A. Favier, Le stress oxydant, Chim, vol.108, 2003.

M. Cooke, M. Evans, M. Dizdaroglu, and J. Lunec, Oxidative DNA damage: mechanisms, mutation, and disease, The FASEB Journal, vol.17, issue.10, pp.1195-214, 2003.
DOI : 10.1096/fj.02-0752rev

C. Foote, DEFINITION OF TYPE I and TYPE II PHOTOSENSITIZED OXIDATION, Photochemistry and Photobiology, vol.64, issue.5, p.659, 1991.
DOI : 10.1021/ie50642a006

B. Morin and J. Cadet, Type I Benzophenone-Mediated Nucleophilic Reaction of 5'-Amino-2',5'-dideoxyguanosine. A Model System for the Investigation of Photosensitized Formation of DNA-Protein Cross-Links, Chemical Research in Toxicology, vol.8, issue.5, pp.792-801, 1995.
DOI : 10.1021/tx00047a020

J. Cadet, T. Douki, and J. Ravanat, Oxidatively Generated Damage to the Guanine Moiety of DNA: Mechanistic Aspects and Formation in Cells, Accounts of Chemical Research, vol.41, issue.8, pp.1075-83, 2008.
DOI : 10.1021/ar700245e

S. Kanvah, J. Joseph, G. Schuster, R. Barnett, C. Cleveland et al., Oxidation of DNA: Damage to Nucleobases, Accounts of Chemical Research, vol.43, issue.2, pp.280-287
DOI : 10.1021/ar900175a

G. Pratviel and B. Meunier, Guanine Oxidation: One- and Two-Electron Reactions, Chemistry - A European Journal, vol.4, issue.23, pp.6018-6048, 2006.
DOI : 10.1016/j.mrfmmm.2003.07.002

H. Ide, M. Shoulkamy, T. Nakano, M. Miyamoto-matsubara, and A. Salem, Repair and biochemical effects of DNA???protein crosslinks, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.711, issue.1-2, pp.113-135, 2011.
DOI : 10.1016/j.mrfmmm.2010.12.007

S. Barker, M. Weinfeld, and D. Murray, DNA?protein crosslinks: their induction, repair, and biological consequences, Mutation Research/Reviews in Mutation Research, vol.589, issue.2, pp.111-146, 2005.
DOI : 10.1016/j.mrrev.2004.11.003

M. Shoulkamy, T. Nakano, M. Ohshima, R. Hirayama, A. Uzawa et al., Detection of DNA???protein crosslinks (DPCs) by novel direct fluorescence labeling methods: distinct stabilities of aldehyde and radiation-induced DPCs, Nucleic Acids Research, vol.40, issue.18, pp.143-143, 2012.
DOI : 10.1093/nar/gks601

J. Reardon and Y. Cheng, Repair of DNA?Protein Cross-links in Mammalian Cells. Cell Cycle, 2006.

M. Demott, Covalent Trapping of Human DNA Polymerase ?? by the Oxidative DNA Lesion 2-Deoxyribonolactone, Journal of Biological Chemistry, vol.VII, issue.4, pp.7637-7677, 2002.
DOI : 10.1021/bi991321u

R. Gilboa, Structure of Formamidopyrimidine-DNA Glycosylase Covalently Complexed to DNA, Journal of Biological Chemistry, vol.268, issue.22, pp.19811-19817, 2002.
DOI : 10.1093/nar/26.23.5351

X. Ye, J. Z. Wei, C. Mchale, C. Ding, S. Thomas et al., Inhaled formaldehyde induces DNAprotein crosslinks and oxidative stress in bone marrow and other distant organs of exposed mice: Formaldehyde Inhalation Induces Distant Toxicity in Mice, Environ Mol Mutagen, 2013.

H. Kim, F. Stermitz, R. Coulombe, and . Jr, Pyrrolizidine alkaloid-induced DNA-protein cross-links. Carcinogenesis, pp.2691-2698, 1995.
DOI : 10.1093/carcin/16.11.2691

K. Chvalova, V. Brabec, and J. Kasparkova, Mechanism of the formation of DNA???protein cross-links by antitumor cisplatin, Nucleic Acids Research, vol.35, issue.6, pp.1812-1833, 2007.
DOI : 10.1093/nar/gkm032

A. Zhitkovich, V. Voitkun, and M. Costa, Formation of the Amino Acid?DNA Complexes by Hexavalent and Trivalent Chromium in Vitro: Importance of Trivalent Chromium and the Phosphate Group ? . Biochemistry (Mosc), pp.7275-82, 1996.

J. Shaham, Y. Bomstein, A. Meltzer, Z. Kaufman, E. Palma et al., studies, Carcinogenesis, vol.17, issue.1, 1996.
DOI : 10.1093/carcin/17.1.121

J. Mcghee, V. Hippel, and P. , Formaldehyde as a probe of DNA structure. I. Reaction with exocyclic amino groups of DNA bases, Biochemistry, vol.14, issue.6, pp.1281-96, 1975.
DOI : 10.1021/bi00677a029

J. Shaham, Y. Bomstein, R. Gurvich, M. Rashkovsky, and Z. Kaufman, DNA-protein crosslinks and p53 protein expression in relation to occupational exposure to formaldehyde, Occupational and Environmental Medicine, vol.60, issue.6, 2003.
DOI : 10.1136/oem.60.6.403

R. Lacave, C. Larsen, and R. J. , Méthylation de l'ADN, empreinte parentale et cancer. Cancérologie fondamentale, 2005.

D. Santi, A. Norment, and C. Garrett, Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine., Proceedings of the National Academy of Sciences, vol.81, issue.22, 1984.
DOI : 10.1073/pnas.81.22.6993

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC392062/pdf

R. Meyn, S. Vanankeren, and W. Jenkins, The Induction of DNA-Protein Crosslinks in Hypoxic Cells and Their Possible Contribution to Cell Lethality, Radiation Research, vol.109, issue.3, pp.419-448, 1987.
DOI : 10.2307/3577042

S. Chakrabarti and . Dna-?, DNA???Protein Crosslinks Induced by Nickel Compounds in Isolated Rat Lymphocytes: Role of Reactive Oxygen Species and Specific Amino Acids, Toxicology and Applied Pharmacology, vol.170, issue.3, pp.153-65, 2001.
DOI : 10.1006/taap.2000.9097

. Schriver-mazzuoli, Pollution chimique. La pollution de l'air intérieur. Dunod, 2009.

C. Klein, K. Frenkel, and M. Costa, The role of oxidative processes in metal carcinogenesis, Chemical Research in Toxicology, vol.4, issue.6, pp.592-604, 1991.
DOI : 10.1021/tx00024a001

S. Mattagajasingh and H. Misra, Analysis of EDTA-chelatable proteins from DNA-protein crosslinks induced by a carcinogenic chromium(VI) in cultured intact human cells, Mol Cell Biochem, 1999.

L. Fourrier, Mécanisme d'action de la drogue anticancéreuse cis-dichlorodiammineplatine (II) : étude de l'interaction entre les protéines de réparation des mésappariements et l'ADN platiné, 2003.

J. Yamamoto, Y. Miyagi, K. Kawanishi, S. Yamada, Y. Miyagi et al., Effect of cisplatin on cell death and DNA crosslinking in rat mammary Adenocarcinoma in vitro, Acta Med Okayama, vol.53, issue.5, pp.201-209, 1999.

K. Kohn and R. Grimek-ewig, Alkaline elution analysis, a new approach to the study of DNA singlestrand interruptions in cells, Cancer Res, vol.33, issue.8, pp.1849-53, 1973.

K. Kohn and R. Ewig, DNA-protein crosslinking by trans-platinum(II)diamminedichloride in mammalian cells, a new method of analysis. Biochim Biophys Acta BBA -Nucleic Acids Protein Synth, pp.32-40, 1979.

N. Oleinick, S. Chiu, N. Ramakrishnan, and L. Xue, The formation, identification, and significance of DNA-protein cross-links in mammalian cells, Br J Cancer, vol.8, p.135, 1987.

G. Strniste and S. Rall, Induction of stable protein-deoxyribonucleic acid adducts in Chinese hamster cell chromatin by ultraviolet light, Biochemistry, vol.15, issue.8, pp.1712-1721, 1976.
DOI : 10.1021/bi00653a019

L. Liu, T. Rowe, L. Yang, K. Tewey, and G. Chen, Cleavage of DNA by mammalian DNA topoisomerase II, J Biol Chem, vol.258, issue.24, pp.15365-70, 1983.

A. Collins, The Comet Assay for DNA Damage and Repair: Principles, Applications, and Limitations, Molecular Biotechnology, vol.26, issue.3, pp.249-61, 2004.
DOI : 10.1385/MB:26:3:249

O. Merk and G. Speit, Detection of crosslinks with the comet assay in relationship to genotoxicity and cytotoxicity, Environmental and Molecular Mutagenesis, vol.13, issue.2, pp.167-72, 1999.
DOI : 10.1016/0165-1161(92)91083-4

O. Merk, K. Reiser, and G. Speit, Analysis of chromate-induced DNA-protein crosslinks with the comet assay, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol.471, issue.1-2, pp.71-80, 2000.
DOI : 10.1016/S1383-5718(00)00110-8

T. Nakano, S. Morishita, A. Katafuchi, M. Matsubara, Y. Horikawa et al., Nucleotide Excision Repair and Homologous Recombination Systems Commit Differentially to the Repair of DNA-Protein Crosslinks, Molecular Cell, vol.28, issue.1, pp.147-58, 2007.
DOI : 10.1016/j.molcel.2007.07.029

Z. Zhuang and M. Costa, Development of an 125I-postlabeling assay as a simple, rapid, and sensitive index of DNA-protein cross-links. Environ Health Perspect, pp.301-305, 1994.

K. Kiianitsa and N. Maizels, A rapid and sensitive assay for DNA???protein covalent complexes in living cells, Nucleic Acids Research, vol.41, issue.9, pp.104-104, 2013.
DOI : 10.1093/nar/gkt171

M. Dizdaroglu, E. Gajewski, P. Reddy, and S. Margolis, Structure of a hydroxyl radical induced DNAprotein cross-link involving thymine and tyrosine in nucleohistone, Biochemistry (Mosc) Apr, vol.1828, issue.8, pp.3625-3633, 1989.

M. Dizdaroglu and E. Gajewski, Structure and mechanism of hydroxyl radical-induced formation of a DNA-protein cross-link involving thymine and lysine in nucleohistone. Cancer Res, pp.3463-3470, 1989.

S. Perrier, J. Hau, D. Gasparutto, J. Cadet, A. Favier et al., Characterization of Lysine???Guanine Cross-Links upon One-Electron Oxidation of a Guanine-Containing Oligonucleotide in the Presence of a Trilysine Peptide, Journal of the American Chemical Society, vol.128, issue.17, pp.5703-5713, 2006.
DOI : 10.1021/ja057656i

V. Voitkun, Cr(III)-mediated crosslinks of glutathione or amino acids to the DNA phosphate backbone are mutagenic in human cells, Nucleic Acids Research, vol.26, issue.8, pp.2024-2054, 1998.
DOI : 10.1093/nar/26.8.2024

Z. Yu, J. Chen, B. Ford, M. Brackley, and B. Glickman, Human DNA repair systems: An overview, Environmental and Molecular Mutagenesis, vol.39, issue.1, pp.3-20, 1999.
DOI : 10.1128/MCB.15.6.3206

A. Forestier, Effets du peptide Amyloïde-2, caractéristique de la maladie d'Alzheimer, sur les systèmes de réparation de l'ADN. Grenoble, 2011.

Q. Fang, DNA???protein crosslinks processed by nucleotide excision repair and homologous recombination with base and strand preference in E. coli model system, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.741, issue.742, pp.741-7421, 2013.
DOI : 10.1016/j.mrfmmm.2013.02.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633479

D. Zharkov, Base excision DNA repair, Cellular and Molecular Life Sciences, vol.65, issue.10, pp.1544-65, 2008.
DOI : 10.1007/s00018-008-7543-2

D. Wilsoniii and V. Bohr, The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair, pp.544-59, 2007.

S. Shuck, E. Short, and J. Turchi, Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology, Cell Research, vol.596, issue.1, pp.64-72, 2008.
DOI : 10.1016/j.mrfmmm.2005.11.008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2432112

R. Costa, The eukaryotic nucleotide excision repair pathway, Biochimie, vol.85, issue.11, pp.1083-99, 2003.
DOI : 10.1016/j.biochi.2003.10.017

J. Truglio, D. Croteau, B. Van-houten, and C. Kisker, Prokaryotic Nucleotide Excision Repair:?? The UvrABC System, Chemical Reviews, vol.106, issue.2, pp.233-52, 2006.
DOI : 10.1021/cr040471u

H. Lans, J. Marteijn, and W. Vermeulen, ATP-dependent chromatin remodeling in the DNA-damage response, Epigenetics & Chromatin, vol.5, issue.1, p.4, 2012.
DOI : 10.1101/gad.1831509

X. Li and W. Heyer, Homologous recombination in DNA repair and DNA damage tolerance, Cell Research, vol.153, issue.1, pp.99-113, 2008.
DOI : 10.1128/MCB.25.18.8084-8096.2005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087377

M. Dillingham and S. Kowalczykowski, RecBCD Enzyme and the Repair of Double-Stranded DNA Breaks, Microbiology and Molecular Biology Reviews, vol.72, issue.4, pp.642-71, 2008.
DOI : 10.1128/MMBR.00020-08

S. Kowalczykowski, D. Dixon, A. Eggleston, S. Lauder, and W. Rehrauer, Biochemistry of homologous recombination in Escherichia coli, Microbiol Rev, vol.58, issue.3, pp.401-65, 1994.

J. Wilson, CANCER: BRCA2 Enters the Fray, Science, vol.297, issue.5588, pp.1822-1825, 2002.
DOI : 10.1126/science.1077171

A. Salem, T. Nakano, M. Takuwa, N. Matoba, T. Tsuboi et al., Genetic Analysis of Repair and Damage Tolerance Mechanisms for DNA-Protein Cross-Links in Escherichia coli, Journal of Bacteriology, vol.191, issue.18, pp.5657-68, 2009.
DOI : 10.1128/JB.00417-09

G. Quievryn and A. Zhitkovich, Loss of DNA-protein crosslinks from formaldehyde-exposed cells occurs through spontaneous hydrolysis and an active repair process linked to proteosome function, Carcinogenesis, vol.21, issue.8, pp.1573-80, 2000.

X. Xu, J. Muller, Y. Ye, and C. Burrows, DNA???Protein Cross-links between Guanine and Lysine Depend on the Mechanism of Oxidation for Formation of C5 Vs C8 Guanosine Adducts, Journal of the American Chemical Society, vol.130, issue.2, pp.703-712, 2008.
DOI : 10.1021/ja077102a

S. Margolis, B. Coxon, E. Gajewski, and M. Dizdaroglu, Structure of a hydroxyl radical induced cross-link of thymine and tyrosine, Biochemistry, vol.27, issue.17, pp.6353-6362, 1988.
DOI : 10.1021/bi00417a024

S. Altman, T. Zastawny, L. Randers-eichhorn, M. Cacciuttolo, S. Akman et al., Formation of DNA-protein cross-links in cultured mammalian cells upon treatment with iron ions, Free Radical Biology and Medicine, vol.19, issue.6, pp.897-902, 1995.
DOI : 10.1016/0891-5849(95)00095-F

S. Morimoto, H. Hatta, S. Fujita, T. Matsuyama, T. Ueno et al., Hydroxyl radical-induced cross-linking of thymine and lysine: Identification of the primary structure and mechanism, Bioorganic & Medicinal Chemistry Letters, vol.8, issue.7, pp.865-70, 1998.
DOI : 10.1016/S0960-894X(98)00124-3

M. Dizdaroglu and M. Simic, Radiation-induced Crosslinks between Thymine and Phenylalanine, International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, vol.37, issue.1, pp.63-72, 1985.
DOI : 10.1021/jo00968a023

T. Charlton, B. Ingelse, D. Black, D. Craig, K. Mason et al., A covalent thyminetyrosine adduct involved in DNA-protein crosslinks: synthesis, characterization, and quantification, Free Radic Biol Med, vol.27, pp.3-4254, 1999.

M. Solivio, T. Joy, L. Sallans, and E. Merino, Copper generated reactive oxygen leads to formation of lysine???DNA adducts, Journal of Inorganic Biochemistry, vol.104, issue.9, pp.1000-1005, 2010.
DOI : 10.1016/j.jinorgbio.2010.05.006

R. Hickerson, C. Chepanoske, S. Williams, S. David, and C. Burrows, Mechanism-Based DNA???Protein Cross-Linking of MutY via Oxidation of 8-Oxoguanosine, Journal of the American Chemical Society, vol.121, issue.42, 1999.
DOI : 10.1021/ja9923484

W. Luo, J. Muller, E. Rachlin, and C. Burrows, Characterization of Spiroiminodihydantoin as a Product of One-Electron Oxidation of 8-Oxo-7,8-dihydroguanosine, Organic Letters, vol.2, issue.5, pp.613-619, 2000.
DOI : 10.1021/ol9913643

J. Cadet, T. Douki, D. Gasparutto, and J. Ravanat, Oxidative damage to DNA: formation, measurement and biochemical features, Mutat Res, vol.531, issue.12, pp.5-23, 2003.
DOI : 10.1142/p607

Y. Ye, J. Muller, W. Luo, C. Mayne, A. Shallop et al., O-Labeled Guanidinohydantoin from Guanosine Oxidation with Singlet Oxygen. Implications for Structure and Mechanism, Journal of the American Chemical Society, vol.125, issue.46, pp.13926-13933, 2003.
DOI : 10.1021/ja0378660

X. Xu, A. Fleming, J. Muller, and C. Burrows, Formation of Tricyclic [4.3.3.0] Adducts between 8-Oxoguanosine and Tyrosine under Conditions of Oxidative DNA???Protein Cross-Linking, Journal of the American Chemical Society, vol.130, issue.31, pp.10080-10081, 2008.
DOI : 10.1021/ja803896d

D. Looi, J. Eyler, and A. Brajter-toth, Electrochemistry-electrospray ionization FT ICR mass spectrometry (EC ESI MS) of guanine???tyrosine and guanine???glutathione crosslinks formed on-line, Electrochimica Acta, vol.56, issue.6, pp.2633-2673, 2011.
DOI : 10.1016/j.electacta.2010.12.009

A. Baumann, W. Lohmann, S. Jahn, and U. Karst, On-Line Electrochemistry/Electrospray Ionization Mass Spectrometry (EC/ESI-MS) for the Generation and Identification of Nucleotide Oxidation Products, Electroanalysis, vol.280, issue.3, pp.286-92, 2010.
DOI : 10.1042/bj2350531

J. Milligan, Repair of oxidative DNA damage by amino acids, Nucleic Acids Research, vol.31, issue.21, pp.6258-63, 2003.
DOI : 10.1093/nar/gkg816

H. Kasai, Z. Yamaizumi, M. Berger, and J. Cadet, Photosensitized formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-hydroxy-2'-deoxyguanosine) in DNA by riboflavin: a nonsinglet oxygen-mediated reaction, Journal of the American Chemical Society, vol.114, issue.24, pp.9692-9696, 1992.
DOI : 10.1021/ja00050a078

B. Morin and J. Cadet, BENZOPHENONE PHOTOSENSITIZATION OF 2'-DEOXYGUANOSINE: CHARACTERIZATION OF THE 2R AND 2s DIASTEREOISOMERS OF 1-(2-DEOXY-??-D-erythoW-PENTOFURANOSYL)-2-METHOXY-4,5-IMIDAZOLIDINEDIONE. A MODEL SYSTEM FOR THE INVESTIGATION OF PHOTOSENSITIZED FORMATION OF DNA-PROTEIN CROSSLINKS, Photochemistry and Photobiology, vol.55, issue.2, pp.102-111, 1994.
DOI : 10.1021/cr00093a003

B. Morin and J. Cadet, Chemical Aspects of the Benzophenone-Photosensitized Formation of Two Lysine-2'-deoxyguanosine Cross-Links, Journal of the American Chemical Society, vol.117, issue.50, pp.12408-12423, 1995.
DOI : 10.1021/ja00155a005

C. Crean, Y. Uvaydov, N. Geacintov, and V. Shafirovich, Oxidation of single-stranded oligonucleotides by carbonate radical anions: generating intrastrand cross-links between guanine and thymine bases separated by cytosines, Nucleic Acids Research, vol.36, issue.3, pp.742-55, 2007.
DOI : 10.1093/nar/gkm1092

G. Madugundu, J. Wagner, J. Cadet, K. Kropachev, B. Yun et al., Generation of Guanine???Thymine Cross-Links in Human Cells by One-Electron Oxidation Mechanisms, Chemical Research in Toxicology, vol.26, issue.7, pp.1031-1034, 2013.
DOI : 10.1021/tx400158g

D. Ramani, D. Bandt, J. Cynober, and L. , Aliphatic polyamines in physiology and diseases, Clinical Nutrition, vol.33, issue.1, pp.14-22, 2014.
DOI : 10.1016/j.clnu.2013.09.019

A. Pegg, Mammalian polyamine metabolism and function. IUBMB Life, pp.880-94, 2009.
DOI : 10.1002/iub.230

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753421

C. Moinard, L. Cynober, and J. Debandt, Polyamines: metabolism and implications in human diseases, Clinical Nutrition, vol.24, issue.2, pp.184-97, 2005.
DOI : 10.1016/j.clnu.2004.11.001

H. Wallace, A. Fraser, and A. Hughes, A perspective of polyamine metabolism, Biochemical Journal, vol.376, issue.1, p.1, 2003.
DOI : 10.1042/bj20031327

T. Uemura and E. Gerner, Polyamine Transport Systems in Mammalian Cells and Tissues, Methods Mol Biol Clifton NJ, vol.720, pp.339-387, 2011.
DOI : 10.1007/978-1-61779-034-8_21

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3574818

P. Lefèvre, M. Palin, and B. Murphy, Polyamines on the Reproductive Landscape, Endocrine Reviews, vol.32, issue.5, 2011.
DOI : 10.1210/er.2011-0012

D. Agostino, L. , D. Luccia, and A. , Polyamines interact with DNA as molecular aggregates, European Journal of Biochemistry, vol.32, issue.17, pp.4317-4342, 2002.
DOI : 10.1021/bi00213a041

D. Agostino, L. , D. Pietro, M. , D. Luccia et al., Nuclear aggregates of polyamines are supramolecular structures that play a crucial role in genomic DNA protection and conformation, FEBS Journal, vol.59, issue.15, pp.3777-87, 2005.
DOI : 10.1016/0016-5085(89)91493-5

G. Iacomino, G. Picariello, F. Sbrana, D. Luccia, A. Raiteri et al., DNA is Wrapped by the Nuclear Aggregates of Polyamines: The Imaging Evidence, Biomacromolecules, vol.12, issue.4, pp.1178-86, 2011.
DOI : 10.1021/bm101478j

G. Iacomino, G. Picariello, D. Agostino, and L. , DNA and nuclear aggregates of polyamines, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1823, issue.10, pp.1745-55, 1823.
DOI : 10.1016/j.bbamcr.2012.05.033

G. Iacomino, G. Picariello, I. Stillitano, D. Agostino, and L. , Nuclear aggregates of polyamines in a radiation-induced DNA damage model, The International Journal of Biochemistry & Cell Biology, vol.47, pp.11-20
DOI : 10.1016/j.biocel.2013.11.007

S. Pignata, D. Luccia, A. Lamanda, R. Menchise, A. et al., Interaction of Putrescine with Nuclear Oligopeptides in the Enterocyte-Like Caco-2 Cells, Digestion, vol.60, issue.3, pp.255-61, 1999.
DOI : 10.1159/000007666

W. Brooks, Increased Polyamines Alter Chromatin and Stabilize Autoantigens in Autoimmune Diseases. Front Immunol [Internet] Available from, 2013.
DOI : 10.3389/fimmu.2013.00091

URL : http://doi.org/10.3389/fimmu.2013.00091

A. Wang, G. Quigley, F. Kolpak, J. Crawford, J. Van-boom et al., Molecular structure of a left-handed double helical DNA fragment at atomic resolution, Nature, vol.71, issue.5740, pp.680-686, 1979.
DOI : 10.1016/0092-8674(79)90329-5

R. Ray, B. Zimmerman, S. Mccormack, T. Patel, and L. Johnson, Polyamine depletion arrests cell cycle and induces inhibitors p21(Waf1/Cip1), p27(Kip1), and p53 in IEC-6 cells, Am J Physiol, vol.276, issue.3, pp.684-691, 1999.

S. Bhattacharya, R. Ray, and L. Johnson, Role of polyamines in p53-dependent apoptosis of intestinal epithelial cells. Cell Signal, pp.509-531, 2009.

E. Gerner and F. Meyskens, Polyamines and cancer: old molecules, new understanding, Nature Reviews Cancer, vol.20, issue.10, pp.781-92, 2004.
DOI : 10.1056/NEJMoa030660

L. Mäkitie, K. Kanerva, A. Sankila, and L. Andersson, High expression of antizyme inhibitor 2, an activator of ornithine decarboxylase in steroidogenic cells of human gonads, Histochemistry and Cell Biology, vol.46, issue.Pt 3, pp.633-641, 2009.
DOI : 10.1002/j.1939-4640.1989.tb00077.x

A. Alcivar, L. Hake, P. Mali, A. Kaipia, M. Parvinen et al., Developmental and Differential Expression of the Ornithine Decarboxylase Gene in Rodent Testis1, Biology of Reproduction, vol.41, issue.6, pp.1133-1175, 1989.
DOI : 10.1095/biolreprod41.6.1133

P. Blackshear, J. Manzella, D. Stumpo, L. Wen, J. Huang et al., High Level, Cell-Specific Expression of Ornithine Decarboxylase Transcripts in Rat Genitourinary Tissues, Molecular Endocrinology, vol.3, issue.1, pp.68-78, 1989.
DOI : 10.1210/mend-3-1-68

A. Kaipia, J. Toppari, P. Mali, M. Kangasniemi, A. Alcivar et al., Stage- and cell-specific expression of the ornithine decarboxylase gene during rat and mouse spermatogenesis, Molecular and Cellular Endocrinology, vol.73, issue.1, pp.45-52, 1990.
DOI : 10.1016/0303-7207(90)90043-8

P. Kilpeläinen, J. Saarimies, S. Kontusaari, M. Järvinen, A. Soler et al., Abnormal ornithine decarboxylase activity in transgenic mice increases tumor formation and infertility, The International Journal of Biochemistry & Cell Biology, vol.33, issue.5, pp.507-527, 2001.
DOI : 10.1016/S1357-2725(01)00014-0

P. Oefner, S. Wongyai, and G. Bonn, High-performance liquid chromatographic determination of free polyamines in human seminal plasma, Clinica Chimica Acta, vol.205, issue.1-2, pp.11-19, 1992.
DOI : 10.1016/0009-8981(92)90349-U

A. Vanella, R. Pinturo, M. Vasta, G. Piazza, A. Rapisarda et al., Polyamine levels in human semen of unfertile patients: effect of S-adenosylmethionine, Acta Eur Fertil, 1978.

G. Shah, A. Sheth, P. Mugatwala, and S. Rao, Effect of spermine on adenyl cyclase activity of spermatozoa. Experientia, Jun, vol.1531, issue.6, pp.631-633, 1975.

S. Rubinstein and H. Breitbart, Role of spermine in mammalian sperm capacitation and acrosome reaction, Biochemical Journal, vol.278, issue.1, pp.25-33, 1991.
DOI : 10.1042/bj2780025

F. Giardiello, S. Hamilton, L. Hylind, V. Yang, P. Tamez et al., Ornithine decarboxylase and polyamines in familial adenomatous polyposis. Cancer Res, pp.199-201, 1997.
DOI : 10.1053/j.gastro.2003.11.013

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225536

S. Erdman, N. Ignatenko, M. Powell, K. Blohm-mangone, H. Holubec et al., APC-dependent changes in expression of genes influencing polyamine metabolism, and consequences for gastrointestinal carcinogenesis, in the Min mouse, Carcinogenesis, vol.20, issue.9, 1999.
DOI : 10.1093/carcin/20.9.1709

N. Ignatenko, N. Babbar, D. Mehta, R. Casero, and E. Gerner, Suppression of polyamine catabolism by activated Ki-ras in human colon cancer cells, Molecular Carcinogenesis, vol.272, issue.2, pp.91-102, 2004.
DOI : 10.1016/0167-4781(94)00180-B

E. Gerner and F. Meyskens, Polyamines and cancer: old molecules, new understanding, Nature Reviews Cancer, vol.20, issue.10, pp.781-92, 2004.
DOI : 10.1056/NEJMoa030660

M. Takigawa, M. Enomoto, Y. Nishida, H. Pan, A. Kinoshita et al., Tumor angiogenesis and polyamines: alpha-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, inhibits B16 melanoma-induced angiogenesis in ovo and the proliferation of vascular endothelial cells in vitro, Cancer Res, vol.50, issue.13, pp.4131-4139, 1990.

U. Bachrach, Polyamines and cancer: Minireview article. Amino Acids, pp.307-316, 2004.
DOI : 10.1007/s00726-004-0076-6

H. Wallace, Targeting polyamine metabolism: a viable therapeutic/preventative solution for cancer? Expert Opin Pharmacother, pp.2109-2125, 2007.

M. Spotheim-maurizot, S. Ruiz, R. Sabattier, and M. Charlier, Radioprotection of DNA by Polyamines, International Journal of Radiation Biology, vol.18, issue.5, pp.571-578, 1995.
DOI : 10.1021/bi00578a009

S. Chiu and N. Oleinick, Radioprotection against the Formation of DNA Double-Strand Breaks in Cellular DNA but Not Native Cellular Chromatin by the Polyamine Spermine, Radiation Research, vol.148, issue.2, 1997.
DOI : 10.2307/3579577

S. Chiu and N. Oleinick, Radioprotection of Cellular Chromatin by the Polyamines Spermine and Putrescine: Preferential Action against Formation of DNA-Protein Crosslinks, Radiation Research, vol.149, issue.6, 1998.
DOI : 10.2307/3579900

T. Douki, Y. Bretonniere, and J. Cadet, Protection against Radiation-Induced Degradation of DNA Bases by Polyamines, Radiation Research, vol.153, issue.1, pp.29-35, 2000.
DOI : 10.1667/0033-7587(2000)153[0029:PARIDO]2.0.CO;2

H. Ha, N. Sirisoma, P. Kuppusamy, J. Zweier, P. Woster et al., The natural polyamine spermine functions directly as a free radical scavenger, Proceedings of the National Academy of Sciences, vol.16, issue.12, pp.11140-11145, 1998.
DOI : 10.1093/carcin/16.12.3063

M. Hosford, J. Muller, and C. Burrows, Spermine Participates in Oxidative Damage of Guanosine and 8-Oxoguanosine Leading to Deoxyribosylurea Formation, Journal of the American Chemical Society, vol.126, issue.31, pp.9540-9541, 2004.
DOI : 10.1021/ja047981q

R. Sodum, G. Nie, and E. Fiala, 8-Aminoguanine: A base modification produced in rat liver nucleic acids by the hepatocarcinogen 2-nitropropane, Chemical Research in Toxicology, vol.6, issue.3, pp.269-76, 1993.
DOI : 10.1021/tx00033a004

S. Frelon, T. Douki, J. Ravanat, J. Pouget, C. Tornabene et al., High-Performance Liquid Chromatography???Tandem Mass Spectrometry Measurement of Radiation-Induced Base Damage to Isolated and Cellular DNA, Chemical Research in Toxicology, vol.13, issue.10, pp.1002-1012, 2000.
DOI : 10.1021/tx000085h

D. Traoré, E. Ghazouani, A. Jacquamet, L. Borel, F. Ferrer et al., Structural and functional characterization of 2-oxo-histidine in oxidized PerR protein, Nature Chemical Biology, vol.60, issue.1, 2009.
DOI : 10.1038/nchembio.133

A. Klug, The Discovery of Zinc Fingers and Their Applications in Gene Regulation and Genome Manipulation, Annual Review of Biochemistry, vol.79, issue.1, pp.213-244, 2010.
DOI : 10.1146/annurev-biochem-010909-095056

N. Iki and E. Yeung, Non-bonded poly(ethylene oxide) polymer-coated column for protein separation by capillary electrophoresis, Journal of Chromatography A, vol.731, issue.1-2, pp.273-82, 1996.
DOI : 10.1016/0021-9673(95)01158-7

J. Wolfe, S. Wagaw, J. Marcoux, and S. Buchwald, Rational Development of Practical Catalysts for Aromatic Carbon???Nitrogen Bond Formation, Accounts of Chemical Research, vol.31, issue.12, pp.805-823, 1998.
DOI : 10.1021/ar9600650

J. Hartwig, Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates: Scope and Mechanism, Angew Chem Int Ed Aug, vol.1737, issue.15, pp.2046-67, 1998.

F. Johnson, R. Bonala, D. Tawde, M. Torres, and C. Iden, ]pyrene Metabolic Adducts of 2???-Deoxyguanosine and 2???-Deoxyadenosine and Their Direct Incorporation into DNA, Chemical Research in Toxicology, vol.15, issue.12, pp.1489-94, 2002.
DOI : 10.1021/tx0256174

C. Elmquist, J. Stover, Z. Wang, and C. Rizzo, Site-Specific Synthesis and Properties of Oligonucleotides Containing C8-Deoxyguanosine Adducts of the Dietary Mutagen IQ, Journal of the American Chemical Society, vol.126, issue.36, pp.11189-201, 2004.
DOI : 10.1021/ja0487022

L. Gillet and O. Schärer, Preparation of C8-Amine and Acetylamine Adducts of 2???-Deoxyguanosine Suitably Protected for DNA Synthesis, Organic Letters, vol.4, issue.24, pp.4205-4213, 2002.
DOI : 10.1021/ol026474f

T. Takamura-enya, S. Ishikawa, M. Mochizuki, and K. Wakabayashi, ]pyridine, Chemical Research in Toxicology, vol.19, issue.6, pp.770-778, 2006.
DOI : 10.1021/tx050296s

N. Böge, S. Gräsl, and C. Meier, Synthesis and Properties of Oligonucleotides Containing C8-Deoxyguanosine Arylamine Adducts of Borderline Carcinogens., ChemInform, vol.71, issue.18, 2006.
DOI : 10.1002/chin.200718190

P. Regulus, S. Spessotto, M. Gateau, J. Cadet, A. Favier et al., Detection of new radiation-induced DNA lesions by liquid chromatography coupled to tandem mass spectrometry, Rapid Communications in Mass Spectrometry, vol.374, issue.19, pp.2223-2231, 2004.
DOI : 10.1002/rcm.1612

T. Douki, Y. Bretonniere, and J. Cadet, Protection against Radiation-Induced Degradation of DNA Bases by Polyamines, Radiation Research, vol.153, issue.1, pp.29-35, 2000.
DOI : 10.1667/0033-7587(2000)153[0029:PARIDO]2.0.CO;2

H. Tsutsui, T. Mochizuki, K. Inoue, T. Toyama, N. Yoshimoto et al., High-Throughput LC???MS/MS Based Simultaneous Determination of Polyamines Including N-Acetylated Forms in Human Saliva and the Diagnostic Approach to Breast Cancer Patients, Analytical Chemistry, vol.85, issue.24, pp.11835-11877, 2013.
DOI : 10.1021/ac402526c

M. Latorre-moratalla, J. Bosch-fusté, T. Lavizzari, S. Bover-cid, M. Veciana-nogués et al., Validation of an ultra high pressure liquid chromatographic method for the determination of biologically active amines in food, Journal of Chromatography A, vol.1216, issue.45, pp.7715-7735, 1216.
DOI : 10.1016/j.chroma.2009.08.072

Z. Loukou and A. Zotou, Determination of biogenic amines as dansyl derivatives in alcoholic beverages by high-performance liquid chromatography with fluorimetric detection and characterization of the dansylated amines by liquid chromatography???atmospheric pressure chemical ionization mass spectrometry, Journal of Chromatography A, vol.996, issue.1-2, pp.103-116, 2003.
DOI : 10.1016/S0021-9673(03)00558-2

J. Byun, S. Lee, B. Jung, M. Choi, M. Moon et al., Analysis of polyamines as carbamoyl derivatives in urine and serum by liquid chromatography???tandem mass spectrometry, Biomedical Chromatography, vol.32, issue.1, pp.73-80, 2008.
DOI : 10.1139/y87-317

G. Gines, Nanostructures d'ADN supportées sur billes magnétiques de nouveaux outils senseurs des systèmes de réparation de l'ADN. Grenoble, 2013.

W. Tang and S. Fang, Mono-acylation of symmetric diamines in the presence of water, Tetrahedron Letters, vol.49, issue.41, pp.6003-6009, 2008.
DOI : 10.1016/j.tetlet.2008.07.174

L. Nechev, I. Kozekov, A. Brock, C. Rizzo, and T. Harris, )-one, an Acrolein Adduct of Guanine, Chemical Research in Toxicology, vol.15, issue.5, pp.607-620, 2002.
DOI : 10.1021/tx010181y

B. Giese, Electron transfer in DNA, Current Opinion in Chemical Biology, vol.6, issue.5, pp.612-620, 2002.
DOI : 10.1016/S1367-5931(02)00364-2

A. Nomura and A. Okamoto, Photoresponsive tandem zinc finger peptide, Chemical Communications, vol.11, issue.14, p.1906, 2009.
DOI : 10.1039/b819838a

Y. Shi and J. Berg, A direct comparison of the properties of natural and designed zinc-finger proteins, Chemistry & Biology, vol.2, issue.2, pp.83-92, 1995.
DOI : 10.1016/1074-5521(95)90280-5

G. Iacomino, G. Picariello, F. Sbrana, D. Luccia, A. Raiteri et al., DNA is Wrapped by the Nuclear Aggregates of Polyamines: The Imaging Evidence, Biomacromolecules, vol.12, issue.4, 2011.
DOI : 10.1021/bm101478j

R. Aitken and J. Clarkson, Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa, Reproduction, vol.81, issue.2, pp.459-69, 1987.
DOI : 10.1530/jrf.0.0810459

J. Alvarez and B. Storey, Role of Superoxide Dismutase in Protecting Rabbit Spermatozoa from O2 Toxicity Due to Lipid Peroxidation, Biology of Reproduction, vol.28, issue.5, pp.1129-1165, 1983.
DOI : 10.1095/biolreprod28.5.1129

D. Evenson, K. Larson, and L. Jost, Sperm Chromatin Structure Assay: Its Clinical Use for Detecting Sperm DNA Fragmentation in Male Infertility and Comparisons With Other Techniques, Journal of Andrology, vol.10, issue.Suppl., pp.25-43, 2002.
DOI : 10.1093/HUMREP/10.6.1444

T. Douki, J. Ravanat, J. Pouget, I. Testard, and J. Cadet, Minor contribution of direct ionization to DNA base damage inducedby heavy ions, International Journal of Radiation Biology, vol.74, issue.2, pp.119-146, 2006.
DOI : 10.1080/095530098141483

B. Yuan and Y. Feng, Recent advances in the analysis of 5-methylcytosine and its oxidation products, TrAC Trends in Analytical Chemistry, vol.54, pp.24-35, 2014.
DOI : 10.1016/j.trac.2013.11.002

C. Nabel, S. Manning, and R. Kohli, The Curious Chemical Biology of Cytosine: Deamination, Methylation,and Oxidation as Modulators of Genomic Potential, ACS Chemical Biology, vol.7, issue.1, pp.20-30, 2012.
DOI : 10.1021/cb2002895

C. Dahl, K. Grønbaek, and P. Guldberg, Advances in DNA methylation: 5-hydroxymethylcytosine revisited, Clinica Chimica Acta, vol.412, issue.11-12, pp.11-12831, 2011.
DOI : 10.1016/j.cca.2011.02.013

J. Chapman, A. Reuvers, J. Borsa, and C. Greenstock, Chemical Radioprotection and Radiosensitization of Mammalian Cells Growing in Vitro, Radiation Research, vol.56, issue.2, pp.291-306, 1973.
DOI : 10.2307/3573667

R. Roots, A. Chatterjee, P. Chang, L. Lommel, and E. Blakely, Characterization of Hydroxyl Radical-induced Damage after Sparsely and Densely Ionizing Irradiation, International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, vol.30, issue.2, pp.157-66, 1985.
DOI : 10.2307/3575005

J. Ravanat, T. Douki, P. Duez, E. Gremaud, K. Herbert et al., Cellular background level of 8-oxo-7,8-dihydro-2'-deoxyguanosine: an isotope based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up, Carcinogenesis, vol.23, issue.11, pp.1911-1919, 2002.
DOI : 10.1093/carcin/23.11.1911

L. Agents-inducteurs-et-les-principaux-mécanismes-de-formation-des-dpcs, .. Linker, and ». , 17 1.1.2.1 Les pontages indirects via un «, p.17

«. Le-modèle, Single Strand Binding protein + aptamère 49-mer»

R. +@bullet, M. D. Dizdaroglu, M. Lunec, and J. , ? , deprotonated guanine radical cation; 8-Br-dGuo, 8-bromo-2?-deoxyguanosine; 8-oxodGuo, 8- oxo-7,8-dihydro-2?-deoxyguanosine(4- aminobutyl)amino)-2?-deoxyguanosine; 8-spd-dGuo(4-aminobutyl)amino)propyl)amino)-2?-deoxyguanosine (3a) and(3-aminopropyl)amino)butyl)amino)-2?-deoxygua- nosine (3b); 8-spm-dGuo(3-aminopropyl)- amino)butyl)amino)propyl)amino)-2?-deoxyguanosine; ODC, ornithine decarboxylase; dsDNA, double stranded DNA; HPLC-MS/MS, HPLC coupled through electrospray ionization to tandem mass spectrometry ? REFERENCES (1) Lindahl, T. (1993) Instability and decay of the primary structure of DNA, Nature, vol.8, issue.3622, pp.8-8, 2003.

D. Oxidative, S. Kanvah, J. Joseph, G. B. Schuster, R. N. Barnett et al., Oxidation of DNA: damage to nucleobases Definition of type I and type II photosensitized oxidation Guanine oxidation: one-and two-electron reactions Oxidatively generated damage to the guanine moiety of DNA: Mechanistic aspects and formation in cells Electron transfer in DNA, Acc. Chem. Res. Photochem. Photobiol. Chem.?Eur. J. Acc. Chem. Res. Curr. Opin. Chem, vol.17, issue.417, pp.659-6018, 1991.

H. Kasai, Z. Yamaizumi, M. Berger, J. Cadet, G. W. Buchko et al., Photosensitized formation of 7,8-dihydro-8-oxo-2?-deoxyguanosine (8- hydroxy-2?-deoxyguanosine) in DNA by riboflavin: a non singlet oxygen mediated mechanism Isolation and characterization of a new product produced by ionizing irradiation and type I photosensitization of 2?-deoxyguanosine in oxygen-saturated aqueous solution, 9692?9694. (9)2S)-2, pp.5-6, 1992.

B. Morin, J. Cadet, B. Morin, and J. Cadet, Type I benzophenone-mediated nucleophilic reaction of 5?-amino-2?,5?-dideoxyguanosine. A model system for the investigation of photosensitized formation of DNAprotein cross-links Chemical aspects of the benzophenone-photosensitized formation of two lysine-2?-deoxygua- nosine cross-links, Int. J. Radiat. Biol. Chem. Res. Toxicol. J. Am. Chem. Soc, vol.63, issue.117, pp.792-799, 1995.

B. Morin, J. J. Cadet, T. Douki, R. , J. Perrier et al., Benzophenone photosensitization of 2?-deoxyguanosine: characterization of the 2R and 2S diastereoisomers of 1-(2-deoxy-?-D-erythro-pentofuranosyl)-2-me- thoxy-4,5-imidazolidinedione. A model system for the investigation of photosensitized formation of DNA-protein crosslinks One-electron oxidation of DNA and inflammation processes Characterization of lysine-guanine cross-links upon one-electron oxidation of a guanine-containing oligonucleotide in the presence of a trilysine peptide Generation of guanine-thymine cross-links in human cells by one-electron oxidation mechanisms, Chemical Research in Toxicology Article dx.doi.org/10 102?109. (13) Cadet, 1031?1033. (16) Rokhlenko, Y., Geacintov, N. E., and Shafirovich, V. (2012) Lifetimes and reaction pathways of guanine radical cations and neutral guanine radicals in an oligonucleotide in aqueous solutions. J. Am, pp.1011-1018, 1021.

. Chem, S. Soc-sarhan, N. Seiler, E. W. Gerner, F. L. Meyskens et al., On the subcellular localization of the polyamines Polyamines and cancer: Old molecules, new understanding Polyamine structural effects on the induction and stabilization of liquid crystalline DNA: potential applications to DNA packaging, gene therapy and polyamine therapeutics Polyamines and cancer: Minireview article Accumulation of polyamine analogs in red blood cells: a potential index of tumor proliferation rate Biological significance of circulating polyamines in oncology, 3722?3731. (20) Bachrach, pp.781-792, 1989.

A. E. Pegg, R. H. Hu, C. Demoor-goldschmidt, R. , B. Kasai et al., How can we integrate nutritional support in medical oncology Photosensitized formation of 7,8-dihydro-8-oxo-2?-deoxyguanosine (8- hydroxy-2?-deoxyguanosine) in DNA by riboflavin -a nonsinglet oxygen mediated reaction Cellular background level of 8-oxo-7,8-dihydro-2?-deoxyguanosine: an isotope based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up High performance liquid chromatography tandem mass spectrometry for the measurement of radiation-induced base damage to isolated and cellular DNA Isotope dilution high-performance liquid chromatographyelectrospray tandem mass spectrometry assay for the measurement of 8-oxo-7,8-dihydro-2?-deoxyguanosine in biological samples Discovery and synthesis of new UV, 1002?1010. (28) Ravanat, pp.247-252, 1992.

G. , G. J. Johnson, F. Huang, C. Y. , Y. et al., Synthetic and oxidative studies on 8-(arylamino)-2?-deoxyguanosine and -guanosine derivatives Detection of new radiation-induced DNA lesions by liquid chromatography coupled to tandem mass spectrometry, 143?149. (31) 2223?2228. (32) Cadet, J., and Weinfeld, 1993.

J. L. Ravanat, B. Duretz, A. Guiller, T. Douki, J. Cadet et al., Isotope dilution high-performance liquid chromatographyelectrospray tandem mass spectrometry assay for the measurement of 8-oxo-7,8-dihydro-2?-deoxyguanosine in biological samples Protection against radiation-induced degradation of DNA bases by polyamines Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy Oxidatively induced DNA-protein cross-linking between singlestranded binding protein and oligodeoxynucleotides containing 8- oxo-7,8-dihydro-2?-deoxyguanosine, 349?356. (34) DNAprotein cross-links between guanine and lysine depend on the mechanism of oxidation for formation of C5 vs C8 guanosine adducts, pp.675-682, 1998.

S. Barker, M. Weinfeld, M. , and D. , DNA?protein crosslinks: their induction, repair, and biological consequences, 703?709. (38), 2005.
DOI : 10.1016/j.mrrev.2004.11.003