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Abstract

In modern online advertising, advertisers tend to track Internet users’ activities and use
these tracking data to personalize ads. Even though this practice - known as targeted
advertising - brings economic benefits to advertising companies, it raises serious concerns
about potential abuses of users’ sensitive data. While such privacy violations, if performed
by trackers, are subject to be regulated by laws and audited by privacy watchdogs, the
consequences of data leakage from these trackers to other entities are much more di�cult to
detect and control. Protecting user privacy is not easy since preventing tracking undermines
the benefits of targeted advertising and consequently impedes the growth of free content
and services on the Internet, which are mainly fostered by advertising revenue. While
short-term measures, such as detecting and fixing privacy leakages in current systems, are
necessary, there needs to be a long-term approach, such as privacy-by-design ad model, to
protect user privacy by prevention rather than cure.

In the first part of this thesis, we study several vulnerabilities in current advertising
systems that leak user data from advertising companies to external entities. First, since
targeted ads are personalized to each user, we present an attack exploiting these ads on
the fly to infer user private information that have been used to select ads. Second, we
investigate common ad exchange protocols, which allow companies to cooperate in serving
ads to users, and show that advertising companies are leaking user private information,
such as web browsing history, to multiple parties participating in the protocols. These web
browsing histories are given to these entities at surprisingly low prices, reflecting the fact
that user privacy is extremely underestimated by the advertising industry.

In the second part of the thesis, we propose a privacy-by-design targeted advertising
model which allows personalizing ads to users without the necessity of tracking. This
model is specifically aimed for the two newly emerging ad technologies - retargeting
advertising and ad exchange. We show that this model provides strong protection for user
privacy while still ensuring ad targeting performance and being practically deployable.
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Chapter 1

Introduction

In targeted advertising, companies track users’ online activities with the aim to personalize
ads. Even though this practice brings economic benefits, it raises significant concerns about
potential privacy violations. This thesis aims to help companies and privacy advocates find
ways to enhance user privacy in targeted advertising. Firstly, it exposes some vulnerabilities
in current ad systems which potentially leak user private data from advertising companies
to external parties, resulting in their loss of control over this data. Secondly, it proposes a
technical design of a privacy-preserving targeted advertising system which provides strong
protection for user privacy while retaining the current business and system models.

In this first chapter, we highlight main privacy challenges in targeted advertising which
motivate our work. We also give background information about trackers and their roles
in the advertising system. We then describe all possible privacy leaks related to these
trackers, with the aim to position the threats that we expose. Subsequently, we analyze
major privacy-enhancing initiatives proposed to date and based on which explain our
choice of privacy-preserving targeted advertising. Finally, we summarize our contributions
and present the thesis organization.

1.1 Privacy Challenges in Targeted Advertising

Online advertising brings substantial revenue for Internet companies and is the key to
the development of free content and services on the Internet. Consequently, increasingly
sophisticated methods have been developed to improve the e�ciency of advertising.

Online targeted advertising (or behavioral advertising, or interest-based advertising)
involves tracking Internet users’ online activities (e.g., reading habit, search or purchases)
across websites and over time, inferring their interests and characteristics (e.g., age or
gender), and personalizing ads to them based on these data. Since introduced in 1990s
[2][3], targeted advertising has been quickly evolving and actually accounts for a significant
part of online advertising. The practice has been acclaimed by the industry as an e�cient

1



CHAPTER 1. INTRODUCTION 2

marketing tool [4][5][6].
Theoretically, the benefits of targeted advertising are manifold. Personalized ads likely

increase ad views and users’ purchases or engagement, which consequently increases
advertisers’ revenue. In addition, publishers (i.e., content providers which sell ad spaces
on their websites to advertisers) also get higher revenue as advertisers tend to pay more
for ads which yield higher performance. In return, higher revenue motivates publishers
to provide better (free) content or services to users. In can be argued that users are also
beneficial from useful and relevant ads which fit their interests.

Unfortunately, targeted advertising is often coupled with privacy concerns as advertis-
ing companies increasingly track and analyze user activities, which might contain very
sensitive information. These data, if misused by trackers or leaked to other entities (e.g.,
the government), may cause harms to users physically or mentally. Possible harms include
embarrassment, price and service discrimination, or termination of employment.

On the other hand, privacy concerns bring consequences to the advertising industry.
They erode user trusts on Internet companies and, as a result, users may turn to use anti-
tracking or anti-advertising tools as solution, which is negative for the advertising business.
Additionally, despite tremendous amount of time and e�ort spent in dealing with privacy
watchdogs and lobbying privacy policy makers, the advertising industry still su�ers from
adverse regulations and law enforcement actions against their tracking behaviors [7][8][9].
Given exploded privacy concerns in recent years, the sustainability of targeted advertising
is only possible if this practice conforms to privacy requirements.

The dilemma is that any attempt to enhance user privacy by limiting user data from
being collected by companies may also limit targeting performance and consequently
reduce advertising revenue, which is unwanted from the economic perspective. Addressing
privacy problems is therefore posing multidisciplinary challenges from both technical and
economic points of view. In the following, we highlight two main technical challenges:

1. Detecting privacy leaks in targeted advertising: Laws and regulations increas-
ingly empower privacy watchdogs with audit and law enforcement rights to prevent
trackers from abusing user sensitive data. Unfortunately, data hold by these trackers
may intentionally or accidentally be leaked to other entities through their business
practices. The data leakage may significantly enlarge the risk window to user privacy
and obstruct the enforcement of accountability. Since ad technologies are evolving
quickly and sophisticatedly, there needs to be constant e�ort to study and remedy
privacy flaws in these technologies.

2. Privacy-preserving targeted advertising: Since detecting (and fixing) privacy
problems in targeted advertising is necessary, it can only be considered a short-term
approach. Enhancing user privacy needs a privacy-by-design long-term solution to
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protect user privacy by prevention rather than cure. A possible direction is to design
a targeted advertising system which does not rely on tracking.

1.2 Identifying Trackers

The core entities of an advertising system are advertisers and publishers. Advertisers,
e.g. hotels.com, want to promote their products to users by showing ads to them on the
websites they visit. Publishers, e.g. nytimes.com, develop websites providing content or
services to users and sell ad spaces on their sites to advertisers.

Since advertising has been evolving with millions of publishers and advertisers, it is
too di�cult for them to buy or sell ads directly with each other. Consequently, there are
many other companies that play intermediary roles between advertisers and publishers.
The two most common types of these companies are ad network and ad exchange.

– Ad Network: An ad network, e.g. Google Adsense, is a company that collects ads
from advertisers in order to display to users on publishers’ pages. The role of ad
network is to maximize the advertising e�ciency for advertisers and advertising
revenue for publishers.

In targeted advertising, ad networks track users across websites and build user
profiles. When a user visits a publisher page, the ad network selects ads that best fit
the user profile to display to the user. For example, a Google’s user profile might
contain user’s interests, location, age and gender; a user who is interested in sport is
more likely to receive sport-related ads than others.

– Ad Exchange: The Ad Exchange (ADX) is a company that allows ad spaces on
publishers’ pages to be traded in auctions at real time. When a user visits a publisher’s
page, the information about the ad space and the user are made available to a number
of registered ad buyers. These buyers determine at real time whether they want to
take the ad spaces, at what prices, and with what message. These information go
through an auction, and the winner has the right to serve ads to the user.

In the ad exchange model, there are two other entities that help publishers and
advertisers in participating in the auctions: Demand-Side Platform (DSP) to represent
advertisers, and Supply-Side Platform (SSP) to represent publishers. The goals of
these entities are to help their customers in optimizing their strategies: DSPs help
advertisers buy the most suitable ad spaces at reasonable prices, while SSPs ensure
that publishers’s ad spaces are sold at most competitive prices.

An ad network can play either role, DSP or SSP, in an ad exchange depending
on their remnant ad or ad space inventory to make available through ad exchange.
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Besides, a SSP can also play the role of an Ad Exchange: they manage the ad spaces
of their customers (publishers) and make them available through their own exchange.

ADXs, DSPs and SSPs extensively track users and use their profiles in optimizing
their strategies. For example, DSPs leverage user profiles to make their buying
decisions in ad exchange, ADXs use user profiles to classify users and only send
bid requests to appropriate buyers, SSPs use user profiles to determine the minimum
selling prices at auction.

An important party in targeted advertising systems is the data broker, e.g. BlueKai.
Data brokers collect user information from various source, online or o�ine, build user
profiles and sell these profiles to interested entities, e.g. an ad network or ad exchange.

Terminology. In the scope of this thesis, we use the term ad broker for all entities that
are operating in the middle between advertisers and publishers, be they Ad Network, Ad
Exchange, SSP or DSP; these parties share the same set of characteristics or behaviors:
they maintain user profiles by tracking or buying data from data brokers, and take part in
the connection among publishers, advertisers and users.

Identifying trackers. Most privacy concerns are related to ad brokers and data brokers,
which centrally collect user data across many websites on the Internet, often without user
knowledge or consent. They are operated by companies which users might have never
heard of, have no relationship with, and "would not choose to trust with their most private
thoughts and reading habits" [10].

1.3 Privacy Leaks

In response to public concerns about user privacy, most trackers claim that they use the
tracking data solely for advertising or improving their content and services. In its privacy
policy [11], Google states that "We use the information we collect from all of our services
to provide, maintain, protect and improve them ... to o�er you tailored content – like giving
you more relevant search results and ads.", and that "We will ask for your consent before
using information for a purpose other than those that are set out in this Privacy Policy." In
fact, these companies are subject to legal punishment if they violate these written policies,
for example under the U.S. Federal Trade Commission Act which is against "unfair" or
"deceptive" commercial practices [9].

However, even under the most optimistic assumption that these companies can be
trusted of not abusing tracking data to cause harms to users, and that the law can regulate
such malicious actions, there are various possibilities that the data maintained by these
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companies can be intentionally or accidentally leaked to other entities, resulting in their
loss of control over these data. In the following, we summarize the main types of these
potential privacy leaks.

Security of data storage is not su�cient: When users’ data are stored on the trackers’
servers, they might be vulnerable to attacks on the storage if adequate security measures
are not taken. For example, a recent intelligence leak shows that the U.S. National Security
Agency, in its surveillance program, tapped in to the private links that connect Google,
Yahoo and Microsoft data centers around the world and secretly collected user data flowing
through these links; these data are transmitted in clear [12]. The related companies are
also the most prevalent trackers on the Internet.

Trackers sell data to other entities: Ad brokers may not want to sell user data. As
observed by Harper [13], "most websites and ad networks do not sell information about
their users ... If an ad network sold personal and contact info, it would undercut its
advertising business and its own profitability.". On contrary, the business of data brokers is
to collect and sell user data to interested parties. These brokers have little power to control
the use of these data once they have been sold to their customers. For example, data sold
by Bluekai, a prominent data broker, to its customers are subject to the customers’ data
retention policies, which are di�erent from Bluekai’s [14]. The list of companies buying
data from a data broker and their specific purposes are normally unknown to users [15].

Ad brokers accidentally expose user data through their advertising services: Ad
brokers communicate with many other parties including advertisers (e.g., advertisers
submit ads, specify user targeting criteria and view ad reports), other ad brokers (e.g. in the
ad exchange model), and users (e.g. delivering ads). Since the communication data in these
cases are often related to user personal information, they can potentially be exploited to
infer user personal information. For example, advertisers can manipulate the user targeting
criteria to target some user and use the ad report to learn information about the victim [16].
In the first part of this thesis, we study some vulnerabilities in current advertising systems
that may accidentally leak user data from ad brokers to other entities.

1.4 Privacy-Enhancing Initiatives

As privacy concerns are widespread, multiple initiatives to enhance user privacy have been
put in perspective. In this section, we discuss these initiatives and their limits, based on
which explain our choice of a privacy-by-design approach.
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1.4.1 Regulation and Self-Regulation

Privacy concerns have long drawn significant attention from legislative bodies [17][18].
For over a decade, the U.S. Federal Trade Commission (FTC) has been issuing multiple
reports and urging for legislation to enhance user online privacy [19][20]. Although several
acts have been proposed that give FTC rights to bring law enforcement against tracking
companies, these rights are narrowly restricted to "unfair" and "deceptive" actions, i.e.,
when companies do not keep their promises to users. "As of May 1, 2011, the FTC has
brought 32 legal actions against organizations that have violated consumers’ privacy rights,
or misled them by failing to maintain security for sensitive consumer information." [9].

With one of the core objectives being to "fend o� adverse legislation and regulation", a
group of advertising companies formed the Interactive Advertising Bureaus (IAB) [21],
which then joined other similar organizations in a Digital Advertising Alliance (DAA).
DAA has published a set of self-regulatory principles for its member companies with
guidelines on enhancing user choices, knowledge and transparency. The two major DAA
privacy initiatives are the advertising opt-out page [22] and the AdChoices icon [23]. The
opt-out page allows users to opt-out from targeted advertising from companies participating
in the program. The AdChoice icon is expected to displayed at a corner of targeted ads to
notify users that the ads are tailored to their interests. By clicking on the icon, users can
choose to opt out from targeted ads from the respective ad provider.

As for privacy advocates, the language of these self-regulations is "loose enough" and
they contain exceptions to allow the concerning practices to sustain [24][25]. Similarly
to the cases of other industry privacy self-regulation [26], there is little enforcement for
those who do not follow the DAA’s self principles [27]. In addition, the online opt-out
tool, while challenging for users to understand and configure [28], merely allows users to
stop receiving targeted ads; the tracking and the use of tracking data for other purposes are
una�ected. The AdChoice icons are not recognizable by users or even rarely displayed
[24].

In order to facilitate user choice of tracking, privacy advocates proposed Do-Not-Track
(DNT). In DNT, users simply configure their web browsers to add a special HTTP header,
DNT:1, in each request to notify trackers that they do not want to be tracked (DNT:0 means
users agree to be tracked); users do not have to visit a special website to turn it on as in
the case of online opt-out tools. Companies which honor DNT must respect user choice
expressed through DNT headers. To date, DNT has been implemented in most browsers,
yet there have been merely 20 companies reportedly honoring the signal; no technical audit
has been performed to check their compliance [29].

A W3C dedicated group was organized with the aim to standardize DNT [30]. However,
the progress is slow and the group has not yet reached a consensus due to three contested
aspects [31][32][33]:
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– Default setting: While some believe that ‘1’ should be the default value of DNT,
the industry reject this idea, claiming that the choice should be explicitly made by
users, and that DNT should be unset by default. However, an unset DNT header
means that companies can still perform tracking, as in the case DNT is set to ‘0’.

– Definition of DNT: The industry wants to interpret the DNT signal as "do not target",
i.e. advertising companies stop delivering targeted ads, while privacy advocates want
it to be "do not collect information".

– Architecture of negotiation: How do sites get users who configure DNT:1 to opt
in and to remain opted-in?

These conflicts are unlikely to be solved in the near future.

1.4.2 Blocking

Tracking requires that web browsers send user information in form of HTTP requests to
trackers. Blocking tools identify the trackers’ domains or the patterns of tracking requests
and then block these requests from being sent to trackers. These tools are typically installed
in form of browser extensions [34][35][36], or built-in features of web browsers [37]. The
block list is often configured by the company providing the tool, or users can optionally
select di�erent lists from other third parties. Most of these tools o�er users the ability to
selectively block/unblock each tracker in the list.

Since blocking tools prevent the browsers from communicating with blocked sites,
they can be fairly e�ective in preventing tracking. However, the solution is only realistic
for advanced users, since these tools contain serious usability flaws, as discovered by a
research [28]. These flaws are mostly due to inappropriate default settings to protect user
privacy, lack of communication and feedbacks, confusing interfaces and negative a�ects
on functioning features of websites. In addition, users cannot distinguish between trackers
and therefore cannot make meaningful choice over which trackers to block. Finally, since
the list of tracking companies and technologies are changing constantly, it is di�cult and
time consuming for tool providers to maintain block lists.

1.4.3 Privacy Preserving Targeted Advertising

Privacy initiatives presented above have been framed around the question of tracking or
not tracking and how the choice should be given to users (e.g. by using opt-out tools, DNT
or blocking tools). However, tracking puts user privacy at risk, while anti-tracking prevents
targeted advertising and consequently undermines advertising revenue. Giving choices to
users does not help avoid the zero-sum game between protecting privacy and enhancing
economics: if privacy is enhanced, then advertising revenue is inevitably compromised. Not
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surprisingly, the advertising industry has been reluctant to adopt these privacy enhancing
initiatives, even though it has faced with increasing public and legal pressures to improve
user privacy. On the other hand, reduction of advertising revenue impedes the growth of
Internet; Internet users may su�er from paying higher prices or receiving content with
lower quality.

Privacy Preserving Targeted Advertising (PPTA) initiatives aim to reconcile the two
conceptually conflicting goals of privacy and economics by proposing technical system
designs that allow targeted advertising while not relying on tracking users. There have
been several research proposals in this direction [38][39][40][41]. Their common idea is to
keep users’ data at their devices and shift the ad-user matching process to users’ terminals
or trusted devices, with the aim to preserve the confidentiality of user data.

While other ongoing e�orts are progressing slowly due to the fact that they do not
address the crux of the problem, which is the conflict between privacy and benefits of
targeted advertising, PPTA appears to be a promising approach. PPTA seeks to accom-
modate all privacy and targeting requirements in a positive-sum win-win manner, rather
than following a zero-sum approach which likely requires impractical trade-o�s. Since
privacy is integrated as a built-in feature in these systems, the major challenge of these
approaches is to fit diversified demands and business models of targeted advertising without
introducing significant additional cost (e.g. infrastructure and network cost) or imposing
important latency in the operation of advertising systems.

1.5 Contributions

The potential privacy leaks and privacy-enhancing initiatives given above draw a landscape
of privacy challenges in targeted advertising. We now explain where our contributions
stand in reaching the goal of enhancing user privacy in targeted advertising.

Our first contribution is to show some privacy leaks in the current advertising systems
that potentially expose user privacy from ad brokers to other entities, which fall into the
third category of leakage described in Section 1.3. However, di�erent from the work of
Korolova [16], which investigated the leaks of user personal information when ad brokers
interact with advertisers, we study the information leaks when these entities interact with
users (delivering targeted ads) and with other ad brokers in ad exchange.

We prove that, since targeted ads are tailored to each individual user, they can potentially
expose user personal information. These ads, if not well protected in transmission, could
be a potential source for any eavesdropper to collect and infer a lot of user information. In
addition, we investigate common ad exchange protocols and show that companies do not
actually take user privacy as priority in designing such protocols, as user privacy can be
easily leaked to many parties taking part in the process.
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Existent and potential privacy threats, including the privacy leaks presented in this
thesis, motivate the need of a privacy-by-design approach. The second contribution of
this thesis is to propose a technical design of a privacy-preserving targeted advertising
system. This design is aimed to a newly emerged advertising technology, retargeting
advertising (which aims to target users’ exact intentions or online actions), and the ad
exchange model. Retargeting and ad exchange protocols were not mentioned in previous
works [38][40][39][41].

In summary, our contributions include:

1. Privacy leak in targeted ads delivery: We present a novel attack that exploits user
personal information from ads. The attack consists of a filtering technique to filter
targeted ads, and an inference technique to infer user private information. We show
that any entity who has access to a small number of ads can retrieve a significant part
of a user profile built by the ad network. The proposed attack presents an example
of privacy risks related to fine-grained targeting technologies, which potentially
happen not only in targeted advertising but also in any other personalized content
and services.

2. Privacy leak in ad distribution system: We conduct a privacy analysis of common
ad exchange protocols. The results show that these protocols are prevalent and
enable the dissemination of user private information among various participating
companies, some of them can significantly increase their tracking capabilities in
comparison with their own tracking mechanism. In addition, we show that the
related companies get access to these user private information at monetary prices
surprisingly lower than what users might expect, showing the fact that user privacy
is extremely underestimated by the advertising industry.

3. A privacy-preserving retargeting ad system: We propose a practical solution to
enable retargeting ads without the necessity of tracking. In our approach, user data
are stored locally, transparent to users and under their control. We distinguish our
approach by using homomorphic encryption to protect not only user data from ad
brokers, but also ad personalization algorithms of ad brokers from users. Moreover,
our approach is novel as it is the first privacy-preserving solution to retargeting
advertising and ad exchange.

1.6 Organization

The rest of the thesis is organized as follows.

� Chapter 2 provides a background knowledge about tracking and possible resulting
privacy problems. This chapter highlights why online privacy is important.
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� Chapter 3 summarizes previous work which are related to our work in this thesis.

� Part I, including Chapter 4 and 5, focuses on privacy leaks in current advertising
systems which potentially expose user private data from advertising companies to
external parties.

– Chapter 4 presents an attack that exploit targeted ads on the fly to infer user
private information. It provides quantitative results through experiments with
real users in the case of Google advertising network.

– Chapter 5 studies privacy leakages in ad exchange protocols and provides a
quantification of these leakages. It then presents an evaluation of user privacy
by analyzing how advertisers value user private data in ad exchange auctions.

� Part II, which contains Chapter 6, proposes a privacy-enhancing solution.

– Chapter 6 presents the proposal of a retargeting system without tracking. This
chapter describes the desire goals and security assumptions, presents the tech-
nical system design, gives a security analysis, and provides an evaluation of
additional cost.

� Chapter 7 concludes the thesis and discusses possible extensions to our work and
other future research directions.



Chapter 2

Background: Online Tracking and
Privacy

In this chapter, we describe tracking in a technical perspective. We then elaborate what
trackers can possibly collect from tracking users, and what information they can potentially
infer. Trackers often argue that profiling data is anonymous and cannot be associated to
any specific person. On the other hand, they promote arguments that ordinary people
would have "nothing to hide" unless they are doing something wrong. We analyze these
arguments and show that they either are incorrect or only focus on a narrow meaning of
privacy. We also discuss why privacy is important and why people should care about their
private lives on the Internet.

2.1 Tracking Technologies

From a technical perspective, it is useful to consider three parameters in a tracking action.
First, an identifier, e.g. IP address or a unique number that trackers generate and assign to
a user, a device or a web browser. The identifier helps trackers associate multiple pieces of
information they receive to a user, a device or a web browser. Second, a piece of behavioral
information, e.g. visited site’s url, which is related to a user’s online activities. Trackers
use these behavioral information to build user profiles associated with an identifier. Third,
a collection technique that trackers used to retrieve identifiers and behavioral information
and send them to their servers.

A tracking action happens if a tracker, using a collection technique, collects an identifier
along with one or some pieces of behavioral information. A typical example is that a
tracker, e.g. DoubleClick, puts its JavaScript tracking code on a website, e.g. hotels.com,
to retrieve user’s cookie (i.e. a unique number generated for each user browser) and the
website url, and then send these information to its server. By performing this action on
many websites, the tracker has a list of visited urls assigned to the user cookie, and based

11
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on which infer user information such as age, gender and interests.
In the following, we clarify these technical details of tracking by elaborating possible

collection techniques, identifiers and behavioral information.

2.1.1 Collection Techniques

Web page owners embed their own or third-party tracking scripts on their websites. When
a page is loaded to the user browser, the tracking scripts retrieve information related to the
visit (Information retrieval) and send them to the remote server (Information transmission).

� Information retrieval: When a tracking request is sent to a tracker, some infor-
mation about the user is integrated by default by the web browser in the request
header, such as the browser information, the IP address and the url of the visited
page. In case trackers need more information, such as the user’s screen resolution,
fonts or mouse behaviors, a common solution is to use JavaScript to retrieve such
information and then encode them into tracking requests’ urls or cookies1.

� Information transmission: Retrieved information are encoded in HTTP request
headers, request urls or cookies. They are generally sent to remote servers in form
of tracking requests which are initialized by either AJAX technology (e.g. by using
XMLHttpRequest in JavaScript) or HTML components that load remote resources
(e.g. iframe, image, flash object, etc.). A tracking code can include these HTML
components, JavaScript or both of them. JavaScript code can issue requests to
trackers by using AJAX or by dynamically creating such HTML components.

To exemplify the process, we consider a typical scenario: The Javascript code in a
tracking script dynamically generates an HTML code to display an image, e.g. <img
src=’http://tracker.com[...]’>, on the hosting page, e.g. example.com. This HTML img ele-
ment loads the image from the url encoded in its src property, namely http://tracker.com[...].
Upon receiving this request, the tracker records the user’s visit to the page example.com. It
responses with an one-pixel image which is then displayed on the current page, but too
small to be visible to the user.

2.1.2 Identifiers

2.1.2.1 IP Address

Each device once connected to the Internet is assigned with an IP address, and subsequently
uses this address to communicate with other entities on the Internet, e.g. send and receive
messages. IP address is by default included in any HTTP request, and naturally can be

1Cookie will be discussed in more details in the next section.
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used by trackers to identify a device in tracking. IP tracking, however, is not largely used
due to the following reasons.

First, the IP address in many cases is dynamic and is not always the same with a device.
For example, an Internet Service Provider (ISP) may dynamically assign a di�erent IP
address each time a device connects to the Internet, or a user with the same laptop changes
IP address when he moves from home to work. In addition, IP addresses might be shared
across many members in a work or public place.

Second, the IP address is considered personal information [42], and therefore should
be restricted from being collected. Even people would admit that an IP address does not
always directly correlate to a given person, in a significant percentage of cases, it can be
used to identify a household. Given information that users normally give to an ISP, such as
name and address, IP address can be combined with these information to identify a user.

2.1.2.2 Pseudonymous Identity

To overcome legal and technical barriers of IP tracking, most trackers use pseudonymous
identities (ids) to track users. These ids are randomly generated numbers which are unique
per user device or web browser. They are sent by trackers to users at the first time they
interact with these trackers, and stored at user device or web browser. Whenever users
interact with these trackers, pseudonymous ids are attached in the tracking requests to help
trackers identify them. In the following, we describe di�erent possible storage mechanisms
to store pseudonymous ids on the client side.

Cookies: The idea of using cookie was first introduced by Lou Montulli in 1994, when
he was working for Netscape Communications. Cookie is a small piece of data sent from
a website and stored at user browser when the user is browsing this website. A cookie
normally contains a name/value pair (e.g. "id=123") along with the domain to which it
belongs, its expiration date and other information. A cookie is included by default into any
request to the domain from which it was originated. For example, a cookie whose domain
is doubleclick.net will be attached to any request to this domain.

Actually, cookie is the most common method to encode user pseudonymous ids. These
ids are typically encoded in the name/value pair contained in the cookie. For example,
Doubleclick assigns a pseudonymous id for each user browser and encodes the id in its
tracking cookie as "id=[browser id]". Typically, a tracking cookie expires in two years
since the last communication with the user. A cookie is stored inside a browser and only
accessible to JavaScript code from the same domain with the cookie.

Super cookies: The most well known form of super cookies is Flash cookies, or Flash
Shared Objects (FSO), which are set by the flash plug-in commonly installed inside a
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browser. When users load web pages containing flash components, these components
can save flash cookies to user devices and then use them the same way tracking codes do
with regular cookies. However, di�erent from regular cookies, flash cookies are stored
outside web browsers and can operate across browsers. Moreover, Flash cookies never
expire, and, since not stored inside browsers, these cookies are not detectable by browser
privacy mechanisms or most of privacy tools which are installed as browser extensions.
Consequently, companies can rely on data stored in Flash cookies to re-spawn normal
cookies when they are deleted by the users. Soltani et al. [43] showed that flash cookies
were commonly used by popular websites, some of them stored the same user data in both
regular cookies and flash cookies, with the aim to re-spawn cookies when necessary.

ETags: ETags, or entity tag, is part of the HTTP protocol which allows web cache
validation in web browsers. Actually, ETags is an optional field in HTTP header which is
used by content providers to store a version number for each version of a page’s content.
The user’s web browser stores the ETags of the latest version it receives, and communicates
the current ETags to the server when it wants to update content from the same address.
The server compares the Etags in the client’s request with that of the server-side latest
version. If the client’s version is outdated, it sends a new version along with the new ETags.
Otherwise, the server sends a simple response to notify that the local version is up-to-date
and can be used.

In order to use ETags for tracking users, trackers simply set all ETags related to its
domain to the same value, which is the user’s pseudonymous id. Since the ETags is
included in every request, it can be used as a cookie containing tracking ids.

HTML5 Local Storage: HTML5 Local Storage is a client-side storage mechanism that
allows website to store data in the local device. It can be used by trackers to store and
retrieve user ids for tracking. Data stored in this storage is persistent as Flash cookie.
However, di�erent from Flash cookies (which requires Flash plug-in), HTML5 Local
Storage does not require any plug-in and therefore can be used as a universal tracking
mechanism.

Others: Many other types of storage, such as Silverlight isolated storage or HTML5
Session Storage, are available and can be used for storing tracking ids [27][44]. Kamkar
[44] introduced Evercookie, a JavaScript API, which enables tracking ids to be written to
and read from at least 10 storage places of di�erent types (including all those mentioned
above) in a user’s device, with the possibility of re-spawning data from a storage to the
others, making it di�cult even for experts to delete the tracking ids [45].
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2.1.2.3 Browser Fingerprints

Information about a browser or a device, for example user agent, language, fonts, screen
resolution, operation system, list of plug-ins, etc., if taken together, can be used to uniquely
or nearly uniquely identify a browser or a device. For example, Eckersley [46] shows that,
based on these information, a browser is unique among at least 286,777 other browsers,
and that, among his sample of around 470,000 browsers, 94.2% of those with Flash or
Java are unique. This study also shows that even though fingerprinting information can
be changed rapidly, using a simple heuristic is su�cient to associate the new with the old
fingerprint, with 99.1% of accuracy.

Fingerprinting information can be obtained passively. For example, information about
operating system, user agent and language are included by default (by the web browser)
in every HTTP request header. Other information, such as time zone, display settings,
installed fonts and installed plug-ins, can be actively retrieved by JavaScript code. Passive
fingerprinting is problematic since it does not leave any trace in the client terminal, and
therefore cannot be detected. Active fingerprinting, however, can be detected by examining
JavaScript code for suspected behaviors, such as font-probing actions [47][48].

2.1.3 Behavioral Information

Web history: The primary piece of data being collected online is web url. When a
user visits a website which contains a third-party tracking code and the code initializes a
request to a third-party server, the currently visited web url is included by default in the
Referrer field of the request’s HTTP header. It can also be retrieved by JavaScript, and
then processed and transmitted with the request. As proved by a study [49], DoubleClick,
for example, can know on average 39% and, in a maximum case, up to 61% of a user web
history. The Wall Street Journal found that, when user visits a popular website, dozens of
third parties were aware of his visit [50].

User exact intention: For the purpose of retargeting2, advertisers tend to track not only
the websites users visited, but their exact intentions (e.g. to buy a specific product) on these
websites. For example, if a user browses for a hotel on hotels.com, the id of the hotel will
be transmitted to the tracker. In this case, the tracker cooperates with the website owner to
retrieve the hotel providing this id, and therefore knows exactly what the user is interested
in, e.g. a hotel in Barcelona, Spain. Even though this information in some cases can also
be inferred from the url of the website using data mining techniques, retargeting trackers

2Retargeting is the technology used by advertisers to retarget, i.e. advertise, users with the exact products
they previously showed interest in on their websites. Retargeting will be described in more details in Chapter
6
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retrieve this information with absolute precision. In addition, they can track, for example,
user purchase intents even in his private zone (e.g. pages which require logged-in).

Detailed behaviors: Many companies3 advertise technologies to track user mouse move-
ments, clicks, scrolls, keystrokes and form fills on web pages and construct detailed heat
maps of these behaviors. Furthermore, a recent study [51] shows that mouse movements
can be strongly correlated with eye movements. Mouse behaviors tracking, therefore, can
be used to infer user attention (eye gaze) and build user attention flow patterns on web
pages.

2.2 What They Know

The fact that users’ activities on the Internet can expose a lot of information about them is
not hypothetical or opaque, but real. Tracking data is publicly used by some ad brokers
to infer user characteristics such as age, gender, used language and interests [52][53].
For example, Google maintains a set of around 1000 categories which include every
aspect of life such as entertainment, shopping, law, health, finance, etc. Many of them
are quite sensitive and detailed such as "/Finance/Credit & Lending/Loans" or "/People &
Society/Family & Relationships/Family/Parenting/Adoption".

BlueKai can sort users into 30,000 highly detailed market segments like “light spenders"
and “safety-net seniors", according to the New York Times [54]. In general, the company
can estimate users’ average net worth, political views, interests, spending habits, and more
[54][55]. In the New York Times article [54], the author created two di�erent profiles in
two di�erent browsers (running on the same computer) by browsing travel and shopping
sites, searching for flights, cars, jewelries and visiting political websites and then observed
the profiles created by BlueKai. What he found are surprisingly detailed and intrusive: One
profile is "someone who makes between $60;000 and $74;999 a year, lives in Portland,
Me., is interested in luxury cars, celebrities and TV, may have bought a cruise ticket, is an
ideal candidate to take out a mortgage and a ’midscale thrift spender’.", while the other is
"someone who lives in Los Angeles, Long Beach or Santa Ana, runs a large company with
more than 5,001 employees and cares about advertising and marketing".

According to what publicly advertised to its customers in the BlueKai Audience Data
Market [55], BlueKai possesses data about more than 160 million users who intend to buy
a particular product or service in a near term, more than 103 millions users who are likely
to interest in a topic or fall within a lifestyle category, and dozens of millions of users
of other types such as business careers, past purchases, age, education level, household

3Examples include Mouseflow (mouseflow.com), ClickTale (www.clicktale.com) and Lucky Orange
(www.luckyorange.com)
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income or presence of children. In addition, the list of about 200 health-related Preference
Data segments available on the BlueKai’s Audience Data Marketplace can be found at
[56]. Acxiom, one of the largest data brokers has, on average, 1,500 pieces of information
on more than 200 million Americans [57].

By collecting products that users purchased, companies can characterize their purchas-
ing habits and, by observing changing patterns of these habits, anticipate important events
in their life, such as being pregnant, getting divorce or graduating [58].

In a recent report after investigating 9 major data brokers [20], the FTC reports that
these entities are leveraging growing number of sources to compile evermore specialized
customer segment, including those which are very sensitive, such as those related to
ethnicity, income, religion, political leanings, age and health conditions. The segments
found in the study can be quite specific and intrusive, such as "Urban Scramble", "Mobile
Mixers", or health-related topics or conditions, such as pregnancy, diabetes and high
cholesterol. The report also notes that these data brokers are frequently sharing data with
each others and remarks the trend of associating online and o�ine data, such as between
Datalogix and Facebook.

These details are only tip of an ice berg as they are what publicly published by
trackers, excluding what they consider "sensitive information". In some specific cases, the
collected data can be extremely more worrying. For example, Sparapani [57] found that "A
Connecticut data broker called "Statlistics" advertises lists of gay and lesbian adults and
"Response Solutions" – people su�ering from bipolar disorder.", and ""Paramount Lists"
operates out of this building in Erie, Pa., and o�ers lists of people with alcohol, sexual
and gambling addictions and people desperate to get out of debt.", and that "A Chicago
company, "Exact Data," is brokering the names of people who had a sexually transmitted
disease, as well as lists of people who have purchased adult material and sex toys."

In summary, as noted by the FTC, “The extent of consumer profiling today means that
data brokers often know as much – or even more – about us than our family and friends,
including our online and in-store purchases, our political and religious a�liations, our
income and socioeconomic status, and more" [20].

2.3 Identifiability

Since trackers mostly use pseudonymous identifiers that are associated to a web browser,
not a person, they often argue that tracking data is anonymous. However, there are quite a
few possibilities that the data collected by these companies can technically be associated
with real users. For example, users often provide their real identities to websites that they
trust. These websites, however, can intentionally or unintentionally leak these information
to third party trackers, so that these trackers can map users’ pseudonymous identities with
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their real identities. In addition, the data they collect can be de-anonymized given some
prior knowledge about users which can be collected from public databases.

It is su�cient for trackers to link pseudonymous identity with a real identity just once
to internally de-anonymize the user. Even if users manage to delete pseudonymous identity
(e.g., by deleting cookies), the new pseudonymous identity assigned to them can be link
with the old one in various ways, e.g. by observing the IP address. In the following, we
elaborate various technical possibilities that tracking data can be associated to user identity,
based on a taxonomy proposed by Narayanan [59].

2.3.1 Pseudonymous Identity Can Be Linked with Real Identity

The third party is also a first party: Many companies that are tracking users on the
web, such as Google or Facebook, also have first-party relationship with users. For example,
Facebook provides online social network services that require users to provide their real
name in order to use these services. Moreover, Facebook put its widgets (e.g. "Like"
button) across websites to track users. As the cookie sent from these widgets are also those
sent to Facebook when users connect to Facebook as first party, Facebook can link these
cookies with user identity such as their real names. Similar examples can be found in the
case of Google, Yahoo, Twitter, and many others.

Leakage of identifiers from first party to third party: Several research studies [60][61][62]
found that first parties sites, including social and non-social ones, are actually leaking user
identifiable information, such as user social network id, username, email address or zip
code, to first party sites. For example, some first-party websites include user name or email
address in page urls or page titles when users log in. As this data is collected by trackers,
users personal identifiable information could be retrieved by parsing the data. Since user
cookies are included in tracking requests, it is trivial for trackers to map these cookies with
user personal identifiable information.

A first party sells the user’s identity : Some first party companies make a business of
collecting user personal identities and sell them to third parties. For example, eBay was
a prime data provider of matching services which match user o�ine data to their online
cookies. Since eBay was a marketplace operating online, it assigned cookies to users. At
the same time, it required users to register with their real names and email addresses before
they can make orders on its marketplace. Consequently, with user cookies linked with
their identities, eBay can provide services to other companies to sync users’ o�ine data to
online cookies. eBay shut down the service in 2011 [63], but plenty of other companies
operating online which require user registration could have the same data, for example
large e-commerce or hotel booking sites.



19 CHAPTER 2. BACKGROUND: ONLINE TRACKING AND PRIVACY

2.3.2 Data De-anonymization

User profiling data in a pseudonymous database can be de-anonymized by matching it with
a public identified dataset. We illustrate this process through a simple example. Assuming
that, in a certain day, a user visits websites belonging to his hometown newspaper, his
university and his company, and that there is high probability that he is the only one who
visited all these web sites at the same day. Consequently, anyone who knows his such visits
can reasonably identify him in an anonymous web history containing these websites during
that day. As a user web history was shown to be quite unique [64], such identification
technique is likely feasible given an adequate amount of identified data is disclosed.

Since users increasingly participate and leave their public footprints on many websites,
e.g. by putting likes and comments, these information can be collected and used to construct
a public identified dataset about them. Even though users might use di�erent usernames
on di�erent websites, in a significant proportion of the cases, usernames belonging to the
same user have been shown to be strongly related and linkable [65].

The feasibility of data de-anonymization can be seen in a study [66] in which Narayanan
and Shmatikov showed how to deanonymize the Netflix’s published database, which
contains anonymized movie ratings of 500,000 Netflix subscribers, by matching it with
non-anonymous movie rating database on the Internet Movie Database (IMDb) website.
The authors proved that anyone who knows a little bit about a subscriber can identify his
record if it is present in the dataset. The conclusion is based on surprising statistics in
the study: With 8 movie ratings and dates, 99% records can be uniquely identified in the
dataset. For 68% of the record, even two ratings and dates are su�cient.

2.4 Why We Should Care about Online Privacy

2.4.1 Counter Arguments

Tracking is anonymous: The era that people are anonymous on the Internet has possibly
gone. In the previous section, we showed that re-identification techniques are getting
increasingly sophisticated, e.g. correlating users’ online with o�ine data, and actually
employed by certain companies. As users tend to engage more with the Internet in their
daily lives and consequently leave more and more footprints in the online world, the
possibility that they can be identified by companies are getting higher. Nowadays, it is safe
for everyone not to expect that his identity is protected when browsing the Internet.

Nothing to Hide: In addition to the illusion of anonymity, a common argument which
pervades privacy discussions is that ordinary people have "nothing to hide" and that if they
commit in doing bad or illegal things, they do not have the right to keep them private. In



CHAPTER 2. BACKGROUND: ONLINE TRACKING AND PRIVACY 20

Britain, for example, millions of public surveillance cameras have been installed by the
government in order to monitor its citizens. One of the program’s slogan is "If you’ve got
nothing to hide, you’ve got nothing to fear.". Companies also advance these argument to
justify their activities. As stated by Eric Schmid, CEO of Google, "If you have something
that you don’t want anyone to know, maybe you shouldn’t be doing it in the first place".
Various forms of the nothing-to-hide argument appear on blogs, websites and forums. They
are even supported by many users who declare that "As long as you’re not doing anything
wrong, you have nothing to worry about".

These arguments are considered by Schneier as "the most common distort against
privacy advocates" [67]. The legal scholar Geo�rey Stone [68] refers to it as an "all-too-
common refrain." Solove [69] refutes these argument saying that it only focuses on a
narrow concept of privacy, viewing privacy as a form of concealment of bad things or
secrecy. He argues that privacy violation does not necessarily mean exposing deepest
secrets of users. Instead, that our data are collected, analyzed and used without our consent,
or even knowledge, is a privacy problem in itself.

In fact, privacy is an inherent human right and a basic human need [67]. Everyone has
a right to keep something, including the most awkward ones, private from others. Privacy,
as articulated by Warren and Brandeis [70], is fundamentally the "right to be let alone".
Ironically, by nothing-to-hide argument, trackers impose a default assumption that people
have "nothing to hide", and require them to prove that privacy invasion causes serious
problems in order to have the right to protect their privacy.

The problem is not just that someone has something that he might consider wrong,
but that we all have something that someone, in some context, will consider wrong. For
example, the fact that one’s grandfather is Jewish (or Sunni, or a communist) is not
particularly discreditable, but in other times or circles such information could get him in
troubles with serious discrimination or even threaten his life.

Despite serious objections against nothing-to-hide argument, many people still think
that privacy problems are only abstract concerns. In the next section, we show that privacy
violation can potentially and actually cause negative tangible impacts on people’s lives
from multiple perspectives, rather than simply provoking feelings of unease.

2.4.2 Potential Risks of Privacy Violation

Solove [69] argues that "Privacy is often threatened not by a single egregious act but by the
slow accretion of a series of relatively minor acts." Viseu et al. [71] explain that privacy is
an abstract concept and that people only become concerned when their privacy has gone.
They compared privacy loss with "global warming": people know that global warming
is negative, but "the immediate gains of driving the car to work or putting on hairspray
outweigh the often invisible losses of polluting the environment." In the following, we
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discuss several such negative impacts of privacy problems, which are expectedly increased
given more and more user data are made available.

2.4.2.1 The risks of abusing user data

Given various possibilities of privacy leaks discussed in Section 1.3, which are studied
in more details in Chapter 4 and 5, user data is not only collected and used by trackers,
but can also be leaked to various other entities, including the government or employers.
Collected information, when abused by these entities, can potentially cause harms to users
physically or mentally. Possible risks include government surveillance and control, service
discrimination, price discrimination and bad e�ects on employment opportunities.

� Government surveillance and control: As government surveillance serves the
purpose of detecting and fighting against crime and terrorism, it can also mis-classify
innocent people as related to these behaviors. When people are suspected, for
example of engaging in to a criminal act, they may get in trouble with deeper
government penetration in their private lives, or even be subject to some prohibition,
such as denying a fly. They do nothing wrong but the government may still cause
harms to them.

Moreover, many people are not comfortable with government scrutiny, not because
of wrongdoings but for political reasons. Government surveillance therefore might
impede the work of, for example, human rights workers or journalists, by preventing
ordinary people from cooperating with them. In general, such surveillance could,
for instance, inhibit such lawful activities as free speech, free association, and "other
rights essential for democracy" [69].

� Service discrimination: Tracking and profiling people might reveal that they have
or potentially have a certain diseases. A person might be denied insurance by an
insurance company knowing this information. Generally, user profiles can be used
not only for marketing purposes but also, for example, for “risk assessment” by
financial companies or insurers. For instance, a category like “Biker Enthusiasts”
could be used to o�er discounts on motorcycles to a consumer, but could also be
used by an insurance provider as a sign of risky behavior [20].

� Price discrimination: Sellers and marketers have long discovered that di�erential
pricing is more beneficial to them than distributing the same prices to all users. The
barriers of doing that - including computation resource constraint and lack of user
data - have increasingly been overcome by advanced technologies. Increasingly,
o�ered prices can be significantly di�erent to users based on what they have done
in the past. For example, sellers tend to estimate for each user his willingness to
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pay and the possibility that he switches to other providers and accordingly o�er a
suitable price [72].

� Bad e�ects on employment opportunities: Many cases have been noticed in which
people got fired as their employers were not content with what they had posted on
social media pages [73], even when these posts were set private [74]. Besides these
widely known cases, there are various possibilities that revelation of users’ private
information or behaviors, such as looking for a new job, can cause harms to them.
Even when they do not directly lead to a job loss, such disclosure may impede their
promotion opportunities or cause discrimination. In addition, employers are having
a trend to collect information about job candidates before job interviews. Exposing
private information may lead to discrimination among candidates, for example by
their religion, ethnicity, political views, medical conditions and so on.

A common problem in all these practices is that what companies or governments know
about users might be partial, which bring distort pictures of them. Their processing results
therefore can be incorrect, leading to incorrect decisions. An innocent person might be
suspected by the government, a customer might be charged higher than the others even
though he is not wealthier than the others, or a person might be denied of recruitment for
some incorrect knowledge about him. The trouble is, when users fall in these cases, they
often do not know based on which data these decisions were made or where the data come
from, and therefore have no chance to correct errors or complain. Various possible harms
might come from errors, non-transparency and unaccountability.

2.4.2.2 The risks of personalization

Companies are using tracking data in personalizing not only ads but also various other
content and services to users. For example, search engines show people search results
relevant to their previous queries and clicks, Facebook provides user’s news feeds based
on what they liked or commented, or Netflix recommends films to users based on those
they have watched and their ratings. The idea of relevance can be illustrated by a quote
from Mark Zuckeberg: "A squirrel dying in your front yard may be more relevant to your
interests right now than people dying in Africa." [75] By analyzing user data, companies
are increasingly providing users with what they think relevant to users, in expecting to
increase users’ engagement and ad views.

These personalization services can be problematic if they only provide users with
content which are based on their established views and regular reading habits, instead
of those that could challenge and broaden their knowledge. Since personalization is an
increased trend, users might get trapped in a narrowly restricted online universe, or in other
words, a filter bubble [76][77], where what they clicked on in the past determine what
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they see next. As Pariser puts it, "you can get stuck in a static, ever-narrowing version of
yourself — an endless you-loop.”

2.5 Conclusion

Tracking and related privacy risks might be vague for many people. In this chapter, we
gave a concrete and comprehensive view on these practices. We detailed how tracking
takes place and what trackers can possibly know about Internet users. We then analyzed
possible resulting consequences to people if they lose their online privacy.

Actually, an understanding that tracking is problematic can serve many purposes. First,
this helps users build a right attitude towards tracking and therefore consciously take
measures to protect their privacy and actively contribute to the debates around this topic.
Second, this urges companies to put more attention to user privacy in their business and to
adopt privacy-enhancing techniques whenever possible, instead of leveraging pretexts that
there are technically no privacy problem. Third, it put pressures on legislative bodies to
work out legislations to regulate tracking behaviors.

Although not discussed in this section, we acknowledge that tracking does bring
benefits. For example, government surveillance to fight against terrorists is important and
necessary, collecting users’ behaviors might help serving them more appropriate and useful
content, or revenue from targeted advertising could foster innovation and free content on
the Internet. Our point is that, instead of arguing that privacy problems do not exist (e.g.
tracking is anonymous, nothing to hide, etc.), a more acceptable argument should be that
they do exist, but the benefits from tracking might, in short term and in some respects,
outweigh some privacy loss. Only when the consensus about harms and benefits of tracking
is established, that the process towards enhancing online privacy can be accelerated.

One possible way for companies to reduce privacy concerns is to enhance transparency
in their data collection and use. Even though tracking might serve useful purposes, users
need to know exactly what are collected about them, what information companies infer
from collected data, and how they use these data in their business practices. Furthermore,
users should be given choices to correct errors or remove sensitive pieces of information
that they are not willing to share. In addition, data resulting from tracking should be open
to external technical audits to check their conformity to privacy protection standards (e.g.
di�erential privacy, k-anonymity and l-diversity). As a matter of fact, privacy concerns
could be significantly scaled down if tracking companies show that they actually have
"nothing to hide".
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Chapter 3

Related Work

Given significant concerns about privacy problems in targeted advertising, there have
been quite a few research work studying this topic from di�erent perspectives. Naturally,
many researchers try to track the trackers and provide an understanding of their tracking
technologies and the prevalence of their tracking behaviors. Simultaneously, scores of
tracking protection techniques have been developed with the aim to provide users with
more transparency about tracking and options to prevent unwanted tracking practices.
Some privacy researchers focus on existent or potential privacy leakage resulting from
the use of user private data, urging related companies to put privacy as a priority in their
business.

On the other hand, multiple solutions to strike a balance between protecting user privacy
and enhancing economics of targeting have been put in perspective. From the technical
approach, several technical designs have been proposed to enable targeting services without
tracking users. From the economics angle, some privacy researchers tried to evaluate the
monetary value of user privacy while some others proposed market mechanisms where
user privacy can be traded and used as a commodity, providing monetary compensation to
users who allow their personal data to be used by companies.

In this chapter, we summarize these previous work with the aim to provide a compre-
hensive view on the state of the art in the field and position our contributions.

3.1 Tracking the Trackers

Knowledge about trackers’ behaviors can enhance users’ awareness about how and to
which extent their data are collected and, at the same time, support policy makers in making
meaningful legislative decisions. Some comprehensive surveys about online tracking and
privacy can be found in [27][78].

25
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3.1.1 Prevalence of Tracking

Krishnamurthy et al. [79] found that increasing aggregation of data have been performed
by a steadily decreasing number of entities over a long period. According to results from
longitudinal experiments in this study, the penetration of the top-10 third-party servers
across a large set of popular Web sites had grown from 40% in October 2005 to 70% in
September 2008. Roesner et al. [49] showed that several trackers can capture more than
20% of a user’s browsing behavior. Specifically, they point out that DoubleClick can track
on average 39% and maximum of 66% of the pages visited by a user. Besides, Facebook
and Google can track users across an average of 23% and 21% of a user web browsing
history (respectively 45% and 61% in the maximum cases).

The Wall Street Journal (WSJ) analyzed 50 most popular U.S. websites and built their
"exposure index" - to determine the extent to which each site let trackers track their visitors.
The results showed that many of them expose user visit to at least 50 trackers. The highest
number was recorded in the case of dictionary.com, with 234 trackers [50].

Online social network tracking significantly raises concerns, as these companies often
have first-party relationships with users and therefore can easily correlate tracking data
with user real identities (Section 2.3). As shown in [80], online social networks tracking
are presented in up to 22% of top Alexa sites, the tracking is in form of social network
embedded contents such as Facebook "Like", Google+ "Share" or Twitter "Re-Tweet"
button. The authors emphasize that these tracking do not require users to log in to their
social network accounts or take actions (e.g. click on the buttons), but a�ect even users who
do not have accounts. Another WSJ examination of nearly 1,000 top websites revealed that
75% of them included code from social networks, such as Facebook’s "Like" or Twitter’s
"Tweet" buttons [81].

Another measurement study of web tracking including the prevalence of such tracking
items as cookies and webbugs was presented in [82].

3.1.2 Tracking Techniques

Roesner et al. [49] proposed a taxonomy to classify trackers by the di�erent techniques
used to track users. The authors proposed 5 types of tracking behaviors depending on how
trackers interact with user browsers: (1) Third-party trackers, e.g. analytics services, track
users within sites (e.g. tracking identifiers are di�erent with di�erent sites); (2) Third-party
trackers use the same identifiers in third-party storages (e.g. cookies) to track users across
sites; (3) Cross-site third-party trackers force users to visit their domains directly (e.g.
popup, redirect) and therefore put them in position of first-party entities; (4) Third-party
trackers rely on other trackers to leak tracking identifers to them in order to track users
across sites; (5) Cross-site trackers have their own websites or services which users may
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visit or use directly.
In addition, browser security principles can be breached by trackers with the aim to

collect user information. [83] exposed the privacy-violating information flows in JavaScript
applications that help third parties steal user cookies, sni� user browsing history and collect
user behaviors such as mouse clicks and movements. [84] show that the "same-origin"
principle, which prevent web components from di�erent domains to interact with each
other, is not guaranteed, and that companies can violate this principle and leverage the
caching information to share persistent identifiers and snoop on a visitor’s activities at
other sites. Moreover, by observing visited link di�erentiation on browsers, third parties
can query user history database.

Tracking by regular cookies is widely known and publicly used by trackers, and
therefore can easily be prevented even with browsers’ default mechanism (such as block
or frequently delete third party cookies). Tracking by supercookies or other permanent
storage mechanism is much more worrying since the data in these cases is permanent
and hard to detect. Soltani et al. [43] found that Flash cookies are a popular mechanism
for storing data on the top 100 sites ranked by QuantCast. Some of them were using
Flash cookies to recreate HTTP cookies deleted by users. A follow-up study investigating
tracking techniques using Etags and HTML5 Storage mechanisms appeared in [85].

In addition, fingerprinting is a new trend of tracking and has attracted many research
work. Eckerley [46] studied the uniqueness of web browsers that might allow trackers to
fingerprint users by their browsers. The author observed that, among browsers that support
Flash or Java, an average browser carried at least 18.8 bits of identifying information,
and 94.2% of them were unique in the studied samples. In addition, [86] uncovered that
the use of HTTP user-agent string alone, or in combination with IP prefix can accurately
identify up to 80% client hosts, and that the technique can be e�ectively used to link user
cookies from di�erent sessions even if the users manage to clear cookies (e.g. by using
private browsing mode) (up to 88% of user cookies). [48] revealed the techniques that are
used by commercial fingerprinting service providers. [47] quantified the prevalence of
fingerprinting actions on the Web by examining suspected font-probing actions.

3.2 Tracking Protection Techniques

A large set of privacy-enhancing tools [35][34][87][36] have been developed to provide
users with transparency and control over tracking. Most commonly, these tools apply block
lists which contain the patterns of tracking urls to be blocked. The block lists are built
from in-door experiments and/or feedbacks from the community. In some tools, users can
choose a block list from any third party provider, and flexibly block/unblock each tracker
in the list.
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Since blocking prevents all communications with trackers, this may also stop useful
functionalities. For example, Facebook embeds "Like" buttons on many websites to allow
users to express their preference to the website’s contents. However, the requests sent from
these buttons (even when users do not click) are perceived as tracking requests since they
notify Facebook about the websites users visited. ShareMeNot [49] is designed to prevent
this kind of tracking while still allowing the functionality of the embedded content. Its
approach is to strip cookies in requests sent from these components but allow these cookies
when users click on the button. The tool is applicable for a wide range or online social
network embedded contents, such as "Retweet" button from Twitter or "+1" button from
Google Plus.

There have been several other approaches to prevent tracking. For instance, NoScript
[88] blocks Javascript, Flash and other plug-ins, only allowing those from trusted domains
to be executed. BetterPrivacy [89] helps users view and delete Flash and other super-
cookies in their browsers. Jackson et al. [84] develop a Firefox extension to enforce the
same-origin policy in browsers to avoid information leakage between di�erent domains.
However, the authors argue that, even with perfect same-origin policy and third-party
cookie blocking, cooperating sites can still share user information with each other unless
web browsers do not maintain any user long-term states (e.g. long-term cookies).

Instead of blocking trackers, TrackMeNot [90] obfuscates user profiles by issuing
randomized queries to search engines. Similarly, in addition to traditional blocking
function, DoNotTrackMe [87] mask user personal information such as email, phone
number, credit card number when users are required to provide them to websites they
interact with. By using DoNotTrackMe, users can still receive emails or phone calls
without having to provide their actual email addresses or phone numbers, and therefore
can stop receiving them whenever they want.

Some browser extensions [91][92] are aimed to prevent fingerprinting by spoofing
user-agent strings in HTTP requests. However, [48] shows that these extensions are not
e�ective. Interestingly, they may be used as an additional fingerprinting feature. [47] also
analyzed the vulnerabilities in fingerprinting-counter approaches such as Tor Browser [93]
and Firegloves [94].

Given the popularity of tools for preventing tracking, Leon et al. [28] studied the most
common ones and found that these tools contain serious usability flaws that make them
challenging for normal users to understand and use. These flaws include inappropriate
default settings to protect user privacy, lack of communication and feedbacks, confusing
interfaces and negative a�ects on functioning features of websites.
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3.3 Privacy Leakage

Leakage from first party to third party: First-party sites, with which users directly
interact and provide their information in order to use their services, may leak these
information to third party trackers. Krishnamurthy et al. [60] show that Online Social
Networks (OSNs) and their applications are leaking user’s PII such as user id, email
address or zip code to third-party aggregators, and it is possible to link these PIIs with user
actions both within OSN and non-OSN sites. In another study [61], Krishnamurthy et al.
showed that non-social first-party sites also frequently leak user information to third parties
aggregators. Concretely, 55% of studied sites directly leak piece of private information,
with the result increasing to 75% if the leakage of site userids is included. In addition,
sensitive search strings on a significant percentage of health-care and travel Web sites are
often leaked to trackers.

The Wall Street Journal tested the top sites in the U.S., including those related to
sensitive subjects, and detected that many of them share users’ personal details, including
email, name, username, age/birth year, zip code or others, to third-parties companies [62].
Interestingly, the Journal’s website, wjs.com, was also leaking users’ email, name and age
to scores of third-party companies. In response, wsj.com says that most of these data are
transmitted in error.

Leakage from ad brokers to advertisers: Ad brokers often build intermediary layers
to allow advertisers to personalize ads to users without accessing to user data. However,
Korolova [16] showed that, in the case of Facebook ad broker, this is not enough to protect
user private data from being leaked to advertisers. Specifically, she presented a set of
attacks that allow advertisers to take advantage of the micro-targeting capabilities o�ered
by Facebook advertising platform to learn user private data.

Facebook ad systems allow advertisers to target users based on a set of user profile
features such as age, gender, workplace, interests and location, whether they are set public
or private by the users. An attacker can simply choose a set of public information which
likely uniquely identify a user (e.g. living in France, working at Inria, studied at a university
in Vietnam), then configure his ad to be shown only to users having such information in
addition to a piece of private information he wants to guess (e.g. age from 25 to 35), and
then observe the ad report. If this ad is viewed by one user, then the guessed information is
likely correct (the victim’s age is actually between 25 and 35). In case the victim clicks on
the ad, the attacker can learn more information about him beyond his Facebook profile.
For example, a click on a dating advertisement may reveal that the user is actively looking
for a relationship.

Facebook tried to fix this problem by requiring that the number of users targeted for an
ad be larger than a minimum number. However, Korolova argued that it is not adequate
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as, for example, the attacker can create fake accounts to satisfy the minimum number of
targeted users.

3.4 Privacy-Preserving Targeted Advertising

As early as in 2001, Juels [38] proposed the idea of storing user profiles locally and
presented several technical schemes for ad brokers to distribute personalized ads to users
without knowing their profiles. These schemes represent di�erent trade-o�s between
privacy and resource cost, ranging from simple approaches such as ad servers distribute all
ads to users for them to locally select those most relevant to their profiles, to much more
sophisticated ones based on Personal Information Retrieval (PIR) and mix networks. In
the latter schemes, ad requests are encrypted by users’s public keys and then perturbed and
aggregated by mix networks so that ad servers can deliver ads to users without knowing
which ad is actually requested by a user. Juels only focused on ad delivery schemes and
did not consider other features of an ad system such as click fraud defense, billing and
accounting.

Saikat et al. proposed Privad [39], a complete privacy preserving targeted ads model. In
their design, a client software builds the user profile locally, a dealer acts as an anonymizing
proxy to mediate the communication between users and ad brokers, while the commu-
nication is protected from the dealer with the public keys of ad brokers. Privad uses a
publish-subscribe mechanism for ad delivery: the ad broker transmits ads to users accord-
ing to their subscribed coarse-grained information (e.g., generic interest category such
as “sport"), the ads are cached at the user’s device, and the local software selects ads that
best match the user profile when encountering an ad box. Since the client in Privad is
implemented as an untrusted black box, a reference monitor is needed to gauge the tra�c
between the client and the network. Ad auctions in Privad can be performed at client, at
server or at a trusted third party [95].

Adnostic [40] similarly profiles users locally but uses a di�erent approach for ad
rendering. In Adnostic, the broker transmits a set of ads solely based on the page that
a user is currently visiting, and the local software selects ads that best match the user
profile to display to the user. Ad view reports are encrypted so that the ad broker does not
know which ad is actually displayed to the user, while an homomorphic encryption scheme
allows them to aggregate these reports and correctly charge advertisers. Since Adnostic
does not require any trusted third party and allow ad brokers to see user visited pages as
they do in today’s systems, it provides a weaker privacy protection in comparison to Privad
which aims to technically protect every piece of user information.

Obliviad [41] shares the idea of storing users’ profiles at their devices, however shifts
current algorithms of ad brokers into secure co-processors (SC). SCs are provided by a
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trusted third party (e.g. IBM) and are tamper-resistant from any external entities including
ad brokers. To request ads, the user sends his profile in form of keywords to the SC
through a secure connection (e.g., TLS). The SC subsequently selects and serves ads from
the broker’s database using these keywords. Obliviad implements a PIR scheme over
an ORAM structure to hide all the database access patterns of the SC from the broker.
Each ad is associated with an encrypted token containing billing information which can be
decrypted only by the SC. The ad broker collects these tokens when ads are displayed, and
periodically sends these tokens to the SC and get back aggregated results which can be
used to charge advertisers.

Hardt et al. [96] formalized a framework for personalized ad delivery taking into
account three parameters - user privacy, communication complexity and ad relevance
- and proposed optimization algorithms to optimize ad relevance given two constraints
on user privacy and communication complexity. In addition, the authors developed a
privacy-preserving protocol for aggregators (e.g. an ad broker) to gather user statistics (e.g.
ad click through rates) in a di�erentially-private manner, which is e�cient even when a
large proportion of participants might dynamically change or become malicious.

RePriv [97] proposes a client-side framework for content providers to inject their
miners (in form of embedded codes) to run on the user’s terminal. These miners collect
user information according to specific purposes of each provider, then customize the
provided content accordingly. RePriv is aimed for content providers in general which
are not necessarily related to advertising. However, this approach can be integrated in
privacy-preserving targeted advertising schemes which opt to store user profiles locally,
for example in building and maintaining local user profiles.

3.5 Economics of Privacy

3.5.1 Value of User Privacy

Understanding the value of privacy is of great important for companies, privacy advocates
and policy makers in finding solutions to privacy problems.

In order to evaluate the cost of privacy, Hann et al. [98] considered four dimensions
of privacy concerns - collection, error, secondary use and improper access - and showed
that websites need to o�er substantial monetary incentives to overcome these concerns.
For example, the value of dis-allowance of secondary use of personal information is worth
between $40 and $50.

Many studies estimated the value that users attach to their personal data through sealed
bid auctions in which users sell their data to interested parties. For example, Danezis et al.
[99] found that the bid which users made for their location data to be used by third party
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companies is around the median of 10 pounds. The median bid increases to 20 pounds if
users were informed that their data might be used for commercial purposes. A larger study
(over 1200 people from five EU countries) [100] rea�rmed the median value between 10
and 20 pounds. Carrascal et al. [101] let users valuate their private data at real time by
pop-up questions during their web browsing. Their result shows that, on average, users
evaluate the price of the disclosure of their presence on a Web site to ¿ 7.

In a di�erent approach, Beresford et al. [102] studied people’s unwillingness to pay
for privacy. In their experiments, participants were given the choice to buy a CD from
two stores which are identical except one requiring more sensitive personal data, such
as monthly income or date of birth, than the other. With one euro discount, almost all
participants chose to buy from the vendor requiring more sensitive data. Surprisingly,
when the two vendors o�er the same price, the buyers bought from both shops equally.
In a quick survey after the experiments, most participants claimed that they have strong
interest in their privacy protection.

The two common concepts to understand how users valuate their privacy are Willingness
To Pay - WTP (the monetary amount users are willing to pay to protect their privacy) and
Willingness To Accept - WTA (the compensation that users are willing to accept for their
privacy loss). Krasnova et al. [103] found that, on average, a user would be ready to pay
between ¿ 14.14 and ¿ 17.24 a year if the social network providers refrained from using
his or her demographic information for personalized advertising. Another experiment
[104] indicated that users would pay ¿ 9.45 on average to migrate their Facebook profile
information to Google Plus in case Facebook shuts down its social network service and
deletes all data.

Acquisti et al. [105] discovered users’ WTA and WTP through user choices of anony-
mous or traceable gift cards with di�erent values, and suggested that the way privacy
choices are framed may a�ect users’ decisions. Gideon et al. [106] found that when privacy
information is made readily available (e.g., displayed in correlation with websites on a
search engine), users may be willing to pay a premium for increased privacy protection
(e.g., buying products with higher prices from more privacy-friendly websites). Even
though WTA and WTP are di�erent for di�erent types of personal data, there are wide
gaps between WTA and WTP - WTA tends to be higher in all cases [107].

In fact, the value that users attach to their private information might vary depending on
various conditions. For example, users tend to put low value on their personal information
such as age and weight if they are among typical values or if they bring ‘positive’ images
of the users (e.g. normal weight) [108]. [109] suggests the impact of demographic
characteristics, for example, people with lower personal income are likely to be less
concerned about privacy than those with higher income. In addition, users’ valuation of
privacy can be di�erent by countries and genders (e.g., women are possibly more privacy
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sensitive than men) [100].
Although most studies in literature estimated the value of user privacy from the user

perspective, this approach has certain limits. First, users often lack enough information to
make their privacy decisions, and even with su�cient information, they tend to trade o�
privacy for short-term benefits [109]. Moreover, the emotional aspect of privacy decisions
makes it di�cult to evaluate user privacy. For instance, users’ answers to privacy surveys
are significantly a�ected by the wording of the survey questions [110]. Moreover, due
to the limited size of experimented samples, surveys conducted with di�erent groups of
users might lead to contradicted results. For example, [99] suggests that users who travel
more often valuate their location data more than the others, while [100] found that travel
frequency does not a�ect users’ valuation of their location privacy.

The limits of these approaches can be complemented by studies from the advertiser
perspective. Advertising companies actually make monetary profits from using user
personal data, and therefore can have a practical view on the value of these data. The work
presented in Financial Times [111] provided an analysis of industry pricing data from a
range of sources in the US. The authors showed that general personal information, such
as age, gender and location is worth a mere $0:0005. A person who is having a specific
intent, e.g. buying a car, is likely worth more at about $0:0021. However, the used data
source and methodology of the study are not published.

3.5.2 User Privacy as A Commodity

Instead of preventing trackers from collecting user data, some researchers have proposed
ideas of a privacy market in which these companies pay users for the use of users’ data.
The argument in these proposals is that economic incentives will possibly increase users’
adoption and engagement to these models.

Ideas about a privacy market at a high level were discussed in [112]. Later on, Ghosh
et al. [113] proposed a formal framework for aggregators to buy private data from multiple
users at auction. The authors proposed auction mechanisms in which sellers (users) are
encouraged to report the true evaluation of their privacy and designed optimized algorithms
for data analysts to reach their goals, for example maximize their accuracy goals at a limit
budget or minimize their payment in achieving a given accuracy goal.

Riederer et al. [114] proposed the concept of "Transactional Privacy" in which users
sell information about their browsing activities to aggregators on a personal information
market. Each time a user visits a website, he chooses whether or not to sell information of
this visit on the market through a trusted third party. Given the user’s consent to sell his
information, the trusted third party makes it available at auctions where aggregators can
bid to gain access to these information. In this model, aggregators receive raw data (e.g.
web page urls), and therefore can flexibly process these data according to their specific
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purposes. The goal of this model is to keep user data under their controls, incentivize them
to share data and provide maximum utility to data aggregators.



Part I

Privacy Leaks in Targeted Advertising
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Chapter 4

Privacy Leaks in Targeted Ads Delivery

In this chapter, we show that targeted ads, which are often sent in clear, expose users’
private data to any entity that has access to a small portion of these ads. More specifically,
we show that an adversary who has access to a user’s targeted ads can retrieve a large part
of his interest profile. This constitutes a privacy breach because, as illustrated in Section
4.2, interest profiles often contain private and sensitive information.

Specifically, we describe an attack that allows any entity that has access to users’
targeted ads to infer these users’ interests recovering a significant part of their interest
profiles. Our experiments with the Google Display Network [115] demonstrate that by
analyzing a small number of targeted ads, an adversary can correctly infer users’ Google
interest categories with such high probability as 79% and retrieve as much as 58% of
Google Ads profiles. The attack described in this chapter is practical and easy to perform,
since it only requires the adversary to eavesdrop on a network for a short period of time
and collect a limited number of served ads.

4.1 Motivation

This work was largely motivated by the Cory Doctorow’s "Scroogled" short story that
starts as follows [116]:

Greg landed at San Francisco International Airport at 8 p.m... The o�cer stared at his
screen, tapping...

-“Tell me about your hobbies. Are you into model rocketry?”
-“What?”
-“Model rocketry.”
-“No,” Greg said, “No, I’m not.”
-“You see, I ask because I see a heavy spike in ads for rocketry supplies showing up

alongside your search results and Google mail.”
-“You’re looking at my searches and e-mail?”

37
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-“Sir, calm down, please. No, I am not looking at your searches,... That would be
unconstitutional. We see only the ads that show up when you read your mail and do your
searching. I have a brochure explaining it ...”

The main goal of this chapter is to study whether such scenario would be possible
today, and if one can infer a user’s interests from his targeted ads. More specifically, we
aim at quantifying how much of a user’s interest profile is exposed by his targeted ads.
However, as opposed to the above story, we do not consider ads that show up when a
user reads his email or uses a search engine. These ads are often contextual, i.e. targeted
to email contents or search queries. Instead, we consider targeted ads that are served on
websites when a user is browsing the web.

The crux of the problem is that even if some websites use secure connections such as
SSL (Secure Socket Layer), ads are almost always served in clear. For example, Google
currently does not provide any option to serve ads with SSL1 [117]. We acknowledge that
in some scenarios the adversary can recover a user’s profile directly from the websites
he visits, i.e. without considering targeted ads. However, we show in this chapter that
targeted ads can often improve the accuracy of recovered profiles and reduce the recovery
time. Furthermore, in some circumstances, the victim has di�erent browsing behaviors
according to his environment. For example, a user at work mostly visits websites related to
his professional activity, while he visits websites related to his personal interests at home.
We show in this chapter that an adversary, such as an employer, that can eavesdrop on the
victim’s computer or network while at work can infer information about his “private” and
personal interest profile. In other words, targeted ads constitute a covert channel that can
leak private information.

Although there are various targeted advertising networks today, this work focuses on
Google advertising system, which is “the most prevalent tracker" according to a survey
of The Wall Street Journal [118]. However, our methodology is general enough to be
extended to other ad networks. The problem of generality will be discussed in Section 3.1.

4.2 Targeted Advertising: The Case of Google

Google Display Network is a network of websites (also called publishers) that serves Google
ads. Google receives ads from advertisers and then selects the appropriate publishers using
various criteria such as relevant content, bid price and revenue.

In the Google targeted advertising model, Google Display Network sites are also used
to track users as they browse the Internet. Each time a user visits a website that contains
Google ads, i.e. a website that belongs to the Google Display Network, he sends his

1We verified this feature by browsing through several https websites (e.g. https://www.nytimes.com/).
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DoubleClick2 cookie to Google, along with information about the visited website. As a
result, Google collects all the sites within the Google Display Network that have been
visited by a user, and builds an interest profile from them. A Google profile is defined
as a set of categories and sub-categories (see figure 4.1). For example, if a user visits a
football site several times, Google may assign him the category Sport, or more specifically
the subcategory Sport ! Football. In addition, a Google profile may include location
information and some demographic data such as the gender and age of the user. These
profiles are then used to target ads to users.

A user can access and modify his Google Ads Preferences by accessing the webpage
http://www.google.com/ads/preferences [119]. Furthermore, a user can choose
to opt out of the Google targeted advertising if he no longer wants to receive targeted ads.
Figure 4.1 displays an example of a Google user profile that contains potentially private

Figure 4.1: An Example of a Google Ads Preferences Page.

and sensitive information. For example, the “Job listing" category indicates that the user is
probably looking for a job. A user might probably want to keep this information secret,
in particular from his current employer. Furthermore, the category “Dating & Personals"
indicates that the user is currently actively looking for a relationship, and the subcategories
“Baby names" and “Adoption" that he has been recently visiting web sites related to baby
adoption.

In its privacy policy, Google states that “We take appropriate security measures to
protect against unauthorized access to or unauthorized alteration, disclosure or destruction
of data.", and “We restrict access to personal information to Google employees, contractors

2In order to keep track of users visiting the Google Display Network, Google uses the DoubleClick
cookie issued from the doubleclick.net domain which belongs to Google

http://www.google.com/ads/preferences
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and agents who need to know that information in order to process it on our behalf” [120].
Nevertheless, in this chapter we show that a portion of personal users’ profiles could be
leaked through targeted ads. Even if Google does not consider users’ interests as “personal
information”, this data, which is related to users online activities, can be very private from
a user’s perspective.

4.3 Reconstructing User Profiles from Targeted Ads

As targeted ads are personalized to each user based on his profile, they can reveal a lot
of information about users’ interests. This section describes how an adversary who has
access to an user’s ads can derive part of his interests from them.

Ad Filtering Pro�le Reconstruction
Targeted AdsAds User Interests

Web Page
Categorization

Use Use

Figure 4.2: Filtering targeted ads and inferring user interests.

As shown in Figure 4.2, our approach is composed of two main phases. The first phase
collects all ads served to a target user and filters them to only retain targeted ones. In the
second phase, targeted ads are classified into categories and a profile is re-constructed.
These two phases are detailed in the rest of this section. However, we first start by
presenting two building blocks used by these both phases. The first one is an algorithm
that is used to categorize webpages. The second one is a set of algorithms to compare
categories.

4.3.1 Building Blocks

4.3.1.1 Web Page Categorization

The web page categorization tool is an algorithm that derives interest categories from
a web page. This algorithm relies on the tool used by Google to generate Google Ads
Preferences pages. As described in the previous section, each time a user visits a web page,
Google derives some interests in the form of categories and updates the user’s Google Ads
Preferences page accordingly.
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Ad Url Categories
http://www.elasticsteel.net?ID=156 Beauty & Fitness! Fitness
http://www.livecarhire.com Travel! Car Rental & Taxi Services
http://www.terracebeachresort.ca Travel! Hotels & Accommodations

Travel! Tourist Destinations! Beaches
& Islands

http://www.sanibelbayfronthouse.com Arts & Entertainment! Entertainment In-
dustry! Film & TV Industry! Film &
TV Production
Real Estate ! Timeshares & Vacation
Properties
Travel ! Tourist Destinations ! Zoos-
Aquariums-Preserves

http://www.siestakeyaccommodation.com Real Estate ! Timeshares & Vacation
Properties
Travel

Table 4.1: Ad page categorization example

We use this tool to build our page categorization algorithm. Given a webpage W, our
algorithm operates as follows:

1. W is visited and and the resulting DoubleClick cookie is saved.

2. A request is made to the Google Ads Preferences page with the previously saved
cookie. Note that Google does not always update the Google Ads Preferences page
upon a single web page visit. Usually, a webpage has to be visited multiple times
to update the Google Ads Preferences page. Furthermore, we noticed that users’
Ads preferences are updated after a period of time ranging between 1 and 2 minutes.
Therefore, this step is repeated 5 times (heuristic value) every 2 minutes.

3. The Google Ads Preferences page is parsed and the corresponding categories are
retrieved.

To evaluate the performance of our approach, we scraped 5000 ads from Google search
page and 2000 sites from Google Display Network, classified them by the tool, and re-
viewed the results. We detected that almost all of these pages can be categorized by Google
(more than 90%). We also manually reviewed the categorization results and observed
that, although there are some irrelevant categories, the categorization generally reflects the
content of each page. Table 4.1 presents several examples of ad page categorization.

It should be noted that relying on Google does not reduce the generality of our method.
There exist many e�cient techniques to categorize the content of web pages. For example
[40] uses cosine similarity. This method is very e�cient since it relies on social/crowd
data (folksonomy) which is continuously updated, and is appropriate for fine-grained
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categorization. We implemented this method and compared its performance with the
Google-based categorization approach we described above. The obtained results were
quite similar, with more than 60% of the categories overlapping. We therefore believe that
our work can be extended to other ad networks, such as Yahoo! or Microsoft, either by
applying their own categorization, or by simply using an existing webpages categorization
technique. Note that Yahoo! and Microsoft also build users’ behavior-based interest profiles
and similarly to Google personalize ads to users according to their interests [121] [53].

4.3.1.2 Category Comparison Methods

Many of the filtering and evaluation algorithms presented in this chapter need to compare
categories. We use three methods for this purpose: “Same category”, “Same parent” and
“Same root”:

1. Same category: Two categories are considered equivalent in the “Same category”
method if they match exactly.

2. Same parent: Two categories are considered equivalent in the “Same parent” method
if they have the same parent category. For example, the two categories “Arts &
Entertainment ! Entertainment Industry ! Film & TV Industry ! Film & TV
Awards" and “Arts & Entertainment ! Entertainment Industry ! Film & TV
Industry ! Film & TV Production" have the same parent category “Film & TV
Industry", so they are considered equivalent to each other in the “Same parent"
method.

3. Same root: Two categories with same root category are considered equivalent in
the “Same root” method. For example, the two categories “Arts & Entertainment
! Entertainment Industry! Recording Industry! Music Awards" and “Arts &
Entertainment!Movies! Action & Adventure Films! Superhero Films" have
the same root category “Arts & Entertainment" and therefore are equivalent to each
other in the “Same root" method. Obviously, if two categories are equivalent in the
“Same parent" method, they are also equivalent in the “Same root" method.

4.3.2 Extracting Targeted Ads

Ads provided by Google are either location-based, content-based (we call hereafter contex-
tual, i.e. related to the visited page’s content), generic, or profile-based (we call hereafter
targeted, i.e. customized to users’ profiles). In this chapter, we only consider targeted ads.
We therefore need to filter out location-based, content-based and generic ads (see figure
4.3).
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Filtering out
Location-based

Ads

Filtering out
Content-based

Ads

Filtering out

Generic Ads

Ads Targeted Ads

Figure 4.3: Filtering targeted ads.

Reconstructed profile
Beauty & Fitness! Fitness
Travel
Travel! Car Rental & Taxi Services
Travel! Hotels & Accommodations
Travel! Tourist Destinations! Beaches & Islandsl
Arts & Entertainment! Entertainment Industry! Film &
TV Industry! Film & TV Production
Real Estate! Timeshares & Vacation Properties

Table 4.2: Profile reconstruction example

We conducted all experiments with users from the same location. As a result, the
location-based filter is not used (and therefore not presented here). Furthermore, we
consider that an ad is contextual if it shares at least one category with its displaying page
(the page on which the ad is delivered). To filter out contextual ads, we therefore categorize,
using the categorization technique described in Section 4.3.1.1, each ad and their displaying
page. If at least one category is in common, the ad is classified as contextual. To filter
generic (i.e. not customized) ads, we create a number of non-overlapping user profiles (i.e.
profiles without any categories in common), and perform 10 requests to the tested pages3.
Ads that are served independently of the requesting profile are then deemed generic and
filtered out.

4.3.3 User-Profile Reconstruction

Given the targeted ads from the previous step, there are possibly many approaches to infer
user information. In our work, we aim at reconstructing the Google-assigned interest
categories which are presented as user profiles. In order to reconstruct a user profile, we
categorize all of his targeted ads using our Google-based web page categorization tool.
The reconstructed profile is then the set of resulting Google categories.

For example, considering the ads provided in table 4.1, the reconstructed profile will
look as in table 4.2.

3The number of 10 requests is considered to be enough to get a su�cient ad collection while resisting
well to the ad churn [122].
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4.4 Evaluation

In this section, we evaluate the performance of our profile reconstructing technique.

4.4.1 Experiment Setup

Figure 4.4 illustrates the setup of our experiments. Our experiments are composed of two
main phases:

Ad
Collecting

Ad
Filtering

Pro�le
Reconstruction

Comparison
Google
Internal
System

Reconstructed
pro�le Pr

Google pro�le (Pt )(w1; w2; :::; wX )

(s1; s2; :::; sX )

Pt

%

w1; w2; :::; wX : training websites;s1; s2; :::; sX : visited websites

Figure 4.4: Experiment setup

Profile creation: In this phase, we create a set of profiles corresponding to di�erent
web users. Each of these profiles, that we call targeted profiles, Pt, is obtained by visiting
several websites from a user’s real web-history (i.e. list of websites that the user has
visited). We refer to these websites as training sites. Each of them is visited 15 times to
make sure it really a�ects profiles. We then retrieve the generated Google profile from the
Google Ads Preferences page (this phase corresponds to the lower part of figure 4.4).

Profile re-construction: In this phase, we visit for each targeted profile (Pt) created
as described above another set of websites, that we refer to hereafter as visited websites.
As opposed to the training sites, each visited site is only visited once. The ads are then
collected, filtered and the profile reconstructed as described in Section 4.3. We refer to the
set of profiles we obtain as reconstructed profiles, Pr (this phase corresponds to the upper
part of figure 4.4).

4.4.2 Evaluation Methodology

Dataset: Our target web-history data comes from a set of 40 volunteers who provided
their list of websites they visited during two days. The first X websites in each profile were
used as the set of training sites to create Pt. The Y following websites were used to build
the reconstructed profiles, Pr, as shown in Figure 4.5.
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In the presented experiments, X was set to 30 and di�erent values of Y were used. The
average number of root categories and categories in a targeted profile from X websites is
displayed in Table 4.3.

# of root categories # of categories
X = 30 6.64 18.06

Table 4.3: Profile size statistics

Pt Pr

BrowsingPro�le Creation
(X training sites)

Pro�le Reconstruction
(Y visited sites)

Figure 4.5: Profile creation and reconstruction.

Performance evaluation metrics: To evaluate the results, we compare each reconstructed
profile with the corresponding original one. We compare profiles using the “same-
category”, “same-parent” and “same-root” methodologies described in Section 4.3.1.2. We
evaluate the performance of our technique by computing the average Precision, Recall
and F-Measure values of all reconstructed profiles. Precision is the fraction of rebuilt
categories that are correct, while Recall is the fraction of original categories that are
correctly rebuilt. F-Measure is the harmonic mean between Precision and Recall, defined
as: F = 2:precision:recall

precision+recall .
In other words, if we denote by Pr;c the categories of the reconstructed profile Pr that

are correct, and Pr;i the categories of Pr that are incorrect, Precision = jPr;cj
jPr j = jPr;cj

jPr;c+Pr;ij and

Recall = jPr;cj
jPt j .

Pt (Original profile) Pr (Reconstructed profile)

Pr;c Pr;i

Figure 4.6: Illustration of Precision and Recall.

Adversary strategies: In order to evaluate the performance gain obtained by using targeted
ads as opposed to only using visited websites, we consider the following three strategies:

- the adversary only uses visited websites (“Sites only”).

- the adversary only uses targeted ads (“Ads only”).

- the adversary uses visited websites and targeted ads (“Ads & Sites”)
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Tested scenarios: Finally, we consider two di�erent scenarios, corresponding to two
di�erent browsing behaviors:

1. HotSpot Scenario: This scenario corresponds to the case where the victim is con-
necting to an open network and browses the Internet according to his interests. In
this scenario, the X training sites and the Y visited sites are related to each others,
i.e. generated from the same interest profiles. The goal of this scenario is to show
that targeted ads can be used to boost the accuracy of profile reconstruction.

2. Workplace Scenario: This scenario corresponds to the case where the victim changes
his browsing behavior during the reconstruction phase. In other words, profiles used
to generate the training sites and the visited sites are significantly di�erent. This
situation happens, for example, when the victim is moving from his home to his
work environment. The goal of this scenario is to study how much of the home
profile leaks from the targeted ads shown at work.

In the following, we present, for the workplace scenario, how we select the visited
websites so that they are largely separated from a user’s interests. We first randomly select
a set of Google root categories, namely “Autos & Vehicles", “Law & Government", “Books
& Literature", “Beauty & Fitness", “Jobs & Education" and “Business & Industrial". We
then get for each of these categories 500 websites using the Google Adwords Placement
Tool [123]. This tool aims at helping advertisers to select websites to publish their ads. We
then get for each user all of his root categories, and select a root category C that does not
belong to them. The user’s visited sites are then randomly selected from the 500 websites
corresponding to category C. For example, if a profile contains 4 root categories: “Law &
Government", “Books & Literature", “Beauty & Fitness", “Jobs & Education", then one of
the remaining categories, “Autos & Vehicles" or “Business & Industrial", will be chosen
for visited websites. We verified that none of our test profiles contains all the six visited
categories.

Note that a website classified in a Google category according to Google Adwords
Placement Tool may result in another category in Google Ads Preferences. For instance,
Google may assign a website W to category “Arts & Entertainment". However, when
categorizing this website using Google Ads Preferences, the result may include, in addition
to “Arts & Entertainment", another root category, say “Books & Literature". Therefore,
we cannot completely guarantee that the visited websites are totally separated from the
training ones.

4.4.3 Result Analysis

Tables 4.4, 4.5, 4.6 and 4.7 represent the achieved Precision, Recall and F-Measure
values in percentage with (X = 30, Y = 10) and (X = 30, Y = 15) for the hotspot and
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workplace scenarios respectively. The rows in these tables specify the category comparison
methods used to filter out contextual ads4. This comparison method is also used to
evaluate the results (i.e. to compare the reconstructed profiles with the original ones)5. We
remind the reader that these comparison methods are described in Section 4.3.1.2. The
columns of the table specify the three di�erent cases of profile reconstruction, using “Sites
only", “Ads only" and “Ads & Sites", respectively. The tables show that the Ads-based
information leakage is significantly high, with precision values ranging from 73 to 82%
for reconstructed profiles evaluation based on recovering the root of categories solely from
Ads. For example, in case (X = 30, Y = 15) in the workplace scenario, with “Ads only"
and the “Same root” comparison method (used for both filtering and evaluation processes),
we achieve Precision, Recall and F-Measure of more than 79%, 58% and 67% respectively
(Table 4.7). The average number of targeted ads we observed accounts for approximately
30% of all collected ads in each case. We note that the results of the row “Same Category"
show in general a relatively lower precision and recall values than the results of the “Same
Parent" and “Same Root" rows.

Av.# of Sites only Ads only Ads & Sites
targ. ads Prec./Recall Prec./Recall Prec./Recall

/F /F /F
Same 14.29 19.66/7.6 18.04/7.06 18.3/14
cat. /10.96 /10.15 /15.86

Same 10.94 58.25/29 53.67/19.38 55.98/42.29
parent /38.72 /28.48 /48.18
Same 9.24 79.26/51.44 73.08/30.06 79.6/68.33
root /62.39 /42.6 /73.54

Table 4.4: Reconstructing Google profiles performance in Hotspot scenario (X = 30 and
Y = 10)

Av.# of Sites only Ads only Ads & Sites
targ. ads Prec./Recall Prec./Recall Prec./Recall

/F /F /F
Same 21.53 19.67/10.28 15.71/8.47 17.07/17.66
cat. /13.50 /11.01 /17.36

Same 16.67 54.46/34.44 51.26/23.54 52.73/50.16
parent /42.2 /32.26 /51.41
Same 14.4 75.57/61.13 82.24/40.3 78.5/80.52
root /67.59 /54.09 /79.5

Table 4.5: Reconstructing Google profiles performance in Hotspot scenario (X = 30 and
Y = 15)

Figures 4.7 and 4.8 display the variation of Precision, Recall and F-Measure when
varying the number Y of visited web sites for each targeted profile, for di�erent comparison
methods. We observe that, for a given profile (i.e. when X and therefore jPtj are fixed), the

4For example, the row "same parent" displays results when ads are considered contextual if they share
the same parent categories with the pages that display them.

5For example, the column “same parent” means that two categories are deemed identical if they share the
same parent.
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Av.# of Sites only Ads only Ads & Sites
targ. ads Prec./Recall Prec./Recall Prec./Recall

/F /F /F
Same 19.23 2.92/1.05 14.73/10.28 11.84/10.94
cat. /1.54 /12.11 /11.37

Same 13.6 9.09/3.99 46.31/30.31 34.39/31.56
parent /5.55 /36.64 /32.91
Same 11.2 12.65/6.43 78.07/53.96 56.49/55.94
root /8.53 /63.81 /56.21

Table 4.6: Reconstructing Google profiles performance in Workplace scenario (X = 30 and
Y = 10)

Av.# of Sites only Ads only Ads & Sites
targ. ads Prec./Recall Prec./Recall Prec./Recall

/F /F /F
Same 28.11 2.99/1.31 13.44/11.95 10.89/12.62
cat. /1.82 /12.65 /11.69

Same 20.3 9.13/5.06 44.95/33.8 32.75/35.45
parent /6.51 /38.59 /34.05
Same 17.13 14/8.61 79.37/58.12 55.85/60.1
root /10.66 /67.10 /57.9

Table 4.7: Reconstructing Google profiles performance in Workplace scenario (X = 30 and
Y = 15)

recall increases noticeably with Y , the number of visited web sites, while the precision
is steady. This shows that the number of correctly reconstructed categories, i.e. jPr;cj,
increases with Y . This result is expected since when Y increases the number of collected
ads also increases and as such the amount of available information is higher. However
for a given X, the precision is not notably a�ected by Y , which means that the number of
incorrectly reconstructed categories, i.e. jPr;ij, also increases with Y .

In the hotspot scenario, the visited websites are largely relevant to the training websites,
therefore reconstructing profiles from “Sites only" achieves the results as good as, if not
better than, the results obtained from “Ads only" (see figure 4.7). However, when we
combine both sites and ads in the reconstruction process, we get nearly the same Precision,
while increasing Recalls remarkably (almost the sum of the two cases “Sites only" and
“Ads only"). In this scenario, Ads are very useful to boost the performance since they allow
the recovery of a larger part of the targeted profiles.

In the workplace scenario, the visited websites are considerably separated from training
websites. Therefore, reconstructing profiles from “Sites only" leads to very poor results,
whereas the “Ads only" technique achieves significantly better results (see figure 4.8). By
combining sites and ads, we slightly increase the Recall while reducing the Precision. In
this scenario, we observe that ads do indeed constitute a “hidden” channel that leaks private
information about users.

While the performance of our method when evaluating the recovery of “root” and
“parent” categories is notably high, we acknowledge that it can only recover a small
proportion of a user’s actual categories (Precision varies between 10 and 18% when using
the same category method for evaluation, and Recall ranges from 10 to 17%). We believe
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Figure 4.7: Precision, Recall and F-Measure with the “Same category", “Same parent" and
“Same Root" comparison methods (from left to right respectively) used in both filtering
and evaluation processes (In hotspot scenario with X = 30).
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Figure 4.8: Precision, Recall and F-Measure with the “Same category", “Same parent" and
“Same Root" comparison methods (from left to right respectively) used in both filtering
and evaluation processes (In workplace scenario with X = 30).

there are several explanations for this result. First, Google might not be using the user’s
actual categories to deliver ads, and instead might use the root or parent categories for a
broader coverage of users’ interests. Furthermore, our ads classification method is probably
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not optimal and could be improved in many ways. In particular, we took a simple and
conservative approach in the filtering step by ignoring location-based ads. In addition, we
did not consider remarketing ads that, as discussed in Section 4.5, may contain additional
information about the users recent online activities.

However, even only 10 to 15% of an user’s interest categories can constitute a severe
privacy breach. To illustrate this statement, we ran our technique on the profile shown
in Figure 4.1, and using targeted ads only, we recovered the profile shown in Figure
4.9. Among the recovered categories, the category “Online Communities ! Dating &
Personals” may constitute a private piece of information which a user might not be willing
to share.

Figure 4.9: Reconstructed Profile.

4.5 Discussion

Countermeasures. In order to protect against this information leakage, the easiest solution
today is to simply opt out of targeted advertising, frequently delete cookies or use ad-
blocking software. Initiatives such as NAI (Network Advertising Initiative) [124], DNT
(Do Not Track) [125] or TPLs (Tracking Protection Lists) [37] that aim to provide users
with tools to restrict tracking and/or behavioral advertising could also mitigate the identified
privacy threat. However, these solutions often prevent advertising companies from targeting
ads or even serving ads to users.

There exist several possible countermeasures that could be used to target ads to users
and mitigate the information leakage identified in this chapter. In particular, there are
ongoing e�orts to design and deploy privacy-preserving ad systems (e.g. Privad [39]
and Adnostic [40]) whose main principle is to select ads locally. These solutions make
the eavesdropping and filtering of targeted ads, and therefore our inferring attack, much
more di�cult. Another possible solution would be to send all ad requests and responses
(containing DoubleClick cookies and ads content) over secure channels (SSL). However,
we believe that this solution needs deeper analysis from the research community and the
advertising industry since it might be too costly, not practical or altogether hard to deploy.

Stealing ads preferences via an active attack. The attack presented in this chapter is
passive, i.e. completely transparent to the victim and to the ads providers. We note that a
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user’s preferences can also be stolen by a simple active attack. If fact, if an adversary is able
to steal the victim’s DoubleClick cookie, it can connect to his Google Ads preference page
and retrieve his preferences. We examined the top 100 commercial websites from Alexa
and found that at least 71% of them exchange DoubleClick cookie in clear with remote
servers. Stealing a Double Click cookie is then quite easy. We implemented and tested this
cookie hijacking attack, and were always able to retrieve the victim’s Ads preferences page
with a simple request to Google Ads servers. This attack is simple, however as opposed to
our scheme, it is active and intrusive.

Retargeting ads. This chapter did not consider “retargeting ads"6, which advertise
the services or products of a site that a user has visited. Consider a user who is looking
for a hotel in Vigo, Spain and performs some searches on the site www.hotels.com. It is
very likely that he will consequently receive frequent ads advertising hotels in Vigo while
browsing the Internet. Retargeting ads are not only targeting a particular user’s interests,
but specifically aim to match an exact intention or previous online action. Retargeting
ads actually leak much more information about the user. In fact, in our example, they
will not only leak that the user is interested in traveling, but also his actual destination i.e.
Vigo, Spain. Note that retargeting ads are served independently of Google Ads Preferences
profiles. A user will receive retargeting ads even if he empties his ads preferences profile.
The only way to stop receiving retargeting ads is to clear his cookies or to completely opt
out of targeted ads.

4.6 Summary

In this chapter, we showed that targeted ads contain valuable information that allows accu-
rate reconstruction of users’ interest profiles. We presented a methodology to categorize
and filter targeted ads, which are in turn used to infer users’ profiles. Based on both real
users’ web histories and synthetic users’ profiles, we showed that our technique achieves a
high accuracy in predicting general topics of users’ interests. Additionally, using only a
limited number of collected targeted ads we demonstrated that an adversary can capture on
average more than half of targeted profiles. The algorithms described in this chapter are
simple and probably not optimal. We believe they could be improved in many ways.

Many people claim that the main issue in online behavioral advertising is not related to
ads personalization itself, which allows users to receive useful ads, but rather to the fact
that it requires users’ activities tracking. In this chapter, we show that ads personalization
can also be harmful to users’ privacy and does actually leak sensitive information such
as users’ profiles. We also note that this information leakage is not specific to online
behavioral advertising, but in fact exists in any personalized content (news, searches,

6More details about retargeting ads are discussed in Chapter 6

www.hotels.com
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recommendations, etc.). As the web is moving toward services personalization almost
everywhere, special attention should be paid to these privacy threats.



Chapter 5

Privacy Leaks in Ad Exchange

Real-Time Bidding (RTB) and Cookie Matching (CM), the two common used protocols
in ad exchange, are transforming the advertising landscape to an extremely dynamic
market and make targeted advertising considerably permissive. The emergence of these
technologies allows companies to exchange user data as a product and therefore raises
important concerns from privacy perspectives. In this chapter, we perform a privacy
analysis of CM and RTB and quantify the leakage of users’ browsing histories due to these
mechanisms. We study this problem on a corpus of users’ Web histories, and show that
using these technologies, certain companies can significantly improve their tracking and
profiling capabilities. We detect 41 companies serving ads via RTB and over 125 using
Cookie Matching. We show that 91% of users in our dataset were a�ected by CM and
in certain cases, 27% of users’ histories could be leaked to 3rd-party companies through
RTB.

We expose a design characteristic of RTB systems to observe the prices which advertis-
ers pay for serving ads to Web users. We leverage this feature to study how user profiles
are valued by advertisers. Through our experiments, we confirm that users with known
history are evaluated higher than new comers, that some user profiles are more valuable
than others, and that users’ intents, such as looking for a commercial product, are sold at
higher prices than users’ browsing histories. In addition, we show that there is a huge gap
between users’ perception of the value of their personal information and its actual value
on the market. A recent study by Carrascal et al. showed that, on average, users evaluate
the price of the disclosure of their presence on a Web site to EUR 7. We show that user’s
browsing history elements are routinely being sold o� for less than $0:0005.

5.1 Introduction

Real Time Bidding (RTB) [126] is a novel paradigm of serving ads with the aim of bringing
more liquidity to the online advertising market. When a user visits a Web site which

53
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displays advertisements (ads) through RTB, the ad request is sent to an Ad Exchange
which subsequently broadcasts it along with user data to ad buyers and holds an auction.
These buyers bid in this auction and the winning party is allowed to serve ads to the user.
The underlying technology to exchange users’ identification data between Ad Exchanges
and buyers is Cookie Matching, which allows two di�erent domains to match their cookies
of the same user.

Although RTB and Cookie Matching are acclaimed by the advertising industry, their
privacy implications are not adequately understood. Cookie matching enables the possibil-
ity of linking the profiles of a single user in databases of two independent companies and
is an integral part of RTB. In RTB, Ad Exchanges leverage Cookie Matching to broadcast
user data to ad buyers. In other words, users’ data become a product that is auctioned in
real time in the online advertising market.

RTB-based spending is growing rapidly and is expected to account for more than
25% of the total display advertising sales in the US by 2015, up from 10% in 2011. By
2015, the majority of indirect display ad sales revenue will be traded using RTB in the
United States and the most developed European markets [127]. RTB and Cookie Matching
become increasingly rampant in the online advertising industry, yet to the best of our
knowledge, there have been little academic studies of their privacy implications. In this
chapter, we conduct an empirical study of these technologies and analyze how they impact
users’ privacy. We believe that it is important for users, researchers and privacy advocates
to understand this privacy implication in very details.

While estimating value of user’s private information is an interesting problem [128,
105], evaluating it is subtle and not obvious. Several recent research studies established
results from the users’ perspective [101]. Users, however, often do not have a developed
sense of privacy. We approach this problem from the advertisers’ perspective based on a
market principle: users’ private data are worth as much as someone is willing to pay for
them. By leveraging a design feature of RTB systems, we are able to observe prices that
advertisers pay for an ad impression after winning an auction. We utilize these prices to
conduct a detailed analysis of the value of users’ private data, with a focus on users’ Web
browsing history.

In summary, the main findings in this chapter include:

� We quantify the impact of Cookie Matching (CM) and Real-Time Bidding (RTB)
on users’ privacy. We show that CM happens very frequently and is performed by a
large number of companies; some of them execute Cookie Matching in a significant
proportion of the studied users’ profiles (up to 91% of the 100 profiles we studied in
our experiments). Our analysis of RTB shows that Ad Exchanges (e.g. DoubleClick)
broadcast user-visited sites to a considerable number of bidders in real time; some
of the bidders can learn up to 27% of users’ histories through this mechanism.



55 CHAPTER 5. PRIVACY LEAKS IN AD EXCHANGE

� We provide an analysis of the value of users’ private data from the advertisers’
perspective based on prices they paid for serving ads to users. We confirm the fact
that when a user’s Web history is previously known to advertisers, they are willing
to pay a higher price than in the case of new users. We also show that users’ intents,
such as browsing a commercial product, are higher valuated than their general
histories, i.e. browsing sites not related to specific products. Finally, we highlight a
huge gap between users’ perception of the value of their personal information and
its actual value on the market.

5.2 Background information

5.2.1 Cookie Matching

Cookie Matching (CM), an integral part of Real-Time Bidding, is a mechanism allowing
two separate parties to synchronize their users’ cookies [129]. For example, an Ad
Exchange and a Bidder (ad buyer) normally attribute their own distinct cookies to the same
user. After an execution of Cookie Matching protocol, one or both of them will have these
cookies mapped to each other. Some Ad Exchanges, notably DoubleClick, create and use
a unique user id (e.g. one-way hash of the cookie) instead of a cookie, with the aim to
protect the actual cookie content from being revealed to the Cookie Matching partners.
Nevertheless, we detected that many others are sending clear-text cookies for matching.

User's browser

Ad Exchange Bidder

(1) Script or redirect instruction to load

cm.bidder.comcm.adexchange.com

ExchangeUserId=aaa"

User's cookie/id: aaa User's cookie: bbb

(2) http://cm.bidder.com/cmservice?
ExchangeUserId=aaa
Cookie: UID=bbb

"http://cm.bidder.com/cmservice?

(3) Matches cookies:
"aaa" with "bbb"

Ad Exchange's cookie: aaa
Bidder's cookie: bbb

Figure 5.1: Cookie matching protocol

Figure 5.1 shows the main phase of Cookie Matching. Ad Exchange typically sends a
script or a redirect instruction in order to instruct the user’s browser to load a URL provided
by the Bidder with the Ad Exchange’s user’s cookie/id in the parameter. The Bidder obtains
the Ad Exchange’s cookie/id upon receiving this request and matches this cookie/id with
its own cookie. In some cases, this process can happen in the reverse direction, which
results in the Cookie Matching on the Ad Exchange’s side. Cookie matching is also known
under di�erent names, such as cookie syncing, pixel matching, etc. In this chapter, we use
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“Cookie Matching” for all such actions of cookie synchronization between two separate
entities.

5.2.2 Real-Time Bidding

Real-Time Bidding (RTB) [126] allows advertisers to buy online advertisement spaces at
real-time through Ad Exchanges. Here we discuss the mechanism of DoubleClick’s Ad
Exchange [130], which is likely the most representative. Other Ad Exchanges, for example
Pulse Point [131], employ similar approaches. The OpenRTB initiative [132], which aims
at standardizing RTB, provides a similar description.

Advertiser

Bidder 1

Ad exchange

Sellers

Publisher 1

Publisher 2

Publisher 3

Buyers

Advertiser

Advertiser

Advertiser

Bidder 2Advertiser

Advertiser

Advertiser

Bidder 3Advertiser

Advertiser

Figure 5.2: Ad Exchange model

The four main entities taking part in Real-Time Bidding include: 1) Publishers (e.g.
nytimes.com), possessing the Web sites which display ads, 2) Ad Exchanges (e.g. Dou-
bleClick), which enable ad transactions between ad sellers (the publishers) and ad buyers
(the bidders) based on auctions held in real time, 3) Bidders (e.g. Criteo1), which are big
advertising agencies representing small and medium advertisers to bid in RTB auctions in
order to win ad spaces, and finally 4) Advertisers (e.g. hotels.com), which want to advertise
and sell their products or services. Each time an ad is displayed in a Web site visited by a
user, we call this event an ad impression. The RTB mechanism works as follows: When
a user visits a publisher’s Web site belonging to an Ad Exchange’s advertising network,
a HTTP request is sent to the Ad Exchange. The Ad Exchange subsequently sends bid
requests for this ad impression to its bidders. Bidders then analyze the impression and sub-
mit their bid responses, which include prices they are willing to pay and their ad snippets.
The bids are submitted to an online auction, and the Ad Exchange serves the winner’s ad
snippet on the user’s visited Web site. After a successful transaction, the Ad Exchange
charges the winning bidder, and pays the publisher after subtracting a commission. The
total process generally happens in less than 100ms.

Bid requests sent from Ad Exchanges to bidders typically contain information such as
the Ad Exchanges’ user’s cookie (or user’s id) and the user’s visiting context including
the following information: the URL of the Web site being visited, the categories of the

1http://www.criteo.com

nytimes.com
http://www.criteo.com
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site, the first three bytes of the user’s IP address2, various information concerning the
user’s browser and others [134, 135]. Upon receiving a bid request, the bidder finds its
user cookie through the Ad Exchange’s cookie thanks to Cookie Matching, provided that
this protocol has been executed previously. It then determines the bid price based on the
user’s profile it possesses and the user’s context provided by the Ad Exchange. Bidders
can also bid on new users about whom they do not possess any prior information. When a
bidder wins the auction, it has the right not only to serve ads, but also to initiate a Cookie
Matching with the Ad Exchange.

An online Ad Exchange works similarly to a stock exchange [136], only trading in
audiences for online ads. This mechanism helps publishers to sell their ads at the most
competitive price, while allowing bidders to flexibly adjust their buying strategy in real
time.

5.2.3 The Economics of Real-Time Bidding

The payment model used in Real-Time Bidding is Cost-per-mille impression (CPM) [137],
which means every transaction through Ad Exchange is on a pay-per-impression basis.
However, some advertisers might prefer the Cost-per-click (CPC) model [138], as its
performance is more e�ectively measurable than CPM. As a result, a hybrid model exists,
in which real-time bidders (e.g. Criteo) buy ad impressions from Ad Exchanges and sell
ad clicks to advertisers. In this model, the bidders are expected to bid high enough in Ad
Exchange in order to win the auction, while ensuring an adequate click probability to gain
a margin benefit. Click probability depends largely on how the ad content matches user
profiles and/or visiting contexts.

In this work, we aim to analyze how bidders evaluate users’ personal data on behalf of
advertisers. We therefore focus on analyzing the strategy from the advertiser’s perspective.
Advertiser’s purposes normally include: 1) inviting users to their Web sites for buying
a product or using a service, and/or 2) improving brand awareness. In both cases, the
common goal is to reach potential customers. As most of Ad Exchanges encourage truthful
bidding, for example by the use of Vickrey auctions [139], the best strategy for advertisers
is expected to be bidding in accordance with the true value they can expect to get from the
user.

5.3 Cookie Matching and RTB Detection

In this section, we describe the discovery techniques that we employed. First, we introduce
the request hierarchy detection technique, which serves as a basis for the others. Second,

2Note that some companies, such as Pulse Point, actually send full IP addresses [133].
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we present our technique to detect Cookie Matching. Then we describe the Real-Time
Bidding detection technique, which is based on the discovery of winning prices.

5.3.1 Request Hierarchy Detection

We describe our technique to detect all causal relations between HTTP requests. The
requests are often originating from Web sites’ HTML tags including <script>, <img>
or <iframe>. The responses to these requests might also contain HTML elements or
JavaScript code that subsequently initialize other requests, and so on. Detecting such
causal relations between requests is important to observe Cookie Matching and Real-Time
Bidding events.

Assuming two HTTP requests A and B, A happening before B, our approach is as
follows: we observe the HTTP Referer field in the request header of B (B’s Referer), and
Location field in the response header of A (A’s Location). If A’s Location contains B’s
URL, this means the browser redirects the request from A to B. Meanwhile, B’s Referer
containing A’s URL means B is loaded from the content of A. Nevertheless, in the case
of requests being dynamically initiated as a result of JavaScript scripts, the Referer field
might not be a good indicator, as it points to the visited Web site rather than the source
of the script. Therefore, we also scan all the JavaScript files we encounter during the
loading of the site. If a request’s URL is detected in a JavaScript script, we conclude that
the script creates this request. However, this approach fails when JavaScript code builds
URLs dynamically by concatenating dynamic parameters into a domain. We therefore also
search JavaScript scripts for domains.

5.3.2 Cookie Matching Detection

In Cookie Matching, one domain synchronizes its cookie with another domain by including
it in the request sent to the latter. For example, domain A returns a script to the browser
which will invoke a request to domain B such as: http://B_URL?ExternalUserId=[A’s
cookie] (see section 5.2.1). Therefore, in order to detect Cookie Matching, we detect all
the causal relationship A! B, then scan all cookies from A and all parameters sent to
B. We only take into account values that are su�ciently long, i.e. whose length exceeds
10 characters, as shorter strings are usually temporary values, unrelated to our research.
If a match is detected, we consider it to be Cookie Matching. We manually checked a
considerable number of values to confirm that they are indeed long-term cookies.

This method fails with DoubleClick, as this company uses a unique user id instead
of the cookie itself. In this case, we leverage the Google’s Cookie Matching protocol
description [129], which clearly defines specific URL patterns. Examples of these URLs
are presented in Table 5.1. In these URLs, google_nid is the unique id that Google
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Table 5.1: Google’s Cookie Matching URLs

Google’s Cookie Matching URLs

http://cm.g.doubleclick.net/pixel?google_nid=[...]&google_cm
http://cm.g.doubleclick.net/pixel?google_nid=[...]&google_push=...

assigns to its Cookie Matching partner (ad buyer), while google_gid is the Google user
id corresponding to the Google’s user’s cookie. Google distributes buyer-specific user ids,
which means di�erent buyers see di�erent Google user ids for the same Web user.

5.3.3 Real-Time Bidding Detection

Bidders are charged for every ad impression won through RTB. The paid prices are usually
included in the requests related to ad creatives which are served via Ad Exchanges with the
help of a WINNING_PRICE macro. We detect RTB by interpreting the values of parameters
in HTTP requests and looking for such price pattern.

(Auctioneer)

User's browser

Winning bidderAd Exchange

(1) Bid request

(2) Bid response
(including ad creative containing

(4) Winning bidder's ad creative (5) Winning price noti�cation

wp=%%WINNING-PRICE%%)

(3) Replace %%WINNING-PRICE%%
by value ABCD

containing wp=ABCD containing wp=ABCD

Figure 5.3: Winning price notification in Real-Time Bidding

The purpose of the WINNING_PRICE macro is to allow the Ad Exchange to notify the
winning bidder about the actual price it has to pay for the ad impression3. The mechanism
of winning price notification is shown on Figure 5.3. In its bid response sent to the Ad
Exchange, each bidder includes its ad creative, i.e. a small HTML or JavaScript code
responsible for displaying ads. The ad creative normally contains the winning price
macro in a special text form (e.g. %%WINNING_PRICE%% in the case of DoubleClick)
appended to a URL (which we call ad_URL). After the auction, the Ad Exchange replaces
the winning price macro in the winner’s ad creative with the actual winning price, and
serves the creative to the user. Upon reception of this message, the user’s browser runs

3This price is not necessarily equal to the actual bid price as most of Ad Exchanges use second-price
auctions, in which the winner pays the second highest bid price incremented by a small pre-defined value.
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the creative which initializes a HTTP request to the ad_URL in order to fetch the actual
advertisement. Note that this HTTP request also contains in its parameters the winning
price.

In the following, we describe the DoubleClick’s winning price format. During the
experiments we conducted in this work (section 5.4 and 5.5), we detected a considerable
number of other companies apparently using the same or similar formats. In DoubleClick
Ad Exchange, which belongs to Google, the price is encrypted and subsequently has a
fixed length of 28 bytes (Figure 5.4). It is then encoded in a 38-character-length Web-safe
Base64 [140].

Initialization vector Cipher text Integrity

16 bytes 8 bytes 4 bytes

Figure 5.4: Google’s winning price format

Each bidder shares a di�erent encryption key and integrity key with the Ad Exchange
to allow the decryption and verification of the encrypted price. The initialization vector
contains a timestamp in the first 8 bytes with the aim to detect any stale response attack
[140]. We rely on this timestamp to detect encrypted prices. Specifically, we extract all
the suspected values of the URL’s parameters, which have a length of 38 characters and
contain only valid Web-safe Base64 characters, in each HTTP request initiated by the
browser. We decode each of these values and extract the first 8 bytes to investigate whether
this is a valid timestamp. According to Google’s description, we convert the first 4 bytes
to seconds and the last 4 bytes to milliseconds, and then obtain the total milliseconds.
We compare this timestamp to the timestamp obtained from the response header of the
investigated request. If they do not di�er beyond a threshold, we consider the timestamp
as valid, and assume the encrypted text is a valid price. We use a 5-minute threshold.

Each price is included in a URL as a value of a specific parameter. For example,
the creative could include a URL in the following form: http://bidder_URL?wp=
[Winningprice], here wp being a URL’s parameter whose value is the winning price.
We used the winning price detection technique described previously to detect such forms
of URLs. Table 5.2 provides some examples of the domains and the corresponding
parameter names we encountered during our experiments and tests. For example, the
price URL for Invite Media has the following form: http://invitemedia.com?cost=
[Winningprice] (extra parameters stripped for clarity) – the price parameter is cost in
this case.

When investigating requested URLs during our experiments in search for such patterns,
we surprisingly found a substantial number of winning prices that were not encrypted.
We deduce that these values are winning prices because of the following reasons. First,
these URLs share identical patterns with URLs containing encrypted prices (same domain

http://bidder_URL?wp=[Winning price]
http://bidder_URL?wp=[Winning price]
http://invitemedia.com?cost=[Winning price]
http://invitemedia.com?cost=[Winning price]
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Table 5.2: Clear-text price URL patterns

Domain Parameter name

invitemedia.com cost
mathtag.com price
gwallet.com win_price
adnxs.com pp
mythings.com rtbwinprice

name, same list of parameters), but include a clear-text value instead of an encrypted one
for the same URL’s parameter. Second, the values we obtained were very often in form
of floating-point number (e.g. 0.5) or integer in micros format (i.e. 1 is converted to
1;000;000 micros), which match exactly the price format description of the advertising
industry. Moreover, the parameters’ names for these values are often contextual and
meaningful. Examples include: "win_price", "cost", "price" or even "rtbwinprice" as
shown in Table 5.2. In total, we detected 41 domain names (e.g. ad.turn.com) belonging
to advertisers (Turn in this case), and corresponding HTTP parameters (acp in this case)
whose values contained prices.

It is understandable that companies use the same URL patterns for winning price
notification, regardless of the formatting of prices, while working with di�erent Ad
Exchanges. This helps them maintain a unified and simpler information system. The fact
that a significant proportion of prices are in clear-text gives us an opportunity to observe
how advertisers evaluate the value of each impression (see Section 5.5).

In summary, we use both encrypted and clear-text prices to detect Real-Time Bidding.
It should be noted that winning price notification is not obligatory. Rather, it is an option
for bidders and depends on the policy of Ad Exchanges. This means there might be some
communications related to Real-Time Bidding that we could not detect. This happens if
Ad Exchanges choose other schemes to notify the winning prices (e.g. server to server)
or real-time bidders do not use the WINNING_PRICE macro. Therefore, the number of
Real-Time Bidding communication we detected using this scheme can be considered as a
lower bound of the actual number.

5.4 Cookie Matching and RTB Analysis

5.4.1 The RTBAnalyser Plugin

We implemented all the aforementioned techniques in a Firefox plugin, RTBAnalyzer,
which is a modified version of HttpFox [141], an open source Firefox plugin. We imple-
mented a Firefox nsIObserver interface to observe all HTTP requests and responses,
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then applied the previously-described techniques to detect Cookie Matching and Real-Time
Bidding. The plugin builds a hierarchy organization of all HTTP requests originating
from the sites visited by the user. For each request, it collects the domain name (not the
full URL) and identify whether the request is related to Cookie Matching or Real-Time
Bidding. In case of Real-Time Bidding, it also collects the related winning prices. These
analyzed information are saved into JSON format and sent to our server. It is important to
note that each domain name of first-party sites contained in these data reports is replaced
with a random value in order to protect privacy of plug-in users.

5.4.2 Dataset

We distributed the plug-in to our colleagues and friends and asked them to install it and
browse the Web normally for a number of days. The experiment was performed during the
month of June, 2013. The volunteers were mostly researchers and students based in our
country of residence, France. Data were automatically sent to our servers every hour or at
user request, depending on the chosen installation option. We did not attempt to create any
link between the data we obtained and the personal identities of the users. As a result, we
do not know who actually participated in the experiment. At the end of the experiment, we
selected the top 100 profiles, after removing those that contained less than 70 sites. This
dataset is used in sections 5.4.3 and 5.4.4, and part of section 5.5.

5.4.3 Cookie Matching Privacy Analysis

5.4.3.1 Privacy analysis

Companies normally build independent user profiles identified by their own cookies.
Cookie Matching facilitates potential cooperation between these systems to exchange their
users’ data and possibly build larger user profiles. Without matching cookies, it would be
di�cult to link two profiles of the same user maintained by two separate entities. This
results from the fact that trackers are usually able to see only the URLs a user is visiting and
no other identifying information, such as e-mail address or user’s name. While tracking
and data exchange for advertising purposes are increasingly prevalent, technologies like
Cookie Matching could potentially enable user tracking to a much larger scale.

5.4.3.2 Methodology

In order to demonstrate and quantify the potential risks described in the previous section,
we studied the 100 profiles and identified the most active companies performing CM.
Simultaneously we monitored the top trackers of these profiles, and evaluated the extent of
potential history discovery by these entities via tracking. Finally, we evaluated to what
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extent these companies could broaden their tracked users’ profiles by making use of CM
and sharing their knowledge of profiles.

5.4.3.3 Results

We first counted the cumulated numbers of Cookie Matching events following each site
of the profiles in the real user dataset, and then averaged out these values. We show the
results for the first 70 sites in the users’ histories. Figure 5.5 displays these average values
according to the number of visited sites. It shows that more than 60 Cookie Matching
events happen when a user visits 40 sites (red curve) and more than 30 domains are involved
(green curve). We can observe that the number of Cookie Matching increases regularly
with the number of visited sites. The average cumulated number of cookie matching
events after 70 visited sites is more than 100, performed by nearly 60 di�erent domains
on average. These results show that Internet users are encountering Cookie Matching at
regular intervals.
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Figure 5.5: Cookie matching frequency

We observed the frequency of Cookie Matching performed by each pair of companies,
and detected that many of them executed this scheme routinely. Table 5.3 shows the 20
pairs of domains that performed Cookie Matching the most. We noticed that Facebook
(facebook.com) and AppNexus (adnxs.com) matched their cookies in 91% of profiles. The
numbers are respectively 87%, 86% and 85% for the following pairs: Turn (turn.com) - Ad-
meld (admeld.com), DoubleClick (doubleclick.net) - Rfihub (rfihub.com) and DoubleClick
(doubleclick.net) - AppNexus (adnxs.com).

We investigated the top 25 trackers, i.e. the domains that tracked the largest parts of
the studied users’ histories. We detected these domains by capturing all outgoing requests
when a user visited a Web site. If there was at least one request from this site to a 3rd-party
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Table 5.3: Top pairs of domains executing cookie matching the most

Pair of domains Frequency (% profiles)

facebook.com - adnxs.com 91
turn.com - admeld.com 87
doubleclick.net - rfihub.com 86
doubleclick.net - adnxs.com 85
doubleclick.net - mathtag.com 85
adnxs.com - admeld.com 84
doubleclick.net - turn.com 80
atdmt.com - bing.com 80
demdex.net - acxiom-online.com 79
doubleclick.net - yieldmanager.com 77
invitemedia.com - admeld.com 73
mathtag.com - admeld.com 71
doubleclick.net - invitemedia.com 71
doubleclick.net - amazon-adsystem.com 70
rubiconproject.com - rfihub.com 70
adnxs.com - amazon-adsystem.com 69
adnxs.com - rfihub.com 68
turn.com - p-td.com 67
turn.com - rubiconproject.com 65
mathtag.com - facebook.com 64

domain with Referer field in the HTTP header containing the site’s URL, this domain
is considered being aware of this visit. Table 5.4 shows the top 25 trackers with their
average percentage of tracked user’s history that we detected in our real user dataset.
We observed that among the companies in the top 20 pairs of companies using Cookie
Matching most frequently (Table 5.3), 56% of them are in our list of 25 top trackers (Table
5.4). Meanwhile, 36% of these top trackers are in the top 20 pairs of companies most often
performing Cookie Matching. These results show that, although Cookie Matching is used
by numerous companies, the top trackers are often more involved than others.

We detected that some companies in the list of 25 top trackers can considerably increase
the size of their users’ profiles if cooperating. For example in our experiments, Facebook
and AppNexus respectively tracked 31:55% and 17:4% of a user’s history on average, and
they performed CM in 91% of the studied profiles. Their total Web history coverage would
increase to 39:35%, on average, if they were merging their user histories. Table 5.5 shows
some examples of the potential combined profile sizes in cases of other companies. In this
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Table 5.4: Top trackers

Tracker Average (% of user history)

google-analytics.com 56.38
doubleclick.net 50.72
scorecardresearch.com 38.57
facebook.com 31.55
google.com 24.92
googleapis.com 23.84
facebook.net 23.44
quantserve.com 23.17
twitter.com 22.65
googleadservices.com 20.47
googlesyndication.com 20.41
2mdn.net 18.17
fbcdn.net 17.76
gstatic.com 17.56
adnxs.com 17.4
imrworldwide.com 15.73
yieldmanager.com 13.39
cloudfront.net 11.11
bluekai.com 10.92
atdmt.com 10.24
invitemedia.com 10.09
googletagservices.com 9.39
turn.com 9.21
rubiconproject.com 8.65
mathtag.com 8.01

table, Q1, Q2, Q3 are the first, second, and third quantiles respectively, computed among
the 100 studied profiles.

A case study of Google and DoubleClick. Based on the results from Table 5.4,
Google possesses 8 domains belonging to the top trackers: google-analytics.com (56:38%)4,
doubleclick.net (50:72%), google.com (24:92%), googleapis.com (23:84%), googlead-
services.com (20:47%), googlesyndication.com (20:41%), gstatic.com (17:56%), google-
tagservices.com (9:39%). Although cookies used for these domains are all di�erent, it is

4Even though Google Analytics uses unique cookies per sites, it is potentially possible to link these
cookies across sites, for example by leveraging user’s IP address
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Table 5.5: Potential percentage of profile tracked after combination. Averages and ith
quantiles.

Domains Avg. (%) Q1 (%) Q2 (%) Q3 (%)
doubleclick.net - adnxs.com 52.43 48.74 52.86 56.34
doubleclick.net - yieldmanager.com 52.01 48.54 52.7 56.82
facebook.com - adnxs.com 39.35 36.0 39.47 44.3
adnxs.com - amazon-adsystem.com 19.32 16.05 18.67 22.35
invitemedia.com - admeld.com 14.12 11.84 14.29 16.44

trivial to match them, for example by inspecting the IP address. By combining all data
tracked by these domains Google could possibly know 80:13% of a user’s visited sites, on
average.

DoubleClick’s Cookie Matching services are utilized by a substantial number of 3rd-
parties. By analyzing Cookie Matching communications in all our experiments and tests5,
we extracted the host names of DoubleClick’s Cookie Matching partners and counted their
distinct top-level domain names. For example, dis.ny.us.criteo.com, dis.jp.as.criteo.com
and dis.eu.criteo.com share the same top-level domain name, criteo.com, and were counted
once. In total, we detected 125 top-level domains performing CM with DoubleClick. It is
interesting to note that one of the detected domain names was e.visualdna.com which
belongs to a Big Data analytics company specializing in psychometrics, Visual DNA6.
This example shows that Cookie Matching is not only used by advertisers, but also by
other entities.

5.4.4 Real-Time Bidding Privacy Analysis

5.4.4.1 Privacy analysis

By combining RTB and CM, users’ private data could potentially be leaked to bidders
involved in real-time auctions. Figure 5.6 illustrates this leakage. We assume a situation
between an Ad Exchange ADX holding the real-time auction, and a set of bidders B1; :::; Bk

registering for the auction. Whenever a user visits a Web site W which requests ads from
ADX, ADX sends a bid request to all the bidders. The bid request includes W’s URL, the
ADX’s cookie of the user along with other additional information as discussed in section
5.2.2. In our study we focus on the leaks of browsing histories, although it is evident
that the additional information can potentially be used to fingerprint the user’s browser
[142]. Each time a bidder receives a bid request, he can save the W’s URL and the ADX’s
cookie, resulting in a list of URLs assigned to each specific cookie from the ADX, provided
that several bid requests containing this cookie were seen previously. Whether Cookie

5Including all experiments we conducted in this work (section 5.4 and 5.5)
6http://www.visualdna.com

http://www.visualdna.com
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Figure 5.6: Information leakage in Real-Time Bidding

Matching takes place before or after these RTB processes, the bidder can combine all the
previously-observed users’ visited sites from received bid requests with its own user’s
profile identified by its own cookie. Even if Cookie Matching does not happen, these
URLs can still provide a significant amount of information about the user identified by the
ADX’s cookie.

5.4.4.2 Methodology

We aim to show the frequency of RTB communications and quantify the information
leakage described in the previous section. We examined all Real-Time Bidding requests,
which we detected using our RTB detection technique (section 5.4.1), in our 100 profiles
and extracted the related Ad Exchanges and winning bidders. The winning bidders were
identified by the domain of each request, while the Ad Exchanges by the domain of the
parent request in the request hierarchy (as discussed in 5.3.1). We obtained a list of Ad
Exchanges and for each Ad Exchange, a list of its bidders that won at least one auction.
Examples of winning bidders in the case of DoubleClick Ad Exchange include AppNexus,
AdRoll and InviteMedia.

We examined all profiles in the real user dataset. If a RTB event was detected on
a site of a given profile, we assumed that all bidders participating in the RTB auction
received the site’s URL via the bid request sent by the Ad Exchange. We obtained the
list of bidders associated to a given Ad Exchange by the use of methods described in the
previous paragraph. We analyzed all sites in all the profiles and we counted how many
sites would be leaking to each bidder via this mechanism. Subsequently, we divided the
numbers of leaking sites by the total number of sites in the profile in order to quantify the
history leakage.

It should be noted that each bidder can bid on several RTB Ad Exchanges, hence possi-
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Figure 5.7: Real-Time Bidding frequency

bly learn parts of a user’s browsing history from each of them. For example, we detected
that AppNexus bids simultaneously on DoubleClick’s and Admeld’s RTB auctions.

We considered all the URLs that an Ad Exchange possibly sent to a bidder (detected
by the above mechanism) as the total leakage. However, if a Cookie Matching event was
detected between the Ad Exchange and the bidder during the experiment, we considered
the URL leakage as a matchable leakage, otherwise unmatchable leakage. In matchable
leakage, bidders can obviously combine profiles obtained from Ad Exchanges with their
own users’ profiles using Cookie Matching (Figure 5.6). Meanwhile, in unmatchable
leakage, it is not clear whether the Cookie Matching will happen in the future, or other
techniques can be used to link the two profiles. We therefore consider that the leakage is
less severe in this case. Total leakage comprises both these two cases.

5.4.4.3 Results

Figure 5.7 shows the average cumulated number of RTB events, distinct Ad Exchanges
and winning bidders after each visited site in our profiles. The cumulated numbers of RTB
events after n visited sites are averaged from those numbers computed for each profile
(red line). The average cumulated number of distinct Ad Exchanges and distinct winning
bidders are shown in green and blue respectively. The figure shows that, when considering
web histories of size 70, RTB occurred in 10% of the sites.

Figure 5.8 presents the percentage of user’s history the three companies, Turn, App-
Nexus and InviteMedia, could obtain from Ad Exchanges in RTB. The figure shows a
Complementary Cumulative Distribution Function (CCDF) of the percentage of user’s
history leak among the 100 profiles as well as their average (E) and standard deviation (D).
The blue line represents the CCDF for the total leakage, while the red one represents the
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Figure 5.8: CCDF of the percentage of user’s history that bidders learned through RTB

matchable leakage. The total leakage on average is around 11% of a user’s history, but
can be as high as 27% for certain profiles. With such high percentage of history received
through RTB, even without Cookie Matching, these companies can maintain a meaningful
profile of a user. The matchable leakage is slightly lower, with the average value around
8% of the user’s history. Bidders can easily combine these matchable data to their own
users’ profiles using Cookie Matching.

These numbers show that the user history leakage through RTB is significant. Given
the fact that we only detected the lower bound of Real-Time Bidding communications,
and that our assumption for the leakage is restricted to the bidders who won at least one
observable auction, the leakage is potentially much higher in reality. Also, due to the
rapid growth of RTB [127], these numbers are expected to considerably increase in the
foreseeable future.

Information dissemination in RTB. We detected 41 winning bidders for all Ad
Exchanges in total. In the case of DoubleClick Ad Exchange, we detected its 20 winning
bidders, and 125 Cookie Matching partners which are likely real-time bidders as well.
Although we did not encounter PulsePoint’s Ad Exchange in all our experiments and tests7,
we found from its description a list of 59 RTB bidders [143]. These numbers suggest that
20-125 bidders might receive Web users’ information in the case of DoubleClick, and at
least 59 in the case of Pulse Point, which potentially constitutes a considerable information
leakage.

5.5 Value of User Privacy

The observation of clear-text prices allows us to study how much advertisers pay for
serving ads to users. As discussed in section 5.2.3, we believe that the prices paid in
Real-Time Bidding reflect how bidders estimate the value of users. It is important to note

7Including all experiments we conducted in this work (section 5.4 and 5.5)
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Figure 5.9: Monetary flows in advertising systems. The communication we monitored is
indicated by (*). Source: [1].
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that all prices reported in this section are represented in CPM (Cost-per-mille impressions),
which means each price is for 1;000 ad impressions. For example, a price of $0:12 CPM
or $0:12 without any further explanation is actually $0:00012 per impression.

Figure 5.9 is a slightly modified version adopted from [1] and it shows the di�erent
monetary flows in a simplified model of advertising systems. The prices we retrieved for
the analysis in this section are paid by Bidders to Ad Exchanges (marked with (*)).

In this section, we study whether the user’s Web browsing history (or profile) a�ects
prices that advertisers pay for serving ads8. Our methodology is to create a number of
artificial profiles, use them to visit the same set of Web sites, collect and analyze winning
prices. The profiles are created considering two aspects: history categories (i.e. categories
of visited sites)9 and intents (e.g. browsing for a commercial product). Figure 5.10
summarizes our experiment.

8A more complete study appears in our paper [144] which also investigates whether the visiting context
(e.g. currently visited sites) a�ects the prices. In scope of this thesis, we only consider privacy-related
factors.

9History categories can be used, for example in Google’s and Yahoo’s systems, to personalize ads
[52][145].
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5.5.1 Considerations

Encrypted prices. Our analysis is based on clear-text prices we were able to detect10.
Despite the fact that we do not take into account encrypted prices, the prices we retrieved
are comparable to the ones obtained directly from some Ad Exchanges’ internal data and
reported in other work [136, 1]. This constitutes a good evidence that encrypted and plain
text prices are similar. In addition, we do not see any reason for advertisers to pay di�erent
prices on the basis of the price notification being encrypted or not.

Currency. In our analysis, we assume that the currency used by di�erent companies
is USD. Our assumption is based on the fact that the majority of Ad Exchanges are
US-based, which is also observable in our dataset, and that USD is the most commonly
used currency in international business. Some Ad Exchanges, e.g. Pulse Point, publicly
state the use of USD as the only currency in their RTB protocol description [131]. Since
bidders/advertisers often reuse the URL patterns (the same domain and parameter names)
to receive price notification from di�erent Ad Exchanges, regardless of the price format,
they are likely using the same currency. Finally, the value range of prices detected in our
experiments is similar to those presented in other work leveraging internal advertisers’ data
[136, 146], which mention prices solely in USD.

Tracking. Although there are many means of tracking the Web users, such as based
on monitoring of IP addresses or fingerprinting techniques, cookie-based approach is
still the dominant one. A good example is that Cookie Matching is a common technique
used in RTB to match user profiles between two separate entities. Moreover during our
experiments, we verified that targeted advertisements, for example ads about commercial
products that users browsed previously, generally disappeared after clearing browser’s
cookies. In our work, we therefore assume that advertisers mostly rely on cookies to track
users. Furthermore we assume that after clearing all the cookies of a browser, subsequent
trackers perceive a request made by this browser as originating from a new user.

5.5.2 Methodology

In order to visit sites, we used Selenium [147] to instrument a Firefox browser equipped
with RTBAnalyzer plug-in (described in section 5.4.1).

5.5.3 Dataset

We crawled 50 top Alexa sites from each of the following Alexa categories: Adult, Arts,
Business, Business-Financial Services, Computers, Games, Health, Home, Kids and Teens,

10About 25.71% of the prices we collected were sent in clear-text.
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News, Recreation, Science, Shopping, Sports. Those sites were used to construct history
categories in each profile.

For the intent construction, we used three commercial Web sites that are very popular in
our country of residence (France): fnac.com (electronic products), hotels.fr (hotel booking)
and maty.com (jewelry). We call them retargeting sites hereafter, as after visiting them,
the previously-browsed products from these sites often appear in online ads during regular
browsing. We randomly chose 5 products from each of these sites and kept these three lists
of products to build users’ intents.

We extracted from the top Alexa sites a list of sites which often resulted with ads
containing clear-text prices11. Among these sites, we extracted the top 17 sites which had
the highest rate of clear-text price occurrence12. We call them sites with prices.

5.5.4 Experiment Description

We created 14 profiles for each of the following types:

� New user: empty profile

� Only category: only visit Alexa sites belonging to one category

� Category + fnac.com: visit Alexa sites belonging to one category, then visit 5
products on fnac.com

� Category + hotels.fr: visit Alexa sites belonging to one category, then visit 5 products
on hotels.fr

� Category + maty.com: visit Alexa sites belonging to one category, then visit 5
products on maty.com

� Only maty.com: only visit 5 products on maty.com

We simultaneously ran 6 instances of Firefox browser to perform the tests with these
profiles. Each instance was devoted to one kind of profile. For each profile in each
browser’s instance we subsequently performed a profile construction and price collection,
and repeated this phase 10 times. All price collection processes were performed using the
same set of sites with prices. We executed our experiments evenly throughout the day to
ensure that time of day did not a�ect prices.

5.5.5 Results

We obtained 20 prices per profile and per round, consequently about 200 prices per profile
in total (after 10 rounds), on average. The detected average prices per profiles are shown

11A sample of this list is available at http://yourvalue.inrialpes.fr.
12Examples of such sites are accuweather.com, tinyurl.com or technorati.com

http://yourvalue.inrialpes.fr
accuweather.com
tinyurl.com
technorati.com
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Table 5.6: Artificial profile analysis. Prices in CPM.

Category New user Only category
Category

+ fnac.com
Category
+ hotels.fr

Category
+ maty.com

Only maty.com

avg std avg std avg std avg std avg std avg std
Adult N/A N/A 0.44 0.20 0.56 0.27 0.64 0.20 1.12 0.21 N/A N/A
Arts N/A N/A 0.51 0.17 0.52 0.15 0.66 0.23 1.28 0.29 N/A N/A
Business N/A N/A 0.55 0.22 0.63 0.21 0.61 0.21 1.10 0.34 N/A N/A
Business - Finan. Serv. N/A N/A 0.59 0.20 0.68 0.24 0.88 0.28 1.31 0.31 N/A N/A
Computers N/A N/A 0.48 0.21 0.57 0.20 0.70 0.25 1.18 0.14 N/A N/A
Games N/A N/A 0.80 0.35 0.74 0.29 0.81 0.40 1.41 0.27 N/A N/A
Health N/A N/A 0.67 0.47 0.68 0.34 0.81 0.43 1.21 0.30 N/A N/A
Home N/A N/A 0.58 0.21 0.70 0.39 0.57 0.23 1.00 0.23 N/A N/A
Kids and Teens N/A N/A 0.64 0.33 0.65 0.27 0.74 0.29 1.25 0.27 N/A N/A
News N/A N/A 0.50 0.12 0.72 0.38 0.74 0.29 1.09 0.18 N/A N/A
Recreation N/A N/A 0.55 0.21 0.64 0.32 0.69 0.16 1.12 0.22 N/A N/A
Science N/A N/A 0.50 0.19 0.60 0.37 0.59 0.21 1.36 0.24 N/A N/A
Shopping N/A N/A 0.53 0.22 0.61 0.27 0.65 0.25 1.21 0.23 N/A N/A
Sports N/A N/A 0.71 0.47 0.59 0.29 0.62 0.17 1.17 0.21 N/A N/A
Average 0.41 0.10 0.58 0.26 0.64 0.29 0.69 0.26 1.20 0.25 1.17 0.26

in Table 5.6. The prices for profiles "Only category" are about 40% higher than those for
"New user". Among "Only category" profiles, di�erent profile categories result in di�erent
prices. This is particularly acute for the category Games, which exhibits prices 38% higher
than average. Other category profiles with prices larger than the average price are Sports,
Health, and Kids and Teens. Our results show that the type of visited sites is actually
a�ecting prices that advertisers paid for serving ads to users.

The results indicate that retargeted ads (the ones which match users’ intents) often
receive higher prices than those for "Only category". These prices also di�ered among
di�erent retargeting advertisers. For example, prices from fnac.com were the lowest,
with average $0:64, prices related to hotels.fr were slightly higher with $0:69, whereas
maty.com had the remarkably highest average price of around $1:2. This could be
explained by the strategies of the di�erent advertisers and possibly by the prices of the
advertised products. Interestingly, we also noticed that maty.com retargeted ads were
displayed much more frequently than fnac.com or hotels.fr ads. Finally, we observed
negligible di�erences in prices between "Only maty.com" and "Category and maty.com".
This clearly shows that even though users’ browsing histories are taken into account when
advertising a product, advertisers actually value users’ intentions much more.

Although we expected that retargeted ads are related to higher prices, the striking
di�erence between winning prices for ads after visiting maty.com’s products and those
after visiting non-retargeting sites deserves a detailed analysis. To our knowledge, most of
ad auctions apply the second-price principle which means the winning bidder only pays a
slightly higher price than the second highest bid price13. In other words, the paid price is

13Note that RTB systems can fine-tune their internal auction parameters to e�ectively switch from

fnac.com
hotels.fr
maty.com
maty.com
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the second highest price incremented by a small value defined by the RTB. Assuming that
the average winning price of a “normal ad” is $0:4 and a retargeted ad has a significantly
higher bid price of $1:2, the average winning price should still be close to $0:4. However,
we observed much higher prices in the case of retargeted ads, specifically in the case
of advertisements from maty.com, when served by Criteo. A possible explanation is
that there are several competing retargeters who bid for this ad impression. In order to
verify this, we conducted the following experiment: We used Ghostery [35] to block all
other trackers except Criteo and a selected number of RTB systems (Admeld, AppNexus,
Pubmatic and Rubicon; Criteo bids in their auctions). Similarly to the previous experiment,
we browsed 5 products from maty.com and then a list of sites with prices. As described
above, we blocked most of the trackers while browsing products on maty.com. We then
stopped blocking trackers when visiting sites with prices when we aimed to detect the
clear-text prices of advertisements. We performed this experiment 10 times. The average
price observed during this experiment was $0:44 CPM, much lower than previously when
the average was $1:17 (Table 5.6). In this setting Criteo could still win the auctions but at a
much smaller cost (because we intentionally blocked the competitors). This result proved
that other bidders had been involved in the initial scenario, and that retargeting companies
are also competing on retargeted ads.

Advertisers also bid on new users. This could give them an opportunity to perform
a Cookie Matching on them. As described in section 5.2.2, the winner has the right to
initialize a Cookie Matching with the Ad Exchange when serving ads through Real-Time
Bidding mechanism. The price $0:0004 per impression (average value $0:41 CPM divided
by 1000) would be very reasonable for the opportunity to track a new user.

The relatively large variance values in the results can be explained by the fact that
ads prices depend on several parameters such as di�erent campaigns or di�erent bidders.
Furthermore, RTB is by definition dynamic, thus consequently auctions could possibly be
won by di�erent advertisers in each round of our tests. It is also important to note that the
variance for new users is much (2:6 times) lower than in the other cases.

5.5.6 Real Profile Analysis

We analyzed clear-text prices obtained in the real user dataset (section 5.4.2). The results
are shown in Table 5.7. Among the 100 users, 89 had at least one clear-text price. The
average number of clear-text prices per profile is approximately 4. There is a high rate
of variation among the prices per analyzed profile, with minimum at $0:04, maximum at
$1:98, and average value of $0:43. We also investigated the 8 profiles which had at least 7
prices per profile to analyze how prices vary among them. Table 5.8 presents the number

second-price to first-price auctions [136]. However, as we show, this does not apply to our case.

maty.com
maty.com
maty.com
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Table 5.7: Real profile analysis. Prices in CPM.

Property Value

Number of profiles with clear-text prices 89
Avg. number of prices per profile 3.83
Average price per profile 0.43
Standard deviation (price per profile) 0.37
Min price per profile 0.04
Max price per profile 1.98

Table 5.8: Real profile examples. Prices in CPM.

Index Average price Standard deviation Count

1 0.16 0.17 7
2 0.26 0.14 11
3 0.41 0.51 8
4 0.43 0.20 8
5 0.45 0.31 8
6 0.91 0.68 13
7 1.11 0.89 7
8 1.13 1.00 8

(count), average value and standard deviation of prices in 8 profiles from our dataset. The
prices we observed with real user profiles actually vary within the value range of prices
detected in artificial profiles as shown in Table 5.6.

5.6 Discussion

5.6.1 Data Exchange between Companies

Data exchange is a growing trend in modern advertising systems. When targeted ads
become increasingly sophisticated, the users’ dataset maintained by an intermediary (e.g.
an ad network) might not adequately meet these demands. Naturally, advertisers desire
to target users with the use of their own data as well. For example, Facebook has been
working with data vendors Datalogix, Epsilon, Acxiom and BlueKai [148] in order to
allow its clients to serve ads based on their o�ine data [149]. RTB services enable
advertising companies to use their own online data for serving targeted ads. While this
data exchange is expected to enhance advertising performance, it should be designed with
careful consideration. Otherwise, this could lead to users’ data leakage between various
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companies and the resulting loss of control over this data. In this chapter, we showed
that this might indeed be the case with RTB. We investigated and quantified the leakage
based on the assumption of non-adversary parties. With malicious attempts, e.g. collusion
between the companies with the aim to combine their users’ profiles, the risks could be
much more severe.

5.6.2 Privacy-Preserving Targeted Advertising

There have been a considerable number of research work towards designing a targeted
advertising system not utilizing tracking, such as Privad [39] and Adnostic [40]. Yet, most
of the proposed solutions are designed in the traditional ad network setting. Their common
idea is to save users’ profiles on the client side; ad networks send coarse-grained ads to the
client, which then can locally select the most appropriate ones to display, according to the
user profile. It is not clear if these systems can be adapted to new technologies such as
RTB. In RTB, the advertisers want to customize their bids towards each individual user,
e.g. a jewelry advertisement could have di�erent values when showing to a male and a
female. Moreover, advertisers are likely interested in adjusting their buying strategy at real
time. The emergence of such new demands and techniques requires a significant change
in the proposed privacy-preserving targeted advertising systems, or even a new design
approach, in order to address privacy problems while maintaining current business models.

5.6.3 The Economics of Private Data

In a study performed by Carrascal et al [101], users evaluate the disclosure price of their
presence on a Web site to EUR 7, on average. In this work, we showed that this information
is actually being sold o� at a much lower price by Ad Exchanges and that its price depends
on the user’s browsing profile, in addition to other contextual information. Our experiments
demonstrated that, on average, the presence of a user on a Web site is sold to the winner of
the RTB auction for less than $0:0005 ($0:5 CPM). We also note that since the presence of
the user on a Web site is actually broadcast to all the bidders during a RTB request, this cost
can be shared among them. The actual cost per bidder could then be computed by dividing
$0:0005 by the number of bidders, which we estimated to 20�125 for DoubleClick. We
acknowledge that the cost also includes the price paid for the ad delivery. The huge gap
between these figures and those from the users’ perception can be explained by the fact
that user information is currently extremely easy to collect (e.g. by simply placing a small
JavaScript code in a Web site), therefore could be sold at very cheap price.

Revenue per user. Estimating how much advertisers spend on a user is an interesting
problem, and we aim to provide a rough estimation of this cost. According to the work
of Castelluccia et al. [150], targeted ads account for about 30% of total ads. From the
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analyses in the previous section, we can assume that the average price per ad is $0:0005.
We manually counted advertisements on 50 sites corresponding to an one-day browsing

history of a volunteer and detected 40 ads in total (0:8 ad per site). We therefore derived
the total number for targeted ads at around 12 (30% of ads on 50 sites) in the analyzed
case. Setting the average price per ad to $0:0005, these ads cost advertisers $0:006 per
day. Accordingly, the cost is approximately $0:18 per month and $2:16 per year. If, for
example, Ad Exchanges take a commission fee of 20% for each transaction, they could
earn around $0:432, and the publishers $1:728, per user, per year.

This simplified scenario is only meant as a rough estimation since many aspects remain
uncertain. For example, the number of ads per site and the number of browsed sites
per day may not be representative. We also assumed that all other cost models such
as Cost Per Click (CPC) or Cost Per Action (CPA) can be converted to the equivalent
CPM. For example a price of $0:01 CPC for an ad with click probability of 10% can be
converted to a $1 CPM. We therefore assumed in our estimation that the average CPM
price (established in previous sections) applies to all targeted ads. By this estimation, we
showed an initial quantification of how much a user costs, or how much money which
entities (Ad Exchanges, publishers, etc.) gain from the user’s data in online advertising
market.

5.7 Summary

In this chapter, we characterized Real-Time Bidding (RTB) and Cookie Matching (CM),
and highlighted the core privacy risks associated with the use of these technologies. We
showed that RTB and CM are observably prevalent on the Web and lead to significant user
information leakage. Concretely, RTB can leak as much as 27% of a user’s Web browsing
history to a bidder involved in Ad Exchanges’ auctions. The actual leakage is expected
to be higher, since we only established a lower bound of actual RTB communications.
The process is inherently non-transparent, and this invisible leakage cannot be observed
using current tracking measurement tools such as Collusion [151] and Ghostery [35].
Nevertheless, a strict privacy protection approach, such as blocking all ad-related URLs
using Ghostery or AdBlock Plus [34] could potentially solve this privacy problem.

RTB creates a data market where users’ browsing data are sold at auctions to advertisers.
We showed that advertisers are evaluating each individual user di�erently depending on
several criteria. Our results indicate that the presence of a user in a Web site is often sold
o� for less than $0:0005, which is far lower than that from users’ perception [101]. We
highlight that such sophisticated methodologies being used to commoditize users’ data
without their awareness, let alone consent, is a problem that needs due attention.
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Part II

Privacy-Enhancing Solutions
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Chapter 6

A Practical Solution: Retargeting
Without Tracking

Retargeting ads are increasingly prevalent on the Internet as their e�ectiveness has been
shown to outperform conventional targeted ads. Retargeting ads are not only based on
users’ interests, but also on their intents, i.e. commercial products users have shown interest
in. Existing retargeting systems heavily rely on tracking, as retargeting companies need to
know not only the websites a user has visited but also the exact products on these sites.
They are therefore very intrusive, and privacy threatening. Furthermore, these schemes
are still sub-optimal since tracking is partial, and they often deliver ads that are obsolete
(because, for example, the targeted user has already bought the advertised product).

In this chapter, we present the first privacy-preserving retargeting ads system. In the
proposed scheme, the retargeting algorithm is distributed between the user and the ad-
vertiser such that no systematic tracking is necessary, more control and transparency is
provided to users, but still a lot of targeting flexibility is provided to advertisers. We show
that our scheme, that relies on homomorphic encryption, can be e�ciently implemented
and trivially solves many problems of existing schemes, such as frequency capping and
ads freshness.

6.1 Introduction

6.1.1 Context and Motivation

Since behavioral targeting helps advertisers optimally allocate their advertising resources
to their most likely potential customers and consequently increase their revenue, companies
have been constantly improving their tracking and ad personalizing technologies with the
aim to enhance targeting performance.
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Retargeting ads have been introduced in recent years with the aim to match the exact
user attention or previous online action. For example, a user who has visited hotels.com
looking for a hotel in Paris will very likely receive frequent ads about this hotel during his
subsequent browsing sessions, for instance on accuweather.com. Advertisers (hotels.com
in this case) aim to bring these customers back to their sites by showing ads related to
the products they previously showed interest in. Retargeting ads have been shown to be
significantly e�ective; Criteo in particular confirmed that personalized retargeting ads
perform 6 times better than general ads [152]. Increasingly, retargeting is becoming
prevalent in travel, real estate and financial services industries [153].

Retargeting advertisers, mostly commercial online stores (e.g., hotels.com), often lever-
age a third party, called retargeter (e.g., Criteo), to handle the retargeting task. Retargeters
track users on these stores to collect products that they are interested in, and then select one
to advertise to a user when (s)he visits an ad-enabled website. This is beneficial to advertis-
ers as they can outsource the optimization of the whole advertising process to an external
party with dedicated resource and expertise. However, as users’ interested products are
centrally collected by third-party retargeters, this also poses significant privacy threats. For
example, these products are shown to reveal users’ important events in their life, such as
being pregnant, getting divorced or graduating [58]. Compared to conventional tracking,
where ad networks usually only collect urls of sites visited by a user (e.g., hotels.com) to
infer his interest categories (e.g., traveling), retargeting trackers also retrieve exact products
on each page thereby inferring more accurate information about the user (e.g., the city
where he is searching for a hotel).

There have been serious public concerns about the prevalence and resulting privacy
threats of retargeting. As observed by the author of a The New York Times’s article [153]:
“Retargeting has reached a level of precision that is leaving consumers with the palpable
feeling that they are being watched as they roam the virtual aisles of online stores." and “It
illustrates that there is a commercial surveillance system in place online that is sweeping
in scope and raises privacy and civil liberties issues".

The natural reaction from the user community is to block trackers. However, tracker
blocking approaches often cause negative impacts on the business model of the Internet,
which is mainly fostered by advertising revenue (Section 1.4). Alternatively, researchers
have proposed technical designs that enable targeted advertising without the need of
tracking users [39][40]. Their common idea is to shift advertisers’ ad personalizing
algorithms to users’ devices, thus providing users with complete control over their data.
However, it is unclear in these approaches how the confidentiality of these algorithms
is guaranteed against users. In addition, these proposals do not consider the Real-Time
Bidding (RTB) protocol, which allows trading ad spaces at real-time auctions on a per-ad-
impression basis, in their design. RTB is actually a major channel for retargeters to buy ad
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spaces.

6.1.2 Our Proposal

We propose the first retargeting system which does not require tracking. In this system,
a client software operating at the user’s terminal collects products on websites that the
user has visited, and stores them locally. The product selection algorithm is distributed
between the client and the retargeter, while an e�ective homomorphic scheme protects
the algorithm’s confidentiality from the client. Specifically, the homomorphic encryption
scheme allows the client to perform some precomputation for the retargeter without
learning how exactly the retargeter selects the advertised products; these precomputation
results are then sent to the retargeter in a way that does not leak any user private information
(e.g., IP address); and finally, the retargeter selects the final products to advertise to the
user. Our scheme is compatible with today’s advertising systems, and integrates RTB as
part of its design.

The proposed scheme has several benefits over the existing retargeting scheme. (1) It
improves user privacy by preventing systematic tracking. (2) It provides more transparency
and control for users over their data which is used for retargeting. In particular, users can
filter out privacy-sensitive products from advertising. (3) It is more e�cient than existing
schemes since profiling is performed locally, and is therefore based on higher quality data.
Furthermore, in existing systems, users frequently receive retargeting ads about products
that are not relevant anymore (e.g., they already bought them from another seller). This
is annoying to most users, yet inevitable, since advertisers do not always know whether
users have changed their intents or made a purchase. This problem is trivially solved in
our scheme since users can filter-out products that they are no longer interested in. (4) It
does not rely on cookie and tracking technologies, and therefore works even if users use
anti-tracking tools.

6.2 Background: Retargeting and Privacy

Before retargeting became prevalent, conventional targeted ad systems (e.g., Google
Adsense) were often only interest-based: ad networks collected urls of sites visited by
users (e.g., hotels.com) to infer user interest categories (e.g., traveling) and used this
information to deliver personalized ads.

By contrast, retargeting is much more e�ective (and also privacy-invasive): retargeting
trackers do not only attempt to identify user interests, but also aim to get the exact products
on each page, possibly with additional information such as related user actions (e.g.,
search) and the point where the user suspended the purchasing process. For instance, given
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a user visiting hotels.com, retargeters might learn that he is interested in a hotel in a certain
district in Paris. In addition, they can also infer whether the user only looks at this hotel, or
has a clear booking intent (the hotel is in a shopping cart), or already made a booking (the
hotel is in a booking confirmation page).

6.2.1 Retargeting Mechanism

There are five entities in a retargeting system: advertiser, publisher, ad exchange, retargeter
and user. Advertisers (e.g., hotels.fr) wish to promote their products by showing ads to
users. Publishers (e.g., nytimes.com) develop web pages providing content to users and
sell ad spaces on their pages to advertisers. Ad Exchanges (e.g., DoubleClick) connect ad
buyers (advertisers or their representatives) and sellers (publishers) in real-time transactions.
Retargeters (e.g., Criteo) provide retargeting service to advertisers.

We illustrate how retargeting works with the following example. A user visits maty.com,
searches for an engagement ring (product), looks at its details and then leaves the website
without a purchase. Later on, he visits accuweather.com and finds this engagement ring
advertised to him on the page. In this scenario, the owner of maty.com (advertiser) uses the
retargeting service provided by a retargeter, say Criteo, to retarget the user on publisher
pages (accuweather.com in this example). This retargeting process has two main phases:
tracking (the retargeter tracks users on maty.com) and delivering ads (the retargeter delivers
ads to users on accuweather.com). In what follows, we elaborate these two phases.

Tracking: The advertiser puts the retargeter’s tracking code on its pages and encodes
in each page the ids of products aimed for retargeting (e.g., an engagement ring’s id:
“ring123"). When a user visits such a page, the tracking code sends his cookie (belonging
to the retargeter’s domain) along with these product ids to the retargeter. In addition, the
advertiser can flexibly send additional user information to the retargeter. For example, if
the user performs a search, the keyword and product ids on the resulting page could be
sent to the retargeter. In case the user visits his shopping cart, the quantities of products
in the cart could also be sent along with the product ids. This information serves a more
accurate targeting (e.g., targeting shopping cart abandoners). As a result of tracking, the
retargeter builds a list of potentially advertised products assigned to each user cookie.

Delivering ads: The retargeter finds ad spaces on publisher pages (e.g., accuweather.com)
mostly through the Real-Time Bidding (RTB) protocol. RTB is provided by an Ad Ex-
change (ADX): publishers put the ADX’s advertising code on their web pages; when a user
visits such a page, the code sends an ad request, which contains the ADX’s user cookie and
the information about the page, to the ADX. The ADX subsequently broadcasts these data
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in form of bid requests to its registered bidders, including retargeters, for them to compete
in a real-time auction for the ad space.

Upon receiving a bid request, each bidder recognizes its own user cookie from the
ADX’s cookie thanks to a cookie matching protocol [154]. Given the list of products
previously assigned to the user cookie, each retargeter selects some products1 to be
advertised to the user as well as the advertising price it would pay. This selection is
typically based on the products, the user profile, and the page which displays ads.

ADX is often operated by giant firms, such as Google, Yahoo or Microsoft: they manage
huge online ad inventories and put them into real-time auctions in order to maximize the
revenue.

6.2.2 Privacy Concerns

There are serious privacy concerns related to the fact that products, which users are
interested in, are centrally collected by retargeters. Specifically, certain kinds of products
might immediately expose sensitive information: an engagement ring reveals that the user
likely intends to get married while its price implies his financial capacity, a hotel booking
reveals the user’s destination, a bank loan reveals the user’s financial status, and so forth.
In addition, research has shown that users’ habits can be characterized by the products
they consume for a period, and that changing habits anticipate special events in their life
(e.g., being pregnant, getting divorced or graduating) [58]. The inferred information can be
used by marketers to better suggest products to users, but can also enable price or service
discrimination [155]. Moreover, retargeting ads might reveal users’ private actions, e.g., to
their family members. This has been shown in a practical case when a commercial coupon
advertised to a father revealed that his teenage daughter is pregnant [58]. Furthermore, all
this private information can be easily linked with user identity, as commercial websites
often incentivize users to provide their name, email address or telephone number, e.g.,
through a fidelity program.

6.3 Goals and Assumptions

6.3.1 Goals

We introduce a novel retargeting system which preserves user privacy from retargeters.
Specifically, our scheme ensures that retargeters cannot associate any user information
with user personal identity such as IP address (anonymity) and cannot associate multiple
pieces of such information with the same user (unlinkability). We also prevent any man-
in-the-middle attack (possibly mounted by Ad Exchanges) between users and retargeters

1The retargeter can use the exact products that the user visited and/or suggest relevant products.



CHAPTER 6. RETARGETING WITHOUT TRACKING 86

that could aim at eavesdropping the transmitted data (e.g., ads) to learn private information
(e.g., list of products visited by the user).

In addition, our scheme also protects the secrecy of retargeters which do not want
to reveal every detail of their ad selection algorithm even if it is distributed between the
user and the retargeter. This is a challenging task since the algorithm needs private user
attributes (e.g., age, sex, or interest categories) and also confidential data from the retargeter
(e.g., the combination of user attributes that yields higher clicking rate) as input.

While ensuring privacy, we also aim to keep the retargeting e�ectiveness of today’s
systems. Specifically, we provide retargeters with almost the same input and flexibility
for ad selection as they have today. Nevertheless, we cannot compare the performance of
our proposal with that of the current retargeting system due to the lack of real data and
details of today’s ad selection algorithms. Hence, we leave this performance comparison
for future work, and rather discuss several possible improvements of our scheme.

6.3.2 Security Assumption

Some related work [39][40] assume honest-but-curious parties, which abide by the protocol
rules but may misuse any information obtained in the protocol run. In our work, we assume
that the retargeter and the ad exchange can be active, i.e., they can also mount active
attacks to break anonymity or unlinkability.

However, we assume that the ad exchange does not collude with the retargeter. The
major goal of an ad exchange is to provide a fair market for trading ads, not to break user
privacy at all cost. Moreover, ad exchanges are often large companies with reputation
(e.g., Google or Facebook), which unlikely take the risk to collude with an external party.
In addition, most of their privacy policies actually contain non-collusion terms making
them subject to legal action. Entities which do not have such privacy statement could be
excluded by the client software by maintaining a blacklist of them.

On the client side, we assume that the user trusts the client software. The client software
can be open-source (e.g., a browser plugin), and therefore can be easily audited by a trusted
party. Finally, the client can be malicious towards retargeters. For example, a retargeter’s
competitor might manipulate the local configuration to learn the private algorithm of the
retargeter.

6.4 System Overview

We follow a distributed (in contrast to the currently centralized) approach where a software
agent running at the user’s device, called client, creates and maintains user profile, as well
as computes a score for each visited product. These scores allow retargeters to select ads
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Figure 6.1: System overview

and to adjust their advertising prices to the user. At a high level, the protocol works as
follows (Figure 6.1)2:

1. The retargeting advertiser builds product feeds for the retargeter in which it specifies
the products to be advertised. The advertiser and the retargeter agree on a range
of advertising details for each product such as product quality (e.g., inferred from
the number of users showing interest in the product), user targeting criteria and
ad pricing3. These details are encoded for each product as a product profile and
embedded into the advertiser’s web pages.

2. When a user visits a commercial web page (which belongs to a retargeting advertiser,
e.g. hotels.com) looking for a product, the client retrieves the product profile from
the page.

3. The client then computes the score of this product by matching the product profile
with the user profile. This score gives an estimation of the expected revenue of the
retargeter from advertising this product to the user, and therefore shows whether this
product is a good candidate for retargeting or not.

4. The client selects the products having the highest scores, called top-products, for
each retargeter that it encountered.

5. When the user visits a publisher’s page (e.g., accuweather.com), which contains an
advertising frame, he sends the top m (say m = 3) product ids and scores of each

2Note that most values that are processed in the protocol are encrypted. We ignore this aspect at this
stage for simplicity.

3These details can be set by advertisers or suggested by retargeters.
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retargeter to the ADX4. The ADX initiates the RTB auction among all retargeters by
distributing the top-products of each retargeter. Based on the scores of the user’s top
products, each retargeter decides whether to serve an ad to the user and at what price,
and sends the bid to the ADX. Finally, the ADX puts the winner’s ad creative on
the publisher’s web page; the ad creative anonymously loads ads from the retargeter
through a proxy mechanism at the ADX.

As product profiles are considered as commercially sensitive information, they are en-
crypted by retargeters using a homomorphic encryption scheme such that users cannot
access the profile attributes. In order to select the highest scored products, the client
invokes the ranking service of each retargeter. In particular, the client sends the list of
encrypted scores to the ranking service in a way (described later) that leaks neither the list
of products nor the user profile to the retargeter. The ranking service decrypts the scores,
sorts them, and sends back the sorted list of encrypted scores to the user.

The ADX does not include any user cookie (or user identifying information) into bid
requests as in today’s RTB protocol. Meanwhile, the top products sent to retargeters are
encrypted and therefore inaccessible to the ADX. Retargeting ads are loaded through a
proxy mechanism at the ADX and similarly are encrypted in order to prevent the ADX
from learning their content. Note that our scheme requires that retargeters buy ad spaces
from publishers only through ADX5.

6.5 System Details

6.5.1 Product Score Evaluation

We present our approach to compute product scores in the Cost-Per-Click (CPC) model,
i.e., advertisers only pay retargeters when users click on ads. A similar approach can be
applied to other models such as Cost-Per-Mile or Cost-Per-Action. In CPC, the retargeter’s
expected revenue from advertising a product P to a user U is calculated as CTRU(P)�
CPC(P), where CTRU(P) is the estimated Click-Through-Rate (CTR) of the ad shown to
this user, and CPC(P) is the price that the advertiser pays for an ad click. The product
score in our scheme is defined as this expected revenue.

We assume that each product P has a default CTR, denoted by CTR(P), and computed
by a retargeter R, e.g., based on the click history of similar products. A product initial

4We assume a mechanism such that retargeters notify users of which ADXs they are currently working
with (e.g. by putting this information on a website accessible to clients). The client only includes products of
the related retargeters when it detects an ADX.

5We believe this requirement is reasonable: major retargeters (e.g. AdRoll, Criteo) are actually partners
with major ad exchanges (e.g. DoubleClick, RightMedia, Facebooke, etc.) for their indirect buying through
RTB [156][157][158], and start embracing Preferred Deals as an e�cient technique for their direct buying
relationships with publishers [159][160][161][162].



89 CHAPTER 6. RETARGETING WITHOUT TRACKING

score (PIS) of P is calculated as PIS = CTR(P)�CPC(P), which is independent of users.
R targets users based on a set of user attributes such as fgender;age; interests; locationg.
Example values of these attributes are f“male”;“24�35”;“sport”;“Paris”g. For each of
these attribute values, such as male, R quantifies its e�ect on the CTR of P by an impact
factor, such as 1:2, indicating that advertising P to a male user would increase P’s CTR by
20%. Impact factors can be learned from statistics, e.g., by analyzing the CTR of similar
products when being advertised to male. The impact factor which is larger/smaller than 1
increases/decreases P’s CTR. If the retargeter does not have su�cient statistics to measure
an impact factor, it sets that to a default value (e.g., 1).

The retargeter R configures, for each product, the initial score PIS and the impact
factors for all possible values of each user attribute. These properties are then encrypted by
R’s symmetric key using a homomorphic encryption scheme such that a user can select the
encrypted impact factors corresponding to his profile (e.g., a male user picks the encrypted
impact factor for male) without knowing their values. The user performs this selection and
then computes the product score using the (encrypted) PIS and the selected (encrypted)
impact factors. In the following, we describe the details of our approach.

6.5.1.1 Encoding User and Product Profiles.

The user attributes in our scheme include age, gender, location and interest categories.
In addition, they can also include three extra attributes that are di�erent for each product:
user conversion status (e.g., the product was put into shopping cart but not purchased),
frequency of visits (e.g., visits per day) and time of last visit (e.g., last hour or last day)6.
Note that this list is not exhaustive: additional attributes can be added depending on specific
targeting purposes.

� User profile: A user profile is described by a vector U where each coordinate en-
codes the value of one user attribute. Specifically, each coordinate is the index of
the value of the corresponding attribute in its value set. An example of a user pro-
file is U = (1;0;89;1;2;2;3) where each coordinate may encode (1 : “18�24”(age);0 :
“male”(gender);89 : “Madrid”(location);1 : “computer science”(interest);2 : “in shopping cart”(conversion status);2 :
“10 visits=day”( f requency);3 : “last week”(last visit)).

� Product profile: A product profile belonging to a retargeter R includes (1) the ids of
P and R (idP and idR, resp.); (2) PIS ; (3) a url of R’s ranking service (see later); (4)
a set of vectors fF1; :::; Fng, where each corresponds to a user attribute and contains
impact factors for all possible values of that attribute. Given the previous example,

6Users who put the product into shopping cart are more likely to make a purchase than those only looking
at the product. Larger visit frequency usually anticipates a purchase. Similarly, recently visited products are
more likely to be purchased.
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F2 corresponds to gender, while F2[1] and F2[2] are the impact factors of male and
f emale, respectively. 7

6.5.1.2 Computing Score.

For each attribute i, the client uses U[i] to pick one impact factor from Fi, namely Fi[U[i]].
The score SR

P for product P, which belongs to a retargeter R, is computed as follows:

S R
P = PISR

P�
nY

i=1
Fi[U[i]] (6.1)

Although this formula can be computed using a multiplicative homomorphic encryption
scheme8, such as El-Gammal [163], such asymmetric encryption is too costly in practice.
We, instead, use an additive homomorphic encryption scheme based on symmetric keys,
which is proposed in [164] (Appendix A), for its e�ciency. Hence, we convert Formula
6.1 to additive form by taking the logarithm of both sides and use the resulting formula
with the additive scheme:

logS R
P = logPISR

P +
nX

i=1
log Fi[U[i]] (6.2)

For all i, R encrypts the logarithm of Fi such that each coordinate of Fi is encrypted with
a di�erent key. Specifically, for any Fi, R computes FE

i = (Encki;1(log Fi[1]); : : : ;Encki;jFi j
(log Fi[jFij]))

where ki; j = Hash(idPjKjij j) and K is the secret key of R. In addition, R computes
EnckPIS(logPISR

P), where kPIS = Hash(idPjKj“PIS ”).
To compute the product score, the user simply applies Formula 6.2 but in the encrypted

domain, i.e.,

EnckPIS(logPISR
P) +

nX

i=1
FE

i [U[i]] = EnckPIS+
Pn

i=1 ki;U[i](logS R
P) (6.3)

where the equality follows from the homomorphic property of Enc [164]. The product
score can be retrieved by taking the exponent of the decrypted value.

6.5.2 Product Ranking

The client needs to rank products belonging to the related retargeter R when it encounters
a new product profile. Alternatively, it can perform the ranking periodically (e.g., hourly)

7Note that all values of the impact factors are converted to integer by using the micro format (e.g., 1 is
converted to 1;000;000 micros). The micro format is commonly used in the advertising industry.

8An encryption scheme, denote by Enc, is additive homomorphic if, given two arbitrary plaintexts m1
and m2, it allows computing Enc(m1 + m2) from Enc(m1) and Enc(m2) without decrypting any of these
values. Similarly, the scheme is multiplicative homomorphic if it allows computing Enc(m1 �m2) from the
ciphertexts Enc(m1) and Enc(m2).
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in case new products are frequently recorded. Recall that the URL of the ranking service is
included in each product profile of R.

To rank a set of products, the client sends the list of product scores, computed in
Formula 6.3, to the ranking service of R. However, in order to decrypt this score, R would
need the set of keys

P
i ki;U[i], which eventually reveals the user profile U. We instead follow

a popular approach [41][165] and propose to implement the whole ranking procedure using
a secure co-processor (SC) (e.g., IBM 4765 [166]), which provides secure storage as well
as trustworthy, programmable execution environment. The SC could be deployed at R,
and users can verify the code being executed on the SC through a remote code attestation
mechanism (e.g., [167]). As the SC is tamper-resistant, while the communication between
the client and the SC is encrypted, no other parties (including R) will learn anything about
user profiles and top-products.

The ranking algorithm is simple and can be public. In particular, R installs K and the
public ranking procedure on the SC. Afterwards, the client establishes a secure connection
to the SC (e.g., through TLS), and sends U, as well as idP with EnckPIS+

P
i ki;U[i](logS R

P)
for the related products to the SC. Then, the SC can decrypt product scores, rank these
products, and send back the sorted list of product ids to the client.

6.5.3 Ad Serving

The client sends ad requests, which include the top products’ ids, idRs (retargeter ids),
PIS and scores, to the ADX. Note that, as opposed to what in current RTB systems, ad
requests in our scheme do not contain any cookie. The ADX uses idRs to separate the
top-products for each retargeter and includes them along with the user’s visiting page in
related bid requests sent to appropriate retargeters. Each retargeter R decrypts the product
scores and adjusts these scores according to the quality and relevance of the visiting page.
If there is a di�erence between the PIS of a product and the latest PIS at the retargeter
(e.g. due to a CPC change), it updates the product score accordingly. R then selects the
product with highest score and determine the bid price based on the score. Subsequently,
R builds an ad creative which contains the ad url to load ad for this product from its server,
and then includes the creative and the bid price in a bid response which is sent to the ADX.

If R wins the auction, its ad creative is sent to the user’s device. Note that current
ADXs mostly allow these creatives to load ads directly from the retargeter’s server or from
the ADX’ storage which contains retargeters’ pre-uploaded ads. Both approaches do not
protect user privacy: while the former exposes user IP address to the retargeter, the latter
reveals personalized ad content to the ADX. In our scheme, we protect user privacy by
requiring that ads be encrypted by the retargeter and loaded through a proxy mechanism at
the ADX. The resulting computational and bandwidth overhead is analyzed in Section 6.7.

In particular, the ADX replaces the ad url in R’s ad creative with a url pointing to the
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ADX which contains the original url as value of a HTTP parameter. At the user’s device,
the creative requests the ad from the ADX; the ADX retrieves the retargeter’s ad url, loads
the ad from the retargeter, and then returns the ad to the user. The ad view or click report
is sent to the ADX, which subsequently removes any user related information (e.g. IP
address, browser info, etc.) and forwards the report to the retargeter.

Protecting Ad Requests and Content: The product ids (in ad requests) or the ad content
could reveal the user’s top products to the ADX. In order to protect these data, we use a
symmetric key which is shared between the retargeter and the client. In particular, before
sending an ad request, the client generates a session key Ku;R for each retargeter R whose
products are selected for the request. The client then encrypts each session key with the
public key of the corresponding retargeter and includes the resulting encrypted key in the
ad request. The ADX subsequently includes the encrypted keys in bid requests. R first
decrypts Ku;R with its private key and then decrypts the top-products’ ids with Ku;R. Ku;R

is also used by R to encrypt the ad content for the client if R wins the auction.

6.5.4 Other Features

Frequency Capping: Frequency capping restricts the number of times an ad is shown
to the same user (e.g., less than 10 times per day). This is solved trivially in our scheme:
the client counts the number of times a product is advertised to the user, and ignores a
product when building ad requests if its counter is beyond a threshold.

Click Fraud Defense: Since the click report is anonymized (by the proxy mechanism at
the ADX), this makes the click fraud more di�cult to detect. However, a similar approach
to [39] could be applied: the retargeter sends suspected click reports to the ADX; the ADX
traces back to the user IPs which are responsible to these clicks to examine the probability
of click fraud.

6.6 Privacy Analysis

In this section, we analyze how user privacy is protected from retargeters, ad exchanges,
advertisers, and other users. We also analyze how the confidentiality of the retargeter’s ad
selection algorithm is guaranteed.

6.6.1 Retargeter

A retargeter R might get user information from bid requests or ranking requests. Although
R gets top-products from bid requests, it cannot associate them with user identifying
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information such as the IP address (which is not included in bid requests). Contrarily,
while R can see the user IP from ranking requests, it is not able to get any related user data
since these requests are received and processed by the SC through a secure connection.
The tamper-proof property of SC prevents R from intercepting and learning any internal
data during the ranking process. In summary, R unlinkably gets users’ top products (from
bid requests) and users’ IP addresses (from ranking requests).

Without covert channel or collusion, R cannot break user anonymity unless it can
correlate ranking requests with bid requests, e.g., if there are too few users, or ranking
request time correlates with bid request time. Although both attacks seem impractical with
large number of users (which is likely the case), the time correlation attack can be further
mitigated by randomizing the time of ranking requests.

Nevertheless, R might attempt to link users’ top products from di�erent bid requests
and gradually build unique profiles of users (linkability). This would be di�cult given that
the client sends only a small number of top-products in ad requests. A possible attack is to
infer user attribute values from the product scores and then use them as a fingerprint to
link di�erent top products. This, however, can be mitigated by coarsening score values at
ranking (performed inside the SC) and then using these coarsened values in ad requests.

Although R can hardly break user anonymity or profile unlinkability if it faithfully
follows the protocol, it might collude with other parties in order to do that. Recall that we
assume non-collusion between ADX and R (Section 6.3). Other parties that might (and in
fact have motivation to) collude with R are the advertiser and the publisher.

Assume that R colludes with a malicious advertiser. For example, the advertiser might
send all its log entry database (possibly containing visited products, time of visits, and
the user IP address of every visit) to R. In order to link bid requests, which likely contain
products from other advertisers, with IP addresses from this database, R may perform
timing or product frequency analysis.

� Timing analysis: R correlates the visiting time related to a product (in the malicious
advertiser’s database) with the reception time of a bid request (e.g., if they are
close, both events are possibly originated from the same IP). However, as discussed
previously, time-based correlation is di�cult due to the large number of users. In
addition, it is hard to predict the interval between a visit to an advertiser’s page and
a visit to a publisher’s page.

� Product frequency analysis: R selects products from the database which were visited
by a small number of users, ideally only by a single user (identified by IP address).
If a bid request contains any of these products, R can associate it with a small group
of users, or a single user, accordingly. Though this attack is possible, it can only
a�ect a very small proportion of users. In addition, in this form of attack, R cannot
actively target a victim.
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The timing attack would be more practical if R colludes with a malicious publisher, as
the time of a visit to a publisher page is very close to the time of the resulting bid request.
However, this only works in case of very small publishers which have few connecting users
at a time. In addition, the client can add some arbitrary delays in sending bid requests in
order to mitigate the risk of such attack.

6.6.2 Ad Exchange

Although the ADX can see the user’s IP address, it cannot obtain the list of top-products
or ad content; they are encrypted using the session key shared between the user and the
retargeter. The ADX cannot forge fake session keys in order to decrypt retargeting ads
served through its proxy mechanism. In particular, if a fake session key is produced, the
retargeter cannot get the right product ids from the related request.

Notice that, as part of the RTB protocol, ADXs can still get urls of visited sites in our
solution. Nevertheless, the risk of profiling users using these urls is less severe than that in
retargeting (Section 6.3). Moreover, users can block cookies to prevent possible tracking
performed by the ADX; our scheme works without the need of any tracking cookie. In this
work, we focus on the privacy risks of retargeting, and leave the total elimination of this
url leakage towards the ADX for our future work.

6.6.3 Advertiser

In our system, an ad click brings the user directly to the advertiser’s site, the same as what
is happening today. We acknowledge that this is a problem since advertisers can leverage
fine-grained targeting feature and high user profiling quality in our scheme to learn more
information about users than what they can learn in today’s system. One solution could
be to handle post-click sessions through an anonymized network, such as TOR [168].
This might, however, lead to additional network latency, complexity in measuring ad
performance or other implication, and therefore need deeper analysis from the research
community and the advertising industry.

6.6.4 User

Targeted ads were proved to be a potential source of leaking user private information due
to its personalized content [169]. In case of retargeting ads, someone happens to look at a
user’s screen when he is browsing the web in a public place (e.g. at work) may infer his
previous private actions (e.g. at home)9 that the user may want to keep secret (e.g. looking
for an engagement ring). Since user profiles in our scheme are built and stored locally,

9We assume that the user is using the same laptop computer in both environments.
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users can trivially filter out sensitive products to prevent such unexpected information
leakage. The encryption of transmitted data also prevents eavesdroppers from exploiting
personalized ad content thereby inferring user private information.

The client can be malicious toward a retargeter R. For example, one of R’s competitors
might install and manipulate a client in order to learn product profiles of R. Since the
used encryption scheme is proved to be perfectly secure [164] (Appendix A), only R can
decrypt its product profiles. Nevertheless, a malicious client may attempt to manipulate
its own user profile to observe possible changes in the ranking list and thereby inferring
some properties of the product profiles. This kind of attack needs to be repeated many
times in order to learn meaningful results. Consequently, it can be mitigated by applying a
threshold on the number of ranking requests per client. Furthermore, the ranking service
on the SC may apply a randomization in the order of top-products to make such kind of
attacks more di�cult, if not impossible.

6.7 Implementation and Evaluation

6.7.1 Implementation

To build the client, we extend the Firefox plug-in HttpFox [141] and use SQLite for storing
local data. The Ad Exchange and the Retargeter are written using NodeJS [170]. Note
that the ranking service, which is supposed to be implemented on a SC, is implemented
in NodeJS and executed by a normal processor in our implementation. We ran our client
inside a Firefox browser on a laptop running OS X 10.7.2 on an Intel Core i5 2.4 GHz,
and the retargeter and ad exchange on a machine with an Intel Core 2 Duo 2.66 GHz and
running Ubuntu 11.04.

Based on Google Ads Settings [171], we configure the system with 2 genders, 7 age
ranges, 24 top interests and 846 word localities. The user conversion status, the frequency
of visits, and the time of last visit are all configured with 5 permissive values. The client
stores up to 1000 products (for all retargeters) and includes 3 products per retargeter in
each ad request.

6.7.2 Evaluation

We evaluate, in this section, the computational and bandwidth overhead of our scheme
(compared to the existing system) through an example scenario.

Example scenario: A retargeter R provides retargeting services for 100 advertisers, each
having 1000 retargeting products. Each day there are 1 million unique users browsing
these advertisers’ websites (10K users per site on average). Each user browses for 20



CHAPTER 6. RETARGETING WITHOUT TRACKING 96

Table 6.1: Computational overhead at retargeter (per day)

Index Action Time (hours)

1 Encrypting 100K products on advertisers’ websites 0.21
2 Decrypting 60M scores in bid requests 0.83
3 Decrypting 2M session keys 1.23
4 Encrypting 2M ads with session keys 0.46
5 Processing 20M ranking requests 0.33

Total 3.06

retargeting products which belong to 3 retargeters on average, and issues 20 ad requests
containing such products, per day. Ad requests are handled by a single Ad Exchange
(ADX), resulting in 20 millions requests per day (about 232 requests per second) received
by the ADX. For each ad request, the ADX sends bid requests to all retargeters whose
products are contained in the ad request. The retargeter R submits bid responses for all 20
millions bid requests, wins about 10% of these auctions (2 millions winning times).

6.7.2.1 Computational Overhead.

Our client can perform 5K homomorphic computations per second. It can generate 200
session keys (encrypted by R’s public key) and 30 ad encryptions per second. With a
few dozen score computations and ad requests per day, the computation at client causes a
negligible overhead.

Our retargeter can perform 133 product encryptions, 100K score decryptions, and
6K ad encryptions per second. The computational overhead of the retargeter (per day)
is shown in Table 6.1. In this table, (1)(the first line) is estimated in the worse case
(the retargeter re-encrypts all 100K products everyday), while (3) can be significantly
optimized by o�oading asymmetric operations using dedicated hardware [172]. With our
implementation, assuming that the retargeter rents computation resources from Amazon
EC2 [173] (e.g., using a c3.large instance which is optimized for computation purposes),
the total computational overhead costs about $0.45 per day.

6.7.2.2 Bandwidth and Storage Overhead.

Each product profile increases the size of the product web page by 6 KB. This is a negligible
overhead given the fact that, for example, a maty.com’s product page’s HTML source is
around 100 KB, excluding images, css and JavaScript files. The sizes of an ad request and
a ranking request are 23.94 KB and 15.96 KB, respectively. The total bandwidth overhead
for each user is therefore approximately 2 MB per day. The products stored at a user’s
device (maximum 1K) cause a maximum 8MB local storage.
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Table 6.2: Bandwidth overhead at ADX and retargeter (per day)

ADX Retargeter

Index Action Bwth Action Bwth

1 Receiving 20M ad requests 53GB Receiving 20M bid requests 18GB
2 Sending 60M bid requests 53GB Receiving 20M ranking requests 35GB
3 Proxying 10M retargeting ads 190GB

The bandwidth overhead at the ADX and the retargeter are presented in Table 6.2. In
order to provide an estimation of the resulting cost, we assume that both the retargeter
and the ADX run their software on Amazon EC2’s servers. Amazon EC2 only charges
the bandwidth from EC2 to the Internet, which is related to ads served by the ADX to
users. If we apply the upper bound of this price, namely $0.12 per GB, the bandwidth
overhead resulting from serving ads (190 GB) costs the ADX approximately $22.8 per day
($2:28�10�6 per ad). This additional cost can be shared among retargeters, advertisers, and
publishers, for example by the ADX slightly increasing the transaction commission. Given
the significant number of advertisers and publishers working with an ADX in general, the
cost per entity would become negligible.

6.8 Discussion

6.8.1 Compatibility

Our purpose is not to replace but rather complement the current retargeting system by
providing an alternative solution for retargeters (and ad exchanges) to provide retargeting
ad service in a privacy-preserving manner. An example scenario would be as follows. The
retargeters choose privacy-preserving (our scheme) or regular (current scheme) RTB mode
at the ADX. At auction, the ADX sends privacy-preserving retargeting bid requests (as
described in our scheme) to privacy-advocate retargeters, and regular bid requests to the
others. The ADXs which support our scheme specify this in their ad requests (e.g., by
using a special HTTP header, such as “PPRetargeting = true”). The client10 intercepts
and includes into these requests the respective user’s top retargeting products. If users do
not favor traditional retargeting or RTB, they can, for example, configure the web browser
to disable third-party cookies.

10Privacy-advocate retargeters and ADXs encourage users to use the client software.
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6.8.2 Scoring Algorithm

The score computation (i.e., CPC(P)�CTR(P)�
nQ

i=1
Fi), is based on an assumption that the

e�ect of user attributes on the product’s CTR are independent of each other. Consequently,
this algorithm has a limitation: it does not take into account the intrinsic correlation
between user attributes. For example, say a user’s age “18-24" and interest “sport", each
increasing a product’s CTR with 1.2 (20%) and 1.1 (10%), respectively, a combination of
them might not necessarily be equal to 1:2�1:1 = 1:32, but can be higher or lower than
that depending on the correlation between the two attributes. In the following, we discuss
a possible extension that takes into account this correlation.

Attribute Coe�cients: We assume that the correlation between two attributes Fi (e.g.,
age) and F j (e.g., gender) can be quantified by a coe�cient Ci j, so that their combined
e�ect on a product’s CTR is computed as Fi � F j �Ci j. Each Ci j can be defined with
di�erent values for di�erent value ranges of Fi and F j. The score in this case would be

computed as: CPC(P)�CTR(P)�
nQ

i=1
Fi�

Q
i; j

Ci j. Note that the correlation coe�cient can

be computed for more than two attributes, e.g., Ci jk or Ci jkl. In the worse case, the size of
the coe�cient set is equal to the number of all possible combinations of attribute values.
The coe�cient values are also encrypted by the retargeter, and their applied attribute ranges
can be defined in a script encoded into the product profile.

6.8.3 Gathering Statistics

User statistics (e.g., click behaviors of a group of users) are important for retargeters to
enhance their retargeting performance. In our scheme, the SC can also be used to aggregate
this information in a privacy-preserving manner. In particular, after an interval (e.g., a
week), the client sends the user’s profile and CTRs of local products to the SC (through
a secure connection). The SC aggregates these data from a su�cient number of users,
produces statistical results (e.g., average CTR of a product advertised to sport-enthusiastic
users), and sends them to the retargeter.

6.9 Summary

Retargeting ads are growingly rampant and cause great privacy concerns, mostly resulting
from tracking user intents. In this work, we propose the first retargeting system that does
not rely on tracking. Our scheme leverages homomorphic encryption to distribute the ad
selection algorithm between the user and the retargeter in a way that securely combines
confidential data from both parties. The proposed scheme is compatible with RTB and
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supports major characteristics of current ad systems such as real-time auction, fine-grained
targeting, ads freshness and frequency capping.

This is, to our knowledge, the first work that considers RTB in a privacy-preserving
advertising solution. We note that RTB is increasingly prevalent and plays an important
role in today’s targeted advertising systems, itself exposing serious privacy concerns [144].
Enhancing user privacy in RTB in general is therefore our goal in a near future.
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Chapter 7

Conclusion and Future Directions

Privacy in targeted advertising has long been a source of controversy and debates. On one
hand, targeted advertising brings tremendous economic benefits: it provides a means for
advertisers to optimize their advertising resources and performance, increases advertising
revenue for publishers, and serves more useful ads to users. On the other hand, it invades
user privacy as third-party companies are collecting vast amount of users’ activities -
most of these data are not voluntarily shared by users. Resolving privacy problems poses
a multidisciplinary challenge which requires participation of economists, the research
community and the industry. The major roles of the research community are to study
potential privacy risks in current systems and, more importantly, to work out privacy
friendly solutions which are economically viable.

In this thesis, we studied possible privacy leakages in current systems through targeted
ads delivery and ad exchange protocols. We showed that, while related entities claim not
to disclose user private information to any external parties, decent protection of these data
is not guaranteed. In addition, we proposed a novel design for retargeting advertising
without the need of tracking, which can be integrated in the current ad exchange model
and compatible with the existing advertising infrastructure.

Solving privacy problems is beneficial not only to users but also to advertising com-
panies. We expect that the privacy leaks exposed in this thesis could help companies in
anticipating privacy problems and finding adequate measures, while the proposed solution
contributes to the debates in reconciling the two conflicting goals of targeting and privacy.
There are various ways to extend or complement our work towards a privacy-friendly
targeted ad system. In the following, we present possible extensions to our work and other
future directions.

Extensions to our work:

� Targeted ads detection: Our targeted ads filtering technique is probably not optimal,
and can be improved in many ways. Such technique can be used to develop a client
tool to detect targeted ads, which can be helpful in detecting tracking behaviors

101
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which are not visible from the client side. For example, privacy watchdogs can
use this tool to check whether a company performs stateless tracking, such as
passive fingerprinting. Another application of the tool could be checking companies’
compliance to Do-Not-Track, that is, if they still collect user information given the
presence of the Do-Not-Track signal.

� Cookie re-spawning using cookie matching: Since trackers can map their cookies
with those from external parties thanks to cookie matching, they can potentially
link their di�erent cookies of the same user. For example, when users delete
these trackers’ cookies, trackers can possibly leverage external cookies to re-spawn
the deleted cookies or assign users with new cookies which are linkable to the
deleted ones. Investigating the existence or prevalence of such actions would be an
interesting future study to complement our work.

� Privacy-preserving Real-Time Bidding (RTB): While the solution proposed in
this thesis is aimed at retargeting over RTB, an interesting future direction would
be to extend this model to other kinds of targeted ads over RTB. There are actual
demands for that. For example, as for privacy concerns, Facebook ad exchange
currently does not share with real-time bidders any information about the user’s
context, i.e. the page he is browsing on Facebook1. A privacy-preserving RTB
protocol, if implemented, could bring benefits to advertisers by giving them access
to such information in order to increase ad targeting performance.

Other future directions:

� Tracking prevention: Most of privacy-enhancing tools provide users with lists
of trackers and options to block/unblock each tracker in the lists. Unfortunately,
users often cannot distinguish among these trackers in order to make meaningful
blocking decisions. To remedy this, an interesting study direction is to produce a
tracker classifying taxonomy which is easily understandable to users. For example,
trackers can be categorized based on combination of various properties, such as
the sensitiveness of their collected data, their conformity to privacy regulation,
their determination in tracking (e.g. use fingerprinting or super cookies), their
data protection guarantee and their data usage (e.g. using data for themselves or
selling them to other parties). A simple and meaningful taxonomy could help
privacy tools providers in setting reasonable default tracking prevention, e.g. only
block misbehaved trackers, and enhancing users’ choices and knowledge, which
consequently improve trackers’ behaviors in long-term.

1This was verified during an invited talk given by the authors at Criteo’s headquarter.
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� Cross-device targeting for privacy-preserving ad systems: Privacy-preserving ad
systems mostly share the idea of storing user behavioral data locally. Since targeted
advertising is moving towards the trend of targeting users across di�erent devices,
it is not clear how to adapt these non-tracking approaches to such rising demands.
Achieving a privacy-preserving cross-device ad targeting model remains an open
challenge for future work. A possible solution could be to store user local profiles in
the cloud and synchronize these data across di�erent devices, with users’ identities
being their authentication data on first-party websites. However, this approach needs
thorough studies on, for example, the possibility of collecting such authentication
information and algorithms to avoid conflicts among users temporarily sharing a
device.

� Formalizing privacy-economics trade-o�s: The crux of resolving privacy prob-
lems in targeted advertising is to balance privacy protection with economic benefits,
i.e. to reach a reasonable trade-o� between these two parameters. Even though
several privacy-preserving solutions have been put in perspective, there is a lack of
standardized frameworks and criteria to evaluate their privacy guarantee and eco-
nomic impacts (including the implementation and operating cost). Such frameworks
would be necessary to assess the feasibility and compare the e�ciency of di�erent
solutions.

In the Internet era, users’ behaviors are increasingly being tracked, analyzed, and used
for various purposes without users’ knowledge or consent. Such privacy invasion is a
problem that needs due attention and solutions before privacy violation becomes a fait
accompli. This thesis contributes in understanding potential privacy risks and proposing
a practical solution in the case of targeted advertising, which is the main motivation for
tracking.
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Appendix A: Additive Homomorphic
Encryption Scheme from [164]

Description

The main idea of the scheme is to replace the xor (Exclusive-OR) operation typically found
in stream ciphers with modular addition (+).

Assume that 0 � m < M. Due to the commutative property of addition, the above
scheme is additively homomorphic. In fact, if c1 = Enc(m1;k1; M) and c2 = Enc(m2;k2; M)
then c1 + c2 = Enc(m1 + m2;k1 + k2; M).

Note that if n di�erent ciphers ci are added, then M must be larger than
nP

i=1
mi, otherwise

correctness is not provided. In fact if
nP

i=1
mi is larger than M, decryption will result in a

value m’ that is smaller than M. In practice, if p = max(mi) then M should be selected as
M = 2log2(p�n).

The keystream k can be generated by using a stream cipher, such as RC4, generated
from a private key.

Security Analysis

This additive homomorphic encryption scheme is very similar to a xor-based stream cipher
and its security can be proven using a similar proof.

The security relies on two important features: (1) the keystream changes from one
message to another and (2) all the operations are performed modulo an integer M. These
two features protect the scheme from frequency analysis attacks. In fact, it can be proven
that the scheme is perfectly secure.

Theorem 1 The previous encryption scheme is perfectly secure.

Preuve For plaintext space M, keystream space K, let K = jMj, m 2 [0; M � 1], c 2

I



APPENDIX . ADDITIVE HOMOMORPHIC ENCRYPTION SCHEME II

Additively Homomorphic Encryption Scheme

Encryption:

1. Represent message m as integer m 2 [0; M�1]
where M is a large integer

2. Let k be a randomly keystream, where k 2
[0; M�1]

3. Compute c = Enc(m;k; M) = m + k (mod M).

Decryption:

1. Dec(c;k; M) = c� k (mod M)

Addition of Ciphertexts:

1. Let c1 = Enc(m1;k1; M) and c2 = Enc(m2;k2; M)

2. For k = k1 + k2; Dec(c1 + c2;k; M) = m1 + m2

[0; M�1]. Set k� = c�m (mod M). Then:

Prob
k K

[Enc(k;m; M) = c] = Prob
k K

[k + m = c (mod M)]

= Prob
k K

[k = c�m (mod M)]

= Prob
k K

[k = k�]

(1)

If we assume that the maximum number of ciphertexts to be added is n and that each
plaintext is l-bit long, we must have M = 2l+log(n), i.e., jMj = l + log(n). If ci = (mi + ki),
then the probability that ci 2 [0;2l�1] is twice the probability that ci 2 [2l; M�1]. More
specifically, we have: Prob

k K
[k = k�] = 1=(2l + M) if c > 2l and Prob

k K
[k = k�] = 2=(2l + M) if

c < 2l.
Since these two equations hold for every m 2M, it follows that for every m1;m2 2M

we have Prob
k K

[Enc(k;m1; M) = c] = Prob
k K

[Enc(k;m2; M) = c] which establishes perfect
security of the scheme.
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