J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, G. W. Crabtree, N. S. Lewis et al., New and old concepts in thermoelectric materials Solar energy conversion Geothermal energy development Thermoelectricss Direct Solar Thermal Energy Conversion Available: https, Communication de la Commission au Parlement Européen, au Conseil, au Comité Economique et Social Européen et au Comité des Régions Énergie 2020 Stratégie pour une énergie compétitive, durable et sûre Energy research for physicists Shakouri, Recent Developments in Semiconductor Thermoelectric Physics and Materials Vining, An inconvenient truth about thermoelectrics Proc. Intersoc. Energy Convers. Eng. Conf, pp.25-8616, 1962.

F. J. Disalvo and M. A. Subramanian, Thermoelectric Cooling and Power Generation Thermoelectric Materials, Phenomena, and Applicationss A " ird's Eye View, 15] R. Amatya and R. J. Ram, Solar thermoelectric generator for micropower applications'', J, pp.703-188, 1999.

. Electron and . Mater, Peltier, Nouvelles experiences sur la caloricite des courans electrique Account of Researches in Thermo-Electricity Electronic transport in semimetallic cerium sulfide, Proc. R. Soc. London, pp.1735-1740, 1834.

W. D. Carr, Electronic and Thermal Transport in Copper-Based Chalcopyrite Semiconductors for Thermoelectric Applications, 2016.

G. J. Snyder and S. Toberer, Complex thermoelectric materials, Nat. Mater, vol.7

I. Références, ]. S. February22, S. R. Kauzlarich, and G. J. Snyder, Zintl phases for thermoelectric devices, pp.105-114, 2008.

]. B. Sales, D. Mandrus, and R. Williams, Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials, Science, vol.272, issue.5266, pp.1325-1333, 1996.
DOI : 10.1126/science.272.5266.1325

]. S. Wang, H. Li, R. Lu, G. Zheng, and X. Tang, -based materials with enhanced thermoelectric performances, Nanotechnology, vol.24, issue.28, p.285702, 2013.
DOI : 10.1088/0957-4484/24/28/285702

URL : https://hal.archives-ouvertes.fr/hal-00787126

H. Goldsmid and R. Douglas, The use of semiconductors in thermoelectric refrigeration, Br. J

. Appl, . J. Phys26-]-h, and . Goldsmid, The Electrical Conductivity and Thermoelectric Power of Bismuth Telluride Heat Transfer in Semiconductors, Proc. Phys. Soc. London, pp.633-646, 1954.

M. C. Steele and F. D. Rosi, Thermal Conductivity and Thermoelectric Power of Germanium???Silicon Alloys, Journal of Applied Physics, vol.20, issue.11, pp.1517-1520, 1958.
DOI : 10.1103/PhysRev.93.1204

L. M. Rogers, The Hall mobility and thermoelectric power of p-type lead telluride'', Br, J. Appl

]. F. Gascoin, S. Ottensmann, D. Stark, S. M. Haïle, G. J. Snyder et al., Zintl phases as thermoelectric materials: Tuned transport properties of the compounds CaxYb1-xZn2Sb2 Yb14MnSb11: New high efficiency thermoelectric material for power generation Lattice dynamics and reduced thermal conductivity of filled skutterudites, 34] A. P. Gonçalves and C. Godart, New promising bulk thermoelectricss Intermetallics Why are Clathrates Good Candidates for Thermoelectric Materials, pp.1860-1864, 2000.

L. D. Hicks, M. S. Dresselhaus37-]-l, M. Hicks, and . Dresselhaus, Effect of Quantum Well Structures on Thermoelectric Figure of Merit Thermoelectric Figure of Merit of a one dimensional conductor Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B Phys. Rev. B Phys. Rev. B, vol.47, issue.53 16, pp.727-16631, 1993.

G. Dresselhaus, X. Dresselhaus, Z. Sun, S. Zhang, T. Cronin et al., Low-dimensional thermoelectric materials, Proceedings of the th International Conference on Thermoelectrics'', in Proceedings of the 15th International Conference on Thermoelectrics, pp.679-682, 1996.
DOI : 10.1134/1.1130849

I. L. Références, L. A. Kuznetsov, A. E. Kuznetsova, D. M. Kaliazin, and . Rowe, High performance functionally graded and segmented Bi2Te3-based materials for thermoelectric power generation, 42] C. Drasar and E. M(ller, Stacking of " i2Te3 and FeSi2 for Thermoelectric Applications'', Mater, pp.2893-2897, 2002.

J. L. Cui, Optimization of p-type segmented FeSi2/Bi2Te3 thermoelectric material prepared by spark plasma sintering, Materials Letters, vol.57, issue.24-25, pp.24-25, 2003.
DOI : 10.1016/S0167-577X(03)00268-4

]. W. Jun, T. Xinfeng, L. Haiqiang, Y. Xiuli, and Z. Qingjie, Optimization ofp-type segmented Bi2Te3/CoSb3 thermoelectric material prepared by spark plasma sintering, Journal of Wuhan University of Technology-Mater. Sci. Ed., vol.39, issue.4
DOI : 10.1007/BF02841222

]. T. Caillat, J. Fleurial, and A. , Preparation and thermoelectric properties of semiconducting Zn4Sb3, Journal of Physics and Chemistry of Solids, vol.58, issue.7, pp.1119-1125, 1997.
DOI : 10.1016/S0022-3697(96)00228-4

G. J. Snyder, M. Christensen, and E. N. Iversen, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nature Materials, vol.39, issue.7, pp.458-463, 2004.
DOI : 10.1524/zkri.216.2.71.20335

URL : http://authors.library.caltech.edu/57465/2/nmat1154-s1.pdf

L. E. Delong, G. P. Meisnert, and =. Fe, The pressure dependence of the superconducting transition temperature of LaT4P12 Ru, Os)'', Solid State Commun, 51] D. Jung, M. Whangbo, and S. Alvarez, Importance of the X4 Ring Orbitals for the Semiconducting, Metallic, or Superconducting Properties of Skutterudites MX3 and RM4X12, pp.119-123, 1985.

D. T. Morelli, G. P. Meisner, T. Caillat, D. T. Morelli, G. P. Meisner et al., Low temperature properties of the filled skutterudite CeFe4Sb12 [53] J.-P. Fleurial, A High figure of merit in Ce-filled skutterudites alke, and C. Felser, Half-Heusler compounds: novel materials for energy and spintronic applications, Fifteenth Int. Conf. Thermoelectr. Proc. ICT '96, pp.3777-91, 1995.

W. J. Xie, Significant ZT enhancement in p-type Ti(Co,Fe)Sb?InSb nanocomposites via a synergistic high-mobility electron injection, energy-filtering and boundary-scattering approach, Acta Materialia, vol.61, issue.6, pp.2087-2094, 2013.
DOI : 10.1016/j.actamat.2012.12.028

]. S. Hébert, type crystallographic structure for thermoelectric properties, physica status solidi (a), vol.94, issue.1, pp.69-81, 2013.
DOI : 10.1063/1.3097026

]. A. Weidenkaff, R. Robert, M. Aguirre, L. Ocher, T. Lippert et al., Development of thermoelectric oxides for renewable energy conversion technologies, Renewable Energy, vol.33, issue.2, pp.342-347, 2008.
DOI : 10.1016/j.renene.2007.05.032

]. S. Hébert, Thermoelectric properties of perovskitess Sign change of the Seebeck coefficient and high temperature properties, Prog. Solid State Chem, vol.35, issue.2, pp.4-457, 2007.

I. Références, L. Yang, G. Jauregui, Y. P. Zhang, Y. Chen et al., Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting, Nano Lett, vol.12, issue.2, pp.540-545, 2012.

]. A. Singh, H. Geaney, F. Laffir, and K. M. Ryan, Nanorods and Their Perpendicular Assembly, Journal of the American Chemical Society, vol.134, issue.6, pp.2910-2913, 2012.
DOI : 10.1021/ja2112146

]. G. Delaizir, A new generation of high performance large-scale and flexible thermo-generators based on (Bi,Sb)2 (Te,Se)3 nano-powders using the Spark Plasma Sintering technique, Sensors and Actuators A: Physical, vol.174, pp.115-122, 2012.
DOI : 10.1016/j.sna.2011.11.011

Y. Min, Nanoflakes and Enhanced Thermoelectric Properties of Their Nanocomposites, Advanced Materials, vol.2, issue.10, pp.1425-1434, 2013.
DOI : 10.1039/b822664b

A. I. Boukai, Y. Bunimovich, J. Tahir-kheli, J. Yu, W. Goddard et al., Silicon nanowires as efficient thermoelectric materials, Nature, vol.16, issue.7175, pp.168-71, 2008.
DOI : 10.1038/nature06458

]. J. Zide, superlattices, Physical Review B, vol.74, issue.20, p.205335, 2006.
DOI : 10.1063/1.2186387

S. Yamaguchi, Thermoelectric and Electrical Properties of Si-doped InSb Thin Films Improved Thermoelectric Properties of Cu- Doped Quaternary Chalcogenides of Cu2CdSnSe4, ECS Trans. Adv. Mater, vol.16, issue.21 37, pp.7-12, 2009.

]. T. Hamajima, T. Kambara, K. I. Gondaira, T. Oguchi, J. Li et al., Calculated Electronic Structures of CuGaS2:Fe and CuFeS2 Self-consistent electronic structures of magnetic semiconductors by a discrete variational X? calculation Synthesis and property evaluation of CuFeS?x as earth-abundant and environmentally-friendly thermoelectric materials, Properties of a Magnetic Semiconductor: Chalcopyrite CuFeS2, pp.1625-1635, 1974.

J. L. Tell, H. M. Shay, and . Kasper, Semiconductors, Journal of Applied Physics, vol.13, issue.5, pp.2469-2470, 1972.
DOI : 10.1016/0022-3697(66)90157-0

]. J. Lamazares, Magnetic, transport, X-ray diffraction and Mössbauer measurements on CuFeSe2, J. Magn. Magn. Mater, vol.104, issue.107, pp.997-998, 1992.
DOI : 10.1016/0304-8853(92)90459-2

]. D. Berthebaud, O. I. Lebedev, and A. Maignan, Thermoelectric properties of n-type cobalt doped chalcopyrite Cu?xCoxFeS2 and p-type eskebornite CuFeSe2, J. Mater, vol.1, issue.1, pp.68-74, 2015.

W. D. Carr and D. T. Morelli, The Thermoelectric Properties and Solubility Limit of CuFeS2(1???x)Se2x, Journal of Electronic Materials, vol.43, issue.4, pp.1346-1350, 2016.
DOI : 10.1007/s11664-014-3072-y

M. Lamarche, J. Woolley, G. Lamarche, I. Swainson, and T. Holden, Structure and magnetic properties of the ternary compound copper iron telluride, Journal of Magnetism and Magnetic Materials, vol.186, issue.1-2, pp.121-128, 1995.
DOI : 10.1016/S0304-8853(97)01110-4

]. N. Tsujii, T. Mori, and Y. Isoda, Phase Stability and Thermoelectric Properties of CuFeS2-Based Magnetic Semiconductor, Journal of Electronic Materials, vol.99, issue.6, pp.2371-2375, 2014.
DOI : 10.1063/1.3621834

]. Y. Li, tetrahedral compounds, Journal of Applied Physics, vol.116, issue.20, p.203705, 2014.
DOI : 10.1021/ja308627v

]. R. Lefèvre, Thermoelectric properties of the chalcopyrite Cu?xMxFeS?y series Thermoelectricity Generation and Electron-Magnon Scattering in a Natural Chalcopyrite Mineral from a Deep-Sea Hydrothermal Vent, Angew. Chem. Int. Ed. Engl, vol.6, issue.54 44, pp.55117-55124, 2015.

D. Liang, R. Ma, S. Jiao, G. Pang, and S. Feng, A facile synthetic approach for copper iron sulfide nanocrystals with enhanced thermoelectric performance, Nanoscale, vol.92, issue.20, pp.6265-6273, 2012.
DOI : 10.1103/PhysRevLett.92.106103

]. S. Verma, Chalcopyrite nanocomposite material for sustainable thermoelectrics, Japanese Journal of Applied Physics, vol.53, issue.12
DOI : 10.7567/JJAP.53.120301

N. Tsujii, Possible Enhancement of Thermoelectric Properties by Use of a Magnetic Semiconductor: Carrier-Doped Chalcopyrite Cu1?x Fe1+x S2, Journal of Electronic Materials, vol.150, issue.7, pp.1974-1977, 2013.
DOI : 10.1088/1742-6596/150/1/012044

K. Assali, A. Khiara, J. C. , and J. Pouzet, Structural and optical properties of CuAlTe2 thin films prepared by RF. sputtering Chalcopyrite CuGaTe2: A high-efficiency bulk thermoelectric material, Int. J. Electron, vol.92, issue.8, pp.445-449, 2005.

]. R. Liu, L. Xi, H. Liu, X. Shi, W. Zhang et al., Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure, Chemical Communications, vol.33, issue.32, pp.3818-3820, 2012.
DOI : 10.1080/00319109608030550

]. A. Lefrançois, S. Pouget, L. Vaure, M. Lopez-haro, and P. Reiss, Nanocrystals, ChemPhysChem, vol.136, issue.5, pp.654-663, 2016.
DOI : 10.1016/j.matchemphys.2012.08.014

]. A. Lefrançois, Enhanced Charge Separation in Ternary P3HT/PCBM/CuInS2 Nanocrystals Hybrid Solar Cells, Scientific Reports, vol.19, issue.1, p.7768, 2015.
DOI : 10.1002/adma.200700311

]. L. Wu, S. Chen, F. Fan, T. Zhuang, C. Dai et al., Polytypic Nanocrystals of Références VI Cu-Based Ternary Chalcogenides: Colloidal Synthesis and Photoelectrochemical Properties, J

. Am, . Chem, . R. Soc-]-s, and . Thomas, Recent developments in the synthesis of nanostructured chalcopyrite materials and their applications: a review Searching for new thermoelectric materialss some examples among oxides, sulfides and selenides, Physics-Condensed Matter, pp.5576-84, 2015.

E. J. Silvester, T. W. Healy, F. Grieser, and ". A. Sexton, Hydrothermal Preparation and Characterization of Optically Transparent Colloidal Chalcopyrite ( CuFeS2 Hydrothermal synthesis of chalcopyrite using an environmental friendly chelating agent, Mater. Lett, vol.98, issue.3, pp.19-22, 1991.

]. S. Kang, B. S. Kwak, M. Park, K. M. Jeong, S. Park et al., Magnetic Nanomaterial and Its Application for Hydrogen Production by Methanol Aqueous Solution Photosplitting, Bulletin of the Korean Chemical Society, vol.35, issue.9, pp.2813-2817, 2014.
DOI : 10.5012/bkcs.2014.35.9.2813

J. Hu, Q. Lu-deng, K. Tang, Y. Qian, and Y. Li, A hydrothermal reaction to synthesize CuFeS2 nanorods, Inorganic Chemistry Communications, vol.2, issue.12, pp.569-571, 1999.
DOI : 10.1016/S1387-7003(99)00154-9

M. X. Wang, L. S. Wang, G. H. Yue, X. Wang, P. X. Yan et al., Single crystal of CuFeS2 nanowires synthesized through solventothermal process, Materials Chemistry and Physics, vol.115, issue.1, pp.147-150, 2009.
DOI : 10.1016/j.matchemphys.2008.11.032

S. D. Disale and S. S. Garje, using single-source precursors, Applied Organometallic Chemistry, vol.96, issue.12, pp.492-497, 2009.
DOI : 10.1002/aoc.1553

Y. A. Wang, N. Bao, and A. Gupta, Shape-controlled synthesis of semiconducting CuFeS2 nanocrystals, Solid State Sciences, vol.12, issue.3, pp.387-390, 2010.
DOI : 10.1016/j.solidstatesciences.2009.11.019

I. S. Lyubutin, Synthesis, structural and magnetic properties of self-organized single-crystalline nanobricks of chalcopyrite CuFeS2, Acta Materialia, vol.61, issue.11, pp.3956-3962, 2013.
DOI : 10.1016/j.actamat.2013.03.009

P. Kumar, S. Uma, and R. Nagarajan, Precursor driven one pot synthesis of wurtzite and chalcopyrite CuFeS2, Chemical Communications, vol.23, issue.66, pp.7316-7324, 2013.
DOI : 10.1021/cm2022196

A. Layek, A. Dey, J. Datta, M. Das, and P. P. Ray, Novel CuFeS2 pellet behaves like a portable signal transporting network: studies of immittance, pp.34682-34689, 2015.

G. Gabka, Non-injection synthesis of monodisperse Cu???Fe???S nanocrystals and their size dependent properties, Phys. Chem. Chem. Phys., vol.20, issue.22, pp.15091-15101, 2016.
DOI : 10.1039/b927279h

S. Ghosh, Nanocrystals: Intermediate Fe d-Band Leads to High Photothermal Conversion Efficiency, Chemistry of Materials, vol.28, issue.13, pp.4848-4858, 2016.
DOI : 10.1021/acs.chemmater.6b02192

URL : http://arxiv.org/pdf/1609.05076

M. Gusain, P. Kumar, and R. Nagarajan, Wurtzite CuInS2: solution based one pot direct synthesis and its doping studies with non-magnetic Ga3+ and magnetic Fe3+ ions, RSC Advances, vol.38, issue.41, p.18863, 2013.
DOI : 10.1016/S0025-5408(02)00999-6

A. Hattacharyya and . Pandey, CuFeS2 Quantum Dots and Highly Luminescent CuFeS2 Based Core/Shell Structures: Synthesis, Tunability, and Photophysics, J. Am. Chem. Soc, vol.138

L. Li, /ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging, Chemistry of Materials, vol.21, issue.12, pp.2422-2429, 2009.
DOI : 10.1021/cm900103b

L. Li, A. Pandey, D. J. Werder, P. Khanal, J. M. Pietryga et al., Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission, Journal of the American Chemical Society, vol.133, issue.5, pp.1176-1179, 2011.
DOI : 10.1021/ja108261h

M. J. Turo and J. E. Macdonald, Surface-Bound Thiols on Nanocrystals, ACS Nano, vol.8, issue.10, pp.10205-10213, 2014.
DOI : 10.1021/nn5032164

S. Conejeros, J. Llanos, P. Alemany, and L. Padilla-campos, Copper mobility in CuFeS2, a layered trigonal phase obtained from LiCuFeS2, Zeitschrift f?r Kristallographie, vol.225, issue.11, pp.475-477, 2010.
DOI : 10.1524/zkri.2010.1318

M. Kruszynska, H. Borchert, J. Parisi, and J. , Nanoparticles, Journal of the American Chemical Society, vol.132, issue.45, pp.15976-15986, 2010.
DOI : 10.1021/ja103828f

S. T. Connor, C. M. Hsu, D. Weil, S. Aloni, and Y. Cui, Nanorods, Journal of the American Chemical Society, vol.131, issue.13, pp.4962-4966, 2009.
DOI : 10.1021/ja809901u

M. Fantauzzi, B. Elsener, D. Atzei, A. Rigoldi, and A. Rossi, Exploiting XPS for the identification of sulfides and polysulfides, RSC Adv., vol.5, issue.93, pp.75953-75963, 2015.
DOI : 10.1039/C4RA13807D

A. Ghahremaninezhad, D. G. Dixon, and E. Asselin, Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution, Electrochimica Acta, vol.87, pp.97-112, 2013.
DOI : 10.1016/j.electacta.2012.07.119

S. Karthe, R. Szargan, and E. Suoninen, Oxidation of pyrite surfaces: a photoelectron spectroscopic study, Applied Surface Science, vol.72, issue.2, pp.157-170, 1993.
DOI : 10.1016/0169-4332(93)90007-X

Y. Kalegowda, Y. Chan, D. Wei, and S. L. , X-PEEM, XPS and ToF-SIMS characterisation of xanthate induced chalcopyrite flotation: Effect of pulp potential, Surface Science, vol.635, pp.70-77, 2015.
DOI : 10.1016/j.susc.2014.12.012

R. S. Smart, Surface layers in base metal sulphide flotation, Minerals Engineering, vol.4, issue.7-11, pp.891-909, 1991.
DOI : 10.1016/0892-6875(91)90072-4

H. Zhong, Nanocrystals and Their Size-Dependent Properties, ACS Nano, vol.4, issue.9, pp.5253-5262, 2010.
DOI : 10.1021/nn1015538

D. Aldakov, A. Lefrançois, and P. Reiss, Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications, Journal of Materials Chemistry C, vol.186, issue.suppl. 3, p.3756, 2013.
DOI : 10.1016/j.jssc.2011.11.042

K. Nose, Y. Soma, T. Omata, and S. Otsuka-yao-matsuo, Nanocrystals; Phase Determination by Complex Ligand Species, Chemistry of Materials, vol.21, issue.13, pp.2607-2613, 2009.
DOI : 10.1021/cm802022p

D. Pan, Synthesis of Cu?In?S Ternary Nanocrystals with Tunable Structure and Composition, Journal of the American Chemical Society, vol.130, issue.17, pp.5620-5621, 2008.
DOI : 10.1021/ja711027j

Q. Yunxia, L. Qiangchun, T. Kaibin, L. Zhenghua, R. Zhibiao et al., Synthesis and characterization of nanostructured wurtzite CuInS 2: A new cation disordered polymorph of CuInS2, J. Phys. Chem. C, vol.113, issue.10, pp.3939-3944, 2009.

X. Sheng, L. Wang, Y. Luo, and D. Yang, Synthesis of hexagonal structured wurtzite and chalcopyrite CuInS2 via a simple solution route, Nanoscale Research Letters, vol.6, issue.1, p.562, 2011.
DOI : 10.1021/ic802399f

M. Kruszynska, H. Borchert, and J. , Kolny-olesiak, Synthesis and Shape Control of CuInS2 Nanoparticles, pp.15976-15986, 2010.

X. Lu, Z. Zhuang, Q. Peng, and Y. Li, Controlled synthesis of wurtzite CuInS2 nanocrystals and their side-by-side nanorod assemblies, CrystEngComm, vol.11, issue.432, p.4039, 2011.
DOI : 10.1002/(SICI)1521-4095(199906)11:8<643::AID-ADMA643>3.0.CO;2-I

S. K. , L. Tian, N. Venkatram, W. Ji, and J. J. Vittal, Phase-selective synthesis of CuInS2 nanocrystals, J. Phys. Chem. C, vol.113, issue.33, pp.15037-15042, 2009.

M. E. Norako and R. L. , Nanocrystals, Chemistry of Materials, vol.22, issue.5, pp.1613-1615, 2010.
DOI : 10.1021/cm100341r

J. J. Wang, Y. Q. Wang, F. F. Cao, Y. G. Guo, and L. J. Wan, ChemInform Abstract: Synthesis of Monodispersed Wurtzite Structure CuInSe2 Nanocrystals and Their Application in High-Performance Organic-Inorganic Hybrid Photodetectors., ChemInform, vol.132, issue.49, pp.12218-12221, 2010.
DOI : 10.1002/chin.201049005

R. C. Erd and G. K. Czamanske, Orickite and coyoteite, two new sulfide minerals from Coyote Peak, Humboldt County, California, Am. Mineral, vol.68, issue.12, pp.245-254, 1983.

M. A. Mamo, W. S. Machado, W. A. Van-otterlo, N. J. Coville, and I. A. , H(mmelgen, Simple write-once-read-many-times memory device based on a carbon sphere-poly(vinylphenol) composite, Org. Electron. physics, Mater. Appl, vol.11, issue.11, pp.1858-1863, 2010.
DOI : 10.1016/j.orgel.2010.08.013

R. A. Robie, R. R. Seal, I. , and B. S. Hemingway, Heat capacity and entropy of bornite (Cu5FeS4) between 6 and 760 K and the thermodynamic properties of phases in the system Cu-Fe-S, Can. Miner, vol.32, pp.945-956, 1994.

R. A. Robie, L. Wiggins, and P. S. Hemingway, Low-temperature heat capacity and entropy of chalcopyrite (CuFeS2): estimates of the standard molar enthalpy and Gibbs free energy of formation of chalcopyrite and bornite (Cu5FeS4), The Journal of Chemical Thermodynamics, vol.17, issue.5, pp.481-488, 1985.
DOI : 10.1016/0021-9614(85)90147-8

E. L. Rosen, R. Buonsanti, A. Llordes, A. M. Sawvel, D. J. Milliron et al., Exceptionally Mild Reactive Stripping of Native Ligands from Nanocrystal Surfaces by Using Meerwein???s Salt, Angewandte Chemie International Edition, vol.114, issue.3, pp.684-693, 2011.
DOI : 10.1021/jp105069k

A. Nag, M. V. Kovalenko, J. Lee, W. Liu, B. Spokoyny et al., as Surface Ligands, Journal of the American Chemical Society, vol.133, issue.27, pp.10612-10632, 2011.
DOI : 10.1021/ja2029415

Y. Liu, Dependence of Carrier Mobility on Nanocrystal Size and Ligand Length in PbSe Nanocrystal Solids, Nano Letters, vol.10, issue.5, pp.1960-1969, 2010.
DOI : 10.1021/nl101284k

A. Lefrançois, Synthèse de nanocristaux de type Chalcopyrite en vue d'applications en cellules solaires, 2013.

J. Park, Efficient eco-friendly inverted quantum dot sensitized solar cells, J. Mater. Chem. A, vol.130, issue.3
DOI : 10.1021/ja0782706

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936380

H. Mcdaniel, N. Fuke, M. Pietryga, and V. I. Klimov, Engineered CuInSexS2?x Quantum Dots for Sensitized Solar Cells, 2013.

H. Mcdaniel, N. Fuke, N. S. Makarov, J. M. Pietryga, and V. I. Klimov, An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells, Nature Communications, vol.113
DOI : 10.1021/jp808091d

Y. Liu, Thermoelectric properties of semiconductor-metal composites produced by particle blending, APL Materials, vol.4, issue.10, p.104813, 2016.
DOI : 10.1021/ja312604r

X. Yu, A. Shavel, X. An, Z. Luo, and A. Cabot, -Au Heterostructured Nanoparticles for Photocatalytic Water Splitting and Pollutant Degradation, Journal of the American Chemical Society, vol.136, issue.26, 2014.
DOI : 10.1021/ja502076b

URL : https://hal.archives-ouvertes.fr/hal-00350193

M. Ibáñez, High-performance thermoelectric nanocomposites from nanocrystal building blocks, Nature Communications, vol.5, p.10766, 2015.
DOI : 10.1107/S0909049505012719

L. L. Hung, C. K. Tsung, W. Huang, and P. Yang, Room-Temperature Formation of Hollow Cu2O Nanoparticles, Advanced Materials, vol.91, issue.17, pp.1910-1914, 2010.
DOI : 10.1016/j.solmat.2007.01.015

L. Li, F. Hu, D. Xu, S. Shen, and Q. Wang, Metal ion redox potential plays an important role in high-yield synthesis of monodisperse silver nanoparticles, Chemical Communications, vol.118, issue.39, pp.4728-4758, 2012.
DOI : 10.1002/ange.200601277

K. Kravchyk, Monodisperse and Inorganically Capped Sn and Sn/SnO2 Nanocrystals for High-Performance Li-Ion Battery Anodes, pp.4199-4202, 2013.
DOI : 10.1021/ja312604r

T. Shibuya, alloy, Applied Physics Letters, vol.16, issue.2, p.21912, 2014.
DOI : 10.1063/1.328272

Y. Hamanaka, K. Ozawa, and T. Kuzuya, Enhancement of Donor ? Acceptor Pair Emissions in Colloidal AgInS2 Quantum Dots with High Concentrations of Defects, 2014.

0. Cu1 and 9. , Ag 5 % molaire (vert, échantillon #44) et Cu0,95Fe1,05S1,85 + Ag 10 % molaire (gris, échantillon #38) compactés. Mesures réalisées entre 50 °C et 400, p.137

0. Cu1 and 9. , Ag 5 % molaire (vert, échantillon #44) et Cu0,95Fe1,05S1,85 + Ag 10 % molaire (gris, échantillon #38) compactés. Mesures réalisées entre 50 °C et 400, p.139

0. Cu1 and 9. , Ag 5 % molaire (vert, échantillon #44) et Cu0,95Fe1,05S1,85 + Ag 10 % molaire (gris, échantillon #38) compactés. Mesures réalisées entre 50 °C et 400, p.141

9. Cu0, 0. °c, and .. , 98 + Sn 1 % molaire (rose, échantillon #61) et Cu0,99Fe1,01S1.98 + Sn 3 % molaire (marron, échantillon #61) compactés. Mesures réalisées entre 50 °C et 400, p.148

9. Cu0 and 0. , 98 (rouge, échantillon #61), pp.84-121