Y. Farouz, Y. Chen, P. Menasché, J. Ino, M. Atlan et al., [Mending broken hearts and repairing damaged vessels] (French title: Réparer les coeurs brisés et les vaisseaux abîmés), Biofutur, vol.2012, pp.1-4

A. Alwan, T. Armstrong, D. Bettcher, and F. Branca, Global Status Report on Noncommunicable Diseases 2010: Description of the Global Burden of NCDs, Their Risk Factors and Determinants, World Health, 2011.

D. Mozaffarian, E. Benjamin, A. Go, D. Arnett, M. Blaha et al., Heart Disease and Stroke Statistics?2015 Update, Heart disease and stroke statistics--2015 update: a report from the American Heart Association, pp.29-322, 2015.
DOI : 10.1161/CIR.0000000000000152

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4418670/pdf

S. Khatibzadeh, F. Farzadfar, J. Oliver, M. Ezzati, and A. Moran, Worldwide risk factors for heart failure: A systematic review and pooled analysis, International Journal of Cardiology, vol.168, issue.2, pp.1186-1194, 2013.
DOI : 10.1016/j.ijcard.2012.11.065

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594565

E. Ghafar-zadeh, J. Waldeisen, and L. Lee, Engineered approaches to the stem cell microenvironment for cardiac tissue regeneration, Lab on a Chip, vol.32, issue.3, pp.3031-3048, 2011.
DOI : 10.1039/c1lc20284g

. Hao-x, E. Silva, M. A. , G. K. Siddiqui-a, D. G. et al., Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction, Cardiovascular Research, vol.75, issue.1, pp.178-185, 2007.
DOI : 10.1016/j.cardiores.2007.03.028

J. Yu, K. Du, Q. Fang, Y. Gu, and S. Mihardja, The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat, Biomaterials, vol.31, issue.27, 2010.
DOI : 10.1016/j.biomaterials.2010.05.078

G. Blin, D. Nury, S. Stefanovic, T. Neri, O. Guillevic et al., A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates, Journal of Clinical Investigation, vol.120, issue.4, pp.1125-1139, 2010.
DOI : 10.1172/JCI40120DS1

URL : https://hal.archives-ouvertes.fr/inserm-00451770

G. Blin, D. Nury, S. Stefanovic, T. Neri, O. Guillevic et al., A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates, Journal of Clinical Investigation, vol.120, issue.4, pp.1125-1139, 2010.
DOI : 10.1172/JCI40120DS1

URL : https://hal.archives-ouvertes.fr/inserm-00451770

H. Hamdi, V. Planat-benard, A. Bel, E. Puymirat, R. Geha et al., Epicardial adipose stem cell sheets results in greater post-infarction survival than intramyocardial injections, Cardiovascular Research, vol.91, issue.3, pp.483-491, 2011.
DOI : 10.1093/cvr/cvr099

L. Visage, C. Gournay, O. Benguirat, N. Hamidi, S. Chaussumier et al., Mesenchymal Stem Cell Delivery into Rat Infarcted Myocardium Using a Porous Polysaccharide-Based Scaffold: A Quantitative Comparison With Endocardial Injection, Tissue Engineering Part A, vol.18, issue.1-2, pp.35-44, 2011.
DOI : 10.1089/ten.tea.2011.0053

URL : https://hal.archives-ouvertes.fr/inserm-00613948

A. Engler, S. Sen, H. Sweeney, and D. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, issue.4, pp.677-689, 2006.
DOI : 10.1016/j.cell.2006.06.044

URL : http://doi.org/10.1016/j.cell.2006.06.044

K. Parker, J. Tan, C. Chen, and L. Tung, Myofibrillar Architecture in Engineered Cardiac Myocytes, Circulation Research, vol.103, issue.4, pp.340-342, 2008.
DOI : 10.1161/CIRCRESAHA.108.182469

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910252

P. Alford, A. Feinberg, S. Sheehy, and K. Parker, Biohybrid thin films for measuring contractility in engineered cardiovascular muscle, Biomaterials, vol.31, issue.13, pp.3613-3621, 2010.
DOI : 10.1016/j.biomaterials.2010.01.079

D. Kim, E. Lipke, P. Kim, R. Cheong, S. Thompson et al., Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs, Proceedings of the National Academy of Sciences, vol.13, issue.7, pp.565-570, 2010.
DOI : 10.1038/nm1576

M. Shachar, O. Tsur-gang, T. Dvir, J. Leor, and S. Cohen, The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering, Acta Biomaterialia, vol.7, issue.1, pp.152-162, 2011.
DOI : 10.1016/j.actbio.2010.07.034

S. Boateng, RGD and YIGSR synthetic peptides facilitate identical cellular adhesion as laminin and fibronectin but alter the physiology of neonatal cardiac myocytes, AJP: Cell Physiology, 2004.
DOI : 10.1152/ajpcell.00199.2004

H. Takahashi, M. Nakayama, T. Shimizu, M. Yamato, and T. Okano, Anisotropic cell sheets for constructing three-dimensional tissue with well-organized cell orientation, Biomaterials, vol.32, issue.34, pp.8830-8838, 2011.
DOI : 10.1016/j.biomaterials.2011.08.006

C. Williams, Y. Tsuda, B. Isenberg, M. Yamato, T. Shimizu et al., Aligned Cell Sheets Grown on Thermo-Responsive Substrates with Microcontact Printed Protein Patterns, Advanced Materials, vol.1, issue.21, pp.2161-2164, 2009.
DOI : 10.1002/adma.200801027

S. Masuda, T. Shimizu, M. Yamato, and T. Okano, Cell sheet engineering for heart tissue repair. Advanced Drug Delivery Reviews, pp.1-9, 2007.

Y. Farouz, Y. Chen, A. Terzic, and P. Menasché, Concise Review: Growing Hearts in the Right Place: On the Design of Biomimetic Materials for Cardiac Stem Cell Differentiation, STEM CELLS, vol.4, issue.11 suppl, pp.1021-1035, 2015.
DOI : 10.1016/j.healun.2014.10.008

C. Mummery, J. Zhang, E. Ng, D. Elliott, A. Elefanty et al., Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells to Cardiomyocytes: A Methods Overview, Circulation Research, vol.111, issue.3, pp.344-358, 2012.
DOI : 10.1161/CIRCRESAHA.110.227512

A. Engler, S. Sen, H. Sweeney, and D. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, issue.4, pp.677-689, 2006.
DOI : 10.1016/j.cell.2006.06.044

URL : http://doi.org/10.1016/j.cell.2006.06.044

M. Radisic, H. Park, F. Chen, J. Salazar-lazzaro, Y. Wang et al., Biomimetic Approach to Cardiac Tissue Engineering: Oxygen Carriers and Channeled Scaffolds, Tissue Engineering, vol.12, issue.8, pp.2077-2091, 2006.
DOI : 10.1089/ten.2006.12.2077

C. Chan, M. Rolle, S. Potter-perigo, K. Braun, V. Biber et al., Differentiation of cardiomyocytes from human embryonic stem cells is accompanied by changes in the extracellular matrix production of versican and hyaluronan, Journal of Cellular Biochemistry, vol.124, issue.3, pp.585-596, 2010.
DOI : 10.1006/dbio.1997.8559

G. Tan, W. Shim, Y. Gu, L. Qian, Y. Chung et al., Differential effect of myocardial matrix and integrins on cardiac differentiation of human mesenchymal stem cells, Differentiation, vol.79, issue.4-5, pp.260-271, 2010.
DOI : 10.1016/j.diff.2010.02.005

K. Schenke-layland, E. Angelis, K. Rhodes, S. Heydarkhan-hagvall, H. Mikkola et al., Collagen IV Induces Trophoectoderm Differentiation of Mouse Embryonic Stem Cells, Stem Cells, vol.131, issue.6, pp.1529-1538, 2007.
DOI : 10.1634/stemcells.2006-0729

J. Zhang, M. Klos, G. Wilson, A. Herman, X. Lian et al., Extracellular Matrix Promotes Highly Efficient Cardiac Differentiation of Human Pluripotent Stem Cells: The Matrix Sandwich Method, Circulation Research, vol.111, issue.9, pp.1125-1136, 2012.
DOI : 10.1161/CIRCRESAHA.112.273144

H. Uosaki, P. Andersen, L. Shenje, L. Fernandez, S. Christiansen et al., Direct Contact with Endoderm-Like Cells Efficiently Induces Cardiac Progenitors from Mouse and Human Pluripotent Stem Cells, PLoS ONE, vol.7, issue.10, p.46413, 2012.
DOI : 10.1371/journal.pone.0046413.s001

K. Brown, M. Doss, S. Legros, J. Artus, A. Hadjantonakis et al., eXtraembryonic ENdoderm (XEN) Stem Cells Produce Factors that Activate Heart Formation, eXtraembryonic ENdoderm (XEN) Stem Cells Produce Factors that Activate Heart Formation, p.13446, 2010.
DOI : 10.1371/journal.pone.0013446.s004

URL : http://doi.org/10.1371/journal.pone.0013446

V. Shimko and W. Claycomb, Effect of mechanical loading on three-dimensional cultures of embryonic stem cell-derived cardiomyocytes, Tissue Engineering : Part A, vol.14, pp.49-58, 2008.

A. Hansen, A. Eder, M. Bönstrup, M. Flato, M. Mewe et al., Development of a Drug Screening Platform Based on Engineered Heart Tissue, Circulation Research, vol.107, issue.1, pp.35-44, 2010.
DOI : 10.1161/CIRCRESAHA.109.211458

A. Grosberg, P. Alford, M. Mccain, and K. Parker, Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip, Lab on a Chip, vol.25, issue.24, pp.4165-4173, 2011.
DOI : 10.1039/c1lc20557a

J. Garbern and R. Lee, Cardiac Stem Cell Therapy and the Promise of Heart Regeneration, Cell Stem Cell, vol.12, issue.6, pp.689-698, 2013.
DOI : 10.1016/j.stem.2013.05.008

P. Menasché, Embryonic stem cells pace the heart, Nature Biotechnology, vol.96, issue.10, pp.1237-1238, 2004.
DOI : 10.1152/ajpheart.01247.2003

I. Minami, K. Yamada, T. Otsuji, T. Yamamoto, Y. Shen et al., A Small Molecule that Promotes Cardiac Differentiation of Human Pluripotent Stem Cells under Defined, Cytokine- and Xeno-free Conditions, Cell Reports, vol.2, issue.5, pp.1448-1460, 2012.
DOI : 10.1016/j.celrep.2012.09.015

Z. He, H. Li, S. Zuo, Z. Pasha, Y. Wang et al., Promotes Mesenchymal Stem Cell Transdifferentiation into Cardiac Phenotypes, Stem Cells and Development, vol.20, issue.10, pp.1771-1778, 2011.
DOI : 10.1089/scd.2010.0380

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156937

D. Panáková, A. Werdich, and C. Macrae, Wnt11 patterns a myocardial electrical gradient through regulation of the L-type Ca2+ channel, Nature, vol.295, issue.7308, pp.874-878, 2010.
DOI : 10.1038/nature09249

I. Nagy, A. Railo, R. Rapila, T. Hast, R. Sormunen et al., Wnt-11 signalling controls ventricular myocardium development by patterning N-cadherin and ?-catenin expression, Cardiovascular Research, vol.85, issue.1, pp.100-109, 2010.
DOI : 10.1093/cvr/cvp254

A. Deb, B. Davis, J. Guo, A. Ni, J. Huang et al., SFRP2 Regulates Cardiomyogenic Differentiation by Inhibiting a Positive Transcriptional Autofeedback Loop of Wnt3a, Stem Cells, vol.423, issue.1, pp.35-44, 2008.
DOI : 10.1634/stemcells.2007-0475

M. Pucéat, TGF?? in the differentiation of embryonic stem cells, Cardiovascular Research, vol.74, issue.2, pp.256-261, 2007.
DOI : 10.1016/j.cardiores.2006.12.012

S. Kattman, A. Witty, M. Gagliardi, N. Dubois, M. Niapour et al., Stage-Specific Optimization of Activin/Nodal and BMP Signaling Promotes Cardiac Differentiation of Mouse and Human Pluripotent Stem Cell Lines, Cell Stem Cell, vol.8, issue.2, pp.228-240, 2011.
DOI : 10.1016/j.stem.2010.12.008

J. Leschik, S. Stefanovic, B. Brinon, and M. Pucéat, Cardiac commitment of primate embryonic stem cells, Nature Protocols, vol.6, issue.9, pp.1381-1387, 2008.
DOI : 10.4161/cc.6.1.3633

URL : https://hal.archives-ouvertes.fr/inserm-00297337

E. De-pater, M. Ciampricotti, F. Priller, J. Veerkamp, I. Strate et al., Bmp Signaling Exerts Opposite Effects on Cardiac Differentiation, Circulation Research, vol.110, issue.4, pp.578-587, 2012.
DOI : 10.1161/CIRCRESAHA.111.261172

Z. Weng, C. Kong, L. Ren, I. Karakikes, L. Geng et al., A Simple, Cost-Effective but Highly Efficient System for Deriving Ventricular Cardiomyocytes from Human Pluripotent Stem Cells, Stem Cells and Development, vol.23, issue.14, pp.1704-1716, 2014.
DOI : 10.1089/scd.2013.0509

L. Yang, M. Soonpaa, E. Adler, T. Roepke, S. Kattman et al., Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population, Nature, vol.225, issue.7194, pp.524-528, 2008.
DOI : 10.1161/01.CIR.92.5.1179

P. Burridge, E. Matsa, P. Shukla, Z. Lin, J. Churko et al., Chemically defined generation of human cardiomyocytes, Nature Methods, vol.5, issue.8, pp.855-860, 2014.
DOI : 10.1038/nprot.2008.42

N. Amin and E. Vincan, The Wnt signaling pathways and cell adhesion, Frontiers in Bioscience, vol.17, issue.1, 2012.
DOI : 10.2741/3957

K. Tanegashima, H. Zhao, and I. Dawid, WGEF activates Rho in the Wnt?PCP pathway and controls convergent extension in Xenopus gastrulation, The EMBO Journal, vol.126, issue.4, pp.606-617, 2008.
DOI : 10.1002/aja.1001950303

J. Wallingford, Planar Cell Polarity and the Developmental Control of Cell Behavior in Vertebrate Embryos, Annual Review of Cell and Developmental Biology, vol.28, issue.1, pp.627-653, 2012.
DOI : 10.1146/annurev-cellbio-092910-154208

J. Kopf, A. Petersen, G. Duda, and P. Knaus, BMP2 and mechanical loading cooperatively regulate immediate early signalling events in the BMP pathway, BMC Biology, vol.10, issue.1, p.37, 2012.
DOI : 10.1186/1741-7007-10-37

D. Peiris, I. Pacheco, C. Spencer, and R. Macleod, The extracellular calcium-sensing receptor reciprocally regulates the secretion of BMP-2 and the BMP antagonist Noggin in colonic myofibroblasts, AJP: Gastrointestinal and Liver Physiology, vol.292, issue.3
DOI : 10.1152/ajpgi.00225.2006

K. Bhadriraju, M. Yang, A. Ruiz, S. Pirone, D. Tan et al., Activation of ROCK by RhoA is regulated by cell adhesion, shape, and cytoskeletal tension, Experimental Cell Research, vol.313, issue.16, pp.3616-3623, 2007.
DOI : 10.1016/j.yexcr.2007.07.002

R. Mcbeath, D. Pirone, C. Nelson, K. Bhadriraju, and C. Chen, Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment, Developmental Cell, vol.6, issue.4, pp.483-495, 2004.
DOI : 10.1016/S1534-5807(04)00075-9

A. Bongso, C. Fong, S. Ng, and S. Ratnam, Fertilization and early embryology: Isolation and culture of inner cell mass cells from human blastocysts, Human Reproduction, vol.9, issue.11, pp.2110-2117, 1994.
DOI : 10.1093/oxfordjournals.humrep.a138401

A. Zeiger, B. Hinton, V. Vliet, and K. , Why the dish makes a difference: Quantitative comparison of polystyrene culture surfaces, Acta Biomaterialia, vol.9, issue.7, pp.7354-7361, 2013.
DOI : 10.1016/j.actbio.2013.02.035

J. Thomson, J. Itskovitz-eldor, S. Shapiro, M. Waknitz, J. Swiergiel et al., Embryonic Stem Cell Lines Derived from Human Blastocysts, Embryonic Stem Cell Lines Derived from Human Blastocysts, pp.1145-1147, 1998.
DOI : 10.1126/science.282.5391.1145

B. Reubinoff, M. Pera, C. Fong, A. Trounson, and A. Bongso, Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro, Nature Biotechnology, vol.18, pp.399-404, 2000.

M. Lambert, F. Padilla, and R. Mège, Immobilized dimers of N-cadherin-Fc chimera mimic cadherinmediated cell contact formation: contribution of both outside-in and inside-out signals, Journal of Cell Science, vol.113, pp.2207-2219, 2000.

K. Schenke-layland, A. Nsair, B. Van-handel, E. Angelis, J. Gluck et al., Recapitulation of the embryonic cardiovascular progenitor cell niche, Biomaterials, vol.32, issue.11, pp.2748-2756, 2011.
DOI : 10.1016/j.biomaterials.2010.12.046

M. Stary, W. Pasteiner, A. Summer, A. Hrdina, A. Eger et al., Parietal endoderm secreted SPARC promotes early cardiomyogenesis in vitro, Experimental Cell Research, vol.310, issue.2, pp.331-343, 2005.
DOI : 10.1016/j.yexcr.2005.07.013

A. Grosberg, P. Kuo, C. Guo, N. Geisse, M. Bray et al., Self-Organization of Muscle Cell Structure and Function, PLoS Computational Biology, vol.83, issue.2, p.1001088, 2011.
DOI : 10.1371/journal.pcbi.1001088.s017

P. Alford, A. Feinberg, S. Sheehy, and K. Parker, Biohybrid thin films for measuring contractility in engineered cardiovascular muscle, Biomaterials, vol.31, issue.13, pp.3613-3621, 2010.
DOI : 10.1016/j.biomaterials.2010.01.079

A. Feinberg, P. Alford, H. Jin, C. Ripplinger, A. Werdich et al., Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture, Biomaterials, vol.33, issue.23, pp.5732-5741, 2012.
DOI : 10.1016/j.biomaterials.2012.04.043

A. Feinberg, A. Feigel, S. Shevkoplyas, S. Sheehy, G. Whitesides et al., Muscular Thin Films for Building Actuators and Powering Devices, Science, vol.307, issue.5717, pp.1366-1370, 2007.
DOI : 10.1126/science.1109616

A. Van-spreeuwel, N. Bax, A. Bastiaens, J. Foolen, S. Loerakker et al., The influence of matrix (an)isotropy on cardiomyocyte contraction in engineered cardiac microtissues, Integr. Biol., vol.95, issue.4, pp.422-429, 2014.
DOI : 10.1039/C3IB40219C

J. Wang, A. Chen, D. Lieu, I. Karakikes, G. Chen et al., Effect of engineered anisotropy on the susceptibility of human pluripotent stem cell-derived ventricular cardiomyocytes to arrhythmias, Biomaterials, vol.34, issue.35, pp.8878-8886, 2013.
DOI : 10.1016/j.biomaterials.2013.07.039

A. Agarwal, Y. Farouz, A. Nesmith, L. Deravi, M. Mccain et al., Micropatterning Alginate Substrates for In Vitro Cardiovascular Muscle on a Chip, Advanced Functional Materials, vol.14, issue.30, pp.3738-3746, 2013.
DOI : 10.1002/adfm.201203319

E. Cimetta, D. Sirabella, K. Yeager, K. Davidson, J. Simon et al., Microfluidic bioreactor for dynamic regulation of early mesodermal commitment in human pluripotent stem cells, Lab Chip, vol.5, issue.3, pp.355-364, 2013.
DOI : 10.1039/C2LC40836H

A. Khademhosseini, L. Ferreira, J. Blumling, J. Yeh, J. Karp et al., Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates, Biomaterials, vol.27, issue.36, pp.5968-5977, 2006.
DOI : 10.1016/j.biomaterials.2006.06.035

X. Tang, M. Ali, and M. Saif, A novel technique for micro-patterning proteins and cells on polyacrylamide gels, Soft Matter, vol.27, issue.27, pp.7197-7206, 2012.
DOI : 10.1039/c2sm25533b

T. Grevesse, M. Versaevel, G. Circelli, S. Desprez, and S. Gabriele, A simple route to functionalize polyacrylamide hydrogels for the independent tuning of mechanotransduction cues, Lab on a Chip, vol.3, issue.5, pp.777-780, 2013.
DOI : 10.1039/c2lc41168g

M. Hynd, J. Frampton, M. Burnham, D. Martin, N. Dowell-mesfin et al., Functionalized hydrogel surfaces for the patterning of multiple biomolecules, Journal of Biomedical Materials Research Part A, vol.11, issue.2, pp.347-354, 2007.
DOI : 10.1002/jbm.a.31002

O. Jeon and E. Alsberg, Regulation of Stem Cell Fate in a Three-Dimensional Micropatterned Dual-Crosslinked Hydrogel System, Advanced Functional Materials, vol.25, pp.4765-4775, 2013.
DOI : 10.1002/adfm.201300529

N. Annabi, K. Tsang, S. Mithieux, M. Nikkhah, A. Ameri et al., Highly Elastic Micropatterned Hydrogel for Engineering Functional Cardiac Tissue, Advanced Functional Materials, vol.12, issue.39, pp.4950-4959, 2013.
DOI : 10.1002/adfm.201300570

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3850066

J. Luna, J. Ciriza, M. Garcia-ojeda, M. Kong, A. Herren et al., Multiscale Biomimetic Topography for the Alignment of Neonatal and Embryonic Stem Cell-Derived Heart Cells, Tissue Engineering Part C: Methods, vol.17, issue.5, pp.579-588, 2011.
DOI : 10.1089/ten.tec.2010.0410

D. Kim, E. Lipke, P. Kim, R. Cheong, S. Thompson et al., Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs, Proceedings of the National Academy of Sciences, vol.13, issue.7, pp.565-570, 2010.
DOI : 10.1038/nm1576

N. Bursac, K. Parker, S. Iravanian, and L. Tung, Cardiomyocyte Cultures With Controlled Macroscopic Anisotropy: A Model for Functional Electrophysiological Studies of Cardiac Muscle, Circulation Research, vol.91, issue.12
DOI : 10.1161/01.RES.0000047530.88338.EB

R. Gould, L. Aboulmouna, J. Varner, and J. Butcher, Hierarchical approaches for systems modeling in cardiac development, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol.295, issue.3, pp.289-305, 2013.
DOI : 10.1002/wsbm.1217

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625506

A. Colas, W. Mckeithan, T. Cunningham, P. Bushway, L. Garmire et al., Whole-genome microRNA screening identifies let-7 and mir-18 as regulators of germ layer formation during early embryogenesis, Genes & Development, vol.26, issue.23, pp.2567-2579, 2012.
DOI : 10.1101/gad.200758.112

G. Underhill, Stem cell bioengineering at the interface of systems-based models and high-throughput platforms, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol.145, issue.6, pp.525-545, 2012.
DOI : 10.1002/wsbm.1189

E. Suuronen and M. Ruel, Biomaterials for Cardiac Regeneration, 2015.
DOI : 10.1007/978-3-319-10972-5

S. Fischer, S. Brunskill, C. Doree, A. Mathur, D. Taggart et al., Stem cell therapy for chronic ischaemic heart disease and congestive heart failure (Review) The Cochrane Collaboration, pp.1-170, 2014.

Y. Liu and H. Tse, The proarrhythmic risk of cell therapy for cardiovascular diseases, Expert Review of Cardiovascular Therapy, vol.9, issue.12, pp.1593-1601, 2011.
DOI : 10.1586/erc.11.171

Y. Shiba, D. Filice, S. Fernandes, E. Minami, S. Dupras et al., Electrical Integration of Human Embryonic Stem Cell-Derived Cardiomyocytes in a Guinea Pig Chronic Infarct Model, Journal of Cardiovascular Pharmacology and Therapeutics, vol.116, issue.1, 2014.
DOI : 10.1038/nbt1014

J. Chong, X. Yang, C. Don, E. Minami, Y. Liu et al., Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts, Nature, vol.22, issue.7504, pp.273-277, 2014.
DOI : 10.1038/nature13233

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154594

P. Menasche, O. Alfieri, S. Janssens, W. Mckenna, H. Reichenspurner et al., The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) Trial: First Randomized Placebo-Controlled Study of Myoblast Transplantation, Circulation, vol.117, issue.9, pp.1189-1200, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.734103

S. Fukushima, A. Varela-carver, S. Coppen, K. Yamahara, L. Felkin et al., Direct Intramyocardial But Not Intracoronary Injection of Bone Marrow Cells Induces Ventricular Arrhythmias in a Rat Chronic Ischemic Heart Failure Model, Circulation, vol.115, issue.17, pp.2254-2261, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.662577

Y. Terajima, T. Shimizu, S. Tsuruyama, H. Sekine, H. Ishii et al., Autologous Skeletal Myoblast Sheet Therapy for Porcine Myocardial Infarction without Increasing Risk of Arrhythmia, Cell Medicine, vol.68, issue.1, pp.99-109
DOI : 10.1002/(SICI)1097-0290(20000405)68:1<106::AID-BIT13>3.0.CO;2-3

M. Abraham, C. Henrikson, L. Tung, M. Chang, M. Aon et al., Antiarrhythmic Engineering of Skeletal Myoblasts for Cardiac Transplantation, Circulation Research, vol.97, issue.2, pp.159-167, 2005.
DOI : 10.1161/01.RES.0000174794.22491.a0

K. Hatzistergos, A. Blum, T. Ince, J. Grichnik, and J. Hare, What Is the Oncologic Risk of Stem Cell Treatment for Heart Disease? Circulation Research, pp.1300-1303, 2011.

U. Ben-david and N. Benvenisty, The tumorigenicity of humanembryonic and induced pluripotentstem cells, pp.268-277, 2011.

A. Lee, C. Tang, M. Rao, I. Weissman, and J. Wu, Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies, Nature Medicine, vol.24, issue.8, pp.998-1004, 2013.
DOI : 10.1038/nm.3267

G. Blin, D. Nury, S. Stefanovic, T. Neri, O. Guillevic et al., A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates, Journal of Clinical Investigation, vol.120, issue.4, pp.1125-1139, 2010.
DOI : 10.1172/JCI40120DS1

URL : https://hal.archives-ouvertes.fr/inserm-00451770

G. Blin, D. Nury, S. Stefanovic, T. Neri, O. Guillevic et al., A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates, Journal of Clinical Investigation, vol.120, issue.4, pp.1125-1139, 2010.
DOI : 10.1172/JCI40120DS1

URL : https://hal.archives-ouvertes.fr/inserm-00451770

P. Menasché, V. Vanneaux, J. Fabreguettes, A. Bel, L. Tosca et al., Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience, European Heart Journal, vol.36, issue.12, 2014.
DOI : 10.1093/eurheartj/ehu192

P. Gallo and G. Condorelli, Human embryonic stem cell-derived cardiomyocytes: inducing strategies, Regenerative Medicine, vol.1, issue.2, pp.183-194, 2006.
DOI : 10.2217/17460751.1.2.183

P. Menasche, O. Alfieri, S. Janssens, W. Mckenna, H. Reichenspurner et al., The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) Trial: First Randomized Placebo-Controlled Study of Myoblast Transplantation, Circulation, vol.117, issue.9, pp.1189-1200, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.734103

H. Hamdi, A. Furuta, V. Bellamy, A. Bel, E. Puymirat et al., Cell Delivery: Intramyocardial Injections or Epicardial Deposition? A Head-to-Head Comparison, The Annals of Thoracic Surgery, vol.87, issue.4, pp.1196-1203, 2009.
DOI : 10.1016/j.athoracsur.2008.12.074

H. Hamdi, V. Planat-benard, A. Bel, E. Puymirat, R. Geha et al., Epicardial adipose stem cell sheets results in greater post-infarction survival than intramyocardial injections, Cardiovascular Research, vol.91, issue.3, pp.483-491, 2011.
DOI : 10.1093/cvr/cvr099

M. Araña, J. Gavira, E. Peña, A. González, G. Abizanda et al., Epicardial delivery of collagen patches with adipose-derived stem cells in rat and minipig models of chronic myocardial infarction, Biomaterials, vol.35, issue.1, pp.143-151, 2014.
DOI : 10.1016/j.biomaterials.2013.09.083

N. Laurens, P. Koolwijk, and M. De-maat, Fibrin structure and wound healing, Journal of Thrombosis and Haemostasis, vol.90, issue.5, pp.932-939, 2006.
DOI : 10.1016/S0041-1345(00)02181-3

M. Barsotti, A. Magera, C. Armani, F. Chiellini, F. F. Dinucci et al., Fibrin acts as biomimetic niche inducing both differentiation and stem cell marker expression of early human endothelial progenitor cells, Cell Proliferation, vol.13, issue.1, pp.33-48, 2010.
DOI : 10.1111/j.1365-2184.2010.00715.x

C. Yang, H. Chen, T. Wang, and Y. Wang, A novel fibrin gel derived from hyaluronic acid-grafted fibrinogen, Biomedical Materials, vol.6, issue.2, pp.25009-25021, 2011.
DOI : 10.1088/1748-6041/6/2/025009

D. Fergusson, P. Hébert, C. Mazer, S. Fremes, C. Macadams et al., A Comparison of Aprotinin and Lysine Analogues in High-Risk Cardiac Surgery, New England Journal of Medicine, vol.358, issue.22, pp.2319-2331, 2008.
DOI : 10.1056/NEJMoa0802395

M. Sander, C. Spies, V. Martiny, C. Rosenthal, K. Wernecke et al., Mortality associated with administration of high-dose tranexamic acid and aprotinin in primary open-heart procedures: a retrospective analysis, Critical Care, vol.14, issue.4, p.148, 2010.
DOI : 10.1186/cc9216

C. Lin, J. Shuhaiber, H. Loyola, H. Liu, P. Del-nido et al., The Safety and Efficacy of Antifibrinolytic Therapy in Neonatal Cardiac Surgery, PLOS ONE, vol.92, issue.4, pp.126514-126525, 2015.
DOI : 10.1371/journal.pone.0126514.s001

C. Jakobsen, F. Søndergaard, V. Hjortdal, and S. Johnsen, Use of aprotinin in cardiac surgery: effectiveness and safety in a population-based study???, European Journal of Cardio-Thoracic Surgery, vol.36, issue.5, pp.863-868, 2009.
DOI : 10.1016/j.ejcts.2009.05.040

N. Badie and N. Bursac, Novel Micropatterned Cardiac Cell Cultures with Realistic Ventricular Microstructure, Biophysical Journal, vol.96, issue.9, pp.3873-3885, 2009.
DOI : 10.1016/j.bpj.2009.02.019

URL : http://doi.org/10.1016/j.bpj.2009.02.019

W. Ho, B. Tawil, J. Dunn, and B. Wu, The Behavior of Human Mesenchymal Stem Cells in 3D Fibrin Clots: Dependence on Fibrinogen Concentration and Clot Structure, Tissue Engineering, vol.12, issue.6, pp.1587-1595, 2006.
DOI : 10.1089/ten.2006.12.1587

W. Zimmermann, I. Melnychenko, and T. Eschenhagen, Engineered heart tissue for regeneration of diseased hearts, Biomaterials, vol.25, issue.9, pp.1639-1647, 2004.
DOI : 10.1016/S0142-9612(03)00521-0

W. Zimmermann, I. Melnychenko, G. Wasmeier, M. Didié, H. Naito et al., Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts, Nature Medicine, vol.107, issue.4, pp.452-458, 2006.
DOI : 10.1016/S0735-1097(03)00092-5

S. Dhillon, Fibrin Sealant (Evicel? [Quixil?/Crosseal?]), Drugs, vol.89, issue.1, pp.1893-1915, 2011.
DOI : 10.2165/11207700-000000000-00000

W. Hickerson, I. Nur, and R. Meidler, A comparison of the mechanical, kinetic, and biochemical properties of fibrin clots formed with two different fibrin sealants, Blood Coagulation & Fibrinolysis, vol.22, issue.1, pp.19-23, 2011.
DOI : 10.1097/MBC.0b013e32833fcbfb

J. Velada, D. Hollingsbee, A. Menzies, R. Cornwell, and R. Dodd, Reproducibility of the mechanical properties of Vivostat?? system patient-derived fibrin sealant, Biomaterials, vol.23, issue.10, pp.2249-2254, 2002.
DOI : 10.1016/S0142-9612(01)00359-3

N. Huang, J. Chu, R. Lee, and S. Li, Biophysical and chemical effects of fibrin on mesenchymal stromal cell gene expression, Acta Biomaterialia, vol.6, issue.10, pp.3947-3956, 2010.
DOI : 10.1016/j.actbio.2010.05.020

S. Rowe, S. Lee, and J. Stegemann, Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels, Acta Biomaterialia, vol.3, issue.1, pp.59-67, 2007.
DOI : 10.1016/j.actbio.2006.08.006

J. Liu, Q. Hu, Z. Wang, C. Xu, X. Wang et al., Autologous stem cell transplantation for myocardial repair. AJP: Heart and Circulatory Physiology, pp.501-512, 2004.
DOI : 10.1152/ajpheart.00019.2004

A. Godier-furnémont, T. Martens, M. Koeckert, L. Wan, J. Parks et al., Composite scaffold provides a cell delivery platform for cardiovascular repair, Proceedings of the National Academy of Sciences, vol.9, issue.4, pp.7974-7979, 2011.
DOI : 10.1021/bm800051m

Q. Xiong, K. Hill, Q. Li, P. Suntharalingam, A. Mansoor et al., A Fibrin Patch-Based Enhanced Delivery of Human Embryonic Stem Cell-Derived Vascular Cell Transplantation in a Porcine Model of Postinfarction Left Ventricular Remodeling, STEM CELLS, vol.121, issue.2, pp.367-375, 2011.
DOI : 10.1002/stem.580

J. Vallée, M. Hauwel, M. Lepetit-coiffé, W. Bei, K. Montet-abou et al., Embryonic Stem Cell-Based Cardiopatches Improve Cardiac Function in Infarcted Rats, STEM CELLS Translational Medicine, vol.378, issue.3, pp.248-260, 2012.
DOI : 10.5966/sctm.2011-0028

G. Engelmayr, M. Cheng, C. Bettinger, J. Borenstein, R. Langer et al., Accordion-like honeycombs for tissue engineering of cardiac anisotropy, Nature Materials, vol.20, issue.12, pp.1003-1010, 2008.
DOI : 10.1163/156856208784089643

A. Engler, C. Carag-krieger, C. Johnson, M. Raab, H. Tang et al., Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating, Journal of Cell Science, vol.121, issue.22, pp.3794-3802, 2008.
DOI : 10.1242/jcs.029678

J. Young and A. Engler, Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro, Biomaterials, vol.32, issue.4, pp.1002-1009, 2011.
DOI : 10.1016/j.biomaterials.2010.10.020

W. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval et al., Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging, IEEE Trans Med Imaging, vol.31, pp.554-562

M. Pernot, M. Couade, P. Mateo, B. Crozatier, R. Fischmeister et al., Real-Time Assessment of Myocardial Contractility Using Shear Wave Imaging, Journal of the American College of Cardiology, vol.58, issue.1, pp.65-72, 2011.
DOI : 10.1016/j.jacc.2011.02.042

S. Chiron, C. Tomczak, A. Duperray, J. Lainé, and G. Bonne, Complex Interactions between Human Myoblasts and the Surrounding 3D Fibrin-Based Matrix, PLoS ONE, vol.106, issue.4, 2012.
DOI : 10.1371/journal.pone.0036173.s001

URL : http://doi.org/10.1371/journal.pone.0036173

V. Bellamy, V. Vanneaux, A. Bel, H. Nemetalla, S. Boitard et al., Long-term functional benefits of human embryonic stem cell-derived cardiac progenitors embedded into a fibrin scaffold, The Journal of Heart and Lung Transplantation, vol.34, issue.9, pp.1-10
DOI : 10.1016/j.healun.2014.10.008

URL : https://hal.archives-ouvertes.fr/hal-01103134

S. Willerth, A. Rader, and S. Sakiyama-elbert, The effect of controlled growth factor delivery on embryonic stem cell differentiation inside fibrin scaffolds, Stem Cell Research, vol.1, issue.3, pp.205-218, 2008.
DOI : 10.1016/j.scr.2008.05.006

P. Menasche, V. Vanneaux, A. Hagege, A. Bel, B. Cholley et al., Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report: Figure 1, European Heart Journal, vol.36, issue.30, pp.1-7
DOI : 10.1093/eurheartj/ehv189

V. Sacchi, R. Mittermayr, J. Hartinger, M. Martino, K. Lorentz et al., Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF164, Proceedings of the National Academy of Sciences, pp.6952-6957, 2014.
DOI : 10.1111/j.1524-475X.2007.00238.x

M. Anderson, J. Goldhaber, S. Houser, M. Puceat, and M. Sussman, Embryonic Stem Cell-Derived Cardiac Myocytes Are Not Ready for Human Trials, Circulation Research, vol.115, issue.3, pp.335-338, 2014.
DOI : 10.1161/CIRCRESAHA.114.304616

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133694

J. Chong, X. Yang, C. Don, E. Minami, Y. Liu et al., Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts, Nature, vol.22, issue.7504, pp.273-277, 2014.
DOI : 10.1038/nature13233

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154594

K. Gerbin, X. Yang, C. Murry, and K. Coulombe, Enhanced Electrical Integration of Engineered Human Myocardium via Intramyocardial versus Epicardial Delivery in Infarcted Rat Hearts, PLOS ONE, vol.16, issue.49, pp.131446-131466, 2015.
DOI : 10.1371/journal.pone.0131446.s006

M. Laflamme, K. Chen, A. Naumova, V. Muskheli, J. Fugate et al., Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts, Nature Biotechnology, vol.48, issue.9, pp.1015-1024, 2007.
DOI : 10.1161/01.RES.86.5.541

Z. Weng, C. Kong, L. Ren, I. Karakikes, L. Geng et al., A Simple, Cost-Effective but Highly Efficient System for Deriving Ventricular Cardiomyocytes from Human Pluripotent Stem Cells, Stem Cells and Development, vol.23, issue.14, pp.1704-1716, 2014.
DOI : 10.1089/scd.2013.0509

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086679

P. Burridge, E. Matsa, P. Shukla, Z. Lin, J. Churko et al., Chemically defined generation of human cardiomyocytes, Nature Methods, vol.5, issue.8, pp.855-860, 2014.
DOI : 10.1038/nprot.2008.42

X. Lian, J. Zhang, S. Azarin, K. Zhu, L. Hazeltine et al., Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/?-catenin signaling under fully defined conditions, Nature Protocols, vol.119, issue.1, pp.162-175, 2013.
DOI : 10.1038/nprot.2008.143

A. Engler, S. Sen, H. Sweeney, and D. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, issue.4, pp.677-689, 2006.
DOI : 10.1016/j.cell.2006.06.044

URL : http://doi.org/10.1016/j.cell.2006.06.044

Y. Farouz, Y. Chen, A. Terzic, and P. Menasché, Concise Review: Growing Hearts in the Right Place: On the Design of Biomimetic Materials for Cardiac Stem Cell Differentiation, STEM CELLS, vol.4, issue.11 suppl, pp.1021-1035, 2015.
DOI : 10.1016/j.healun.2014.10.008

F. Myers, J. Silver, Y. Zhuge, R. Beygui, C. Zarins et al., Robust pluripotent stem cell expansion and cardiomyocyte differentiation via geometric patterning, Integrative Biology, vol.8, issue.12, pp.1495-1506, 2013.
DOI : 10.1073/pnas.1200250109

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918460

R. Peerani, B. Rao, C. Bauwens, T. Yin, G. Wood et al., Niche-mediated control of human embryonic stem cell self-renewal and differentiation, The EMBO Journal, vol.37, issue.22, pp.4744-4755, 2007.
DOI : 10.1038/sj.emboj.7601896

Z. Ma, J. Wang, P. Loskill, N. Huebsch, S. Koo et al., Self-organizing human cardiac microchambers mediated by geometric confinement, Nature Communications, vol.21, p.7413, 2015.
DOI : 10.1038/ncomms8413

URL : http://doi.org/10.1038/ncomms8413

X. Tang, M. Ali, and M. Saif, A novel technique for micro-patterning proteins and cells on polyacrylamide gels, Soft Matter, vol.27, issue.27, pp.7197-7206, 2012.
DOI : 10.1039/c2sm25533b

M. Deforet, V. Hakim, H. Yevick, G. Duclos, and P. Silberzan, Emergence of collective modes and tridimensional structures from epithelial confinement, Nature Communications, vol.5, p.3747, 2014.

C. Veerman, G. Kosmidis, C. Mummery, S. Casini, A. Verkerk et al., Immaturity of Human Stem-Cell-Derived Cardiomyocytes in Culture: Fatal Flaw or Soluble Problem?, Stem Cells and Development, vol.24, issue.9, pp.150225071411000-18
DOI : 10.1089/scd.2014.0533

F. Bedada, S. Chan, S. Metzger, L. Zhang, J. Zhang et al., Acquisition of a Quantitative, Stoichiometrically Conserved Ratiometric Marker of Maturation Status in Stem Cell-Derived Cardiac Myocytes. Stem Cell Reports 2014, pp.594-605

. Schwan and S. Campbell, Prospects for In Vitro Myofilament Maturation in Stem Cell-Derived Cardiac Myocytes, Biomarker Insights, vol.2015, pp.91-104
DOI : 10.4137/BMI.S23912

M. Birket and C. Mummery, Pluripotent stem cell derived cardiovascular progenitors ? A developmental perspective, Developmental Biology, vol.400, issue.2, pp.169-179, 2015.
DOI : 10.1016/j.ydbio.2015.01.012

Q. Han, B. Zhang, C. B. Dai, J. Xu, J. Wang et al., Evaluation of a bioactive bone-inducing material consisting of collagen scaffolds and collagen-binding BMP2, J Biomed Mater Res, 2013.

A. Dolatshahi-pirouz, M. Nikkhah, A. Gaharwar, B. Hashmi, E. Guermani et al., A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells, Scientific Reports, vol.12, issue.1
DOI : 10.1039/c2lc40213k

Y. Wang, D. Cohen, M. Wozniak, M. Yang, L. Gao et al., Bone Morphogenetic Protein-2-Induced Signaling and Osteogenesis Is Regulated by Cell Shape, RhoA/ROCK, and Cytoskeletal Tension, Stem Cells and Development, vol.21, issue.7, pp.1176-1186, 2012.
DOI : 10.1089/scd.2011.0293

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3328763

K. Kilian, B. Bugarija, B. Lahn, and M. Mrksich, Geometric cues for directing the differentiation of mesenchymal stem cells, Proceedings of the National Academy of Sciences, vol.326, issue.2, pp.4872-4877, 2010.
DOI : 10.1016/j.bbrc.2004.11.056

A. Warmflash, B. Sorre, F. Etoc, E. Siggia, and A. Brivanlou, A method to recapitulate early embryonic spatial patterning in human embryonic stem cells, Nature Methods, vol.11, issue.8, pp.847-854, 2014.
DOI : 10.1073/pnas.1207607109

J. Zhang, M. Klos, G. Wilson, A. Herman, X. Lian et al., Extracellular Matrix Promotes Highly Efficient Cardiac Differentiation of Human Pluripotent Stem Cells: The Matrix Sandwich Method, Circulation Research, vol.111, issue.9, pp.1125-1136, 2012.
DOI : 10.1161/CIRCRESAHA.112.273144

G. Blin, D. Nury, S. Stefanovic, T. Neri, O. Guillevic et al., A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates, Journal of Clinical Investigation, vol.120, issue.4, pp.1125-1139, 2010.
DOI : 10.1172/JCI40120DS1

URL : https://hal.archives-ouvertes.fr/inserm-00451770

G. Halder, S. Dupont, and S. Piccolo, Transduction of mechanical and cytoskeletal cues by YAP and TAZ, Nature Reviews Molecular Cell Biology, vol.71, issue.9, pp.591-600, 2012.
DOI : 10.1038/nrm3416

L. Azzolin, F. Zanconato, S. Bresolin, M. Forcato, G. Basso et al., Role of TAZ as Mediator of Wnt Signaling, Cell, vol.151, issue.7, pp.1443-1456, 2012.
DOI : 10.1016/j.cell.2012.11.027

Y. Sun, K. Yong, L. Villa-diaz, X. Zhang, W. Chen et al., Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem??cells, Nature Materials, vol.13, issue.6, pp.599-604, 2014.
DOI : 10.1038/nmat2732

D. Mosqueira, S. Pagliari, K. Uto, M. Ebara, S. Romanazzo et al., Hippo Pathway Effectors Control Cardiac Progenitor Cell Fate by Acting as Dynamic Sensors of Substrate Mechanics and Nanostructure, ACS Nano, vol.8, issue.3, pp.2033-2047, 2014.
DOI : 10.1021/nn4058984

M. Xin, Y. Kim, L. Sutherland, M. Murakami, X. Qi et al., Hippo pathway effector Yap promotes cardiac regeneration, Proceedings of the National Academy of Sciences, vol.110, issue.34, pp.13839-13844
DOI : 10.1161/CIRCRESAHA.111.248880

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3752208

M. Xin, Y. Kim, L. Sutherland, X. Qi, J. Mcanally et al., Regulation of Insulin-Like Growth Factor Signaling by Yap Governs Cardiomyocyte Proliferation and Embryonic Heart Size, Science Signaling, vol.23, issue.18, p.70, 2011.
DOI : 10.1101/gad.1842409

E. Porrello and E. Olson, A neonatal blueprint for cardiac regeneration, Stem Cell Research, vol.13, issue.3, pp.1-52
DOI : 10.1016/j.scr.2014.06.003

M. Omatsu-kanbe, Y. Nishino, N. Nozuchi, H. Sugihara, and H. Matsuura, Prion protein-and cardiac troponin T-marked interstitial cells from the adult myocardium spontaneously develop into beating cardiomyocytes. Sci Rep, p.7301, 2014.

Z. Lin, P. Zhou, A. Gise-von, F. Gu, Q. Ma et al., Pi3kcb Links Hippo-YAP and PI3K-AKT Signaling Pathways to Promote Cardiomyocyte Proliferation and Survival, Circulation Research, vol.116, issue.1, 2014.
DOI : 10.1161/CIRCRESAHA.115.304457

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282610

Y. Wang, G. Hu, F. Liu, X. Wang, M. Wu et al., Deletion of Yes-Associated Protein (YAP) Specifically in Cardiac and Vascular Smooth Muscle Cells Reveals a Crucial Role for YAP in Mouse Cardiovascular Development, Circulation Research, vol.114, issue.6, pp.957-965, 2014.
DOI : 10.1161/CIRCRESAHA.114.303411

S. Sheehy, F. Pasqualini, A. Grosberg, S. Park, Y. Aratyn-schaus et al., Quality Metrics for Stem Cell-Derived Cardiac Myocytes, Stem Cell Reports, vol.2, issue.3, pp.282-294, 2014.
DOI : 10.1016/j.stemcr.2014.01.015

URL : http://doi.org/10.1016/j.stemcr.2014.01.015

D. Du, N. Hellen, C. Kane, and C. Terracciano, Action Potential Morphology of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Does Not Predict Cardiac Chamber Specificity and Is Dependent on Cell Density, Biophysical Journal, vol.108, issue.1, pp.1-4, 2015.
DOI : 10.1016/j.bpj.2014.11.008

R. Tomer, L. Ye, B. Hsueh, and K. Deisseroth, Advanced CLARITY for rapid and high-resolution imaging of intact tissues, Nature Protocols, vol.46, issue.7, pp.1682-1697, 2014.
DOI : 10.1016/S0006-3495(99)77063-3

E. Braunwald and M. Bristow, Congestive Heart Failure: Fifty Years of Progress, Circulation, vol.102, issue.Supplement 4, pp.14-23, 2000.
DOI : 10.1161/01.CIR.102.suppl_4.IV-14

K. Jezierska-wo?niak, D. Mystkowska, A. Tutas, and M. Jurkowski, Stem cells as therapy for cardiac disease &#8212; a review, Folia Histochemica et Cytobiologica, vol.49, issue.1, pp.13-25, 2011.
DOI : 10.5603/FHC.2011.0004

A. Beltrami, K. Urbanek, and J. Kajstura, Evidence That Human Cardiac Myocytes Divide after Myocardial Infarction, New England Journal of Medicine, vol.344, issue.23, pp.1750-1757, 2001.
DOI : 10.1056/NEJM200106073442303

B. Assmus, V. Schachinger, C. Teupe, and M. Britten, Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI) Circulation, 2002.

H. Hamdi, A. Furuta, V. Bellamy, A. Bel, E. Puymirat et al., Cell Delivery: Intramyocardial Injections or Epicardial Deposition? A Head-to-Head Comparison, The Annals of Thoracic Surgery, vol.87, issue.4, pp.1196-1203, 2009.
DOI : 10.1016/j.athoracsur.2008.12.074

A. Engler, S. Sen, H. Sweeney, and D. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, issue.4, pp.677-689, 2006.
DOI : 10.1016/j.cell.2006.06.044

URL : http://doi.org/10.1016/j.cell.2006.06.044

S. Willerth, K. Arendas, D. Gottlieb, and S. Sakiyama-elbert, Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells, Biomaterials, vol.27, issue.36, pp.5990-6003, 2006.
DOI : 10.1016/j.biomaterials.2006.07.036

J. Sun, X. Zhao, W. Illeperuma, O. Chaudhuri, K. Oh et al., Highly stretchable and tough hydrogels, Nature, vol.24, issue.7414, pp.133-136, 2012.
DOI : 10.1038/nature11409

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642868

K. Lee and D. Mooney, Alginate: Properties and biomedical applications, Progress in Polymer Science 2012, pp.106-126
DOI : 10.1016/j.progpolymsci.2011.06.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223967

U. Zimmermann, G. Klöck, K. Federlin, K. Hannig, M. Kowalski et al., Production of mitogen-contamination free alginates with variable ratios of mannuronic acid to guluronic acid by free flow electrophoresis, Electrophoresis, vol.11, issue.1, pp.269-274, 1992.
DOI : 10.1515/bchm2.1975.356.2.1225

G. Orive, S. Ponce, R. Hernández, A. Gascón, M. Igartua et al., Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates, Biomaterials, vol.23, issue.18, pp.3825-3831, 2002.
DOI : 10.1016/S0142-9612(02)00118-7

A. Shikanov, M. Xu, T. Woodruff, and L. Shea, Interpenetrating fibrin???alginate matrices for in vitro ovarian follicle development, Biomaterials, vol.30, issue.29, pp.5476-5485, 2009.
DOI : 10.1016/j.biomaterials.2009.06.054

R. Della, D. Willenberg, B. Ferreira, L. Wate, P. Petersen et al., A degradable, bioactive, gelatinized alginate hydrogel to improve stem cell/growth factor delivery and facilitate healing after myocardial infarction, Medical Hypotheses, vol.79, issue.5, pp.673-677, 2012.
DOI : 10.1016/j.mehy.2012.08.006

E. Nunamaker, K. Otto, and D. Kipke, Investigation of the material properties of alginate for the development of hydrogel repair of dura mater, Journal of the Mechanical Behavior of Biomedical Materials, vol.4, issue.1, pp.16-33, 2011.
DOI : 10.1016/j.jmbbm.2010.08.006

G. Prestwich, Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine, Journal of Controlled Release, vol.155, issue.2, pp.193-199, 2011.
DOI : 10.1016/j.jconrel.2011.04.007

P. Weigel, G. Fuller, and R. Leboeuf, A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing, Journal of Theoretical Biology, vol.119, issue.2, pp.219-234, 1986.
DOI : 10.1016/S0022-5193(86)80076-5

M. Maioli, S. Santaniello, A. Montella, P. Bandiera, S. Cantoni et al., Hyaluronan Esters Drive Smad Gene Expression and Signaling Enhancing Cardiogenesis in Mouse Embryonic and Human Mesenchymal Stem Cells, PLoS ONE, vol.29, issue.11, pp.15151-15162, 2010.
DOI : 10.1371/journal.pone.0015151.g008

URL : http://doi.org/10.1371/journal.pone.0015151

C. Chan, M. Rolle, S. Potter-perigo, K. Braun, V. Biber et al., Differentiation of cardiomyocytes from human embryonic stem cells is accompanied by changes in the extracellular matrix production of versican and hyaluronan, Journal of Cellular Biochemistry, vol.124, issue.3, pp.585-596, 2010.
DOI : 10.1006/dbio.1997.8559

M. Maioli, S. Santaniello, A. Montella, P. Bandiera, S. Cantoni et al., Hyaluronan Esters Drive Smad Gene Expression and Signaling Enhancing Cardiogenesis in Mouse Embryonic and Human Mesenchymal Stem Cells, PLoS ONE, vol.29, issue.11, p.15151, 2010.
DOI : 10.1371/journal.pone.0015151.g008

A. Chopra, M. Murray, F. Byfield, M. Mendez, R. Halleluyan et al., Augmentation of integrin-mediated mechanotransduction by hyaluronic acid, Biomaterials, vol.35, issue.1, pp.71-82, 2014.
DOI : 10.1016/j.biomaterials.2013.09.066

V. Bellamy, V. Vanneaux, A. Bel, H. Nemetalla, S. Boitard et al., Long-term functional benefits of human embryonic stem cell-derived cardiac progenitors embedded into a fibrin scaffold, The Journal of Heart and Lung Transplantation, vol.34, issue.9, pp.1-10
DOI : 10.1016/j.healun.2014.10.008

URL : https://hal.archives-ouvertes.fr/hal-01103134

P. Menasché, V. Vanneaux, J. Fabreguettes, A. Bel, L. Tosca et al., Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience, European Heart Journal, vol.36, issue.12, 2014.
DOI : 10.1093/eurheartj/ehu192

P. Menasche, V. Vanneaux, A. Hagege, A. Bel, B. Cholley et al., Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report: Figure 1, European Heart Journal, vol.36, issue.30, pp.1-7
DOI : 10.1093/eurheartj/ehv189

S. Llames, E. García-pérez, Á. Meana, F. Larcher, and M. Del-río, Feeder Layer Cell Actions and Applications, Tissue Engineering Part B: Reviews, vol.21, issue.4, pp.345-353, 2015.
DOI : 10.1089/ten.teb.2014.0547

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4533020

L. Eiselleova, I. Peterkova, J. Neradil, I. Slaninova, and A. Hampl, Comparative study of mouse and human feeder cells for human embryonic stem cells, The International Journal of Developmental Biology, vol.52, issue.4, pp.353-363, 2008.
DOI : 10.1387/ijdb.082590le

D. Claassen and M. Desler, ROCK inhibition enhances the recovery and growth of cryopreserved human embryonic stem cells and human induced pluripotent stem cells, Molecular Reproduction and Development, vol.117, issue.8, pp.722-732, 2009.
DOI : 10.1002/mrd.21021

A. Chen, X. Chen, Y. Lim, S. Reuveny, and S. Oh, Inhibition of ROCK?Myosin II Signaling Pathway Enables Culturing of, Human Pluripotent Stem Cells on Microcarriers Without Extracellular Matrix Coating. Tissue Engineering Part C: Methods, vol.2013, p.130725070704006

K. Watanabe, M. Ueno, D. Kamiya, A. Nishiyama, M. Matsumura et al., A ROCK inhibitor permits survival of dissociated human embryonic stem cells, Nature Biotechnology, vol.345, issue.6, pp.681-686, 2007.
DOI : 10.1038/nbt1310

R. Martin-ibanez, C. Unger, A. Stromberg, D. Baker, J. Canals et al., Novel cryopreservation method for dissociated human embryonic stem cells in the presence of a ROCK inhibitor, Human Reproduction, vol.23, issue.12, pp.2744-2754, 2008.
DOI : 10.1093/humrep/den316

X. Li, G. Meng, R. Krawetz, S. Liu, and D. Rancourt, The ROCK Inhibitor Y-27632 Enhances the Survival Rate of Human Embryonic Stem Cells Following Cryopreservation, Stem Cells and Development, vol.17, issue.6, pp.1079-1086, 2008.
DOI : 10.1089/scd.2007.0247

D. Kim, E. Lipke, P. Kim, R. Cheong, S. Thompson et al., Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs, Proceedings of the National Academy of Sciences, vol.13, issue.7, pp.565-570, 2010.
DOI : 10.1038/nm1576

D. Kim, . Kshitiz, R. Smith, P. Kim, E. Ahn et al., Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration, Integrative Biology, vol.7, issue.9, pp.1019-1033, 2012.
DOI : 10.1039/c2ib20067h

A. Agarwal, Y. Farouz, A. Nesmith, L. Deravi, M. Mccain et al., Micropatterning Alginate Substrates for In Vitro Cardiovascular Muscle on a Chip, Advanced Functional Materials, vol.14, issue.30, pp.3738-3746, 2013.
DOI : 10.1002/adfm.201203319

A. Grosberg, P. Alford, M. Mccain, and K. Parker, Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip, Lab on a Chip, vol.25, issue.24, pp.4165-4173, 2011.
DOI : 10.1039/c1lc20557a

L. Hench and J. Jones, Biomaterials, artificial organs and tissue engineering, 2005.
DOI : 10.1533/9781845690861

M. Gnecchi, Z. Zhang, A. Ni, and V. Dzau, Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy, Circulation Research, vol.103, issue.11, pp.1204-1219, 2008.
DOI : 10.1161/CIRCRESAHA.108.176826

P. Menasché, V. Vanneaux, J. Fabreguettes, A. Bel, L. Tosca et al., Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience, European Heart Journal, vol.36, issue.12, 2014.
DOI : 10.1093/eurheartj/ehu192

L. Timmers, S. Lim, I. Hoefer, F. Arslan, R. Lai et al., Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction, Stem Cell Research, vol.6, issue.3, pp.206-214, 2011.
DOI : 10.1016/j.scr.2011.01.001

URL : http://doi.org/10.1016/j.scr.2011.01.001

R. Lai, S. Tan, B. Teh, S. Sze, F. Arslan et al., Proteolytic Potential of the MSC Exosome Proteome: Implications for an Exosome-Mediated Delivery of Therapeutic Proteasome, International Journal of Proteomics, vol.91, issue.7, pp.1-14, 2012.
DOI : 10.1038/nbt.1807

K. Vrijsen, J. Sluijter, M. Schuchardt, V. Balkom, B. Noort et al., Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells, Journal of Cellular and Molecular Medicine, vol.14, p.no?no, 2010.
DOI : 10.1111/j.1582-4934.2010.01081.x

X. Loyer, A. Vion, A. Tedgui, and C. Boulanger, Microvesicles as Cell-Cell Messengers in Cardiovascular Diseases, Circulation Research, vol.114, issue.2, pp.345-353, 2014.
DOI : 10.1161/CIRCRESAHA.113.300858

H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J. Lee et al., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nature Cell Biology, vol.175, issue.6, pp.654-659, 2007.
DOI : 10.1002/pmic.200400876

K. Johnsen, J. Gudbergsson, M. Skov, L. Pilgaard, T. Moos et al., A comprehensive overview of exosomes as drug delivery vehicles ? Endogenous nanocarriers for targeted cancer therapy, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1846, issue.1, pp.75-87, 2014.
DOI : 10.1016/j.bbcan.2014.04.005

M. Zahid, B. Phillips, S. Albers, N. Giannoukakis, S. Watkins et al., Identification of a Cardiac Specific Protein Transduction Domain by In Vivo Biopanning Using a M13 Phage Peptide Display Library in Mice, PLoS ONE, vol.18, issue.14, p.12252, 2010.
DOI : 10.1371/journal.pone.0012252.g008

M. Mcguire, K. Samli, S. Johnston, and K. Brown, In vitro Selection of a Peptide with High Selectivity for Cardiomyocytes In vivo, Journal of Molecular Biology, vol.342, issue.1, pp.1-12, 2004.
DOI : 10.1016/j.jmb.2004.06.029

S. Yoo, J. H. Choi, D. Kobayashi, M. Farouz, Y. Wang et al., M13 Bacteriophage and Adeno-Associated Virus Hybrid for Novel Tissue Engineering Material with Gene Delivery Functions, Advanced Healthcare Materials, vol.50, issue.1
DOI : 10.1002/adhm.201500179

W. Ie, A. , and D. Mj, Tenascin and fibronectin expression in healing human myocardial scars. The Journal of pathology, pp.321-325, 1996.

M. Khan, E. Nickoloff, T. Abramova, J. Johnson, S. Verma et al., Embryonic Stem Cell-Derived Exosomes Promote Endogenous Repair Mechanisms and Enhance Cardiac Function Following Myocardial Infarction, Circulation Research, vol.117, issue.1, pp.52-64, 2015.
DOI : 10.1161/CIRCRESAHA.117.305990

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482130