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Foreword

This thesis has been redacted in English first. The introduction and the perspectives of
this work have been translated to French, and can be found in the appendix. Further-
more, we provide a global abstract and chapter abstracts in French, respectively at the
beginning of the manuscript and at the beginning of each chapter.

Cette thèse a été rédigée principalement en anglais. L’introduction et les perspectives
de notre travail ont été traduits en français, et se situent à la fin du manuscrit. De plus,
un résumé général de la thèse est disponible en français au début du manuscrit, et un
résumé de chaque chapitre en français se situe au début de chaque chapitre.
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Abstract

In this document, we focus on ways of increasing the security of wireless ad-hoc networks.
These networks, and more specifically wireless sensor networks, look increasingly like the
right answer to a lot of problem, such as data collection over a large area, or providing
emergency network infrastructure after a disaster. They are also inherently exposed to
malicious intents due to their collaborative nature. In order to protect them, we focus
on the security aspects of the protocols built for these networks.

We first propose a Secure and Resilient Reputation-based Routing protocol, called
SR3. This protocol routes messages according to a reputation metric built using only
trusted information. This protocol achieves data confidentiality and data packet unforge-
ability, which we prove formally using two verification tools: CryptoVerif and Scyther.
We use Sinalgo, an event-driven network simulator to run an experimental evaluation of
SR3, and we compared our results to several routing algorithms of the literature. This
evaluation shows that both the resiliency and fairness accomplished by SR3 are better
than for those others protocols, especially when the network is sparse. Moreover, and
unlike previous solutions, if the compromised nodes behavior changes, then SR3 will
self-adapt in order to ensure an acceptable quality of service.

Analyses of routing protocols security are nearly always supported by simulations,
which often evaluate the ability to deliver messages to a given destination. Several com-
peting definitions for secure routing exist, but to our knowledge, they only address source
routing protocols. We propose the notion of incorruptibility, a quantitative computa-
tional definition for routing security based on the attacker’s ability to alter the routes
used by messages. These definitions are then illustrated with several routing algorithms.

Finally, we study Intrusion Detection Systems (IDS) for WANET, and more specifi-
cally their inputs. These systems provide a supplementary layer of defenses for WANETs,
and they are able to easily detect attacks who are complicated for the network protocols.
We classify the different inputs used by the decision process of these IDS, according to
their level of required cooperation, and the source of their data. We then propose the
InDICE tool, a decision aid which, given an IDS, allows automated discovery of unde-
tectable attacks according to the inputs used by that IDS. In the end, we apply our
framework to discover weaknesses in two existing IDS.
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Résumé

Dans cette thèse, nous nous intéressons à plusieurs méthodes pour améliorer la sécurité
des réseaux sans fil ad hoc. Ces réseaux, ainsi que la sous-famille des réseaux de cap-
teurs sans fil, sont une des solutions les plus intéressantes pour de nombreux problèmes,
comme par exemple la collecte de données dans une large zone, ou bien la création
d’infrastructure de communication après une catastrophe. Ces réseaux sont par nature
collaboratifs, ce qui les rend très vulnérables à d’éventuels attaquants. Pour les protéger,
nous étudions la sécurité des protocoles conçus pour ces réseaux.

Premièrement, nous proposons SR3 (Secure and Resilient Reputation-based Rout-
ing), un algorithme de routage sécurisé et résilient pour le routage convergeant (tous-
vers-un) dans les réseaux de capteurs sans fil. SR3 route ses messages selon une mesure
de réputation qui est bâtie sur des informations fiables. Ce protocole garantit la confi-
dentialité de ses données, et l’inforgeabilité de ses paquets. Nous avons prouvé formelle-
ment ces propriétés avec deux outils de vérification : Scyther et CryptoVerif. Nous
avons montré expérimentalement à l’aide de Sinalgo, un simulateur à évènements dis-
crets, la résilience de SR3 quand confronté à divers scénarios d’attaque, et nous avons
comparé nos résultats à plusieurs algorithmes de routage de la littérature. L’évaluation a
montré que la résilience et l’équité fournies par SR3 sont meilleures que celles des autres
protocoles, et cette distinction est accentuée si le réseau est peu dense. De plus, et con-
trairement aux autres protocoles, SR3 est capable de s’auto-adapter aux changements
de comportement des attaquants afin d’assurer une qualité de service satisfaisante.

Les analyses de la sécurité des protocoles de routage reposent presque toujours sur
des simulations, qui évaluent la capacité du protocole à délivrer ses messages aux bons
nœuds. Il existe plusieurs définitions différentes pour concevoir la sécurité du routage,
mais à notre connaissance, elles considèrent seulement les protocoles de source routing,
où les routes sont déterminées avant que le message ne soit envoyé. Nous proposons
la notion de corruptibilité, une définition calculatoire et quantitative pour la sécurité
du routage basée sur la capacité d’un attaquant à altérer les routes empruntées par un
message. Nous illustrons ensuite ces définitions par plusieurs analyses de protocoles.

Enfin, nous étudions les systèmes de détection d’intrusions (IDS) pour réseaux sans
fil ad hoc, et plus spécifiquement les sources de données utilisées pour leurs mécanismes
de décision. Nous classifions celles-ci en fonction du niveau de coopération qu’elles re-
quièrent, et en fonction de l’origine de leurs données. Nous proposons ensuite InDICE,
un outil d’aide à la décision qui étant donné un IDS, permet de découvrir automatique-
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ment quelles attaques seront indétectables par les sources de données qu’utilise cet IDS.
Enfin, nous utilisons cet outil pour découvrir deux vulnérabilités dans des IDS de la
littérature.
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grande partie de mon passage à VERIMAG. A eux trois, ils m’ont permis de m’épanouir,
et je leur en suis particulièrement reconnaissant.

Je remercie également les membres du jury, et particulièrement les rapporteurs Mme
Marine Minier et M. Michel Misson, pour avoir accepté de juger ce manuscrit, mais
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Marcelo Dias de Amorim et Pr. Bernard Tourancheau, pour leur intérêt pour mon
travail. Leurs questions durant la soutenance m’ont aussi aidé à me rendre compte de
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Chapter 1

Introduction

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Contributions and organization . . . . . . . . . . . . . . . . . . 19

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1 Introduction

Wireless networks are everywhere nowadays. Phones, payment systems, urban infras-
tructure, computers: more and more items use some form of wireless communication
system to join networks, whether they are local or connected to the Internet.

In this thesis, we are interested in wireless ad-hoc networks (WANET). An ad-hoc
network is a network where all the nodes route messages, without relying on a dedi-
cated infrastructure. Communication in such networks will require the cooperation of
intermediary nodes if the destination of a message is not in the vicinity of the emitter.

These networks look more and more like the right answer to a lot of data collection
problems. For instance, the authors of [AGS11] used a WANET to share a central
Internet access point among the geographically spread-out residents of a small town.
This allows a good connectivity, without the upfront cost of creating wired links for
each resident. In [GSCL+13], the authors describe another system, built on top of the
Android operating system. Their system allows communications and services among a
group of smartphone-equipped people when there is no other infrastructure available,
for instance after a disaster. In that cases, users of the system can reach each other with
secure calls, messages, and various other applications.

Wireless sensor networks (WSN) are a special subfamily of wireless ad-hoc networks.
They are networks of interconnected sensors and repeaters, built to provide connectivity
at a lower cost than wired networks. Sensors are typically small battery-powered devices
that generate data about the environment (e.g., temperature) and use them for specific
services (e.g., emit an alarm when the surrounding temperature is too high). For in-
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Figure 1.1: A TelosB mote

stance, TelosB motes (Figure 1.1) are equipped with a 8Mhz microcontroller and with
10KB of RAM, which limits their ability to run expensive cryptographic algorithms.
These motes are equipped with ZigBee-compliant radios.

Use cases for these type of networks are very varied. For instance, a survey of wireless
sensor networks in the Netherlands [MVdZVD+10] showed several uses of these networks
in production. One of these, called GuArtNet1, is a system to monitor valuable items in
a museum. Several sensors are placed on individual objects, and detect when they are
moved. The alert is then propagated to the rest of the system, through repeaters, towards
a sink (the central node), who will react accordingly. Sensors are tiny devices, running
on battery power, whereas the sink is often a full-fledged server. Sensors regularly send
heartbeats to the sink, so that any loss of connectivity is detected, but they can also
send alerts in case of movement, tampering, or radio interference for instance.

WANET Specificities

All WANET have some specificities due to their wireless nature. Wireless communi-
cations are strongly tied to antennas, which can be omnidirectional or have various
directionnal emission patterns which favors some directions over others, depending on
their design. Furthermore, some techniques allow an emitter to knowingly direct its
emissions, using for instance phased array antennas [Han09]. Similarly, a link can be
symmetric if both devices can communicate with each other, or asymmetric if it only
works one way. Finally, the links may fluctuate over time: their quality depend on
several factors such as noise, meteorological conditions, or people moving around.

Those wireless specificities need to be taken into account when choosing or designing
network protocols for WANET, but there are also challenges specific to their ad-hoc
nature. These networks are often collaborative, which makes misbehaving nodes a serious
threat, whether they are caused by node compromise (which may be made more difficult
with hardened nodes), or because the network is open by design. Furthermore, some
networks are dynamic and/or mobile by nature, in which case the protocols must be

1http://www.sownet.nl/index.php/en/products/guartnet
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designed accordingly. Finally, the hardware used by the nodes may have specificities
also: nodes may have very low computing power, there may be several different types
of nodes in the networks, communication bandwidth may be very low, nodes may have
a limited energy supply, human intervention on the devices may not be possible, the
network topology may be very sparse or very dense... All these factors must be taken
into account.

Security Properties and Secure Systems

Security is usually expected of these systems. Consider for instance the GuArtNet WSN
example: intuitively, the network user assumes that alerts are authentic, that heartbeats
can be trusted, and that if an alert occurs, then it will reach the sink in a timely manner.
Most, if not all applications that are built on top of ad-hoc networks include these
kinds of expectations, which correspond to security properties, such as confidentiality or
authentication for instance.

Two main models are used to prove that protocols guarantee these properties: com-
putational model, and the symbolic model. These models were created to prove crypto-
graphic constructs and although they evolved independently in the beginning, they have
been shown to be related in [AR00]:

• The computational model [GM84, GMW91, BDJR97, BKR00] represents the at-
tacker using a probabilistic Turing machine, running in polynomial time, with
polynomial memory. Thanks to this model, we can obtain an upper bound on the
probability of any attacker breaking the property. For instance, this model was
used to prove the security of the RSA-OAEP cryptosystem [FOPS01].

• In the symbolic model [DY83, BAN89, AG97], data is represented as function
symbols, which can be combined to form other symbols. In this model, the attacker
is able to play new sessions of the protocol, and create new messages from its own
knowledge. This model was used to discover the attack on the Needham-Schroeder
protocol [Low95].

Proof Scope and Security in Depth

Security proofs ensure that in a certain model, the analyzed protocol guarantees the
security property at hand. These proofs may also be automated, in which case the proof
steps are exhaustively identified, avoiding the errors that may happen with handwritten
proofs. However, as with all models, there may be differences between the model and
the reality, which may result in out-of-scope attacks.

To illustrate this point, we present a recently discovered (March 2014) vulnerabil-
ity2. on the Transport Layer Security (TLS) protocol suite, caused by the three-way
handshake in TLS. This protocol suite is a de facto standard on the internet, widely

2The corresponding academic publication is currently being reviewed, more details can be found at
https://secure-resumption.com/
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used to create secure channels between two nodes, and officially adopted by the IETF
in [DR08].

TLS includes several protocols in its handshake. An attacker can use three of them
and route messages between two actors Alice and Bob, so that they both believe they
communicated directly with each other. However, the attacker injected information into
what Bob believes he received from Alice. This is a breach of authentication and in-
tegrity. This vulnerability lies in the TLS protocol suite itself, where an attacker could
exploit the master secret mechanism of TLS in order to reuse previous values. What
is interesting is surprising, as the security of TLS has been proven several times using
various models [Pau99, HSD+05, GMP+08, MSW08, BFK+13]. To be fair, one should
mention that it has also been broken several times, both in its design and implementa-
tions (for instance, [CHVV03, DR11, DR12, AFP13]). This TLS vulnerability example
shows that even if formal proofs show the security of a system in a certain model, some
attacks may not be in scope. In such cases, security in depth is useful: a signature-based
intrusion detection system may be able to detect those attacks which are not prevented
by the protocol, or an anomaly detection system may be able to detect unexpected be-
havior in general. Intrusion response systems can then do something about the intrusion,
or at least raise an alert for further analysis.

Evolving requirements

In some cases, some systems which were not expected to be secure when they were
created became part of security-critical systems. Several such examples can be found in
the Internet protocols, as it has been founded upon mutual trust between all actors, and
this disposition strongly influenced the underlying software infrastructure.

For instance, the Address Resolution Protocol (ARP, standardized in [Plu82]) is
frequently used on local networks to link logical (IP) addresses to physical (MAC) ad-
dresses. To give a rough idea, nodes that need to find a logical node broadcast a ”who
has this IP” packet, which should be answered by the holder of the IP. This protocol
however does not include any sort of authentication, and an intruder can take advantage
of this fact by forging an answer, thus stealing another device’s IP. Over wired networks
in controlled physical environments, this weakness seems quite harmless. However, do-
mestic WiFi networks also use this protocol, and it becomes far more dangerous in the
case of an open network: as any computer can join without the need to physically access
the equipment, the vulnerability allows anyone to impersonate a node from the network.
Another notorious example is the Border Gateway Protocol (BGP), which decides where
packets are routed between autonomous networks on the Internet. Originally, security
was not a design goal of this protocol, and so, regular incidents occur nowadays where
third-party nodes obtain a degree of control on the route generated for messages that
would not normally be routed by them. Such influence could be used maliciously to do
traffic analysis or to artificially degrade a company’s quality of service, for instance. To
address this, we define in Chapter 3 a quantitative measure of the possible influence an
attacker can have over the route of a message, and we define the corresponding security
property of incorruptibility.
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1.2 Contributions and organization

This thesis is built around three main chapters. Our first contribution is SR3, a Secure
and Resilient Reputation-based Routing protocol built for convergecast routing in WSN,
which we present in Chapter 2. We designed this protocol as a reinforced random walk
that routes messages according to a reputation metric computed using only trusted infor-
mation. We prove this protocol in the computational model using CryptoVerif [Bla08],
then in the symbolic model using Scyther [Cre08]. We use Sinalgo [Dis08], an event-
driven network simulator to run an experimental evaluation of SR3, and to compare
it to several others from the literature: Greedy-Face-Greedy [BMSU01], the uniform
random walk, SIGF [WFSH06], and several variants of the gradient-based routing pro-
tocol built for their resiliency [EOMVK11]. This evaluation looks into several criteria:
length of routes, delivery rate against several intruder models, and resiliency as presented
in [EOMVK11].

The second contribution also deals with routing: in Chapter 3, we introduce a def-
inition for the security of routing protocols named incorruptibility. The other routing
security measures we found deal with source routing protocols only: our notion measures
the ability for an attacker to significantly change how messages are going to be routed
through the network. We first present the formalization of this notion, followed by a
generalization of it called bounded corruptibility. We provide several example protocols
to which we apply this definition, and discuss how the definition can be expanded to
more routing protocols.

The third contribution is related to intrusion detection systems. These systems
are critical to the security of ad-hoc networks, and evaluating them is very often done
experimentally. We therefore propose in Chapter 4 two results for their improvement.
The first one is a classification of the inputs on which their decision process rests. We
present a review of several IDS of the literature, we identify their inputs, and categorize
them according to the level of cooperation they require in the network and to the origin of
their data. Following this, we present the Intrusion Detection Input Coverage Evaluation
(InDICE), a decision aid to discover oversights in IDS from their inputs. The main
idea of this tool is to model the logical progression of attacks, in order to be able
to discover if a target attack is doable by an attacker without taking any step that
are observed by this IDS’s inputs. We finally apply this model to two IDS from the
literature: [dSMR+05] and [OM05b].

1.3 Publications

Most of the original work presented here have been published in international confer-
ences. The SR3 protocol, and most of the results presented in Chapter 2 have been
published in the international conference DCOSS’13 [ADJL13b], and in the national
conference Algotel’13 [ADJL13a]. An extended journal version is currently under re-
view. All the work presented in Chapter 4 has been published in FPS’13 [JL13a], an
international conference. The work in Chapter 3 has been accepted at FPS’14, and will
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be published a short time after the submission of this thesis.
Finally, we built a model to verify protocols revolving around physical properties

of wireless networks (especially neighborhoods). This work resulted in a model able to
take into account node movement and time, which we used to verify a simple protocol
from the literature. We then proposed the building blocks for a protocol able to securely
discover the n+1-or-less neighborhood of a node, if each node in the network knows its
n-or-less neighborhood. This work has been published as a chapter of a book [JL13b],
and we did not include it in this document.
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Chapter 2

SR3: Secure and resilient
reputation-based routing

In this chapter, we propose SR3, a secure and resilient algorithm for convergecast routing
in wireless sensor networks. SR3 uses lightweight cryptographic primitives to achieve
data confidentiality and data packet unforgeability. The security of SR3 has been proven
formally using two verification tools: CryptoVerif and Scyther. We made simulations to
show the resiliency of SR3 against various scenarios, where we mixed selective forwarding,
blackhole, wormhole, and Sybil attacks. We compared our solution to several routing
algorithms of the literature. Our results show that the resiliency accomplished by SR3 is
better than the one achieved by those protocols, especially when the network is sparse.
Moreover, unlike existing solutions, SR3 self-adapts after compromised nodes suddenly
change their behavior.

Dans ce chapitre, nous proposons SR3 (Secure and Resilient Reputation-based Routing),
un algorithme de routage sécurisé et résilient pour le routage convergeant (tous-vers-
un) dans les réseaux de capteurs sans fil. SR3 se sert de primitives cryptographiques
légères pour garantir la confidentialité des données routées ainsi que l’inforgeabilité de
ses paquets. Ces propriétés de sécurité ont été prouvées formellement avec deux outils
de vérification : Scyther et CryptoVerif. Nous avons montré expérimentalement à l’aide
de Sinalgo, un simulateur à évènements discrets, la résilience de SR3 quand confronté à
divers scénarios d’attaque, et nous avons comparé nos résultats à plusieurs algorithmes de
routage de la littérature. L’évaluation a montré que la résilience et l’équité fournies par
SR3 sont meilleures que celles des autres protocoles, et cette distinction est accentuée si
le réseau est peu dense. De plus, et contrairement aux autres protocoles, SR3 est capable
de s’auto-adapter aux changements de comportement des attaquants afin d’assurer une
qualité de service satisfaisante.

21



Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 SR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Assumptions and Notations . . . . . . . . . . . . . . . . . . . . 30

2.2.3 Reputation Mechanism . . . . . . . . . . . . . . . . . . . . . . 33

2.2.4 Compute the Reputation . . . . . . . . . . . . . . . . . . . . . 34

2.2.5 Acknowledgment Routing . . . . . . . . . . . . . . . . . . . . . 35

2.3 Cryptographic Proof of the Security Properties . . . . . . . . 36

2.3.1 Modeling of SR3 . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 Game-based Proof of the Security Properties . . . . . . . . . . 38

2.3.3 The Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.4 Symbolic Analysis of the Protocol . . . . . . . . . . . . . . . . 48

2.4 Simulation Methodology . . . . . . . . . . . . . . . . . . . . . . 48

2.4.1 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.2 Benchmark Protocols . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.3 Choice of SR3 Parameters . . . . . . . . . . . . . . . . . . . . . 53

2.5 Experimental Evaluation of SR3 . . . . . . . . . . . . . . . . . 56

2.5.1 Average Delivery Rate . . . . . . . . . . . . . . . . . . . . . . . 56

2.5.2 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5.3 Availability Attacks . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5.4 Average Number of Hops . . . . . . . . . . . . . . . . . . . . . 65

2.5.5 Self-Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.5.6 SIGF-Specific Smart Blackholes . . . . . . . . . . . . . . . . . . 69

2.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . 71

2.1 Introduction

In this chapter, we propose a routing protocol designed for WSNs. This protocol is
designed to ensure some basic security properties, and so that messages reach their des-
tination. We consider a routing scheme called convergecast routing, where, as described
in the introduction, one of the nodes is distinguished as the sink, and all non-sink nodes,
called source nodes, must be able to transmit data to the sink on request or according
to an a priori unknown schedule. The sink can be arbitrary far (in terms of hops) from
other nodes.
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A routing protocol in a WSN may have to face many kinds of attacks. Here, we
consider the critical scenario, where some sensors are compromised and controlled by an
attacker. In particular, such an internal attacker has access to all secret and received
information of the compromised nodes.

The attacker can impact the routing protocol at two main levels:

Packet Level. First, he can attack the data packet to learn secret information, i.e.,
violate the data confidentiality, as this property consists in guaranteeing that data
remain secret between the source and destination.

He can also make the sink deliver incorrect information, i.e., violate the integrity
of the data messages. Integrity guarantees that the destination is able to detect
whether the data inside a packet have been modified.

Moreover, the attacker can act against the authentication of the nodes. Authenti-
cation guarantees that the destination is able to detect whether the alleged source
in a packet is the truth one.

Routing Level. Secondly, the attacker can affect the routing scheme itself, e.g., he
may prevent data from being delivered by the sink (leading to degrade the quality
of service, essentially the delivery rate), or create congestion by increasing the load
in all or part of the network (leading to reduce the lifetime of the network). Such
an attack can also evolve over time, e.g., the attacker can attract traffic to a given
intruder node using various means. Thanks to that, the intruder node (called a
sinkhole) will have more impact for further malicious actions.

The notion of resiliency has been introduced in [EOMVK10a] as the ability of a
network to “continue operating” in presence of compromised nodes, i.e., the capacity
of a network to endure and overcome internal attacks. For example, a resilient routing
protocol should achieve a “graceful degradation” in the delivery rate with increasing the
number of compromised nodes. It is one of our goals in the design of SR3, and we use
that notion along this chapter.

The packet level security consists of a set of properties which are traditionally proved
using a cryptographic model of the protocol and of the security objectives, whereas
security proofs against routing attacks are fairly rare and only address certain specific
properties (see Chapter 3 for more discussion of this issue). Usually, these concerns are
addressed through experimental evaluations, which show the algorithm’s resistance to a
set of specific attackers. This approach is not exhaustive, as it does not cover the full
range of possible routing attacks. In this chapter, we used this method, and we only
consider the specific attackers that are relevant to our algorithm. More specifically, we
looked at sinkholes as SR3 uses a reputation mechanism, and Sybil nodes since they are
very effective against random walks. In the following chapter, we provide the first steps
towards a new formal framework for the verification of secure routing.

23



2.1.1 Outline

This chapter is organized as follows. We first present our contribution and several re-
lated routing algorithms. In the next section, we present our routing algorithm, SR3.
Section 2.3 deals with the automatic proof of the security properties of SR3 using Cryp-
toVerif [Bla08] and Scyther [Cre08]. In Section 2.5, we present experimental results that
show the resiliency of SR3. Section 2.6 is dedicated to concluding remarks.

2.1.2 Contribution

This chapter deals with the convergecast routing in WSNs, where all source nodes have
several messages to route. We propose a Secure, Resilient, and Reputation-based Rout-
ing algorithm, called SR3. This protocol is a reinforced random walk that is partially
determinized using a reputation mechanism.

SR3 uses lightweight cryptographic primitives — symmetric cryptography, nonces,
and hash functions — to achieve security properties: data confidentiality and data packet
unforgeability, this latter property implies integrity and authenticity of the data pack-
ets. We prove these properties in the computational model using the formal tool Cryp-
toVerif [Bla08]. We also prove in the symbolic model the secrecy of data and authenti-
cation of nodes using the tool Scyther [Cre08].

Then, we show the resiliency of SR3 against various scenarios, where we mixed se-
lective forwarding, blackhole, wormhole, and Sybil attacks. We compare ourselves to a
panel of algorithms from the literature: Greedy-Face-Greedy [BMSU01] which is a geo-
graphical routing algorithm, the uniform random walk, SIGF [WFSH06] which is based
on a reputation mechanism, and several variants of the gradient-based routing proto-
col [EOMVK11] including one specifically built to be resilient. Our simulation results
show in particular that unlike the other solutions, SR3 self-adapts when compromised
nodes change their behavior (e.g, an interesting case is when a compromised node be-
haves well to attract the traffic and then suddenly decide to drop all received messages).
Our results show that the resiliency accomplished by SR3 is better than the one achieved
by those protocols, especially when the network is sparse.

A shortcoming of our solution is the number of hops to reach the destination, as it is
usually greater than other solutions of the literature. However, in our experiments, we
observed that this complexity remains sublinear in the number of nodes.

Note also that our solution is reactive (i.e., in absence of data to route the protocol
eventually stops.), has a low overhead in terms of communications, and does not use any
underlying infrastructure, such as spanning tree. Hence, SR3 is well-suited for WSNs.

2.1.3 Related Work

Routing protocols for ad-hoc networks are numerous, and we therefore only present a
few protocols, and focus more on the security aspects and reputation-based protocols.

Numerous solutions have been introduced to cope with attacks on data. The con-
fidentiality, authenticity, and integrity properties are mainly guaranteed using crypto-
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graphic mechanisms. However, the choice of the cryptographic primitives should be led
by the inherent constraints of WSNs. Such network are limited in terms of resource
and power, and so lightweight cryptographic mechanisms [EK07, CMM13] are manda-
tory. An example of such a mechanism is elliptic curve cryptography [Kob87, Mil86],
which is becoming commonplace in wireless networks (see for instance the TinyECC
library [LN08]). In contrast, classical asymmetric cryptography, e.g., RSA [RSA78],
should be excluded due to its computational cost.

Although it is not strictly a routing protocol, SPINS [PST+02] is a set of tools for
routing, which provides security guarantees without using any costly operations. The
first tool is named SNEP, and it consists of a packet format that guarantees various
security properties, like authentication and confidentiality, using few additional bits per
packet. The second one is named µ-Tesla. It is a broadcast authentication protocol that
enables receivers of the broadcast data to verify that these data really originate from the
alleged sources. µ-Tesla has a low communication and computation overhead thanks to
lightweight cryptography, scales a large number of receivers, and tolerates packet loss.

Route discovery protocols

The family of secure route discovery protocols, related to source routing protocols, have
been introduced [PH02, HPJ05]. They are not strictly routing messages: instead, they
only compute a valid route (i.e., the computed path exists in the network) between the
source and destination, and for some of them (e.g., [PH02]), they guarantee that nodes
in the chosen route achieved a certain security level, e.g., the integrity of the discovered
route, which means that the computed route has been effectively traversed during the
discovery process. Note that SR3 do not have a route discovery process, as each of the
node dynamically determine the next hop for a message when they receive it.

DSR The Dynamic Source Routing protocol (DSR, [JM96]) is an on-demand source
routing protocol which is often associated with WSNs. This protocol builds routes upon
request, by flooding route request packets, to which each node appends its identifier when
it rebroadcasts. When a node receives such a packet and it is the intended destination
of the request, it sends a route reply packet along the route contained in the packet.
Finally, when the initiator receives that packet, it uses the route inside to send its data.
Several mechanisms are added on top of this in order to cache information, maintain
routes when the information is not up-to-date, and manage network interoperability.

SDSR Secure DSR (SDSR, [KGSW05]) is an extension for DSR. It requires the exis-
tence of a signed asymmetric key pair for each node in the network, in order to provide
route integrity, freshness, to authenticate the nodes participating in the route, and to
provide session keys among the participants in a route. The authors formalized the pro-
tocol using BAN logic, which allowed them to show that the protocol meets their security
claims.Note that the requirement for nodes to be able to use asymmetric cryptography
in SDSR is one we actively avoided in SR3, as asymmetric cryptography is costly. Also,
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SR3 does not authenticate intermediary nodes in any way in its routes, and instead we
chose to make it adapt to malicious behavior.

Ariadne and endairA The Ariadne protocol [HPJ05] is another secure variant of
DSR. This protocol can use one of several different pre-authentication methods (pre-
shared symmetric keys, signatures or Tesla), and so, unlike SDSR, Ariadne does not
necessarily require the use of asymmetric cryptography. With this information, Ariadne
authenticates the request packets to ensure that they come from a trusted node, which
prevents some attacks. Furthermore, they include some preventive methods against de-
nial of service caused by excessive route requests, even when they are coming from an au-
thenticated node. In [ABV06], the authors show that despite the arguments of [HPJ05],
Ariadne is still vulnerable to route shortening attacks when two insider attackers collab-
orate. They propose an optimized version of Ariadne, named endairA. The idea behind
this fixed protocol is to authenticate each hop during the reply, instead of authenticating
the request.

AODV and related

AODV Ad-hoc On-demand Distance Vector routing (AODV, [PR99]) is notably used
in ZigBee. It is a many-to-many routing protocol, designed for WANETs. It is related
to DSR in that the route request/reply phases are quite similar. Their most notable
differences are the use of sequence numbers in AODV, and route generation policy.
AODV generates routes only when they are needed, and opportunistically uses all the
information from the route generation of other nodes. The information is then kept
and used for subsequent data routing during some time. However, AODV does not
provide security mechanisms, and so several extensions have been proposed to enhance
this protocol’s security: a survey of these extensions and a discussion of their various
mechanisms may be found in [VMWS12]. We present two of these extensions.

AODV and AODV-based protocols have several key differences with SR3. First of
all, AODV is a many-to-many routing protocol, without acknowledgments, while SR3
is many-to-one with acknowledgments. Furthermore, AODV has a cooperative route
discovery process, unlike SR3 who routes messages based on reliable local knowledge,
without relying on neighbor’s declarations. This allows networks running AODV to be
more efficient in routing messages to/from nodes moving or joining the network than
SR3, at the cost of more complexity, and no security.

SAODV Secure AODV (SAODV, [Zap02]) is an extension to AODV which adds
public-key cryptography to AODV, by signing the control messages fields which are
not modified during the control message’s lifetime. They also propose a hash chaining
mechanism to secure the hop counters of messages. In [VMWS12], the authors show
an analysis of SAODV that exposes vulnerabilities to wormholes and rushing attacks,
blackholes, and several availability attacks. They also argue that the distribution of
the public key material is complicated in the case of networks where new nodes may be
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added, as key material cannot be distributed prior to deployment anymore.

SEAR Secure Efficient Ad-hoc On-demand Routing (SEAR, [LZW+09]) is another
secure variant of AODV. It is designed to secure some of the control packets of AODV,
in order to ensure their authenticity. For this, they use a hash-chain mechanism that
replaces the hop count field in route request messages, ensuring that intruders need to in-
crement the hop count in order to keep the control message valid. This protocol prevents
some sinkhole attacks with this mechanism, but none of the proposed improvements to
AODV enhance the delivery rate in case of attackers that drop messages.

Link-state routing

LSR The Link State Routing algorithm (LSR, [MRR80]) is a routing protocol for
ad-hoc networks. This algorithm maps the whole network on each node, by having
them advertise their neighbor list periodically. This way, all the nodes are aware of the
topology of the network, and so they can route messages optimally. Note that LSR and
variants are not source routing protocols. As for AODV, this is a many-to-many protocol,
unlike SR3. The memory requirement for this algorithm scales linear Furthermore, no
security is provided.

OLSR Optimized Link State Routing (OLSR, [CJ03]) is a routing protocol for mobile
ANET, based on the previous protocol. OLSR deviates from LSR because of the use of
MultiPoint Relays (MPR). These nodes are elected by their neighbors, so that each node
is either a MPR, or a neighbor of one. Then, OLSR uses these nodes to optimize the
flooding mechanism of LSR by avoiding unnecessary broadcasts from non-MPR nodes.
Several other miscellaneous optimizations are provided by OLSR.

Reputation-based protocols

CASTOR A secure routing protocol called Continuously Adapting Secure Topology-
Oblivious Routing (CASTOR) for WANETs has been proposed in [GPP+10]. This
reputation-based routing protocol is centered on the notion of independent flows. A
flow is created when a source node wants to send messages to a certain destination, and
it will be used for a finite amount of messages. Messages identifiers are built in a way
that ensures anyone is able to verify they belong to a given flow, using Merkle trees
(which are binary trees where each node is the hash of the concatenation of its sons)
with the hash of nonces as leafs, and the flow identifier as root. To route messages, each
node stores a reputation value per neighbor for each flow. If a neighbor has sufficient
reputation, and that neighbor is the most trusted, then the node will chose him as the
next hop for the given flow. Otherwise, the node will broadcast the next messages to
add redundancy. This process is then repeated along the route of the message. Once
the message reaches its destination, it causes the emission of an acknowledgment, and
then reputations are updated accordingly along the route this particular message took
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(several acknowledgments may be sent if there was replication). If a node does not re-
ceive an acknowledgment in a given delay for a certain message, then the reputation of
the neighbor that routed this particular message is reduced.

At first glance, SR3 and CASTOR look similar, but there are several key differences.
First of all, CASTOR is not based on a random walk: where SR3 always route message
with a random component, CASTOR is mostly deterministic, except for a small part of
the routing mechanism where nodes have a variable probability of broadcasting messages
instead of sending them to the most trusted node. This is a cause for concern, as an
attacker could predict a part of the behavior of nodes accurately. Also, SR3 is a con-
vergecast routing protocol where the same reputation measure is used for all messages,
whereas CASTOR is designed for any-to-any communication, and keeps independent
reputations for each flow.

SIGF SIGF is a family of protocols using a reputation metric which has been pro-
posed in [WFSH06]. This family is made out of four protocols, based on a geographic
routing protocol. We focus on the SIGF-2 variant (and we refer to it by SIGF), the
most secure variant according to the authors. This protocol supposes that nodes are
able to overhear their neighbor’s communications, that they have access to trustworthy
geographical information, and that they know their 2-neighborhoods, which are strong
assumptions. Nodes route messages by selecting randomly a next hop among a pool of
nodes geographically in the right direction. Nodes also assign a reputation score to each
of their neighbors, based on four metrics:

• The proportion of messages being reforwarded by that neighbor (higher is better),

• Its forwarding delay (lower is better),

• How its declared location changes over time (lower variation is better),

• The number of times it has been sent messages before (lower is better).

Nodes under a certain reputation threshold are removed from the pool of candidates
for routing. Finally, the messages are authenticated with unspecified pre-shared infor-
mation and encrypted. Note that the authors acknowledge that the reforwarding rate
computation may be altered due to collisions, collusion, and communication asymmetry.

There are a lot of differences between SIGF and SR3. The most obvious are the
absence of acknowledgments, the requirement for geographical information, and the as-
sumption that nodes know their 2-neighborhood. Furthermore, SIGF is a many-to-many
protocol, unlike SR3. This causes the reputation mechanism to be radically different: in
SIGF, nodes base their trust upon the reforwarding rate, time-based information, and
localization changes. Out of those, only time and localization changes can be trusted,
while the reforwarding rate may be tricked. We detail an attack on this mechanism in
2.4.2.
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Gradient-based Routing and variants

Specific approaches have been proposed to maintain a good quality of service in presence
of insiders, that drop all or part of messages. For example, In [EOMVK11, EOMVK10b],
authors experimentally analyze the resiliency of several classical routing techniques, e.g.,
random walk [AKL+79], gradient-based routing [SS01], geographic routing [BMSU01].
Their experimental results show that these solutions do not provide satisfactory re-
siliency, and so they propose several variants of the gradient-based routing (i.e., a pro-
tocol in which messages are routed following a breath-first spanning tree) to increase its
resiliency. Mainly, they introduce randomization and duplication in that protocol. As
a result, the proposed patches increase the delivery rate when the network is subject
to selective forwarding or blackhole attacks. However, in their simulations, they always
assume that the breath-first spanning tree is available and not attacked by the insiders.
Moreover, they mainly consider dense networks in their simulations, e.g., networks with
an average degree around 30.

Routing for low-power and lossy networks (RPL)

RPL (”Ripple”, defined in RFC 6550 [WTB+12]) is a routing protocol specifically de-
signed for low-power and lossy networks. RPL mainly allows communications from or to
specific central points in the network, which may for example be sinks or interconnexions
between networks.

Similarly to gradient-based routing protocols, it uses one or several trees rooted at
those central points in order to route messages. However, these trees may differ in both
their root, and their criteria for construction: RFC 6550 specifies that the tree-building
process may use various objective functions. For instance, a function defined in RFC
6552 [Thu12] aims to minimize the number of hops to a root node (similarly to GBR).
Having several routing trees allows modularity, by for instance allowing nodes to route
low-priority messages in a low-power mindset, while high-priority messages could be
routed in another tree specifically built to optimize latency.

Note that these trees can also be used for communications between arbitrary nodes in
the network. RFC 6550 also provides several security settings, such as a network-shared
key authentication, with an optional privilege separation between the keys for regular
nodes, and terminal nodes (that are only allowed to be leafs in routing trees).

Besides the objective function, RPL routes messages in a deterministic way. This is a
fundamental difference with SR3, which is at heart a probabilistic algorithm. A SR3-like
reputation mechanism would not be fully portable in RPL, as it requires a probabilistic
choice of next hop. Furthermore, RPL allows several routing schemes, while SR3 allows
only convergecast communication.

Evaluating a protocol’s resiliency

Resiliency, as defined in [EOMVK10a], is the ability of a network to “continue operating”
in presence of compromised nodes. The authors of this definition proposed a metric to
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quantify this ability in [EOKMV12]. Their metric is based around five axis: the delivery
rate of the algorithm, the standard deviation of the nodes’ delivery rates, the energy
efficiency of the routing, the delay efficiency of the algorithm and the average throughput
of the network. These five measures are then arranged into a pentagon, the surface area
indicating the resiliency value. This measure is computed for several amount of attackers
in the network.

In this chapter, we observe several of these indicators individually (delivery rate,
their distribution, and time efficiency) to evaluate our algorithm’s resiliency. However,
some of the measures are strongly influenced by the simulation parameters: for instance,
not simulating radio interference would artificially increase the throughput of algorithms
that duplicate messages. We therefore chose not to use their unified metric for resiliency.

2.2 SR3

Randomization is interesting to obtain resilient solutions because it generates behaviors
unpredictable by an attacker. However, we note that the “classical” uniform random
walk, where a node chooses the next hop uniformly at random among its neighbors, is
known to be inefficient even against a small number of compromised nodes, where its
delivery rate is extremely low [EOMVK10a].

To avoid this problem, we designed SR3 rather as a reinforced random walk, based
on a reputation mechanism. The idea is to locally increase the probability of a neigh-
bor to be chosen at the next hop, if it behaves well. Such a reputation mechanism is
based on acknowledgments. We propose a scheme in which if a process receives a valid
acknowledgment, it has the guarantee that the sink actually delivered the corresponding
data message. Hence, upon receiving such an acknowledgment, a node can legitimately
increase its confidence on the neighbor to which it previously sent the corresponding
data message. Eventually, all honest nodes will preferably choose their highly-reputed
neighbors, and so the data messages will tend to follow paths where previous message
were successfully routed to the sink.

2.2.1 Algorithm

We now present our algorithm. We begin by some definitions and notations, and follow
with an explanation of our assumptions. We then present the algorithm. The formal
code of our routing protocol, which is referenced during our explanations, is given in
Algorithms 1 and 2.

2.2.2 Assumptions and Notations

We consider arbitrary connected networks with bidirectional links, although we focus on
Unit Disk Graphs (UDG) when doing simulations. Each node p has a unique identifier
(to simplify, we shall identify any node with its identifier, whenever convenient) and
knows the set of its neighbors, Neigp.
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Algorithm 1 SR3 for any source node v
Input: kvs: the key of node v, shared with the sink s

Variables:
LSent: List of at most sS pairs, initially empty
LAckRouting: List of at most sA pairs, initially empty
LReputation: List of at most sR elements, initially empty

On generation of Data

1: Nv ← New Nonce()
2: h ← H(Nv)
3: C ← Ekvs(�Data,Nv�)
4: next ← Rand(Neigv,Lv

SR3(LReputation))
5: LSent ← LSent � �Nv, next�
6: Send �MSG, C, h, v� to next

On reception of �MSG, C, h, o� from f

7: next ← Rand(Neigv,Lv
SR3(LReputation))

8: if v = o then
9: �Data,No� ← E−1

kvs
(C)

10: if H(No) = h then
11: LSent ← LSent � �No, next�
12: Send �MSG, C, h, o� to next
13: end if
14: else
15: if �h, � /∈ LAckRouting then
16: LAckRouting ← LAckRouting • �h, f�
17: end if
18: Send �MSG, C, h, o� to next
19: end if

On reception of �ACK, No, o� from f

20: if v = o ∧ �No, � ∈ LSent then
21: first hop ← Get(LSent, No)
22: LReputation ← LReputation • first hop
23: LSent ← LSent \ �No, �
24: else
25: if v �= o then
26: h ← Hash(No)
27: if �h, � ∈ LAckRouting then
28: next ← Get(LAckRouting, h)
29: LAckRouting ← LAckRouting \ �h, �
30: else
31: next ← Rand(Neigv,Lv

RW )
32: end if
33: Send �ACK, No, o� to next with probability N−1

N
34: end if
35: end if
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Algorithm 2 SR3 for the sink s

Input: keys[]: array of shared keys, indexed on node identifiers

On reception of �MSG, C, h, o� from f

36: �Data,No� ← E−1
keys[o](C)

37: if H(No)= h then
38: Deliver Data to the application
39: Send �ACK, No, o� to f
40: end if

On reception of �ACK, No, o� from f

41: next ← Rand(Neigs,Ls
RW )

42: Send �ACK, No, o� to next with probability N−1
N

Networks are made of one sink (named s), which is the data collector, and numerous
source nodes. The source nodes are sensors, and consequently are limited in terms of
memory, computational power, and battery. Sensors are non-trustworthy since they are
vulnerable to physical attacks and an adversary can compromise them. In contrast, the
sink is assumed to be robust and powerful in terms of memory, computation, and energy.
So, we assume that it cannot be compromised. We also assume that all source nodes
have several data to route; however, the scheduling of the data generation is a priori
unknown. There is no time synchronization between nodes.

All nodes have access to a lightweight cryptography library. We need several cryp-
tographic primitives:

• A hash function: for an input i, we denote by H(i) the output of that function.

• Symmetric encryption: for a plaintext pt and a key k, we denote by Ek(pt) the
encryption operation. The decryption operation for a ciphertext ct is denoted
E−1

k (ct).

• Nonce generation: to generate a fresh nonce, i.e. an unpredictable random number,
we call the function New Nonce().

Furthermore, each source node shares a symmetric key with the sink: for a node v,
we denote that key kvs, and we suppose the sink holds an array of all those keys called
keys (with keys[v] = kvs).

Through the algorithm, we use finite-size lists with two different insertion operations,
� and •. The addition of �x, y� to the list L using � works as follows: first, if L contains
any pair with a left member equal to x, that pair is removed from L; then, if L is (still)
full, the rightmost pair is removed; finally, �x, y� is inserted on the left side of the list.
Note that, using �, any left member of a pair in the list is unique. The other insertion
operator is denoted •, and works as a FIFO insertion: if the list is full, then the oldest
element is removed from the list, and finally the new element is added. Note that there
may be several occurrences of the same element in a list updated with •.
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2.2.3 Reputation Mechanism

To implement our reputation mechanism, we identify each data message (tagged MSG in
the algorithm) with a nonce that should remain secret between the source and sink until
the delivery of the data message. This nonce is hashed to give the message identifier, al-
lowing any node to identify which message an acknowledgment corresponds to. Our com-
plete message format is the following for a sender v: �MSG,Ekvs(�Data,Nv�),H(Nv), src�,
and the corresponding acknowledgment is �ACK, N, v�.

Assume that node v initiates the routing of some value Data. It first generates a
nonceNv (New Nonce(), Line 1). Then, it encrypts in a ciphertext C the concatenation
of Data and Nv using the key kvs it shares with the sink (Ekvs(�Data,Nv�), Line 3).
Then, both C and the identifier of v (in plaintext) are routed to the sink, and only
the sink is able to decrypt C. So, upon receiving the data packet, the sink decrypts C
using kvs, delivers Data, and sends back to v an acknowledgment ACK containing Nv

(Lines 36-39). Finally, if v receives this acknowledgment, it has the guarantee that Data
has been delivered, thanks to Nv.

Now, during the routing, a compromised relay node can blindly modify the encrypted
part of the message. To prevent the sink from delivering erroneous data, we add a hash
of the nonce into the data message (H(Nv), Line 2). This way, when receiving a message
�MSG, C, h, v�, the sink can check the integrity of the message by first decrypting C using
the key kvs = keys[v] (E−1

keys[v](C), Line 36), and then comparing the hash of the nonce
in C to the message field h: if they do not match, the message is simply discarded.
Similarly, if a compromised node has modified the plaintext identifier in the message,
then the sink will decrypt C with a wrong key, and therefore the hash of the decrypted
nonce will not match h.

The whole process is illustrated in Figure 2.1.

v Sink

• Check validity

• Deliver Data
• Build ACK

Network

�MSG,Ekvs(�Data,Nv�),H(Nv), v� �MSG,Ekvs(�Data,Nv�),H(Nv), v�

�ACK, Nv, v� �ACK, Nv, v�

Figure 2.1: A message and its acknowledgment.

Upon receiving an acknowledgment, if the receiving node v is the initiator of the
corresponding data message m, v can conclude that m has been delivered. In that case,
v should reinforce the probability associated to the neighbor to which it previously sent
m. To achieve that, we proceed as follows: when v initiates the routing of m, v saves
in the list LSent the nonce stored in m, together with the identifier of the neighbor to
which v sends m (LSent is appended in Line 5 in using �, which we described before).
Hence, on reception of an acknowledgment, v checks (in Line 20) if it is the destination
of the acknowledgment and if the nonce No attached to that acknowledgment appears
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in LSent (see the test �No, � ∈ LSent in Line 20).1 In that case, v gets back the
corresponding neighbor from the list (Get(LSent, No), Line 21), increases its confidence
on that neighbor (the mechanism is discussed in a latter section), and removes the record
from LSent (LSent \ �No, �, Line 23). If v is the destination of the acknowledgment, but
No does not appear in LSent, the acknowledgment is simply discarded.

Due to the memory limitations, LSent must have a maximum size, sQ. If a node v
has some new data to route and LSent is full (that is, it contains sQ elements), then the
oldest element is removed from the list to make room for the new one. A side effect is
that records about lost messages or of messages whose acknowledgment has been lost
are eventually removed from LSent.

Note that it may happen that some data message m comes back to the node v from
which it originates because m followed a cycle in the network. In this case (Lines 8-13),
the validity of m is checked, and then the routing process of m is restarted. Since the
old entry in LSent is not considered to be relevant anymore, it is simply replaced by the
new one.

2.2.4 Compute the Reputation

To choose the next hop of some data message, a node performs a random choice among
its neighbors, weighted according to their reputation (see Lines 4 and 7).

The reputation of a neighbor actually corresponds to the number of occurrences of
its identifier in the list LReputation: each time a node v wants to reinforce the reputation
of some neighbor u, it simply adds an occurrence of u into its list (Line 22).

Our reputation mechanism is implemented using the probability law denoted by
Lv
SR3(LReputation): Let X be a random variable taking value in Neigv. The probability

law Lv
SR3(LReputation) is defined, ∀x ∈ Neigv, by:

Pr(X = x) =
|LReputation|x + δ−1

v

|LReputation|+ 1

Where δv is the degree of v, |LReputation| is the number of elements in LReputation,
and |LReputation|x is the number of occurrences of x in LReputation. Hence, when v wants
to route a data message, it chooses its next destination according to Lv

SR3(LReputation)
(see Rand(Neigv,Lv

SR3(LReputation)) in Lines 4 and 7).

Informally, when a node needs to route a message, it draws at random a value from
LReputation plus a blank element. If the blank element is drawn, it selects a neighbor
uniformly at random, and sends the message to that neighbor. Otherwise, the message
is sent to the neighbor whose identifier has been drawn. This way, the more a neighbor
is trusted, the more it will be selected. However, because of the blank element, there is
always a positive probability of selecting a neighbor without taking trust into account.
Note that, initially LReputation is empty, and consequently the first selections are made
uniformly at random.

1“ ” means “any value”. So, �No, � is any record whose left value is No.
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To ensure a better resiliency against attackers that change their behavior over time,
and to reduce memory consumption, LReputation is defined as a FIFO list of maximum
size, sR. The insertions in LReputation use the operator • that satisfies the following
condition: when the list is full, the next insertion is preceded by the removing of the
oldest (and consequently, less relevant) element.

An example illustrating the probability law is provided in Figure 2.2. In this example,
we focus on the node v and assume a LReputation of at most 3 elements. From the given
configuration, v will route most messages through z, because it has the greatest number
of occurrences in the list LReputation of v.

Using such a FIFO finite list, a node only stores the freshest information. Inter-
estingly, if a compromised node first behaves well, its reputation increases, resulting
in attracting the traffic. Then, it may change its behavior to become a blackhole (a
node dropping all messages it receives). Now, thanks to our mechanism, regularly some
messages will be routed via other nodes and consequently the reputation of the compro-
mised node will gradually decrease, inducting then a severe reduction of the traffic going
through that node.

Consider again Figure 2.2. If z turns out to be compromised and starts dropping
all messages, then all messages going through z and w will either get lost or loop back
to v. However, there is still a positive probability that v routes messages through y,
which will retransmit them. Some of these messages will be delivered and consequently
acknowledged. So, the identifiers currently stored in LReputation will be progressively
replaced by occurrences of y, increasing its probability (resp. decreasing the probability
of w and z) of being chosen.

v’s LReputation, sR = 3 [w, z, z]

Next hop probabilities for v:

P (X = w) =
1 + 1/3

4
=

4

12
≈ 33.33%

P (X = z) =
2 + 1/3

4
=

7

12
≈ 58.33%

P (X = y) =
0 + 1/3

4
=

1

12
≈ 8.33%

v

w

x

y

z

Sink

Figure 2.2: An example of how the reputation affects the routing process

2.2.5 Acknowledgment Routing

Let ack be an acknowledgment message. Since ack has been emitted because the cor-
responding data message m has been successfully delivered by the sink, we can suppose
that the path followed by m was safe. Therefore, we can use the bidirectionality of the
links to route ack (as much as possible) through the reverse path followed by m.
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This reverse routing is accomplished by letting a trail along the path followed by
m. This trail is stored thanks to the list LAckRouting maintained at each node: after the
reception of each data message, the relaying nodes store the hash of the nonce available
in the message, together with the identifier of the neighbor from which they received the
message (Lines 14-17). This information will be then used during the return trip of the
acknowledgment: when a node v receives an acknowledgment containing the nonce Nx,
it checks whether it is the final destination of that acknowledgment (Lines 20 and 25). If
this is not the case, v checks if an entry containing H(Nx) exists in LAckRouting (Lines 26-
30). If v finds such an entry, it sends the acknowledgment to the corresponding neighbor
and removes the entry from LAckRouting (Line 29). Otherwise, the next hop of the
acknowledgment is chosen uniformly at random (Lv

RW denotes the probability law of the
uniform random walk, see Line 31).

If a data message loops back to a node it already visited, the most relevant infor-
mation regarding acknowledgments for this node is the oldest one. Therefore, before
inserting a new trail, the node checks if LAckRouting already contains a trail for that
message. If a related entry exists, we do not update LAckRouting (Lines 14-17).

Acknowledgments can be still dropped by compromised nodes. The trail for such
lost acknowledgments would unnecessarily clutter the memory of nodes. To avoid this,
we manage LAckRouting similarly to LReputation, i.e., LAckRouting is a list of bounded size
sA, appended using operator •.

Finally, an intruder may build acknowledgments with false nonces. These fake ac-
knowledgments will increase the load of the network, and impact the energy consump-
tion. Now, some nodes being compromised, a safe node cannot trust information coming
from its neighbors to decide whether it should forward or drop an acknowledgment. To
circumvent that problem, a relay node decides to drop a received acknowledgment with
probability 1

N , where N is an upper bound on the number of nodes (Lines 33 and 42). So,
on the average, an acknowledgment makes N hops in the network before being dropped.
An interesting side effect of this method is the following: in a safe network (i.e., a net-
work without attackers), the acknowledgments that follow long routes are often dropped
before reaching their final destination. Since the length of the routes followed by the
acknowledgments are directly related to the length of the route taken by the correspond-
ing messages, the reputation mechanism ends up favoring shorter routes, thus improving
the overall hops complexity.

2.3 Cryptographic Proof of the Security Properties

We evaluate the security of SR3 in two phases. The first phase focuses on the packet
format, for which we prove the following three properties: unforgeability, confidentiality
of the data, and confidentiality of the nonce before packet delivery. This analysis uses
the tool CryptoVerif [Bla08]. We first detail the modeling of SR3 and our intruder
model. Then, we model the different security properties we considered. CryptoVerif
automatically finds bounds on the security of these properties. These bounds allow the
user to determine the desired trade-off between message sizes and the expected security
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level.

The second phase is a symbolic analysis of the protocol, in order to prove its security
when running several sessions. This analysis supposes that the cryptographic primitives
are perfect. For this, we use the tool Scyther [Cre08], which we chose among other
symbolic analysis tools for its speed (see [CLN09]) and ease of use. We first describe
how we model SR3 and the attacker for these two analysis.

Notations

When describing a game, we write a
$←− X to denote that a is a random value obtained

according the distribution represented by X. If X is a set, a is drawn at random using
the uniform law on X. Similarly, if X is a probabilistic algorithm, a is drawn at random
using the algorithm.

We denote by Eksrc(x) the result of the encryption of x, using the block cipher with
the key of src and by H(x) the hash of x.

We recall that stating that a function µ(x) : N→R is negligible in x means that for
every positive polynomial P there exists an integer I such that for all x > I, µ(x) <
| 1
P (x) |, as presented in [Bel02].

2.3.1 Modeling of SR3

SR3, as described in the previous section, routes messages through several nodes. There
are three distinct roles in this process: the source (whose identifier is denoted here src)
of the considered data message, the relays, and the sink. The data message is initially
created by the source, which then forwards it either to a relay or the sink. Relays
forward the data message without changing it, and the sink delivers it. If the received
data message is valid, the sink generates an acknowledgment �ACK, N, src�, that is routed
through relays until it reaches the source. A data message can loop back to its source,
and an acknowledgment can loop back to the sink: they act as relays in these cases.

When a message arrives to the sink, it first checks whether the packet respects the
format �MSG, C, h, s�. If so, the data message is valid when h is equal to the hash of the
right part of C, deciphered with the key of the node identified by s.

The honest relays do not alter the messages in any way, and the protocol works with
any number of them, or none at all. Also, our intruder model specifies that any node can
be compromised, except the sink. Therefore, all relays Ri are suspicious, and we lump
them, whether honest or compromised, together in one single entity, called the hostile
network. All communications between the source and the sink happen through the hostile
network, as depicted in Figure 2.3. The hostile network can modify or drop messages,
and can also create messages using information deduced from previous communications.
Finally, as the types MSG and ACK can be deduced from the message format, we omit
them in our modeling.

The model is summarized in Figure 2.3. Next, we use it to analysis of SR3.
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Source
Hostile network

Sink

1

2 �Eksrc (�Data,N�),H(N), src�
�Eksrc (�Data,N�),H(N), src�

3

4�N, src�
�N, src�

1. Generate Data, 2. Draw a nonce N ,

3. Check validity, 4. Deliver Data

Figure 2.3: Modeling of one session of SR3

2.3.2 Game-based Proof of the Security Properties

For our analysis, we use a common cryptography model, called the random oracle
model [BR93], to formalize hash functions and encryptions as pseudo-random functions.
This model uses the concept of random oracle as follows: for every input i, the first time
the random oracle is queried with i, it returns a value v, picked uniformly at random
from its output domain; then, each time it is queried again with i, it returns the same
value v.

We evaluate whether our protocol provides specific security properties using games. A
game is a probabilistic algorithm where an adversary, given as a probabilistic polynomial-
time Turing machine, faces a challenge linked to a specific property. The goal is to
quantify the ability of the adversary to win the challenge. This is called the advantage
of the adversary. The advantage of an adversary A is often computed as the difference
between the probability of A to win the game minus the probability of A to win the
game against an idealized version of the protocol.

Modeling SR3’s Primitives

Hash function Our algorithm uses a hash function of input size ηn and of output size
ηh. We model it as a random oracle, and we refer to this modeling using H : {0, 1}ηn →
{0, 1}ηh . The number of times the adversary calls H is denoted qH .

Nonces Nonces are modeled as random numbers of size ηn.

Block Cipher We assume that the block cipher is PRP-CCA-secure.2 This property
was introduced in [LR88] and is defined using a game as shown below.

2PRP-CCA means PseudoRandom Permutation under Chosen Ciphertext Attack.
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Let K(ηk) be a set of keys (with ηk the size of keys), ηc the size of a block, and let
F : K(ηk)×{0, 1}ηc → {0, 1}ηc a family of permutations. For all keys k in K(ηk), Fk is a
permutation of {0, 1}ηc (that is, a bijection from {0, ..., 2ηc − 1} to {0, ..., 2ηc − 1}), and
F−1
k its inverse. Also, we denote by Perm, the set of all possible pairs of a permutation

of {0, 1}ηc and their inverses.

Given a permutation family F , the PRP-CCA game works as follows. Intuitively,
an adversary A should guess whether an oracle O is a permutation extracted from F or

a random permutation; the guess of A about O is noted b
$←− AO,O−1

(). This game is
described using two experiments shown in Figure 2.4.

ExptPRP−CCA−1
F (A, ηk) :

ksrc
$←− K(ηk)

(O,O−1) ← (Fksrc , F
−1
ksrc

)

b
$←− AO,O−1

()

Return b

ExptPRP−CCA−0
F (A, ηk) :

(O,O−1)
$←− Perm

b
$←− AO,O−1

()

Return b

Figure 2.4: The PRP-CCA experiments

The advantage of A in this game is noted AdvPRP−CCA
F (A, ηk), and defined as follows:

AdvPRP−CCA
F (A, ηk) = Pr[ExptPRP−CCA−1

F (A, ηk) = 1]− Pr[ExptPRP−CCA−0
F (A, ηk) = 1]

From the adversary A’s point of view, the PRP-CCA game consists in guessing
whether an oracle O is a permutation sampled from F (in which case it should return
1) or a random permutation from Perm (it should return 0). To do this, A is allowed
access to both O and O−1 for a bounded total number of queries.

The game PRP-CPA (for Chosen Plaintext Attack) is similar to PRP-CCA, except
that the adversary only has access to O. The advantage of A in this game is noted
AdvPRP−CPA

F (A, ηk). Note that PRP-CPA is weaker that PRP-CCA, i.e., for every
adversary A, there exists an adversary B, using the same resources as A, such that
AdvPRP−CPA

F (A, ηk) ≤ AdvPRP−CCA
F (B, ηk).

As we assume that the block cipher of SR3 is PRP-CCA-secure, by definition, both
AdvPRP−CCA

F (A, ηk) and AdvPRP−CPA
F (A, ηk) are negligible in the size of the key ηk.

Modeling the Protocol

Based on the above presented model, we describe actions performed by the source and
sink using several phases. The attacker has access to some of these, depending on the
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game. For instance, the function Gen below is a model of the creation of a new message
by an honest node. An attacker having access to this function is in a situation analog
to a chosen-plaintext attack.

• ksrc
$←− K(ηk) denotes the initialization of SR3 on a node, that is, simply selecting

the symmetric key used by this node. K(ηk) is the space of all the keys of length
ηk used for the symmetric cipher. This is done before the WSN is deployed, and
so we suppose ksrc is known only by src and the sink.

• Gen
O(·)
src (Data) is the function which generates a packet produced by src contain-

ing Data (this packet has length ηd), using the oracle O as an encryption function
from {0, 1}ηc to {0, 1}ηc (where ηc = ηd+ηn), and returns the packet and its corre-
sponding nonce. This packet is made of �C, h, src� = �O(�Data,N�),H(N), src�,
where N is a fresh unpredictable nonce of size ηn, and O(�Data,N�) is the encryp-
tion of the data, concatenated to that nonce. The function Gen

O(·)
src (Data) returns

the pair �C, h, src�, N . The nonce is given in cleartext to represent the knowledge
of an attacker that listens to traffic in the network. Indeed, such an attacker may
have access to both the messages and their acknowledgments; he may then know
the nonces contained in the original messages. However, depending on the game,
the attacker may be provided only �C, h, src� as a challenge, to model the fact
that the attack should happen before the message reaches the sink. We denote by
qG the total number of calls made to Gen by the adversary, and we store all the
returned messages in a set called Queries, initially empty.

• V erifO−1
(�C, h, s�) is the function that checks whether the packet is considered

valid or not, using both the hash function H and the inverse of the oracle O used
as the block cipher. It verifies:

– Whether the fields are the right sizes: C ∈ {0, 1}ηc , and h ∈ {0, 1}ηh ,
– Whether the message is from the right node: s is equal to src,

– Whether the encrypted nonce and the hash contained in the message match,
i.e.: H(Right(O−1(C))) = h, where Right is he function that give the right
part of the pair produced by the oracle.

If all of these three conditions are satisfied, then the function outputs 1 (meaning
that the packet is valid), and otherwise it outputs 0. We denote qV the number of
calls made by the adversary to V erif .

These three functionnalities allow us to model the SR3 protocol, as shown in Fig-
ure 2.5.

2.3.3 The Properties

Informally, the three properties we want to prove are the following:
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Source Sink

ksrc
$←− K(ηk)

ksrcksrc

1 �C, h, src�

2N, src

1. (�C, h, src�, N) = Gen
Eksrc (·)
src (Data)

2. Packet verification phase: V erifE−1
ksrc

(·)(�C, h, src�)

Figure 2.5: The SR3 protocol, using functions

• Confidentiality of the data: the probability of the adversary getting information
about the data in a message is negligible, even when the acknowledgment has been
sent.

• Confidentiality of the nonce: the adversary has a negligible probability of guessing
the nonce N contained in a challenge message, before its delivery.

• Unforgeability of the messages: the probability that the adversary creates a new

message m such that V erifE−1
ksrc

(·)(m) = 1 is negligible.

With the help of CryptoVerif, we analyzed those three properties of SR3. Each
of these three properties is evaluated thanks to a game. For each game, CryptoVerif
outputs a bound on the advantage of any adversary in that game. This bound is ob-
tained automatically after successive game reductions. The complete verification code
is available online [ADJL13c] and in Appendix A.

Data Confidentiality

The first property we consider is the confidentiality of the data. The game (named FG,
for Find-then-Guess) is based on the idea that even if the adversary chooses the set of
possible data, it cannot guess which of those data is inside a given packet. On the other
hand, if the attacker were able to win reliably, it would also effectively be able to recover
some information about the data contained in messages, without knowledge of the key.

Let A be an adversary running in two phases: A1 and A2. First, A1 outputs two
data, Data0 and Data1, together with some information state used to link the two
attacker phases together. One of these two data is selected uniformly at random, and
a MSG message �C, h, src� is generated using the selected data. Then, A2 is given the
message �C, h, src�, the nonce N this message contains, and state. To win, A2 should
guess which of Data0 and Data1 is contained in �C, h, src�. During this game, A can

query Gen
O(·)
src and H.
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Experiment ExptFGF (A, ηk) :

ksrc
$←− K(ηk)

(O,O−1) ← (Fksrc , F
−1
ksrc

)

(Data0, Data1, state)
$←− AGenO(·)

src (·),H(·)
1 ()

b
$←− {0, 1}

(�C, h, src�, N)
$←− GenO(·)

src (Datab)

If (b = AGenO(·)
src (·),H(·)

2 (�C, h, src�, N, state))

Return 1

Else

Return 0

We define the find-then-guess advantage of A against F as the probability of A
winning the game (i.e. Pr[ExptFGF (A, ηk) = 1]) minus the probability of winning for an
adversary that outputs a random bit:

AdvFG
F (A, ηk) = Pr[ExptFGF (A, ηk) = 1]− 1

2

We then model this game in CryptoVerif, so that it outputs a bound on the advantage
of an adversary. This bound depends on the ability of that attacker to break the block
cipher, i.e., this game can be reduced to the PRP-CPA game on the block cipher used
by SR3.

The Find-then-guess proof outline is as follows. We first show the full initial exper-
iment in Figure 2.6a. Recall that we assume the block cipher is a PRP-CCA secure
function: therefore, the probability of an attacker being able to distinguish the initial
experiment ExptFG

F (described in Figure 2.6a) from another experiment IntermExptAF
(Figure 2.6b) that uses a random permutation instead of the block cipher is related
to the advantage AdvPRP−CPA

F (B, ηk) an arbitrary adversary B can have. Now, as
IntermExptAF uses a random permutation, we can separate the cases where the output
of that random permutation in the Gen oracle is a fresh random value, or where it is the
repetition of an previous value. Since we know the probability of nonce collisions be-
tween the outputs of the Gen oracle, we know the probability of an attacker being able to
distinguish between that experiment IntermExptAF , and an experiment IntermExptBF
(Figure 2.6c) where all encryptions are replaced by random values and O is not used.
In this last experiment, the attacker is never given anything that depends on the value
of b, and so it is clearly impossible for an attacker to distinguish the value of b. The
probability of an attacker being right in the experiment IntermExptBF is therefore 0, 5,
and so, we know that the probability of an attacker being right in ExptFG

F is bounded
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Oracle Gen
O(·)
src (Data) :

N
$←− {0, 1}ηn

Return �O(�Data,N�),H(N), src�, N
Experiment ExptFGF (A, ηk) :

ksrc
$←− K(ηk)

(O,O−1) ← (Fksrc , F
−1
ksrc

)

(Data0, Data1, st)
$←− AGen

O(·)
src (·),H(·)

1 ()

b
$←− {0, 1}

(�C, h, src�, N)
$←− Gen

O(·)
src (Datab)

If (b = AGen
O(·)
src (·),H(·)

2 (�C, h, src�, N, st))

Return 1

Else

Return 0

(a) The original ExptFGF experiment

Oracle Gen
O(·)
src (Data) :

N
$←− {0, 1}ηn

Return �O(�Data,N�),H(N), src�, N
Experiment IntermExptAF (A, ηk) :

(O,O−1)
$←− Perm

(Data0, Data1, st)
$←− AGen

O(·)
src (·),H(·)

1 ()

b
$←− {0, 1}

(�C, h, src�, N)
$←− Gen

O(·)
src (Datab)

If (b = AGen
O(·)
src (·),H(·)

2 (�C, h, src�, N, st))

Return 1

Else

Return 0

(b) The IntermExptAF experiment

Oracle Gen
O(·)
src (Data) :

N
$←− {0, 1}ηn ;C $←− {0, 1}ηc

Return �C,H(N), src�, N
Experiment IntermExptBF (A, ηk) :

(O,O−1)
$←− Perm

(Data0, Data1, st)
$←− AGen

O(·)
src (·),H(·)

1 ()

b
$←− {0, 1}

(�C, h, src�, N)
$←− Gen

O(·)
src (Datab)

If (b = AGen
O(·)
src (·),H(·)

2 (�C, h, src�, N, st))

Return 1

Else

Return 0

(c) The IntermExptBF experiment

Figure 2.6: Intermediary experiments for the find-then-guess proof
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by the ability for an attacker to distinguish between the initial experiment ExptFG
F and

the final one, IntermExptBF .
The bound on this game depends on the advantage AdvPRP−CPA

F (B, ηk) of any ad-
versary B in a PRP-CPA game. Formally, for all adversaries A making qG queries to
Gen and qH queries to the hash function, there exists an adversary B (making qG + 1
queries to O in its game) such that:

AdvFG
F (A, ηk) ≤

2q2G + 2qG
2ηc

+
2q2G + 4qG + 2

2ηn
+ 2AdvPRP−CPA

F (B, ηk)

Note that qH does not appear in this bound. H is a random oracle whose outputs
do not leak information about their corresponding inputs.

We assumed that the block cipher of SR3 is PRP-CCA-secure, and therefore, for
all adversaries A, AdvPRP−CPA

F (A, ηk) is negligible in ηk. As ηc ≥ ηn, we find that this
bound on AdvFG

F (A, ηk) is negligible in ηn and ηk.
This bound allows us to select the necessary trade-off between the desired level of

security and the mandatory minimization of the message overhead. For instance, we can
try to reach an advantage smaller than 2−50 for the confidentiality of the data, against
an adversary A that can query each oracle up to 220 times (around 1 million queries).
To achieve this, we need to set ηn to 96 bits (12 bytes). This way, given data packets of
32 bits (4 bytes), we would have:

AdvFG
F (A, ηk) ≤

2× (220)2 + 2× 220

296+32
+

2× (220)2 + 4× 220 + 2

296
+ 2AdvPRP−CPA

F (B, ηk)

=
241 + 221

2128
+

241 + 222 + 2

296
+ 2AdvPRP−CPA

F (B, ηk)

≈ 2−54.999 + 2AdvPRP−CPA
F (B, ηk)

AdvFG
F (A, ηk) ≤ 2−54 + 2AdvPRP−CPA

F (B, ηk)

Finally, we need to choose a block cipher, as its quality will determine the PRP-
advantage. If we use AES-128 as block cipher (which outputs 128 bits, using an input
of 128 bits and a key of 128 bits), the best attack known to this day needs 2126.1 op-
erations [BKR11]. Therefore, we can expect AdvPRP−CPA

AES−128(B, 128) to be much smaller
than 2−54 for any B, and consequently our security bound of 2−50 is satisfied, with an
overhead of 12 bytes.

Nonce Confidentiality

In the next game, we evaluate whether an adversary can extract a nonce from an un-
delivered message. Let A be an adversary running in two phases (A1 and A2) that
communicate using a variable named state. The game consists in giving a challenge MSG
message �C, h, src� to an adversary A, who should guess the nonce inside this message

in nbA tries. To do this, the adversary is allowed to call Gen
O(·)
src and H, and to choose

the data that is going to be contained in the challenge message.
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Experiment ExptN−conf
F (A, ηk) :

ksrc
$←− K(ηk)

(O,O−1) ← (Fksrc
, F−1

ksrc
)

(Data, state)
$←− AGenO(·)

src (·),H(·)
1 ()

(�C, h, src�, N)
$←− GenO(·)

src (Data)

Answers ← AGenO(·)
src (·),H(·)

2 (�C, h, src�, state))
If (|Answers| ≤ nbA ∧N ∈ Answers)

Return 1

Else

Return 0

The nonce confidentiality advantage of A against F is defined as the probability of

winning the game (Pr[ExptN−conf
F (A, ηk) = 1]) minus the probability of guessing the

challenge nonce in nbA random tries. This is a Bernoulli trial, and this probability is
equal to the complementary probability of having all wrong guesses in less than nbA iden-
tical and independent uniform random tries. Therefore, this is equal to 1− (2

ηn−1
2ηn )nbA .

Replacing in context, we get:

AdvN−conf
F (A, ηk) = Pr[ExptN−conf

F (A, ηk) = 1]−
�
1−

�
2ηn − 1

2ηn

�nbA
�

CryptoVerif outputs that for all adversaries A making qG queries to Gen, qV queries
to V erif , and qH queries to the hash function, there exists an adversary B making qG+1
queries to O such that:

AdvN−conf
F (A, ηk) ≤

nbA + qH + qHqG + 2qG + 2q2G
2ηn

+
qG + q2G

2ηc
−
�
1−

�
2ηn − 1

2ηn

�nbA
�

+AdvPRP−CPA
F (B, ηk)

Similarly to the previous property, this bound becomes negligible when increasing
ηn and ηk. Again, we can find the right values to obtain a given security bound. We
use the same primitives as for the previous property: ηn = 96 bits (12 bytes), and data
packets of 32 bits (4 bytes).

AdvN−conf
F (A, ηk) ≤

220 + 220 + 220 × 220 + 2× 220 + 2× (240)2

296

+
220 + (220)2

2128
−
�
1−

�
296 − 1

296

�220
�

+AdvPRP−CPA
F (B, ηk)
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=
220 + 220 + 240 + 221 + 241

296
+

220 + 240

2128
−

�
1−

�
296 − 1

296

�220
�

+AdvPRP−CPA
F (B, ηk)

≈ 2−54.415 +AdvPRP−CPA
F (B, ηk)

AdvN−conf
F (A, ηk) ≤ 2−54 +AdvPRP−CPA

F (B, ηk)

We obtain results similar to the confidentiality results. Using again the AES-128
block cipher and the result in [BKR11], we can expect AdvPRP−CPA

AES−128(B, 128) to be much
smaller than 2−54 for any B, and our security bound of 2−50 is satisfied, with an overhead
of 12 bytes.

Unforgeability

Finally, the last game evaluates the unforgeability of the messages, i.e., the ability
of an intruder to create a new valid message. Note that this property implies both
indistinguishability and authenticity of the MSG messages. To evaluate this, we give to
the attacker A access to both Gen and V erif . To win, A should return a packet which
is valid and which has never been returned by Gen previously (recall that the Queries
set contains the messages returned by Gen).

Experiment ExptUF−CMVA
F (A, ηk)

Queries ← ∅

ksrc
$←− K(ηk)

(O,O−1) ← (Fksrc , F
−1
ksrc

)

�C, h, s� ← AGenO(·)
src (·),H(·),V erifO−1(·)(·)()

If (�C, h, s� �∈ Queries ∧ V erifO−1(·)(p))

Return 1

Else

Return 0

The unforgeability advantage of A against F is defined as the probability of A win-
ning this game minus the probability of winning for an attacker that outputs a well-
formed message �C �, h�, src� with C � and h� random values of size respectively ηc and ηh,
without calling any oracle. Such a message is valid if and only if the hash of the nonce
extracted from C � (which we call N) is equal to h� (a random value by hypothesis on the
attacker). Since H is a random oracle, and the attacker did not previously query it, we
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know that H(N) is a random value of size ηh, and so we are looking for the probability
of equality between two random values of size ηh, which is equal to 1

2ηh . Therefore:

AdvUF−CMVA
F (A, ηk) = Pr[ExptUF−CMVA

F (A, ηk) = 1]− 1

2ηh

Using CryptoVerif, we find that, similarly to the previous game, the advantage of A
depends on the strength of the block cipher. Formally, for all adversaries A making qG
queries to Gen, qV queries to V erif , and qH queries to the hash function, there exists
an adversary B making qG queries to O and qV + 1 queries to O−1 such that:

AdvUF−CMVA
F (A, ηk) ≤

qH + qHqV + qV qG + qG + qHqG + 2q2G
2ηn

+

q2G + qG + 2qV qG + qV + q2V
2ηc

+
qV
2ηh

+AdvPRP−CCA
F (B, ηk)

Similarly to the previous properties, this bound becomes negligible when ηn, ηk and ηh
increase.

If we suppose that the adversary can make a million queries to each oracle, and
that we want the same 2−50 security bound, we can choose the same sizes as for the
confidentiality proof. However, this time, there are two major differences: the hash
function size appears in the bound, and the game used for the block cipher is PRP-CCA
instead of PRP-CPA. To achieve the security bound, we choose a hash function output
size of 96 bits (12 bytes). With these settings, we get:

AdvUF−CMVA
F (A, ηk) ≤

220 + 220 × 220 + 220 × 220 + 220 + 220 × 220 + 2× (220)2

296
+

(220)2 + 220 + 2× 220 × 220 + 220 + (220)2

296+32
+

220

296
+AdvPRP−CCA

F (B, ηk)

=
220 + 240 + 240 + 220 + 240 + 241

296
+

240 + 220 + 241 + 220 + 240

2128
+

220

296
+AdvPRP−CCA

F (B, ηk)

≈ 2−53.678 +AdvPRP−CCA
F (B, ηk)

AdvUF−CMVA
F (A, ηk) ≤ 2−53 +AdvPRP−CCA

F (B, ηk)

Once again, we use AES-128 as block cipher, and since the best attack known to
this day needs 2126.1 operations [BKR11], we expect AdvPRP−CCA

AES−128(B, 128) to be consid-
erably smaller than 2−53. Therefore, using such assumptions and sizes, we find that the
unforgeability security bound is low enough, still with an overhead of 12 bytes.
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2.3.4 Symbolic Analysis of the Protocol

We then conducted a symbolic analysis of SR3, focusing on authentication. Overall, the
symbolic analysis focuses more on the protocol than on the cryptography, because of a
few key differences with the previous section.

First, this analysis is done in the symbolic model instead of the computational model.
This model assumes the perfect encryption hypothesis, which specifies that cryptographic
primitives are perfect black-boxes, and the attacker can only interact with them through
their expected properties: for instance, the attacker can decrypt Ek(x) if and only if
he has knowledge of k. This knowledge is built from a Dolev-Yao model [DY83], which
specifies that the attacker knows what can be built or deduced from the communications
happening in the network. The attacker may also send new messages, replay sessions of
the protocol, and manipulate, redirect or delete messages going through the network.

The symbolic model is more restrictive for an attacker than the computational model
and allows different assumptions in the other parts of the model. Here, we still use the
description from Figure 2.3 page 38, but instead of proving security properties for a
single session of the protocol, we allow several sessions for the attacker to execute in
order to achieve its goal.

We focus on authentication, more precisely non-injective agreement for both partic-
ipants. This property is defined in the hierarchy of [Low97]. Consider two actors, A
and B running a protocol. If the protocol verifies this property, it guarantees that if A
completes a run of the protocol, apparently with B, then B has previously been running
the protocol, apparently with A, and both A and B agreed on the same data (in our
case, this data is both Data and N).

We use the tool Scyther [Cre08], a symbolic prover for cryptographic protocols, in
order to obtain the proof. Scyther reports that the protocol provides this form of au-
thentication for both participants to the protocol, for a bounded number of sessions.
The modelization file is available online [ADJL13c] and in Appendix A.

2.4 Simulation Methodology

We then evaluate our protocol with respect to classical measures, namely, delivery rate of
the messages, fairness and number of hops. We also study the resiliency of SR3 against
several attack scenarios. For these purposes, we ran simulations in Sinalgo [Dis08], an
event-driven simulator for WSNs, and we compared the performances of SR3 to those
of six other routing protocols.

Sinalgo is one among many network simulators that are suitable to our purposes.
For instance, to simulate WSNs, there are several specialized frameworks. Various lev-
els of detail are possible: for instance, TOSSIM [LLWC03], JiST/SWANS [BHvR05a,
BHVR05b] and ATEMU [PBM+04] emulate the node’s operating system, while others
such as SENS [SKA04] and WSNet [CFH06] model nodes with protocol layers (note that
WSNet has a tool for full emulation). Several others network simulation frameworks ex-
ist, which are not specific to WSNs: for instance, ns-2 and its successor ns-3 [FV07],
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OMNeT++ [V+01], J-sim [SHK+06], SSFNet [CON02]. In order to focus more on the
routing behavior of SR3, and to avoid getting lost in side-effects, we chose to use a
simple model for the radio medium and link-layer protocol. Using any full-stack simu-
lator would add unwarranted complexity. In the end, we chose Sinalgo [Dis08] for its
simplicity, and because of favorable previous experiences.

Note that the simulations in this chapter aim to show properties that are related to
those presented in Chapter 3. The reasons behind our choice of using simulations to
analyze SR3 is detailed in Chapter 3, where we compare the goals and limitations of the
method we chose here, and the formal proofs in the model presented in that chapter.

2.4.1 Topologies

We deployed sensors uniformly at random on a square plane. We positioned the sink
at the center of the square plane. The compromised nodes are selected uniformly at
random among the sensors, and we consider that they are compromised after all the
required initialization of the evaluated protocol. Two nodes can communicate if and
only if their Euclidean distance is less or equal to a preset fixed range, i.e., the topology
is a Unit Disk Graph (UDG). We only considered connected topologies.

The communication links are asynchronous and FIFO. The transmission time of each
link follows an exponential random distribution of constant parameter 1. Only honest
sensors generate data to route. The time between two consecutive data generations at
the same sensor also follows an exponential random distribution, whose parameter is the
same for all sensors and whose value depends on the average degree and the number of
sensors in the network, to prevent congestion.

If we fix the number of nodes n and the range of the UDG, we can tune the size
of the simulation area to control the expected average degree δ of the network. In our
simulations, n varies from 50 to 400 with a step of 50, and δ is either 8, 16, or 32. Three
examples of topologies are provided in Figure 2.7, with nodes in blue and the sink in red.
The percentage of compromised nodes varies from 0 to 30%, depending on the context:
we chose the amount to have a noticeable, but not overwhelming effect.

Figure 2.7: Three random topologies of n = 200 and respectively δ = 8, 16 and 32.
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We considered various attack scenarios, where compromised nodes made selective
forwarding: each compromised node drops received messages with a probability p ∈ (0, 1]
(if p = 1, the node is called a blackhole). In addition, some compromised nodes may
have some additional “bad” skills, e.g., they may be wormholes or Sybil.

For each setting (number of nodes, average degree, attack scenario, amount of com-
promised nodes, and routing algorithm), we ran 20 simulations over 20 different UDG,
which were randomly generated. We chose 20 simulations as the whole campaign of
simulations included here already take several weeks to run, and running more of those
would not improve significantly the precision of our results.

In each simulation, 500 000 data packets are generated. The simulation stops once
all packets have been routed or lost. We made more than 13 000 simulation runs and
the overall number of generated data is greater than 6 billions.

2.4.2 Benchmark Protocols

We present a few protocols from the literature, and our reasons for choosing or excluding
them from our simulations.

Panel of Selected Protocols

We selected a panel of six protocols from the literature: the uniform Random Walk
(RW) [AKL+79], the Greedy-Face-Greedy protocol (GFG) [BMSU01], the Gradient-
Based Routing (GBR) [SS01], and three of its variants, Randomized GBR (RGBR),
Probabilistic Randomized GBR (PRGBR), and Probabilistic Randomized Duplicating
GBR (PRDGBR) [EOMVK11]. Note that RGBR, PRGBR, and PRDGBR have been
introduced for purpose of resiliency.

GFG is a geographic routing protocol, where two modes are alternatively used:
Greedy and Face. The Greedy mode routes messages to the neighbor of the current
node that is geographically the closest to the destination. This mode is preferably used,
but may lead a message to a dead end. In this case, the Face mode allows the message
to escape from this dead end, by routing messages along faces of the network graph
(see [SS01] for a description of this algorithm). This protocol requires a planarization of
the network graph, which virtually reduces the amount of links available for routing.

Planarizing the network from the standpoint of individual nodes is a very complex
problem in a real wireless network, due to the eventual presence of physical obsta-
cles [Kar01]. Fortunately, we are in a simulated context with UDGs, and so we can
simply planarize the network using Gabriel Graphs [GS69], where the edge between two
nodes a and b is removed if there exists a node in the disk of diameter [ab].

GBR consists in routing messages along the breadth-first spanning tree (BFS tree)
rooted at the sink. In our context, this spanning tree is built at the beginning of the
simulation, before any nodes are compromised in the network. So, even if intruder nodes
change behavior over time, the initial tree is kept.

RGBR uses the levels of neighbors in the BFS tree: each sensor chooses the next hop
for each message uniformly at random among its lowest-level neighbors. In PRGBR,
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each sensor chooses between two modes: (1) with probability 0.4 the message is routed
according to RGBR; (2) with probability 0.6 the message is routed to a neighbor of same
level (if no such a neighbor exists, the sensor uses mode 1).

Finally, PRDGBR duplicates the messages before each hop and routes the two mes-
sages independently using PRGBR. To avoid congestion, each node drops the received
copies of messages it has already seen, which we implement using an infinite memory on
each node. Note that this algorithm can lose messages in a safe network: we illustrated
this problem in Figure 2.8, where each arrow denotes a copy of a single message, and
the edge labels represent the chronological order. This problem stems from the fact that
it is possible for a node to send all copies of a message to a same-height neighbor, and
then drop all further copies of this message. If several neighboring same-height nodes (a
and b in our example) send all duplicates of the message to each other (communications
3 to 6), the message will be lost. This is especially problematic on ladder-like topologies,
but quite marginal (less than a percent of all messages) on the random topologies we
use in this chapter. Note that we assumed duplicatas are routed independently as it is
specified [EOMVK11]. If message duplicata were required to be routed to two different
nodes, then message loss would require at least three nodes and it would be less likely
to occur.

o

a

b

sink

1

2

3 4 5 6

Figure 2.8: PRDGBR message loss in a safe network

Other Protocols

There are several notable protocols which we did not include in our panel. We chose the
previous protocols either because they illustrate well the family in which they belong
(GFG, RW, GBR), or because they are designed with objectives similar to SR3 (all
randomized versions of GBR).

Both LSR and OLSR are optimal in the number of hops as long as nodes learn
an up-to-date topology. Since topologies are static in our model, and we only have one
destination node, these two protocols will behave similarly to PRGBR after the topology
is discovered, although with residual control messages noise.

The protocols based on AODV we mentioned have not been designed for their re-
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siliency against blackholes. AODV provide a routing mechanism based on route requests
and replies, that may be compromised by attackers. The additions that SAODV and
SEAR propose will only prevent some specific flaws of AODV, but it will not improve
the delivery rate when facing a standard blackhole intruder. In the end, this mechanism
of route request-then-reply will end up routing messages along shortest edges, which is
also similar to the PRGBR protocol, as our topologies are static and the quality of links
stays the same.

CASTOR We chose not to include the CASTOR protocol [GPP+10] in our panel, as
it is not optimized for all-to-one routing, and it is also unsuited for the low memory of
wireless sensors. Using it in our experimental setting (a WSN where all nodes send data)
requires having at least as much concurrent flows as there are sender nodes. Nodes close
to the sink may therefore be expected to keep track of up to as much flows as there are
nodes in the network, which requires each node to store four reputation counters per
neighbor per flow (which amounts to up to 12KB of memory for a degree 16 node in a
200 nodes network, given counters are 8-bits). On top of this, nodes need to remember
for a given duration which messages have been seen, from which neighbor do they come
from, to whom they have been sent, and the eventual corresponding acknowledgment,
for a total of 4 bytes per message. This information must be held by each node for an
amount of time depending on the network settings, which is related to the time needed
for a round-trip in the network. For networks that are slow and wide, and if a node has to
support a large part of the network traffic as it may be the case for the sink’s neighbors,
then the memory requirement becomes very large when compared to the requirements
of the other protocols of the panel. Furthermore, CASTOR requires nodes to broadcast
messages. This happens when nodes do not have at least one high-reputation neighbor
in the current flow, in which case they broadcast messages. If several flows are created
around the same time, as it is the case in our model, then the corresponding messages
will overload the network during the start-up phase.

SIGF We chose not to include protocols from the SIGF family in our panel [WFSH06].
This algorithm rests upon the assumptions that nodes can overhear their neighbor’s com-
munications, that they reliably know their 2-neighborhoods, and that they have access
to geographical information. These three hypothesis are stronger than what we require
for SR3, and they would unfairly advantages SIGF here as our simple radio model does
not include interference, radio concurrency issues or any probability of message loss dur-
ing transfers. The authors also acknowledge major flaws in the algorithm, which would
allow an intruder to bypass entirely the forwarding check in the reputation computation
and to appear as attractive as a regular node to its neighbors:

• The algorithm is vulnerable to intruders able to adjust their transmission patterns
(for instance, using steerable antennas). Such an intruder is able to forward packets
in a way that ensures its upstream neighbor’s trust, while not actually forwarding
packets to its downstream neighbor. With this behavior, an intruder node blocks
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messages from reaching their destination (i.e. it is a blackhole) without suffering
a reputation loss.

• The authors show that SIGF-2 is resistant against Sybil attacks, where the intruder
node acts as if it were several distinct nodes, using fabricated identities, which all
act as blackholes. We argue that this attack is a lot weaker than what an attacker
with these capabilities can do. Consider the following attack: A Sybil attacker
can make one of its identities a simple blackhole, and all its other identities will
forward all of their messages to that blackhole. This way, the only node losing
reputation for not forwarding messages will be the blackhole, whereas all the other
nodes will keep a good reputation. The Sybil node will still drop all the messages
it receives, while only sacrificing a single identity’s reputation, as opposed to the
authors’ evaluated attack where all identities of the Sybil node ends up blacklisted.

To provide some perspective on this issue, we provide an experimental evaluation of
the impact of the first attacker, compared to a regular blackhole further in Section 2.5.6.

2.4.3 Choice of SR3 Parameters

SR3 uses three lists, whose respective sizes are bounded. We made several experiments
to set the size of each list to the appropriate value.

Choosing LReputation’s Size

We consider first the list LReputation (of size sR), the list that holds the reputations of
the neighbors. As the choice of next hop includes a 1

sR+1 probability of that choice
being done uniformly at random, the size of the list is important. If the list is too short,
then this probability will be relatively high, and the overall routing will always be too
random. If the list is too long, once LReputation is filled, then the next hop choices will
nearly always follow the previous experiences, which will hurt the algorithm’s adaptivity.

This is best illustrated with a sinkhole attack. Consider an intruder node which
behaves well for some time to attract traffic, and then starts to drop messages. A short
list will cause nodes to send more messages uniformly at random, which will cause the
list to be refreshed faster, but the delivery rate is also going to be reduced. On the other
hand, when sR is large, the system spends more time to recover, but it will recover to
a higher delivery rate as the probability of a choice being done uniformly at random
decreases.

To create that sinkhole attack, we use wormholes, which are compromised nodes that
directly communicate with the sink. This ability makes them more attractive than other
nodes, as they allow delivering messages faster to the sink. During the first third of the
simulation, wormholes send all received data messages in this communication channel
and route acknowledgments as honest nodes in order to obtain an high reputation. Next,
they become blackholes, i.e., they drop all messages they receive.

To determine which size to choose for LReputation, we experiment several possible
values in the sinkhole scenario. In these experiments, we implement LAckRouting and
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LSent as infinite lists, which correspond to their ideal behavior. We chose to evaluate
this attack in a network of 200 nodes, average degree 16, containing 10% of blackholes
and 10% of wormholes that become blackholes after the first third of the simulation.
We present some results in Figure 2.9, where we represent the delivery rate over time
of three simulations where only sR varies. For each point (x, y) of the curves, y is the
delivery rate computed over a window of 50 000 messages, from the (x− 50000)th to the
xth emitted message.
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Figure 2.9: Average delivery rate (10% of WH/BH, 10% of BH, n = 200, δ = 16)

We test the aforementioned scenario with several values for sR — from 5 to 40
with a step of 5. For each candidate sR, we run simulations on networks of either 100,
200, or 400 nodes, with an expected average degree of either 8, 16, or 32, containing
both 10% of blackholes (BH) and 10% of wormholes/blackholes (WH/BH) as previously
described. We made 10 simulations (each with a different topology) for each setting (list
size, number of nodes, degree). The overall results are summarized in Figure 2.10. In
each cell of the table, we print the value of sR that offers the best average delivery rate.
We also notice that the average delivery rate is very similar for a large range of list sizes
(e.g., there is not much difference between our results for lists of size 5 and 10). We
chose sR = 10, which is a good compromise in each setting.

Number of nodes
100 200 400

Average degree
8 10 5 5
16 15 10 5
32 20 15 5

Figure 2.10: Best observed LReputation size sR, when facing 10% BH and 10% WH/BH.
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Choosing LSent’s Size

Next, we consider the list LSent. The size of both LSent and LAckRouting are bounded
for practical reasons only. Indeed, sensors have tight local memories. Now, having
infinite sizes for those lists would allow acknowledgments to always add reputation, and
to always be routed in the message’s footsteps. The goal here is to find a reasonable size
that achieves the adequate trade-off between performance and resource consumption.

To set the size sS of LSent, we led experiments, where sR = 10 (the value we choose
previously) and LAckRouting is still implemented as an infinite list.

In those experiments, our goal is to minimize the proportion of valid acknowledgments
that return to their destination, while their corresponding nonce has been removed from
LSent. This causes the acknowledgment to be discarded. We denote this event a false
negative.

We made our simulations in safe networks, because this corresponds to the case where
the routes followed by data messages and acknowledgments are longer, and the longer
the routes are, the more messages get lost.

We tested LSent of size 1 to 5. The results for a particular setting is depicted in
Figure 2.11. Actually we obtained similar results for each setting. We can see value 2
for sS is sufficient to reach our objective of 99% of accepted acknowledgments. Therefore,
we chose to set sS to 2.
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Figure 2.11: Proportion of accepted acknowledgments, depending on LSent size (n = 200
and δ = 8)

Choosing LAckRouting’s Size

Finally, we repeated the same process to set the size sA of LAckRouting using the sizes
previously selected for LReputation (10) and LSent (2). Again, we tried to minimize the
proportion of false negatives. If the list is too small, more messages would be randomly
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routed, which would in turn increase the delay before they reach their destination, and
consequently, increase the number of false negatives.
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Figure 2.12: Proportion of accepted acknowledgments, depending on LAckRouting size
(n = 200 and δ = 8)

Figure 2.12 shows the results we obtained using the same setting as the previous
example (200 nodes, average degree 8). We tried networks of 100, 200 and 400 nodes,
with degree 8, 16 and 32, and they all give similar results. The proportion of accepted
acknowledgments is always above 99% using a LAckRouting of size 5, so we chose that
value for sA.

2.5 Experimental Evaluation of SR3

We now present the results of the experimental evaluations we made on SR3. We first
present the results of SR3 and our panel of algorithms against blackholes, focusing on
the delivery rate in Section 2.5.1 and the fairness in Section 2.5.2 of these algorithms.
We then follow in Section 2.5.3 by observing the potential damage caused by availability
attacks on SR3, and continue with the performances in safe networks of SR3 and the
other algorithms in Section 2.5.4. We investigate the effects of various sinkhole attackers
in Section 2.5.5: simple wormholes that drop all traffic after some time, and wormholes
who alternate between attracting and dropping traffic. Finally, in Section 2.5.6, we show
the simulations we made to evaluate the impact of SIGF-specific adversaries against this
algorithm.

2.5.1 Average Delivery Rate

We study the delivery rates observed in networks containing 30% of blackholes (BH).
The number of nodes in these networks varies from 50 to 400 nodes (with a step of 50).
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Figures 2.13, 2.14, and 2.15 show our results, respectively when the expected average
degree is δ = 8, 16, and 32. Note that with 30% of blackholes, several honest nodes
cannot safely reach the sink and consequently have delivery rate zero. We remark that
SR3 always offers a better delivery rate than the other protocols on networks of average
degrees 8 and 16. In networks of average degree 32, its delivery rate is approximately the
same as PRDGBR, while still better than the other protocols. In particular, the larger
(in terms of number of nodes) the networks are, the greater the difference in delivery
rates is.
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Figure 2.13: Average delivery rate (30% of BH nodes, δ = 8)
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Figure 2.14: Average delivery rate (30% of BH nodes, δ = 16)

Figure 2.16 shows the delivery rates observed in networks of size n = 200 facing 30%
of blackholes (BH). The average degree of the networks varies from 8 to 32. Again, we
can remark that SR3 always offers the best delivery rate in that case. Moreover, as for
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Figure 2.15: Average delivery rate (30% of BH nodes, δ = 32)

RW and GFG, the average delivery rate of SR3 is insensitive to the degree variation.
In contrast, the observed delivery rates for gradient-based protocols are low in sparse
networks. In high-density networks, the performances of PRDGBR match those of SR3.
However, SR3 use only two messages per data, while PRDGBR duplicates the messages
at each hop, and consequently heavily increases the load of the network.
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Figure 2.16: Average delivery rate (30% of BH nodes, n = 200)

SR3 also efficiently combats the selective forwarding (SF) attacks. Figure 2.17 shows
the average delivery rates observed in networks of size n = 200 and average degree δ = 8
that have to face 20% of compromised nodes, according to the drop rate of these nodes.
We can observe that, except RW, all protocols of the panel achieve a slow degradation in
delivery rate when the drop rate increases. Still, SR3 offers one of the best performance.
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Only PRDGBR has performances close to those of SR3 when the drop rate is of 100%
(that is, when compromised node are actually blackholes).
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Figure 2.17: Average delivery rate (20% of SF nodes, n = 200, δ = 8)

We also considered networks of size n = 200 and average degree δ = 8, where 10%
of nodes are both blackholes and Sybil (SY). The number of pseudonymous identifiers
of these compromised nodes varies from 1 to 10. Note that in this scenario, the list of
neighbors available to nodes is not accurate, as expected from the attacker. We can
observe in Figure 2.18, that except for GFG, adding Sybil nodes does not change the
relative performances in the panel. Actually, GFG is insensitive to Sybil attacks because
it does not use node identifiers. Now, still in that case, SR3 offers the best performances.
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Figure 2.18: Average delivery rate (10% of SY nodes, n = 200, δ = 8)
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2.5.2 Fairness

Fairness among the delivery rates of honest nodes is a desired property in routing pro-
tocols. A classical way to capture this property is to compute the standard deviation of
the delivery rates of honest nodes. Figure 2.19 shows the average and standard deviation
of delivery rates observed in networks of size n = 200 and average degree δ = 32, when
facing 30% blackholes. The smaller the standard deviation is, the fairer the algorithm
is. Now, a shortcoming of this measure is that when the delivery rates are uniformly
very low (like for example in RW), the observed fairness is good. So, analyzed alone,
this measure is misleading.

Algorithm Average delivery rate Standard deviation
GFG 0.186 0.359
GBR 0.594 0.469
RGBR 0.660 0.279
PRGBR 0.457 0.228
PRDGBR 0.824 0.158

RW 0.018 0.020
SR3 0.836 0.040

Figure 2.19: Average delivery rate and standard deviation of the delivery rate of nodes
(30% of BH, n = 200, δ = 32)

Instead, we propose here to visualize the distributions of delivery rates. Figure 2.20
shows an example of our method. In this figure, we consider the same simulations as
in Figure 2.19. There is one chart per algorithm of the panel. Each of these charts
represents the range of possible delivery rates from 0 to 100%, by intervals of 10%. The
color shade encodes the proportion of nodes having the corresponding delivery rate.
Consider, for example, the RW protocol: almost all nodes have a delivery rate of less
than 10%. In contrast, using SR3, almost all nodes have a delivery rate greater or
equal to 70%. We can clearly observe two classes of processes when looking at GFG
and GBR: nodes have either 0% or 100% of delivery rate; these protocols are unfair.
The probabilistic variants of GBR are fairer: the delivery rates are spread on the whole
range, but still these results are weaker than those observed for SR3.

We also provide other results in Figure 2.21. Simulations were run on networks of
size n = 200 with an average degree δ = 8, also when facing 30% blackholes. Overall,
we observe results similar to the previous setting, with a few differences. First, GBR
and the variants have overall lower deliver rate and fairness, as they behave better in
highly connected networks. We also remark that more nodes lost all of their messages,
even when running a randomized algorithm: these are nodes for which no safe path to
the sink exist.

2.5.3 Availability Attacks

We then evaluated how availability attacks interfere with the good operation of the
protocol. Our objective here is to get some intuition on the damage such attacks may
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Figure 2.20: Average delivery rate distribution (30% of BH, n = 200, δ = 32)
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Figure 2.21: Average delivery rate distribution (30% of BH, n = 200, δ = 8)
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cause to SR3, when compared to the other attackers presented in this section. In practice,
the effect of these attacks strongly depend on how the radio link layer operates. However,
our link layer model is too simple to handle realistically this type of attacks. We therefore
approximate the impact of jamming attacks by considering that it affects nodes in either
of two ways:

• In the first model, jamming a node totally disables its ability to communicate, i.e.
we remove it completely from the simulation. We denote this model ”Removed”.

• In the second model, jamming a node only disable its ability to route messages,
while its neighbors still consider it as a valid next hop, effectively turning it into a
blackhole. We denote this model ”BH”.

There exists a lot of mitigation techniques for jamming attacks (see [LVHD+05,
LKP07] for discussions of such countermeasures on WSNs). Since we are looking for
an estimation of the potential damage for SR3, we do not consider any countermeasure
here.

We slightly deviate from the experimental setting of the rest of this chapter to run
these evaluations. As before, our topologies are random UDGs as described in Sec-
tion 2.4.1, with intruders selected at random such that all honest nodes have an available
safe route to the sink. Then, depending on the attack scenario we consider, we turn all 1-
or 2-neighbors of intruders (except the sink, which is not influenced) into jammed nodes,
which, depending on the chosen model, behave as blackholes, or are entirely disconnected
from the network. At the end of this process, it is very likely that some non-jammed
nodes end up being disconnected from the sink. Note that the jammed nodes are not
considered as message sources. For each model, we generated 50 graphs of 200 nodes,
expected degree 16, with merely 5% of attackers (that is, 10 nodes).

To give a better understanding of this attack’s impact, we provide several measures
for each simulation:

• The proportion of honest nodes which are turned into jammed nodes,

• The proportion without access to a safe route to the sink among the remaining
honest nodes,

• The proportion of messages that reached the sink (denoted ”delivered”),

• The proportion of messages transmitted to an attacker or a jammed node (denoted
”intercepted”),

• The proportion of messages lost due to not being able to reach the sink at all
(denoted ”lost”).
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Simple Jamming

In the first scenario, we consider the impact of attackers who simply jam their neighbors’
communications. Intuitively, this attack creates 10 holes in the network, each of them
having a radius equal to the nodes’ communication range. We present in Table 2.22 our
results over 50 simulations in this experiment, with networks of n = 200, δ = 16, and
5% of initial attackers.

Scenario Jammed nodes Nodes with a safe route among the rest

Simple jamming 52.2% 67.9%

Scenario Delivered Lost Intercepted

Simple jamming, Removed 67.9% 32.1% 0.0%

Simple jamming, BH 58.0% 0.0 % 42.0%

Figure 2.22: Simple jamming results (5% of jammers, n = 200, δ = 16)

We observe that even with only 5% of attackers, this attack manages to jam more
than half of the nodes in the network on average. Of the remaining nodes, more than
30% are entirely disconnected from the sink on average, which leaves only around one
third of all nodes able to send messages to the sink. When jammed nodes are considered
to act as blackholes, the proportion of intercepted messages is only a little higher than
the proportion of lost messages in the other case, as expected from the delivery rate
results of SR3 against blackholes. Overall, the impact of this attack is strong, but this is
understandable: as the average degree is high, each node will jam around 16 other nodes
(minus the overlaps). This results in networks with large holes, which often disconnects
entire parts of the network from the sink.

Acknowledgment Routing Loop

In the second scenario, the attackers use an amplification technique, specific to SR3,
that uses the acknowledgment routing mechanism. To use it, an intruder i needs to be
a neighbor of two interconnected nodes a and b. This attack uses the acknowledgment
routing mechanism to create an ACK routing loop. For reference, we summarized the
attack process in Figure 2.23.

First, the attacker needs to setup the attack. It consists in i sending a pseudo-
message to a and b, making them believe the communication came from each other.
This pseudo-message needs to be of the form �C, h(N), s, b� for a, with a N generated by
the attacker, and arbitrary data for C and s (as these fields are not used by intermediate
nodes). In the same way, i sends �C, h(N), s, a� to b. Thus, a thinks the message comes
from b, and vice versa. Both nodes update their LAckRouting to reflect that belief.

The attacker then sends the corresponding pseudo-acknowledgment �N, s�, which is
going to loop between a and b until it gets lost or randomly routed if the entry in one of
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the LAckRouting gets removed. To further amplify that attack, i can send multiple copies
of the pseudo-acknowledgment, or run multiple concurrent attacks. This attack allows
the creation of routing loops in the immediate neighborhood of attacker nodes.

i a b�X,h(N), x, b�
�X,h(N), x, a�

�N, x�
�N, x�

Figure 2.23: Availability attack on SR3 using ACKs

We provide the results we obtained in Figure 2.24, over 50 simulations in this exper-
iment, with networks of n = 200, δ = 16, and 5% of initial attackers.

Scenario Jammed nodes Nodes with a safe route among the rest

Ack loop 85.8% 12.0%

Scenario Delivered Lost Intercepted

Ack loop, Removed 12.0% 88.0% 0.0%

Ack loop, BH 10.2% 0.0% 89.8%

Figure 2.24: Acknowledgment loop jamming results (5% of jammers, n = 200, δ = 16)

The results are an amplified version of the previous experiment. With ten nodes op-
erating a 2-neighborhood wide jamming, more than 85% of honest nodes in the network
are jammed. We also observed that the few remaining nodes are very often isolated:
only 12% of them have a safe route to the sink. As with the previous scenario, the
difference between the two models of jammed nodes is relatively small. This attack is
very efficient in our model for a simple reason: a 2-neighborhood encompasses a lot of
nodes in a graph of average degree 16. For instance, a single attacker in the neighbor-
hood of the sink effectively disconnects it from the rest of the network (as the attacker’s
2-neighborhood contains all of the sink 1-neighborhood). More importantly, this attack
has a very distinctive footprint: acknowledgments should not loop in SR3, and it is fairly
easy to notice such loops or just the increase in quantity of received acknowledgments)
with an intrusion detection system. Our conclusion is that such a system is a simple
and necessary complement to SR3 in order to mitigate this weakness of our protocol.
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2.5.4 Average Number of Hops

Here, we are only interested in the messages that are successfully delivered. So, we
consider safe networks. Figures 2.26a, 2.26b and 2.26c show the average number of hops
of data messages in networks of average degree respectively δ = 8, 16 and 32, where the
size n varies from 50 to 400. Figures 2.27a, 2.27b and 2.27c show, on the same networks,
the average route length expansion factor, i.e. the average of the route length for a node,
divided by the optimal route length for that node.

First, note that we do not show results for RW in the figure because they are sig-
nificantly worse than other protocols of the panel, e.g., for 50 nodes and δ = 16, its
average number of hops is 40, and for 400 nodes and δ = 16, its average number of
hops is 529. Then, by definition, routes followed using GBR or RGBR are optimal, so
we only include GBR. Finally, SR3 generates longer routes than the geographical and
gradient-based protocols due to its lack of knowledge about the network. However, this
length stays reasonable (i.e. we always observed lengths drastically smaller than n), and
scales slowly with the number of nodes. Note that Greedy-Face-Greedy does not behave
well in some low-degree graphs, this is due to the existence of dead ends in those graphs.
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Figure 2.25: Average route extension factor in safe networks (n = 200)

For each protocol from our panel, we also observed how the route expansion fac-
tor evolves depending on the expected average degree of the network. The results are
provided in Figure 2.25. We observe that both PRGBR and PRDGBR have a nearly
constant overhead, as the probability of not progressing towards the destination is fixed
for each hop. More importantly, we observe that SR3 route expansion factor increases
with the degree, but starts at a reasonable value of less than 3.
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(a) Average number of hops in safe networks where δ = 8
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(b) Average number of hops in safe networks where δ = 16
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(c) Average number of hops in safe networks where δ = 32

Figure 2.26: Average number of hops in safe networks
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(a) Average route expansion factor in safe networks where δ = 8
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(b) Average route expansion factor in safe networks where δ = 16
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Figure 2.27: Average route expansion factor in safe networks
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2.5.5 Self-Adaptivity

Thanks to its reputation mechanism, SR3 self-adapts to the variations of the hostile
environment. To see this, consider the following scenario: in a network of n = 200 nodes
with average degree δ = 8, we assume 5% of blackholes and 5% of wormholes/black-
holes (WH/BH), that first behave as wormholes to attract the traffic, and then become
blackholes after one third of the simulation. Such nodes appear more attractive to their
neighbors because they allow delivering messages faster. Figure 2.28 shows the evolution
of the delivery rates of each protocol: for each point (x, y) of the curves, y is the delivery
rate computed over a window of 10 000 messages, from the (x − 10000)th to the xth

emitted message. Only SR3 recovers from this attack.
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Figure 2.28: Average delivery rate (5% of WH/BH, 5% of BH, n = 200, δ = 8)

We show in Figure 2.29 the average delivery rates distribution in the same setting as
previously (5% of WH/BH, 5% of BH, n = 200, δ = 8). We see that the deterministic
protocols cause nodes to deliver either none, one third or all their messages. The ran-
domization used in the GBR variants causes a more spread out distribution, but there
is still a large concentration of nodes delivering between 30 and 40 percent of their mes-
sages. Finally, as observed before, SR3 is fair: most nodes deliver more than 70 percent
of all their messages, whereas for the other protocols managing to deliver some data,
the delivery rates of the nodes in this scenario strongly depend on their position in the
network.

In this attack, the attacker is able to build up trust during the first third of the
lifespan of our simulated networks. To better illustrate the resiliency of SR3, we observed
the effects of the same attacker where attacker nodes switch back and forth between
wormhole and blackhole behavior after various amounts of time. We tried switching
after 100 × 2p messages have been emitted, where p goes from 0 to 10, and on the
same networks as previously (5% of WH/BH, 5% of BH, n = 200, δ = 8). The average
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Figure 2.29: Average delivery rate distribution (5% of WH/BH, 5% of BH, n = 200,
δ = 8)

delivery rates we obtained are available in Figure 2.30. Notice that an attacker switching
behaviors every 25600 packets causes the highest reduction in delivery rate, but by an
acceptable amount. We show the results over time of this attack strategy over three
different intervals in Figure 2.31. We observe that a lower interval between behavior
changes causes lower reductions in the delivery rate, since the attacker cannot gather
as much trust at each blackhole phase. Furthermore, the fairness of SR3 stays good for
every interval, i.e. most nodes deliver around 85% of their messages. Overall, a sinkhole
attacker can increase its impact by choosing the right frequency of behavior change, but
even with this optimization, the overall delivery rate reduction stays acceptable. On the
other hand, this attacker strategy can be useful to strongly disrupt a network for a very
short period of time, which can be useful depending on the context.

2.5.6 SIGF-Specific Smart Blackholes

As we described in Sections 2.1.3 and 2.4.2, SIGF is a geographical routing algorithm
which is complemented with a reputation mechanism, in a way similar to SR3. How-
ever, SIGF uses local and untrustworthy knowledge to build the reputation of nodes. We
implemented one of the attacks exploiting that weakness, where the intruders forwards
messages to everyone except their destination, in order to appear reputable while actu-
ally dropping messages. We denote these intruder nodes smart blackholes (SBH). Such
intruders, in our implementation, routes messages similarly to a node running SIGF
with all neighbors’ reputations equal to 1. However, instead of broadcasting messages,
it sends the message to all neighbors but the message’s destination. We chose to use the
SIGF-2 variant as described in [WFSH06].
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We present in Figure 2.32 the results for this scenario, and we compare them with
how SIGF, SR3 and GFG behave when facing regular blackholes. We observe as expected
that SIGF’s reputation mechanism works very well against traditional blackholes, but the
delivery rate is cut by half (near GFG’s level) when facing these smart blackholes.We
conjecture that if the reputation mechanism is subverted, SIGF acts as a somewhat
randomized geographical routing protocol.

2.6 Conclusion and Future Work

We proposed SR3, a secure and resilient algorithm for convergecast routing in wireless
sensor networks. Using only lightweight cryptographic primitives (symmetric encryption,
hashing, and secure random numbers), SR3 achieves data confidentiality and data packet
unforgeability, which we formally proved with CryptoVerif and Scyther. Using simula-
tions, we showed the resiliency of SR3 in various attack scenarios, including selective
forwarding, blackhole, wormhole, and Sybil nodes. Our comparative study shows that
the resiliency accomplished by SR3 is better than the one achieved by several routing
protocols of the literature, even those whose targeted metric is resiliency.

Our algorithm’s main strength is its adaptivity. Against static attackers, or a complex
network, it manages to reach a correct infrastructure, which yields a good delivery rate
and is globally fair between nodes. This adaptivity also allows operation with absolutely
no knowledge about the topology, unlike geographical routing protocols. Furthermore,
nodes do not need to trust any of their neighbors, which is an useful feature when using
nodes which are not tamper-proof or reliable.

On the other hand, this adaptivity also causes some trouble when adversaries want
to disrupt the network’s operation for small bursts of time. Consider the case of a
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WSN emitting alerts when a burglar is detected in a building: our algorithm needs
time to rediscover routes and refresh its reputation lists, during which the delivery rate
of messages is going to be lower. Hence, SR3 is best-suited for networks who need
long-term reliability and fairness over responsiveness to punctual events.

Future Work

An implementation of SR3 in a WSN testbed platform is currently being finalized by
Orange Labs. The preliminary results are promising, and everything should be ready
soon for real-world experimentation.

We noticed during this work that SR3 can also operate well in settings where mes-
sages are supposed to go to any of several destinations. Without any modification or
configuration, both the message and acknowledgment routing work flawlessly, which may
be useful in some use cases: for instance, adding a sink to an already-existing network
may reduce the overall energy consumption of the network (see for instance [KSC+05]).

Similarly, as our protocol self-adapts to the topology, we expect that having nodes
moving around will not change how SR3 operates. If nodes are able to detect that their
neighbor gets out of range, then they can simply remove all traces of that neighbor from
their lists, and the rest of the protocol will sort itself out by falling back on the reputation
of remaining neighbors stored in LReputation. Similarly, upon reaching new neighbors, the
moving node will progressively increase their reputation if they are reliably delivering
messages. However, experimental evaluation is needed to evaluate which level of mobility
the algorithm can withstand.

The recovery phase of SR3 is also something that could be improved. We did not
specify any reaction to a high message loss rate, unlike CASTOR where such an event
causes the next messages to be broadcasted. This kind of behavior may allow SR3 to
recover faster from attacks and reduce message loss, at the cost of more traffic in the
network. If by hypothesis, no attackers are present at the beginning of the network
lifetime (because of a manual deployment for instance), it may be interesting to boot-
strap reputations in SR3 using route discovery protocols right after nodes are deployed.
Obviously, these changes would require a careful analysis of their security implications.

We proved three security properties of the protocol. Our proofs address data con-
fidentiality, authenticity and integrity of the packets, and we have shown through sim-
ulations that the common routing-level attacks’ impact is weak. Obviously, we cannot
cover all possible routing-level attacks this way, and the work in Chapter 3 originated
from this concern. However, we designed SR3 to route messages based on a single mech-
anism, which is as simple and trustworthy as feasible. Furthermore, the formal proof
of the nonce confidentiality proves that our acknowledgment system verifies that no
attacker can reliably create an acknowledgment before it is delivered.

We mentioned the acknowledgment routing loop attack, which is merely an availabil-
ity concern. Such attacks are hard to address from SR3’s standpoint as it would require
a costly authentication of each node’s messages by their neighbors. More generally, we
feel that availability attacks will always exist, and that routing protocol designers should
not go to unreasonable lengths to prevent them, as such availability attacks usually have
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very distinguishable footprints (here, an acknowledgment routing loop). Such footprints,
if they do not happen in a safe environment, imply that the attack can be easily noticed
by an intrusion detection system looking for such behaviors. We discuss this interaction
between protocols and IDS further in Chapter 4.
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Chapter 3

Incorruptibility of routing
protocols

Analyses of routing protocols security are nearly always supported by simulations, which
often evaluate the ability to deliver messages to a given destination. Several competing
definitions for secure routing exist, but to our knowledge, they only address source
routing protocols. In this chapter, we propose the notion of corruptibility, a quantitative
computational definition for routing security based on the attacker’s ability to alter the
routes used by messages. We first define incorruptibility, and we follow with the definition
of bounded corruptibility, which uses two routing protocols as bounds for the evaluated
protocol. These definitions are then illustrated with several routing algorithms. Finally,
we provide a variant of these notions for attackers who cannot craft or reroute packets
until the challenge message.

Les analyses de la sécurité des protocoles de routage reposent presque toujours sur des
simulations, qui évaluent la capacité du protocole à délivrer ses messages aux bons
nœuds. Il existe plusieurs définitions différentes pour concevoir la sécurité du routage,
mais à notre connaissance, elles considèrent seulement les protocoles de source routing,
où les routes sont déterminées avant que le message ne soit envoyé. Nous proposons
la notion d’incorruptibilité, une définition calculatoire et quantitative pour la sécurité
du routage basée sur la capacité d’un attaquant à altérer les routes empruntées par un
message. Nous illustrons ensuite ces définitions par plusieurs analyses de protocoles.
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3.1 Introduction

Internet is made out of several independent entities controlling their own networks. To be
routed, packets need to get through several networks until they reach their destination,
and so the Internet can be seen as a large ad-hoc network. In this context, routing
relies on several protocols, including the Border Gateway Protocol (BGP). This protocol
ensures the dissemination of routing information between autonomous systems (AS), and
is notoriously insecure [Mur06, ND04]. For instance, the AS 7007 incident caused an
internet-wide outage in 1997 [Bon97], because this AS declared itself able to route to the
whole Internet. This declaration was made in a way that ensured most networks would
choose the AS as the preferred gateway to the rest of the Internet. This misconfiguration
then propagated through the Internet, overloading the faulty AS, and causing huge
packet losses.

Another example, still related to BGP, has been seen more recently in the wild
(see [HCG13]). In this incident, China Telecom’s subnetwork declared itself preferen-
tial for the routing to more than 50,000 IPs, including some strategic subnetworks for
the United States of America. Unlike the previous example, the infrastructure of the
problematic subnetwork still managed to route packets to their destination.

In the context of WANETs, attacks and misconfigurations do not attract the same
public attention as in traditional networks. However, from a research standpoint, they
are well-studied. For instance, in [WCWC07], the authors present some classical routing

76



protocol vulnerabilities. In [KW03], the analysis is more specific to the security of
routing protocols on wireless sensor networks, which are a subset of the WANET family
with more limited resources and specific protocols.

Our intuition is that a secure routing protocol should guarantee that malicious parties
cannot influence the routes a message will take, or at least that this influence is limited
in a clearly stated way. We call such protocols incorruptible, and using an incorruptible
routing protocol would have prevented both previously mentioned incidents. We do not
consider confidentiality or integrity of the data, as they are properties which are not
necessarily tied to the routing layer.

3.1.1 Contribution

We propose the first steps towards a computational notion for the security of routing
protocols, based on the ability for an attacker to influence how messages are routed. We
provide three measures. The first one quantifies the difference between routing protocols
in a safe context. The second one, denoted routing protocol corruption, quantifies how
much an attacker is able to change how messages are routed. The last definition allows
one to prove that an attacker can only corrupt a protocol within some limits. We only
consider protocols where the nodes memories do not evolve once the attack begins. For
each of these definitions, we provide an analysis of routing protocols.

3.1.2 Related work

In [PH02], the authors proposed the Source Routing Protocol (SRP), which is an on-
demand route discovery protocol. In on-demand routing protocols, route discovery is the
process of building a valid path for a given data message. Using BAN logic [BAN89],
they claimed that routes generated by this protocol are correct and their integrity is
respected. An attack has been found later on that protocol by [Mar02], who argued that
the results of the analysis are flawed because such an analysis is ”a misuse of BAN”, as
this logic has been designed to study trust relationships, and not security notions.

The authors of [ABV06] provided a definition of provably secure on-demand route
discovery. They assume the adversary has compromised a few nodes in the network which
gave him full control of their actions and memories. To prove security of protocols, they
use the simulation paradigm, which uses two models: the real-world model, and an ideal-
world model where the protocol is idealized. This way, they can detect specific problems
in the protocol, while putting asides the concerns inherent to such routing protocols
in general. In their model, a protocol is considered secure if the executions set in the
real-world model are indistinguishable from those set in the ideal-world version. This
model was expanded in [BT10], where the authors provided an automated way to check
protocols in this model.

The main differences between our model and theirs lie in the limitations on the
evaluated protocols, and the property being evaluated. Regarding protocols, their model
is able to track of the evolution of the internal states on nodes and to model broadcasts,
while we do not consider these situations. Regarding the properties, the one we verify
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is universal to routing protocols, and could be applied to any, while their property of
secure route discovery only makes sense on source routing protocols.

3.1.3 Outline

In Section 3.2, we model networks and protocols in our formalism, and in Section 3.3 we
provide some routing protocols. We present our definitions of an incorruptible routing
protocol in Section 3.4, along with the analysis of one of the protocols given in Section 3.3.
Finally, we conclude and present the perspectives of this work in Section 3.5.

3.2 Definitions

To represent the network topology, we use a vertex-labeled directed graph named the
topology, and denoted T = {V,E, f}, where vertices V represent network nodes, and
edges E represent their connectivity. We consider only static networks, and we suppose
that nodes cannot send messages to themselves. The function f associates labels to
nodes, which are used to model pre-existing distinctions between nodes, such as sinks
and sensors in the case of a wireless sensor network. We denote by Neigv the set of
neighbors of a node v (that is, the nodes at one hop of v). We notice that v �∈ Neigv.

3.2.1 Routing protocols

To forward messages, all the nodes follow a routing protocol P. This protocol must
verify that all messages are routed independently at the time of the analysis. The path
that a message will take should not be influenced by what other messages have been
routed before. Note that acknowledgments can be modeled by considering them as the
continuation of the route of the initial message.

We define K as the array of individual node memories, denoted K[v] for any node
v ∈ V . Once initialized, a node’s memory is never modified again. This is a strong
restriction, and it reduces the range of protocols that can be modeled. On the other
hand, for a given message, these protocols generate routes in a way that do not depend
on the past messages, which is an important property for the following security proofs.
We discuss how to lift this restriction in the conclusion.

We denote by ηd the data size, and by η the security parameter for cryptographic

functions. We write a
$←− X to denote that a is a random value obtained according the

distribution represented by X. If X is a set, a is drawn at random using the uniform
law on X. Similarly, if X is a probabilistic algorithm, a is drawn at random using the
algorithm.

We define a routing protocol P as the set of four oracles {PI ,PG,PR,PD} which
respectively model the initialization, message generation, routing and the depacketing
phases. They are defined in Definitions 3.1 through 3.4.

Definition 3.1 (Initialization oracle). Let T = {V,E, f} be a topology, with nodes
v1 . . . vn ∈ V . The initialization oracle PI(T, η) models the setup phase of P on the
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network represented by T , with security parameter η, which initializes the memories of
the nodes. This oracle call returns K, an array associating to each node its memories.

Definition 3.2 (Message generation oracle). Let T = {V,E, f} be a topology with o, d ∈
V . Once some initial memories K has been defined, the message generation oracle
PG
K(o, d, ηd) models the generation of a new random data of length ηd to route by o, for

d. This oracle call returns a message m. That call does not modify K.

Definition 3.3 (Routing oracle). Let T = {V,E, f} be a topology with v ∈ V . Once
some initial memories K has been defined, the routing oracle PR

K(v,m) models how v
would route m given the initialization K. This oracle call returns either ⊥ if no message
is forwarded, or (w,m�) if a message m� is forwarded to w (with w ∈ Neigv). That call
does not modify K.

Definition 3.4 (Depacketing oracle). Let T = {V,E, f} be a topology with d ∈ V . Once
some initial memories K has been defined, the depacketing oracle PD

K (d,m) models how
d would unpack the message m given the initialization K. This oracle call returns either
the Data contained in the message if extractable, or ⊥ if that operation is not possible.
That call does not modify K.

3.2.2 Message life cycle and routes

We now present how to model the natural life cycle of a message. First, the network
needs to be set-up, in order to initialize the various items nodes need to route messages.

This is done with the initialization oracle, by calling K
$←− PI(T, η). Then, a new

message containing a random data is generated by a node o with destination d using the
generation oracle m0 = PG

K(o, d, ηd). That message is first routed by the node o with the
routing oracle PR

K(o,m0) = (h1,m1), assuming that message is not dropped. We then
continue with its first hop, h1, who acts depending on it: PR

K(h1,m1) = (h2,m2). This
process continues until the message finally reaches a node hn such that PR

K(hn,mn) = ⊥:
at this point, the message is stopped. We refer to such a sequence [h0, . . . , hn] = R as a
route, which can be empty, in which case we denote it [ ].

Definition 3.5 (GenRoute(m0, h0,PR
K)). Given a message m0, a node identifier h0,

and a routing oracle PR
K initialized with K, we define GenRoute(m0, h0,PR

K) the func-
tion that generates a route for m0 starting at h0. This function calls PR

K , first with
arguments (h0,m0), and then with the pair (hi,mi) returned by the previous call, until
the oracle returns ⊥. The function returns the route [h1, . . . , hn].

As P can be probabilistic, making several calls to GenRoute with the same argu-
ments can result in different routes. However, since we require message routing inde-
pendence, the probabilistic distribution of routes should stay the same, no matter what
messages have been routed before. Finally, we define a predicate on routes which we
denote Φ.
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Definition 3.6 (Φ(R, a, b)). Given a route R and two nodes a, b, we define Φ(R, a, b)
as a function that returns true if and only if a route R contains a and that a appears
before any occurrence of b.

3.3 Examples of routing protocols

We now provide some routing protocols in our formalism. The PD oracles are straight-
forward: given a message m and the initialized memories array K, they return the Data
that is contained in m.

Let S be a signature scheme. It provides a function GenAsymKeyPair(η) which
generates asymmetric key pairs given η the security parameter, Sign(x, sk) which gen-
erates a signature of x using the key sk, and Verify(x, pk, S) which verifies a signature
S against the input i with key pk. We also define the function ShortRoute(o, d, T )
as the function that takes as input an origin, a destination, and a topology, and returns
uniformly at random one of the shortest routes between the origin and destination. Fi-
nally, FindNext(R, v) is the function that returns the node identifier coming right after
v in the route R, or ⊥ otherwise.

The null protocol P∅ is defined in Figure 3.1. It drops all messages, and adds no
information in the packets it generates. The uniform random walk RW is defined in
Figure 3.2. The following protocol is called SI (for Shortest-Insecure). It is described in
Figure 3.3. That protocol stores routes in messages without cryptographic or algorithmic
protections.

We define two other protocols, which stem from SI, and use the signature scheme
S. First, S∅ (Figure 3.4) is a secured version of SI, which prevents any alteration to
the route stored in a message by using signatures. The route is signed by the message
sender, and if that signature does not verify, then the message is discarded. The next
protocol, SR (Figure 3.5), works in a similar way, but instead of discarding the message,
it routes it randomly until the message finds the destination.

3.4 Secure routing

We now present how our notion of incorruptibility is formalized, and how it can be used
to show the security of routing protocols. We begin by defining what is an attacker
in our context, and follow with the measures of distance, incorruptibility, and bounded
corruptibility.
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Initialization P∅I(T, η):
1: Return ∅
Message generation P∅GK(o, d, ηd):

1: Data
$←− {0, 1}ηd

2: Return Data

Message routing P∅RK(m, v):

1: Return ⊥

Figure 3.1: Protocol P∅

Initialization RWI(T, η):

1: Return ∅
Message generation RWG

K(o, d, ηd):

1: Data
$←− {0, 1}ηd

2: Return next, (Data, d)

Message routing RWR
K(m, v):

1: (Data, d) ← m
2: if v �= d then

3: next
$←− Neigv

4: Return next, (Data, d)
5: else
6: Return ⊥
7: end if

Figure 3.2: Protocol RW

Initialization SII(T, η):

1: for all nodes v in T do
2: K[v] ← T
3: end for
4: Return K

Message generation SIG
K(o, d, ηd):

1: Data
$←− {0, 1}ηd

2: R ← ShortRoute(o, d,K[o])
3: Return (Data,R, d)

Message routing SIR
K(m, v):

1: if v �= d then
2: next ← FindNext(R,v)
3: Return (next, (Data,R, d))
4: end if
5: Return ⊥

Figure 3.3: Protocol SI

Initialization S∅I(T, η):
1: for all nodes v in T do
2: (pk[v], sk[v]) ← GenAsymKeyPair(η)
3: K[v] ← (T, pk, sk[v])
4: end for
5: Return K

Message generation S∅GK(o, d, ηd):

1: Data
$←− {0, 1}ηd

2: R ← ShortRoute(o, d,K[o])
3: S ← Sign((Data,R, o, d), sk[o])
4: Return (Data,R, o, d, S)

Message routing S∅RK(m, v):

1: (Data,R, o, d, S) ← m
2: if v �= d then
3: if Verify((Data,R, o, d), pk[o], S) then
4: next ← FindNext(R,v)
5: Return (next, (Data,R, o, d, S))
6: end if
7: end if
8: Return ⊥

Figure 3.4: Protocol S∅

Initialization SRI(T, η):

1: for all nodes v in T do
2: (pk[v], sk[v]) ← GenAsymKeyPair(η)
3: K[v] ← (T, pk, sk[v])
4: end for
5: Return K

Message generation SRG
K(o, d, ηd):

1: Data
$←− {0, 1}ηd

2: R ← ShortRoute(o, d,K[o])
3: S ← Sign((Data,R, o, d), sk[o])
4: Return (Data,R, o, d, S)

Message routing SRR
K(m, v):

1: (Data,R, o, d, S) ← m
2: if v �= d then
3: if Verify((Data,R, o, d), pk[o], S) then
4: next ← FindNext(R,v)
5: else

6: next
$←− Neigv

7: end if
8: Return (next, (Data,R, o, d, S))
9: end if
10: Return ⊥

Figure 3.5: Protocol SR
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3.4.1 Attacker

Our model deals with an attacker external to the network, who did not compromise any
honest node. This entity controls the network links, and is able to intercept, create and
manipulate messages. Its goal is to alter how a challenge message is routed. Notice
that manipulating communications implies the possibility of forging messages to observe
how nodes would react, and to observe which messages are generated in the network.
However, since we suppose the attacker is external to the network, it does not have any
direct access to the node’s memories.

This adversary is modeled as a probabilistic polynomial-time Turing machine. It can
query the oracles PG

K , PR
K and PD

K a polynomial number of times, but does not have
direct access to the array of node memories K. None of its actions can modify K (by
hypothesis on the protocol), but the adversary has its own memory, since it is a Turing
machine. Note that we provide access to PD

K to the adversary, as we are not concerned
by confidentiality.

We denote by Asafe the trivial attacker that returns its given input message. We
name it ”safe” as it is a placeholder attacker that effectively does nothing.

3.4.2 Measuring how routing protocols operate

We define an experiment named ExptRt
P , which allows us to reason on an adversary’s

ability to influence how a message is routed.

Definition 3.7 (ExptRt
P (A, T, o, d, s, a, b, η, ηd)). Let P be a routing protocol. Let A

be an adversary and T = {V,E, f} a topology with o, d, s, a, b ∈ V . We define the
experiment ExptRt

P (A, T, o, d, s, a, b, η, ηd) as:

ExptRt
P (A, T, o, d, s, a, b, η, ηd) :

K
$←− PI(T, η)

m
$←− PG

K(o, d, ηd)

m� $←− APR
K ,PG

K ,PI ,PD
K (m, o, d, s, a, b, T )

If PD
K (d,m�) �= PD

K (d,m)

m� ← m

R
$←− GenRoute(m�, s,PR

K)

Return Φ(R, a, b)

This experiment runs as follows. First, initialization is done by calling PI(T, η),
which returns the array of node memories K that is used through the experiment. A
challenge message m is generated using K, and given to the adversary. The adversary
should then change m in a new message m�, containing the same data as m. The
experiment returns a value Φ(R, a, b) with R a route generated for m� from the node
s. Informally, this value is true when the route passes through a before b. We use the
equality of depacketed messages as a way to prevent replay attacks: an attacker has no
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incentive in returning new messages containing random data, as their answer would get
replaced by the challenge message, which they could have output in the first place.

For instance, the return value of ExptRt
P (Asafe, T, o, d, s, a, b, η, ηd) models whether

a random message m generated by o in destination of d gets routed by a before b
when sent first from s, when all those nodes follow the routing protocol P. When
we use an arbitrary adversary A, then ExptRt

P (A, T, o, d, s, a, b, η, ηd) represents the
same observation, except that m has been tampered with by A before being routed
by s. We remark that P∅ has an interesting property here: for any A, T and o, d, s, a, b,
Pr[ExptRt

P∅(A, T, o, d, s, a, b, η, ηd)] = 0.
We then compare two such measures in order to define the distance between a tuple

protocol, attacker and another.

Definition 3.8 (Distance). For a topology T = {V,E, f} with o, d, s, a, b ∈ V , two
adversaries A1 and A2, two protocols P1 and P2, we define the distance as

Dist((P1,A1), (P2,A2), T, o, d, s, a, b, η, ηd) =

��Pr[ExptRt
P1
(A1, T, o, d, s, a, b, η, ηd)]− Pr[ExptRt

P2
(A2, T, o, d, s, a, b, η, ηd)]

��

The notion of distance is a way to compare the routes being generated by (P1,A1) and
(P2,A2), given T and o, d, s, a, b. We now present how to measure observable differences
between routing protocols using this experiment.

3.4.3 Routing similarity

We begin by expressing the similarity of routing protocols using Dist. We recall that
stating that a function µ(x) : N→R is negligible in x means that for every positive
polynomial P there exists an integer I such that for all x > I, µ(x) < | 1

P (x) |, as given

in [Bel02].

Definition 3.9 (Routing protocols similarity). For a topology T = {V,E, f}, we say
that two protocols P1 and P2 route messages similarly on T if ∀o, d, s, a, b ∈ V ,

Dist((P1,Asafe), (P2,Asafe), T, o, d, s, a, b, η, ηd)

is negligible in η and in ηd.

o = s

ax

d = b

Figure 3.6: Topology Ts

Intuitively, two protocols route mes-
sages similarly on a topology if the routes
generated for random messages are com-
putationally indistinguishable. for all ori-
gins o, destinations d, and senders s. For
instance, RW and SI are not similar for
all topologies, as the latter generates dis-
tinguishably shorter routes. However, on
a topology T2 consisting of two connected
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nodes, they are similar, as messages are either routed to the neighbor if o �= d and not
routed at all otherwise.

Consider for instance S∅ and P∅ on a topology Ts as described in Figure 3.6. We
observe that Pr[ExptRt

S∅(Asafe, Ts, o, d, s, a, b, η, ηd)] = 0.5, as there are two shortest
routes from o to d and only one reaches a before b. We know that the probability
Pr[ExptRt

P∅(Asafe, Ts, o, d, s, a, b, η, ηd)] = 0, since null routes will never reach any of the
two nodes. Therefore, Dist((S∅,Asafe), (P∅,Asafe), Ts, o, d, s, a, b, η, ηd) = 0.5, which
means that those two protocols are not similar on Ts, and we can conclude that P∅
and S∅ are not similar on every topology, as they differ on at least Ts. Notice that this
definition does not include attackers: two protocols routing messages similarly may not
behave in the same way in presence of an active adversary. This allows us to show that
a secure version of a protocol is similar to its original counterpart. For instance, SR,
S∅ and SI are all similar.

3.4.4 Incorruptibility of a protocol

We propose a measure which evaluates whether an attacker can alter a message m
into another message m� in order to make its routing distinguishably different. We call
this measure the incorruptibility of a routing protocol, the related advantage is denoted
AdvINC

P , and we define it using Dist.

Definition 3.10 (AdvINC
P (A, T, o, d, s, a, b, η, ηd)). For an adversary A, a topology T =

{V,E, f} with five nodes o, d, s, a, b ∈ V , we define AdvINC
P (A, T, o, d, s, a, b, η, ηd) as:

AdvINC
P (A, T, o, d, s, a, b, η, ηd) = Dist((P,A), (P,Asafe), T, o, d, s, a, b, η, ηd)

Definition 3.11 (Incorruptible protocol). If for any adversary A, any topology T =
{V,E, f}, and any five nodes o, d, s, a, b ∈ V , AdvINC

P (A, T, o, d, s, a, b, η, ηd) is negligible
in η and in ηd, we say that P is incorruptible.

Informally, a protocol is corruptible if the adversary’s actions can result in a distin-
guishably different routing of messages from the untouched one. For instance, the P∅
protocol is incorruptible, as it always generates null routes. Similarly, RW is incorrupt-
ible: it is not influenced by any information contained in the messages, and so intuitively
an attacker which can only alter the content of a message is not able to influence in any
way how a message is routed.

However, this definition is too restrictive for some protocols that intuitively cannot be
attacked, such as S∅. Most protocols whose behavior depends on the message contents
can be corrupted, as an attacker can use that dependency in order to differ from the safe
behavior of the protocol. We now provide an attacker for S∅ to illustrate this reasoning,
and in the next subsection, we provide a generalization of the incorruptibility advantage
to answer those concerns.

In order to show the corruptibility of S∅ (which is described in Figure 3.4), we use
the adversary Azero that takes as input the message m = (Data,R, o, d, S), and returns
the altered m� = (Data,R, o, d, 0). Intuitively, this attacker destroys the signature S
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of the message m, which forces the protocol to drop it at the next hop. This behavior
differs significantly from how the original m would have been routed.

We recall the definition of AdvINC
S∅ (Azero, T, o, d, s, a, b, η, ηd) =

��Pr[ExptRt
S∅(Azero, o, d, s, a, b, η, ηd)]− Pr[ExptRt

S∅(Asafe, o, d, s, a, b, η, ηd)]
��

We omit T, o, d, s, a, b, and η, ηd from the parameters list when it is clear from the
context. We are first interested in the left part of this subtraction. Azero changes
the signatures of messages it is given. Let us consider what happens with an al-
tered message m�

zero (containing Szero) and its corresponding Rzero, generated in the
ExptRt

S∅(Azero, o, d, s, a, b, η, ηd) experiment. We separate the case where S holds and its
opposite. We have:

Pr[ExptRt
S∅(Azero, o, d, s, a, b, η, ηd)] =

Pr[Φ(Rzero, a, b)|Verify((Data,Rzero, o, d), pk[o], Szero)]×
Pr[Verify((Data,Rzero, o, d), pk[o], Szero)]+

Pr[Φ(Rzero, a, b)|¬Verify((Data,Rzero, o, d), pk[o], Szero)]×
Pr[¬Verify((Data,Rzero, o, d), pk[o], Szero)]

If we assume that S∅ uses a secure (UF-CMA in the sense of [GMR88]) signature
scheme S of security parameter η, then we know that the probability � of the signa-
ture being forged by an intruder (i.e. Verify((Data,R, o, d), pk[o], S) holds) becomes
negligible in η. Therefore:

Pr[ExptRt
S∅(Azero, o, d, s, a, b, η, ηd)] =

Pr[Φ(Rzero, a, b)|Verify((Data,Rzero, o, d), pk[o], Szero)]× � +

Pr[Φ(Rzero, a, b)|¬Verify((Data,Rzero, o, d), pk[o], Szero)]× (1− �)

We first consider the case where the signature is invalid. Consider the oracle S∅RK
described in Figure 3.4. If the signature of the message is not valid, then the message
is dropped. Therefore, all the routes generated for m� in this context are equal to the
empty route [ ]. We know that Φ([ ], a, b) is always false for any a and b. We can therefore
conclude that the experiment returns 0 with a probability (1− �).

Pr[ExptRt
S∅(Azero, o, d, s, a, b, η, ηd)] =

Pr[Φ(Rzero, a, b)|Verify((Data,Rzero, o, d), pk[o], Szero)]× � +

0× (1− �)

We denote p the probability of the experiment returning 1 when the signature is
valid. Going back to the advantage, we have:

AdvINC
S∅ (Azero) =

��(0 + �× p)− Pr[ExptRt
S∅(Asafe)]

��

The first part of the subtraction is negligible in η, as p is a probability and � is negli-
gible in η. However, Pr[ExptRt

S∅(Asafe, T, o, d, s, a, b)] may not be negligible, depending
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on T and o, d, s, a, b (as we have shown in Figure 3.6). Intuitively, without attacker
interference, S∅ actually routes messages to their destination, which ensures the exis-
tence of such nodes. Therefore, there exist some topologies T (Ts being one of them)
where AdvINC

S∅ (Azero, T, o, d, s, a, b, η, ηd) is not negligible in η and in ηd, and so S∅ is
not incorruptible on all topologies.

3.4.5 Bounded corruptibility

We generalize the notion of corruptibility to a definition using two reference protocols.
We define another advantage, called AdvBINC

P,B1,B2
. It follows the same principle as

AdvINC
P , but instead of considering how an attacker can force P to behave differently,

we consider how it can be corrupted to the outside of a reference routing interval, defined
by the safe execution of two protocols B1 and B2 on T , measured for the parameters
o, d, s, a, b.

Definition 3.12 (AdvBINC
P,B1,B2

(A, T, o, d, s, a, b, η, ηd)). Let A be an attacker, and T =
{V,E, f} a topology with nodes o, d, s, a, b ∈ V . We consider a protocol P, which is
compared with two protocols B1 and B2. We define AdvBINC

P,B1,B2
(A, T, o, d, s, a, b, η, ηd)

as:

max( Dist((B1,Asafe), (B2,Asafe), T, o, d, s, a, b, η, ηd),

Dist((P,A), (B1,Asafe), T, o, d, s, a, b, η, ηd),

Dist((P,A), (B2,Asafe), T, o, d, s, a, b, η, ηd) )

) −Dist((B1,Asafe), (B2,Asafe), T, o, d, s, a, b, η, ηd)

Informally, AdvBINC
P,B1,B2

(A, T, o, d, s, a, b, η, ηd) is a measure of the maximal distance
the behavior of P attacked by A can get from the outside of the interval determined by
the safe behavior of B1 and B2. Remark that if the attacked protocol’s behavior is in
the interval, then the advantage is 0.

Definition 3.13 (Bounded corruptibility). If for any adversary A, for any topology T ,
and for all o, d, s, a, b, AdvBINC

P,B1,B2
(A, T, o, d, s, a, b, η, ηd) is negligible in η and in ηd, we

say that P’s corruptibility is bounded between B1 and B2.

Remark that this definition has some interesting properties:

• AdvBINC
P,B1,B2

(A, T, o, d, s, a, b, η, ηd) = AdvBINC
P,B2,B1

(A, T, o, d, s, a, b, η, ηd):
The bounds for bounded corruptibility are commutative.

• AdvBINC
P,P,P(A, T, o, d, s, a, b, η, ηd) = AdvINC

P (A, T, o, d, s, a, b, η, ηd):
Stating that a protocol is bounded between itself and itself is the same as stating
its incorruptibility.

• Dist(B1,B2, T, o, d, s, a, b, η, ηd) = 0 ⇒
∀B3,AdvBINC

P,B1,B3
(A, T, o, d, s, a, b, η, ηd) = AdvBINC

P,B2,B3
(A, T, o, d, s, a, b, η, ηd):

If two protocols route messages identically, then those protocols are equivalent for
bounding purposes.
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Example: Bounded corruptibility of S∅
We try to bound S∅ using itself and P∅. We assume that S∅ uses a secure (UF-CMA
in the sense of [GMR88]) signature scheme S of security parameter η. By definition,
AdvBINC

S∅,S∅,P∅(A, T, o, d, s, a, b) equals:

max(Dist((S∅,Asafe), (P∅,Asafe)),

Dist((S∅,A), (S∅,Asafe)),

Dist((S∅,A), (P∅,Asafe)),

)−Dist((S∅,Asafe), (P∅,Asafe))

By using the fact that Pr[ExptRt
P∅(Asafe)] = 0, we get the following:

max(|Pr[ExptRt
S∅(Asafe)]|,

|Pr[ExptRt
S∅(Asafe)]− Pr[ExptRt

S∅(A)]|,
|Pr[ExptRt

S∅(A)]|
)−|Pr[ExptRt

S∅(Asafe)]|
Probabilities are positive, which allows us to remove some of the absolute values. We
also rewrite |a| as max(a,−a) in the last case, to remove all absolute values:

max(Pr[ExptRt
S∅(Asafe)],

P r[ExptRt
S∅(Asafe)]− Pr[ExptRt

S∅(A)],

P r[ExptRt
S∅(A)]− Pr[ExptRt

S∅(Asafe)],

P r[ExptRt
S∅(A)]

)−Pr[ExptRt
S∅(Asafe)]

We include the subtraction in the maximum and simplify further:

max(0, 0− Pr[ExptRt
S∅(A)],

P r[ExptRt
S∅(A)]− 2Pr[ExptRt

S∅(Asafe)],

P r[ExptRt
S∅(A)]− Pr[ExptRt

S∅(Asafe)])

We know that a probability is always between 0 and 1 included. Therefore, we know
that Pr[ExptRt

S∅(A)]− 2Pr[ExptRt
S∅(Asafe)] ≤ Pr[ExptRt

S∅(A)]−Pr[ExptRt
S∅(Asafe)], so

we can remove the right part of the inequation from the maximum.

max(0, 0− Pr[ExptRt
S∅(A)],

P r[ExptRt
S∅(A)]− Pr[ExptRt

S∅(Asafe)])

Similarly, 0− Pr[ExptRt
S∅(A)] ≤ 0. We can therefore simplify the maximum to:

max(0, P r[ExptRt
S∅(A)]− Pr[ExptRt

S∅(Asafe)])

We want to prove that this is negligible in η and in ηd for all T = {V,E, f} and
o, d, s, a, b ∈ V . We reformulate this as Pr[ExptRt

S∅(A)] − Pr[ExptRt
S∅(Asafe)] ≤ �, with

� negligible in η and in ηd. Looking at the experiment, this means that

Pr[Φ(GenRoute(m�, s,S∅RK), a, b))]− Pr[Φ(GenRoute(m, s,S∅RK), a, b))] ≤ �
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The difference between these probabilities is null unless the routes generated from
attacked messagesm� and the routes generated fromm are different. Looking at the route
generation process, the only factors influencing the oracle S∅RK (defined in Figure 3.4)
are the validity of the signature, the contents of R, and the identity of the receiver
(which is not influencable by the attacker). Furthermore, all those solutions require
S∅DK(m�) = S∅DK(m), as otherwise the experiment would have run as if the attacker
output m.

We therefore know that the advantage is null unless the attacker made the signature
invalid, or it altered the route stored in the message and the signature is still valid. In
that first case, the invalid signature forces the message to be dropped. Consequently, the
generated route is equal to the empty route [ ]. Since Φ([ ], a, b) = 0, then the probability
of the experiment returning true is null, and so this strategy does not provide an higher
advantage. In the other case, the attacker managed to alter the route stored in the
message, while keeping the same data, and keeping the signature valid. To have a valid
signature for an altered message, the attacker has either forged it, or recovered it from
S∅GK(o, d). Note that it cannot create a valid signature for a key it created, as that key
would not be present in any node’s K.

• The attacker can try to forge the signature. We proceed by assuming it manages to
forge or guess the signature with a probability pF when running on T �, o�, d�, s�, a�, b�.
This adversary A could also be used to build an adversary AS who breaks the
UF-CMA experiment with probability pF . AS needs to emulate S∅ on T �, cre-
ating its own initialization on the network except for the node o�, who uses the
challenge’s key. As AS does not know the keys of o�, it should use the chosen-
plaintext oracle and verification oracle provided in the UF-CMA experiment to
simulate its knowledge. A will therefore be in the right simulated context for
ExptRt

S∅(A, T �, o�, d�, s�, a�, b�), and will be provided a message m originating from
o� (which costs AS one call to its chosen-plaintext oracle). By assumption, this
adversary will therefore return a message m� containing a valid forged signature
with probability pF . In the end, given an adversary A for ExptRt

S∅ who makes
qG queries to S∅GK and qR queries to S∅RK to forge signatures with probability pF ,
we built an adversary AS making qG + 1 queries (A’s queries, plus one to create
the setting) to the chosen-plaintext oracle, and qR queries to the verification oracle
such that AdvUFCMA

S (AS , η) = pF . As we supposed the signature scheme S secure,
we therefore know that pF is negligible in η.

• The attacker can also try to obtain the signature without forging it. The only
source of valid signatures for A is S∅GK(o, d), but this oracle provides packets con-
taining random data. Therefore, given the attacker does qG queries, the probability
of obtaining a valid packet m� verifying S∅DK(m�) = S∅DK(m) is

�
2ηd−1
2ηd

�qG , which
is negligible in ηd.

Summing all the possibilities before, we get:

Pr[Φ(GenRoute(m�, s,S∅RK), a, b))]− Pr[Φ(GenRoute(m, s,S∅RK), a, b))]
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≤ AdvUFCMA
S (AS , η) +

�
2ηd − 1

2ηd

�qG

Therefore, we can say that for all adversaries A making a polynomial number of queries
to S∅GK(o, d) and S∅RK(m, v), AdvBINC

S∅,S∅,P∅(A, T, o, d, s, a, b) is negligible in η and in ηd.

Protocols from Chapter 2

We presented a few protocols in the previous chapter. Gradient based routing (GBR)
routes messages towards a sink, using a breadth-first tree. If we consider the tree building
process is part of the initialization of the protocol, this protocol can be seen as a static
routing scheme, where nodes routes all their messages towards a specific neighbor, no
matter what the contents of these messages are. As we discussed before, such protocols
are incorruptible, as the attacker can only try to influence the routing by changing
messages. A geographical routing algorithm with a single, predetermined destination
would be in the same case.

However, such a modelization does not analyze how the routing information is ob-
tained, and this is precisely the weak point of these protocols. The analysis of these
mechanisms, and of protocols such as SR3 would require to store memory which can
be modified in the nodes, and our model does not allow this for now. This is further
discussed in the conclusion of this chapter.

3.4.6 Covert attackers

We now consider an attacker who is not allowed to reroute or alter messages before the
challenge. We denote such an attacker a covert attacker, as opposed to an overt attacker
like the one previously described. We model that type of attacker with an experiment
similar to the overt case. In our context, a covert attacker does not send any altered
packets in the network before the challenge itself. Instead of being able to craft messages
and reroute them, this attacker may only overhear what happens in the network without
interfering.

Modelization of covert attackers

To model this, we replace in ExptRt
P the accesses to PR

K and to PG
K with an access to

GenRouteOracle(·, ·,PG
K ,PR

K).

Definition 3.14 (GenRouteOracle(o, d,PG
K ,PR

K)). Given two node identifiers o and
d, a message generation oracle PG

K and a routing oracle PR
K both initialized with K,

we define GenRouteOracle(o, d,PG
K ,PR

K) the function that creates a route for a mes-
sage m1 generated by o and intended for d. This function then operates similarly to
GenRoute, and returns both the route generated for that initial message [h1, . . . , hn],
together with the eventual successive alterations at each hop [m1, . . . ,mn−1].

This way, the attacker can observe what would happen in the network if everything
goes according to the protocol, but cannot see how an arbitrary node reacts to an
arbitrary message. We denote this new experiment ExptRt−P

P .
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Definition 3.15 (ExptRt−P
P (A, T, o, d, s, a, b, η, ηd)). Let P be a routing protocol. Let

A be an adversary and T = {V,E, f} a topology with o, d, s, a, b ∈ V . We define

ExptRt−P
P (A, T, o, d, s, a, b, η, ηd) as:

ExptRt−P
P (A, T, o, d, s, a, b, η, ηd) :

K
$←− PI(T, η)

m
$←− PG

K(o, d, ηd)

m� $←− AGenRouteOracle(·,·,PG
K ,PR

K),PI ,PD
K (m, o, d, s, a, b, T )

If PD
K (d,m�) �= PD

K (d,m)

m� ← m

R
$←− GenRoute(m�, s,PR

K)

Return Φ(R, a, b)

Note that an adversary A in the overt version of the incorruptibility experiment
ExptRt

P has full access to PR
K , PG

K , and T . Consequently, it is able to emulate the
oracle GenRouteOracle(o, d,PG

K ,PR
K). Therefore, for all attackers AS for the covert

incorruptibility experiment, there exists an attacker AO for the overt incorruptibility ex-
periment such that ExptRt−P

P (AP , T, o, d, s, a, b, η, ηd) = ExptRt
P (A, T, o, d, s, a, b, η, ηd)

(i.e., as intuitively expected, the covert version of the experiment is harder for the ad-
versary than the overt version).

Initialization S$I(T, η):
1: for all nodes v in T do
2: (pk[v], sk[v]) ← GenAsymKeyPair(η)

3: Seed
$←− {0, 1}ηd

4: K[v] ← (T, pk, sk[v], Seed)
5: end for
6: Return K

Message generation S$GK(o, d, ηd):

1: Data
$←− {0, 1}ηd

2: mid
$←− {0, 1}ηd

3: E ← AsymEncrypt((Data), pk[d])
4: Return (E, d,mid)

Message routing S$RK(m, v):

1: (E, d,mid) ← m
2: if v �= d then
3: Candidates ← NeighborsCloserTo(d)
4: if Candidates �= ∅ then

5: next
$(E,mid,Seed)←−−−−−−−−−− Candidates

6: mid
$←− {0, 1}ηd

7: Return ((E, d,mid), next)
8: end if
9: end if
10: Return ⊥

Figure 3.7: Protocol S$

In the same way as before, we define
DistP , AdvINC−P

P and AdvBINC−P
P,B1,B2

. We
refer to an attacker in the overt (resp.
covert) version of the incorruptibility ex-
periment as an overt (resp covert) at-
tacker.

Example

To illustrate this security notion, we
present a new protocol, called S$
(shortest-seeded). We first introduce some
new notation, then an informal descrip-
tion of the algorithm, and finally the in-
corruptibility proof. For this protocol, we

denote by a
$(c)←−− b the selection of an el-

ement among the set b, based on a ran-
dom oracle given the input c. The re-
sult of that selection is stored in a. In-
formally, this selection purely depends on
c: the output is selected uniformly at ran-
dom the first time it is called on a given
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c, but then it always returns the same el-
ement a for the couple (b, c). We denote

by AsymEncrypt(Data, pk[d]) the results of the asymmetric encryption of Data using
the public key of d.

The algorithm is described in Figure 3.7, and we provide an informal description
of it. The protocol works as follows: messages contain a cryptographically protected
destination field, and nodes route them at random to one of their neighbors closer to the
destination. The specificity of S$ is that its random choices are based on three values:
the message identifier mid, a node-specific random seed Seed, and an encrypted message
field E. Those values determine which neighbor will be chosen. Furthermore, after each
routing choice, mid is set to a fresh random value. E is specific to each message, but
does not change during its lifetime, and Seed is drawn at random by each node during
the initialization phase.

We claim that S$’s corruptibility against a covert attacker is bounded between itself
and S∅, but its corruptibility against an overt attacker is not. We first show the overt
attacker that is able to corrupt the protocol, and then go on to give an intuition of its
uncorruptibility against covert attackers.

Corruptible in the overt case Consider the topology Ts described in Figure 3.6, in
the overt attack case. We recall that:

AdvINC
S$ (A, Ts, o, d, s, a, b, η, ηd)

= |Pr[ExptRt
S$(A, Ts)]− Pr[ExptRt

S$(Asafe, Ts)]|
In the case of Asafe, the protocol selects uniformly at random either a or x to route the
message, and the next node always choses b: therefore, the probability of going through
a before b is Pr[ExptRt

S$(Asafe, Ts)] = 0.5.

AdvINC
S$ (A, Ts) = |Pr[ExptRt

S$(A, Ts)]− 0.5|

Consider how an attacker may change the routes generated by S$RK(m, v). The next
hops are randomly determined at each hop, based on E,mid, and Seed. First of all, all
the node’s Seed are never revealed, and so the attacker cannot learn it, whether covert
or overt. However, both E and mid are known values for him.

Let us first look into E. The attacker does not control the random generation of
Data. As both these intruders cannot obtain the secret key of a node d ∈ V , we know it
is not possible for an intruder to recover Data. However, both covert and overt attackers
can clearly modify mid. As the random selection of the next hop for a given node is
dependent on mid, they can alter how the corresponding message is going to be routed.

An overt attacker can indeed, with a message (E, d,mid) and a next hop s, query
S$RK((E, d,mid�), s) with different values for mid� (while E and Seed stay the same).
The attacker thus obtains several messages, and knows their destinations (which are
drawn randomly), based on the mid he chooses. This way, it obtains a pool of messages
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based on the number of routing queries made (we denote that number q), and therefore
he is able to choose one of its altered messages depending on the destination he wants.

Now, with the algorithm described above, A is able to try various messages m�
1..m

�
n

that will be independently routed. Let us suppose the adversary wants to send the
message to a, and call that adversary Aa. With q requests to S$RK((E, d,mid�), s), A
can produce a message m� such that this message will be sent to a. The probability of
Aa not obtaining such a message in q queries is the same as only obtaining x-routed
messages, that is, 1− 1

2q .Therefore:

AdvINC
S$ (Aa, Ts) = |Pr[ExptRt

S$(Aa, Ts)]− 0.5]| = 1− 1

2q
− 0.5 = 0.5− 1

2q

and so, since that advantage is not negligible in η and ηd, the protocol S$ is not incor-
ruptible against an overt attacker.

Incorruptible in the covert case However, for a covert attacker, this is not possible.
The attacker does not have direct access to S$RK , and so cannot try how various mid�

influence a challenge message’s routing. This is also not observable using naturally
generated messages using GenRouteOracle(·, ·,S$GK ,S$RK): as each message only has
a negligible probability of containing the same Data, E is going to be almost always
different for all of them. Furthermore, the attacker may try changing E, which will
only result in a message containing a random, unknown Data, which will cause the
experiment to replace that answer message by the initial challenge m. Similarly, if the
attacker changes the destination field d, then the decryption of E will also be something
else than Data, also resulting in the replacement of the attacker’s answer by m. Both
these options are not beneficial for A, in the sense that they do not result in a higher
advantage.

We therefore conclude that in the covert case, the attacker has no way to knowingly
influence the next hop of the message, but can force it to be dropped (by changing
the message format). Such behavior would mean that the protocol’s corruptibility is
bounded between itself and P∅ (as we have shown for S∅ above). We therefore expect
the S$ protocol’s corruptibility to be bounded between itself and P∅ against a covert
attacker.

3.5 Conclusion

In this chapter, we have presented a notion of routing security, named incorruptibility.
Incorruptibility is a quantitative measure, based on the ability of an attacker to influence
how messages are routed. We provide several example protocols in our modelization,
and proved that some of them are indeed incorruptible. However, some protocols do not
quite correspond to this definition: after showing why one of them is corruptible, we
propose the notion of bounded corruptibility, a generalization of the previous measure.
This more accommodating notion allows us to prove that some routing protocols can
only be influenced between given limits, which are exprimed using routing protocols.
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We finally provide a proof of the bounded corruptibility of one of our example routing
protocols, and present a variant of those two notions for a covert attacker who do not
alter or reroute messages before the challenge, as opposed to the overt attacks presented
before.

Perspectives

There are several ways this work could be expanded.

We modeled routes as arrays: using trees would allow modelization of the emission
of several concurrent messages, which in turn could model broadcasts. However, our
opinion is that broadcasts by themselves will not be a significant improvement without
allowing changes in the array of node memories K after initialization.

Modeling node state changes is possible, but this would in turn require more complex
proof techniques to obtain results, as messages will influence how the following ones are
routed. This would be an important step towards modeling SR3 or PRDGBR, for
instance, and more generally to expand this model towards more complex protocols.

When considering bounded corruptibility, some bounds have specific properties.
Proving that a protocol P’s corruptibility is bounded by protocols P∅ and itself pro-
vides an insight in the protocol: this bound means that in any situation, an outside
attacker can only cause Pr[ExptRt

P (A)] to be smaller than Pr[ExptRt
P (Asafe)]. This

represents the fact that the attacker cannot increase the probability for a message to
reach a target node before another, when compared to the safe behavior of P. As a
consequence of this, we know that it is not able to force messages to deviate from their
route, which was the case in both the incidents we presented in the introduction.

Furthermore, one can wonder whether a protocol P↑ such that ∀P , P r[ExptRt
P (A)] ≤

Pr[ExptRt
P↑(A)] exists (P∅ is the other extreme). Building such an upper bound is

useful because showing that a protocol is bounded between itself and P↑ means that an
adversary’s interference can only increase the probability of a message reaching one given
node before another. This property would allow one to show that a protocol guarantees
the eventual delivery of messages, since the attacker’s actions can only increase the
probability of the message getting somewhere. We are still wondering if such a protocol
can be written in our formalism.

Insider attacks on routing protocols suppose one or more nodes in the network are
controlled by the attacker. To model this, our first intuition was to allow the attacker
some degree of access to K, for instance K[s] (as s represents the last hop before attacker
alteration of m). However, this simple modification of the game does not work because of
the PD

K (d,m�) �= PD
K (d,m) check: if the attacker has enough access to K, most protocols

get trivially broken in this model as the attacker can create a completely new message
containing the data of its choice. We argue that this attack based on building from
scratch another packet is not meaningful. An attacker as we model it could always
replay another message and it will certainly be routed differently from m. Our goal is
to ensure the attacker’s m� is based on m, without blocking any legitimate alteration of
the message that would change its route.
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Finally, we chose to restrict this model to static topologies. It may be interesting to
consider dynamic topologies, which correspond better to what may be actually found
in a network, either because of varying wireless transmission quality, or because of an
intruder actively disrupting the connections. To do this, the game could be modified
so that an attacker is able to actively choose the topology used by the network during
initialization and evaluation of the challenge message.
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Chapter 4

Inputs of intrusion detection
systems

To secure Wireless Ad-hoc Networks (WANET) against malicious behaviors, three com-
ponents are needed: prevention, detection, and response. In this chapter, we focus on
Intrusion Detection Systems (IDS) for WANET. We classify the different inputs used
by the decision process of these IDS, according to their level of required cooperation,
and the source of their data. We then propose InDICE, a decision aid which allows
automated discovery of undetectable attacks for an IDS, according to the inputs in use.
Finally we apply our framework to discover weaknesses in two existing IDS.

Pour sécuriser les réseaux ad hoc sans-fil (WANET) contre les comportements malicieux,
trois composants sont nécéssaires : de la prévention, de la détection, et des mécanismes
de réponse. Dans ce chapitre, nous étudions les systèmes de détection d’intrusions
(IDS) pour WANET, et plus spécifiquement les sources de données utilisées pour leurs
mécanismes de décision. Nous classifions celles-ci en fonction du niveau de coopération
qu’elles requièrent, et en fonction de l’origine de leurs données. Nous proposons ensuite
InDICE, un outil d’aide à la décision qui étant donné un IDS, permet de découvrir au-
tomatiquement quelles attaques seront indétectables par les sources de données qu’utilise
cet IDS. Enfin, nous utilisons cet outil pour découvrir deux vulnérabilités dans des IDS
de la littérature.
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4.1 Introduction

4.1.1 Context

In the previous chapters, we presented a secure routing protocol and a model to ver-
ify neighborhood detection protocols. Both these components exist to prevent attacks.
However, when hardening a wireless network, one may discover flaws which cannot be
repaired immediately, and thus prevention becomes impossible. For instance, Wi-Fi
has such a flaw since more than ten years. Wi-Fi (IEEE 802.11) is a combination of a
medium access control and a link layer protocol, that allows nodes to communicate after
some mutual authentication. When a client wants to deauthenticate, it sends to his ac-
cess point a special frame which effectively disconnects the client. In 2003, an attack on
this process was discovered [BS03], which uses the fact that this frame is not authenti-
cated. Thus, an attacker can spoof the client’s MAC address and send deauthentication
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frames on its behalf, effectively disconnecting the client against its will. For a more
durable effect, the attacker can resend this frame each time the client authenticates,
which prevents the client from maintaining authentication. Note that this attack is now
well-known, and very easy to run since all the software required is publicly available on
the internet1.

Hardening a network against this attack is very difficult, as there was no official fix for
this until 20092. But this solution is only partial, as some Wi-Fi enabled devices may not
implement it, and replacing all of them may not be a viable solution because of the cost.
On the other hand, that attack has a recognizable footprint: clients are not expected to
repeatedly break connection just after establishing it. The recommended course of action
to counter such an attack is to automatically detect it using a network intrusion detection
system (IDS), locate the device emitting the deauthentication frames, and then prevent
the attacker’s emissions from reaching the AP, either by electromagnetically shielding
it, or by recovering the attacker’s device. This example illustrates that to improve the
security of ad-hoc wireless networks, one needs to add mechanisms that react to attacks.

Similarly, the acknowledgment routing attack against SR3 we described in Sec-
tion 2.5.3 would be very costly to correct for the routing protocol, as it requires au-
thentication of each neighbor of a node (and therefore, establishment of shared secrets).
However, if we take a step back from the routing layer, the easiest solution to this prob-
lem is to add a simple IDS running on each node. It is both easy and cheap to detect
anomalous acknowledgment routing loops, and to communicate some sort of alert to the
sink using SR3’s message routing.

In this chapter, we consider intrusion detection systems (IDS), which are software
designed to detect malicious behavior, and in some cases trigger an intrusion response
system after a detection. The goal of these systems is to detect attackers and then
mitigate their effects, either through alerting an human operator, or with automated
countermeasures. Then, the traces produced by an IDS can be used to investigate the
systems which were used to perform the attack, which should be hardened to prevent
further damage.

The evaluation of IDS is usually done experimentally, by using replayed packets
which are either handcrafted or observed in the wild, and observing which of the at-
tacks are detected. For instance, in [LFG+00], the authors present a DARPA-mandated
evaluation of several IDS from 1998, and they also provide the corresponding dataset.
This evaluation and the subsequent one that happened the following year were then
critiqued in [McH00], which raises several concerns about this particular evaluation. In
this critique, the author argues that the use of a specific handcrafted dataset may not
be representative of the real performances of the IDS, and that the metric which has
been used for the evaluation artificially increases the scores of some IDS. Although this
critique was specifically targeted at the DARPA evaluation, the author also argues that

1The aircrack-ng package is the best-known software for all WiFi-related attacks, including deau-
thentication.

2The IEEE 802.11w amendment has been approved in 2009. This amendment authenticates the
problematic frames and consequently prevents the attack. However, it is not yet commonly deployed.

97



such concerns are valid for most experimental evaluations of intrusion detection systems.

Furthermore, an experimental evaluation has implicit limits, as it does not specify
how the intruder node becomes part of the network, what is the attacker achieving with
that attack, nor what exactly the IDS is trying to prevent. This lack of precision can lead
to undiscovered flaws in the network. It is important to formulate the properties that the
IDS tries to achieve in a clear way, to define the intruder model, to model the protocols
and to state the network assumptions, in a formal framework. Then, we can use formal
methods, in order to systematically find flaws in an IDS. This process is similar to what
has been done in the last years in cryptographic protocol analysis [BCM11], and our
goal is to provide the first components to enable the use of such methods in the context
of IDS.

4.1.2 Contribution

Our contribution is threefold.

• We survey different inputs that an IDS decision process can use. We base our
analysis on two axis: the degree of cooperation required to use that input, and
what is being monitored. We also give examples of mechanisms from existing IDS
to illustrate our classification.

• We develop a formal model to evaluate such systems, based on anomalies, which
are the results of attacker behavior. We propose some deduction rules (around 40)
expressing how the combination of certain anomalies allows an attacker to build
more complex attacks. These rules model the logical steps needed for construct-
ing a specific attack. Then, depending on inputs used by an IDS, we determine
whether an attacker can mount an attack without being detected. We also provide
a prototype of our formal framework, named InDICE.

• Using InDICE, we analyze two IDS from the literature, [dSMR+05] and [OM05b].
We show that it is not possible to fool the first IDS in presence of restricted intrud-
ers. However, by relaxing some of the hypothesis, we discover some weaknesses in
the IDS. For the second IDS, we found undetectable attacks using intruder nodes
which are able to control the directivity of their wireless signals. Finally, we pro-
pose some modifications for these IDS in order to prevent these attacks. Overall,
using our approach, it is easy to compare the inputs of an IDS to others from the
literature, and to find its flaws and possible improvements.

4.1.3 Related work

Previous classification of IDS

Intrusion detection systems are usually classified with two main characteristics, which
evolved from the seminal work in [DDW99]. The first characteristic expresses what
is being observed, and contains two categories: host-based IDS monitor the internal
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workings of one node, while network-based IDS search for signs of malicious activity in
the network. The second characteristic is based on the method used to detect intrusions:
signature-based detection uses a database of known patterns, anomaly-based detection
compares the behavior to a known normal behavior, and specification-based IDS deal with
the compliance of nodes to a given specification. This second aspect is not considered in
this chapter. Our classification can be seen as a refinement of the first category. Instead
of having two broad categories, we separate the different inputs that an IDS uses and
we determine the cooperation level and the sources of the data being monitored.

Analyzing anomalous events to build IDS

In [HL04], the authors provide a specification-based IDS for the AODV routing protocol,
based on an extended finite state automaton for modeling the protocol. In their paper,
attacks cause various anomalous basic events, which are defined as the segments of a
routing process that do not follow the routing specification. These events are then
classified in two categories: those that can be detected directly, and those that require
statistical analysis. They also give a correspondence between some classical attacker
models and the related anomalous basic events. Finally, they propose an IDS which is
built to detect all of the anomalous basic events they identified.

Our work is different from theirs in two ways. First of all, instead of building an
IDS specifically for AODV, we focus on the evaluation of any IDS for a wireless ad-hoc
network. To achieve this, we built a model which is not protocol dependent and ad-
justable depending on the assumptions. The second important difference is our concept
of anomaly. It is based on their anomalous events, but instead of isolating them, we add
a model of their dependencies. This allows us to describe attacks taking into account
the whole process, instead of just taking the end results of the attack into account.

Attack graphs for vulnerability analysis

In [PS98], the authors describe a system for risk analysis that uses attack graphs in order
to find the most likely attacks to reach a given goal. These results show the weak points to
prioritize when hardening the system. Several other uses of attack graphs can be found in
the literature, and a review listing several applications in network vulnerability analysis
is available in [LI05]. To give an example of an application on IDS, consider [WLJ06],
where the authors describes a method to correlate IDS alerts and transform them into
complete attack traces, using such attacker graphs. To our knowledge, attacker graphs
have not yet been used to evaluate the coverage of an IDS against the various attacker
behaviors encoded in the graph.

The attack graph described in [PS98] is close to our system of anomalies and rules
(which describe a structure close to a directed graph), although different in some key
points. In their graph, each vertex is a possible attack state describing a combination
of machines and access levels for the attacker, and effects of the attack. Then, a library
of known attacks is used to build transitions between those states. The analysis of the
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resulting graph provides paths from the vertices that are considered true to attacker
goals. This analysis also considers the probability of success of each attack.

The first major difference with our approach is that we focus on the whole network at
once, without distinguishing between individual network nodes and compromise levels.
This allows us to evaluate the relevance of IDS inputs from a higher-level standpoint.
Also, we do not consider the probability of success of attacks since our objective is
to find undetectable attacks using IDS inputs only, without looking into the detection
mechanisms.

4.1.4 Outline

In section 4.2, we provide our classification of IDS inputs and illustrate it through several
examples from the literature. In section 4.3, we formally define our model, which we
apply on two existing IDS using our prototype in section 4.4.

4.2 Inputs of IDS for WANETs

We propose our new classification. We then provide a review of the inputs used by
several IDS found in the literature.

4.2.1 Classification

IDS build their decision process over a multitude of inputs that we classify along two
axis. The first one is made of three categories, that express the level of cooperation
needed to use an input:

a. Local inputs, that are accessible by a node, without help from their neighbors.

b. Inputs requiring k-neighborhood-wide cooperation (i.e. cooperation within a
bounded distance).

c. Inputs requiring global cooperation (i.e. cooperation between arbitrarily distant
nodes).

This distinction allows us to see clearly what infrastructure is needed for the IDS.
The first category does not require anything per se, the second one only requires passing
messages to neighboring nodes (so broadcasting may be enough), whereas the third one
requires a full routing protocol to operate.

The other axis, denoted the data source axis, corresponds to how the IDS collect their
inputs. We identified five categories. The first category is independent on the network,
then the next categories depend on the protocols.

1. Offline inputs can be created even if the node is not part of a network. They are
neither application-related nor network-related.
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2. Topological inputs, related to the positions of the nodes and their ability to
communicate.

3. Radio inputs, linked to the medium access control protocol.

4. Routing inputs, related directly or indirectly to the routing protocol.

5. Inputs extracted from the application data, as opposed to all the previous cate-
gories which analyze how the nodes and the network behave.

Using the data source axis, we now describe and illustrate with references each of
those inputs according the level of involvement or cooperation needed to use an input,
followed by a summary of this classification.

4.2.2 Offline inputs

Offline inputs do not depend on the network: the object of their monitoring is internal
to a node.

a) The first family of offline inputs we identified are local, and are usually called
host-based IDS. This family of IDS are looking for a partial compromise of the node
running the detection, for instance through viruses or vulnerable applications (with for
instance [WS02]). This family of inputs contains a large number of IDS inputs, which
are by definition not network-centered.

b) To allow compromise detection by third-party nodes, we need neighborhood
cooperation, as these IDS usually require the cooperation of the suspect node. For
instance, in [YWZC07], the authors proposed a scheme where free memory in nodes
is pre-loaded with random noise, the knowledge of which is shared among the node’s
neighbors. They make the hypothesis that a compromised node would have deleted
some of that noise to include its rogue algorithms. Then, to detect whether a suspected
node has been compromised, each of the neighbors challenges that node. To prove its
integrity, the suspect node needs to produce the requested random noise.

c) Finally, we did not find any global offline inputs. We conjecture that network-wide
cooperation would not add anything significantly more useful than local or neighborhood-
scale analysis in this category, as these inputs are not related to the network by definition.

4.2.3 Inputs Based on the Network Topology

This category contains mechanisms that use distance measurements and neighborhoods.

a) First, this analysis can be local to a node. For instance, in the IDS described
in [dSMR+05], nodes have a list of neighbors, so that messages coming from other
sources trigger alerts. This prevents attackers with very strong emission capabilities
from broadcasting a message to the whole network (for instance, this is a stepping stone
towards hello floods). Signal strength monitoring is a very common input, which is for
instance found in [DS06, OM05a, OM05b]. To operate, it makes nodes remember the
strength of the received signal for the last transmissions from each neighbor. As the
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signal strength is related to distance, this allows to detect node movement, changes
in environmental conditions, and impersonations. Some variants can be found: for
instance, [PJdPFWL04], instead of using previous measurements of signal strength to
detect anomalies, the expected value is deduced from distance data. However, this
measure is not trustworthy, as received signal strength also depends on the emission
equipment and environment, and so an intruder that adjusts its emission power to match
the expected received signal strength may be able to fool this IDS input.

b) The IDS described in [SXZC07] requires neighborhood-wide cooperation to
measure distances between nodes in a static network, which allows to detect unexpected
changes in localization that are characteristic of a node being manipulated. A similar
neighborhood-wide effort can identify Sybil intruders (single nodes that use multiple
identities) through signal strength, as described in [DS06]. By computing the ratios of
the signal strength of different nodes, the authors show that it is feasible to triangulate
the position of other nodes, allowing detection of nodes that share the same exact position
and who may be Sybil intruders. Note that this measure may be fooled by an intruder
which is able to actively change its emission pattern, as the authors mentioned in the
paper.

c) Finally, such an analysis can be done from a global point of view. In [DLL+11],
the authors argue that under some hypothesis on the underlying network, it is feasible
to detect wormholes (two distant intruder nodes, linked with a special communication
channel) using only topological data. In [CDPMM07], the authors propose a mechanism
to detect nodes sharing identities in the network. It is a global algorithm which reports
a suspect node’s identity and location to a specific third-party node, using the suspect
identity. Then, if that third-party node receives several reports containing different
locations for a single identity, an alert is raised.

4.2.4 Inputs from the Medium Access Control (MAC) Protocol

This category contains all the inputs which use data originating from the wireless trans-
mission medium.

a) This category is well-suited to local analysis, but increasing the cooperation will
not significantly improve these techniques. By looking at indicators in the MAC such
as collision rate or the number of retransmissions requests, a node may be able to tell if
there is a perturbation in the radio medium, whether they are environmental or caused
by an attacker. In all of [BG06, dSMR+05, PPJ06, TBMS05], there is a part of the
intrusion detection being done based on the collision rate. This mechanism is close
to the definition of specification-based IDS, where monitors observe whether neighbors
behave as expected given a protocol. Another approach based on the radio layer is to
use characteristic features of the radio emitters to identify them. This technique is called
fingerprinting, and is found in [BRC07, HBK04]. Such a technique, depending on the
precision of the analysis, allows detection of Sybil attackers (as all identities will have
the same fingerprint) and impersonations (as the impersonated node will have several
fingerprints).
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4.2.5 Data Based on the Routing Layer and Traffic

This category is based on the analysis of how messages are routed through the network.
Some of the IDS mechanisms we present here are tied to a specific routing protocol,
which allows them to monitor the protocol compliance of suspect nodes at the cost of
genericity (these are called specification-based IDS). On the other hand, some of them
are built upon generic properties that are common to most routing protocols, such as
timely packet retransmission or each node using only one public identity. This genericity
may reduce the precision of the analysis if the observed protocol has a more complex
specification than what the IDS is monitoring.

a) A typical local input is nodes monitoring the variations in the volume of their
incoming traffic. If they notice a significant difference when compared to some ref-
erence measure, the nodes will raise an alert. This mechanism is seen frequently in
the literature, with several variants such as separating traffic streams per message
type [CANT10], per neighbor [dSMR+05], or depending on the messages source and
destination [LLM05]. Some IDS also monitor the intervals between reception of mes-
sages of different types [CANT10]. Finally, instead of looking at the traffic flow, the
authors of [BG06] suggest observing the application data types which are expected on
each route, assuming the network is used to route more than a single type. Another
category of local inputs require using promiscuous listening, so that a monitor node can
observe its neighbor’s behavior. By designing an IDS more specific to the routing proto-
col, it becomes possible to detect deviations from the routing protocol, using an analysis
that can span from simple rules or features to a complete specification-based monitoring.
Both [dSMR+05] and [TBMS05] propose some IDS which uses promiscuous listening.
The IDS described in [TSB+06, TBK+03] monitor the routing process of neighboring
nodes using finite state machines, respectively built for AODV and OLSR (which we
presented in section 2.1.3). Another specification-based IDS built on top of an extended
finite state machine for AODV is described in [HL04].

b) By extending to a k-neighborhood-wide effort, specification-based IDS can be
more efficient and accurate. For instance, in [TWKL06], the authors present DEMEM,
a specification-based IDS with new messages overlayed on the routing protocol. These
messages allow nodes to verify the claims of their neighbors, to detect more attacks on
the routing protocol.

c) Finally, the global scale inputs can be illustrated with Lipad [AT04]. This IDS
does traffic analysis in a centralized way, which allows to locate precisely where the
anomaly occurred, and so under certain hypothesis on the number of intruder nodes.

4.2.6 Inputs Based on the Application Data

The last category concerns all the inputs which use the application data, and assumptions
about it.

a) A good illustration of local application data analysis can be found in [KTK02].
This IDS is designed for general-purpose networks, and operates by statistical analysis
of the application data being transmitted in the captured packets, with a different model
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for each application. The IDS described in [LPR10] also fits this category. This data
source is generated from the various applicative requests the nodes make, which are then
categorized. With some training data or pre-the detection system rests its case based
on the number of requests of each category.

b) Using neighborhood collaboration, the authors of [DA03] present an IDS based
on the analysis with hidden Markov models of the data delivered to the application. Such
a data analysis allows them to detect altered data, depending on what is being monitored.
This example is on a global scale, and is the only one we found to illustrate such an
analysis for WANET in the literature. We conjecture that this is because such techniques
are strongly tied to the application, as this technique could also be used with a lower
cooperation level. For instance, in a network monitoring earthquakes, neighborhood-
scale cooperation makes sense to detect malicious data insertion. On the other hand, if
the measurements are completely unrelated between each other, cooperative analysis of
non-overlapping data may not be useful.

4.2.7 Summary

Our classification allows us to categorize the various inputs a network-based IDS uses in
its decision process. In Figure 4.1, we recapitulate our classification, and we provide a
list of the different inputs we identified from existing IDS, plus the categories in which
they belong. Note that the same IDS can use different inputs, and will therefore be in
several different categories, but all inputs fit in one cell each. We also include a few
mechanisms built to detect specific intruders such as [CDPMM07, DS06], as they are
compatible with our definition of IDS input.

We denote by a ’X’ the categories which do not bring any new significant information
when compared to the lower cooperation levels. Since the MAC protocol is by essence
local to a link, nodes have little interest in relying on the declarations of distant nodes
to detect intruders. A similar situation appears for global offline inputs. We also denote
with a ’?’ the categories of data analysis where we did not find any example in the
literature, but that combination can be relevant to detect malicious nodes.

4.3 Vulnerabilities Discovery Model

4.3.1 Definitions and assumptions

We define an identity as the different items a node needs to join and operate legitimately
in the network, and a node in possession of a valid identity is considered associated. In
this context, we denote as valid the messages whose data would be delivered to the
application if they reach their destination.

The model described in this section is built to be generic, and would fit most net-
works. However, we specifically chose the rules to model a wireless network, and therefore
some of the rules will not be appropriate for wired networks. We consider that some
nodes generate data messages, which are then routed to one or several destinations. We
provide a way to specify whether attackers have access to identities or not. Our model
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does not take into account movement of nodes, and assumes that the neighbors of a node
know its declared identity.

We assume that attackers emit data with a constant emission pattern and constant
transmission power. This assumption can be relaxed when explicitly stated.

4.3.2 Anomalies and facts

We now describe formally our model, beginning with the notion of facts.

Facts

We define facts as various assumptions that are selected in order to refine the model.

Definition 4.1 (Facts). Assumptions about the network, protocols and attackers are
called facts. They are represented by keywords in italic. We denote the set of all facts
F.

We now detail all facts contained in F, ordered by category. The first category
contains facts related to the attacker, its capabilities and initial knowledge.

• CompromisableNodes: An attacker is able to take full control of legitimate nodes,
and recover their identity and knowledge. This makes them insider intruder nodes.

• TxPowAdjust: Intruder nodes are able to adjust their radio transmission power.
This allows them to knowingly influence the corresponding received signal strength.

• TxDirAdjust: Intruder nodes are able to knowingly change their emission pattern
(for instance, using a steerable antenna). In our model, this means that these
intruder nodes are able to choose which subset of their neighbors receive their
transmissions.

• CanImpersonate: The attacker is able to impersonate honest nodes such that trans-
missions appear to come from them. However, this fact does not give the attacker
the ability to create valid messages.

The second category contains the facts related to the protocols in use in the network.

• SimpleValidity: The protocol does not guarantee the unforgeability of messages,
and therefore an attacker can alter or create a message and keep it valid.

• ValidityCheckedEachHop: The protocol guarantees the unforgeability and the fresh-
ness of messages, and therefore, an attacker cannot alter one of them in a way that
keeps it valid, and appearing to originate from an uncompromised node. The
validity of messages is checked at each hop.

• NoConfidentiality: The protocol does not provide any confidentiality, and therefore
any passive listener is able to recover the contents of messages in transit.
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• HopByHopConfidentiality: Only the nodes on a message’s route (or anyone with
their identity) can recover its contents. This is hop-by-hop confidentiality.

• EndToEndConfidentiality: Only the source and destination(s) of a message (or
anyone with their identity) can recover its contents.

• OpenNetwork: The network is by design open, requiring little to no knowledge to
join. Therefore, nodes have access to new valid identities at will, and any node
can associate, regardless of initial knowledge or pre-existing trust relationships.

Factual relationships Some of these facts are related. We define that a fact F1 is
more restrictive for an attacker than F2 when any possible attack when F1 holds is also
possible when F2 holds.

Definition 4.2 (Factual relationships F). If a fact F1 ∈ F is more restrictive for an
attacker than a fact F2 ∈ F, we express that relation using the following rule named
(FR):

(FR)
F2

F1

We denote by F the set of rules (F-Conf1),(F-Conf2) and (F-VC1).

We now describe the contents of F . Having validity checks at each hop blocks any
invalid message before it gets retransmitted by an honest node, which only limits what
messages an attacker can usefully send. Therefore, the fact ValidityChecksAtEachHop is
more restrictive for an attacker than SimpleValidity.

(F − V C1)
SimpleV alidity

V alidityChecksAtEachHop

Regarding the confidentiality-related facts, the relationship is similar. HopByHop-
Confidentiality strictly restricts attacker knowledge when compared to NoConfidential-
ity, as it only prevents listeners outside of the route from being able to read the data.
Therefore, HopByHopConfidentiality is more restrictive for an attacker than NoConfi-
dentiality.

(F − Conf1)
NoConfidentiality

HopByHopConfidentiality

If an attack is possible when considering the EndToEndConfidentiality fact, then re-
moving the confidentiality aspect for intermediate nodes does not change that possibility,
as it merely adds more possibilities for the intruder. Therefore, we say that EndToEnd-
Confidentiality is more restrictive for an attacker than HopByHopConfidentiality, and
the rule, named (F-Conf2), is written as follows:

(F − Conf2)
HopByHopConfidentiality

EndToEndConfidentiality
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The set of facts we want to use for the analysis is denoted FI ⊆ F . Using this set of
facts, we build a set of axioms, named the selected hypothesis.

Definition 4.3 (Selected hypothesisHyp(H,FI)). Let H be the set of all possible axioms
deducing a fact from F, and let FI be a subset of F we want to assume for the verification.
The set of selected hypothesis is a set of axioms, denoted by Hyp(H,FI), and defined by:

Hyp(H,FI) =

�
(AF )

F

�����F ∈ FI

�

Anomalies

We define anomalies as objects that are used to describe the different steps in an attack,
such as the attacker getting recognized as legitimate or message suppression. Anomalies
are linked together using rules. We first define them, and then we present the contents
of A, separated in categories.

Definition 4.4 (Anomalies). Anomalies are the results of the attacker’s behavior. We
denote the set of all anomalies A.

The first subset of anomalies we present are related to impersonation.

• OmniImpersonation: An intruder node transmits packets as if they were emitted
by an honest neighbor, but the message can be received by any neighbor, and the
received signal strength may differ from the one from legitimate transmissions.

• DirImpersonation: An intruder node transmits packets in a directed fashion, such
that only the attacker and the receiver know the transmission happened. The signal
strength of this transmission may however be different from what is expected from
the impersonated node.

• TxPowImpersonation: An intruder node impersonates an honest node, while ad-
justing its transmission power so that the signal strength at the receiver corre-
sponds to the signal strength which would be expected from the impersonated
node.

• DirTxPowImpersonation: An intruder node transmits packets in a directed fashion,
such that only the attacker and the receiver know the transmission happened. Fur-
thermore, the intruder adjusted its transmission power so that the signal strength
at the receiver corresponds to the signal strength which would be expected from
the impersonated node.

• Impersonation: The attacker can communicate with any node, as if the commu-
nication happened from an honest neighbor. This anomaly is a generic version of
the previous ones.

The next category are anomalies related to node compromise and identities.
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• VirusCompromise: The attacker compromises some part of a node, whose identity
is now compromised. The attacker is also able to control this node.

• TotalCompromise: The attacker takes full control of a node, whose identity is now
compromised.

• AttackerAssociated: The attacker uses intruder nodes which are associated. This
fact should be selected when modeling insider attacks.

• RoutingMisbehavior: Intruder nodes deviate from the routing protocol.

Finally, the last category of anomalies are related to messages, what happens to
them, and to the application data.

• ApplicationDataAltered: The attacker alters the data which is delivered to the
application, either by adding, altering or subtracting data.

• Snooping: The attacker reads some of the application data going through the
network.

• Alteration: The attacker alters data in messages.

• ValidAlteration: The attacker alters data in messages, while keeping them both
valid and appearing to be from an emitter whose identity is uncompromised.

• ImmediateAlteration: An intruder node is able to alter the data in a message it
received.

• NeighborVisibleAlteration: An intruder node alters the data in a message it re-
ceived, in a way that can be overheard by neighbors.

• NeighborVisibleValidAlteration: An intruder node alters the data in a message it
received, while keeping them both valid and appearing to be from an emitter whose
identity is uncompromised, in a way that can be overheard by neighbors.

• ImmediateValidAlteration: An intruder node is able to alter the data in a message
it received, while keeping it both valid and appearing to be from an emitter whose
identity is uncompromised.

• NeighborVisibleSuppression: The attacker drops data messages, which prevents
them from being delivered to their destinations. This action can be overheard by
the node’s neighbors.

• Suppression: The attacker drops data messages at some point in the network,
which prevents them from being delivered to their destinations.

• ImmediateSuppression: An intruder node is able to drop valid data-bearing mes-
sages.
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• Insertion: The attacker creates valid data messages.

• NeighVisibleInsertion: An intruder node creates valid data messages, which may
be overheard by neighbors.

• ImmediateInsertion: An intruder node has the ability to create valid data messages.

Notice that we separated the three last anomalies. This is needed to model intruders
able to transfer data to a single node, instead of their whole neighborhood. Such an
attacker would be able to bypass promiscuous monitoring by its neighbors.

4.3.3 Rules and attacker progression

Anomalies follow a logical progression, with certain anomalies and facts being prereq-
uisites to an attacker reaching some other anomalies. To model these dependencies, we
use rules.

Definition 4.5 (Rules). For i ∈ [0..n], let Ti ∈ A ∪F, and A ∈ A. We denote the rule
(R) which allows an attacker to reach A given that all Ti hold by

(R)
T0 ... Tn

A

We denote by R the set of all our rules.

The set R contains 39 rules, given in Figure 4.2, and described below. We now
explain how those anomalies and rules are used to search for undetectable attacks.

We now present all the rules we consider. These are abitrarily ordered by theme: first,
the rules related to node compromises and attacker association, then impersonations,
application data alterations, and finally confidentiality.

Rules related to compromises

(CompV )
CompromisableNodes

V irusCompromise
, (CompT )

CompromisableNodes

TotalCompromise

The CompromisableNode fact determines whether nodes are considered tamper-proof for
an attacker. If they are not, an attacker can compromise them in two different ways:
either through physically taking control of the node, or by execution of malicious code.

(V Assoc)
V irusCompromise

AttackerAssociated
, (TAssoc)

TotalCompromise

AttackerAssociated

An attacker which manages to execute malicious code on an honest node, or reprogram
an honest node effectively controls part or totality of that node, and we therefore consider
it an intruder node which is associated.

(Open)
OpenNetwork

AttackerAssociated
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Name Prerequisite(s) Conclusion

CompV CompromisableNodes VirusCompromise
CompT CompromisableNodes TotalCompromise
VAssoc VirusCompromise AttackerAssociated
TAssoc TotalCompromise AttackerAssociated
Open OpenNetwork AttackerAssociated
Misbehave AttackerAssociated RoutingMisbehavior
OmnI CanImpersonate OmniImpersonation
DirI TxDirAdjust ∧ CanImpersonate DirImpersonation
PowI TxPowAdjust ∧ CanImpersonate TxPowImpersonation
DirPowI TxPowAdjust ∧ TxDirAdjust ∧ CanImpersonate DirTxPowImpersonation
OtoI OmniImpersonation Impersonation
DtoI DirImpersonation Impersonation
TtoI TxPowImpersonation Impersonation
DTtoI DirTxPowImpersonation Impersonation
IStoS ImmediateSuppression NeighVisibleSuppression
DirIStoS ImmediateSuppression ∧ TxDirAdjust Suppression
IIntoNVIn ImmediateInsertion NeighVisibleInsertion
AssoIns AttackerAssociated ImmediateInsertion
ImpInser Impersonation ∧ SimpleValidity ImmediateInsertion
IAlt AttackerAssociated ∧ RoutingMisbehavior ImmediateAlteration
VIAlt ImmediateAlteration ∧ SimpleValidity ImmediateValidAlteration
VIaltIAlt ImmediateValidAlteration ImmediateAlteration
ValtAlt ValidAlteration Alteration
NVIaltAlt ImmediateAlteration NeighVisibleAlteration
NVIValtVAlt ImmediateValidAlteration NeighVisibleValidAlteration
NVIaltAlt ImmediateAlteration ∧ TxDirAdjust Alteration
NVIValtVAlt ImmediateValidAlteration ∧ TxDirAdjust ValidAlteration
AssoISup AttackerAssociated ∧ RoutingMisbehavior ImmediateSuppression
InSupAlt ImmediateSuppression ∧ ImmediateInsertion ImmediateAlteration
S NeighVisibleSuppression Suppression
DirIIntoIn ImmediateInsertion ∧ TxDirAdjust Insertion
NVIntoIn NeighVisibleInsertion Insertion
IaltAlt NeighVisibleAlteration Alteration
IValtVAlt NeighVisibleValidAlteration ValidAlteration
SApp Suppression ApplicationDataAltered
AApp ValidAlteration ApplicationDataAltered
IApp Insertion ApplicationDataAltered
HopSnoop AttackerAssociated ∧ HopByHopConfidentiality Snooping
ConfSnoop NoConfidentiality Snooping

Figure 4.2: List of all the rules
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The definition of an open network specifies that any node can associate. Therefore, in
this context, intruder nodes can associate freely.

(Misbehave)
AttackerAssociated

RoutingMisbehavior

An intruder node who is associated can choose to deviate from the protocols used in the
network.

Rules related to impersonations

(OmnI)
CanImpersonate

OmniImpersonation

Simple impersonation of a node does not require any specific equipment besides what is
expected of the intruder. We therefore suppose that if impersonations are possible for
an intruder, this rough form of it is possible.

(DirI)
TxDirAdjust CanImpersonate

DirImpersonation

An intruder with access to directionnal antennas which allow to selectively choose the
recipients of emissions, plus the required knowledge for impersonations is able to imper-
sonate a node without monitors being able to overhear the communication.

(PowI)
TxPowAdjust CanImpersonate

TxPowImpersonation

An intruder able to change its emission power, and able to impersonate nodes, is able to
impersonate an honest node while matching that target node expected received signal
strength.

(DirPowI)
TxPowAdjust TxDirAdjust CanImpersonate

DirTxPowImpersonation

Having both the ability to change its emission pattern and its transmission power al-
low an intruder node to impersonate an honest node with the expected received signal
strength for the destination node, and without any other monitor node overhearing the
transmission.

(OtoI)
OmniImpersonation

Impersonation
, (DtoI)

DirImpersonation

Impersonation

(TtoI)
TxPowImpersonation

Impersonation
, (DTtoI)

DirTxPowImpersonation

Impersonation

We regroup the four different forms of impersonation as a generic act of impersonation,
as the specific details of the impersonation do not matter anymore past this point.
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Rules related to application data alteration

(IStoS)
ImmediateSuppression

NeighV isibleSuppression

An intruder node able to drop messages, or able to make another node drop messages
is able to cause data loss in a way that is obvious to its neighboring monitors.

(DirIStoS)
ImmediateSuppression TxDirAdjust

Suppression

An intruder node able to control who receives its messages can forward a message to
its neighboring monitors only, and not its destination. Thus, the message gets dropped,
and monitors do not overhear any breach of protocol.

(IIntoNV In)
ImmediateInsertion

NeighV isibleInsertion

An intruder node which simply inserts a message can be overheard by neighboring mon-
itors.

(AssoIns)
AttackerAssociated

ImmediateInsertion

An attacker controlling an associated intruder node is able to send new data from this
node.

(ImpInser)
Impersonation TrivialV alidity

ImmediateInsertion

An intruder node able to do impersonations can insert new data, but only if it is able
to make it valid. Remark that this rule does not require the attacker to be associated.

(IAlt)
AttackerAssociated RoutingMisbehavior

ImmediateAlteration

An attacker which uses associated intruder nodes can use them to change the application
data that is being forwarded by that intruder node, but this is a deviation from the
routing protocol.

(V IAlt)
ImmediateAlteration TrivialV alidity

ImmediateV alidAlteration

An intruder node able to alter a message when their validity is easy to obtain ends up
with an altered valid message.

(V IaltIAlt)
ImmediateV alidAlteration

ImmediateAlteration
, (V altAlt)

V alidAlteration

Alteration
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By definition, a valid alteration is an alteration.

(NV IaltAlt)
ImmediateAlteration

NeighV isibleAlteration
,

(NV IV altV Alt)
ImmediateV alidAlteration

NeighV isibleV alidAlteration

An associated node able to alter messages (valid or not) can do it in a way that will be
visible for any neighbor monitoring that action.

(NV IaltAlt)
ImmediateAlteration TxDirAdjust

Alteration
,

(NV IV altV Alt)
ImmediateV alidAlteration TxDirAdjust

V alidAlteration

By using its directionnal emission capabilities, an intruder node can send the unalterated
version of a message to the monitor nodes and the alterated version to the next hop,
resulting in a stealthy alteration.

(AssoISup)
AttackerAssociated RoutingMisbehavior

ImmediateSuppression

An intruder node which is associated can drop data messages by deviating from the
routing protocol.

(InSupAlt)
ImmediateSuppression ImmediateInsertion

ImmediateAlteration

An intruder node which is both able to delete messages and add messages can do both
at the same time, which would appear as the retransmission of an altered message.

(S)
NeighV isibleSuppression

Suppression

A suppression visible by neighbors is still a supression.

(DirIIntoIn)
ImmediateInsertion TxDirAdjust

Insertion

An intruder node with directionnal emission capabilities can send a new message directly
to its destination, and not to any third-party node, making that action invisible to its
neighbors.

(NV IntoIn)
NeighV isibleInsertion

Insertion
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An insertion visible by neighbors is still an insertion.

(IaltAlt)
NeighV isibleAlteration

Alteration
,

(IV altV Alt)
NeighV isibleV alidAlteration

V alidAlteration

An alteration visible by neighbors is still an alteration.

(SApp)
Suppression

ApplicationDataAltered
, (AApp)

V alidAlteration

ApplicationDataAltered
,

(IApp)
Insertion

ApplicationDataAltered

Suppressions, insertions, and valid alterations end up modifying the data sent to the
application.

Rules related to confidentiality

(HopSnoop)
AttackerAssociated HopConfidentiality

Snooping

If the routing protocol guarantees confidentiality of the application data only when it
is transmitted, having an associated intruder node allows the attacker to recover some
application data. If the attacker was not able to snoop, this would mean that either
the hops cannot read the data, or the attacker does not control an intermediate node to
begin with.

(ConfSnoop)
NoConfidentiality

Snooping

If the data messages contain readable application data, an attacker can simply overhear
the message to recover it.

4.3.4 IDS Inputs and attack detection

An IDS has several inputs, each of these noticing a certain set of anomalies. To know if
an IDS is adequate to prevent an attacker from reaching a given goal, we need to check
if there is a way to reach a target anomaly from accepted facts, in a way that do not
use any of the anomalies covered by the set of this IDS’s inputs. To model this, given
an IDS, we remove all the rules going to anomalies detected by that IDS, leaving only
anomalies which do not trigger detection.
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Definition 4.6 (IDS). An IDS is modeled by the set of anomalies it monitors AI ⊆ A.
We define the set of rules IDS(R,AI) which is the allowed set of rules for the attacker
given the base rules. This set is defined as:

IDS(R,AI) =

�
(R)

T0 ... Tn

A
∈ R

����� A /∈ AI ∧ ∀i, Ti /∈ AI

�

To build AI , one should examine which are the inputs the IDS uses, and for each
of them, which are the anomalies that may be detected by such an input. For in-
stance, message addition or subtraction can be detected by traffic analysis. Then, the
set IDS(R,AI) is used to build the set of rules which will be used by the analysis.

Definition 4.7 (Setting). The set of rules obtained by the union of selected hypothesis,
the rules allowed given a specific IDS, and factual relationships is called a setting. We
denote it by : S = IDS(R,AI) ∪Hyp(H,FI) ∪ F

Once the setting is determined, we can search for undetectable attacks, by looking
at which anomalies are reachable using the rules.

Definition 4.8 (Undetectable attack). Let S be a setting describing an IDS together
with assumptions about the network, protocol and attacker. Let G ∈ A be an anomaly.
We say that there exists an attack resulting in G which cannot be detected by the IDS
described in S if G is reachable using S.

To summarize, in our model, an attack is a chain of anomalies, linked together by
rules. Starting from facts, the attacker mounts his attack using only the rules in the
setting (i.e. the rules that allow him to stay undetected). Each of those rules allow
him to progress to further anomalies. Therefore, analyzing whether the attacker can
reach a certain anomaly in a specific setting allows us to know whether an undetectable
attack is possible against that IDS. Also, we focus only on attacks which change the data
to the application, impersonations, and node compromise. All considerations linked to
the performances and availability of the network are not captured by our model, and
constitute a natural future extension of this work.

4.4 Analysis of existing IDS

We now use the inputs and the intruder model previously described to evaluate two
existing IDS, [OM05b] and [dSMR+05], and show the weaknesses and the possible im-
provements we discovered.

4.4.1 A Real-Time Node-Based Traffic Anomaly Detection Algorithm
[OM05b]

In [OM05b], Ilker Onat and Ali Miri present an anomaly-based IDS based on two inputs,
received signal strength, and packet arrival rates. They make several hypothesis: the
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routing protocol is based on a tree (such as GBR), nodes are static and can uniquely
identify neighbors, all nodes use the same hardware and software, and all nodes use con-
stant transmission power. Our model does not take into account movement of nodes, and
assumes that neighbors can be identified. Thus, the only assumption we need to trans-
pose is the constant transmission power. This is modeled by not adding TxPowAdjust
to the hypothesis set.

We now build the set AI of anomalies the IDS can detect. The first input used by
this IDS is a packet arrival rate analysis. This input is able to discover any attacker that
stops or inserts more messages than expected from an honest node. The corresponding
anomalies in our model are Suppression and Insertion. Each node running this IDS also
observe the received signal strength, which will detect the anomalies OmniImpersonation
and DirImpersonation. We therefore have our set of anomalies AI = {Suppression,
Insertion, OmniImpersonation, DirImpersonation}.

The next step is to set the attacker’s goal. In their paper, the authors address node
impersonation, and resource depletion by excessive generation of traffic. As the latter
is not covered by our model, we focus on impersonation first, and then consider a more
general anomaly, ApplicationDataAltered.

In order to find if an attacker in our model is able to impersonate honest nodes, we
need to choose the facts modeling the attacker. The IDS supposes that attackers have
the ability to impersonate honest nodes (fact CanImpersonate), and we also suppose
that they have adjustable antenna patterns (fact TxDirAdjust) as no assumptions were
made about this in the paper. We therefore set FI = {CanImpersonate, TxDirAdjust}.

From the facts and the IDS description, we compute the set of rules S, and search
for a way to reach Impersonation using S. We see that in this case, the tool cannot
apply any rules, and so our system did not find weaknesses on this aspect of the IDS.

However, the assumption that the attacker cannot modify its intruder nodes’s trans-
mission power is strong, as such hardware is readily available. If we relax that assumption
by removing TxPowAdjust from FI , we find that the attacker can now reach Imperson-
ation by doing an impersonation with adjusted transmission power, effectively bypassing
the IDS input. To prevent this, the IDS would need a way of detecting this behavior.

We can also consider other intruder goals. For instance, we wonder if an attacker
would be able to alter the data going to the application (ApplicationDataAltered). Let
us assume that nodes can be compromised by an attacker (fact CompromisableNodes),
and that validity is easy to fake for the attacker (fact SimpleValidity). As we assumed
that nodes can be compromised, and there are no protections against this in the IDS, the
intruder can take control of some nodes, and make them alter the data they retransmit.
As we assumed that an attacker can fake the validity of a message, the results of that
alteration is valid, thus the altered data will get delivered without any alert.

This attack path uses the fact that traffic flow analysis does not protects against
message alterations. To prevent this, the IDS would need countermeasures preventing
message alterations, such as choosing the right protocols to have integrity and authentic-
ity of the messages, or using more IDS inputs such as the ones used by [dSMR+05]. The
other way to prevent this attack would be to prevent the compromise of nodes, either
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through specific inputs (see for instance [YWZC07] or [SXZC07]).

4.4.2 Decentralized Intrusion Detection [dSMR+05]

In [dSMR+05], the authors propose an IDS for WSNs based on promiscuous listening.
The network contains monitoring nodes, which observe their neighbor’s behavior. If
their neighbors break one of a series of rules, an alert is raised. To avoid confusion with
the rules from our model, we call the rules from this IDS behavior rules. They are the
following: A node must receive messages regularly (the interval rule), neighbors must
retransmit packets quickly (the delay rule), without altering them, nor repeating them.
Also, transmissions must come from a sensible distance, and there must not be too many
collisions.

We first build the set of monitored anomalies AI . The interval rule detects Suppres-
sion and Insertion, as both addition or suppression of messages alters downstream traffic
flows. The integrity rule detects NeighVisibleAlteration and NeighVisibleValidAlteration,
as they are based on promiscuous monitoring. The delay rule detects NeighVisible-
Suppression. The last three behavior rules are not considered in our model, as we
do not model any sort of distance measurements for the range rule, nor availability-
related anomalies regarding the collision rule. We therefore have our set of anoma-
lies AI = {Suppression, Insertion, NeighVisibleAlteration, NeighVisibleValidAlteration,
NeighVisibleSuppression}.

There are no specific hypothesis about the nodes in the paper. Regarding facts,
we include CompromisableNodes to allow the attacker to compromise nodes. We also
add TxDirAdjust to model the attacker’s access to advanced hardware. Regarding the
protocols, we add EndToEndConfidentiality to model a protocol ensuring that the data
stays confidential, and SimpleValidity to be able to find an attack. Thus, we have
FI = {CompromisableNodes, TxDirAdjust, EndToEndConfidentiality, SimpleValidity}.
For the intruder goal, we select ApplicationDataAltered as it encompasses most of what
this IDS aims to prevent. Our model shows that there is an undetectable attack.

Similarly to the previous IDS, this attack stems from the assumption that the at-
tacker can compromise honest nodes, as there are no countermeasures regarding these
anomalies. With an associated intruder node, the attacker can therefore modify the data
being routed, as we assumed intruder nodes can alter data while keeping packets valid.
However, the IDS makes honest nodes monitor their neighbors for such a behavior. This
is where we use the adjustable antenna patterns: with these, the intruder node is able
to send the altered packet to its destination, while sending the initial version of that
packet to the monitors. This way, the attacker can alter data, while appearing to satisfy
the behavior rules triggering the intrusion detection. Then, that altered packet will be
forwarded to its destination and delivered, effectively altering application data, which is
the goal we set.

The straightforward way to prevent this specific attack in our model is to use a proto-
col that guarantees the validity of the transmitted message. Indeed, when removing the
SimpleValidity fact, our tool was not able to find an undetectable attack. Alternatively,
one may try to prevent any association of the intruder, through for instance tamper-
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resistant nodes and secure software. This way, attackers will not be able to alter the
traffic going through the network, and this would also prevent an attacker from reaching
ApplicationDataAltered in our model.

4.5 InDICE : INtrusion Detection Inputs Coverage Eval-
uation

We built a prototype, called InDICE (for INtrusion Detection Inputs Coverage Evalua-
tion) which automatically goes through all the reachable anomalies, given an IDS and
facts. It is available online, along with a manual, in [JL13c]. The examples in the pre-
vious section were analyzed using that tool, and the analysis took less than a second for
each of them on a regular laptop. We now describe succinctly that tool. w

Tool usage First, the command-line arguments allow to determine the setting used
in the following analysis. For each of those arguments:

• The character ’+’ followed by a fact adds it to FI .

• The character ’-’ followed by an anomaly adds it to the IDS-observed set AI which
is forbidden to the attacker.

• The character ’%’ followed by an anomaly marks it as the target. In this case, the
tool outputs whether the anomaly is reachable for an intruder.

The output of the tool is made of two parts. The first one is the description of the
setting, and the second part describes which rules are applied, and what are the resulting
anomalies. For instance, when the tool outputs:

... Reaching TxPowImpersonation using rule PowI from (TxPowAdjust and

CanImpersonate)

This means that since the anomalies/facts TxPowAdjust and CanImpersonate hold,
the tool used rule (PowI) to conclude the anomaly TxPowImpersonation. If no such lines
are displayed, this means that no rules could be applied.

Example analysis We now present the tool usage and interpretation we used for the
analysis of the first IDS, a Real-time Node-based IDS, which analysis is available in
Section 4.4.1.

In this IDS, the monitored anomalies are the following: Suppression, Insertion, Om-
niImpersonation and DirImpersonation. The facts we chose for the basic analysis, fol-
lowing the description of [OM05b], are CanImpersonate and TxDirAdjust.

The first analysis for this IDS follows the hypothesis of the paper. We target Imper-
sonation, to evaluate whether their countermeasures are enough to cover all the cases.
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We found that given their hypothesis, the IDS is indeed secure in our model, as we could
not reach any target anomaly.

[rjamet@dinah InDICE]$ ./indice.pl +CanImpersonate +TxDirAdjust -Suppression

-Insertion -OmniImpersonation -DirImpersonation %Impersonation

[?] Proto : usage ./indice.pl [%TargetAnomaly] +Fact1 +Fact2 -Anomaly1

-Anomaly2

[+] Fact : CanImpersonate

[+] Fact : TxDirAdjust

[+] IDS forbids : Suppression

[+] IDS forbids : Insertion

[+] IDS forbids : OmniImpersonation

[+] IDS forbids : DirImpersonation

[+] Opening rules...

[+] Read 42 rules and factual relationships, running the analysis

[+] Finished : did not reach Impersonation, no undetectable attack using our

model.

In the second phase, we add the TxPowAdjust fact to signify that the attacker can
now adjust its transmission power. Note that this goes against one of the hypothesis
of the paper. With this setting, we find that an attacker can bypass the transmission
power countermeasure, and therefore reach the Impersonation anomaly.

[rjamet@dinah InDICE]$ ./indice.pl +CanImpersonate +TxDirAdjust +TxPowAdjust

-Suppression -Insertion -OmniImpersonation -DirImpersonation %Impersonation

[?] Proto : usage ./indice.pl [%TargetAnomaly] +Fact1 +Fact2 -Anomaly1

-Anomaly2

[+] Fact : CanImpersonate

[+] Fact : TxDirAdjust

[+] Fact : TxPowAdjust

[+] IDS forbids : Suppression

[+] IDS forbids : Insertion

[+] IDS forbids : OmniImpersonation

[+] IDS forbids : DirImpersonation

[+] Opening rules...

[+] Read 42 rules and factual relationships, running the analysis

... Reaching TxPowImpersonation using rule PowI from (TxPowAdjust and

CanImpersonate)

... Reaching DirTxPowImpersonation using rule DirPowI from (TxPowAdjust and

TxDirAdjust and CanImpersonate)

... Reaching Impersonation using rule TtoI from (TxPowImpersonation)

[+] Finished : reached Impersonation, there is an undetectable attack using

our model.

4.6 Conclusion and future work

We presented a characterization and modeling of the different data sources used in
network-based intrusion detection systems, focusing on wireless ad-hoc networks. We
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found that a lot of IDS from the literature base their decisions on a small set of distinct
inputs, which we have listed in the first part of this chapter. We then used those inputs
to build a decision aid in order to help IDS designers to locate some of the oversights of
their algorithms, depending on the protocols used in their network. Finally, we provided
InDICE, a prototype implementation of this model.

In the future, we would like to further refine that model and take into account
various families of protocols, especially when looking at the low levels of the protocol
stack, such as the medium access protocols. Also, we would like to extend our model to
include availability attacks.

It would also be interesting to consider the accuracy of the detection processes, in-
stead of only considering how an attacker can bypass defenses. This way, if we know
that some aspect of the IDS does not reliably detect some attacks, and that this unre-
liability can be estimated, then the model could be used to discover the weak points of
the system. This information will also indicate where additional security would benefit
the most. The downside of such a system when compared to our actual model is that it
requires taking into account the detection mechanisms of IDS, adding a fair amount of
analysis in order to obtain results.
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Chapter 5

Conclusion

Contents
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5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.1 Summary

We introduced wireless ad-hoc networks (WANETs) and wireless sensor networks (WSNs)
in Chapter 1, along with the field of formal verification of cryptographic protocols.

In Chapter 2, we presented SR3, a Secure, Resilient, Reputation-based Routing al-
gorithm built for resiliency and fairness [ADJL13b, ADJL13a]. This protocol is a con-
vergecast routing protocol designed to use only low-cost primitives and to have a small
memory footprint. SR3 is therefore well-suited for WSNs, where all these restrictions
apply. SR3 builds its routing from scratch, by randomly routing its initial messages and
by learning from their behavior. All nodes keep track of recently acknowledged messages
for their neighbors, while obsolete data get naturally replaced. This allows our proto-
col to be self-adaptive. We formally proved three security properties of this protocol
using two automated tools: CryptoVerif [Bla08], which uses the computational model,
and Scyther [Cre08], which uses the symbolic model. SR3’s messages are confidential,
unforgeable (this property implies their integrity and authenticity), and the acknowl-
edgment for a given message can only be built by an adversary if that message reached
the sink. Our reputation system rests upon this assumption. SR3 is built to provide
a good delivery rate, even in presence of internal attackers. We evaluated this ability
using simulations, using Sinalgo [Dis08], a discrete events network simulator. We com-
pared SR3 to several other algorithms from the literature, when facing various attacker
scenarios: blackholes, selective forwarding attackers, sybil nodes, and wormholes. In all
of these cases, SR3 is able to keep a good delivery rate, especially when the degree of
the network is low. Furthermore, SR3 can recover from attacks where the behavior of
intruders evolves over time. Our implementation of SR3 in Sinalgo is available online
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at [ADJL13c], along with the security proofs of the algorithm (which are also available
in Appendix A).

Our second contribution is presented in Chapter 3. Routing security is a notion
encompassing multiple properties, and we propose a formalization of one of these, which
we named incorruptibility. A routing protocol is incorruptible if there is no way for
an attacker to influence how messages are routed by altering them. To formalize this
idea, we propose a measure of distance between how two protocols route messages. This
measure is then used in a computational definition of the incorruptibility of a routing
protocol, when facing an external attacker. The core idea of this measure is to observe
the probability of the messagem reaching a node a before a node b, compared to the same
probability for an attacker-modified message m�. We provide some examples to illustrate
this measure. In the next part, we generalized this notion to bounded corruptibility,
where a protocol, when attacked, behaves somewhere between two bounds formalized by
routing protocols. We also provide variants of these two notions to model attackers who
do not alter or redirect messages, and then we supply example protocols and proofs.

The third contribution deals with intrusion detection systems (IDS) for wireless ad-
hoc networks [JL13a]. Their decision procedures are well-studied, so we chose to focus
on their sources of data. In a first time, we do a survey of which data sources are used
by IDS for WANETs. We propose a classification for these inputs, based on the level
of collaboration between nodes they require, and which protocol level do they rest on.
In a second time, we propose InDICE (Intrusion Detection Inputs Coverage Evaluation)
a model to automatically discover flaws in IDS, based only on their inputs. We use
a rule-based model centered on anomalies in order to represent attacker progression
towards certain goals. Then, we discover which anomalies in the graph may trigger one
of the IDS inputs, and finally, based on certain assumptions (facts) depending on the
attacker, topology and protocols, the analysis propagates through all anomalies which
are guaranteed not to trigger detection. The model then concludes whether the attacker
is able to reach its objectives without detection. We implemented this model in a tool,
which is freely available online at [JL13c].

5.2 Perspectives

We have several leads on how our study of SR3 could be expanded. First of all, we
believe SR3 is well-suited for networks with some mobile nodes, and maybe also for
networks where there is global slow mobility. Algorithmically, only a small change is
required in SR3: when a node disappears from the neighbors, the current node should
remove all items relevant to that node from its lists. We could not evaluate SR3 in these
cases due to technical reasons, as Sinalgo supports mobility only when in its synchronous
mode of operation, and we use the asynchronous mode for our model. Another obvious
perspective is to experiment the algorithm on a real wireless sensor network. A testbed
implementation and test campaign is currently on hold. The protocol itself could also
be expanded. Our first idea is to adapt the algorithm to support variable-length data
packets. This would likely require a block cipher chaining mode, but the security proofs
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would need to accommodate this. Furthermore, an analysis using a network model which
takes into account transmission times would be required. We also remark that SR3 is
well suited to applications requiring a good average delivery rate over the whole lifespan
of the network, but some specific attacks may strongly reduce the delivery rate for small
amounts of time. We would like to investigate mechanisms that react to attacks (maybe
drawing some inspiration from CASTOR [GPP+10]).

Regarding the incorruptibility notion, there are several points that could be improved
upon in our definition of an incorruptible protocol. Overall, our definition needs to be
extended in order to be able to accommodate more complex routing protocols. First
of all, we are aware that the restriction on the modification of K during the game is
a very restricting working hypothesis. However, this allows us to assume messages are
routed independently of each other for several protocols, and this assumption is critical
to our proofs. In a second time, our definition could be upgraded to take into account
internal intruders, which have full read access over one or more node’s K[v]. This would
require to change a check in the game definition with something to ensure the message is
indeed altered (and not merely re-created) in order to find meaningful attacks. Finally,
the bounded corruptibility notion is quite hard to explain, and using routing protocols
as bounds is not intuitive either. A graphical representation of the probabilities of
the experiments succeeding would be useful. However, there are a lot of parameters,
which complexifies the representation and require interactivity. We therefore would like
to build such an interactive representation of the incorruptibility bounds for a set of
sample protocols.

Our work on intrusion detection systems could be expanded in several ways. First,
the model could be reused for IDS which are not focused on WANETs, such as host-
based IDS for instance, and one can also imagine a broader model for the analysis of any
IDS. Regarding the domain expansion, we avoided any availability concern on purpose,
at it depends a lot on the link layer protocols. We think that there are opportunities
for the improvement of the model on this aspect for an expert of that layer. There
is also the possibility to add some sort of detection probabilities to the model. This
would bring it one step closer to the attack tree model, increasing its precision, but at
the cost of complexity. Finally, our model relies on user-provided assumptions to model
the properties of the protocol stack used, such as data confidentiality or a guarantee of
message unforgeability checked at each hop. However, a lot of protocols have claimed
to provide such guarantees, while they actually do not. Ideally, a greater trust in the
system’s conclusions could be achieved by providing the means to analyze protocols
together with the InDICE model, so that no ambiguities remain on the meaning of our
assumptions.
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Appendix A

Cryptographic modeling of SR3

We provide in this annex the modeling files we used with Scyther and CryptoVerif in
Chapter 2.

A.1 CryptoVerif

A.1.1 Data confidentiality

(************** SR3 FG modelization **************)

(*

SR3 is a routing protocol for wireless sensor

networks. Packets look like :

( E_{k_src}(Data || N), H(N), src )

Here’s the FG game, UF in the other file.

*)

proof {

crypto prp(enc); (* We’ve got to start with that, CV is stuck otherwise *)

auto;

success

}

(************** Parameters **************)

(* Our number of queries to the packet-generation oracle *)

param qGen [noninteractive].

param qHash [noninteractive].

(************** Basic types **************)

type nonce [large, fixed]. (* also models nonces *)

type data [large, fixed].

type block [large, fixed].
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fun concat(data, nonce):block [compos].

param N [noninteractive]. (* useless and necessary *)

(*

Important and non-trivial : a random

block is undistinguishable from the

concatenation of a random data and

a random nonce.

*)

equiv

!N new b:block; a() := b

<=(0)=> [manual]

!N new d:data; new n:nonce; a() := concat(d,n).

(************** Block cipher **************)

type keyseed [large,fixed].

type key [large,fixed]. (* for the cipher *)

proba PRPProba. (* advprp(enc) *)

expand PRP_cipher(keyseed, key, block, kgen, enc, dec, PRPProba).

(************** Hash function **************)

type hashkey [large,fixed].

(* input type : nonces *)

type hashout [large, fixed].

(* fun hash(hashkey, nonce):hashout . *)

expand ROM_hash(hashkey, nonce, hashout, hash).

(************** Queries **************)

(* the standard FG stuff *)

query secret b.

(*************** Packet generation oracle ******)

channel OGenIn, OGenOut.

let OGen =

!qGen

in (OGenIn, (DCPA:data));

new n_oracle_cpa : nonce;

let p_oracle_cpa = ( enc(concat(DCPA, n_oracle_cpa), k), hash(hk,n_oracle_cpa))

in

out (OGenOut, (p_oracle_cpa,n_oracle_cpa)).

channel OHashIn, OHashOut.

let OHash =

!qHash

in(OHashIn, hash_query:nonce);

out(OHashOut, hash(hk,hash_query)).

(*************** The game itself ****************)
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channel keyinitin, keyinitout, gamein, gameout.

process (

in(keyinitin, ());

new hk : hashkey;

new ks : keyseed;

new n_challenge : nonce;

new b : bool;

let k = kgen(ks) in

out(keyinitout,());

(

in(gamein,(D0:data,D1:data));

let cc = concat( (if b then D0 else D1) , n_challenge ) in

let p_challenge = ( enc(cc, k), hash(hk,n_challenge) ) in

out( gameout, (p_challenge, n_challenge) )

) | OHash | OGen

)

A.1.2 Nonce confidentiality

(************** SR3 nonce secrecy modelization **************)

(*

SR3 is a routing protocol for wireless sensor

networks. Packets look like :

( E_{k_src}(Data || N), H(N), src )

*)

(************** Parameters **************)

(* Our number of queries to the packet-generation oracle *)

param qGen [noninteractive].

param qHash [noninteractive].

param qAnswer [noninteractive].

(************** Basic types **************)

type nonce [large, fixed]. (* also models nonces *)

type data [large, fixed].

type block [large, fixed].

type nodeId [large, fixed].

fun concat(data, nonce):block [compos].

param N [noninteractive]. (* useless and necessary *)

(*

Important and non-trivial : a random

block is undistinguishable from the

concatenation of a random data and

a random nonce.

*)

equiv
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!N new b:block; a() := b

<=(0)=> [manual]

!N new d:data; new n:nonce; a() := concat(d,n).

(************** Block cipher **************)

type keyseed [large,fixed].

type key [large,fixed]. (* for the cipher *)

proba PRPProba. (* advprp(enc) *)

expand PRP_cipher(keyseed, key, block, kgen, enc, dec, PRPProba).

(************** Hash function **************)

type hashkey [large,fixed].

(* input type : nonces *)

type hashout [large, fixed].

expand ROM_hash(hashkey, nonce, hashout, hash).

(************** Queries **************)

query event bad ==> false.

(*************** Packet generation oracle ******)

channel OGenIn, OGenOut. let OGen =

!qGen

in (OGenIn, (DCPA:data));

new n_oracle_cpa : nonce;

let p_oracle_cpa = ( enc(concat(DCPA, n_oracle_cpa), k), hash(hk,n_oracle_cpa))

in

out (OGenOut, (p_oracle_cpa,n_oracle_cpa)).

(**************** Hash oracle *******************)

channel OHashIn, OHashOut.

let OHash =

!qHash

in(OHashIn, hashOHash:nonce);

out(OHashOut, hash(hk,hashOHash)).

(* win oracle *)

event bad().

channel WIn, WOut.

let OWin = !qAnswer

in(WIn,( n:nonce));

if (n = n_challenge) then

event bad;

out(WOut, ()).

(*************** The game itself ****************)

channel keyinitin, keyinitout, gamein, gameout.

process (

in(keyinitin, ());

new hk : hashkey;

new n_challenge : nonce;
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new ks : keyseed;

let k = kgen(ks) in

out(keyinitout,());

(

(

in(gamein,(D:data));

let cc = concat( D , n_challenge ) in

let p_challenge = ( enc(cc, k), hash(hk,n_challenge) ) in

out( gameout, (p_challenge) )

) | OGen | OHash | OWin

)

)

A.1.3 Packet unforgeability

(************** SR3 UF modelization **************)

(*

SR3 is a routing protocol for wireless sensor

networks. Packets look like :

( E_{k_src}(Data || N), H(N), src )

*)

(************** Parameters **************)

(* Our number of queries to the packet-generation oracle *)

param qGen [noninteractive].

param qVerif [noninteractive].

param qHash [noninteractive].

(************** Basic types **************)

type nonce [large, fixed]. (* also models nonces *)

type data [large, fixed].

type block [large, fixed].

type nodeId [large, fixed].

fun concat(data, nonce):block [compos].

param N [noninteractive]. (* useless and necessary *)

(*

Important and non-trivial : a random

block is undistinguishable from the

concatenation of a random data and

a random nonce.

*)

equiv

!N new b:block; a() := b

<=(0)=> (*undistinguishable*)

!N new d:data; new n:nonce; a() := concat(d,n).
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(************** Block cipher **************)

type keyseed [large,fixed].

type key [large,fixed]. (* for the cipher *)

proba SPRPProba. (* advprp-cca(enc) *)

expand SPRP_cipher(keyseed, key, block, kgen, enc, dec, SPRPProba).

(************** Hash function **************)

type hashkey [large,fixed].

(* input type : nonces *)

type hashout [large, fixed].

expand ROM_hash(hashkey, nonce, hashout, hash).

(************** Queries **************)

table queries(data,nonce).

event bad().

query event bad() ==> false.

(*************** Packet generation oracle ******)

channel OGenIn, OGenOut.

let OGen =

!qGen

in (OGenIn, (DGen:data));

new NonceGen : nonce;

insert queries(DGen,NonceGen);

let c = enc(concat(DGen, NonceGen), k) in

let h = hash(hk,NonceGen) in

out( OGenOut, (c, h, NonceGen)).

(*************** Packet verification oracle ******)

channel OVerifIn, OVerifOut.

let OVerif =

!qVerif

in (OVerifIn, (cVerif:block,hVerif:hashout));

let concat(dVerif:data,nVerif:nonce) = dec( cVerif, k ) in

let ( verifSuccess:bool ) = ( hash( hk, nVerif ) = hVerif ) in

out(OVerifOut, (verifSuccess)).

(**************** Hash oracle *******************)

channel OHashIn, OHashOut.

let OHash =

!qHash

in(OHashIn, hashOHash:nonce);

out(OHashOut, hash(hk,hashOHash)).

(*************** The game itself ****************)

channel SetupIn, SetupOut, ChallengeIn, ChallengeOut.

process (

in(SetupIn, ());

new hk : hashkey; (*public, used for the nonces *)

new ks : keyseed;

let k = kgen(ks) in
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out(SetupOut,());

(

in (ChallengeIn, (c:block,h:hashout));

let concat(dV:data,nV:nonce) = dec(c,k) in

get queries(d2,n2) suchthat (nV=n2 && d2=dV) in

out(ChallengeOut, ())

else

if (h = hash(hk,nV)) then (

event bad();

out(ChallengeOut, ())

) else

out(ChallengeOut, ())

) | OHash | OGen | OVerif

)

A.2 Scyther

hashfunction H;

usertype Key;

protocol sr3(V,S)

{

role V

{

fresh Nv: Nonce;

fresh D:Ticket;

send_1(V,S,{D,Nv}k(V,S),H(Nv),V);

recv_2(S,V,Nv,V);

claim_V1(V, Niagree);

claim_V2(V, Secret, D);

claim_V3(V, Secret, k(V,S));

claim_V4(V, Nisynch);

claim_V5(V, Secret, Nv);

}

role S

{

var D:Ticket;

var Nv:Nonce;

recv_1(V,S,{D,Nv}k(V,S),H(Nv),V);

send_2(S,V,Nv,V);

claim_S1(S, Niagree);

claim_S2(S, Secret, D);

claim_S3(S, Secret, k(V,S));

claim_S4(S, Nisynch);

claim_S5(S, Secret, Nv);

}

}
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Appendix B

Introduction en français

Contents

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.2 Contributions et organisation . . . . . . . . . . . . . . . . . . . 151

B.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.1 Introduction

Les réseaux sans-fil deviennent omniprésents. Téléphones, systèmes de paiement, infras-
tructure urbaine, ordinateurs : de plus en plus d’objets utilisent une forme ou une autre
de communication sans-fil pour former ou rejoindre des réseaux, qu’ils soient par essence
locaux ou globaux (Internet).

Dans cette thèse, nous nous intéressons aux réseaux ad hoc sans-fil (WANET). Un
réseau ad hoc est un réseaux dans lequel tous les nœuds routent les messages, sans
s’appuyer sur une infrastructure dédiée. Les communications dans ces réseaux deman-
dent la coopération des nœuds intermédiaires si l’émetteur n’est pas dans le voisinnage
direct du destinataire.

Ces réseaux semblent de plus en plus la meilleure réponse à de nombreux problèmes
de collecte et de dissémination de données. Par exemple, les auteurs de [AGS11] utilisent
un WANET pour partager une connection centrale à Internet parmi les habitants d’une
petite ville. Ceci permet de connecter tous les habitants de cette ville, géographiquement
étendue, avec des coûts raisonnables comparés au câblage chaque habitation. On peut
aussi illustrer ceci avec un autre système, décrit dans [GSCL+13]. Le projet Serval
est construit sur le système d’exploitation Android pour téléphones mobiles. Il per-
met la création d’un WANET et fournit des services l’exploitant entre un groupe de
personnes équipées de smartphones en se servant de leurs capacités de communication
sans-fil. L’intérêt de cette méthode est d’avoir une connectivité même en l’absence
d’infrastructure, par exemple après une catastrophe naturelle. Dans cette situation, les
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Figure B.1: Une mote TelosB

utilisateurs de ce système peuvent se joindre avec des appels sécurisés, faire remonter
des informations, et diverses autres applications.

Les réseaux de capteurs sans fil (WSN) sont une sous-famille des réseaux ad hoc sans-
fil. Ce sont des réseaux constitués de capteurs et de répéteurs interconnectés, construits
pour fournir une connectivité à prix plus bas que les réseaux filliaires. Les capteurs
dans ce contexte sont typiquement des objets fonctionnant sur batterie, qui génèrent des
données à propos de leur environnement (e.g. température) pour des services spécifiques
(e.g. surveiller d’éventuels feux de forêt). Par exemple, les motes TelosB (Figure B.1)
sont équipées avec un microcontrolleur de 8Mhz et 10KB de RAM, qui limite leur ca-
pacité à utiliser des algorithmes cryptographiques complexes. Ces motes sont équipées
de radios aux normes ZigBee.

Les utilisations de ces types de réseaux sont très variées : par exemple, une étude
des WSN aux Pays-Bas [MVdZVD+10] a montré plusieurs utilisations de ces réseaux en
production. L’un d’entre eux, nommé GuArtNet1, est utilisé pour surveiller les objets
de valeur dans un musée. Plusieurs capteurs sont placés sur les objets individuels, et
surveillent leur mouvement. Une alerte est levée et propagée au reste du système, à
travers des répéteurs, quand un objet est déplacé : l’information remonte à un nœud
central, le puits, qui réagira ensuite. Le puits n’est généralement pas limité en puissance
ou batterie, et peut donc collecter les informations (et les heartbeats) des capteurs, de
manière à lever une alerte dès que des problèmes de brouillage ou de batterie apparais-
sent.

Spécificités des WANET

Tous les WANET ont des spécificités liées à leur nature sans-fil. Leurs communica-
tions sont fortement liées aux antennes, qui peuvent être omnidirectionnelles ou avoir
différents schémas d’émission directionnelles, qui émettent plus fort dans certaines direc-
tions. De plus, certaines techniques permettent aux émetteurs de diriger activement leurs
émissions, en se servant par exemple de phased array antennas [Han09]. De plus, un lien

1http://www.sownet.nl/index.php/en/products/guartnet
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peut être symétrique si les communications sont bidirectionnelles, ou asymétrique dans le
cas contraire. Finalement, la qualité d’un lien fluctue au fil du temps, étant donné qu’ils
sont influencés par de nombreux facteurs externes au réseau. Ces spécificités doivent
être prises en compte dans la conception de protocoles pour WANET.

De plus, certaines difficultés sont liées à la nature ad hoc du réseau. Ces réseaux
sont souvent collaboratifs, ce qui permet aux nœuds malicieux d’avoir plus d’effet, qu’ils
soient construits par la compromission de nœuds, ou parce que le réseau est ouvert par
design. De plus, certains réseaux sont dynamiques et/ou mobiles par nature, ce qui
doit être pris en compte par les protocoles. Enfin, le matériel utilisé par les nœuds
peut avoir des caractéristiques importantes, comme par exemple des limitations fortes
sur la capacité des batteries, la puissance de calcul, le réseau peut être hétérogène, les
communications très peu fiables ou à bande passante faible, etc... Tous ces facteurs sont
importants et doivent être considérés.

Propriétés de sécurité et systèmes sécurisés

Les utilisateurs de ces systèmes ont des exigences de sécurité. L’exemple de GuArtNet
l’illustre : intuitivement, un opérateur s’attend à ce que les alertes soient authentiques,
à ce que la présence de heartbeat implique la présence du nœud, et que si une alerte est
levée, elle atteindra le puits rapidement. La plupart des applications construites sur des
réseaux ad-hoc impliquent ce type d’attentes, si ce n’est toutes. Elles correspondent à
des propriétés de sécurité, comme par exemple la confidentialité ou l’authentificiation.

Pour prouver qu’un protocole satisfait ces propriétés, deux modèles principaux sont
utilisés : le modèle calculatoire, et le modèle symbolique. Ces deux modèles ont été créés
pour prouver des constructions cryptographiques, et même s’ils ont évolué séparément
à leurs débuts, les liens entre eux ont été établis dans [AR00].

• Le modèle calculatoire [GM84, GMW91, BDJR97, BKR00] représente l’attaquant
comme une machine de Turing probabiliste, avec un temps d’exécution polynomial
et une mémoire polynomiale. Ce modèle permet d’obtenir une borne haute sur la
probabilité qu’un attaquant arbitraire casse la propriété analysée. Par exemple, il
a permis d’obtenir une preuve de sécurité pour le système RSA-OAEP [FOPS01].

• En ce qui concerne le modèle symbolique [DY83, BAN89, AG97], les données sont
représentées par des symboles, qui peuvent être combinés pour obtenir d’autres
symboles. Dans ce modèle, l’attaquant est capable de jouer des nouvelles sessions
du protocole, et de créer des nouveaux messages dérivés de ses connaissances. Ce
modèle a été utilisé pour découvrir une attaque sur le protocole de Needham-
Schroeder [Low95].

Champ d’examen d’une preuve et sécurité en profondeur

Les preuves de sécurité garantissent que dans le cadre d’un modèle spécifique, le pro-
tocole analysé garantit la propriété de sécurité observée. Ces preuves peuvent être au-
tomatisées, auquel cas les étapes de la preuves sont clairement identifiées, évitant ainsi
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toute erreur possible dans le cas de preuves manuelles. Cependant, comme avec tous
les modèles, il se peut qu’il y aie des différences avec la réalité, et les attaques hors du
champ d’examination ne seront pas détectées.

Pour illustrer ceci, on peut mentionner l’attaque récente (Mars 2014)2 sur la suite de
protocoles TLS, couramment utilisée sur Internet (et adoptée par l’IETF [DR08]). TLS
a un dispositif nommé three-way handshake, utilisé pour créer des canaux sécurisés entre
les participants.

TLS propose plusieurs protocoles durant ce handshake, et un attaquant peut se servir
de trois d’entre eux afin de rediriger des messages entre deux participants Alice et Bob,
de manière à ce que les deux pensent communiquer directement entre eux. Cependant,
la vulnérabilité permet à l’attaquant d’injecter des données dans ce que Bob pense
avoir reçu d’Alice. C’est une brèche d’authentification et d’intégrité, dûe au mécanisme
de secret mâıtre de TLS permettant de réutiliser des valeurs déja vues. Dans notre
contexte, l’intérêt est de voir que TLS a été formellement prouvé de nombreuses fois
dans divers modèles de sécurité [Pau99, HSD+05, GMP+08, MSW08, BFK+13]. On
peut aussi mentionner que plusieurs vulnérabilités ont été précédemment trouvées dans
TLS, autant au niveau protocole que dans ses implémentations (par exemple, [CHVV03,
DR11, DR12, AFP13]). Cette vulnérabilité dans TLS montre que même si des preuves
formelles prouvent la sécurité d’un système dans un modèle donné, certaines attaques
peuvent ne pas être dans le champ d’examination. Dans ces cas là, avoir de la sécurité
en profondeur est importante : par exemple, un système de détection d’intrusion peut
être capable de détecter ce type d’attaques, soit par leur signature (un comportement
caractéristique d’une attaque), soit plus généralement une anomalie (un comportement
inhabituel du système). Ensuite, un système de réponse aux intrusions pourra réagir,
par exemple en alertant un humain pour une analyse subséquente.

Évolution des besoins

Dans certains cas, des systèmes qui n’étaient pas critiques au moment de leur création
sont devenus critiques. Des exemples de ce types abondent dans les protocoles utilisés
sur Internet, comme ce réseau reposait initialement sur la confiance mutuelle entre ses
acteurs. Cet état d’esprit a fortement influencé l’infrastructure logicielle sous-jacente à
ce réseau.

Par exemple, le protocole ARP (Address Resolution Protocol, standardisé par l’IETF
dans [Plu82]) est fréquemment utilisé dans les réseaux locaux pour faire le lien entre les
adresses logiques (IP) et physiques (MAC). Schématiquement, un nœud en cherchant un
autre broadcaste un paquet demandant ”qui a cette IP”, requête à laquelle répondra le
possesseur de l’IP. Ce protocole n’inclut cependant pas de mécanisme d’authentification,
et un intrus peut se servir de ceci pour usurper une addresse IP sur son réseau local. Sur
des réseaux filiaires, ce risque semble assez faible, à condition de contrôler qui est câblé.
Cependant, ce protocole est utilisé aussi dans le cadre de réseaux WiFi, ou la menace
est plus sérieuse. Pire, si le réseau est ouvert, n’importe quel intrus peut usurper une

2https://secure-resumption.com/
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addresse IP, facilitant les attaques de l’homme du milieu (MITM). On peut aussi citer
BGP, un autre protocole dans cette situation, qui décide la manière dont les paquets
seront routés les paquets entre entités autonomes dans Internet. Des incidents arrivent
encore régulièrement depuis une vingtaine d’années, ou une entité déclare des informa-
tions erronées voire malicieuses, qui influent la manière dont sont routés les messages
légitimes. Cette influence peut être utilisé à des fins de surveillance, dégrader artifi-
ciellement la qualité de service d’une entreprise, par exemple. Pour répondre à ce type
de problème, nous proposons dans le Chapitre 3 une mesure quantitative de l’influence
possible d’un attaquant sur les routes utilisées par un message, et nous définissons la
propriété correspondante (nommée incorruptibilité).

B.2 Contributions et organisation

Cette thèse est construite en trois grands chapitres. Notre première contribution est
SR3, un protocole Sécurisé de Routage, qui est Résilient et à base de Réputation. Ce
protocole est construit pour le routage convergent dans les WSN, que nous présentons
dans le Chapitre 2. Nous avons conçu ce protocole comme une marche aléatoire qui est
renforcée à l’aide d’un mécanisme de réputation, qui est alimenté à l’aide d’informations
sûres. Nous avons prouvé trois propriétés de sécurité dans le modèle calculatoire à l’aide
de CryptoVerif [Bla08], et dans le modèle symbolique avec Scyther [Cre08]. Nous nous
sommes ensuite servis de Sinalgo [Dis08] pour l’évaluation expérimentale du protocole
via simulations, et nous l’avons comparé à plusieurs autres protocoles de la littérature
: Greedy-Face-Greedy [BMSU01], la marche aléatoire uniforme, SIGF [WFSH06], et
plusieurs variantes du routage par gradient [EOMVK11]. Cette expérimentation nous a
permis de montrer la résilience, l’efficacité et l’équité de SR3.

Notre seconde contribution a aussi trait au routage. Dans le Chapitre 3, nous
présentons une définition pour la sécurité des protocoles de routage que nous nommons
incorruptibilité. Les autres mesures de la sécurité du routage que nous avons trouvé
sont seulement applicable aux protocoles de source routing: la nôtre mesure la capacité
pour un attaquant à altérer significativement la manière dont les messages seront routés
dans le réseau. Nous présentons en premier la formalisation de cette notion, suivie par
une généralisation que nous nommons corruptibilité bornée. Nous fournissons plusieurs
protocoles d’exemple, ainsi que les preuves associées, et nous présentons les possibles ex-
tensions requises à notre notion pour accomoder une plus grande variété de protocoles.

Notre troisième contribution a trait aux systèmes de détection d’intrusion (IDS)
pour réseaux ad hoc sans-fil. Ces systèmes sont critiques pour la sécurité de ces réseaux,
et malgré ceci, leur évaluation est souvent expérimentale. Nous proposons donc dans le
Chapitre 4 deux résultats pour leur amélioration. Nous avons donc choisi de nous centrer
sur leurs sources de données. Dans un premier temps, nous avons effectué un état de l’art
de ces sources de données, et nous avons fourni une classification de celles-ci basé sur le
niveau de collaboration entre les nœuds qu’elles nécéssitent, ainsi que sur la couche réseau
sur lequel elles reposent. Dans un second temps, nous avons proposé InDICE (Intrusion
Detection Inputs Coverage Evaluation), un modèle pour trouver automatiquement des
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failles dans les IDS, en s’appuyant uniquement sur leurs sources de données. InDICE
utilise un modèle basé sur des règles et des anomalies afin de représenter la progression
de l’attaquant en direction de buts prédéterminés. Nous appliquons ensuite cet outil à
deux IDS de la littérature ([dSMR+05] and [OM05b]).

B.3 Publications

L’essentiel du travail original présenté dans ce manuscrit a été publié ou est en cours de
publication dans des conférences internationales. Le protocole SR3, et les résultats as-
sociés présentés dans le Chapitre 2, ont été présentés à DCOSS’13 [ADJL13b], ainsi qu’à
la conférence nationale Algotel’13 [ADJL13a]. Une version journal est également en cours
de jugement. Tout le travail présenté dans le Chapitre 4 a été publié à FPS’13 [JL13a],
et le travail du Chapitre 3 a été accepté à FPS’14 et sera publié sous peu au moment de
l’écriture de ces lignes.

Enfin, nous avons construit un modèle pour vérifier les protocoles de découverte de
voisinnage dans les réseaux sans-fil. Ce travail a résulté en un modèle capable de prendre
en compte les mouvements de nœuds et le temps, et nous l’avons utilisé pour vérifier un
protocole simple de la littérature. Nous avons également proposé des mécanismes pour
qu’un protocole puisse déterminer le n+1-ou-moins voisinnage d’un nœud, à partir de
la connaissance des n-voisinnages. Tout ce travail a été publié dans un livre [JL13b], et
nous ne l’avons pas inclus dans ce document.
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Appendix C

Perspectives en français

Nous avons plusieurs pistes sur des extensions possibles pour notre étude de SR3. Pour
commencer, SR3 semble adapté aux réseaux qui présentent quelques noeuds mobiles,
et également pour les réseaux avec une mobilité plus faible de tous les noeuds simul-
tanément. Algorithmiquement, seuls un changement mineur est requis : quand un noeud
disparâıt d’un voisinnage, son identité doit être purgée des différentes listes. Pour des
raisons techniques, nous ne pûmes pas évaluer SR3 dans ces conditions, car Sinalgo ne
supporte la mobilité que dans les simulations synchrones. Une autre perspective directe
est de tester l’algorithme dans un banc d’essai (testbed). Une campagne de test sur cap-
teurs réels est actuellement en suspens. Le protocole lui même peut aussi être étendu.
Notre première idée est d’adapter l’algorithme afin de gérer des paquets de données de
taille variable. Cette modification requiert vraisemblablement l’utilisation d’un mode
de chainage pour le chiffrement, et par conséquent les preuves de sécurité devront être
revues. Une autre extension possible serait de prendre en compte les temps de trans-
mission dans le modèle d’analyse. Enfin, nous avons remarqué que SR3 est adapté aux
applications demandant un taux de livraison en moyenne bon au fil de la vie du réseau,
mais certaines attaques ciblées peuvent réduire fortement ce taux de livraison de manière
ponctuelle. Nous aimerions donc chercher des mécanismes qui réagiraient directement
aux attaques, par exemple en s’inspirant de CASTOR [GPP+10].

Pour la notion d’incorruptibilité, nous voyons plusieurs points pouvant être peaufinés
dans les définitions. Globalement, notre définition doit être étendue afin de pouvoir
gérer des protocoles plus complexes : principalement, l’interdiction des modifications de
K pendant le jeu est une hypothèse de travail très limitante. Cependant, elle est aussi
critique pour nos preuves. Dans un second temps, notre définition pourrait être étendue
afin d’accomoder des attaquants internes au réseau, qui auraient un accès total en lecture
à un ou plusieurs K[v]. Ceci nécéssiterait de changer des vérifications dans la définition
du jeu afin de s’assurer qu’un message est effectivement altéré (et pas juste recréé), dans
l’optique de trouver des attaques significatives. Enfin, la corruptibilité bornée est une
notion assez obtuse, et l’utilisation de protocoles comme bornes est peu intuitive. Une
représentation graphique des probabilités que l’experiment réussisse serait une grande
aide à la compréhension. Cependant, la quantité de paramètres à prendre en compte
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rend plus complexe la représentation, et nécéssitera peut-être de l’interactivité. Nous
aimerions donc pouvoir construire une telle représentation.

Notre travail sur les détection d’intrusions pourrait être étendu de plusieurs manières.
Premièrement, le modèle peut être réutilisé pour les IDS qui ne sont pas centré sur les
WANET, comme par exemple les host-based IDS. On peut également imaginer un modèle
plus large, pour l’analyse de n’importe quel IDS. Nous avons évité toute considération
d’attaques par déni de service, parce qu’elles dépendent fortement de la couche liaison
du réseau. Nous pensons que cet aspect peut être développé par un expert de ces
attaques. Il serait aussi possible d’ajouter des probabilités de détection dans le modèle,
pour s’approcher de l’exemple des attack trees. Ceci augmenterait la précision au cout de
complexité ajoutée. Enfin, notre modèle repose sur de nombreuses hypothèses fournies
par l’utilisateur sur les propriétés des protocoles réseau utilisés. Cependant, beaucoup
de protocoles ont erronément prétendu fournir ces propriétés, et idéalement, une plus
grande confiance en les conclusions de notre modèle pourrait être obtenue en fournissant
les moyens aux utilisateurs de prouver ces propriétés eux-mêmes. Ainsi, toute ambigüıté
sur le sens de ces propriétés serait levée.
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