'connell, R. A. Petersen, and M. J. Kelly, Cyclic voltammetry, Journal of Chemical Education, vol.60, issue.4, 1983.
DOI : 10.1021/ed060p290

A. Thiel and J. Eckell, The solution of metals accompanied by hydrogen evolution-the catalytic influence of non-homogeneous metals and their relationship to the overvoltage series, Korrosion u. Metallschutz, vol.4, pp.121-133, 1928.

M. E. Straumanis, Uncommon Valency lons and the Difference Effect, Journal of The Electrochemical Society, vol.105, issue.5, pp.284-286, 1958.
DOI : 10.1149/1.2428825

G. A. Marsh and E. Schaschl, The Difference Effect and the Chunk Effect, Journal of The Electrochemical Society, vol.107, issue.12, pp.960-965, 1960.
DOI : 10.1149/1.2427579

M. E. Straumanis, G. E. Welch, and W. J. James, The Disintegration of Iron and Steel while Dissolving in Acids, Journal of The Electrochemical Society, vol.111, issue.11, pp.1292-1293, 1964.
DOI : 10.1149/1.2425983

W. J. James, M. E. Straumanis, and J. W. Johnson, Anodic Disintegration of Metals Undergoing Electrolysis in Aqueous Salt Solutions, CORROSION, vol.23, issue.1, pp.15-23, 1967.
DOI : 10.5006/0010-9312-23.1.15

H. Aida, I. Epelboin, and E. M. Garreau, Anodic Dissolution of Beryllium in Anhydrous Media, Journal of The Electrochemical Society, vol.118, issue.2, pp.243-248, 1971.
DOI : 10.1149/1.2407975

D. M. Dra?i´cdra?i´c, Iron and Its Electrochemistry in an Active State de Modern Aspects of, Modern Aspects of Electrochemistry Electrochemistry, vol.19, pp.69-192, 1989.

D. Dra?i´cdra?i´c and J. Popic, Anomalous dissolution of metals and chemical corrosion, Journal of the Serbian Chemical Society, vol.70, issue.3, pp.489-511, 2005.
DOI : 10.2298/JSC0503489D

H. X. Guo, B. T. Lu, and J. L. Luo, Non-Faraday material loss in flowing corrosive solution, Electrochimica Acta, vol.51, issue.25, pp.5341-5348, 2006.
DOI : 10.1016/j.electacta.2006.02.018

C. Vautrin-ul, A. Taleb, J. Stafiej, A. Chaussé, and E. J. Badiali, Mesoscopic modelling of corrosion phenomena: Coupling between electrochemical and mechanical processes, analysis of the deviation from the Faraday law, Electrochimica Acta, vol.52, issue.17, pp.5368-5376, 2007.
DOI : 10.1016/j.electacta.2007.02.051

H. Mendy, Études expérimentales et simulations des processus de corrosion aux interfaces matériaux métalliques-environnement Université d'Évry-Val-d'Essonne, pdf. I, vol.1, issue.4, 2008.

P. Córdoba-torres, R. Nogueira, L. De-miranda, L. Brenig, J. Wallenborn et al., Cellular automaton simulation of a simple corrosion mechanism: mesoscopic heterogeneity versus macroscopic homogeneity, Electrochimica Acta, vol.46, issue.19, pp.2975-2989, 2001.
DOI : 10.1016/S0013-4686(01)00524-2

P. Córdoba-torres, R. P. Nogueira, and E. V. Fairén, Forecasting interface roughness from kinetic parameters of corrosion mechanisms, Journal of Electroanalytical Chemistry, vol.529, issue.2, pp.109-123, 2002.
DOI : 10.1016/S0022-0728(02)00919-1

F. A. Silveira and F. D. Reis, Detachment of non-dissolved clusters and surface roughening in solid dissolution, Electrochimica Acta, vol.111, pp.1-8, 2013.
DOI : 10.1016/j.electacta.2013.08.007

J. and V. Neumann, The general and logical theory of automata Cerebral mechanisms in behavior 1 URL : http://old.nbu.bg, pp.1-2, 1951.

J. and V. Neumann, Theory of self-reproducing automata URL : http://lab.cba.mit, 1966.

M. Gardner, Mathematical Games, Scientific American, vol.223, issue.4, pp.120-123, 1970.
DOI : 10.1038/scientificamerican1070-120

A. Adamatzky, URL : http, 2010.

S. Wolfram, Statistical mechanics of cellular automata, Reviews of Modern Physics, vol.47, issue.3, pp.601-644, 1983.
DOI : 10.1103/PhysRevLett.47.1400

S. Wolfram, Cellular automata as models of complexity, Nature, vol.18, issue.5985, pp.419-424, 1984.
DOI : 10.1145/321650.321652

A. R. Smith, Two-dimensional formal languages and pattern recognition by cellular automata, 12th Annual Symposium on Switching and Automata Theory (swat 1971), pp.144-152, 1971.
DOI : 10.1109/SWAT.1971.29

R. Raghavan, Cellular automata in pattern recognition, Information Sciences, vol.70, issue.1-2, pp.145-177, 1993.
DOI : 10.1016/0020-0255(93)90052-N

S. Maerivoet, B. De, and . Moor, Cellular automata models of road traffic, Physics Reports, vol.419, issue.1, pp.1-64, 2005.
DOI : 10.1016/j.physrep.2005.08.005

M. Rickert, K. Nagel, M. Schreckenberg, and E. A. Latour, Two lane traffic simulations using cellular automata Physica A : Statistical Mechanics and its Applications 231, pp.534-550, 1996.

B. S. Kerner, S. L. Klenov, and D. E. Wolf, Cellular automata approach to three-phase traffic theory, Journal of Physics A: Mathematical and General, vol.35, issue.47, p.9971, 2002.
DOI : 10.1088/0305-4470/35/47/303

URL : http://arxiv.org/abs/cond-mat/0206370

X. Li and A. G. Yeh, Neural-network-based cellular automata for simulating multiple land use changes using GIS, International Journal of Geographical Information Science, vol.62, issue.4, pp.323-343, 2002.
DOI : 10.1068/b2740

G. B. Ermentrout and L. Edelstein-keshet, Cellular Automata Approaches to Biological Modeling, Journal of Theoretical Biology, vol.160, issue.1, pp.97-133, 1993.
DOI : 10.1006/jtbi.1993.1007

A. R. Kansal, S. Torquato, G. R. Harsh, I. , E. A. Chiocca et al., Simulated Brain Tumor Growth Dynamics Using a Three-Dimensional Cellular Automaton, Journal of Theoretical Biology, vol.203, issue.4, pp.367-382, 2000.
DOI : 10.1006/jtbi.2000.2000

S. Dormann and A. Deutsch, Modeling of Self-Organized Avascular Tumor Growth with a Hybrid Cellular Automaton, In Silico Biology, vol.2, pp.393-406, 2002.

H. Balzter, P. W. Braun, and E. W. Köhler, Cellular automata models for vegetation dynamics, Ecological Modelling, vol.107, issue.2-3, pp.113-125, 1998.
DOI : 10.1016/S0304-3800(97)00202-0

URL : https://lra.le.ac.uk/bitstream/2381/4681/1/ECOL_MOD2print.pdf

L. L. Sceller, C. Ripoll, M. Demarty, A. Cabin-flamand, T. Nyström et al., Modelling Bacterial Hyperstructures with Cellular Automata Unifying Themes in Complex Systems, pp.147-156, 2006.

P. Hogeweg, Cellular automata as a paradigm for ecological modeling, Applied Mathematics and Computation, vol.27, issue.1, pp.81-100, 1988.
DOI : 10.1016/0096-3003(88)90100-2

M. Markus, D. Böhm, and E. M. Schmick, Simulation of vessel morphogenesis using cellular automata, Mathematical Biosciences, vol.156, issue.1-2, pp.191-206, 1999.
DOI : 10.1016/S0025-5564(98)10066-4

A. Alexandridis, D. Vakalis, C. I. Siettos, and G. V. Bafas, A cellular automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990, Applied Mathematics and Computation, vol.204, issue.1, pp.191-201, 2008.
DOI : 10.1016/j.amc.2008.06.046

A. Herault, A. Vicari, A. Ciraudo, and C. D. Negro, Forecasting lava flow hazards during the 2006 Etna eruption: Using the MAGFLOW cellular automata model, Computers & Geosciences, vol.35, issue.5, pp.1050-1060, 2009.
DOI : 10.1016/j.cageo.2007.10.008

G. Machado, V. Lupiano, M. V. Avolio, F. Gullace, and S. D. Gregorio, A cellular model for secondary lahars and simulation of cases in the Vasc??n Valley, Ecuador, Journal of Computational Science, vol.11, pp.289-299, 2015.
DOI : 10.1016/j.jocs.2015.08.001

M. F. Zhu and C. P. Hong, A Modified Cellular Automaton Model for the Simulation of Dendritic Growth in Solidification of Alloys., ISIJ International, vol.41, issue.5, pp.436-445, 2001.
DOI : 10.2355/isijinternational.41.436

J. R. Weimar, J. J. Tyson, and L. T. Watson, Diffusion and wave propagation in cellular automaton models of excitable media, Physica D: Nonlinear Phenomena, vol.55, issue.3-4, pp.309-327, 1992.
DOI : 10.1016/0167-2789(92)90062-R

E. Domany and W. Kinzel, Equivalence of Cellular Automata to Ising Models and Directed Percolation, Physical Review Letters, vol.8, issue.4, pp.311-314, 1984.
DOI : 10.1063/1.1705220

D. , D. Caprio, and J. Stafiej, Simulations of passivation phenomena based on discrete lattice gas automata, Electrochimica Acta, vol.55, pp.3884-3890, 2010.

D. , D. Caprio, and J. Stafiej, The role of adsorption in passivation phenomena modelled by discrete lattice gas automata, Electrochimica Acta, vol.56, pp.3963-3968, 2011.

L. Bartosik, J. Stafiej, and E. D. Caprio, Cellular automata model of anodization, Journal of Computational Science, vol.11, pp.309-316, 2015.
DOI : 10.1016/j.jocs.2015.06.003

L. Bartosik, J. Stafiej, and D. D. Caprio, 3D simulations of ordered nanopore growth in alumina, S0013468615304126. I.2.2, pp.218-221, 2016.
DOI : 10.1016/j.electacta.2015.08.164

M. Lucas, J. Stafiej, C. Slim, S. Delpech, and E. D. Caprio, Cellular automata modeling of Scanning Electrochemical Microscopy (SECM) experiments, Electrochimica Acta, vol.145, pp.314-318, 2014.
DOI : 10.1016/j.electacta.2014.08.074

URL : https://hal.archives-ouvertes.fr/in2p3-01101713

C. F. Pérez-brokate, D. Di-caprio, E. Mahé, D. Féron, and J. De-lamare, Cyclic voltammetry simulations with cellular automata, S1877750315300107. I.2.2, II.2, pp.269-278, 2015.
DOI : 10.1016/j.jocs.2015.08.005

V. Maurice and P. Marcus, Passive films at the nanoscale, Electrochimica Acta, vol.84, pp.129-138, 2012.
DOI : 10.1016/j.electacta.2012.03.158

B. Diawara, Y. Beh, and E. P. Marcus, Nucleation and Growth of Oxide Layers on Stainless Steels (FeCr) Using a Virtual Oxide Layer Model, The Journal of Physical Chemistry C, vol.114, issue.45, pp.19299-19307, 2010.
DOI : 10.1021/jp909445x

I. S. Cole, N. S. Azmat, A. Kanta, and E. M. Venkatraman, What really controls the atmospheric corrosion of zinc? Effect of marine aerosols on atmospheric corrosion of zinc, International Materials Reviews, vol.136, issue.3, pp.117-133, 2009.
DOI : 10.5006/1.3584923

D. R. Gunasegaram, M. S. Venkatraman, and I. S. Cole, Towards multiscale modelling of localised corrosion, International Materials Reviews, vol.85, issue.1, pp.84-114, 2013.
DOI : 10.1179/147842203767789203

P. Doig and P. E. Flewitt, A Finite Difference Numerical Analysis of Galvanic Corrosion for Semi-Infinite Linear Coplanar Electrodes, Journal of The Electrochemical Society, vol.126, issue.12, pp.2057-2063, 1979.
DOI : 10.1149/1.2128861

S. C. Kranc and A. A. Sagüés, Detailed modeling of corrosion macrocells on steel reinforcing in concrete, Corrosion Science, vol.43, issue.7, pp.1355-1372, 2001.
DOI : 10.1016/S0010-938X(00)00158-X

S. M. Sharland, C. P. Jackson, and A. J. Diver, A finite-element model of the propagation of corrosion crevices and pits, Corrosion Science, vol.29, issue.9, pp.1149-1166, 1989.
DOI : 10.1016/0010-938X(89)90051-6

H. J. Dagher and S. Kulendran, Finite Element Modeling of Corrosion Damage in Concrete Structures, Structural Journal, vol.89, pp.699-708, 1992.

J. M. Chuang, N. G. Zamani, and C. C. Hsiung, Some computational aspects of BEM simulation of cathodic protection systems, Applied Mathematical Modelling, vol.11, issue.5, pp.371-379, 1987.
DOI : 10.1016/0307-904X(87)90032-1

N. G. Zamani, J. F. Porter, and A. A. Mufti, A survey of computational efforts in the field of corrosion engineering, International Journal for Numerical Methods in Engineering, vol.21, issue.7, pp.1295-1311, 1986.
DOI : 10.5006/1.3593898

O. Pironneau, Méthodes des éléments finis pour les fluides (Masson, 1988) URL : http

O. C. Zienkiewicz and R. L. Taylor, La méthode des éléments finis, Formulation de base et problèmes linéaires, 1991.

D. R. Owen and E. Hinton, Finite elements in plasticity, 1980.

K. Sieradzki and R. C. Newman, A Percolation Model for Passivation in Stainless Steels, Journal of The Electrochemical Society, vol.133, issue.9, pp.1979-1980, 1986.
DOI : 10.1149/1.2109065

T. Nagatani, Dynamic scaling of pit-size distribution in corrosion patterns Physical review letters 68, p.1616, 1992.

T. Nagatani, Multifractality of growth probability distribution in diffusion-limited-corrosion pit, Physical Review A, vol.55, issue.10, p.6985, 1992.
DOI : 10.1103/PhysRevLett.55.1026

T. Nagatani, Structural transition in pitting corrosion of binary alloys, Physical Review A, vol.40, issue.4, p.2480, 1992.
DOI : 10.4324/9780203211595

B. Malki and B. Baroux, Computer simulation of the corrosion pit growth, Corrosion Science, vol.47, issue.1, pp.171-182, 2005.
DOI : 10.1016/j.corsci.2004.05.004

R. Reigada, F. Sagués, and J. M. Costa, A Monte Carlo simulation of localized corrosion, The Journal of Chemical Physics, vol.39, issue.3, pp.2329-2337, 1994.
DOI : 10.1038/350216a0

Y. Z. Wang, D. Hardie, and R. N. Parkins, The behaviour of multiple stress corrosion cracks in a Mn-Cr and a Ni-Cr-Mo-V steel: III???Monte Carlo simulation, Corrosion Science, vol.37, issue.11, pp.1705-1720, 1995.
DOI : 10.1016/0010-938X(95)00039-M

F. Caleyo, J. Velázquez, A. Valor, and E. J. Hallen, Probability distribution of pitting corrosion depth and rate in underground pipelines: A Monte Carlo study, Corrosion Science, vol.51, issue.9, pp.1925-1934, 2009.
DOI : 10.1016/j.corsci.2009.05.019

K. F. Khaled, Monte Carlo simulations of corrosion inhibition of mild steel in 0.5??M sulphuric acid by some green corrosion inhibitors, Journal of Solid State Electrochemistry, vol.38, issue.11, pp.1743-1756, 2009.
DOI : 10.1007/s10800-008-9604-5

F. Caleyo, J. L. González, and J. M. Hallen, A study on the reliability assessment methodology for pipelines with active corrosion defects, International Journal of Pressure Vessels and Piping, vol.79, issue.1, pp.77-86, 2002.
DOI : 10.1016/S0308-0161(01)00124-7

K. Sieradzki, R. R. Corderman, K. Shukla, and R. C. Newman, Computer simulations of corrosion: Selective dissolution of binary alloys, Philosophical Magazine A, vol.62, issue.4, pp.713-746, 1989.
DOI : 10.1103/PhysRevLett.47.1400

A. K. Sheikh, J. K. Boah, and D. A. Hansen, Statistical Modeling of Pitting Corrosion and Pipeline Reliability, CORROSION, vol.46, issue.3, pp.190-197, 1990.
DOI : 10.5006/1.3585090

S. Li, S. Yu, H. Zeng, J. Li, and E. R. Liang, Predicting corrosion remaining life of underground pipelines with a mechanically-based probabilistic model, Journal of Petroleum Science and Engineering, vol.65, issue.3-4, pp.162-166, 2009.
DOI : 10.1016/j.petrol.2008.12.023

J. Hu, F. Liu, G. Cheng, and E. Z. Zhang, Life prediction of steam generator tubing due to stress corrosion crack using Monte Carlo Simulation, Nuclear Engineering and Design, vol.241, issue.10, pp.4289-4298, 2011.
DOI : 10.1016/j.nucengdes.2011.08.016

P. Meakin, T. Jøssang, and E. J. Feder, Simple passivation and depassivation model for pitting corrosion, Physical Review E, vol.47, issue.4, pp.2906-2916, 1993.
DOI : 10.1103/PhysRevLett.47.1400

L. Balázs and J. F. Gouyet, Two-dimensional pitting corrosion of aluminium thin layers Physica A : Statistical Mechanics and its Applications 217, pp.319-338, 1995.

G. Qiao, Y. Hong, and E. J. Ou, Quantitative monitoring of pitting corrosion based on 3-D cellular automata and real-time ENA for RC structures, Measurement, vol.53, pp.270-276, 2014.
DOI : 10.1016/j.measurement.2014.03.045

B. P. Rusyn, R. V. Tors-'ka, and A. Y. Pokhmurs-'kyi, Modeling of the Evolution of Corrosion Pitting with the Use of Cellular Automata, Materials Science, vol.144, issue.5, pp.706-713, 2015.
DOI : 10.1149/1.1837643

B. Rusyn, R. Tors-'ka, and E. M. Kobasyar, Application of the Cellular Automata for Obtaining Pitting Images during Simulation Process of Their Growth, numero 242 dans Advances in Intelligent Systems and Computing, pp.299-306, 2014.
DOI : 10.1007/978-3-319-02309-0_32

Z. Xiao, H. Jun, W. Yuqi, Z. Maosheng, and E. Z. Zaoxiao, Simulation of Pitting Corrosion for Ni-based Alloy Using a Cellular Automata Model, Rare Metal Materials and Engineering, vol.44, issue.10, pp.2347-2352, 2015.
DOI : 10.1016/S1875-5372(16)30018-2

H. T. Wang and E. H. Han, Cellular automata simulation of interactions between metastable corrosion pits on stainless steel, Materials and Corrosion, vol.52, issue.9, pp.925-930, 2015.
DOI : 10.1016/j.electacta.2007.08.011

H. Wang and E. Han, Computational simulation of corrosion pit interactions under mechanochemical effects using a cellular automaton/finite element model, Corrosion Science, vol.103, pp.305-311, 2016.
DOI : 10.1016/j.corsci.2015.11.034

P. Van-der-weeën, A. M. Zimer, E. C. Pereira, L. H. Mascaro, O. M. Bruno et al., Modeling pitting corrosion by means of a 3D discrete stochastic model, Corrosion Science, vol.82, issue.2, pp.133-144, 2014.
DOI : 10.1016/j.corsci.2014.01.010

J. Burridge and R. Inkpen, Formation and arrangement of pits by a corrosive gas, Physical Review E, vol.13, issue.2, p.22403, 2015.
DOI : 10.1146/annurev.fluid.33.1.549

N. Jain, P. Kalra, and E. S. Kumar, Simulation and Rendering of Pitting Corrosion, Proceedings of the 2014 Indian Conference on Computer Vision Graphics and Image Processing, ICVGIP '14
DOI : 10.1063/1.467673

A. Einstein, ??ber die von der molekularkinetischen Theorie der W??rme geforderte Bewegung von in ruhenden Fl??ssigkeiten suspendierten Teilchen, Annalen der Physik, vol.11, issue.8, pp.549-560, 1905.
DOI : 10.1002/andp.19053220806

S. Universités, Concours Arts et Sciences URL : http:// artsetsciences.doc-up, 2014.

G. Pólya, ???ber eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Stra???ennetz, Mathematische Annalen, vol.52, issue.1-2, pp.149-160, 1921.
DOI : 10.1007/BF01458701

F. Spitzer, Principles of Random Walk, de Graduate Texts in Mathematics, 1964.

W. H. Mccrea and F. J. Whipple, XXII.???Random Paths in Two and Three Dimensions., Proceedings of the Royal Society of Edinburgh, vol.60, issue.03, pp.281-298, 1940.
DOI : 10.2307/3607311

G. N. Watson, THREE TRIPLE INTEGRALS, The Quarterly Journal of Mathematics, vol.10, issue.1, 1938.
DOI : 10.1093/qmath/os-10.1.266

C. Domb, On multiple returns in the random-walk problem, Mathematical Proceedings of the Cambridge Philosophical Society, vol.6, issue.04, pp.586-591, 1954.
DOI : 10.1017/S0370164600020265

M. L. Glasser and I. J. Zucker, Extended Watson integrals for the cubic lattices, Proceedings of the National Academy of Sciences, vol.74, issue.5, pp.1800-1801, 1977.
DOI : 10.1073/pnas.74.5.1800

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC431006/pdf

J. Sanders and E. Kandrot, CUDA by Example : An Introduction to General- Purpose GPU Programming, Portable Documents, 2010.

C. Vautrin-ul, H. Mendy, A. Taleb, A. Chaussé, J. Stafiej et al., Numerical simulations of spatial heterogeneity formation in metal Corrosion, Corrosion Science, vol.50, issue.8, pp.2149-2158, 2008.
DOI : 10.1016/j.corsci.2008.03.012

C. F. Pérez-brokate, D. Di-caprio, D. Féron, J. De-lamare, and E. A. Chaussé, Cellular automata model of generalized corrosion. Application to long term corrosion, Corrosion Engineering Science and Technology, issue.1, 2016.

C. Perez-brokate, D. Di-caprio, D. Féron, J. De-lamare, and E. A. Chaussé, Pitting corrosion modelling by means of a stochastic cellular automata-based model, Corrosion Engineering, Science and Technology, vol.78, issue.9, 2016.
DOI : 10.1098/rsta.1992.0114

C. F. Pérez-brokate, D. Di-caprio, D. Féron, J. De-lamare, and E. A. Chaussé, Three dimensional discrete stochastic model of occluded corrosion cell, S0010938X16301469. III.1, III.4, pp.230-241, 2016.
DOI : 10.1016/j.corsci.2016.04.009

L. Li, X. Li, C. Dong, and E. Y. Huang, Computational simulation of metastable pitting of stainless steel, Electrochimica Acta, vol.54, issue.26, pp.6389-6395, 2009.
DOI : 10.1016/j.electacta.2009.05.093

K. Lan, Y. Chen, T. Hung, H. Tung, and G. Yu, Simulation of the growth of oxide layer of stainless steels with chromium using cellular automaton model: Verification and parameter study, Computational Materials Science, vol.77, pp.139-144, 2013.
DOI : 10.1016/j.commatsci.2013.04.037

D. Stauffer and A. Aharony, Introduction to percolation theory, 1994.

D. P. Bentz and E. J. Garboczi, Percolation of phases in a three-dimensional cement paste microstructural model, Cement and Concrete Research, vol.21, issue.2-3, pp.325-344, 1991.
DOI : 10.1016/0008-8846(91)90014-9

J. Stafiej, D. Di-caprio, and E. L. Bartosik, Corrosion-passivation processes in a cellular automata based simulation study, The Journal of Supercomputing, vol.51, issue.2, pp.697-709, 2013.
DOI : 10.1016/j.electacta.2006.02.018

B. Beverskog and I. Puigdomenech, Revised pourbaix diagrams for iron at 25???300 ??C, Corrosion Science, vol.38, issue.12, pp.2121-2135, 1996.
DOI : 10.1016/S0010-938X(96)00067-4

S. M. Ghahari, A. J. Davenport, T. Rayment, T. Suter, J. Tinnes et al., In situ synchrotron X-ray micro-tomography study of pitting corrosion in stainless steel, Corrosion Science, vol.53, issue.9, pp.2684-2687, 2011.
DOI : 10.1016/j.corsci.2011.05.040

S. M. Ghahari, D. P. Krouse, N. J. Laycock, T. Rayment, C. Padovani et al., Pitting corrosion of stainless steel: measuring and modelling pit propagation in support of damage prediction for radioactive waste containers, Corrosion Engineering, Science and Technology, vol.145, issue.4, pp.205-211, 2011.
DOI : 10.1149/1.2056137

M. Ghahari, D. Krouse, N. Laycock, T. Rayment, C. Padovani et al., Synchrotron X-ray radiography studies of pitting corrosion of stainless steel: Extraction of pit propagation parameters, Corrosion Science, vol.100, pp.23-35, 2015.
DOI : 10.1016/j.corsci.2015.06.023

C. D. Taylor, Modeling Corrosion, Atom by Atom The Electrochemical Society Interface URL : http://interface.ecsdl.org/content, pp.59-6459, 2014.

C. D. Taylor, Corrosion informatics: an integrated approach to modelling corrosion, Corrosion Engineering, Science and Technology, vol.53, issue.7, pp.490-508, 2015.
DOI : 10.1016/j.corsci.2011.12.001

M. Stancheva, B. Diawara, F. Lebreau, and E. M. Bojinov, Multi-Scale Modeling of the Initial Stages of Anodic Oxidation of Titanium, Journal of the Electrochemical Society, vol.161, issue.8, pp.3188-3195, 2014.
DOI : 10.1149/2.022408jes

J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco et al., Accelerating molecular modeling applications with graphics processors, Journal of Computational Chemistry, vol.13, issue.16, pp.2618-2640, 2007.
DOI : 10.1016/0005-2744(75)90241-7

T. Harada, S. Koshizuka, and E. Y. Kawaguchi, Smoothed particle hydrodynamics on GPUs URL : http://gpucomputing.net/sites, Computer Graphics InternationalSBC Petropolis, issue.2, pp.63-70, 1480.

S. Ogawa and T. Aoki, GPU Computing for 2-dimensional incompressibleflow Simulation based on Multigrid method URL : https://www.jstage.jst.go, Transactions of the Japan Society for Computational Engineering and Science, issue.02, 2009.

J. Thibault and I. Senocak, CUDA Implementation of a Navier-Stokes Solver on Multi-GPU Desktop Platforms for Incompressible Flows, " dans " 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 2009.

D. Rossinelli, M. Bergdorf, G. Cottet, and E. P. Koumoutsakos, GPU accelerated simulations of bluff body flows using vortex particle methods, Journal of Computational Physics, vol.229, issue.9, pp.3316-3333, 2010.
DOI : 10.1016/j.jcp.2010.01.004

E. Hermann, B. Raffin, F. Faure, T. Gautier, J. Allard et al., Multi-GPU and Multi- CPU Parallelization for Interactive Physics Simulations, " dans " Euro-Par 2010 -Parallel Processing, numero 6272 dans Lecture Notes in Computer Science, pp.235-246, 1007.

B. Block, P. Virnau, and E. T. Preis, Multi-GPU accelerated multi-spin Monte Carlo simulations of the 2D Ising model, Computer Physics Communications, vol.181, issue.9, pp.1549-1556, 2010.
DOI : 10.1016/j.cpc.2010.05.005

W. Xian and A. Takayuki, Multi-GPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster URL : http://www.sciencedirect.com/science, Parallel Computing, vol.37, issue.2, pp.521-535, 2011.

A. Boukedjar, M. E. Lalami, and D. El-baz, Parallel Branch and Bound on a CPU-GPU System Distributed and networked-based Processing, 20th International Conference on Parallel, pp.392-398