B. Aggarwal, G. Sethi, . Ahn, . Ks, . Sandur et al., Targeting Signal-Transducer-and-Activator-of-Transcription-3 for Prevention and Therapy of Cancer, Annals of the New York Academy of Sciences, vol.3, issue.6, pp.151-169, 2006.
DOI : 10.1186/1476-4598-3-21

K. Ahmad, A. Melnick, S. Lax, D. Bouchard, J. Liu et al., Mechanism of SMRT Corepressor Recruitment by the BCL6 BTB Domain, Mechanism of SMRT Corepressor Recruitment by the BCL6 BTB Domain, pp.1551-1564, 2003.
DOI : 10.1016/S1097-2765(03)00454-4

S. Akira, Y. Nishio, M. Inoue, X. Wang, S. We et al., Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway, Cell, vol.77, issue.1, pp.63-71, 1994.
DOI : 10.1016/0092-8674(94)90235-6

S. Ansieau and A. Leutz, P Motif, Journal of Biological Chemistry, vol.62, issue.7, pp.4906-4916, 2002.
DOI : 10.1038/36038

Y. Aoki, . Feldman, . Gm, and G. Tosato, Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma, Blood, vol.101, issue.4, pp.1535-1542, 2003.
DOI : 10.1182/blood-2002-07-2130

S. Battaglia, O. Maguire, and M. Campbell, Transcription factor co-repressors in cancer biology: roles and targeting, International Journal of Cancer, vol.45, pp.2511-2519, 2010.
DOI : 10.1016/0092-8674(93)90673-E

S. Becker, . Corthals, . Gl, R. Aebersold, B. Groner et al., Expression of a tyrosine phosphorylated, DNA binding Stat3? dimer in bacteria, FEBS Letters, vol.259, issue.1, pp.141-147, 1998.
DOI : 10.1126/science.8096088

S. Becker, B. Groner, and C. Muller, Three-dimensional structure of the Stat3? homodimer bound to DNA, Nature, vol.64, issue.6689, pp.145-151, 1998.
DOI : 10.1128/MCB.16.12.6957

D. Berg, N. Davidson, R. Kühn, W. Müller, S. Menon et al., Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses., Journal of Clinical Investigation, vol.98, issue.4, pp.1010-1020, 1996.
DOI : 10.1172/JCI118861

S. Bhattacharya, R. Ray, and L. Johnson, STAT3-mediated transcription of Bcl-2, Mcl-1 and c-IAP2 prevents apoptosis in polyamine-depleted cells, Biochemical Journal, vol.392, issue.2, pp.335-344, 2005.
DOI : 10.1042/BJ20050465

A. Binolfi, F. Theillet, and P. Selenko, Bacterial in-cell NMR of human ??-synuclein: a disordered monomer by nature?: Figure 1, Biochemical Society Transactions, vol.831, issue.5, pp.950-954, 2012.
DOI : 10.1021/ja9058525

S. Boivin and D. Hart, Interaction of the Influenza A Virus Polymerase PB2 C-terminal Region with Importin ? Isoforms Provides Insights into Host Adaptation and Polymerase Assembly, Journal of Biological Chemistry, vol.64, issue.12, pp.10439-10448, 2011.
DOI : 10.1110/ps.0301203

F. Bontems, A. Verger, F. Dewitte, Z. Lens, J. Baert et al., NMR structure of the human Mediator MED25 ACID domain, NMR structure of the human Mediator MED25 ACID domain, pp.245-251, 2011.
DOI : 10.1016/j.jsb.2010.10.011

URL : https://hal.archives-ouvertes.fr/hal-00589014

T. Borggrefe and X. Yue, Interactions between subunits of the Mediator complex with gene-specific transcription factors, Seminars in Cell & Developmental Biology, vol.22, issue.7, pp.759-768, 2011.
DOI : 10.1016/j.semcdb.2011.07.022

G. Bornkamm, H. Delius, U. Zimber, J. Hudewentz, and M. Epstein, Comparison of Epstein-Barr virus strains of different origin by analysis of the viral DNAs, J. Virol, vol.35, pp.603-618, 1980.

T. Bowman, G. Roy, J. Turkson, and R. Jove, STATs in oncogenesis, Oncogene, vol.19, issue.21, pp.2474-2488, 2000.
DOI : 10.1038/sj.onc.1203527

J. Bromberg, . Wrzeszczynska, . Mh, G. Devgan, Y. Zhao et al., Stat3 as an Oncogene, Cell, vol.98, issue.3, pp.295-303, 1999.
DOI : 10.1016/S0092-8674(00)81959-5

URL : http://doi.org/10.1016/s0092-8674(02)09920-8

M. Calderwood, K. Venkatesan, L. Xing, . Chase, . Mr et al., Epstein-Barr virus and virus human protein interaction maps, Proceedings of the National Academy of Sciences, vol.297, issue.5586, pp.7606-7617, 2007.
DOI : 10.1126/science.1073374

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1863443

L. Cancian, R. Bosshard, W. Lucchesi, C. Karstegl, and P. Farrell, C-Terminal Region of EBNA-2 Determines the Superior Transforming Ability of Type 1 Epstein-Barr Virus by Enhanced Gene Regulation of LMP-1 and CXCR7, PLoS Pathogens, vol.99, issue.Pt 6, p.1002164, 2011.
DOI : 10.1371/journal.ppat.1002164.s008

J. Casanova, . Holland, . Sm, and L. Notarangelo, Inborn Errors of Human JAKs and STATs, Immunity, vol.36, issue.4, pp.515-528, 2012.
DOI : 10.1016/j.immuni.2012.03.016

H. Chen, . Lee, . Jm, Y. Zong, M. Borowitz et al., Linkage between STAT Regulation and Epstein-Barr Virus Gene Expression in Tumors, Journal of Virology, vol.75, issue.6, pp.2929-2937, 2001.
DOI : 10.1128/JVI.75.6.2929-2937.2001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC115919

Y. Chung, N. Cho, M. Garcia, S. Lee, P. Feng et al., Activation of Stat3 Transcription Factor by Herpesvirus Saimiri STP-A Oncoprotein, Journal of Virology, vol.78, issue.12, pp.6489-6497, 2004.
DOI : 10.1128/JVI.78.12.6489-6497.2004

V. Cimica, . Chen, . Hc, J. Iyer, and N. Reich, Dynamics of the STAT3 Transcription Factor: Nuclear Import Dependent on Ran and Importin-?1, PLoS ONE, vol.45, issue.5, p.20188, 2011.
DOI : 10.1371/journal.pone.0020188.s004

E. Clercq and A. Holy, Case history: Acyclic nucleoside phosphonates: a key class of antiviral drugs, Nature Reviews Drug Discovery, vol.46, issue.11, pp.928-940, 2005.
DOI : 10.1128/AAC.49.3.1010-1016.2005

J. Cohen, A region of herpes simplex virus VP16 can substitute for a transforming domain of Epstein-Barr virus nuclear protein 2., Proc. Natl. Acad. Sci, pp.8030-8034, 1992.
DOI : 10.1073/pnas.89.17.8030

J. Cohen and E. Kieff, An Epstein-Barr virus nuclear protein 2 domain essential for transformation is a direct transcriptional activator, J Virol, vol.65, pp.5880-5885, 1991.

N. Davey, G. Travé, and T. Gibson, How viruses hijack cell regulation, Trends in Biochemical Sciences, vol.36, issue.3, pp.159-69, 2011.
DOI : 10.1016/j.tibs.2010.10.002

N. Davey, K. Van-roey, R. Weatheritt, G. Toedt, B. Uyar et al., Attributes of short linear motifs, Mol. BioSyst., vol.107, issue.24, pp.268-281, 2012.
DOI : 10.1073/pnas.0911385107

P. Dhordain, S. Quief, D. Lantoine, J. Kerckaert, O. Albagli et al., The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression, Nucleic Acids Research, vol.26, issue.20, pp.4645-4651, 1998.
DOI : 10.1093/nar/26.20.4645

P. Dhordain, S. Quief, D. Lantoine, J. Kerckaert, O. Albagli et al., The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression, Nucleic Acids Research, vol.26, issue.20, pp.4645-4651, 1998.
DOI : 10.1093/nar/26.20.4645

Z. Dosztányi, V. Csizmok, P. Tompa, and I. Simon, IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content, Bioinformatics, vol.21, issue.16, pp.3433-3434, 2005.
DOI : 10.1093/bioinformatics/bti541

Z. Dosztányi, B. Mészáros, and I. Simon, Bioinformatical approaches to characterize intrinsically disordered/unstructured proteins, Briefings in Bioinformatics, vol.11, issue.2, pp.225-243, 2010.
DOI : 10.1093/bib/bbp061

T. Du, G. Zhou, and B. Roizman, Modulation of reactivation of latent herpes simplex virus 1 in ganglionic organ cultures by p300/CBP and STAT3, Proc. Natl. Acad. Sci, pp.2621-2628, 2013.
DOI : 10.1016/j.cell.2006.07.024

A. Dunker, Z. Obradovic, P. Romero, E. Garner, and C. Brown, Intrinsic protein disorder in complete genomes, Genome Inf. Ser Work. Genome Inf, vol.11, pp.161-71, 2000.

A. Dunker, I. Silman, . Uversky, . Vn, and J. Sussman, Function and structure of inherently disordered proteins, Current Opinion in Structural Biology, vol.18, issue.6, pp.756-764, 2008.
DOI : 10.1016/j.sbi.2008.10.002

H. Dyson and P. Wright, Intrinsically unstructured proteins and their functions, Nature Reviews Molecular Cell Biology, vol.278, issue.3, pp.197-208, 2005.
DOI : 10.1126/science.7754375

H. Dyson and P. Wright, Intrinsically unstructured proteins and their functions, Nature Reviews Molecular Cell Biology, vol.278, issue.3, pp.197-208, 2005.
DOI : 10.1126/science.7754375

M. Epstein, G. Henle, . Achong, . Bg, and Y. Barr, MORPHOLOGICAL AND BIOLOGICAL STUDIES ON A VIRUS IN CULTURED LYMPHOBLASTS FROM BURKITT'S LYMPHOMA, Journal of Experimental Medicine, vol.121, issue.5, pp.761-70, 1965.
DOI : 10.1084/jem.121.5.761

B. Fields, . Knipe, . Dm, and P. Howley, Fields virology, 1996.

L. Gao, L. Zhang, J. Hu, F. Li, Y. Shao et al., Down-Regulation of Signal Transducer and Activator of Transcription 3 Expression Using Vector-Based Small Interfering RNAs Suppresses Growth of Human Prostate Tumor In vivo, Clinical Cancer Research, vol.11, issue.17, pp.6333-6341, 2005.
DOI : 10.1158/1078-0432.CCR-05-0148

F. Gerosa, B. Baldani-guerra, L. Lyakh, G. Batoni, S. Esin et al., Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells, The Journal of Experimental Medicine, vol.155, issue.6, pp.1447-1461, 2008.
DOI : 10.1042/bj1510351

D. Gough, A. Corlett, K. Schlessinger, J. Wegrzyn, . Larner et al., Mitochondrial STAT3 Supports Ras-Dependent Oncogenic Transformation, Science, vol.323, issue.5915, pp.1713-1716, 2009.
DOI : 10.1126/science.1164551

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2840701

K. Grabusic, S. Maier, A. Hartmann, A. Mantik, W. Hammerschmidt et al., The CR4 region of EBNA2 confers viability of Epstein-Barr virus-transformed B cells by CBF1-independent signalling, Journal of General Virology, vol.87, issue.11, pp.3169-3176, 2006.
DOI : 10.1099/vir.0.82105-0

J. Gsponer, . Futschik, . Me, . Teichmann, . Sa et al., Tight Regulation of Unstructured Proteins: From Transcript Synthesis to Protein Degradation, Science, vol.319, issue.5865, pp.1365-1368, 2008.
DOI : 10.1126/science.1141448

J. Hao, T. Li, X. Qi, D. Zhao, and G. Zhao, WNT/?-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells, Developmental Biology, vol.290, issue.1, pp.81-91, 2006.
DOI : 10.1016/j.ydbio.2005.11.011

S. Harada, R. Yalamanchili, and E. Kieff, Epstein-Barr Virus Nuclear Protein 2 Has at Least Two N-Terminal Domains That Mediate Self-Association, Journal of Virology, vol.75, issue.5, 2001.
DOI : 10.1128/JVI.75.5.2482-2487.2001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC114834

S. Hayward, Viral interactions with the Notch pathway. Notch Signal, Cancer, vol.14, pp.387-396, 2004.

T. Henkel, P. Ling, S. Hayward, and M. Peterson, Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa, Science, vol.265, issue.5168, pp.92-95, 1994.
DOI : 10.1126/science.8016657

Y. Ho, S. Tsao, M. Zeng, and V. Lui, STAT3 as a therapeutic target for Epstein-Barr virus (EBV) ? associated nasopharyngeal carcinoma, Cancer Letters, vol.330, issue.2, pp.141-149, 2013.
DOI : 10.1016/j.canlet.2012.11.052

C. Horvath, Z. Wen, and J. Darnell, A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain., Genes & Development, vol.9, issue.8, pp.984-994, 1995.
DOI : 10.1101/gad.9.8.984

Y. Huang and Z. Liu, Kinetic Advantage of Intrinsically Disordered Proteins in Coupled Folding?Binding Process: A Critical Assessment of the ?Fly-Casting? Mechanism, Journal of Molecular Biology, vol.393, issue.5, pp.1143-1159, 2009.
DOI : 10.1016/j.jmb.2009.09.010

S. Hutsell, R. Kimple, . Siderovski, . Dp, . Willard et al., High-Affinity Immobilization of Proteins Using Biotin- and GST-Based Coupling Strategies, Methods Mol Biol, vol.627, pp.75-90, 2010.
DOI : 10.1007/978-1-60761-670-2_4

O. Ikeda, S. Togi, S. Kamitani, R. Muromoto, Y. Sekine et al., Silencing Mediator of Retinoic Acid and Thyroid Hormone Receptor Regulates Enhanced Activation of Signal Transducer and Activator of Transcription 3 by Epstein?Barr Virus-Derived Epstein?Barr Nuclear Antigen 2, Biological & Pharmaceutical Bulletin, vol.32, issue.7, pp.1283-1288, 2009.
DOI : 10.1248/bpb.32.1283

H. Jang, K. Yoon, Y. Shin, J. Kim, and S. Lee, PIAS3 Suppresses NF-?B-mediated Transcription by Interacting with the p65/RelA Subunit, Journal of Biological Chemistry, vol.19, issue.23, pp.24873-24880, 2004.
DOI : 10.1093/emboj/17.11.3124

K. Jepsen and M. Rosenfeld, Biological roles and mechanistic actions of co-repressor complexes, J Cell Sci, vol.115, pp.689-698, 2002.

K. Jepsen and M. Rosenfeld, Biological roles and mechanistic actions of co-repressor complexes, J Cell Sci, vol.115, pp.689-698, 2002.

M. Jerabek-willemsen, C. Wienken, D. Braun, and S. Duhr, Molecular Interaction Studies Using Microscale Thermophoresis, ASSAY and Drug Development Technologies, vol.9, issue.4, pp.342-53, 2011.
DOI : 10.1089/adt.2011.0380

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148787

L. Jordheim, D. Durantel, F. Zoulim, and C. Dumontet, Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases, Nature Reviews Drug Discovery, vol.56, issue.6, pp.447-464, 2013.
DOI : 10.1128/AAC.05983-11

J. Jung, H. Lee, I. Cho, D. Chung, S. Yoon et al., STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells, The FASEB Journal, 2005.
DOI : 10.1096/fj.04-3099fje

B. Kempkes, D. Spitkovsky, P. Jansen-durr, J. Ellwart, E. Kremmer et al., B-cell proliferation and induction of early G1-regulating proteins by Epstein-Barr virus mutants conditional for EBNA2, EMBO J, vol.14, pp.88-96, 1995.

C. King, Kaposi's Sarcoma-Associated Herpesvirus Kaposin B Induces Unique Monophosphorylation of STAT3 at Serine 727 and MK2-Mediated Inactivation of the STAT3 Transcriptional Repressor TRIM28, Journal of Virology, vol.87, issue.15, pp.8779-8791, 2013.
DOI : 10.1128/JVI.02976-12

S. Koganti, A. Paz, A. Freeman, and S. Bhaduri-mcintosh, B Lymphocytes from Patients with a Hypomorphic Mutation in STAT3 Resist Epstein-Barr Virus-Driven Cell Proliferation, Journal of Virology, vol.88, issue.1, 2013.
DOI : 10.1128/JVI.02601-13

M. Kortylewski, M. Kujawski, T. Wang, S. Wei, S. Zhang et al., Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity, Nature Medicine, vol.187, issue.12, pp.1314-1335, 2005.
DOI : 10.4049/jimmunol.172.1.464

M. Kortylewski, M. Kujawski, T. Wang, S. Wei, S. Zhang et al., Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity, Nature Medicine, vol.187, issue.12, pp.1314-1335, 2005.
DOI : 10.4049/jimmunol.172.1.464

M. Kortylewski, H. Xin, M. Kujawski, H. Lee, Y. Liu et al., Regulation of the IL-23 and IL-12 Balance by Stat3 Signaling in the Tumor Microenvironment, Cancer Cell, vol.15, issue.2, pp.114-137, 2009.
DOI : 10.1016/j.ccr.2008.12.018

T. Kouzarides, Chromatin Modifications and Their Function, Cell, vol.128, issue.4, pp.693-705, 2007.
DOI : 10.1016/j.cell.2007.02.005

URL : http://doi.org/10.1016/j.cell.2007.02.005

R. Kriwacki, L. Hengst, L. Tennant, S. Reed, and P. Wright, Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity., Proc. Natl. Acad. Sci, pp.11504-11509, 1996.
DOI : 10.1073/pnas.93.21.11504

R. Kuppers, B cells under influence: transformation of B cells by Epstein???Barr virus, Nature Reviews Immunology, vol.3, issue.10, pp.801-812, 2003.
DOI : 10.1038/nri1201

B. Kwiatkowski, . Chen, . Syj, and W. Schubach, CKII Site in Epstein-Barr Virus Nuclear Protein 2 Controls Binding to hSNF5/Ini1 and Is Important for Growth Transformation, Journal of Virology, vol.78, issue.11, pp.6067-6072, 2004.
DOI : 10.1128/JVI.78.11.6067-6072.2004

D. Lawee, Mild infectious mononucleosis presenting with transient mixed liver disease: Case report with a literature review, Can. Fam. Physician, vol.53, pp.1314-1316, 2007.

S. Lee, J. Kim, Y. Lee, J. Cheong, and J. Lee, Silencing Mediator of Retinoic Acid and Thyroid Hormone Receptors, as a Novel Transcriptional Corepressor Molecule of Activating Protein-1, Nuclear Factor-?B, and Serum Response Factor, Journal of Biological Chemistry, vol.265, issue.17, pp.12470-12474, 2000.
DOI : 10.1091/mbc.7.5.719

K. Letwin, S. Yee, and T. Pawson, Novel protein-tyrosine kinase cDNAs related to fps/fes and eph cloned using anti-phosphotyrosine antibody, Oncogene, 1988.

C. Li and M. Liu, Protein dynamics in living cells studied by in-cell NMR spectroscopy, FEBS Letters, vol.131, issue.8, pp.1008-1011, 2013.
DOI : 10.1021/ja9037802

J. Li, J. Wang, J. Wang, Z. Nawaz, J. Liu et al., Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3, The EMBO Journal, vol.19, issue.16, pp.4342-4350, 2000.
DOI : 10.1093/emboj/19.16.4342

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC302030

J. Li, J. Wang, J. Wang, Z. Nawaz, J. Liu et al., Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3, The EMBO Journal, vol.19, issue.16, pp.4342-4350, 2000.
DOI : 10.1093/emboj/19.16.4342

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC302030

P. Lieutaud, B. Canard, and S. Longhi, MeDor: a metaserver for predicting protein disorder, BMC Genomics, vol.9, issue.Suppl 2, 2008.
DOI : 10.1186/1471-2164-9-S2-S25

URL : http://doi.org/10.1186/1471-2164-9-s2-s25

P. Ling and S. Hayward, Contribution of conserved amino acids in mediating the interaction between EBNA2 and CBF1/RBPJk, J. Virol, vol.69, pp.1944-1950, 1995.

L. Liu, . Mcbride, . Km, and N. Reich, STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-??3, Proceedings of the National Academy of Sciences, vol.8, issue.6, pp.8150-8155, 2005.
DOI : 10.1016/S1359-6446(03)02628-X

W. Lucchesi, G. Brady, O. Dittrich-breiholz, M. Kracht, R. Russ et al., Differential Gene Regulation by Epstein-Barr Virus Type 1 and Type 2 EBNA2, Journal of Virology, vol.82, issue.15, pp.7456-7466, 2008.
DOI : 10.1128/JVI.00223-08

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493322

S. Maier, M. Santak, A. Mantik, K. Grabusic, E. Kremmer et al., A Somatic Knockout of CBF1 in a Human B-Cell Line Reveals that Induction of CD21 and CCR7 by EBNA-2 Is Strictly CBF1 Dependent and that Downregulation of Immunoglobulin M Is Partially CBF1 Independent, Journal of Virology, vol.79, issue.14, pp.8784-8792, 2005.
DOI : 10.1128/JVI.79.14.8784-8792.2005

H. Masselink and R. Bernards, The adenovirus E1A binding protein BS69 is a corepressor of transcription through recruitment of N-CoR, Oncogene, vol.19, issue.12, 2000.
DOI : 10.1038/sj.onc.1203421

J. Matrai, . Chuah, . Mk, and T. Vandendriessche, Recent Advances in Lentiviral Vector Development and Applications, Molecular Therapy, vol.18, issue.3, pp.477-490, 2010.
DOI : 10.1038/mt.2009.319

T. Mettenleiter, Budding events in herpesvirus morphogenesis, Virus Research, vol.106, issue.2, pp.167-180, 2004.
DOI : 10.1016/j.virusres.2004.08.013

T. Mettenleiter, . Klupp, . Bg, and H. Granzow, Herpesvirus assembly: An update. Virus Res. -25th Anniv, Issue, vol.143, pp.222-234, 2009.
DOI : 10.1016/j.virusres.2009.03.018

P. Michelow, C. Wright, and L. Pantanowitz, A Review of the Cytomorphology of Epstein-Barr Virus-Associated Malignancies, Acta Cytologica, vol.56, issue.1, pp.1-14, 2012.
DOI : 10.1159/000334235

A. Milbradt, M. Kulkarni, T. Yi, K. Takeuchi, Z. Sun et al., Structure of the VP16 transactivator target in the Mediator, Nature Structural & Molecular Biology, vol.18, issue.4, pp.410-415, 2011.
DOI : 10.1002/prot.21165

Y. Minegishi, M. Saito, S. Tsuchiya, I. Tsuge, H. Takada et al., Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome, Nature, vol.286, issue.7157, pp.1058-1062, 2007.
DOI : 10.1038/nature06096

P. Muller and K. Vousden, p53 mutations in cancer, Nature Cell Biology, vol.19, issue.1, pp.2-8, 2013.
DOI : 10.1038/sj.onc.1201857

R. Muromoto, O. Ikeda, K. Okabe, S. Togi, S. Kamitani et al., Epstein???Barr virus-derived EBNA2 regulates STAT3 activation, Biochemical and Biophysical Research Communications, vol.378, issue.3, pp.439-443, 2009.
DOI : 10.1016/j.bbrc.2008.11.053

URL : http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/35143/3/MUROMOTO.pdf

R. Muromoto, O. Ikeda, K. Okabe, S. Togi, S. Kamitani et al., Epstein?Barr virus-derived EBNA2 regulates STAT3 activation, Biochemical and Biophysical Research Communications, vol.378, issue.3, pp.439-443, 2009.
DOI : 10.1016/j.bbrc.2008.11.053

URL : http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/35143/3/MUROMOTO.pdf

H. Nakajima, . Brindle, . Pk, M. Handa, and J. Ihle, Functional interaction of STAT5 and nuclear receptor co-repressor SMRT: implications in negative regulation of STAT5-dependent transcription, The EMBO Journal, vol.20, issue.23, pp.6836-6844, 2001.
DOI : 10.1093/emboj/20.23.6836

H. Nakajima, . Brindle, . Pk, M. Handa, and J. Ihle, Functional interaction of STAT5 and nuclear receptor co-repressor SMRT: implications in negative regulation of STAT5-dependent transcription, The EMBO Journal, vol.20, issue.23, pp.6836-6880, 2001.
DOI : 10.1093/emboj/20.23.6836

N. Tomita, T. Ogihara, and R. Morishita, Transcription Factors as Molecular Targets: Molecular Mechanisms of Decoy ODN and their Design, Current Drug Targets, vol.4, issue.8, pp.603-608, 2003.
DOI : 10.2174/1389450033490803

G. Nemerow, C. Mold, . Schwend, . Vk, V. Tollefson et al., Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d, J. Virol, vol.61, pp.1416-1420, 1987.

D. Parkin, The global health burden of infection-associated cancers in the year 2002, International Journal of Cancer, vol.291, issue.12, pp.3030-3044, 2006.
DOI : 10.1093/infdis/147.3.406

P. Yue and J. Turkson, Targeting STAT3 in cancer: how successful are we?, Expert Opinion on Investigational Drugs, vol.6, issue.1, pp.45-56, 2008.
DOI : 10.1186/1476-4598-4-13

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610472

V. Perissi, K. Jepsen, C. Glass, and M. Rosenfeld, Deconstructing repression: evolving models of co-repressor action, Nature Reviews Genetics, vol.26, issue.2, pp.109-123, 2010.
DOI : 10.1016/j.bbagrm.2009.05.007

N. Peyser and J. Grandis, Critical analysis of the potential for targeting STAT3 in human malignancy. OncoTargets Ther, pp.999-1010, 2013.

R. Pushker, C. Mooney, N. Davey, J. Jacque, and D. Shields, Marked Variability in the Extent of Protein Disorder within and between Viral Families, PLoS ONE, vol.12, issue.4, 2013.
DOI : 10.1371/journal.pone.0060724.s022

S. Rahaman, . Harbor, . Pc, O. Chernova, G. Barnett et al., Inhibition of constitutively active Stat3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells, Oncogene, vol.21, issue.55, pp.8404-8417, 2002.
DOI : 10.1038/sj.onc.1206047

J. Reitsma, H. Sato, M. Nevels, . Terhune, . Ss et al., Human Cytomegalovirus IE1 Protein Disrupts Interleukin-6 Signaling by Sequestering STAT3 in the Nucleus, Journal of Virology, vol.87, issue.19, pp.10763-10776, 2013.
DOI : 10.1128/JVI.01197-13

Z. Ren, X. Mao, C. Mertens, R. Krishnaraj, J. Qin et al., Crystal structure of unphosphorylated STAT3 core fragment, Biochemical and Biophysical Research Communications, vol.374, issue.1, pp.1-5, 2008.
DOI : 10.1016/j.bbrc.2008.04.049

J. Schust, B. Sperl, A. Hollis, A. Mayer, and T. Berg, Stattic: A Small-Molecule Inhibitor of STAT3 Activation and Dimerization, Chemistry & Biology, vol.13, issue.11, pp.1235-1242, 2006.
DOI : 10.1016/j.chembiol.2006.09.018

P. Selenko and G. Wagner, Looking into live cells with in-cell NMR spectroscopy, Journal of Structural Biology, vol.158, issue.2, pp.244-253, 2007.
DOI : 10.1016/j.jsb.2007.04.001

Z. Serber, P. Selenko, R. Hansel, S. Reckel, F. Lohr et al., Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy, Nature Protocols, vol.9, issue.6, pp.2701-2709, 2007.
DOI : 10.1038/nprot.2006.181

J. Sevcik, R. Skrabana, R. Dvorsky, N. Csokova, K. Iqbal et al., X-ray structure of the PHF core C-terminus: Insight into the folding of the intrinsically disordered protein tau in Alzheimer's disease, FEBS Letters, vol.98, issue.30, pp.5872-5878, 2007.
DOI : 10.1073/pnas.181342398

J. Sevcik, R. Skrabana, R. Dvorsky, N. Csokova, K. Iqbal et al., X-ray structure of the PHF core C-terminus: Insight into the folding of the intrinsically disordered protein tau in Alzheimer's disease, FEBS Letters, vol.98, issue.30, pp.5872-5878, 2007.
DOI : 10.1073/pnas.181342398

H. Shao, X. Xu, M. Mastrangelo, N. Jing, R. Cook et al., Q Motif, Journal of Biological Chemistry, vol.9, issue.18, pp.18967-73, 2004.
DOI : 10.1074/jbc.M202823200

Y. Shen, G. Devgan, J. Darnell, and J. Bromberg, Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1, Proc. Natl. Acad. Sci, pp.1543-1548, 2001.
DOI : 10.1101/gad.9.8.984

T. Shirogane, T. Fukada, J. Muller, . Shima, . Dt et al., Synergistic Roles for Pim-1 and c-Myc in STAT3-Mediated Cell Cycle Progression and Antiapoptosis, Immunity, vol.11, issue.6, pp.709-719, 1999.
DOI : 10.1016/S1074-7613(00)80145-4

URL : http://doi.org/10.1016/s1074-7613(00)80145-4

B. Shoemaker, J. Portman, and P. Wolynes, Speeding molecular recognition by using the folding funnel: The fly-casting mechanism, Proc. Natl. Acad. Sci, pp.8868-8873, 2000.
DOI : 10.1016/0301-4622(74)80050-5

B. Shoemaker, J. Portman, and P. Wolynes, Speeding molecular recognition by using the folding funnel: The fly-casting mechanism, Proc. Natl. Acad. Sci, pp.8868-8873, 2000.
DOI : 10.1016/0301-4622(74)80050-5

K. Shuai, C. Horvath, . Huang, . Lht, . Qureshi et al., Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions, Cell, vol.76, issue.5, pp.821-828, 1994.
DOI : 10.1016/0092-8674(94)90357-3

M. Snyder, X. Huang, and J. Zhang, Identification of Novel Direct Stat3 Target Genes for Control of Growth and Differentiation, Journal of Biological Chemistry, vol.175, issue.Suppl. 1, pp.3791-3798, 2008.
DOI : 10.1073/pnas.0507479102

K. Sugase, . Dyson, . Hj, and P. Wright, Mechanism of coupled folding and binding of an intrinsically disordered protein, Nature, vol.42, issue.7147, pp.1021-1026, 2007.
DOI : 10.1128/MCB.16.2.694

K. Sugase, . Dyson, . Hj, and P. Wright, Mechanism of coupled folding and binding of an intrinsically disordered protein, Nature, vol.42, issue.7147, pp.1021-1026, 2007.
DOI : 10.1128/MCB.16.2.694

K. Takeda, K. Noguchi, W. Shi, T. Tanaka, M. Matsumoto et al., Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality, Proc. Natl. Acad. Sci, pp.3801-3804, 1997.
DOI : 10.1038/376337a0

H. Tochio, Watching protein structure at work in living cells using NMR spectroscopy, Current Opinion in Chemical Biology, vol.16, issue.5-6, pp.609-613, 2012.
DOI : 10.1016/j.cbpa.2012.10.022

P. Tompa, Intrinsically disordered proteins: a 10-year recap, Trends in Biochemical Sciences, vol.37, issue.12, pp.509-516, 2012.
DOI : 10.1016/j.tibs.2012.08.004

P. Tompa, The interplay between structure and function in intrinsically unstructured proteins, FEBS Letters, vol.293, issue.102, pp.3346-3354, 2005.
DOI : 10.1126/science.1062079

X. Tong, F. Wang, C. Thut, and E. Kieff, The Epstein-Barr Virus Nuclear Protein 2 Acidic Domain Can Interact with TFIIB, TAF40, and RPA70 but Not with TATA-Binding Protein, J VIROL, vol.69, pp.585-593, 1995.

J. Turkson, J. Kim, S. Zhang, J. Yuan, M. Huang et al., Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity, Mol. Cancer Ther, vol.3, pp.261-269, 2004.

J. Turkson, D. Ryan, J. Kim, Y. Zhang, Z. Chen et al., Phosphotyrosyl Peptides Block Stat3-mediated DNA Binding Activity, Gene Regulation, and Cell Transformation. J. Biol. Chem, vol.276, pp.45443-45455, 2001.
DOI : 10.1074/jbc.m107527200

M. Uesugi, O. Nyanguile, H. Lu, A. Levine, and G. Verdine, Induced  Helix in the VP16 Activation Domain upon Binding to a Human TAF, Science, vol.277, issue.5330, pp.1310-1313, 1997.
DOI : 10.1126/science.277.5330.1310

V. Uversky, C. Oldfield, and A. Dunker, Concept, Annual Review of Biophysics, vol.37, issue.1, pp.215-246, 2008.
DOI : 10.1146/annurev.biophys.37.032807.125924

F. Vallania, D. Schiavone, S. Dewilde, E. Pupo, S. Garbay et al., Genome-wide discovery of functional transcription factor binding sites by comparative genomics: The case of Stat3, Proc. Natl. Acad. Sci, pp.5117-5122, 2009.
DOI : 10.1038/nprot.2006.27

U. Vinkemeier, S. Cohen, I. Moarefi, B. Chait, J. Kuriyan et al., DNA binding of in vitro activated Stat1 alpha, Stat1 beta and truncated Stat1: interaction between NH2-terminal domains stabilizes binding of two dimers to tandem DNA sites, EMBO J, pp.5616-5642, 1996.

U. Vinkemeier, I. Moarefi, J. Darnell, and J. Kuriyan, Structure of the Amino-Terminal Protein Interaction Domain of STAT-4, Science, vol.279, issue.5353, pp.1048-1052, 1998.
DOI : 10.1126/science.279.5353.1048

E. Vojnic, A. Mourão, M. Seizl, B. Simon, L. Wenzeck et al., Structure and VP16 binding of the Mediator Med25 activator interaction domain, Nature Structural & Molecular Biology, vol.278, issue.4, pp.404-409, 2011.
DOI : 10.1101/gad.465108

L. Wang, . Yang, . Xy, K. Mihalic, W. Xiao et al., Activation of Estrogen Receptor Blocks Interleukin-6-inducible Cell Growth of Human Multiple Myeloma Involving Molecular Cross-talk between Estrogen Receptor and STAT3 Mediated by Co-regulator PIAS3, Journal of Biological Chemistry, vol.92, issue.1, pp.31839-31844, 2001.
DOI : 10.1126/science.278.5344.1803

L. Wang, . Yang, . Xy, X. Zhang, J. Huang et al., Transcriptional Inactivation of STAT3 by PPAR? Suppresses IL-6-Responsive Multiple Myeloma Cells, Immunity, vol.20, issue.2, pp.205-218, 2004.
DOI : 10.1016/S1074-7613(04)00030-5

Z. Wen, Z. Zhong, D. Jr, and J. , Maximal activation of transcription by statl and stat3 requires both tyrosine and serine phosphorylation, Cell, vol.82, issue.2, pp.241-250, 1995.
DOI : 10.1016/0092-8674(95)90311-9

C. Wienken, P. Baaske, U. Rothbauer, D. Braun, and S. Duhr, Protein-binding assays in biological liquids using microscale thermophoresis, Nature Communications, vol.47, issue.7, p.100, 2010.
DOI : 10.1016/j.bbagen.2004.10.013

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3186516/pdf

C. Wong and M. Privalsky, Transcriptional Repression by the SMRT-mSin3 Corepressor: Multiple Interactions, Multiple Mechanisms, and a Potential Role for TFIIB, Molecular and Cellular Biology, vol.18, issue.9, pp.5500-5510, 1998.
DOI : 10.1128/MCB.18.9.5500

H. Xie, S. Vucetic, . Iakoucheva, . Lm, C. Oldfield et al., Functional Anthology of Intrinsic Disorder. 1. Biological Processes and Functions of Proteins with Long Disordered Regions, Journal of Proteome Research, vol.6, issue.5, pp.1882-1898, 2007.
DOI : 10.1021/pr060392u

L. Xu, R. Lavinsky, J. Dasen, . Flynn, . Se et al., Signal-specific co-activator domain requirements for Pit-1 activation, Nature, vol.395, pp.301-306, 1998.

X. Xu, M. Kasembeli, B. Tweardy, and D. Tweardy, Chemical Probes that Competitively and Selectively Inhibit Stat3 Activation, PLoS ONE, vol.280, issue.3, 2009.
DOI : 10.1371/journal.pone.0004783.t003

URL : http://doi.org/10.1371/journal.pone.0004783

X. Xu, Y. Sun, and T. Hoey, Cooperative DNA Binding and Sequence-Selective Recognition Conferred by the STAT Amino-Terminal Domain, Science, vol.273, issue.5276, pp.794-797, 1996.
DOI : 10.1126/science.273.5276.794

B. Xue, C. Brown, . Dunker, . Ak, and V. Uversky, Intrinsically disordered regions of p53 family are highly diversified in evolution, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1834, issue.4, pp.725-738, 2013.
DOI : 10.1016/j.bbapap.2013.01.012

E. Yang, L. Lerner, D. Besser, and J. Darnell, Promoter by STAT3, Journal of Biological Chemistry, vol.19, issue.18, pp.15794-15799, 2003.
DOI : 10.1126/science.277.5332.1630

J. Yang and G. Stark, Roles of unphosphorylated STATs in signaling, Cell Research, vol.12, issue.4, pp.443-451, 2008.
DOI : 10.1016/S1534-5807(02)00126-0

Z. Yang, R. Thomson, P. Mcneil, and R. Esnouf, RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins, Bioinformatics, vol.21, issue.16, pp.3369-3376, 2005.
DOI : 10.1093/bioinformatics/bti534

J. Yoo, W. Wang, S. Desiderio, and D. Nathans, -Macroglobulin Promoter, Journal of Biological Chemistry, vol.19, issue.28, pp.26421-26429, 2001.
DOI : 10.1101/sqb.1998.63.609

URL : https://hal.archives-ouvertes.fr/hal-01272551

H. Yoon, . Chan, . Dw, Z. Huang, J. Fondell et al., Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1, The EMBO Journal, vol.22, issue.6, pp.1336-1346, 2003.
DOI : 10.1093/emboj/cdg120

L. Young and A. Rickinson, Epstein?Barr virus: 40 years on, Nature Reviews Cancer, vol.10, issue.10, pp.757-768, 2004.
DOI : 10.1038/sj.onc.1206556

H. Yu, M. Kortylewski, and D. Pardoll, Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment, Nature Reviews Immunology, vol.172, issue.1, pp.41-51, 2007.
DOI : 10.4049/jimmunol.172.7.4630

Z. Yu, W. Zhang, and B. Kone, Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor ?B, Biochemical Journal, vol.367, issue.1, pp.97-105, 2002.
DOI : 10.1042/bj20020588

P. Yue and J. Turkson, Targeting STAT3 in cancer: how successful are we?, Expert Opinion on Investigational Drugs, vol.6, issue.1, pp.45-56, 2008.
DOI : 10.1186/1476-4598-4-13

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610472

H. Yumerefendi, . Desravines, . Dc, and D. Hart, Library-based methods for identification of soluble expression constructs, Methods, vol.55, issue.1, pp.38-43, 2011.
DOI : 10.1016/j.ymeth.2011.06.007

H. Yumerefendi, F. Tarendeau, . Mas, . Pj, and D. Hart, ESPRIT: An automated, library-based method for mapping and soluble expression of protein domains from challenging targets, Journal of Structural Biology, vol.172, issue.1, pp.66-74, 2010.
DOI : 10.1016/j.jsb.2010.02.021

Z. Zhang, S. Jones, J. Hagood, . Fuentes, . Nl et al., STAT3 Acts as a Co-activator of Glucocorticoid Receptor Signaling, Journal of Biological Chemistry, vol.15, issue.49, pp.30607-30610, 1997.
DOI : 10.1016/S0092-8674(00)81277-5

Z. Zhong, Z. Wen, and J. Darnell, Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6, Science, vol.264, issue.5155, pp.95-103, 1994.
DOI : 10.1126/science.8140422

U. Zimber-strobl and L. Strobl, EBNA2 and Notch signalling in Epstein?Barr virus mediated immortalization of B lymphocytes, Seminars in Cancer Biology, vol.11, issue.6, pp.423-434, 2001.
DOI : 10.1006/scbi.2001.0409

S. Zushi, Y. Shinomura, T. Kiyohara, Y. Miyazaki, S. Kondo et al., STAT3 mediates the survival signal in oncogenicras-transfected intestinal epithelial cells, International Journal of Cancer, vol.73, issue.3, pp.326-330, 1998.
DOI : 10.1038/bjc.1995.162

A. Figure, HSQC sprectrum of EBNA2-D9 in complex with STAT3. D9 alone (black) and D9- STAT3 complex (green) The ration between D9 and STAT3 was 1:1. Spectra recorded by

A. Figure, HSQC sprectrum of SMRT-39L23 in complex with STAT3. Orange peaks indicate free 39L23 and blue peaks indicate 39L23 in complex with STAT3. The protein ratio was 1:1. Spectra recorded by

A. Figure and . Ibs-grenoble, Peak intensity changed of the amino acids in 39L23 effected by STAT3 binding Each lane corresponds to one residue of fragment 39L23 starting from 1-199. Changes occur upon STAT3 titration from 1-to 5-fold access