B. Allard and «. L. , électronique de puissance: Bases, perspectives, guide de lecture, Tech. Ing. Génie Électr, vol.4, p.3060, 2006.

K. Isoird, Etude de la tenue en tension des dispositifs de puissance en carbure de silicium par caractérisations OBIC et électrique, 2001.

B. Boursat, Comprendre les problèmes de procédé de l'électronique de puissance, 2006.

S. Zelmat, « Etude des propriétés électriques d'un matériau polyimide à haute température : application à la passivation des composants de puissance en carbure de silicium, Thèse, 2006.

R. Riva, « Solution d'interconnexions pour la haute température, 2014.

A. Masson, Processing of alternative die attaches techniques for high temperature application, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00759411

J. B. Casady and R. W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review, Solid-State Electronics, vol.39, issue.10, pp.1409-1422, 1996.
DOI : 10.1016/0038-1101(96)00045-7

T. Miyajima, N. Tokura, and E. H. Kazukuni, « Silicon carbide semiconductor device, U.S. Patent and Trademark Office, p.936, 1999.

G. Civrac, Vers la réalisation de composants haute tension, forte puissance sur diamant CVD. Développement des technologies associées, 2009.
DOI : 10.3166/ejee.12.237-253

S. Kako, C. Santori, K. Hoshino, S. Götzinger, and Y. Yamamoto, A gallium nitride single-photon source operating at 200???K, Nature Materials, vol.95, issue.11, pp.887-892, 2006.
DOI : 10.1038/nmat1763

M. M. Jury and . Conception, Réalisation et Caractérisation d'interrupteurs (thyristors et JFETs) haute tension (5kV) en carbure de silicium, 2004.

C. Eaborn, « Gmelin Handbook of Inorganic Chemistry, Silicon Carbide, Supplement, 1986.

R. W. Johnson, C. Wang, Y. Liu, and J. D. Scofield, Power Device Packaging Technologies for Extreme Environments, IEEE Transactions on Electronics Packaging Manufacturing, vol.30, issue.3, pp.182-193, 2007.
DOI : 10.1109/TEPM.2007.899158

G. L. Harris, Properties of silicon carbide, Iet, 1995.

«. Ai-technology, Manufacturer of adhesives, thermoplastic, thermal management material and specialty materials serving the semiconductor and electronic packaging industry ». [En ligne]. Disponible sur

M. Pecht, R. Agarwal, F. P. Mccluskey, T. J. Dishongh, S. Javadpour et al., Electronic packaging materials and their properties, 1998.

J. H. Harris, Sintered aluminum nitride ceramics for high-power electronic applications, JOM, vol.79, issue.6, pp.56-60, 1998.
DOI : 10.2109/jcersj1950.89.1030_330

«. Ceramic and G. , Hard Technical Ceramics ». [En ligne, Disponible sur

L. Ménager, « Contribution à l'intégration des convertisseurs de puissance en 3D, Thèse, 2008.

E. Woirgard, « Contribution à l'étude d'une intégration hybride adaptée à l'électronique automobile, Thèse, 1992.

W. W. Sheng and R. P. Colino, Power electronic modules: design and manufacture, 2004.
DOI : 10.1201/9780203507308

L. Zhang, Etude de fiabilité des modules d'électronique de puissance à base de composant SiC pour applications hautes températures, Thèse, 2012.

«. Dpc, Direct plated Copper) Substrat-Meilleure gestion thermique ». [En ligne]. Disponible sur: http://metallized-ceramic.ready-online

M. Occhionero, R. Adams, and E. K. Fennessy, « A new substrate for electronic packaging: aluminum silicon carbide (AlSiC) composites, Proceedings of the Forth Annual Portable by Design Conference, pp.24-27, 1997.

S. Dimitrijev and P. Jamet, Advances in SiC power MOSFET technology, Microelectronics Reliability, vol.43, issue.2, pp.225-233, 2003.
DOI : 10.1016/S0026-2714(02)00270-6

M. Ciappa, Lifetime prediction on the base of mission profiles, Microelectronics Reliability, vol.45, issue.9-11, pp.9-11, 2005.
DOI : 10.1016/j.microrel.2005.07.060

V. R. Manikam and K. Y. Cheong, Die Attach Materials for High Temperature Applications: A Review, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.1, issue.4, pp.457-478, 2011.
DOI : 10.1109/TCPMT.2010.2100432

T. Youssef, « Modélisation multiphysique d'un assemblage de puissance haute température destiné à l'environnement aéronautique, Thèse, 2016.

F. and L. Henaff, « Contribution à l'étude, la mise en oeuvre et à l'évaluation d'une solution de report de puce de puissance par procédé de frittage de pâte d'argent à haute pression et basse température, Thèse, 2014.

S. H. Yoon, Sintering and consolidation of silver nanoparticles printed on polyimide substrate films, Macromolecular Research, vol.252, issue.8, pp.568-574, 2009.
DOI : 10.1016/S0921-5093(98)00665-0

T. Youssef, Power modules die attach: A comprehensive evolution of the nanosilver sintering physical properties versus its porosity, Microelectronics Reliability, vol.55, issue.9-10, 1997.
DOI : 10.1016/j.microrel.2015.06.085

URL : https://hal.archives-ouvertes.fr/hal-01333171

S. Zabihzadeh, Microstructure and thermo-mechanical behaviors of thin layers of porous nanocrystalline silver, From Nano to Micro Power Electronics and Packaging International Workshop, 2014.

Z. Zhang, Processing and characterization of micro-scale and nanscale silver paste for power semiconductor device attachment, 2005.

W. Sabbah, « Contribution à l'étude des assemblages et connexions nécessaires à la réalisation d'un module de puissance haute température à base de jfet en carbure de silicium (SiC), 2013.

F. , L. Henaff, S. Azzopardi, J. Delétage, E. Woirgard et al., « Frittage de nano-pâte d'argent : impact de la métallisation du substrat sur la tenue à la fatigue thermique des assemblages de puissance, Electronique de Puissance du Futur, 2012.

M. Barrière, Silver sintered double-sided cooling power package process for controlled Si power semiconductor devices with aluminum top-metallization, 2015 IEEE International Workshop on Integrated Power Packaging (IWIPP), pp.2015-103, 2015.
DOI : 10.1109/IWIPP.2015.7295989

J. Scola, « Brasure à base de nanoparticules d'argent : évolution en temps réel de la microstructure et de la résistance, Symposium de Génie Électrique 2014, 2014.

G. Dutt, LED Die Attach Technologies », présenté à Lighting Exhibition Show, 2015.

«. Imaps-, Webinar sponsored by Palomar guide of modern wedge bonding, Disponible sur, 2016.

M. Schneider-ramelow and C. Ehrhardt, The reliability of wire bonding using Ag and Al, Microelectronics Reliability, vol.63, pp.336-341, 2016.
DOI : 10.1016/j.microrel.2016.05.009

H. Zhang, F. Wang, D. Zhang, Y. Hou, and E. T. Xi, A new automatic resonance frequency tracking method for piezoelectric ultrasonic transducers used in thermosonic wire bonding, Sensors and Actuators A: Physical, vol.235, pp.140-150, 2015.
DOI : 10.1016/j.sna.2015.09.040

S. Jacques, R. Leroy, and E. M. Lethiecq, Impact of aluminum wire and ribbon bonding technologies on D2PAK package reliability during thermal cycling applications, Microelectronics Reliability, vol.55, issue.9-10, pp.9-10, 2015.
DOI : 10.1016/j.microrel.2015.06.012

M. Barrière, S. Azzopardi, and E. R. Roder, Procédé de frittage de pâte d'argent double face adapté aux composants silicium avec métallisation supérieure aluminium », présenté à JCGE, 2015.

M. Rizzi, « Contribution à l'étude de la fiabilité des modules de puissance pour application automobile, Thèse, 2008.

L. Dupont, « Contribution à l'étude de la durée de vie des assemblages de puissance dans des environnements haute température et avec des cycles thermiques de grande amplitude, 2006.

W. Sabbah and E. Woirgard, Analyses destructives & non destructives des VTs vieillis par cyclage thermique de -55°C à +245°C, 2014.

F. W. Gayle, High temperature lead-free solder for microelectronics, JOM, vol.29, issue.10, pp.17-21, 2001.
DOI : 10.1007/s11837-001-0097-5

A. Arbor, « NCMS lead-free solder project final report, Natl. Cent. Manuf. Sci, 1997.

G. Parent, « Evaluation de la durée de vie de composants électroniques de puissance commerciaux soumis à plusieurs tests de vieillissement et détermination des mécanismes de défaillance, Thèse, 2016.

P. Liu, P. Yao, and E. J. Liu, Evolutions of the interface and shear strength between SnAgCu???xNi solder and Cu substrate during isothermal aging at 150??C, Journal of Alloys and Compounds, vol.486, issue.1-2, pp.474-479, 2009.
DOI : 10.1016/j.jallcom.2009.06.171

T. A. Siewert, J. C. Madeni, and E. S. Liu, « Formation and growth of intermetallics at the interface between lead-free solders and copper substrates, Proceedings of the APEX Conference on Electronics Manufacturing, pp.583-594, 2003.

G. Matljasevic, C. C. Lee, . Void-free, and . Au, Void-free Au-Sn eutectic bonding of GaAs dice and its characterization using scanning acoustic microscopy, Journal of Electronic Materials, vol.32, issue.2, pp.327-337, 1989.
DOI : 10.1109/T-SU.1985.31591

L. Benabou, V. Etgens, and Q. B. Tao, « Finite element analysis of the effect of process-induced voids on the fatigue lifetime of a lead-free solder joint under thermal cycling, Microelectron. Reliab, vol.65, pp.243-254, 2016.

A. Haque, B. H. Lim, A. Haseeb, and H. H. Masjuki, Die attach properties of Zn???Al???Mg???Ga based high-temperature lead-free solder on Cu lead-frame, Journal of Materials Science: Materials in Electronics, vol.38, issue.1, pp.115-123, 2012.
DOI : 10.1007/s11664-008-0528-y

W. H. Zhu, S. Stoeckl, H. Pape, and S. L. Gan, Comparative study on solder joint reliability using different FE-models », in Electronics packaging technology, pp.5-687, 2003.

L. J. Ladani and A. Dasgupta, Effect of Voids on Thermomechanical Durability of Pb-Free BGA Solder Joints: Modeling and Simulation, Journal of Electronic Packaging, vol.129, issue.3, pp.273-277, 2007.
DOI : 10.1115/1.2753911

Z. Bin and Q. Baojun, Effect of Voids on the Thermal Fatigue Reliability of PBGA Solder Joints through Submodel Technology, 2008 10th Electronics Packaging Technology Conference, pp.704-708, 2008.
DOI : 10.1109/EPTC.2008.4763515

Q. Yu, T. Shibutani, D. Kim, Y. Kobayashi, J. Yang et al., Effect of process-induced voids on isothermal fatigue resistance of CSP lead-free solder joints, Microelectronics Reliability, vol.48, issue.3, pp.431-437, 2008.
DOI : 10.1016/j.microrel.2007.08.008

J. Chang, L. Wang, J. Dirk, and X. Xie, et others, « Finite element modeling predicts the effects of voids on thermal shock reliability and thermal resistance of power device », Weld, J, vol.85, issue.3, pp.63-70, 2006.

J. Lau and S. Erasmus, Pan, « Effects of voids on bump chip carrier (BCC++) solder joint reliability, Electronic Components and Technology Conference Proceedings. 52nd, pp.992-1000, 2002.

T. A. Tollefsen, A. Larsson, O. M. Løvvik, E. K. Aasmundtveit, and . Au, Au-Sn SLID Bonding???Properties and Possibilities, Sn SLID bonding? properties and possibilities, pp.397-405, 2012.
DOI : 10.1143/JJAP.46.1961

J. Yoon and S. Jung, Investigation of interfacial reaction between Au???Sn solder and Kovar for hermetic sealing application, Microelectronic Engineering, vol.84, issue.11, pp.2634-2639, 2007.
DOI : 10.1016/j.mee.2007.05.058

H. Ye and M. Lin, Failure modes and FEM analysis of power electronic packaging, Finite Elements in Analysis and Design, vol.38, issue.7, pp.601-612, 2002.
DOI : 10.1016/S0168-874X(01)00094-4

H. Lu and C. Bailey, Design for reliability of power electronics modules, Microelectronics Reliability, vol.49, issue.9-11, pp.1250-1255, 2009.
DOI : 10.1016/j.microrel.2009.07.055

N. Y. Shammas, Present problems of power module packaging technology, Microelectronics Reliability, vol.43, issue.4, pp.519-527, 2003.
DOI : 10.1016/S0026-2714(03)00019-2

G. Dong, G. T. Lei, X. Chen, K. Ngo, and E. G. Lu, Edge tail length effect on reliability of DBC substrates under thermal cycling, Soldering & Surface Mount Technology, vol.21, issue.3, pp.10-15, 2009.
DOI : 10.1111/j.1151-2916.1992.tb04433.x

L. Xu, M. Wang, Y. Zhou, Z. Qian, and E. S. Liu, An optimal structural design to improve the reliability of Al2O3???DBC substrates under thermal cycling, Microelectronics Reliability, vol.56, pp.101-108
DOI : 10.1016/j.microrel.2015.11.013

D. Kostic, « Lead-free -An Update », présenté à Electronics Reliability, The Aerospace Corporation GEOINT DEVELOPMENT OFFICE, 2011.

M. J. Bozack, S. K. Snipes, and G. N. Flowers, Methods for fast, reliable growth of Sn whiskers, Surface Science, vol.652, pp.355-366
DOI : 10.1016/j.susc.2016.01.010

T. Youssef, Power modules die attach: A comprehensive evolution of the nanosilver sintering physical properties versus its porosity, Microelectronics Reliability, vol.55, issue.9-10, pp.9-10, 2015.
DOI : 10.1016/j.microrel.2015.06.085

URL : https://hal.archives-ouvertes.fr/hal-01333171

V. Caccuri, « Etude des propriétés mécaniques de technologies de report de puce pour électronique de puissance: influence du vieillissement, Thèse, ISAE-ENSMA Ecole Nationale, 2014.

H. Yu, L. Li, and E. Y. Zhang, Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications, Scripta Materialia, vol.66, issue.11, pp.931-934, 2012.
DOI : 10.1016/j.scriptamat.2012.02.037

E. Ando and M. Miyazaki, Moisture degradation mechanism of silver-based low-emissivity coatings, Thin Solid Films, vol.351, issue.1-2, pp.308-312, 1999.
DOI : 10.1016/S0040-6090(98)01796-9

L. Dupont, Z. Khatir, S. Lefebvre, and E. S. Bontemps, Effects of metallization thickness of ceramic substrates on the reliability of power assemblies under high temperature cycling, Microelectronics Reliability, vol.46, issue.9-11, pp.1766-1771, 2006.
DOI : 10.1016/j.microrel.2006.07.057

J. Schulz-harder and K. Exel, Recent developments of direct bonded copper (DBC) substrates for power modules, Fifth International Conference onElectronic Packaging Technology Proceedings, 2003. ICEPT2003., pp.491-496, 2003.
DOI : 10.1109/EPTC.2003.1298787

M. Bouarroudj-berkani, Etude de la fatigue thermo-mécanique de modules électroniques de puissance en ambiance de températures élevées pour des applications de traction de véhicules électriques et hybrides, 2008.

M. Chan, C. M. Tan, K. C. Lee, and C. S. Tan, Non-destructive degradation study of copper wire bond for its temperature cycling reliability evaluation, Microelectronics Reliability, vol.61, pp.56-63, 2016.
DOI : 10.1016/j.microrel.2015.12.026

P. Mccluskey, « Packaging of power electronics for high temperature applications, Adv. Microelectron, vol.25, pp.19-24, 1998.

W. Wondrak, Physical limits and lifetime limitations of semiconductor devices at high temperatures, Microelectronics Reliability, vol.39, issue.6-7, pp.1113-1120, 1999.
DOI : 10.1016/S0026-2714(99)00158-4

D. O. Neacsu, Switching Power Converters: Medium and High Power, Thermal management and reliability, 2013.
DOI : 10.1201/9781420015539

L. Bechou, « Conception et réalisation d'un système ultrasonore à balayage appliqué au diagnostic de défauts dans les microassemblages. Contribution à l'aide à l'interprétation par traitement de l'image et du signal, 1998.

J. , «. Standards, and &. Search, Acoustic microscopy for nonhermetic encapsulated electronic components ». [En ligne]. Disponible sur

M. Carchia, Fiabilité électronique / électrique, 1999.

J. Li, C. M. Johnson, C. Buttay, W. Sabbah, and E. S. Azzopardi, Bonding strength of multiple SiC die attachment prepared by sintering of Ag nanoparticles, Journal of Materials Processing Technology, vol.215, pp.299-308
DOI : 10.1016/j.jmatprotec.2014.08.002

URL : https://hal.archives-ouvertes.fr/hal-01065130

C. Coorstek, . Industry, and . Key-features, Benefits of Some Advanced Technical Ceramics used in power electronic substrates ». [En ligne]. Disponible sur: https

A. Electronics and C. , Component Technical Committee), « Stress Test Qualification for Automotive Grade Discrete Semiconductors, pp.29-2005

J. Ciulik, M. R. Notis, and . Au, The Au???Sn phase diagram, Journal of Alloys and Compounds, vol.191, issue.1, pp.71-78, 1993.
DOI : 10.1016/0925-8388(93)90273-P

J. Yoon, B. Noh, and S. Jung, Interfacial reaction between Au???Sn solder and Au/Ni-metallized Kovar, Journal of Materials Science: Materials in Electronics, vol.469, issue.1, pp.84-90, 2011.
DOI : 10.1007/s10854-010-0089-8

Z. X. Zhu, C. C. Li, L. L. Liao, C. K. Liu, C. R. Kao et al., Au???Sn bonding material for the assembly of power integrated circuit module, Journal of Alloys and Compounds, vol.671, pp.340-345, 2016.
DOI : 10.1016/j.jallcom.2016.02.065

S. Anhock, H. Oppermann, C. Kallmayer, R. Aschenbrenner, and L. Thomas, Reichl, « Investigations of Au-Sn alloys on different end-metallizations for high temperature applications [solders], Electronics Manufacturing Technology Symposium, 1998. IEMT-Europe 1998. Twenty-Second IEEE/CPMT International, pp.156-165, 1998.

M. Schaefer, R. A. Fournelle, and E. J. Liang, Theory for intermetallic phase growth between cu and liquid Sn-Pb solder based on grain boundary diffusion control, Journal of Electronic Materials, vol.11, issue.23, pp.1167-1176, 1998.
DOI : 10.2320/matertrans1960.16.539

P. Liu, P. Yao, and E. J. Liu, Evolutions of the interface and shear strength between SnAgCu???xNi solder and Cu substrate during isothermal aging at 150??C, Journal of Alloys and Compounds, vol.486, issue.1-2, pp.474-479, 2009.
DOI : 10.1016/j.jallcom.2009.06.171

E. Woirgard, F. Arabi, W. Sabbah, D. Martineau, and L. Theolier, Identification and analysis of power substrates degradations subjected to severe aging tests, Microelectronics Reliability, vol.55, issue.9-10, pp.1961-1965, 2015.
DOI : 10.1016/j.microrel.2015.06.048

T. Youssef, E. Woirgard, S. Azzopardi, D. Martineau, and E. R. Meuret, Multi-physics modelling of thin films: Optimization for finite elements simulations tools, 2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, pp.1-5, 2015.
DOI : 10.1109/EuroSimE.2015.7103138

J. Chaboche, Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Constitutive equations for cyclic plasticity and cyclic viscoplasticity, pp.247-302, 1989.
DOI : 10.1016/0749-6419(89)90015-6

G. Dong, G. Lei, X. Chen, K. Ngo, . Et-guo?quan et al., Edge tail length effect on reliability of DBC substrates under thermal cycling, Soldering & Surface Mount Technology, vol.21, issue.3, pp.10-15, 2009.
DOI : 10.1111/j.1151-2916.1992.tb04433.x

J. W. Evans, D. Kwon, and J. Y. Evans, A Guide to Lead-Free Solders: Physical Metallurgy and Reliability, Engelmaier, 2007.

M. W. Beranek, M. Rassaian, C. H. Tang, C. L. St-john, and V. A. , Characterization of 63Sn37Pb and 80Au2OSn solder sealed optical fiber feedthroughs subjected to repetitive thermal cycling, IEEE Transactions on Advanced Packaging, vol.24, issue.2, pp.576-585, 2001.
DOI : 10.1109/6040.982847

K. Lee, Y. Jin, Y. Sohn, J. Namkung, and M. Kim, Continuous strip casting, microstructure and properties of Au-Sn soldering alloy, Continuous strip casting, microstructure and properties of Au-Sn soldering alloy, pp.7-14, 2011.
DOI : 10.1016/0925-8388(93)90273-P

J. C. Mcnulty, Processing and reliability issues for eutectic AuSn solder joints, International Microelectronics and Packaging Society. Permission granted from the 41- International Symposium on Microelectronics (IMAPS) Proceedings, pp.909-916, 2008.

. Chaboche, Mécanique des Matériaux solides, Edition Dunod, 1985.

S. Cuvilliez, « Passage d'un modèle d'endommagement continu régularisé à un modèle de fissuration cohésive dans le cadre de la rupture quasi-fragile, Thèse, 2012.

G. R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, Spie Milest. Ser. MS, vol.137, issue.167?170, p.16, 1997.

M. Patr?cio and R. Mattheij, « Crack propagation analysis », CASA Rep, pp.7-10, 2007.

F. , L. Henaff, S. Azzopardi, J. Y. Deletage, E. Woirgard et al., « A preliminary study on the thermal and mechanical performances of sintered nano-scale silver die-attach technology depending on the substrate metallization, Microelectron. Reliab, vol.52, pp.9-10, 2012.

L. Dupont, S. Lefebvre, Z. Khatir, and E. S. Bontemps, « Evaluation of substrate technologies under high temperature cycling, Integrated Power Systems (CIPS) 4th International Conference on, pp.1-6, 2006.

Y. Wang, X. Dai, G. Liu, Y. Wu, D. Li et al., « Integrated Liquid Cooling Automotive IGBT Module for High Temperatures Coolant Application », in Renewable Energy and Energy Management, International Exhibition and Conference for Power Electronics, Intelligent Motion, pp.1-7, 2015.