I. Present, I. A. Chromatin, W. H4k20me3, . To, and . Heterochromatin, Coverage of either H3K36me3 (active chromatin) or H3K9me3 (silent chromatin) ChIP-seq reads was calculated at H4K20me1/ -me3 peak sites and plotted as boxplot. * indicates statistical significance with p-value < 0, FIGURE, vol.429, pp.4-20

O. Preferentially, Coverage of pre-RC components was calculated at either H4K20me1 or ? me3 sites, to get a first impression of a direct association of either histone modification with pre-RC. All pre-RC components Orc2, Orc3, Mcm3, and Mcm7 were not particularly enriched at H4K20me1 sites

H. Accordingly and T. Orc, Mcm2-7 and pre-RCs hardly overlapped with H4K20me1 (Appendix Figure 24

P. In, L. Of-a-196, . To, . Levels, . Pre-rc et al., ChIP-qPCR analysis at FR, UAS and oriRDH sequences of FR-oriRDH or FR-UAS-oriRDH reporter plasmids transfected in HEK293 EBNA1+ Gal4- PR-Set7 cells treated or not with 5µM A-196, FIGURE, vol.442

A. Figure-pre-rc, . Binding, . Laminb2, . Is, . By-t-pic et al., Input: grey, Orc2: red, Orc3: orange, Mcm3: blue, Mcm7: turquois. T-PIC-detected peaks are visualized as bars; HOMER-detected peaks are additionally highlighted by lightblue background. Position of LaminB2 origin is marked by green horizontal line, pp.2416622-2440010

A. Figure-pre-rc, . Binding, . Junb, . Is, . By-t-pic et al., Input: grey, Orc2: red, Orc3: orange, Mcm3: blue, Mcm7: turquois. T-PIC-detected peaks are visualized as bars; HOMER-detected peaks are additionally highlighted by lightblue background. Position of JunB origin is marked by green horizontal line, pp.12882387-12904261

A. Figure and G. S. Vs, Left: HOMER-defined complexes, right: T-PICdefined complexes. Venn diagram of overlap between G1-and S/G2-defined complexes with H3K4me3 peaks, RIGHT PANEL) DEFINED ORC AND MCM2-7 WITH H3K4ME3 PEAKS IN

A. Figure, . Visualization, H. Orc, and . Colocalization, Input: grey, Orc2: red, Orc3: orange, Mcm3: blue, Mcm7: turquois, H4K20me3: violet, pp.18071736-18101785

A. To, . Induction, and . Conversion, ChIP-qPCR analysis at FR and UAS sequences of FR-UAS reporter plasmids transfected in the indicated cell lines

T. Abbas, M. A. Keaton, and A. Dutta, Genomic Instability in Cancer, Cold Spring Harbor Perspectives in Biology, vol.5, issue.3, 2013.
DOI : 10.1101/cshperspect.a012914

T. Abbas, E. Shibata, J. Park, S. Jha, N. Karnani et al., CRL4Cdt2 Regulates Cell Proliferation and Histone Gene Expression by Targeting PR-Set7/Set8 for Degradation, Molecular Cell, vol.40, issue.1, pp.9-21, 2010.
DOI : 10.1016/j.molcel.2010.09.014

URL : http://doi.org/10.1016/j.molcel.2010.09.014

G. Abdurashidova, M. Deganuto, R. Klima, S. Riva, G. Biamonti et al., Start Sites of Bidirectional DNA Synthesis at the Human Lamin B2 Origin, Science, vol.287, issue.5460, pp.287-2023, 2000.
DOI : 10.1126/science.287.5460.2023

A. Ballabeni, M. Melixetian, R. Zamponi, L. Masiero, F. Marinoni et al., Human Geminin promotes pre-RC formation and DNA replication by stabilizing CDT1 in mitosis, The EMBO Journal, vol.2, issue.15, pp.3122-3154, 2004.
DOI : 10.1126/science.280.5363.593

D. B. Beck, A. Burton, H. Oda, C. Ziegler-birling, M. Torres-padilla et al., The role of PR-Set7 in replication licensing depends on Suv4-20h, Genes & Development, vol.26, issue.23, pp.2580-89, 2012.
DOI : 10.1101/gad.195636.112

S. P. Bell and J. M. Kaguni, Helicase Loading at Chromosomal Origins of Replication, Cold Spring Harbor Perspectives in Biology, vol.5, issue.6, 2013.
DOI : 10.1101/cshperspect.a010124

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660832

E. Besnard, A. Babled, L. Lapasset, O. Milhavet, H. Parrinello et al., Unraveling cell type???specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs, Nature Structural & Molecular Biology, vol.25, issue.8, pp.837-881, 2012.
DOI : 10.1093/bioinformatics/btp472

URL : https://hal.archives-ouvertes.fr/hal-01338204

F. Bleichert, M. R. Botchan, and J. M. Berger, Crystal structure of the eukaryotic origin recognition complex, Nature, vol.14, issue.7543, pp.321-347, 2015.
DOI : 10.1101/gr.849004

J. Blow, A. Julian, and . Dutta, Preventing re-replication of chromosomal DNA, Nature Reviews Molecular Cell Biology, vol.63, issue.6, pp.476-86, 2005.
DOI : 10.1038/sj.onc.1205910

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688777

J. Blow, X. Julian, D. A. Quan-ge, and . Jackson, How dormant origins promote complete genome replication, Trends in Biochemical Sciences, vol.36, issue.8, pp.405-419, 2011.
DOI : 10.1016/j.tibs.2011.05.002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329722

J. Brustel, M. Tardat, O. Kirsh, C. Grimaud, and E. Julien, Coupling mitosis to DNA replication: The emerging role of the histone H4-lysine 20 methyltransferase PR-Set7, Trends in Cell Biology, vol.21, issue.8, pp.452-60, 2011.
DOI : 10.1016/j.tcb.2011.04.006

J. Cadoret, F. Meisch, V. Hassan-zadeh, I. Luyten, C. Guillet et al., Genome-wide studies highlight indirect links between human replication origins and gene regulation, Proceedings of the National Academy of Sciences, vol.17, issue.6, pp.15837-15879, 2008.
DOI : 10.1101/gr.5578007

URL : https://hal.archives-ouvertes.fr/hal-00332341

C. Cayrou, B. Ballester, I. Peiffer, R. Fenouil, P. Coulombe et al., The chromatin environment shapes DNA replication origin organization and defines origin classes, Genome Research, vol.25, issue.12, pp.1873-85, 2015.
DOI : 10.1101/gr.192799.115

URL : https://hal.archives-ouvertes.fr/hal-01240797

C. Cayrou, P. Coulombe, A. Vigneron, S. Stanojcic, O. Ganier et al., Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features, Genome Research, vol.21, issue.9, pp.1438-1487, 2011.
DOI : 10.1101/gr.121830.111

URL : https://hal.archives-ouvertes.fr/lirmm-00631491

R. C. Centore, G. Courtney, A. L. Havens, J. Manning, R. L. Li et al., CRL4Cdt2-Mediated Destruction of the Histone Methyltransferase Set8 Prevents Premature Chromatin Compaction in S Phase, Molecular Cell, vol.40, issue.1, pp.22-33, 2010.
DOI : 10.1016/j.molcel.2010.09.015

A. Chakraborty, Z. Shen, and S. G. Prasanth, ???ORCanization??? on heterochromatin: Linking DNA replication initiation to chromatin organization, Epigenetics, vol.6, issue.6, pp.665-70, 2011.
DOI : 10.4161/epi.6.6.16179

F. Ciabrelli and G. Cavalli, Chromatin-Driven Behavior of Topologically Associating Domains, Journal of Molecular Biology, vol.427, issue.3, pp.608-633, 2015.
DOI : 10.1016/j.jmb.2014.09.013

URL : https://hal.archives-ouvertes.fr/hal-01132921

L. Clijsters and R. Wolthuis, PIP-box-mediated degradation prohibits re-accumulation of Cdc6 during S phase, Journal of Cell Science, vol.127, issue.6, pp.1336-1381, 2014.
DOI : 10.1242/jcs.145862

. Das, P. Shankar, T. Borrman, W. T. Victor, . Liu et al., Replication timing is regulated by the number of MCMs loaded at origins, Genome Research, vol.25, issue.12, pp.1886-92, 2015.
DOI : 10.1101/gr.195305.115

. Das, P. Shankar, and N. Rhind, How and why multiple MCMs are loaded at origins of DNA replication, BioEssays, vol.98, issue.7, pp.613-630, 2016.
DOI : 10.1073/pnas.251530398

D. Carli, F. , V. Gaggioli, A. Gaël, O. Millot et al., Single-molecule, antibody-free fluorescent visualisation of replication tracts along barcoded DNA molecules, The International Journal of Developmental Biology, vol.60, issue.7-8-9, 2016.
DOI : 10.1387/ijdb.160139oh

G. Dellino, D. Ivan, R. Cittaro, L. Piccioni, S. Luzi et al., Genome-wide mapping of human DNA-replication origins: Levels of transcription at ORC1 sites regulate origin selection and replication timing, Genome Research, vol.23, issue.1, pp.1-11, 2013.
DOI : 10.1101/gr.142331.112

M. L. Depamphilis, Cell Cycle Dependent Regulation of the Origin Recognition Complex, Cell Cycle, vol.4, issue.1, pp.70-79, 2005.
DOI : 10.4161/cc.4.1.1333

M. L. Depamphilis, J. J. Blow, S. Ghosh, T. Saha, K. Noguchi et al., Regulating the licensing of DNA replication origins in metazoa, Current Opinion in Cell Biology, vol.18, issue.3, pp.231-270, 2006.
DOI : 10.1016/j.ceb.2006.04.001

M. L. Depamphilis, M. Christelle, Z. De-renty, C. Y. Ullah, and . Lee, ???The Octet???: Eight Protein Kinases that Control Mammalian DNA Replication, Frontiers in Physiology, vol.3, p.368, 2012.
DOI : 10.3389/fphys.2012.00368

A. Dillin and J. Rine, Separable Functions of ORC5 in Replication Initiation and Silencing in Saccharomyces Cerevisiae, Genetics, vol.147, issue.3, pp.1053-62, 1997.

Q. Ding and D. M. Macalpine, Defining the replication program through the chromatin landscape, Critical Reviews in Biochemistry and Molecular Biology, vol.22, issue.2, pp.165-79, 2011.
DOI : 10.1128/MCB.22.13.4876-4889.2002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074350

S. Donovan, J. Harwood, L. S. Drury, and J. F. Diffley, Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast, Proceedings of the National Academy of Sciences, vol.122, issue.5, pp.5611-5627, 1997.
DOI : 10.1083/jcb.122.5.993

D. Fachinetti, R. Bermejo, A. Cocito, S. Minardi, Y. Katou et al., Replication Termination at Eukaryotic Chromosomes Is Mediated by Top2 and Occurs at Genomic Loci Containing Pausing Elements, Molecular Cell, vol.39, issue.4, pp.595-605, 2010.
DOI : 10.1016/j.molcel.2010.07.024

URL : http://doi.org/10.1016/j.molcel.2010.07.024

J. Feng, T. Liu, and Y. Zhang, Using MACS to Identify Peaks from ChIP-Seq Data, Current Protocols in Bioinformatics, vol.9, pp.2-14, 2011.
DOI : 10.1186/gb-2008-9-9-r137

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120977

R. Fenouil, P. Cauchy, F. Koch, N. Descostes, J. Z. Cabeza et al., CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters, Genome Research, vol.22, issue.12, pp.2399-2408, 2012.
DOI : 10.1101/gr.138776.112

Y. Field, N. Kaplan, Y. Fondufe-mittendorf, I. K. Moore, E. Sharon et al., Distinct Modes of Regulation by Chromatin Encoded through Nucleosome Positioning Signals, PLoS Computational Biology, vol.77, issue.11, p.1000216, 2008.
DOI : 10.1371/journal.pcbi.1000216.s007

M. Fragkos, O. Ganier, P. Coulombe, and M. Méchali, DNA replication origin activation in space and time, Nature Reviews Molecular Cell Biology, vol.18, issue.6, pp.360-74, 2015.
DOI : 10.1007/s10577-009-9105-3

URL : https://hal.archives-ouvertes.fr/hal-01159618

L. I. Francis, C. W. John, T. J. Randell, L. Takara, S. P. Uchima et al., Incorporation into the prereplicative complex activates the Mcm2-7 helicase for Cdc7-Dbf4 phosphorylation, Genes & Development, vol.23, issue.5, pp.643-54, 2009.
DOI : 10.1101/gad.1759609

H. Fu, E. Besnard, R. Desprat, M. Ryan, M. Kahli et al., Mapping Replication Origin Sequences in Eukaryotic Chromosomes, Current Protocols in Cell Biology, vol.51, pp.221-238, 2014.
DOI : 10.1371/journal.pgen.1004319

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274620

H. Fu, A. K. Maunakea, M. M. Martin, L. Huang, Y. Zhang et al., Methylation of Histone H3 on Lysine 79 Associates with a Group of Replication Origins and Helps Limit DNA Replication Once per Cell Cycle, PLoS Genetics, vol.5, issue.6, p.1003542, 2013.
DOI : 10.1371/journal.pgen.1003542.s009

A. Gambus, R. C. Jones, A. Sanchez-diaz, M. Kanemaki, F. Van-deursen et al., GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks, Nature Cell Biology, vol.14, issue.4, pp.358-66, 2006.
DOI : 10.1128/MCB.12.12.5736

Y. Geng, Y. Lee, M. Welcker, J. Swanger, A. Zagozdzon et al., Kinase-Independent Function of Cyclin E, Molecular Cell, vol.25, issue.1, pp.127-166, 2007.
DOI : 10.1016/j.molcel.2006.11.029

URL : http://doi.org/10.1016/j.molcel.2006.11.029

J. Gerhardt, S. Jafar, M. Spindler, E. Ott, and A. Schepers, Identification of New Human Origins of DNA Replication by an Origin-Trapping Assay, Molecular and Cellular Biology, vol.26, issue.20, pp.7731-7777, 2006.
DOI : 10.1128/MCB.01392-06

M. Ghosh, M. Kemp, G. Liu, and M. Ritzi, Differential Binding of Replication Proteins across the Human c-myc Replicator, Molecular and Cellular Biology, vol.26, issue.14, pp.5270-83, 2006.
DOI : 10.1128/MCB.02137-05

S. Giri and S. G. Prasanth, Association of ORCA/LRWD1 with repressive histone methyl transferases mediates heterochromatin organization, Nucleus, vol.6, issue.6, pp.435-476, 2015.
DOI : 10.1016/j.cell.2006.02.041

A. Gonzalez-sandoval and S. M. Gasser, On TADs and LADs: Spatial Control Over Gene Expression, Trends in Genetics, vol.32, issue.8, pp.485-95, 2016.
DOI : 10.1016/j.tig.2016.05.004

J. Gros, C. Kumar, G. Lynch, T. Yadav, I. Whitehouse et al., Post-licensing Specification of Eukaryotic Replication Origins by Facilitated Mcm2-7 Sliding along DNA, Molecular Cell, vol.60, issue.5, pp.797-807, 2015.
DOI : 10.1016/j.molcel.2015.10.022

L. Guelen, L. Pagie, E. Brasset, W. Meuleman, M. B. Faza et al., Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions, Nature, vol.38, issue.7197, pp.948-51, 2008.
DOI : 10.1091/mbc.8.12.2407

W. Hammerschmidt and B. Sugden, Replication of Epstein-Barr Viral DNA, Cold Spring Harbor Perspectives in Biology, vol.5, issue.1, p.13029, 2013.
DOI : 10.1101/cshperspect.a013029

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579399

S. Heinz, C. Benner, N. Spann, E. Bertolino, Y. C. Lin et al., Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities, Molecular Cell, vol.38, issue.4, pp.576-89, 2010.
DOI : 10.1016/j.molcel.2010.05.004

M. Herrera, S. Carmen, A. Tognetti, J. Riera, P. Zech et al., Alejandra Fernández-Cid, and Christian Speck A Reconstituted System Reveals How Activating and Inhibitory Interactions Control DDK Dependent Assembly of the Eukaryotic Replicative Helicase, Nucleic Acids Research, vol.43, issue.21, pp.10238-50, 2015.

B. Hirt, Evidence for semiconservative replication of circular polyoma DNA., Proceedings of the National Academy of Sciences, vol.55, issue.4, pp.997-1004, 1966.
DOI : 10.1073/pnas.55.4.997

V. Hower, S. N. Evans, and L. Pachter, Shape-based peak identification for ChIP-Seq, BMC Bioinformatics, vol.12, issue.1, p.15, 2011.
DOI : 10.1186/1471-2105-12-15

URL : http://doi.org/10.1186/1471-2105-12-15

X. H. Hua and J. Newport, Identification of a Preinitiation Step in DNA Replication That Is Independent of Origin Recognition Complex and cdc6, but Dependent on cdk2, The Journal of Cell Biology, vol.269, issue.2, pp.271-81, 1998.
DOI : 10.1091/mbc.4.2.195

O. Hyrien, How MCM loading and spreading specify eukaryotic DNA replication initiation sites, F1000Research, vol.5, 2016.
DOI : 10.12688/f1000research.9008.1

URL : http://doi.org/10.12688/f1000research.9008.1

O. Hyrien, K. Marheineke, and A. Goldar, Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem, BioEssays, vol.25, issue.2, pp.116-141, 2003.
DOI : 10.1002/bies.10208

M. Smith, Histone Acetyltransferase Hbo1: Catalytic Activity, Cellular Abundance, and Links to Primary Cancers, Gene, vol.436, issue.12, pp.108-122, 2009.

I. Ilves, T. Petojevic, J. J. Pesavento, and M. R. Botchan, Activation of the MCM2-7 Helicase by Association with Cdc45 and GINS Proteins, Molecular Cell, vol.37, issue.2, pp.247-58, 2010.
DOI : 10.1016/j.molcel.2009.12.030

H. Kimura, Histone modifications for human epigenome analysis, Journal of Human Genetics, vol.81, issue.7, pp.439-484, 2013.
DOI : 10.1016/j.ccr.2012.06.008

T. Kouzarides, Chromatin Modifications and Their Function, Cell, vol.128, issue.4, pp.693-705, 2007.
DOI : 10.1016/j.cell.2007.02.005

URL : http://doi.org/10.1016/j.cell.2007.02.005

M. A. Kuipers, J. Timothy, T. Stasevich, K. A. Sasaki, K. L. Wilson et al., Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload, The Journal of Cell Biology, vol.19, issue.1, pp.29-41, 2011.
DOI : 10.1093/emboj/17.23.6963

A. J. Kuo, J. Song, P. Cheung, S. Ishibe-murakami, S. Yamazoe et al., The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier???Gorlin syndrome, Nature, vol.44, issue.7392, pp.115-134, 2012.
DOI : 10.1016/j.molcel.2011.08.042

K. Kylie, J. Romero, K. S. Indeewari, J. Lindamulage, H. Knockleby et al., Dynamic regulation of histone H3K9 is linked to the switch between replication and transcription at the Dbf4 origin-promoter locus, Cell Cycle, vol.112, issue.12, pp.15-2321, 2016.
DOI : 10.1093/nar/29.3.809

A. R. Langley, S. Gräf, J. C. Smith, and T. Krude, Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq), Nucleic Acids Research, 2016.
DOI : 10.1093/nar/gkw760

J. Leatherwood and A. Vas, Connecting ORC and Heterochromatin: Why?, Cell Cycle, vol.2, issue.6, pp.573-75, 2003.
DOI : 10.4161/cc.2.6.578

K. Lee, . Yong-sang-wook-yoon, J. Seung-hoon-lee, D. S. Yoon, and . Hwang, Phosphorylation of ORC2 Protein Dissociates Origin Recognition Complex from Chromatin and Replication Origins, Journal of Biological Chemistry, vol.18, issue.15, pp.11891-98, 2012.
DOI : 10.1101/gad.1508907

A. Lengronne and P. Pasero, Closing the MCM cycle at replication termination sites, EMBO reports, vol.15, issue.12, pp.1226-1253, 2014.
DOI : 10.15252/embr.201439774

URL : https://hal.archives-ouvertes.fr/hal-01090227

R. Lombraña, A. Álvarez, J. Miguel-fernández-justel, and R. Almeida, Transcriptionally Driven DNA Replication Program of the Human Parasite Leishmania major, Cell Reports, vol.16, issue.6, pp.1774-86, 2016.
DOI : 10.1016/j.celrep.2016.07.007

M. Lõoke, J. Reimand, T. Sedman, J. Sedman, L. Järvinen et al., Relicensing of Transcriptionally Inactivated Replication Origins in Budding Yeast, Journal of Biological Chemistry, vol.8, issue.51, pp.40004-40015, 2010.
DOI : 10.1038/embor.2009.5

I. Lucas, M. Chevrier-miller, J. M. Sogo, and O. Hyrien, Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos, Journal of Molecular Biology, vol.296, issue.3, pp.769-86, 2000.
DOI : 10.1006/jmbi.2000.3500

T. E. Ludwig, M. E. Veit-bergendahl, J. Levenstein, M. D. Yu, J. A. Probasco et al., Feeder-independent culture of human embryonic stem cells, Nature Methods, vol.746, issue.8, pp.637-683, 2006.
DOI : 10.1038/nmeth902

V. Marechal, A. Dehee, R. Chikhi-brachet, T. Piolot, M. Coppey-moisan et al., Mapping EBNA-1 Domains Involved in Binding to Metaphase Chromosomes, Journal of Virology, vol.73, issue.5, pp.4385-92, 1999.

M. Maric, T. Maculins, G. D. Piccoli, and K. Labib, Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication, Science, vol.467, issue.7314, pp.346-1253596, 2014.
DOI : 10.1038/nature09373

M. M. Martin, R. Michael-ryan, A. L. Kim, H. Zakas, C. Fu et al., Genome-wide depletion of replication initiation events in highly transcribed regions, Genome Research, vol.21, issue.11, pp.1822-1854, 2011.
DOI : 10.1101/gr.124644.111

M. Méchali, Eukaryotic DNA replication origins: many choices for appropriate answers, Nature Reviews Molecular Cell Biology, vol.21, issue.10, pp.728-766, 2010.
DOI : 10.4161/cc.8.3.7649

L. D. Mesner, L. Emily, J. L. Crawford, and . Hamlin, Isolating Apparently Pure Libraries of Replication Origins from Complex Genomes, Molecular Cell, vol.21, issue.5, pp.719-745, 2006.
DOI : 10.1016/j.molcel.2006.01.015

L. D. Mesner, V. Valsakumar, M. Cie?lik, R. Pickin, J. L. Hamlin et al., Bubble-seq analysis of the human genome reveals distinct chromatin-mediated mechanisms for regulating early- and late-firing origins, Genome Research, vol.23, issue.11, pp.1774-88, 2013.
DOI : 10.1101/gr.155218.113

G. Micklem, A. Rowley, J. Harwood, K. Nasmyth, and J. F. Diffley, Yeast origin recognition complex is involved in DNA replication and transcriptional silencing, Nature, vol.366, issue.6450, pp.87-89, 1993.
DOI : 10.1038/366087a0

. Miotto, Z. Benoit, K. Ji, and . Struhl, Selectivity of ORC binding sites and the relation to replication timing, fragile sites, and deletions in cancers, Proceedings of the National Academy of Sciences, vol.268, issue.1, pp.4810-4819, 2016.
DOI : 10.1371/journal.pone.0017533

. Miotto, K. Benoit, and . Struhl, HBO1 Histone Acetylase Activity Is Essential for DNA Replication Licensing and Inhibited by Geminin, Molecular Cell, vol.37, issue.1, pp.57-66, 2010.
DOI : 10.1016/j.molcel.2009.12.012

URL : http://doi.org/10.1016/j.molcel.2009.12.012

S. Moreno, R. Priego, N. Bailey, S. Campion, A. Herron et al., Polyubiquitylation drives replisome disassembly at the termination of DNA replication, Science, vol.140, issue.6, pp.477-81, 2014.
DOI : 10.1083/jcb.140.6.1285

S. Mori and K. Shirahige, Perturbation of the Activity of Replication Origin by Meiosis-specific Transcription, Journal of Biological Chemistry, vol.10, issue.7, pp.4447-52, 2007.
DOI : 10.1128/MCB.10.5.2269

M. L. Mott and J. M. Berger, DNA replication initiation: mechanisms and regulation in bacteria, Nature Reviews Microbiology, vol.6, issue.5, pp.343-54, 2007.
DOI : 10.1016/j.bbaexp.2003.11.015

M. W. Musia?ek and D. Rybaczek, Behavior of replication origins in Eukaryota ??? spatio-temporal dynamics of licensing and firing, Cell Cycle, vol.211, issue.14, pp.2251-64, 2015.
DOI : 10.1091/mbc.12.11.3317

C. A. Nieduszynski, J. J. Blow, and A. D. Donaldson, The requirement of yeast replication origins for pre-replication complex proteins is modulated by transcription, Nucleic Acids Research, vol.33, issue.8, pp.2410-2430, 2005.
DOI : 10.1093/nar/gki539

H. Oda, M. R. Hübner, D. B. Beck, M. Vermeulen, J. Hurwitz et al., Regulation of the Histone H4 Monomethylase PR-Set7 by CRL4Cdt2-Mediated PCNA-Dependent Degradation during DNA Damage, Molecular Cell, vol.40, issue.3, pp.364-76, 2010.
DOI : 10.1016/j.molcel.2010.10.011

D. T. Pak, M. Pflumm, I. Chesnokov, D. W. Huang, R. Kellum et al., Association of the Origin Recognition Complex with Heterochromatin and HP1 in Higher Eukaryotes, Cell, vol.91, issue.3, pp.311-334, 1997.
DOI : 10.1016/S0092-8674(00)80415-8

P. Papior, Die Ausbildung von Pre-Replikationskomplexen Im Epstein- Barr-Virus Und Dem Menschen, 2010.

P. Papior, M. José, T. Arteaga-salas, and . Günther, Open chromatin structures regulate the efficiencies of pre-RC formation and replication initiation in Epstein-Barr virus, The Journal of Cell Biology, vol.65, issue.4, pp.509-537, 2012.
DOI : 10.1038/sj.emboj.7600609

J. J. Pesavento, H. Yang, N. L. Kelleher, and C. A. Mizzen, Certain and Progressive Methylation of Histone H4 at Lysine 20 during the Cell Cycle, Molecular and Cellular Biology, vol.28, issue.1, pp.468-86, 2008.
DOI : 10.1128/MCB.01517-07

N. Petryk, M. Kahli, Y. Aubenton-carafa, Y. Jaszczyszyn, Y. Shen et al., Replication landscape of the human genome, Nature Communications, vol.342, 2016.
DOI : 10.1126/science.1236083

URL : https://hal.archives-ouvertes.fr/hal-01412672

F. Picard, J. Cadoret, B. Audit, A. Arneodo, A. Alberti et al., The Spatiotemporal Program of DNA Replication Is Associated with Specific Combinations of Chromatin Marks in Human Cells, PLoS Genetics, vol.15, issue.5, 2014.
DOI : 10.1371/journal.pgen.1004282.s014

URL : https://hal.archives-ouvertes.fr/hal-00995097

J. Pines, Four-Dimensional Control of the Cell Cycle, Nature Cell Biology, vol.1, issue.3, pp.73-79, 1999.
DOI : 10.1038/11041

B. D. Pope and D. M. Gilbert, The Replication Domain Model: Regulating Replicon Firing in the Context of Large-Scale Chromosome Architecture, Journal of Molecular Biology, vol.425, issue.23, 2013.
DOI : 10.1016/j.jmb.2013.04.014

B. D. Pope, T. Ryba, V. Dileep, F. Yue, W. Wu et al., Topologically associating domains are stable units of replication-timing regulation, Nature, vol.323, issue.7527, pp.402-407, 2014.
DOI : 10.1038/323533a0

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4251741

S. K. Powell, K. Heather, J. A. Macalpine, Y. Prinz, J. A. Li et al., Dynamic loading and redistribution of the Mcm2-7 helicase complex through the cell cycle, The EMBO Journal, vol.34, issue.4, p.531, 2015.
DOI : 10.15252/embj.201488307

D. Remus, F. Beuron, G. Tolun, J. D. Griffith, E. P. Morris et al., Concerted Loading of Mcm2???7 Double Hexamers around DNA during DNA Replication Origin Licensing, Cell, vol.139, issue.4, pp.719-749, 2009.
DOI : 10.1016/j.cell.2009.10.015

URL : http://doi.org/10.1016/j.cell.2009.10.015

M. Ritzi, K. Tillack, J. Gerhardt, E. Ott, S. Humme et al., Complex protein-DNA dynamics at the latent origin of DNA replication of Epstein-Barr virus, Journal of Cell Science, vol.116, issue.19, pp.3971-84, 2003.
DOI : 10.1242/jcs.00708

J. Rivera-mulia, D. M. Carlos, and . Gilbert, Replication timing and transcriptional control: beyond cause and effect???part III, Current Opinion in Cell Biology, vol.40, pp.168-78, 2016.
DOI : 10.1016/j.ceb.2016.03.022

G. Saredi, H. Huang, C. M. Hammond, C. Alabert, S. Bekker-jensen et al., H4K20me0 marks post-replicative chromatin and recruits the TONSL???MMS22L DNA repair complex, H4K20me0 Marks Post-Replicative Chromatin and Recruits the TONSL? MMS22L DNA Repair Complex, pp.714-732, 2016.
DOI : 10.1038/nsmb.2796

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939875

D. Schaarschmidt, E. Ladenburger, C. Keller, and R. Knippers, Human Mcm proteins at a replication origin during the G1 to S phase transition, Nucleic Acids Research, vol.30, issue.19, pp.4176-85, 2002.
DOI : 10.1093/nar/gkf532

A. Schepers and P. Papior, Why are we where we are? Understanding replication origins and initiation sites in eukaryotes using ChIP-approaches, Chromosome Research, vol.385, issue.1, pp.63-77, 2010.
DOI : 10.1128/MCB.13.10.5931

A. Schepers, M. Ritzi, K. Bousset, E. Kremmer, J. L. Yates et al., Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus, The EMBO Journal, vol.20, issue.16, pp.4588-4602, 2001.
DOI : 10.1093/emboj/20.16.4588

G. Schotta, M. Lachner, K. Sarma, A. Ebert, R. Sengupta et al., A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin, Genes & Development, vol.18, issue.11, pp.1251-62, 2004.
DOI : 10.1101/gad.300704

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC420351

G. Schotta, R. Sengupta, S. Kubicek, S. Malin, M. Kauer et al., A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse, Genes & Development, vol.22, issue.15, pp.2048-61, 2008.
DOI : 10.1101/gad.476008

J. Sears, J. Kolman, G. M. Wahl, and A. Aiyar, Metaphase Chromosome Tethering Is Necessary for the DNA Synthesis and Maintenance of oriP Plasmids but Is Insufficient for Transcription Activation by Epstein-Barr Nuclear Antigen 1, Journal of Virology, vol.77, issue.21, pp.11767-80, 2003.
DOI : 10.1128/JVI.77.21.11767-11780.2003

J. Sears, M. Ujihara, S. Wong, C. Ott, J. Middeldorp et al., The Amino Terminus of Epstein-Barr Virus (EBV) Nuclear Antigen 1 Contains AT Hooks That Facilitate the Replication and Partitioning of Latent EBV Genomes by Tethering Them to Cellular Chromosomes, Journal of Virology, vol.78, issue.21, pp.11487-505, 2004.
DOI : 10.1128/JVI.78.21.11487-11505.2004

J. Sequeira-mendes, R. Díaz-uriarte, A. Apedaile, D. Huntley, N. Brockdorff et al., Transcription Initiation Activity Sets Replication Origin Efficiency in Mammalian Cells, PLoS Genetics, vol.28, issue.4, p.1000446, 2009.
DOI : 10.1371/journal.pgen.1000446.s004

URL : http://doi.org/10.1371/journal.pgen.1000446

M. M. Shareef, R. Badugu, and R. Kellum, HP1/ORC Complex and Heterochromatin Assembly, Genetica, vol.117, pp.2-3, 2003.

Z. Shen, A. Chakraborty, A. Jain, S. Giri, T. Ha et al., Dynamic Association of ORCA with Prereplicative Complex Components Regulates DNA Replication Initiation, Molecular and Cellular Biology, vol.32, issue.15, pp.3107-3127, 2012.
DOI : 10.1128/MCB.00362-12

Z. Shen, K. M. Sathyan, Y. Geng, R. Zheng, A. Chakraborty et al., A WD-Repeat Protein Stabilizes ORC Binding to Chromatin, Molecular Cell, vol.40, issue.1, pp.99-111, 2010.
DOI : 10.1016/j.molcel.2010.09.021

URL : http://doi.org/10.1016/j.molcel.2010.09.021

H. Shin, T. Liu, A. K. Manrai, and X. S. Liu, CEAS: cis-regulatory element annotation system, Bioinformatics, vol.25, issue.19, pp.2605-2611, 2009.
DOI : 10.1093/bioinformatics/btp479

O. K. Smith, R. Kim, H. Fu, M. M. Martin, C. Mei-lin et al., Distinct epigenetic features of differentiation-regulated replication origins, Epigenetics & Chromatin, vol.23, issue.4, p.18, 2016.
DOI : 10.1016/j.devcel.2012.09.003

URL : http://doi.org/10.1186/s13072-016-0067-3

R. Sonneville, M. Querenet, A. Craig, A. Gartner, and J. J. Blow, embryos, The Journal of Cell Biology, vol.122, issue.2, pp.233-279, 2012.
DOI : 10.1038/nature01747

A. A. Soshnev, Z. Steven, C. Josefowicz, and . David-allis, Greater Than the Sum of Parts: Complexity of the Dynamic Epigenome, Molecular Cell, vol.62, issue.5, pp.681-94, 2016.
DOI : 10.1016/j.molcel.2016.05.004

P. Methyltransferase, Regulates Replication Origins in Mammalian Cells, Nature Cell Biology, vol.12, issue.11, pp.1086-93

J. M. Urban, S. Michael, C. Foulk, S. A. Casella, and . Gerbi, The hunt for origins of DNA replication in multicellular eukaryotes, F1000Prime Reports, vol.7, 2015.
DOI : 10.12703/P7-30

M. S. Valenzuela, Y. Chen, S. Davis, F. Yang, R. L. Walker et al., Preferential Localization of Human Origins of DNA Replication at the 5???-Ends of Expressed Genes and at Evolutionarily Conserved DNA Sequences, PLoS ONE, vol.100, issue.5, p.17308, 2011.
DOI : 10.1371/journal.pone.0017308.s013

A. Valton, V. Hassan-zadeh, I. Lema, N. Boggetto, P. Alberti et al., G4 motifs affect origin positioning and efficiency in two vertebrate replicators, The EMBO Journal, vol.33, issue.7, pp.732-778, 2014.
DOI : 10.1002/embj.201387506

URL : https://hal.archives-ouvertes.fr/hal-00987430

A. Valton and M. Prioleau, G-Quadruplexes in DNA Replication: A Problem or a Necessity?, Trends in Genetics, vol.32, issue.11, 2016.
DOI : 10.1016/j.tig.2016.09.004

URL : https://hal.archives-ouvertes.fr/hal-01472913

S. Vashee, C. Cvetic, W. Lu, P. Simancek, T. J. Kelly et al., Sequence-independent DNA binding and replication initiation by the human origin recognition complex, Genes & Development, vol.17, issue.15, pp.1894-1908, 2003.
DOI : 10.1101/gad.1084203

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC196240

M. Vermeulen, H. C. Eberl, F. Matarese, H. Marks, S. Denissov et al., Quantitative Interaction Proteomics and Genome-wide Profiling of Epigenetic Histone Marks and Their Readers, Cell, vol.142, issue.6, pp.967-80, 2010.
DOI : 10.1016/j.cell.2010.08.020

URL : http://doi.org/10.1016/j.cell.2010.08.020

E. G. Wilbanks and M. T. Facciotti, Evaluation of Algorithm Performance in ChIP-Seq Peak Detection, PLoS ONE, vol.24, issue.7, 2010.
DOI : 10.1371/journal.pone.0011471.s014

K. A. Wilson, G. Andrew, E. G. Elefanty, D. M. Stanley, and . Gilbert, Spatio-temporal re-organization of replication foci accompanies replication domain consolidation during human pluripotent stem cell lineage specification, Cell Cycle, vol.129, issue.1, pp.15-2464, 2016.
DOI : 10.1016/S0092-8674(00)80661-3

A. M. Woodward, T. Göhler, M. G. Luciani, M. Oehlmann, X. Ge et al., Excess Mcm2???7 license dormant origins of replication that can be used under conditions of replicative stress, The Journal of Cell Biology, vol.112, issue.5, pp.673-83, 2006.
DOI : 10.1126/science.280.5363.593

R. Wu, Z. Wang, H. Zhang, H. Gan, and Z. Zhang, H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication, Nucleic Acids Research, vol.45, issue.1, 2016.
DOI : 10.1093/nar/gkw848

S. Wu and J. C. Rice, A new regulator of the cell cycle, Cell Cycle, vol.283, issue.1, pp.68-72, 2011.
DOI : 10.1016/j.molcel.2007.07.012

S. Wu, W. Wang, X. Kong, L. M. Congdon, K. Yokomori et al., Dynamic Regulation of the, 2010.

J. L. Yates and N. Guan, Epstein-Barr Virus-Derived Plasmids Replicate Only Once per Cell Cycle and Are Not Amplified after Entry into Cells, Journal of Virology, vol.65, issue.1, pp.483-88, 1991.

J. L. Yates, Epstein?Barr Virus DNA Replication, DNA Replication in Eukaryotic Cells, pp.751-774, 1996.

J. T. Yeeles, D. Tom, A. Deegan, A. Janska, J. F. Early et al., Regulated eukaryotic DNA replication origin firing with purified proteins, Nature, vol.15, issue.7544, pp.431-466, 2015.
DOI : 10.1093/nar/15.3.1281

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4874468

M. Yekezare, B. Gómez-gonzález, and J. F. Diffley, Controlling DNA replication origins in response to DNA damage - inhibit globally, activate locally, Journal of Cell Science, vol.126, issue.6, pp.1297-1306, 2013.
DOI : 10.1242/jcs.096701

Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson et al., Model-based Analysis of ChIP-Seq (MACS), Genome Biology, vol.9, issue.9, p.137, 2008.
DOI : 10.1186/gb-2008-9-9-r137

M. , P. Origin, . Identified-by-t-pic, . But, H. By et al., 65 FIGURE 4 CORRELATION 67 FIGURE 4 A) MEAN 70 FIGURE 4, PRE-RC COMPONENT COVERAGE ANALYSIS REVEALED INCREASED COVERAGE AT ACTIVE TSS (LEFT PANEL) AND UNCHANGED COVERAGE AT INACTIVE TSS (RIGHT PANEL). A) MEAN ORC2 COVERAGE. B) MEAN ORC3 COVERAGE. C) MEAN MCM3 COVERAGE. D) MEAN MCM7 COVERAGE. 74 FIGURE 4G2) AT AS (LEFT PANEL) AND DS (RIGHT PANEL). A) MEAN MCM2-7 APPROXIMATED ORC IN S/G2. 90 FIGURE 4.29: H4K20ME1 IS PRESENT IN ACTIVE CHROMATIN, WHILE H4K20ME3 CORRESPONDS TO HETEROCHROMATIN. 95 FIGURE 4.30: COVERAGE OF PRE-RC COMPONENTS (G1) AT H4K20ME1 PEAKS. A) MEAN ORC2 COVERAGE. B) MEAN ORC3 COVERAGE. C) MEAN MCM3 COVERAGE. D) MEAN MCM7 COVERAGE. 96 FIGURE 4.31: ORC SHOWED INCREASED COVERAGE AT H4K20ME3 PEAKS. A) MEAN ORC2 COVERAGE. B) MEAN ORC3 COVERAGE. C) MEAN MCM3 COVERAGE. D) MEAN MCM7 COVERAGE. 97 FIGURE 4.32: MOSTLY HOMER-(LEFT) AND T-PIC-(RIGHT) DEFINED ORC OVERLAPPED WITH H4K20ME3. 98 FIGURE 4.33: SCHEMATIC REPRESENTATION OF EXPERIMENTAL SETUP. A) EBV-DERIVED AUTOSOMAL REPORTER PLASMID SYSTEM. B) PLASMID ABUNDANCE EXPERIMENTS. 101 FIGURE 4.34: GENERATION OF HEK293 EBNA1 + GAL4 (-FUSION) CELL LINES. 102 FIGURE 4 TARGETING TO FR-ORI RDH AND FR-UAS ORI RDH UNSPECIFICALLY INDUCES H4K20ME3 ALL OVER THE PLASMIDS. 103 FIGURE 4, pp.4-20

P. Plasmids, . Licensing, . Activation, . Defined, . In et al., 106 FIGURE 4, SUV4- 20H1 FLOX/-, SUV4-20H1 -/-MEFS, TREATED OR NOT WITH 4-OHT. B) RELATIVE SNS ENRICHMENT C) CHIP-QPCR ANALYSIS 108 FIGURE 4.41: IMMUNOBLOT CONFIRMATION OF A-196 COMPOUND INHIBITING H4K20ME2/3. 110 FIGURE 4.42: PR-SET7 TARGETING IN PRESENCE OF A-196 LED TO REDUCED H4K20ME3 LEVELS AND PRE-RC FORMATION COMPARED TO UNTREATED CELLS. 110 FIGURE 4.43: ENHANCED REPLICATION DURING PR-SET7 DEPENDS ON H4K20ME3. QUANTIFICATION OF FR-ORI RDH AND FR-UAS-ORI RDH PLASMIDS, p.111

A. Figure, . Representation, . The, I. Similarity, . Homer et al., 120 APPENDIX FIGURE 3: VALIDATION OF ES CELL PLURIPOTENCY. A) CELL MORPHOLOGY. B) FACS STAIN OF PLURIPOTENCY MARKERS OCT4 AND SSEA4, REPRESENTATIVE EXAMPLE ANALYSIS FOR A) ORC3 AND B) MCM7 IN ONE REPLICATE. 124 APPENDIX FIGURE 7: PRE-RC BINDING AT LAMINB2 ORIGIN IS DETECTED, p.125, 2012.

A. Figure-pre-rc, . Binding, . Junb, . Is, . By-t-pic et al., 126 APPENDIX FIGURE 9: ORC AND MCM2-7 COMPLEX SIZES A) ORC. B) MCM2-7. 127 APPENDIX FIGURE 10: OVERLAPS OF HOMER-AND T-PIC DEFINED COMPLEXES. A) ORC B) MCM2-7. 128 APPENDIX FIGURE 11, 129 APPENDIX FIGURE 12: GENOMIC DISTRIBUTION OF H3K4ME3 PEAKS SHOWED CLOSE ASSOCIATION TO REGULATORY 5' GENIC REGIONS. 130 APPENDIX FIGURE 13: H3K4ME3 POSITIONS WERE MORE LOCALIZED THAN H3K36ME3. 131 APPENDIX FIGURE 14: GENOMIC DISTRIBUTION OF H3K36ME3 PEAKS SHOWED ENRICHMENT IN INTRONS, p.132

A. Figure, . Coverage, . Pre-rc, . At, and . Peaks, NO, A) MEAN ORC2 COVERAGE. B) MEAN ORC3 COVERAGE. C) MEAN MCM3 COVERAGE. D) MEAN MCM7 COVERAGE

A. Figure, H. Orc, A. Mcm2-7, . Pre-rc, . Were et al., 135 APPENDIX FIGURE 18: COMPARISON C) T-PIC-DEFINED MCM2-7 DENSITIES. 136 APPENDIX FIGURE 137 APPENDIX FIGURE 20: OVERLAPS OF HOMER-(LEFT PANEL), 140 APPENDIX FIGURE 23: H4K20ME1 AND ?ME3 POSITIONS ARE MUTUALLY EXCLUSIVE. A) H4K20ME1 AND ?ME3 PEAK SIZES REPRESENTED IN A BOXLOT. B) OVERLAP OF H4K20ME1 AND ?ME3 PEAK POSITIONS. 141 APPENDIX FIGURE 24: HOMER-(LEFT PANEL) AND T-PIC-(RIGHT PANEL) DEFINED COMPLEXES HARDLY OVERLAP WITH H4K20ME1. 142 APPENDIX FIGURE 25: IGB VISUALIZATION OF ORC AND H4K20ME3 COLOCALIZATION. 143 APPENDIX FIGURE 26: COMPARISON OF H4K20ME1 AND ?ME3 POSITIONS IN G1 AND S/G2. A) H4K20ME1. B) H4K20ME3. 144 APPENDIX FIGURE 27: H4K20ME1 AND ?ME3 COVERAGE AT H4K20ME1 AND ?ME 3 PEAKS (G1 VS. S/G2). 145 APPENDIX FIGURE TARGETING HAS NO EFFECT ON PLASMID REPLICATION. QUANTIFICATION OF FR-ORI RDH AND FR-UAS-ORI RDH PLASMIDS. 146 APPENDIX FIGURE 29: DIRECT COMPARISON OF ALL REPORTER PLASMID REPLICATION EFFICIENCIES RELATIVE TO FR-DS. 147 APPENDIX FIGURE 30: PR-SET7 TARGETING TO FR-UAS LED TO H4K20ME1 INDUCTION AND CONVERSION INTO H4K20ME3, pp.4-20