P. Abry, H. Jaffard, and H. Wendt, Irregularities and scaling in signal and image processing: multifractal analysis
DOI : 10.1142/9789814366076_0003

URL : https://hal.archives-ouvertes.fr/hal-00798427

I. Kaushik and . Amin, Jump diffusion option valuation in discrete time. The journal of finance, pp.1833-1863, 1993.

D. Applebaum, Lévy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics, vol.116, 2009.

A. Ayache and Y. Xiao, Asymptotic Properties and Hausdorff Dimensions of Fractional Brownian Sheets, Journal of Fourier Analysis and Applications, vol.11, issue.4, pp.407-439, 2005.
DOI : 10.1007/s00041-005-4048-3

L. Bachelier, Th?orie de la sp?culation, Annales scientifiques de l'?cole normale sup?rieure, vol.17, issue.3, pp.21-86, 1900.
DOI : 10.24033/asens.476

P. Balança, Fine regularity of L?vy processes and linear (multi)fractional stable motion, Electronic Journal of Probability, vol.19, issue.0, pp.19-3393, 2014.
DOI : 10.1214/EJP.v19-3393

P. Balança, Uniform multifractal structure of stable trees, 2015.

M. T. Barlow and S. J. Taylor, Fractional dimension of sets in discrete spaces, Journal of Physics A: Mathematical and General, vol.22, issue.13, pp.2621-2628, 1989.
DOI : 10.1088/0305-4470/22/13/053

T. Martin, S. Barlow, and . Taylor, Defining fractal subsets of Z d, Proc. London Math. Soc. (3), pp.125-152, 1992.

J. Barral and S. Seuret, The singularity spectrum of L?vy processes in multifractal time, Advances in Mathematics, vol.214, issue.1, pp.437-468, 2007.
DOI : 10.1016/j.aim.2007.02.007

J. Barral and S. Seuret, A localized Jarn?k?Besicovitch theorem, Advances in Mathematics, vol.226, issue.4, pp.3191-3215, 2011.
DOI : 10.1016/j.aim.2010.10.011

URL : http://doi.org/10.1016/j.aim.2010.10.011

J. Barral, N. Fournier, S. Jaffard, and S. Seuret, A pure jump Markov process with a random singularity spectrum, The Annals of Probability, vol.38, issue.5, pp.1924-1946, 2010.
DOI : 10.1214/10-AOP533

URL : https://hal.archives-ouvertes.fr/hal-00693014

J. Barral, A. Durand, S. Jaffard, and S. Seuret, Local Multifractal Analysis, Contemp. Math, vol.601, pp.31-64
DOI : 10.1090/conm/601/11919

URL : https://hal.archives-ouvertes.fr/hal-00733280

R. F. Bass, Occupation time densities for stable-like processes and other pure jump Markov processes Stochastic Process, Appl, vol.2988, issue.1, pp.65-830304, 1988.
DOI : 10.1016/0304-4149(88)90028-2

URL : http://doi.org/10.1016/0304-4149(88)90028-2

R. F. Bass, Uniqueness in law for pure jump Markov processes. Probab. Theory Related Fields, pp.271-287, 1988.

R. F. Bass, Stochastic differential equations driven by symmetric stable processes, Séminaire de Probabilités, XXXVI, pp.302-313
DOI : 10.1007/978-3-540-36107-7_11

URL : http://www.numdam.org/article/SPS_2002__36__302_0.pdf

R. F. Bass, Stochastic differential equations with jumps, Probability Surveys, vol.1, issue.0, pp.1-19, 2004.
DOI : 10.1214/154957804100000015

E. Bayraktar, R. Vincent-poor, and . Sircar, ESTIMATING THE FRACTAL DIMENSION OF THE S&P 500 INDEX USING WAVELET ANALYSIS, International Journal of Theoretical and Applied Finance, vol.111, issue.05, pp.615-643, 2004.
DOI : 10.1007/s007800050049

A. Benassi, S. Jaffard, D. Berestycki, N. Berestycki, and J. Schweinsberg, Elliptic Gaussian random processes Beta-coalescents and continuous stable random trees, Rev. Mat. Iberoamericana Ann. Probab, vol.13, issue.355, pp.19-901835, 1997.

S. Bernstein, Principes de la théorie des équations différentielles stochastiques. i, pp.95-124, 1934.

J. Bertoin, On nowhere differentiability for L??vy processes, Stochastics An International Journal of Probability and Stochastic Processes, vol.50, issue.3, pp.3-4205, 1994.
DOI : 10.1080/17442509408833936

J. Bertoin, On the local rate of growth of Lévy processes with no positive jumps. Stochastic Process, Appl, vol.55, issue.194, pp.91-1000304, 1995.

J. Bertoin, Lévy processes, volume 121 of Cambridge Tracts in Mathematics, 1996.

J. Bertoin, Subordinators: Examples and Applications, Lectures on probability theory and statistics, pp.1-91, 1997.
DOI : 10.1007/978-3-540-48115-7_1

URL : http://www.zora.uzh.ch/79481/1/M2-Bertoin-subordinateurs.pdf

J. Bertoin and J. Gall, Stochastic flows associated to coalescent processes, Probability Theory and Related Fields, vol.126, issue.2
DOI : 10.1007/s00440-003-0264-4

URL : https://hal.archives-ouvertes.fr/hal-00103962

R. M. Blumenthal and R. K. Getoor, Some theorems on stable processes, Transactions of the American Mathematical Society, vol.95, issue.2, pp.263-273, 1960.
DOI : 10.1090/S0002-9947-1960-0119247-6

R. M. Blumenthal and R. K. Getoor, Sample functions of stochastic processes with stationary independent increments, J. Math. Mech, vol.10, pp.493-516, 1961.

R. M. Blumenthal and R. K. Getoor, The dimension of the set of zeros and the graph of a symmetric stable process, Illinois J. Math, vol.6, pp.308-316, 1962.

A. Bonami and A. Estrade, Anisotropic Analysis of Some Gaussian Models, Journal of Fourier Analysis and Applications, vol.9, issue.3, pp.215-236, 2003.
DOI : 10.1007/s00041-003-0012-2

URL : https://hal.archives-ouvertes.fr/hal-00087790

B. Böttcher, R. Schilling, and J. Wang, Lévy matters. III ISBN 978-3-319-02683-1; 978-3- 319type processes: construction, approximation and sample path properties, Lecture Notes in Mathematics, 2013.

N. N. Chentsov, Weak convergence of stochastic processes whose trajectories have no discontinuities of the second kind and the heuristic approach to the kolmogorov-smirnov tests. Theory of Probability & Its Applications, pp.140-144, 1956.

C. Chudley and R. Elliott, Neutron Scattering from a Liquid on a Jump Diffusion Model, Proceedings of the Physical Society, vol.77, issue.2, p.353, 1961.
DOI : 10.1088/0370-1328/77/2/319

E. Çinlar and J. Jacod, Representation of semimartingale Markov processes in terms of Wiener processes and Poisson random measures, Seminar on Stochastic Processes, pp.159-242, 1981.

R. Cont and P. Tankov, Financial modelling with jump processes. Chapman & Hall, CRC Financial Mathematics Series. Chapman & Hall/CRC, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00002693

A. Dembo, Y. Peres, J. Rosen, and O. Zeitouni, Thick points for spatial Brownian motion: multifractal analysis of occupation measure, The Annals of Probability, vol.28, issue.1, pp.1-35, 2000.
DOI : 10.1214/aop/1019160110

J. L. Doob, Stochastic processes depending on a continuous parameter, Transactions of the American Mathematical Society, vol.42, issue.1, pp.107-140, 1937.
DOI : 10.1090/S0002-9947-1937-1501916-1

J. L. Doob, Probability in function space, Bulletin of the American Mathematical Society, vol.53, issue.1, pp.15-30, 1947.
DOI : 10.1090/S0002-9904-1947-08728-0

J. L. Doob, Continuous parameter martingales, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp.269-277, 1950.

J. L. Doob, Stochastic processes, 1953.

L. Döring and M. Barczy, A jump type SDE approach to positive self-similar Markov processes, Electron. J. Probab, vol.17, issue.94, pp.39-2012

A. Durand, Random Wavelet Series Based on a Tree-Indexed Markov Chain, Communications in Mathematical Physics, vol.41, issue.12, pp.451-477, 2008.
DOI : 10.4171/RMI/22

URL : http://arxiv.org/abs/0709.3597

A. Durand, Singularity sets of Lévy processes. Probab. Theory Related Fields, pp.3-4, 2009.

A. Durand and S. Jaffard, Multifractal analysis of Lévy fields. Probab. Theory Related Fields, pp.45-96, 2012.

R. Durrett, Probability: theory and examples. Cambridge Series in Statistical and Probabilistic Mathematics, 2010.
DOI : 10.1017/CBO9780511779398

A. Dvoretzky, On the oscillation of the Brownian motion process, Israel Journal of Mathematics, vol.37, issue.4, pp.212-214, 1963.
DOI : 10.1007/BF02759720

A. Einstein, On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart, Annalen der physik, vol.17, pp.549-560, 1905.

K. J. Falconer, THE LOCAL STRUCTURE OF RANDOM PROCESSES, Journal of the London Mathematical Society, vol.67, issue.03, pp.657-672, 2003.
DOI : 10.1112/S0024610703004186

N. Fournier, On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes. Ann. Inst. Henri Poincaré Probab, Stat, vol.49, issue.1, pp.138-15911, 2013.
DOI : 10.1214/11-aihp420

URL : http://arxiv.org/abs/1011.0532

Z. Fu and Z. Li, Stochastic equations of non-negative processes with jumps, Stochastic Processes and their Applications, vol.120, issue.3, pp.306-330, 2010.
DOI : 10.1016/j.spa.2009.11.005

D. Geman and J. Horowitz, Occupation densities URL http://links.jstor.org/sici?, 1<1:OD>2.0.CO;2-M&origin=MSN, pp.1-67, 1980.
DOI : 10.1214/aop/1176994824

N. Georgiou, D. Khoshnevisan, K. Kim, and A. D. Ramos, The dimension of the range of a random walk, 2015.

J. Horowitz, The hausdorff dimension of the sample path of a subordinator, Israel Journal of Mathematics, vol.6, issue.2, pp.176-182, 1968.
DOI : 10.1007/978-3-642-62025-6

X. Hu and S. Taylor, The multifractal structure of stable occupation measure, Stochastic Processes and their Applications, vol.66, issue.2, pp.283-299, 1997.
DOI : 10.1016/S0304-4149(97)00127-0

X. Hu and S. Taylor, Multifractal structure of a general subordinator Stochastic Process, Appl, vol.88, issue.200, pp.245-258, 2000.

K. Itô, On stochastic processes. I. (Infinitely divisible laws of probability), Jap. J. Math, vol.18, pp.261-301, 1942.

K. Itô, Differential equations determining markov prcesses (in japanese) Zenkoku Shijo Sugaku Danwakai, pp.1352-1400, 1077.

K. Ito, On stochastic differential equations, Mem. Amer. Math. Soc., No, issue.4, p.51, 1951.

S. Jaffard, Old friends revisited: the multifractal nature of some classical functions, The Journal of Fourier Analysis and Applications, vol.3, issue.1
DOI : 10.4171/RMI/203

S. Jaffard, The multifractal nature of L?vy processes, Probability Theory and Related Fields, vol.114, issue.2, pp.207-227, 1999.
DOI : 10.1007/s004400050224

S. Jaffard, Wavelet techniques in multifractal analysis In Fractal geometry and applications: a jubilee of Benoît Mandelbrot, of Proc. Sympos. Pure Math, pp.91-151, 2004.

N. Jain and W. E. Pruitt, The correct measure function for the graph of a transient stable process, Zeitschrift f?r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.6, issue.2, pp.131-138, 1968.
DOI : 10.1007/BF01851003

J. Kahane, Le mouvement brownien et son histoire, réponses à quelques questions, 2006.

J. Kahane and J. Peyrière, Sur certaines martingales de Benoit Mandelbrot Advances in Math, pp.131-145, 1976.
DOI : 10.1016/0001-8708(76)90151-1

URL : http://doi.org/10.1016/0001-8708(76)90151-1

A. Khintchine, Zur theorie der unbeschränkt teilbaren verteilungsgesetze, Rec. Math, vol.2, issue.44, pp.79-119, 1937.

D. Khoshnevisan, A discrete fractal in Z 1 +, Proc. Amer. Math. Soc, vol.120, issue.2, pp.577-584, 1994.
DOI : 10.2307/2159899

D. Khoshnevisan and Y. Xiao, Harmonic analysis of additive L??vy processes, Probability Theory and Related Fields, vol.11, issue.4
DOI : 10.1214/ECP.v11-1199

D. Khoshnevisan, Y. Xiao, and Y. Zhong, Measuring the range of an additive L??vy process, The Annals of Probability, vol.31, issue.2, pp.1097-1141, 2003.
DOI : 10.1214/aop/1048516547

D. Khoshnevisan, K. Kim, and Y. Xiao, Intermittency and multifractality: A case study via parabolic stochastic pdes. Arxiv, e-print, 2015.

J. R. Kinney, Continuity properties of sample functions of Markov processes, Transactions of the American Mathematical Society, vol.74, issue.2, pp.280-302, 1953.
DOI : 10.1090/S0002-9947-1953-0053428-1

V. Knopova, R. L. Schilling, and J. Wang, Lower bounds of the Hausdorff dimension for the images of Feller processes, Statistics & Probability Letters, vol.97, pp.222-228, 2015.
DOI : 10.1016/j.spl.2014.11.027

V. Kolokoltsov, Symmetric Stable Laws and Stable-Like Jump-Diffusions, Proc. London Math. Soc. (3), pp.725-768, 2000.
DOI : 10.1112/S0024611500012314

N. Vassili and . Kolokoltsov, Markov processes, semigroups and generators, 2011.

T. Komatsu, Pseudo-differential operators and Markov processes, Journal of the Mathematical Society of Japan, vol.36, issue.3, pp.387-418, 1984.
DOI : 10.2969/jmsj/03630387

A. Lambert, Probability of fixation under weak selection: A branching process unifying approach, Theoretical Population Biology, vol.69, issue.4, pp.419-441, 2006.
DOI : 10.1016/j.tpb.2006.01.002

URL : https://hal.archives-ouvertes.fr/hal-00267511

J. Lamperti, Semi-stable Markov processes. I, Zeitschrift f?r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.111, issue.3
DOI : 10.1007/BF00536091

P. Langevin, On the theory of brownian motion, 1908.

D. Lépingle, La variation d'ordre p des semi-martingales, Zeitschrift f?r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.4, issue.4, pp.295-316, 1976.
DOI : 10.1007/BF00532696

P. Lévy, Théorie de l'addition des variables aléatoires, 1954.

Z. Li and L. Mytnik, Strong solutions for stochastic differential equations with jumps. Ann. Inst. Henri Poincaré Probab, Stat, vol.47, issue.4, pp.1055-106710, 2011.
DOI : 10.1214/10-aihp389

URL : http://arxiv.org/abs/0910.0950

B. Benoit and . Mandelbrot, The fractal geometry of nature/revised and enlarged edition, 1983.

B. Benoit and . Mandelbrot, Fractals and scaling in finance

L. Marsalle, Slow Points and Fast Points of Local Times, The Annals of Probability, vol.27, issue.1, pp.150-165, 1999.
DOI : 10.1214/aop/1022677257

P. Henry and J. Mckean, Sample functions of stable processes, Ann. of Math, vol.61, issue.2, pp.564-579, 1955.

P. Mörters and Y. Peres, Brownian motion. Cambridge Series in Statistical and Probabilistic Mathematics, 2010.

P. Mörters and N. Shieh, Thin and thick points for branching measure on a Galton???Watson tree, Statistics & Probability Letters, vol.58, issue.1, pp.13-22, 2002.
DOI : 10.1016/S0167-7152(02)00093-7

P. Mörters and N. Shieh, On the multifractal spectrum of the branching measure on a Galton?Watson tree, Journal of Applied Probability, vol.5, issue.04, pp.1223-1229, 2004.
DOI : 10.1214/aop/1176990730

L. Mytnik and V. Wachtel, Multifractal analysis of superprocesses with stable branching in dimension one, The Annals of Probability, vol.43, issue.5, pp.2763-280914, 2015.
DOI : 10.1214/14-AOP951

A. Negoro, Stable-like processes: construction of the transition density and the behavior of sample paths near t = 0, Osaka J. Math, vol.31, issue.1, pp.189-214, 1994.

R. Norvai?a and D. M. Salopek, Estimating the p-variation index of a sample function: an application to financial data set, Methodology And Computing In Applied Probability, vol.4, issue.1, pp.27-531015753313674, 2002.
DOI : 10.1023/A:1015753313674

S. Orey and S. Taylor, How Often on a Brownian Path Does the Law of Iterated Logarithm Fail?, Proc. London Math. Soc. (3), pp.174-192, 1974.
DOI : 10.1112/plms/s3-28.1.174

R. Paley, N. Wiener, and A. Zygmund, Notes on random functions, Mathematische Zeitschrift, vol.16, issue.1, pp.647-668, 1933.
DOI : 10.1007/BF01474606

E. Perkins, The exact Hausdorff measure of the level sets of Brownian motion, Zeitschrift f?r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.32, issue.3
DOI : 10.1007/BF00542642

E. Perkins, On the Hausdorff dimension of the Brownian slow points, Zeitschrift f??r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.54, issue.3
DOI : 10.1007/978-3-642-62025-6

. Ann and . Probab, URL http://links.jstor.org/ sici?, 4<1458:MCAOAB>2.0.CO;2-N&origin=MSN, pp.1458-1480, 1988.

A. Edwin, S. Perkins, and . Taylor, The multifractal structure of super-Brownian motion, Ann. Inst. H. Poincaré Probab. Statist, vol.34, issue.198, pp.97-138, 1998.

W. E. Pruitt and S. J. Taylor, Sample path properties of processes with stable components, Zeitschrift f?r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.6, issue.4, pp.267-289, 1969.
DOI : 10.1007/BF00538749

E. William and . Pruitt, The Hausdorff dimension of the range of a process with stationary independent increments, J. Math. Mech, vol.19, pp.371-378, 1969.

D. Revuz and M. Yor, Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical BIBLIOGRAPHY Sciences, vol.293, 1999.

K. Sato, Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics

L. René and . Schilling, Feller processes generated by pseudo-differential operators: on the Hausdorff dimension of their sample paths, J. Theoret. Probab, vol.11, issue.2, pp.303-330, 1998.

S. Seuret and X. Yang, Multifractal analysis for the occupation measure of stable-like processes, Electronic Journal of Probability, vol.22, issue.0, 2016.
DOI : 10.1214/17-EJP48

URL : https://hal.archives-ouvertes.fr/hal-01322482

L. A. Shepp, Covering the line with random intervals, Zeitschrift f?r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.22, issue.3, pp.163-170, 1972.
DOI : 10.1007/BF00536556

N. Shieh and S. Taylor, Logarithmic multifractal spectrum of stable occupation measure, Stochastic Processes and their Applications, vol.75, issue.2, pp.249-261, 1998.
DOI : 10.1016/S0304-4149(98)00004-0

V. Strassen, An invariance principle for the law of the iterated logarithm, Zeitschrift f?r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.104, issue.3, pp.211-226, 1964.
DOI : 10.1007/BF00534910

M. Talagrand, Hausdorff Measure of Trajectories of Multiparameter Fractional Brownian Motion, The Annals of Probability, vol.23, issue.2
DOI : 10.1214/aop/1176988288

S. J. Taylor, The Hausdorff ??-dimensional measure of Brownian paths in n-space, Mathematical Proceedings of the Cambridge Philosophical Society, vol.2, issue.01
DOI : 10.1002/sapm192321131

S. J. Taylor and J. G. , The exact hausdorff measure of the zero set of a stable process, Zeitschrift f?r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.2, issue.2, pp.170-180, 1966.
DOI : 10.1007/BF00537139

K. Uchiyama, The proportion of Brownian sojourn outside a moving boundary URL http://links.jstor.org/sici?, Ann. Probab, vol.1010, issue.1, pp.220-233, 1982.

N. Wiener, Differential space [115] Yi Min Xiao Dimension results for Gaussian vector fields and index-? stable fields, 1<273:DRFGVF>2.0.CO;2-I&origin=MSN, pp.131-174273, 1923.

Y. Xiao, Hausdorff-type measures of the sample paths of fractional Brownian motion, Stochastic Processes and their Applications, vol.74, issue.2, pp.251-272, 1998.
DOI : 10.1016/S0304-4149(97)00119-1

Y. Xiao, Random fractals and Markov processes In Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Proc. Sympos. Pure Math, vol.72, pp.261-338

Y. Xiao and X. Zheng, Discrete fractal dimensions of the ranges of random walks in Z d associate with random conductances. Probab. Theory Related Fields, pp.1-26, 2013.

L. Xu, The multifractal nature of boltzmann processes. Arxiv, e-print, 2015.

X. Yang, Multifractality of jump diffusion processes. Arxiv, e-print, 2015.

X. Yang, Hausdorff dimension of the range and the graph of stable-like processes