P. J. Barnard and S. Berners-price, Targeting the mitochondrial cell death pathway with gold compounds, Coordination Chemistry Reviews, vol.251, issue.13-14, pp.1889-1902, 2007.
DOI : 10.1016/j.ccr.2007.04.006

A. Pratesi, C. Gabbiani, M. Ginanneschi, and L. Messori, Reactions of medicinally relevant gold compounds with the C-terminal motif of thioredoxin reductase elucidated by MS analysis, Chemical Communications, vol.120, issue.22, pp.7001-7003, 2010.
DOI : 10.1016/j.bbagen.2009.01.014

E. Schuh, C. Pflueger, A. Citta, A. Folda, M. P. Rigobello et al., Oxidation as Potential Anticancer Agents, Journal of Medicinal Chemistry, vol.55, issue.11, pp.5518-5528, 2012.
DOI : 10.1021/jm300428v

M. P. Rigobello, A. Folda, B. Dani, R. Menabo, G. Scutari et al., Gold(I) complexes determine apoptosis with limited oxidative stress in Jurkat T cells, European Journal of Pharmacology, vol.582, issue.1-3, pp.26-34, 2008.
DOI : 10.1016/j.ejphar.2007.12.026

L. Messori, P. Orioli, C. Tempi, and G. Marcon, Interactions of Selected Gold(III) Complexes with Calf Thymus DNA, Biochemical and Biophysical Research Communications, vol.281, issue.2, pp.352-360, 2001.
DOI : 10.1006/bbrc.2001.4358

A. Casini, M. A. Cinellu, G. Minghetti, C. Gabbiani, M. Coronnello et al., Structural and Solution Chemistry, Antiproliferative Effects, and DNA and Protein Binding Properties of a Series of Dinuclear Gold(III) Compounds with Bipyridyl Ligands, Journal of Medicinal Chemistry, vol.49, issue.18, pp.5524-5531, 2006.
DOI : 10.1021/jm060436a

Y. Wang, Q. He, R. W. Sun, -. Che, C. Chiu et al., Cellular pharmacological properties of gold(III) porphyrin 1a, a potential anticancer drug lead, European Journal of Pharmacology, vol.554, issue.2-3, pp.113-122, 2007.
DOI : 10.1016/j.ejphar.2006.10.034

C. Che, R. W. Sun, and -. , Therapeutic applications of gold complexes: lipophilic gold(iii) cations and gold(i) complexes for anti-cancer treatment, Chemical Communications, vol.98, issue.34, pp.9554-9560, 2011.
DOI : 10.1039/C1CC11820J

S. Ahmad and A. A. Isab, 13C, 31P and 15N NMR studies of the ligand exchange reactions of auranofin and chloro(triethylphosphine)gold(I) with thiourea, Journal of Inorganic Biochemistry, vol.88, issue.1, pp.44-52, 2002.
DOI : 10.1016/S0162-0134(01)00305-1

M. T. Carlock, I. Shaw, C. F. Eidsness, M. K. Watkins, J. W. Elder et al., Reactions of auranofin and chloro(triethylphosphine)gold with bovine serum albumin, Inorganic Chemistry, vol.25, issue.3, pp.333-339, 1986.
DOI : 10.1021/ic00223a020

Y. Nose, E. M. Rees, D. Thiele, and F. N. Ghadially, Structure of the Ctr1 copper trans?PORE?ter reveals novel architecture, Trends in Biochemical Sciences, vol.31, issue.11, pp.604-607, 1979.
DOI : 10.1016/j.tibs.2006.09.003

Y. Lo, T. Ko, W. Su, T. Su, and A. H. Wang, Terpyridine?platinum(II) complexes are effective inhibitors of mammalian topoisomerases and human thioredoxin reductase 1, Journal of Inorganic Biochemistry, vol.103, issue.7, pp.1082-1092, 2009.
DOI : 10.1016/j.jinorgbio.2009.05.006

F. Saccoccia, F. Angelucci, G. Boumis, M. Brunori, A. E. Miele et al., On the mechanism and rate of gold incorporation into thiol-dependent flavoreductases, Journal of Inorganic Biochemistry, vol.108, pp.105-111, 2012.
DOI : 10.1016/j.jinorgbio.2011.11.005

URL : https://hal.archives-ouvertes.fr/pasteur-00952028

C. E. Chwieralski, T. Welte, and F. Buhling, Cathepsin-regulated apoptosis, Apoptosis, vol.80, issue.2, pp.143-149, 2006.
DOI : 10.1016/S0002-9440(10)63607-3

O. Vasiljeva, T. Reinheckel, C. Peters, D. Turk, V. Turk et al., Emerging Roles of Cysteine Cathepsins in Disease and their Potential as Drug Targets, Current Pharmaceutical Design, vol.13, issue.4, pp.387-403, 2007.
DOI : 10.2174/138161207780162962

V. Hook, L. Funkelstein, J. Wegrzyn, S. Bark, M. Kindy et al., Cysteine Cathepsins in the secretory vesicle produce active peptides: Cathepsin L generates peptide neurotransmitters and cathepsin B produces beta-amyloid of Alzheimer's disease, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1824, issue.1, pp.89-104, 2012.
DOI : 10.1016/j.bbapap.2011.08.015

S. S. Gunatilleke, C. A. De-oliveira, J. A. Mccammon, and A. M. Barrios, Inhibition of cathepsin B by Au(I) complexes: a kinetic and computational study, JBIC Journal of Biological Inorganic Chemistry, vol.5, issue.4, pp.555-561, 2008.
DOI : 10.1042/bj1870909

A. Chircorian and A. M. Barrios, Inhibition of lysosomal cysteine proteases by chrysotherapeutic compounds: a possible mechanism for the antiarthritic activity of Au(I), Bioorganic & Medicinal Chemistry Letters, vol.14, issue.20, pp.5113-5116, 2004.
DOI : 10.1016/j.bmcl.2004.07.073

A. J. Lewis, J. Cottney, D. D. White, P. K. Fox, A. Mcneillie et al., Action of gold salts in some inflammatory and immunological models, Agents and Actions, vol.35, issue.Suppl. 5, pp.63-77, 1980.
DOI : 10.3181/00379727-140-36678

A. K. Mangalam, A. Aggarwal, and S. Naik, Mechanism of action of disease modifying anti-rheumatic agent, gold sodium thiomalate (GSTM), International Immunopharmacology, vol.1, issue.6, pp.1165-1172, 2001.
DOI : 10.1016/S1567-5769(01)00050-9

M. L. Handel, C. K. Watts, A. Defazio, R. O. Day, and R. L. Sutherland, Inhibition of AP-1 binding and transcription by gold and selenium involving conserved cysteine residues in Jun and Fos., Proceedings of the National Academy of Sciences, vol.92, issue.10, pp.4497-4501, 1995.
DOI : 10.1073/pnas.92.10.4497

B. Grimbacher, W. K. Aicher, H. H. Peter, and H. Eibel, TNF- ?? induces the transcription factor Egr-1, pro-inflammatory cytokines and cell proliferation in human skin fibroblasts and synovial lining cells, Rheumatology International, vol.17, issue.5, pp.185-192, 1998.
DOI : 10.1007/s002960050032

F. Mendes, M. Groessl, A. A. Nazarov, Y. O. Tsybin, G. Sava et al., Metal-Based Inhibition of Poly(ADP-ribose) Polymerase ? The Guardian Angel of DNA, Journal of Medicinal Chemistry, vol.54, issue.7, pp.2196-2206, 2011.
DOI : 10.1021/jm2000135

J. L. Larabee, J. R. Hocker, and J. S. Hanas, Zinc Finger Interactions, Chemical Research in Toxicology, vol.18, issue.12, pp.1943-1954, 2005.
DOI : 10.1021/tx0501435

D. Paula, Q. A. Mangrum, J. B. Farrell, and N. P. , Zinc finger proteins as templates for metal ion exchange: Substitution effects on the C-finger of HIV nucleocapsid NCp7 using M(chelate) species (M=Pt, Pd, Au), Journal of Inorganic Biochemistry, vol.103, issue.10, pp.1347-1354, 2009.
DOI : 10.1016/j.jinorgbio.2009.07.002

I. Shaw, C. F. Laib, J. E. Savas, M. M. Petering, and D. H. , Biphasic kinetics of aurothionein formation from gold sodium thiomalate: a novel metallochromic technique to probe zinc(2+) and cadmium(2+) displacement from metallothionein, Inorganic Chemistry, vol.29, issue.3, pp.403-408, 1990.
DOI : 10.1021/ic00328a012

A. Munoz, D. H. Petering, I. Shaw, and C. F. , Reactions of Electrophilic Reagents That Target the Thiolate Groups of Metallothionein Clusters:? Preferential Reaction of the ?-Domain with 5,5?-Dithio-bis(2-nitrobenzoate) (DTNB) and Aurothiomalate (AuSTm), Inorganic Chemistry, vol.38, issue.25, pp.5655-5659, 1999.
DOI : 10.1021/ic9901822

M. J. Stillman, A. J. Zelazowski, J. Szymanska, and Z. Gasyna, Luminescent metallothioneins: Emission properties of copper, silver, gold and platinum complexes of MT, Inorganica Chimica Acta, vol.161, issue.2, pp.275-279, 1989.
DOI : 10.1016/S0020-1693(00)83104-7

M. J. Stillman, A. Presta, Z. Gui, D. T. Jiang, V. A. Narayan et al., Spectroscopic Studies of Copper, Silver and Gold-Metallothioneins, Metal-Based Drugs, vol.1, issue.5-6, pp.375-394, 1994.
DOI : 10.1155/MBD.1994.375

B. A. Krizek, B. T. Amann, V. J. Kilfoil, D. L. Merkle, and J. M. Berg, A consensus zinc finger peptide: design, high-affinity metal binding, a pH-dependent structure, and a His to Cys sequence variant, Journal of the American Chemical Society, vol.113, issue.12, pp.4518-4523, 1991.
DOI : 10.1021/ja00012a021

B. A. Krizek, D. L. Merkle, and J. M. Berg, Ligand variation and metal ion binding specificity in zinc finger peptides, Inorganic Chemistry, vol.32, issue.6, pp.937-940, 1993.
DOI : 10.1021/ic00058a030

R. Aduri, K. T. Briggs, R. J. Gorelick, and J. P. Marino, Molecular determinants of HIV-1 NCp7 chaperone activity in maturation of the HIV-1 dimerization initiation site, Nucleic Acids Research, vol.41, issue.4, pp.2565-2580, 2013.
DOI : 10.1093/nar/gks1350

R. A. Musah, The HIV-1 Nucleocapsid Zinc Finger Protein as a Target of Antiretroviral Therapy, Current Topics in Medicinal Chemistry, vol.4, issue.15, pp.1605-1622, 2004.
DOI : 10.2174/1568026043387331

P. Jagtap and C. Szabo, Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors, Nature Reviews Drug Discovery, vol.21, issue.2, pp.421-440, 2005.
DOI : 10.1038/nature03445

A. Peralta-leal, M. I. Rodriguez, and F. Oliver, Poly(ADP-ribose)polymerase-1 (PARP-1) in carcinogenesis: potential role of PARP inhibitors in cancer treatment, Clinical and Translational Oncology, vol.6, issue.Pt2, pp.318-323, 2008.
DOI : 10.1016/j.ijrobp.2003.09.053

V. Schreiber, F. Dantzer, J. Ame, and G. De-murcia, Poly(ADP-ribose): novel functions for an old molecule, Nature Reviews Molecular Cell Biology, vol.116, issue.7, pp.517-528, 2006.
DOI : 10.1007/978-1-4419-8632-0_4

URL : https://hal.archives-ouvertes.fr/hal-00179861

M. J. Lachenmann, J. E. Ladbury, N. B. Phillips, N. Narayana, X. Q. Qian et al., The Hidden Thermodynamics of a Zinc Finger, Journal of Molecular Biology, vol.316, issue.4, pp.969-989, 2002.
DOI : 10.1006/jmbi.2001.5335

U. Heinz, M. Kiefer, A. Tholey, and H. W. Adolph, On the Competition for Available Zinc, Journal of Biological Chemistry, vol.120, issue.5, pp.3197-3207, 2005.
DOI : 10.1073/pnas.95.7.3478

S. J. Lee, J. L. Michalek, A. N. Besold, S. E. Rokita, and S. L. Michel, Irrespective of Metal Coordination, Inorganic Chemistry, vol.50, issue.12, pp.5442-5450, 2011.
DOI : 10.1021/ic102252a

S. J. Lee and S. L. Michel, Cysteine Oxidation Enhanced by Iron in Tristetraprolin, A Zinc Finger Peptide, Inorganic Chemistry, vol.49, issue.3, pp.1211-1219, 2010.
DOI : 10.1021/ic9024298

O. Sénèque, E. Bonnet, F. L. Joumas, and J. Latour, Cooperative Metal Binding and Helical Folding in Model Peptides of Treble-Clef Zinc Fingers, Chemistry - A European Journal, vol.196, issue.19, pp.4798-4810, 2009.
DOI : 10.1002/chem.200900147

V. Duarte and J. Latour, PerR vs OhrR: selective peroxide sensing in Bacillus subtilis, Mol. BioSyst., vol.332, issue.2, pp.316-323, 2010.
DOI : 10.1016/0014-5793(93)80632-5

URL : https://hal.archives-ouvertes.fr/hal-01069796

I. Janda, Y. Devedjiev, U. Derewenda, Z. Dauter, J. Bielnicki et al., The Crystal Structure of the Reduced, Zn2+-Bound Form of the B. subtilis Hsp33 Chaperone and Its Implications for the Activation Mechanism, Structure, vol.12, issue.10, pp.1901-1907, 2004.
DOI : 10.1016/j.str.2004.08.003

C. Kumsta and U. Jakob, Redox-Regulated Chaperones, Biochemistry, vol.48, issue.22, pp.4666-4676, 2009.
DOI : 10.1021/bi9003556

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848813

E. Bourlès, M. Isaac, C. Lebrun, J. Latour, and O. Sénèque, Oxidation of Zn(Cys)4 Zinc Finger Peptides by O2 and H2O2: Products, Mechanism and Kinetics, Chemistry - A European Journal, vol.183, issue.49, pp.13762-13772, 2011.
DOI : 10.1128/JB.183.24.7182-7189.2001

M. Favre, K. Moehle, L. Y. Jiang, B. Pfeiffer, and J. A. Robinson, Structural Mimicry of Canonical Conformations in Antibody Hypervariable Loops Using Cyclic Peptides Containing a Heterochiral Diproline Template, Journal of the American Chemical Society, vol.121, issue.12, pp.2679-2685, 1999.
DOI : 10.1021/ja984016p

O. Sénèque, E. Bourlès, V. Lebrun, E. Bonnet, P. Dumy et al., Cyclic Peptides Bearing a Side-Chain Tail: A Tool to Model the Structure and Reactivity of Protein Zinc Sites, Angewandte Chemie International Edition, vol.14, issue.36, pp.6888-6891, 2008.
DOI : 10.1002/anie.200800677

O. Sénèque and J. Latour, Coordination Properties of Zinc Finger Peptides Revisited: Ligand Competition Studies Reveal Higher Affinities for Zinc and Cobalt, Journal of the American Chemical Society, vol.132, issue.50, pp.17760-17774, 2010.
DOI : 10.1021/ja104992h

J. H. Laity, B. M. Lee, P. E. Wright, S. S. Krishna, I. Majumdar et al., Zinc finger proteins: new insights into structural and functional diversity, 48) Lovenberg, W.; Sobel, B. E. Proc. Natl. Acad. Sci. U.S.A. 1965, pp.39-46, 2001.
DOI : 10.1016/S0959-440X(00)00167-6

W. Lovenberg, W. M. Williams, and E. C. Bruckwick, Chemical nature of rubredoxin from Clostridium pasteurianum, Biochemistry, vol.8, issue.1, pp.141-148, 1969.
DOI : 10.1021/bi00829a020

Z. Dauter, K. S. Wilson, L. C. Sieker, J. M. Moulis, and J. Meyer, Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein., Proceedings of the National Academy of Sciences, vol.93, issue.17, pp.8836-8840, 1996.
DOI : 10.1073/pnas.93.17.8836

B. C. Dave, R. S. Czernuszewicz, B. C. Prickril, and D. M. Kurtz, Resonance Raman Spectroscopic Evidence for the FeS4 and Fe-O-Fe Sites in Rubrerythrin from Desulfovibrio vulgaris, Biochemistry, vol.33, issue.12, pp.3572-3576, 1994.
DOI : 10.1021/bi00178a013

B. Wang, D. N. Jones, B. P. Kaine, M. A. Weiss, and . Struct, High-resolution structure of an archaeal zinc ribbon defines a general architectural motif in eukaryotic RNA polymerases, Structure, vol.6, issue.5, pp.555-569, 1998.
DOI : 10.1016/S0969-2126(98)00058-6

B. Chatterjee, I. Saha, S. Raghothama, S. Aravinda, R. Rai et al., Designed Peptides with Homochiral and Heterochiral Diproline Templates as Conformational Constraints, Chemistry - A European Journal, vol.16, issue.20, pp.6192-6204, 2008.
DOI : 10.1110/ps.ps.26601a

D. Boturyn and P. Dumy, A convenient access to ? V ? 3 /? V ? 5 integrin ligand conjugates: regioselective solid-phase functionalisation of an RGD based peptide, Tetrahedron Letters, vol.42, issue.15, pp.2787-2790, 2001.
DOI : 10.1016/S0040-4039(01)00293-3

L. A. Carpino, E. Krause, C. D. Sferdean, M. Bienert, and M. Beyermann, Dramatically enhanced N?O acyl migration during the trifluoroacetic acid-based deprotection step in solid phase peptide synthesis, Tetrahedron Letters, vol.46, issue.8, pp.1361-1364, 2005.
DOI : 10.1016/j.tetlet.2004.12.089

R. M. Smith, A. E. Martell, and R. J. Motekaitis, Critically Selected Stability Constants of Metal Complexes Database; NIST Standard Reference Database, National Institute of Standards and Technology: Gaithersbyrg, 2001.

A. T. Brünger, X-Plor Version 3.1: A System for X-Ray Crystallography and NMR, 1992.

E. Adman, K. D. Watenpaugh, and L. H. Jensen, NH---S hydrogen bonds in Peptococcus aerogenes ferredoxin, Clostridium pasteurianum rubredoxin, and Chromatium high potential iron protein., Proceedings of the National Academy of Sciences, vol.72, issue.12, pp.4854-4858, 1975.
DOI : 10.1073/pnas.72.12.4854

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC388830/pdf

M. S. Gebhard, S. A. Koch, M. Millar, F. J. Devlin, P. J. Stephens et al., Single-crystal spectroscopic studies of Fe(SR)42- (R = 2-(Ph)C6H4): electronic structure of the ferrous site in rubredoxin, Journal of the American Chemical Society, vol.113, issue.5, pp.1640-1649, 1991.
DOI : 10.1021/ja00005a030

M. Millar, J. F. Lee, T. Osullivan, S. A. Koch, and R. Fikar, Models for the iron-sulfur protein rubredoxin: the use of sterically hindered thiolate ligands to stabilize [Fe(SR)4]1? complexes; some considerations of the structure of the [Fe(S-Cys)4] centers in oxidized rubredoxins, Inorganica Chimica Acta, vol.243, issue.1-2, pp.333-343, 1996.
DOI : 10.1016/0020-1693(96)04924-9

E. Farinas and L. Regan, The de novo design of a rubredoxin-like fe site, Protein Science, vol.22, issue.9, pp.1939-1946, 1998.
DOI : 10.1002/3527606173

A. Lombardi, D. Marasco, O. Maglio, L. Di-costanzo, F. Nasti et al., Miniaturized metalloproteins: Application to iron-sulfur proteins, Proceedings of the National Academy of Sciences, vol.6, issue.3, pp.11922-11927, 2000.
DOI : 10.1016/0022-2836(90)90279-U

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC17270

W. Y. Sun, N. Ueyama, and A. Nakamura, Reduced rubredoxin models containing Z-Cys-Pro-Leu-Cys-Gly-NH-C6H4-p-X (X = MeO, H, F, CN): electronic influence by a distant para substituent through NH---S hydrogen bonds, Inorganic Chemistry, vol.30, issue.21, pp.4026-4031, 1991.
DOI : 10.1021/ic00021a011

N. Ueyama, M. Nakata, and A. Nakamura, Oxidized Rubredoxin Models. Iron(III) Complexes of Z?Cys?Ala?Ala?Cys?OMe and Z?Ala?Cys?OMe, Bulletin of the Chemical Society of Japan, vol.54, issue.6, pp.1727-1730, 1981.
DOI : 10.1246/bcsj.54.1727

V. Nanda, M. M. Rosenblatt, A. Osyczka, H. Kono, Z. Getahun et al., De Novo Design of a Redox-Active Minimal Rubredoxin Mimic, Journal of the American Chemical Society, vol.127, issue.16, pp.5804-5805, 2005.
DOI : 10.1021/ja050553f

J. R. Anglin and A. Davison, Iron(II) and cobalt(II) complexes of Boc-(Gly-L-Cys-Gly)4-NH2 as analogs for the active site of the iron-sulfur protein rubredoxin, Inorganic Chemistry, vol.14, issue.2, pp.234-237, 1975.
DOI : 10.1021/ic50144a003

Z. Xiao, M. J. Lavery, M. Ayhan, S. D. Scrofani, M. C. Wilce et al., :? Mutation of the Iron Cysteinyl Ligands to Serine. Crystal and Molecular Structures of Oxidized and Dithionite-Treated Forms of the Cys42Ser Mutant, Journal of the American Chemical Society, vol.120, issue.17, pp.4135-4150, 1998.
DOI : 10.1021/ja973162c

E. Kuzmann, Z. Homonnay, S. Nagy, and K. Nomura, Handbook of Nuclear Chemistry, pp.1379-1446, 2011.

B. Börger and D. Suter, rubredoxin from optically detected electron paramagnetic resonance, The Journal of Chemical Physics, vol.246, issue.21, pp.9821-9826, 2001.
DOI : 10.1103/PhysRevA.37.660

C. E. Ergenekan, D. Thomas, J. T. Fischer, M. L. Tan, M. K. Eidsness et al., Prediction of Reduction Potential Changes in Rubredoxin: A Molecular Mechanics Approach, Biophysical Journal, vol.85, issue.5, pp.2818-2829, 2003.
DOI : 10.1016/S0006-3495(03)74705-5

M. Sulpizi, S. Raugei, J. Vandevondele, P. Carloni, and M. Sprik, Calculation of Redox Properties:? Understanding Short- and Long-Range Effects in Rubredoxin, The Journal of Physical Chemistry B, vol.111, issue.15, pp.3969-3976, 2007.
DOI : 10.1021/jp067387y

B. S. Perrin and T. Ichiye, Characterizing the effects of the protein environment on the reduction potentials of metalloproteins, JBIC Journal of Biological Inorganic Chemistry, vol.116, issue.1, pp.103-110, 2013.
DOI : 10.1126/science.1115653

A. Pierik, R. Wolbert, G. Portier, M. Verhagen, and W. Hagen, Nigerythrin and rubrerythrin from Desulfovibrio vulgaris each contain two mononuclear iron centers and two dinuclear iron clusters, European Journal of Biochemistry, vol.167, issue.1, pp.237-245, 1993.
DOI : 10.1042/bj1670593

A. F. Pinto, S. Todorovic, P. Hildebrandt, M. Yamazaki, F. Amano et al., Desulforubrerythrin from Campylobacter jejuni, a novel multidomain protein, JBIC Journal of Biological Inorganic Chemistry, vol.329, issue.5, pp.501-510, 2011.
DOI : 10.1016/j.bbrc.2005.02.114

I. Shaw, C. F. Laib, J. E. Savas, M. M. Petering, and D. H. , Biphasic kinetics of aurothionein formation from gold sodium thiomalate: a novel metallochromic technique to probe zinc(2+) and cadmium(2+) displacement from metallothionein, Inorganic Chemistry, vol.29, issue.3, pp.403-408, 1990.
DOI : 10.1021/ic00328a012

A. Munoz, D. H. Petering, I. Shaw, and C. F. , Reactions of Electrophilic Reagents That Target the Thiolate Groups of Metallothionein Clusters:? Preferential Reaction of the ?-Domain with 5,5?-Dithio-bis(2-nitrobenzoate) (DTNB) and Aurothiomalate (AuSTm), Inorganic Chemistry, vol.38, issue.25, pp.5655-5659, 1999.
DOI : 10.1021/ic9901822

M. J. Stillman, A. J. Zelazowski, J. Szymanska, and Z. Gasyna, Luminescent metallothioneins: Emission properties of copper, silver, gold and platinum complexes of MT, Inorganica Chimica Acta, vol.161, issue.2, pp.275-279, 1989.
DOI : 10.1016/S0020-1693(00)83104-7

M. J. Stillman, A. Presta, Z. Gui, and D. T. Jiang, Spectroscopic Studies of Copper, Silver and Gold-Metallothioneins, Metal-Based Drugs, vol.1, issue.5-6, pp.375-394, 1994.
DOI : 10.1155/MBD.1994.375

J. L. Larabee, J. R. Hocker, and J. S. Hanas, Zinc Finger Interactions, Chemical Research in Toxicology, vol.18, issue.12, pp.1943-1954, 2005.
DOI : 10.1021/tx0501435

J. Zou, P. Taylor, J. Dornan, S. P. Robinson, M. D. Walkinshaw et al., First Crystal Structure of a Medicinally Relevant Gold Protein Complex: Unexpected Binding of [Au(PEt3)]+ to Histidine, Angewandte Chemie, vol.277, issue.16, pp.2931-2934, 2000.
DOI : 10.1002/1521-3773(20000818)39:16<2931::AID-ANIE2931>3.0.CO;2-W

M. L. Handel, A. Defazio, C. K. Watts, R. O. Day, R. L. Sutherland et al., BIBLIOGRAPHIE (1), AuIIITerpy, avec un modèle peptidique de doigt de zinc, ZnII-LZR 4, pp.613-618, 1991.

Y. Negishi, K. Nobusada, and T. Tsukuda, Glutathione-Protected Gold Clusters Revisited:? Bridging the Gap between Gold(I)?Thiolate Complexes and Thiolate-Protected Gold Nanocrystals, Journal of the American Chemical Society, vol.127, issue.14, pp.5261-5270, 2005.
DOI : 10.1021/ja042218h

J. E. Laib, I. Shaw, C. F. Petering, D. H. Eidsness, M. K. Elder et al., Formation and characterization of aurothioneins: Au,Zn,Cd-thionein, Au,Cd-thionein, and (thiomalato-Au)x-thionein, Biochemistry, vol.24, issue.8, pp.1977-1986, 1985.
DOI : 10.1021/bi00329a027

I. Shaw and C. F. , Gold-Based Therapeutic Agents, Chemical Reviews, vol.99, issue.9, pp.2589-2600, 1999.
DOI : 10.1021/cr980431o

A. T. Brünger, O. Sénèque, and J. Latour, X-Plor Version 3.1: A System for X-Ray Crystallography and NMR, J. Am. Chem. Soc, vol.132, issue.16, pp.17760-17774, 1992.

K. A. Mccall and C. A. Fierke, Colorimetric and Fluorimetric Assays to Quantitate Micromolar Concentrations of Transition Metals, Analytical Biochemistry, vol.284, issue.2, pp.307-315, 2000.
DOI : 10.1006/abio.2000.4706

M. Zimmermann, O. Clarke, J. M. Gulbis, D. W. Keizer, R. S. Jarvis et al., Zinc and Copper Transporters: Selectivities Match the Relative, but Not the Absolute, Affinities of their Amino-Terminal Domains,, Biochemistry, vol.48, issue.49, pp.11640-11654, 2009.
DOI : 10.1021/bi901573b

J. Lee and J. D. Helmann, Peroxide Sensor PerR, Journal of Biological Chemistry, vol.349, issue.33, pp.23567-23578, 2006.
DOI : 10.1111/j.1365-2958.2006.05028.x

I. Shaw, C. F. Laib, J. E. Savas, M. M. Petering, and D. H. , Biphasic kinetics of aurothionein formation from gold sodium thiomalate: a novel metallochromic technique to probe zinc(2+) and cadmium(2+) displacement from metallothionein, Inorganic Chemistry, vol.29, issue.3, pp.403-408, 1990.
DOI : 10.1021/ic00328a012

E. Bourlès, M. Isaac, C. Lebrun, J. Latour, and O. Sénèque, Oxidation of Zn(Cys)4 Zinc Finger Peptides by O2 and H2O2: Products, Mechanism and Kinetics, Chemistry - A European Journal, vol.183, issue.49, pp.13762-13772, 2011.
DOI : 10.1128/JB.183.24.7182-7189.2001

R. Young and H. Bremer, Polypeptide-chain-elongation rate in Escherichia coli B/r as a function of growth rate, Biochemical Journal, vol.160, issue.2, pp.185-194, 1976.
DOI : 10.1042/bj1600185

R. Wilson and H. Hakkinen, The use of gold nanoparticles in diagnostics and detection, Chemical Society Reviews, vol.442, issue.9, pp.2028-2045, 2008.
DOI : 10.1520/JFS13427J

J. E. Matthiesen, D. Jose, C. M. Sorensen, and K. J. Klabunde, Loss of Hydrogen upon Exposure of Thiol to Gold Clusters at Low Temperature, Journal of the American Chemical Society, vol.134, issue.22, pp.9376-9379, 2012.
DOI : 10.1021/ja302339d

H. Qian, M. Zhu, Z. Wu, and R. Jin, Quantum Sized Gold Nanoclusters with Atomic Precision, Accounts of Chemical Research, vol.45, issue.9, pp.1470-1479, 2012.
DOI : 10.1021/ar200331z

H. Qian, W. T. Eckenhoff, M. E. Bier, T. Pintauer, and R. Jin, Nanoclusters, Inorganic Chemistry, vol.50, issue.21, pp.10735-10739, 2011.
DOI : 10.1021/ic2012292

Y. Negishi, K. Nobusada, and T. Tsukuda, Glutathione-Protected Gold Clusters Revisited:?? Bridging the Gap between Gold(I)???Thiolate Complexes and Thiolate-Protected Gold Nanocrystals, PARTIE EXPERIMENTALE Sommaire : 6.1. Materials and methods 169, pp.5261-5270, 2005.
DOI : 10.1021/ja042218h

C. Andreini, L. Banci, I. Bertini, and A. Rosato, Zinc through the Three Domains of Life, Journal of Proteome Research, vol.5, issue.11, p.3173, 2006.
DOI : 10.1021/pr0603699

W. Maret and Y. Li, Coordination Dynamics of Zinc in Proteins, Chemical Reviews, vol.109, issue.10, p.4682, 2009.
DOI : 10.1021/cr800556u

R. Gamsjaeger, C. K. Liew, F. E. Loughlin, M. Crossley, and J. P. Mackay, Sticky fingers: zinc-fingers as protein-recognition motifs, Trends in Biochemical Sciences, vol.32, issue.2, p.63, 2007.
DOI : 10.1016/j.tibs.2006.12.007

M. S. Lee, G. P. Gippert, K. V. Soman, D. A. Case, and P. E. Wright, Three-dimensional solution structure of a single zinc finger DNA-binding domain, Science, vol.245, issue.4918, p.635, 1989.
DOI : 10.1126/science.2503871

G. Parraga, S. J. Horvath, A. Eisen, W. E. Taylor, L. Hood et al., Zinc-dependent structure of a single-finger domain of yeast ADR1, Science, vol.241, issue.4872, p.1489, 1988.
DOI : 10.1126/science.3047872

A. Klug, The Discovery of Zinc Fingers and Their Applications in Gene Regulation and Genome Manipulation, Annual Review of Biochemistry, vol.79, issue.1, p.213, 2010.
DOI : 10.1146/annurev-biochem-010909-095056

S. M. Quintal, Q. A. Depaula, and N. P. Farrell, Zinc finger proteins as templates for metal ion exchange and ligand reactivity. Chemical and biological consequences, Metallomics, vol.48, issue.2, p.121, 2011.
DOI : 10.1021/ic900261s

L. M. Jenkins, D. E. Ott, R. Hayashi, L. V. Coren, D. Y. Wang et al., Small-molecule inactivation of HIV-1 NCp7 by repetitive intracellular acyl transfer, Nature Chemical Biology, vol.324, issue.12, p.887, 2010.
DOI : 10.1016/S0925-4439(97)00035-5

W. G. Rice, J. G. Supko, L. Malspeis, R. W. Buckheit, D. Clanton et al., Inhibitors of HIV Nucleocapsid Protein Zinc Fingers as Candidates for the Treatment of AIDS, Science, vol.270, issue.5239, p.1194, 1995.
DOI : 10.1126/science.270.5239.1194

L. C. Myers, M. P. Terranova, A. E. Ferentz, G. Wagner, and G. L. Verdine, Repair of DNA methylphosphotriesters through a metalloactivated cysteine nucleophile, Science, vol.261, issue.5125, p.1164, 1993.
DOI : 10.1126/science.8395079

L. C. Myers, G. L. Verdine, and G. Wagner, Solution structure of the DNA methyl phosphotriester repair domain of Escherichia coli Ada, Biochemistry, vol.32, issue.51, p.14089, 1993.
DOI : 10.1021/bi00214a003

J. Winter, M. Ilbert, P. C. Graf, D. Ozcelik, and U. Jakob, Bleach Activates a Redox-Regulated Chaperone by Oxidative Protein Unfolding, Cell, vol.135, issue.4, p.691, 2008.
DOI : 10.1016/j.cell.2008.09.024

URL : http://doi.org/10.1016/j.cell.2008.09.024

J. C. Buchsbaum and J. M. Berg, Kinetics of metal binding by a zinc finger peptide, Inorganica Chimica Acta, vol.297, issue.1-2, p.217, 2000.
DOI : 10.1016/S0020-1693(99)00313-8

A. R. Reddi, T. R. Guzman, R. M. Breece, D. L. Tiemey, and B. R. Gibney, Deducing the Energetic Cost of Protein Folding in Zinc Finger Proteins Using Designed Metallopeptides, Journal of the American Chemical Society, vol.129, issue.42, p.12815, 2007.
DOI : 10.1021/ja073902+

P. C. Roehm and J. M. Berg, Selectivity of Methylation of Metal-Bound Cysteinates and Its Consequences, Journal of the American Chemical Society, vol.120, issue.50, p.13083, 1998.
DOI : 10.1021/ja982546f

K. Piatek, T. Schwerdtle, A. Hartwig, and W. Bal, Monomethylarsonous Acid Destroys a Tetrathiolate Zinc Finger Much More Efficiently than Inorganic Arsenite: Mechanistic Considerations and Consequences for DNA Repair Inhibition, Chemical Research in Toxicology, vol.21, issue.3, p.600, 2008.
DOI : 10.1021/tx7003135

J. Smirnova, L. Zhukova, A. Witkiewiez-kucharczyk, E. Kopera, J. Oledzki et al., -Nitrosoglutathione, Chemical Research in Toxicology, vol.21, issue.2, p.386, 2008.
DOI : 10.1021/tx700297f

URL : https://hal.archives-ouvertes.fr/jpa-00250835

S. J. Lee, J. L. Michalek, A. N. Besold, S. E. Rokita, and S. L. Michel, Irrespective of Metal Coordination, Inorganic Chemistry, vol.50, issue.12, p.5442, 2011.
DOI : 10.1021/ic102252a

J. A. Imlay, Pathways of Oxidative Damage, Annual Review of Microbiology, vol.57, issue.1, p.395, 2003.
DOI : 10.1146/annurev.micro.57.030502.090938

B. Dautreaux and M. B. Toledano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nature Reviews Molecular Cell Biology, vol.21, issue.10, p.813, 2007.
DOI : 10.1091/mbc.11.4.1169

B. Wang, D. N. Jones, B. P. Kaine, and M. A. Weiss, High-resolution structure of an archaeal zinc ribbon defines a general architectural motif in eukaryotic RNA polymerases, Structure, vol.6, issue.5, p.555, 1998.
DOI : 10.1016/S0969-2126(98)00058-6

V. Duarte and J. M. Latour, PerR vs OhrR: selective peroxide sensing in Bacillus subtilis, Mol. BioSyst., vol.332, issue.2, p.316, 2010.
DOI : 10.1016/0014-5793(93)80632-5

URL : https://hal.archives-ouvertes.fr/hal-01069796

C. Kumsta and U. Jakob, Redox-Regulated Chaperones, Biochemistry, vol.48, issue.22, p.4666, 2009.
DOI : 10.1021/bi9003556

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848813

Z. Athanassiou, R. L. Dias, K. Moehle, N. Dobson, G. Varani et al., Structural Mimicry of Retroviral Tat Proteins by Constrained ?-Hairpin Peptidomimetics:? Ligands with High Affinity and Selectivity for Viral TAR RNA Regulatory Elements, Journal of the American Chemical Society, vol.126, issue.22, p.6906, 2004.
DOI : 10.1021/ja0497680

R. L. Dias, R. Fasan, K. Moehle, A. Renard, D. Obrecht et al., Protein Ligand Design:? From Phage Display to Synthetic Protein Epitope Mimetics in Human Antibody Fc-Binding Peptidomimetics, Journal of the American Chemical Society, vol.128, issue.8, p.2726, 2006.
DOI : 10.1021/ja057513w

B. Chatterjee, I. Saha, S. Raghothama, S. Aravinda, R. Rai et al., Designed Peptides with Homochiral and Heterochiral Diproline Templates as Conformational Constraints, Chemistry - A European Journal, vol.16, issue.20, p.6192, 2008.
DOI : 10.1110/ps.ps.26601a

A. T. Brünger, A system for X-ray Crystallography and NMR. X- PLOR, version 3, 1992.

T. Dudev and C. Lim, Factors Governing the Protonation State of Cysteines in Proteins:? An Ab Initio/CDM Study, Journal of the American Chemical Society, vol.124, issue.23, p.6759, 2002.
DOI : 10.1021/ja012620l

A. T. Maynard and D. G. , Reactivity of Zinc Finger Cores:? Analysis of Protein Packing and Electrostatic Screening, Journal of the American Chemical Society, vol.123, issue.6, p.1047, 2001.
DOI : 10.1021/ja0011616

T. Simonson and N. Calimet, CysxHisy?Zn2+ interactions: Thiol vs. thiolate coordination, Proteins: Structure, Function, and Genetics, vol.124, issue.1, p.37, 2002.
DOI : 10.1002/prot.10200

Y. N. Sun, F. Xue, Y. Guo, M. Ma, N. Hao et al., Crystal Structure of Porcine Reproductive and Respiratory Syndrome Virus Leader Protease Nsp1?, Journal of Virology, vol.83, issue.21, p.10931, 2009.
DOI : 10.1128/JVI.02579-08

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2772781

W. Lovenberg and W. M. Williams, Chemical nature of rubredoxin from Clostridium pasteurianum, Biochemistry, vol.8, issue.1, p.141, 1969.
DOI : 10.1021/bi00829a020

G. Xiao, M. J. Lavery, M. Ayhan, S. D. Scrofani, M. C. Wilce et al., :? Mutation of the Iron Cysteinyl Ligands to Serine. Crystal and Molecular Structures of Oxidized and Dithionite-Treated Forms of the Cys42Ser Mutant, Journal of the American Chemical Society, vol.120, issue.17, p.4135, 1998.
DOI : 10.1021/ja973162c

J. Meyer, Moulis, Rubredoxin, in, Handbook of Metalloproteins, 2001.

B. E. Lovenberg and . Sobel, Rubredoxin: a new electron transfer protein from Clostridium pasteurianum., Proceedings of the National Academy of Sciences, vol.54, issue.1, pp.193-199, 1965.
DOI : 10.1073/pnas.54.1.193

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC285819/pdf

L. Lumppio, N. V. Shenvi, A. O. Summers, G. Voordouw, and D. M. Kurtz, Rubrerythrin and Rubredoxin Oxidoreductase in Desulfovibrio vulgaris: a Novel Oxidative Stress Protection System, Journal of Bacteriology, vol.183, issue.1, pp.101-108, 2001.
DOI : 10.1128/JB.183.1.101-108.2001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC94855

D. M. Demare, P. Kurtz, and . Nordlund, The structure of Desulfovibrio vulgaris rubrerythrin reveals a unique combination of rubredoxin-like FeS4 and ferritin-like diiron domains, Nature Structural & Molecular Biology, vol.11, issue.6, pp.539-546, 1996.
DOI : 10.1107/S0021889891004399

L. Andreini, I. Banci, A. Bertini, and . Rosato, Zinc through the Three Domains of Life, Journal of Proteome Research, vol.5, issue.11, pp.3173-3178, 2006.
DOI : 10.1021/pr0603699

L. Andreini, I. Banci, A. Bertini, and . Rosato, Counting the Zinc-Proteins Encoded in the Human Genome, Journal of Proteome Research, vol.5, issue.1, pp.196-201, 2006.
DOI : 10.1021/pr050361j

C. K. Gamsjaeger, F. E. Liew, M. Loughlin, J. P. Crossley, and . Mackay, Sticky fingers: zinc-fingers as protein-recognition motifs, Trends in Biochemical Sciences, vol.32, issue.2, pp.63-70, 2007.
DOI : 10.1016/j.tibs.2006.12.007

L. Michalek, A. N. Besold, and S. L. Michel, Cysteine and histidine shuffling: mixing and matching cysteine and histidine residues in zinc finger proteins to afford different folds and function, Dalton Transactions, vol.261, issue.47, pp.12619-12632, 2011.
DOI : 10.1126/science.8332909

U. Kumsta and . Jakob, Redox-Regulated Chaperones, Biochemistry, vol.48, issue.22, pp.4666-4676, 2009.
DOI : 10.1021/bi9003556

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848813

V. Nanda, M. M. Rosenblatt, A. Osyczka, H. Kono, Z. Getahun et al., De Novo Design of a Redox-Active Minimal Rubredoxin Mimic, Journal of the American Chemical Society, vol.127, issue.16, pp.5804-5805, 2005.
DOI : 10.1021/ja050553f

J. Tavares, S. Wunderlich, J. Lloyd, J. Legall, I. Moura et al., Total Synthesis of a Simple Metalloprotein - Desulforedoxin, Biochemical and Biophysical Research Communications, vol.208, issue.2, pp.680-687, 1995.
DOI : 10.1006/bbrc.1995.1392

B. Legall, I. Prickril, A. Moura, J. Xavier, B. Moura et al., Isolation and characterization of rubrerythrin, a non-heme iron protein from Desulfovibrio vulgaris that contains rubredoxin centers and a hemerythrin-like binuclear iron cluster, Biochemistry, vol.27, issue.5, pp.1636-1642, 1988.
DOI : 10.1021/bi00405a037

R. Pierik, G. Wolbert, M. Portier, W. Verhagen, and . Hagen, Nigerythrin and rubrerythrin from Desulfovibrio vulgaris each contain two mononuclear iron centers and two dinuclear iron clusters, European Journal of Biochemistry, vol.167, issue.1, pp.237-245, 1993.
DOI : 10.1042/bj1670593

F. Pinto, S. Todorovic, P. Hildebrandt, M. Yamazaki, F. Amano et al., Desulforubrerythrin from Campylobacter jejuni, a novel multidomain protein, JBIC Journal of Biological Inorganic Chemistry, vol.329, issue.5, pp.501-510, 2011.
DOI : 10.1016/j.bbrc.2005.02.114

Z. G. Ayhan, M. J. Xiao, A. M. Lavery, K. W. Hamer, S. D. Nugent et al., :?? Mutation of the Conserved Glycine Residues 10 and 43 to Alanine and Valine, Inorganic Chemistry, vol.35, issue.20, pp.5902-5911, 1996.
DOI : 10.1021/ic951653x

W. Low and M. G. Hill, Rational Fine-Tuning of the Redox Potentials in Chemically Synthesized Rubredoxins, Journal of the American Chemical Society, vol.120, issue.44, pp.11536-11537, 1998.
DOI : 10.1021/ja982920b

E. Ergenekan, D. Thomas, J. T. Fischer, M. L. Tan, M. K. Eidsness et al., Prediction of Reduction Potential Changes in Rubredoxin: A Molecular Mechanics Approach, Biophysical Journal, vol.85, issue.5, pp.2818-2829, 2003.
DOI : 10.1016/S0006-3495(03)74705-5

S. Sulpizi, J. Raugei, P. Vandevondele, M. Carloni, and . Sprik, Calculation of Redox Properties:? Understanding Short- and Long-Range Effects in Rubredoxin, The Journal of Physical Chemistry B, vol.111, issue.15, pp.3969-3976, 2007.
DOI : 10.1021/jp067387y

S. Perrin and T. Ichiye, Characterizing the effects of the protein environment on the reduction potentials of metalloproteins, JBIC Journal of Biological Inorganic Chemistry, vol.116, issue.1, pp.103-110, 2013.
DOI : 10.1126/science.1115653

H. Baltzer, J. Nilsson, and . Nilsson, De Novo Design of ProteinsWhat Are the Rules?, Chemical Reviews, vol.101, issue.10, pp.3153-3163, 2001.
DOI : 10.1021/cr0000473

N. Lu, N. Yeung, N. M. Sieracki, and . Marshall, Design of functional metalloproteins, Nature, vol.103, issue.7257, pp.855-862, 2009.
DOI : 10.1002/anie.200805262

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770889

L. Zastrow and V. L. Pecoraro, Designing functional metalloproteins: From structural to catalytic metal sites, Coordination Chemistry Reviews, vol.257, issue.17-18, pp.2565-2588, 2013.
DOI : 10.1016/j.ccr.2013.02.007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756834

L. Farinas and . Regan, The de novo design of a rubredoxin-like fe site, Protein Science, vol.22, issue.9, pp.1939-1946, 1998.
DOI : 10.1002/3527606173

E. Sénèque, F. L. Bonnet, J. Joumas, and . Latour, Cooperative Metal Binding and Helical Folding in Model Peptides of Treble-Clef Zinc Fingers, Chemistry - A European Journal, vol.196, issue.19, pp.4798-4810, 2009.
DOI : 10.1002/chem.200900147

B. Jacques, V. Mettra, J. Lebrun, O. Latour, and . Sénèque, On the Design of Zinc-Finger Models with Cyclic Peptides Bearing a Linear Tail, Chemistry - A European Journal, vol.5, issue.12, pp.3921-3931, 2013.
DOI : 10.1016/S0969-2126(97)00309-2

URL : https://hal.archives-ouvertes.fr/hal-01069579

M. Jacques, G. Clémancey, V. Blondin, J. Fourmond, O. Latour et al., A cyclic peptide-based redox-active model of rubredoxin, Chemical Communications, vol.16, issue.28, pp.2915-2917, 2013.
DOI : 10.1007/s00775-010-0749-4

URL : https://hal.archives-ouvertes.fr/hal-01069592

J. Sénèque and . Latour, Coordination Properties of Zinc Finger Peptides Revisited: Ligand Competition Studies Reveal Higher Affinities for Zinc and Cobalt, Journal of the American Chemical Society, vol.132, issue.50, pp.17760-17774, 2010.
DOI : 10.1021/ja104992h

M. G. Xiao, M. Lavery, S. D. Ayhan, M. C. Scrofani, J. M. Wilce et al., :? Mutation of the Iron Cysteinyl Ligands to Serine. Crystal and Molecular Structures of Oxidized and Dithionite-Treated Forms of the Cys42Ser Mutant, Journal of the American Chemical Society, vol.120, issue.17, pp.4135-4150, 1998.
DOI : 10.1021/ja973162c

J. Lowery, M. Guckert, E. Gebhard, and . Solomon, Active-site electronic structure contributions to electron-transfer pathways in rubredoxin and plastocyanin: direct versus superexchange, Journal of the American Chemical Society, vol.115, issue.7, pp.3012-3013, 1993.
DOI : 10.1021/ja00060a074

N. Besold, A. A. Oluyadi, and S. L. Michel, Switching Metal Ion Coordination and DNA Recognition in a Tandem CCHHC-type Zinc Finger Peptide, Inorganic Chemistry, vol.52, issue.8, pp.4721-4728, 2013.
DOI : 10.1021/ic4003516

J. Krizek and . Berg, Complexes of zinc finger peptides with nickel(2+) and iron(2+), Inorganic Chemistry, vol.31, issue.13, pp.2984-2986, 1992.
DOI : 10.1021/ic00039a057

V. V. Vrajmasu, E. Munck, and E. L. Bominaar, Theoretical Analysis of the Jahn?Teller Distortions in Tetrathiolato Iron(II) Complexes, Inorganic Chemistry, vol.43, issue.16, pp.4862-4866, 2004.
DOI : 10.1021/ic0400484

T. Brünger, A system for X-ray Crystallography and NMR. X-PLOR, version 3, 1992.

P. Boturyn and . Dumy, A convenient access to ?? V ?? 3 /?? V ?? 5 integrin ligand conjugates: regioselective solid-phase functionalisation of an RGD based peptide, Tetrahedron Letters, vol.42, issue.15, pp.2787-2790, 2001.
DOI : 10.1016/S0040-4039(01)00293-3

M. Smith, A. E. Martell, and R. J. Motekaitis, Critically Selected Stability Constants of Metal Complexes Database, NIST Standard Reference Database, vol.46, 2001.

E. Martell and R. M. Smith, Critical Stability Constants, 1974.
DOI : 10.1007/978-1-4615-6761-5