Identification et caractérisation d’un nouvel effecteur précoce de Chlamydia trachomatis
Mathilde Cosse

To cite this version:
Université Pierre et Marie Curie
Ecole Doctorale Complexité du vivant
Unité de Biologie Cellulaire de l’Infection Microbienne

Identification et caractérisation d’un nouvel effecteur précoce de Chlamydia trachomatis

Par Mathilde COSSE

Thèse de doctorat de Microbiologie Cellulaire

Dirigée par Agathe SUBTIL

Présentée et soutenue publiquement le 15 juin 2016

Devant un jury composé de :

Dr. Vincent Galy (Directeur de Recherche au CNRS) Président
Dr. Matteo Bonazzi (Chargé de Recherche au CNRS) Rapporteur
Dr. Cécile Arrieumerlou (Chargée de Recherche à l’INSERM) Rapportrice
Dr. Bruno Goud (Directeur de Recherche au CNRS) Examinateur
Dr. Agathe Subtil (Directrice de Recherche au CNRS) Directrice de thèse
Sommaire

Sommaire .. 1
Table des illustrations .. 4
Remerciements ... 6
Abréviations .. 8
Introduction .. 9

I - C. trachomatis, une bactérie intracellulaire obligatoire pathogène pour l’homme 10
 1. Les Chlamydiae ... 10
 2. Un cycle de développement original ... 12
 a. Adhésion de la bactérie et entrée dans la cellule .. 14
 b. Différenciation des CE en CR et multiplication ... 16
 c. Fin de cycle .. 18
 3. Zoom sur le corps élémentaire ... 19
 a. Caractéristiques morphologiques ... 19
 b. Activité métabolique ... 21
 4. Les outils génétiques ... 21

II - Interactions hôte - pathogène .. 23
 1. Mise en place d’interactions avec la cellule, une nécessité pour le cycle de
 développement de C. trachomatis ... 23
 a. L’obtention de lipides ... 23
 b. L’absence de fusion avec les compartiments tardifs d’endocytose 24
 c. L’absence de ciblage par les voies liées à l’autophagie .. 24
 d. La prise de contrôle des voies de signalisation de l’apoptose 24
 2. La sécrétion d’effecteurs, une stratégie privilégiée .. 25
 3. Les protéines de la membrane de l’inclusion : la famille des Incs 29
 4. Zoom sur CT622, un effecteur chlamydien peu caractérisé .. 32

III - L’inclusion, une interface privilégiée entre C. trachomatis et sa cellule hôte 35
 1. Le microenvironnement de l’inclusion ... 35
 2. Protéines eucaryotes recrutées à l’inclusion ... 37
 3. Les protéines Rab, des régulateurs clés du trafic cellulaire 40
 a. Généralités sur les Rab ... 40
 b. La prénylation ... 41
 c. Les protéines Rab recrutées autour de l’inclusion .. 43
4. Contrôle de l’autophagie par *C. trachomatis* .. 46
 a. Les principaux acteurs du système autophagique ... 46
 b. Pathogènes et autophagie... 48
 c. *Chlamydia* et l’autophagie... 50
5. L’inclusion précoce, un compartiment mal caractérisé... 51
 a. Enseignements tirés des observations de microscopie aux temps précoces........ 51
 b. Les effecteurs précoces de *C. trachomatis* ... 52
IV - Conclusion et objectifs du travail de thèse ... 54

Matériel et Méthodes ... 55

Résultats .. 67

I - CT622 est un effecteur précoce du SST3 ... 68
 1. CT622 possède un signal de sécrétion du SST3 ... 68
 2. Identification d’une nouvelle protéine chaperone chez *C. trachomatis* 69
 a. Identification d’un partenaire bactérien pour CT622 .. 70
 b. CT635 interagit avec CT622 au travers de son domaine N-terminal 71
 c. La présence de CT635 augmente la sécrétion de CT622 dans un test de sécrétion
 hétérologue ... 73
 3. CT622, un nouvel effecteur précoce de *C. trachomatis* 74
 a. Expression tardive de CT622 et accumulation dans les CE 74
 b. CT622 est un effecteur précoce de *C. trachomatis* .. 76
 c. CT622 est également détectée dans le cytosol à des temps tardifs d’infection 78
II - CT622 n’est pas essentielle pour le développement de *C. trachomatis in vitro* 80
 1. Obtention de bactéries mutantes LGV AS9 par la technique Targetron 80
 2. L’absence de CT622 affecte le cycle de développement des bactéries 82
III - CT622 lie le géranylgéranyl .. 86
 1. Analyse structurelle de CT622 ... 86
 2. Homologie de structure entre la partie C-terminale de CTL0886 et des enzymes
 géranylgéranyl transférases et synthases ... 89
 3. Interaction entre CT622 et le géranylgéranyl diphosphate 90
 4. CT622 ne présente pas d’activité de géranylgéranyl transférase *in vitro* 94
IV - Rab39a, un partenaire cellulaire de CT622 .. 98
 1. Identification de protéines Rab comme partenaires de CT622 98
 2. Rab39 est recrutée à l’inclusion en condition d’infection 101
 3. L’absence de CT622 n’affecte pas le recrutement de Rab39 à l’inclusion 101
V - Recrutement des protéines de l’autophagie lors de l’infection 102
 1. Atg16L1 est un partenaire cellulaire de CT622 .. 102
a. Identification d’Atg16L1 ... 102
b. Colocalisation d’Atg16L1 et de CT622 en condition de surexpression 102
c. CT622 interagit avec Atg16L1 au travers de sa partie C-terminale 103
2. Atg16L1 et Atg5 sont recrutées à l’inclusion .. 106
3. Atg5 et Atg16L1 sont recrutées à l’inclusion en l’absence de CT622 108

Discussion .. 109

I - CT622 est un effecteur du SST3, et CT635 est sa protéine chaperone 110
 1. Identification d’une nouvelle protéine chaperone de C. trachomatis, CT635 110
 2. Sécrétion de CT622 .. 111
II - ct622 n’est pas un gène essentiel, mais en son absence le cycle de développement bactérien est perturbé .. 113

III - CT622 interagit avec le géranylgéranyldiphosphate .. 114

IV - CT622 interagit avec Rab39a ... 115

V - CT622 interagit avec Atg16L1 ... 116

VI - Conclusion .. 117

Références Bibliographiques ... 119

Annexe ... 137
Table des illustrations

Figure 1 - Reconstruction phylogénétique du genre Chlamydia ... 10
Figure 2 - Le cycle de développement de C. trachomatis ... 13
Figure 3 - Projections membranaires autour des points d’attache immigration des CE 15
Figure 4 – Coupe d’une inclusion à 36h d’infection .. 17
Figure 5 : Morphologie et principales propriétés du corps élémentaire 20
Figure 6 : Différents systèmes de sécrétion chez C. trachomatis .. 26
Figure 7 : Représentation schématique des interactions connues des différentes chaperones de C. trachomatis .. 28
Figure 8 : Localisation de protéines Inc hypothétiques .. 31
Figure 9 : Alignement de différents homologues de CT622 ... 33
Figure 10 – Interactions entre C. trachomatis et la cellule hôte – 1ère figure 36
Figure 11 – Interactions entre C. trachomatis et la cellule hôte – 2ème figure. 38
Figure 12 - Géranylgéranylation des protéines .. 42
Figure 13 – Caractérisation du recrutement de Rab39a à l’inclusion .. 44
Figure 14 – Interactions entre C. trachomatis et la cellule hôte – 3ème figure. 45
Figure 15 - Modèle schématisé de l’autophagie chez les cellules mammifères 47
Figure 16 - Autophagie et bactéries ... 49
Figure 17 – Identification de signaux de sécrétion de type III grâce au test de sécrétion hétérologue chez S. flexneri ... 69
Figure 18 – Résultat du pull down GST avec les lysats de CE .. 70
Figure 19 – CT622 interagit avec CT635 au travers de son domaine N-terminal 72
Figure 20 – La sécrétion de CT622 par S. flexneri est augmentée en présence de CT635 74
Figure 21 - Spécificité de l’anticorps anti-CT622 et cinétique d’expression de CT622 au cours de l’infection ... 75
Figure 22 – Sécrétion précoce de CT622 lors des premières heures de l’infection 77
Figure 23 – Sécrétion tardive de CT622 au cours de l’infection .. 79
Figure 24 – Caractérisation des mutants AS9 ... 81
Figure 25 – Les mutants AS9 présentent un phénotype ... 83
Figure 26 – Analyse par western blot des mutants AS9 ... 85
Figure 27 - Expression et purification de CTL0886 chez C. trachomatis ... 87
Figure 28 – Structure cristallisée (1,90 Å) de CTL0886C de C. trachomatis 88
Figure 29 - Superposition des structures du domaine 1 de CTL0886C avec l’homologue structurel présentant le plus haut score d’après une recherche DALI .. 89
Figure 30 – Principe de la technique Microscale thermophoresis (MST) 91
Figure 31 – CT622 lie le géranylgéralyn diphosphate ... 93
Figure 32 – Réaction Click-it ... 94
Figure 33 – CT622 surexprimée dans les cellules Hela n’impacte pas le prénylome global des cellules ... 96
Figure 34 – La protéine recombinante CT622 ne joue pas un rôle de GGTase 97
Figure 35 - Résultat du pull down GST contre des lysats cellulaires ... 99
Figure 36 – Interaction entre CT622 et Rab39 ... 100
Figure 37 – Rab39 est recrutée autour de l’inclusion lors de l’infection 101
Figure 38 – Co-transfection d’Atg5 et Atg16L1 avec CT622 .. 103
Figure 39 – CT622 interagit avec ATG16L1 .. 104
Figure 40 – Atg16L1 interagit avec la partie C-terminale de CT622 .. 105
Figure 41 – Recrutement d’Atg16L1 et Atg5 autour de l’inclusion .. 107

Tableau 1 – List of primers used... 57
Remerciements

Après 4 ans passés dans le labo, il est temps pour moi de partir ! Je voudrais ici remercier toutes les personnes qui ont fait que c’est quatre années se sont enveolées si vite.

Tout d’abord je souhaite remercier Agathe. De m’avoir pris en stage alors que je ne connaissais rien à la biologie cellulaire, ni à la microbiologie, puis en thèse par la suite. Merci pour cette confiance et pour la possibilité que tu m’as offerte de faire un doctorat ! La porte de ton bureau nous est toujours ouverte pour discuter des résultats ou des manips à prévoir, merci aussi pour cela. Le sujet n’aura pas toujours été évident à étudier, les side projects auront été nombreux, mais après moult rebondissement nous sommes tout de même arrivées à construire une histoire ! En espérant qu’elle soit continuée, je souhaite plein de succès au labo par la suite !

Merci aussi à Alice Dautry, directrice de notre ancienne unité pour les discussions scientifiques et sportives.

Merci au labo passé et actuel pour tous ces bons moments passés ensemble. L’équipe aura évolué mais aura toujours été un environnement sympa où il fait bon travailler. Merci donc à l’équipe de Nathalie, Yong Zheng, Cindy et aux autres stagiaires passé(e)s, à Lena et François pour les pauses café et les questions du vendredi, à Manon pour ton énergie et ta volonté de progresser et à Brigitte, Flora et Refka pour votre aide et votre réactivité dès qu’on a besoin de quelque chose.

Merci Steph de m’avoir formé et d’avoir toujours été la pour les nombreuses petites questions qu’on vient toujours te poser, même en 4e année de thèse ! Et merci pour les coups de main à gérer le rush final des derniers mois.

Un grand merci à Béa pour cette année et demi (ou quelque chose comme ça ?) de travail ensemble, c’était top ! Toujours le sourire, toujours motivée, c’est un vrai plaisir de travailler avec toi, ça va me manquer !

Je voulais aussi remercier Goran qui a su donner le coup de pouce pour faire avancer le projet et qui m’a permis de m’accrocher, tu connaissais tellement de détails pratiques et techniques, toujours en train d’aider tout le monde, c’était génial de travailler avec toi ! De même un grand merci à Marc pour les discussions, les verres pris ensemble et pour l’aide technique et intellectuelle que tu as pu apportée quand tu étais la, ça nous a manqué par la suite.
Merci Benoit pour les nombreuses discussions qu’on a pu avoir sur tous les sujets en commun qu’on partage (Islande, rando, jeux, sport et j’en passe), c’était top de t’avoir comme colloc de bureau, on se sera bien marré et désolée pour le bazar perpétuel sur le mien ! Je te délègue mes responsabilités passées avec plaisir (P2 et microscope) amuse toi bien avec !!
Thank you Minh and Sara it was really really nice to have you in the team this year. I will miss our discussions and our coffee breaks ! Special thanks for Sara, master of western blot, you helped me so much in the last month, that was really great !!

Et bien sur, après le labo, il me faut aussi remercier mon entourage qui a su être un support et une soupape pendant ces années.

Tout d’abord un merci spécial à la family Cossé pour le support perpétuel qu’ils ont pu m’apporter au cours de ces 4 ans. Vous avez toujours été la pour me rebooster, me suivre dans mes X projets et m’aider, que ca soit d’ordre psychologique (qui a dit que faire une thèse était simple !), logistique (merci pour les déménagements, les retapages d’appart et autre amusements), orientation (répondre à cette grande question : mais que vas tu faire après ? n’est pas chose aisée) et même financière !

Un grand merci à tous mes copains d’être toujours la autour de nous, on s’ennuierait sans vous ! Je ne vais pas vous citer tous, ne m’en voulez pas, vous savez que vous avez été là, que ca soit pour les verres, les soirées à l’appart, les vacances ou sur les terrains d’ultimate ! Je vais juste faire des petits mercis spéciaux à Marion et Doudou, au duo J&J, à Chantal et Oliv, à Darty et Toto, à La Chagne. Après je ne vais pas non plus lister les raisons, on passe trop de temps ensemble, je n’en finirai pas ! ^^ Et bien sur un grand merci à Vince pour avoir été la pendant ces 4 années, à supporter tout ca avec beaucoup de patience (en même temps on parle peu boulot, ca aide !), ca aurait été plus dur sans toi. Et bien sur merci pour les jolis schémas !
Abréviations

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bla</td>
<td>ß lactamase</td>
</tr>
<tr>
<td>CE</td>
<td>Corps élémentaire</td>
</tr>
<tr>
<td>CR</td>
<td>Corps réticulé</td>
</tr>
<tr>
<td>Cya</td>
<td>Adénylate cyclase dépendante de la calmoduline</td>
</tr>
<tr>
<td>DA</td>
<td>Dominant Actif</td>
</tr>
<tr>
<td>DN</td>
<td>Dominant Négatif</td>
</tr>
<tr>
<td>FPP</td>
<td>Farnesyl diphosphate</td>
</tr>
<tr>
<td>Ftase</td>
<td>Farnesyl transférase</td>
</tr>
<tr>
<td>GAG</td>
<td>Glycosaminoglycanes</td>
</tr>
<tr>
<td>GG azide</td>
<td>Géranylgéranyl diphosphate azide</td>
</tr>
<tr>
<td>GGPP</td>
<td>Géranylgéranyl diphosphate</td>
</tr>
<tr>
<td>GGTase</td>
<td>Géranylgéranyl transférase</td>
</tr>
<tr>
<td>GTPases</td>
<td>Guanosine triphosphatases</td>
</tr>
<tr>
<td>HS</td>
<td>Heparan sulfate</td>
</tr>
<tr>
<td>IEP</td>
<td>Intron encoded protein</td>
</tr>
<tr>
<td>IF</td>
<td>Immunofluorescence</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl 1-thio-ß-D-galactopyranoside</td>
</tr>
<tr>
<td>KO</td>
<td>Knock-out</td>
</tr>
<tr>
<td>LGV</td>
<td>Lymphogranulome vénérien</td>
</tr>
<tr>
<td>MST</td>
<td>Microscale Thermophoresis</td>
</tr>
<tr>
<td>MVB</td>
<td>Multi-vesicular bodies</td>
</tr>
<tr>
<td>OMS</td>
<td>Organisation mondiale de la santé</td>
</tr>
<tr>
<td>p.i.</td>
<td>Post-infection</td>
</tr>
<tr>
<td>PE</td>
<td>Phosphatidylethanolamine</td>
</tr>
<tr>
<td>PI</td>
<td>Phosphoinositides</td>
</tr>
<tr>
<td>PI4P</td>
<td>Phosphoinositol-4-phosphate</td>
</tr>
<tr>
<td>RE</td>
<td>Réticulum endoplasmique</td>
</tr>
<tr>
<td>SM</td>
<td>Sphingomyéline</td>
</tr>
<tr>
<td>SST2</td>
<td>Système de sécrétion de type II</td>
</tr>
<tr>
<td>SST3</td>
<td>Système de sécrétion de type III</td>
</tr>
<tr>
<td>SST5</td>
<td>Système de sécrétion de type V</td>
</tr>
</tbody>
</table>
Introduction
I - *C. trachomatis*, une bactérie intracellulaire obligatoire pathogène pour l’homme

1. Les *Chlamydiae*

Les *Chlamydiae* sont des bactéries Gram-négative, intracellulaires obligatoires et partageant un cycle de développement biphasique unique. Elles infectent des cellules euclaires variées, des protozoaires (amibes) aux animaux (insectes, mammifères, poissons).

Figure 1 - Reconstruction phylogénétique du genre *Chlamydia*.

Les différents hôtes naturels de chaque espèce sont indiqués. *C. suis* n’est pas représentée par manque de données génomiques. L’arbre est basé sur l’analyse de 600 gènes orthologues. D’après (Nunes and Gomes, 2014)
Au sein du phylum *Chlamydiae*, le genre *Chlamydia* comprend neuf espèces, dont quatre ont été isolées chez les humains : *C. trachomatis*, *C. pneumoniae*, *C. psittaci* et *C. abortus*, les deux dernières étant des pathogènes animaux (oiseaux et bovins respectivement) ne se transmettant à l’homme que lors d’exposition à des réservoirs d’animaux infectés (Everett and Bush, 2001).

Cette thèse a eu pour objet d’étude *C. trachomatis*. Cette espèce comprend 15 serovars présentant une certaine diversité de tropisme tissulaire. La distinction entre ces différents serovars s’est faite sur la caractérisation des variations d’immunoréactivité de MOMP, la protéine de la membrane externe majoritaire de *Chlamydia*. Les 15 serovars sont rassemblés en trois biovars associés à des pathologies : les serovars A, B, Ba et C causent le trachome, les serovars D-K provoquent des infections uro-génitales et enfin L1, L2 et L3 sont responsables du lymphogranulome vénérien (Nunes et al., 2008).

Le trachome est une maladie infectieuse de l’œil causant une inflammation des tissus conjonctifs de la paupière interne et pouvant conduire à la cécité. A la suite d’infections répétées, la paupière se retourne vers l’intérieur, provoquant un entropion, et amenant les cils à venir frotter contre la cornée (trichiasis). Sans intervention chirurgicale, la cornée s’opacifie et une cécité irréversible peut s’installer. Le trachome est la première cause de cécité d’origine infectieuse dans le monde. L’infection se transmet par contact entre personnes porteuses ou via les mouches ayant touché les écoulements nasaux ou oculaires de personnes infectées. D’après l’Organisation Mondiale pour la Santé (OMS), le trachome est aujourd’hui endémique dans 51 pays. Touchant 21 millions de personnes en 2011, il est responsable de déficit visuel sévère ou cécité chez 2,2 millions de personnes et de trichiasis chez 7,3 millions de personnes supplémentaires (Taylor et al., 2014).

C. trachomatis est aussi la première cause de maladies sexuellement transmissibles d’origine bactérienne, avec 105,7 millions de nouveaux cas dans le monde en 2008, d’après l’OMS. Les infections uro-génitales causées par *C. trachomatis* touchent autant les hommes que les femmes, causant des cervicités (inflammation du col de l’utérus), des salpingites (inflammation des trompes de Fallope) ou encore des endométriose chez les femmes, et des épididymites et des urétrites chez les hommes. Les conséquences sont cependant souvent plus lourdes chez les femmes : à 75% asymptomatiques (pour 30 à 50% chez les hommes), les infections génitales peuvent causer sur le long terme infertilité, grossesses extra-utérines ou
encore douleur pelvienne chronique (Mackern-Oberti et al., 2013; Brunham and Rey-Ladino, 2005).

La dernière pathologie causée par *C. trachomatis* est le lymphogranulome vénérien (LGV). Les serovars L1 à L3 à l’origine de cette maladie sont beaucoup plus invasifs que les autres serovars chlamydiens et se propagent comme les serovars D-K, par contact sexuel. Les bactéries quittent rapidement les cellules épithéliales pour infecter les monocytes et se disséminer jusqu’aux ganglions lymphatiques où elles peuvent causer des nécroses et entrainer la formation d’abcès (Ceovic and Gulin, 2015). Cette pathologie est cependant relativement rare.

2. Un cycle de développement original

L’alternance lors de son cycle de développement de deux formes distinctes, à savoir le corps élémentaire (CE), petite forme infectieuse, et le corps réticulé (CR), forme multiplicative non infectieuse, permet à *C. trachomatis* de faire face aux différents environnements successifs qu’elle rencontre et de se développer. Une fois entrés dans la cellule, les CE se différencient en CR qui commencent leur multiplication au sein d’une vésicule appelée inclusion. Au milieu du cycle, les CR se redifférencient en CE, qui, une fois sortis de la cellule après 36 à 48h d’infection, pourront infecter les cellules environnantes, démarrant ainsi un nouveau cycle.
Figure 2 - Le cycle de développement de *C. trachomatis*

Le cycle commence avec l’attachement des CE à la membrane de la cellule hôte et avec leur internalisation dans la cellule. Rapidement, les CE se différencient en CR à l’intérieur d’une vacuole appelée inclusion. L’inclusion migre jusqu’au MTOC dans les premières heures d’infection et restera à proximité de l’appareil de Golgi durant tout le cycle. Les CR se multiplient puis commencent à se différencier en CE de façon asynchrone. Les nouveaux CE sont libérés dans le milieu extracellulaire par lyse de la cellule ou extrusion. *Modifié d’après* (Damiani et al., 2014)
a. Adhésion de la bactérie et entrée dans la cellule

Si in vivo, les infections de *C. trachomatis* ciblent majoritairement les cellules épithéliales, la bactérie est capable d’infester in vitro de nombreux types cellulaires, suggérant ainsi une diversité de récepteurs impliqués dans le processus d’adhésion (Guseva et al., 2007). Ce processus se déroule en deux étapes : une première interaction électrostatique réversible, suivie d’une interaction forte et irréversible à un deuxième récepteur cellulaire (Dautry-Varsat et al., 2004).

La première étape implique notamment les glycosaminoglycanes (GAG) (Chen and Stephens, 1994). Il fut tout d’abord suggéré que *C. trachomatis* synthétise à sa surface un ligand de type heparan sulfate (HS), interagissant avec un récepteur complémentaire à la surface de la cellule hôte. Le traitements des corpus élémentaires par de l’HS lyase inhibe en effet l’attachement, qui peut être restauré par ajout d’héparine ou d’HS exogène (Zhang and Stephens, 1992). Cependant cette synthèse d’origine bactérienne est controversée (Taraktchoglou et al., 2001). Il a été ainsi montré par exemple que MOMP, le composant principal des membranes externes des bactéries, est en capacité de se lier à des protéoglycanes de l’hôte possédant déjà un ligand HS, suggérant ainsi une utilisation possible des GAG de la cellule hôte (Su et al., 1996).

En plus des GAG et de MOMP, du côté de *C. trachomatis*, les lipopolysaccharides de la membrane externe et les protéines OmcB et PmpD ont été proposés comme ligands ou adhésines (Menozzi et al., 2002; Su et al., 1996; Fadel and Eley, 2007; 2008; Mölleken et al., 2010).

Du côté cellulaire, les récepteurs identifiés jusqu’à présent sont aussi variés. Outre les protéoglycanes, deux criblages génétiques par perte de fonction via l’utilisation d’ARNi ont permis d’identifier des partenaires tels que le PDGF-Rß (Platelet-derived growth factor receptor) (Cherilyn A Elwell, 2008) et l’Ephrin A2, une tyrosine kinase de la surface cellulaire (Subbarayal et al., 2015). Le FGF2 (fibroblast growth factor 2) a aussi été montré comme se liant directement aux CE d’une façon dépendante des protéoglycanes heparan sulfates, provoquant ainsi l’interaction entre le CE et le FGFR (fibroblast growth factor receptor) et l’intégration de la bactérie dans la cellule (Kim et al., 2011).

Une fois la bactérie attachée de façon irréversible à la membrane, elle est internalisée au sein de la cellule. L’utilisation d’inhibiteurs du cytosquelette bloquant dramatiquement l’infection, le processus d’entrée se base sur l’utilisation de la plasticité de l’actine. Au point d’attachement, l’actine est recrutée et polymérisée, provoquant l’apparition de projections membranaires autour de la bactérie et son internalisation dans la cellule au sein d’une vésicule se dissociant ensuite du milieu extracellulaire (Carabeo et al., 2007; Nans et al., 2014).

Figure 3 - Projections membranaires autour des points d’attachement des CE

Des protéines de l’hôte mais aussi des protéines bactériennes sont à l’origine de l’activation du réseau d’actine autour du point d’attachement. L’infection active ainsi la petite GTPase Rac, une protéine essentielle à la régulation de la dynamique de l’actine dans la cellule. Rac interagit avec WAVE2 et Abi-1, recrutées elles-aussi au site d’adhésion, ce qui active le complexe Arp2/3. Cette cascade participe au recrutement et à la polymérisation de l’actine, et à la formation des projections membranaires, comme montré sur la figure 3 (Carabeo et al., 2007).

En parallèle, il a été montré que dès l’adhésion définitive, *C. trachomatis* secrète des protéines effectrices dans le cytosol de la cellule grâce à son système de sécrétion de type III (SST3), fonctionnel dès le stade CE (cf partie II-2). Ces protéines, telles que Tarp ou encore CT694, modifient l’organisation du cytosquelette d’actine, par des interactions directes ou le déclenchement de cascades de signalisation. Elles constituent la première vague d’effecteurs sécrétés par la bactérie (cf partie III-5-b).

b. Différenciation des CE en CR et multiplication

Une fois internalisés, les CE restent au sein de l’inclusion tout au long de leur cycle de développement. L’initiation de leur transformation se fait à la suite de signaux pour l’instant toujours inconnus. Les nombreux ponts disulfures assurant la stabilité de leurs membranes sont réduits, permettant ainsi une relaxation des membranes (Hackstadt et al., 1985; Hatch et al., 1986).

Moins d’1h après l’entrée, la transcription d’une trentaine de gènes de *C. trachomatis*, qualifiés de très précoces, démarre (Shaw et al., 2000; Belland et al., 2003). Ces gènes codent pour des protéines servant deux rôles distincts : l’acquisition de nutriments (ATP/ATP translocase, malate dehydrogenase…) et la modification de l’inclusion par les protéines Incs. Ces dernières sont sécrétées par le SST3 immédiatement après leur synthèse et constituent la seconde vague d’effecteurs de *C. trachomatis* utilisés durant les processus d’invasion. S’insérant dans la membrane de la jeune inclusion, elles en définissent la nature et dictent les interactions entre l’inclusion et les vésicules de la cellule hôte (cf partie II-3).

Le nucléoïde des CE est particulièrement condensé grâce à l’action de deux protéines histone-like, Hc1 et Hc2, encodées respectivement par les gènes hctA et hctB (Barry et al., 1992; Christiansen et al., 1993; Brickman et al., 1993). Suite à la transcription très précoce, la
production d’un petit métabolite entraîne la dissociation d’Hc1 et Hc2 de l’ADN bactérien et ainsi la décondensation du nucléoïde (Grieshaber et al., 2004; 2006).

Rapidement après l’entrée, les bactéries migrent jusqu’à la région périphérique du noyau et resteront à proximité de l’appareil de Golgi tout au long de leur cycle (Hackstadt et al., 1996). Leur transport se fait de façon unidirectionnelle le long des microtubules, dans un processus dépendant de l’utilisation de la dynéine (Clausen et al., 1997). Le fait que la néosynthèse de protéines bactériennes soit nécessaire à la bonne migration des bactéries et que la dynactine ne soit pas sollicitée au cours du processus suggère qu’un ou des effecteurs de *Chlamydia* jouent le rôle d’adaptateur à la surface de la membrane de l’inclusion (Grieshaber et al., 2003).

![Figure 4 – Coupe d’une inclusion à 36h d’infection](image)

Suite aux phénomènes de décondensation du nucléoïde et de relaxation des membranes, les CE se différencient en corps réticulés (CR), la forme replicative de *C. trachomatis*. Les CR, plus larges que les CE (1µm de diamètre), ne sont pas infectieux et sont osmotiquement fragiles. Ils se multiplient par fission binaire et s’accumulent dans l’inclusion qui grandit en parallèle de cette multiplication. L’inclusion en croissance est stabilisée par un réseau de filaments d’actine et de filaments intermédiaires (Kumar and Valdivia, 2008). Ces deux composants du cytosquelette agissent de façon coordonnée autour de l’inclusion et assure à celle-ci son intégrité. Des microtubules ont aussi été observés comme se rassemblant autour
de l’inclusion dès 12h d’infection, formant un réseau entourant totalement l’inclusion à partir de 24h d’infection (Shaw et al., 2000; Dumoux et al., 2015b). Si ce réseau ne coïncide pas au début avec la cage d’actine (à 24h post infection), les deux réseaux se superposent par la suite partiellement (à 66h d’infection).

A partir de 18h d’infection, les CR commencent à se différencier en CE de façon asynchrone (Hybiske and Stephens, 2007; Shaw et al., 2000). On ne connaît pas à ce jour les stimuli déclenchant cette nouvelle transition structurelle.

c. Fin de cycle

Le cycle de développement de *C. trachomatis* se termine après 36h à 48h d’infection, par la libération des CE nouvellement formés dans le milieu extracellulaire. Deux mécanismes peuvent être à l’origine de cette libération : la lyse de la cellule ou l’extrusion, comme présenté sur la figure 2 (Snively et al., 2014; Hybiske and Stephens, 2007; Yang et al., 2015). Tout d’abord, l’inclusion se libère du réseau de cytosquelette qui l’entoure. La protéase CPAF a été montrée comme étant responsable du clivage de la Vimentine et un facteur de virulence bactérien serait à l’origine de la dépolymérisation de l’actine (Liechti et al., 2013; Snively et al., 2014; Yang et al., 2015).

Lors de la lyse, des protéases perméabilisent successivement la membrane de l’inclusion, le noyau et finalement la membrane plasmique. Les CE libérés sont en capacité d’initier un nouveau cycle infectieux dans les cellules environnantes tandis que les CR, sensibles au choc osmotique, sont dégradés.

Le mécanisme d’extrusion, au contraire, repose sur le réarrangement du cytosquelette. Une portion de l’inclusion entourée de membrane plasmique crée une protubérance à la surface de la cellule et est libérée de la cellule hôte, laissant cette dernière intacte. Les acteurs identifiés de ce remodelage des membranes sont la polymérisation de l’actine, la myosine et la petite GTPase RhoA. L’ampleur de l’utilisation de ce mode de sortie *in vivo* n’est pas connue. En théorie, il pourrait permettre une dissémination plus protégée des CE.
3. Zoom sur le corps élémentaire

Un article de revue consacré aux CE est en cours de publication par le journal Current Topics in Microbiology & Immunology (cf. annexe). Nous le résumons ici dans les grandes lignes.

a. Caractéristiques morphologiques

Les corps élémentaires, la forme infectieuse de *C. trachomatis*, se présentent sous forme de particules rondes, de petite taille (environ 0,3 µm de diamètre) et apparaissant denses aux électrons.

La protéine MOMP, déjà évoquée précédemment, est le composant majoritaire du complexe et constitue plus de 60% du poids de la membrane externe. Deux autres protéines riches en cystéines, OmcA et OmcB, sont aussi largement représentées (Liu et al., 2010; Caldwell et al., 1981; Birkelund et al., 2009). Via l’utilisation de méthodes biochimiques, une partie des protéines pouvant constituer le reste du complexe ont été identifiées. Cependant, du fait de variations dans les procédures expérimentales, les résultats obtenus dans les différentes études menées diffèrent parfois quelque peu (Saka et al., 2011; Liu et al., 2010; Birkelund et al., 2009).
La membrane des CE présente un certain nombre de propriétés physiques caractéristiques de Chlamydia. Le périplasme ne contient pas de peptidoglycane. Le complexe protéique de la membrane externe appelé COMC est composé d’un ensemble de protéines liées entre elles par des ponts dissulfures dont certaines (OmcB et les Pmp) participent aux processus d’entrée. Le nucléasde est condensé grâce à l’action de protéines de type histone mais permet toujours une activité transcriptionnelle. Le métabolisme des CE est assuré par la production d’ATP à partir de glucose-6P importé. Afin de procéder aux premières étapes de l’infection, les CE sécrètent des protéines effectrices accumulées dans son cytosol et contrôlées par des chaperones.

L’utilisation de la microscopie électronique a permis de révéler la présence de différentes structures polarisées en surface des CE : des « rosettes » formées par des oligomères de PmpD (Polymorphic membrane protein D), ainsi que des projections identifiées comme étant des appareils de sécrétion de type III (Omsland et al., 2012; Swanson et al., 2009; Nans et al., 2014).
Ces SST3 sont rassemblés à un pôle du CE et permettent la sécrétion d’effecteurs précoces lors de l’adhésion à la membrane plasmique de la cellule hôte.

b. Activité métabolique

Pendant longtemps, les corps élémentaires ont été considérés comme n’étant qu’une forme inactive et résistante de *C. trachomatis*, agissant comme une spore. Ce n’est que récemment qu’il a été reconnu que les CE possédaient leur propre métabolisme et participaient de façon active aux étapes d’invasion. Grâce au développement d’un milieu axénique adapté à *C. trachomatis*, il a été observé que les CE sont en capacité de synthétiser des protéines suite à une transcription *de novo*. Leur métabolisme est basé sur l’incorporation de glucose-6P pour produire de l’ATP, au contraire des CR qui utilisent directement l’ATP exogène. Cela leur assure une réponse adaptée à une forte demande énergétique (Saka et al., 2011; Omsland et al., 2012). Les études protéomiques ont montré une segmentation entre les familles de protéines accumulées au sein des deux formes de *Chlamydia*. On retrouve ainsi chez les CE une part plus importante de facteurs de virulence et de protéines effectrices du SST3, leurs chaperones, ainsi que des composants du SST3, allant de paire avec la nécessité d’une infectivité maximale (Wang et al., 2011b; Saka et al., 2011).

4. Les outils génétiques

L’absence d’outils de manipulation génétique chez *Chlamydia* a longtemps limité la compréhension de la biologie de ce pathogène. Ce n’est qu’en 2011 qu’est décrit le premier système de transformation reproductible et stable chez *Chlamydia* (Vromman et al., 2014; Wang et al., 2011b; Agaisse and Derré, 2013; Wickstrum et al., 2013). Il se base sur un traitement des CE avec du CaCl₂, les rendant ainsi compétents à l’insertion d’ADN, et utilise le plasmide endogène de 7,5 kb de la bactérie complété par des éléments nécessaires à la sélection des transformants comme une cassette de résistance à l’ampicilline. Pour la première fois, des *chlamydia-GFP* sont obtenues, ce qui ouvrira la porte ensuite à différentes études et développements de ce système (Nguyen and Valdivia, 2012; Vromman et al., 2014; Agaisse and Derré, 2013; Wickstrum et al., 2013).
En parallèle, plusieurs groupes travaillaient à l’élaboration de mutants, même si les techniques utilisées sont alors lourdes et laborieuses. Le couplage d’une méthode de mutation chimique à un séquençage du génome entier (Kari et al., 2011; Nguyen and Valdivia, 2012) ou de régions ciblées (Bauler and Hackstadt, 2014; Kari et al., 2011) a permis d’obtenir une liste de mutations génétiques associées à un phénotype particulier.

Deux systèmes développés récemment ont ouvert la possibilité d’étudier les effecteurs du SST3. Le premier permet l’insertion dans un vecteur de la protéine d’intérêt, à laquelle est ajouté un marqueur flag, ce dernier n’empêchant pas la sécrétion des protéines via le SST3. L’expression des protéines étant sous le contrôle d’un promoteur inducible, elles peuvent ensuite être détectées facilement par immunofluorescence (Charpentier and Oswald, 2004; Bauler and Hackstadt, 2014). Un autre groupe a adapté pour Chlamydia un système déjà utilisé chez d’autres pathogènes (Mueller and Fields, 2015; Charpentier and Oswald, 2004). La fusion de la β-lactamase (Bla) à la protéine étudiée permet, après traitement des cellules avec un composé chimique spécifique cleavable par Bla, de visualiser rapidement leur sécrétion ou non dans le cytosol de la cellule (Johnson and Fisher, 2013; Mueller and Fields, 2015).

Il faut attendre 2013 pour que le premier système de délétion ciblée de gènes chlamydiens soit décrit (Mueller et al., 2016; Johnson and Fisher, 2013). Ce système, adapté du système Targetron (Sigma), se base sur l’insertion d’un intron de groupe II portant une cassette de résistance à l’ampicilline au niveau d’une séquence choisie. Enfin, début 2016, a été proposé un nouveau système de délétion ciblée de gène par échange allélique, traçable directement par fluorescence grâce à l’incorporation de la protéine mCherry dans le vecteur suicide responsable de la recombinaison homologue induite (Stephens, 1998; Mueller et al., 2016). Ces méthodes ne permettent pour l’instant que la délétion des gènes non essentiels de C. trachomatis.
II - Interactions hôte - pathogène

1. Mise en place d’interactions avec la cellule, une nécessité pour le cycle de développement de *C. trachomatis*

Bactérie intracellulaire obligatoire possédant un génome particulièrement réduit (900 gènes environ), *C. trachomatis* est largement dépendante de la cellule hôte pour assurer son développement, la croissance de l’inclusion et sa multiplication (Wylie et al., 1997; Stephens, 1998). Elle a ainsi perdu la capacité de synthétiser certains métabolites vitaux qu’elle doit acquérir via la mise en place d’interactions spécifiques. Nous rapporterons ici quelques exemples illustrant la façon dont les bactéries modifient certaines fonctions cellulaires.

a. L’obtention de lipides

La multiplication des CR fonctionnant de paire avec la croissance de l’inclusion les contenant, un approvisionnement en lipides est nécessaire au développement bactérien. Malgré le fait que *C. trachomatis* possède les gènes nécessaires à la synthèse de lipides communément présents chez les bactéries, tels que la phosphatidylethanolamine, le phosphatidyglycérol et la phosphatidylsérine, il a été montré qu’elle acquière largement des lipides synthétisés de façon endogène par la cellule. Une partie de ces derniers seront ensuite modifiés par une enzyme bactérienne avec ajout d’un acide gras branché d’origine bactérienne (Wylie et al., 1997; Su et al., 2004). Des glycérophospholipides tels que la phosphatidylcholine ou le phosphatidylinositol, habituellement associés aux membranes eucaryotes, ont été montré comme étant intégrés dans les membranes des bactéries (Hackstadt et al., 1995; Wylie et al., 1997; Scidmore, 1996; Su et al., 2004; Hackstadt et al., 1996).

L’utilisation de la sonde C6-NBD-Cer, un analogue fluorescent du céramide qui est le précurseur de la sphingomyéline (SM), a permis d’analyser le trafic des lipides eucaryotes dans les cellules infectées et a mis en évidence un recrutement de SM dès 1h post-infection (p. i.) au niveau des inclusions, puis une accumulation au sein des membranes des bactéries (Hackstadt et al., 1996; 1995; Scidmore, 1996). Les SM proviennent à la fois d’une interception (Derré et al., 2011; Hackstadt et al., 1996; Agaisse and Derré, 2014; Hackstadt et al., 1995) et du transfert direct de SM depuis le réticulum endoplasmique (RE) (Heinzen et

b. L’absence de fusion avec les compartiments tardifs d’endocytose

Une fois internalisée dans la cellule, la bactérie échappe à la fusion avec les lysosomes, qui représente normalement la voie « par défaut » d’élimination d’un intrus bactérien. Cette caractéristique de *Chlamydia* a été mise en évidence par l’absence de marqueurs lysosomaux à la surface de l’inclusion au cours du cycle. Le contenu de l’inclusion n’est pas non plus acidifié, son pH restant supérieur à 6 (Scidmore et al., 1996; Heinzen et al., 1996; Schramm et al., 1996). Cette inhibition de la fusion lysosomale nécessitant la synthèse de protéines bactériennes, elle repose notamment sur la modification de la composition de la membrane de l’inclusion. En effet, en absence de synthèse protéique bactérienne par traitement des CE au chloramphénicol durant les premières heures d’infection, les bactéries endocytées sont finalement dégradées au sein de lysosomes après environ 24h d’infection (Heinzen et al., 1996; Scidmore et al., 1996; Eissenberg and Wyrick, 1981). L’inhibition de la fusion est spécifique à l’inclusion, les voies lysosomales fonctionnant normalement dans les cellules infectées (Al-Younes et al., 2011; Heinzen et al., 1996; Eissenberg and Wyrick, 1981).

c. L’absence de ciblage par les voies liées à l’autophagie

Outre l’inhibition de la fusion avec les compartiments lysosomaux, *Chlamydia* est aussi en capacité d’éviter d’être ciblée par les voies de l’autophagie. En effet, même si la protéine LC3 a été montrée comme étant présente à la membrane de l’inclusion mature, ce recrutement est indépendant de l’autophagie (Ying et al., 2008; Al-Younes et al., 2011). Cependant, les relations entre la bactérie et l’autophagie ont été peu étudiées et sont encore assez contradictoires. Elles seront développées dans la partie III-4.

d. La prise de contrôle des voies de signalisation de l’apoptose

Un autre exemple d’interactions établies entre la bactérie et sa cellule hôte est l’interférence de *C. trachomatis* avec les voies d’apoptose, afin d’éviter une mort trop précoce de la cellule. La régulation de l’apoptose est temporelle, alternant entre un état anti-apoptotique au cours du
cycle et un état pro-apoptotique aux temps tardifs d’infection (Stephens, 1998; Ying et al., 2008). Différentes voies de l’apoptose sont visées en parallèle.

2. La sécrétion d’effecteurs, une stratégie privilégiée

Les multiples interférences menées par *C. trachomatis* sur les voies cellulaires sont orchestrées grâce à la sécrétion d’effecteurs bactériens, capable d’interagir avec des protéines de l’hôte et de modifier la membrane de l’inclusion afin d’en faire une interface privilégiée d’interactions.

L’étude du génome de Chlamydia a montré que la bactérie encode des composants principaux des systèmes de sécrétion de type II (SST2), de type V (SST5) et de type III (SST3) (Sandkvist, 2001; Stephens, 1998).

La sécrétion au travers des deux premiers systèmes cités se déroule en deux étapes successives. Des protéines identifiées par un peptide signal situé en N-terminus sont tout d’abord transloquées via le système Sec dans l’espace périplasmique, avec clivage du signal peptide. Les protéines sont alors matures et subissent une seconde étape de translocation au travers de la membrane externe vers le milieu extracellulaire, directement pour les autotransporteurs (type V) ou via un complexe oligomérique de sécrétines formant un pore dans la membrane externe (type II) (Zhong et al., 2001; Sandkvist, 2001; Shaw et al., 2002; Chen et al., 2010).

CPAF est l’effecteur chlamydién du SST2 le plus étudié. Cette sérine protéase de *C. trachomatis* a été montrée comme étant sécrétée dans le lumen de l’inclusion ainsi que dans le cytoplasme de la cellule hôte à des temps tardifs d’infection, via un système dépendant du système Sec (Heuer et al., 2003; Zhong et al., 2001; Giles et al., 2006; Shaw et al., 2002; Chen et al., 2010).

La translocation des effecteurs de type II de *C. trachomatis* du lumen de l’inclusion au cytoplasme de la cellule hôte n’est cependant pas encore totalement comprise. Une des hypothèses principales repose sur la détection de vésicules membranaires contenant CPAF ainsi que d’autres antigènes à l’intérieur de l’inclusion (Kiselev et al., 2007; Heuer et al.,
2003; Giles et al., 2006). Ces vésicules assureraient le transport des antigènes encapsulés au travers de la membrane de l’inclusion.

Concernant le SST5, une fois dans le périplasme, les autotransporteurs s’insèrent dans la membrane externe de la bactérie via leur tonneau béta, facilitant la translocation du domaine passager. Ce dernier peut alors être clivé et rester lié à la membrane externe des bactéries ou bien être sécrété dans le lumen de l’inclusion (Henderson and Lam, 2001; Kiselev et al., 2007). Les protéines polymorphiques (Pmp) de *C. trachomatis* possèdent un peptide signal et un tonneau béta, ce qui avait laissé supposer qu’elles puissent constituer une famille d’autotransporteurs (Vandahl et al., 2002; Henderson and Lam, 2001; Wehrl et al., 2004; Kiselev et al., 2007). Des évidences expérimentales sont venues par la suite compléter ce postulat (Hsia et al., 1997; Vandahl et al., 2002; Wehrl et al., 2004; Kiselev et al., 2007).

Figure 6 : Différents systèmes de sécrétion chez *C. trachomatis*

Dans le système de sécrétion de type II, les protéines sont tout d’abord sécrétées dans le périplasme via le système Sec (A). Le peptide signal est alors cleavé et la protéine une fois repliée est sécrétée au travers de la membrane externe grâce à l’action de la sécrétine GspD (C). Le système de sécrétion de type V utilise aussi le système Sec comme première étape (A). Les tonneaux béta hydrophobes des autotransporteurs facilitent l’insertion de la protéine dans la membrane externe et la translocation du domaine passager (B). Le système de sécrétion de type III sécrète les protéines effectrices de façon directe du cytosol bactérien au cytosol de l’hôte ou dans le lumen de l’inclusion (D). D’après (Tan et bavoil 2012).
Le système le plus utilisé par *C. trachomatis* pour sécréter des effecteurs à l’extérieur des bactéries est le SST3, repéré chez *Chlamydia* en 1997 pour la première fois (Betts-Hampikian and Fields, 2010; Hsia et al., 1997). Ce système, aussi appelé injectisome pour sa structure rappelant celle d’une seringue, est constitué d’un ensemble de protéines associées en complexe. Il est composé de trois parties : une partie basale insérée entre les membranes internes et externes de la bactérie, un complexe de type aiguille et un capuchon. Des protéines translocatrices sont sécrétées afin de former un pore dans la membrane de la cellule hôte ou dans celle de l’inclusion, dans lequel vient s’insérer le SST3 (Pais et al., 2013; Betts-Hampikian and Fields, 2010).

Le SST3 de *Chlamydia* est en place dans les bactéries à l’état de CE comme de CR et, contrairement aux deux autres systèmes décrits au dessus, il permet la sécrétion d’effecteurs spécifiques à des étapes précises du cycle.

La régulation est possible en partie grâce à l’action dans le cytosol bactérien de petites protéines de type chaperones. Les chaperones du SST3 sont généralement petites (15 – 20 kDa), acides (pI<6) et présentes dans le cytosol sous forme de dimères (Dai and Li, 2014; Pais et al., 2013). Elles lient les effecteurs, les protégeant ainsi des dégradations ou de possibles interactions à l’intérieur des bactéries, les conservant sous forme non repliée et facilitant leur sécrétion (Spaeth et al., 2009; Dai and Li, 2014; Fields et al., 2005; Chen et al., 2014; Pais et al., 2013; Silva-Herzog et al., 2011).
Figure 7 : Représentation schématique des interactions connues des différentes chaperones de *C. trachomatis*

Les réseaux d’interaction identifiés sont représentés pour les chaperones de classe I Mscs, Slc1 et CT584 et pour les chaperones de classe II Scc1 à 4. Les astérisques identifient les interactions trouvées chez *C. pneumoniae*, les autres ayant été vérifiées chez *C. trachomatis*. D’après (Pais et al., 2013; Spaeth et al., 2009; Fields et al., 2005; Chen et al., 2014; Silva-Herzog et al., 2011)

Elles se divisent en trois classes : la classe I regroupent les chaperones liant les effecteurs du SST3, c’est la classe la plus étudiée, les chaperones de classe II lient les protéines translocatrices à l’origine de la formation des pores membranaires et celles de la classe III lient les protéines composant le système de sécrétion en lui-même (Chen et al., 2014; Pais et al., 2013). Les chaperones présentent une homologie de structure mais peu de similitudes au niveau de leur séquence, rendant ainsi leur identification difficile (Spaeth et al., 2009; Chen et al., 2014).

Plusieurs études ont permis de caractériser un petit nombre de protéines chaperones de *C. trachomatis*, ainsi que leurs substrats.
Trois chaperones de classe I ont été identifiées : Mcsc, qui lie et stabilise la protéine Cap1 et la protéine Inc CT618 (Chen et al., 2014; Spaeth et al., 2009), Slc1 qui interagit avec un certain nombre de protéines dont quatre effecteurs précoces : Tarp, CT694, CT695 et TepP décrit récemment (Pais et al., 2013; Chen et al., 2014), et CT584 qui interagit avec l’effecteur CT082 (Brinkworth et al., 2011; Pais et al., 2013). Via l’utilisation d’un SST3 hétérologue, chez Yersinia enterocolitica, il a été montré que Slc1 augmente de façon spécifique la sécrétion de Tarp (Spaeth et al., 2009; Brinkworth et al., 2011; Fields et al., 2005).

Plusieurs protéines chaperones de classe II ont aussi été décrites. Ainsi Scc2 lie les protéines translocatrices hydrophobes CopB et CopD (Silva-Herzog et al., 2011; Spaeth et al., 2009; Fields et al., 2005). Les orthologues de Scc1 et 4 chez C. pneumoniae forment des hétérodimères et augmentent la sécrétion de CopN tandis que Scc3 l’inhibe (Fields et al., 2005; Silva-Herzog et al., 2011). Cette dernière a aussi été montrée comme capable d’interagir avec la protéine CopB (Galán et al., 2014; Fields et al., 2005).

Au contraire du signal SEC, le signal de sécrétion de type III est mal caractérisé. Il est présent dans les 20-25 premiers acides aminés des protéines et est très variable en séquence (Pais et al., 2013; Galán et al., 2014; Subtil et al., 2005). Différents systèmes ont été développés afin de tester la sécrétion via le SST3 de potentiels candidats. Les premiers utilisés furent les tests via les SST3 hétérologues d’autres bactéries transformées avec les protéines ciblées (Bauler and Hackstadt, 2014; Pais et al., 2013; Mueller and Fields, 2015; Subtil et al., 2005). Récemment, des systèmes basés sur la transformation de C. trachomatis avec un vecteur portant la protéine candidate marquée par un tag afin d’être visualisée par immunofluorescence ouvrent la porte à de nouvelles études (Rockey et al., 1995; Bauler and Hackstadt, 2014; Bannantine et al., 1998; Mueller and Fields, 2015).

3. Les protéines de la membrane de l’inclusion : la famille des Incs

La membrane de l’inclusion est riche en protéines bactériennes, synthétisées de façon précoces pendant le cycle de développement et insérées dans la membrane afin d’être exposées vers le cytosol. Ces protéines membranaires de l’inclusion ou protéines Inc ont été découvertes en premier chez C. psittaci, avec l’identification d’IncA, IncB et IncC (Bannantine et al., 1998; Rockey et al., 1995; Bannantine et al., 2000). Rapidement des protéines orthologues ont été
identifiées chez C. trachomatis et C. pneumoniae (Bannantine et al., 2000; 1998). Les protéines Inc ne présentent pas de similitude de séquence entre elles ni envers d’autres protéines, à l’exception de la présence d’un ou plusieurs domaines hydrophobes bilobés d’une soixantaine d’acides aminés qu’elles partagent en commun (Bannantine et al., 2000; Dehoux et al., 2011; Lutter et al., 2012). Des recherches bioinformatiques dans le génome de C. trachomatis ont permis d’identifier à ce jour une soixantaine de protéines présentant ce domaine hydrophobe caractéristique (Weber et al., 2015; Bannantine et al., 2000; Dehoux et al., 2011; Lutter et al., 2012).

Les premières vérifications de la localisation sur l’inclusion des Inc hypothétiques ont été réalisées grâce à l’obtention d’anticorps. Ces tests fastidieux ont permis de confirmer la présence à la membrane de l’inclusion d’environ la moitié des protéines. Un nouvel outil génétique développé récemment, et déjà évoqué précédemment, a permis de simplifier largement la procédure de test. Les protéines à étudier sont marquées par une queue flag et sont synthétisées par la bactérie, ce qui rend possible la visualisation par immunofluorescence de leur production et de leur localisation dans la cellule infectée. Avec cet outil, les auteurs ont démontrés que 10 Inc non vérifiées encore se trouvaient bien présentes à la membrane de l’inclusion tandis qu’une partie des protéines hypothétiques étaient en fait localisées dans les bactéries (Dehoux et al., 2011; Weber et al., 2015; Subtil et al., 2001).

Un grand nombre d’Inc ont été montrées comme pouvant être sécrétées par des SST3 hétérologues, classant ainsi la famille dans la catégorie des effecteurs du SST3 ((Weber et al., 2015; Dehoux et al., 2011; Subtil et al., 2001). Sécrétées pour la plupart de façon précoce après une étape de néosynthèse, elles appartiennent à la deuxième vague d’effecteurs venant modifier la composition de l’inclusion. Certaines, comme IncA, sont exprimées relativement tardivement, de 10 à 12h p.i..
Figure 8 : Localisation de protéines Inc hypothétiques.

Des cellules Hela ont été infectées avec des bactéries C. trachomatis L2 exprimant les protéines marquées par flag, à une MOI de 1. L’expression de la protéine fusion a été induite avec 10 ng/ml d’anhydrotétracycline. Les cellules ont été fixées après 18h d’infection en méthanol et marquées par des anticorps anti-L2 (vert) et anti-flag (rouge). L’ADN a été marqué avec le DAPI (bleu). A) Protéines Inc visualisées à la membrane de l’inclusion. B) Protéines Inc prédites ne se trouvant pas à la membrane de l’inclusion mais restant à l’intérieur des bactéries. La barre d’échelle est de 10 nm. Reproduit d’après (Finco et al., 2011; Weber et al., 2015; Coler et al., 2009)
Si les rôles de la majorité des protéines Inc sont encore inconnus, certaines d’entre elles ont fait l’objet d’études fonctionnelles qui sont présentées dans la partie III.

4. Zoom sur CT622, un effecteur chlamydien peu caractérisé

CT622 est une protéine de *C. trachomatis* qui a tout d’abord été remarquée pour son lien avec les pathologies provoquées par les infections à *Chlamydia*. Il a ainsi été montré qu’elle faisait partie des antigènes immunodominants de la bactérie et qu’elle élicitait la production d’anticorps (Kari et al., 2008; Finco et al., 2011; Coler et al., 2009).

Elle a de plus été liée à la pathogénicité des maladies dans deux modèles d’infection différents. Dans un modèle d’infection génitale chez la souris, de hauts taux d’anticorps anti-CT622 présents dans les sera étudiés ont été associés avec un risque accru de développer une hydrosalpingite, une complication de l’infection uro-génitale à *Chlamydia* (accumulation de liquide inflammatoire dans les trompes de Fallope). Dans un modèle d’infection oculaire chez le macaque, quatre souches isolées de bactéries causant le trachome ont été comparés (appartenant aux serovars A, B et C). Ces souches, très proches génétiquement parlant, présentent cependant des différences de pathogénicité dans un modèle d’infection chez le macaque. Il a été montré dans cette étude que la différence de virulence est due à un petit groupe de gènes (22 en dehors d’*ompA*) dont *ct622* fait partie (Harris et al., 2012; Kari et al., 2008).

Les génomes des différents serovars de *C. trachomatis* présentent une similarité remarquable avec plus de 98% d’identité. Les rares différences génétiques sont soupçonnées de jouer un rôle majeur dans la biologie des pathogènes, leur conférant des différences de tropismes (conjunctive oculaire, épithélium génital, ganglions lymphatiques), de pathologies et de virulence. Certaines différences existent aussi entre serovars du même biovar. La grande majorité des mutations ainsi que les principales zones de recombinaison se regroupent dans six régions « hotspots » du génome présentant un pourcentage de mutation beaucoup plus élevé que les autres régions (Carlson et al., 2005; Harris et al., 2012). D’après une étude publiée en 2005, 46,6% des SNP (Single nucleotide polymorphism) présents dans le génome de chlamydia sont ainsi concentrés dans 21 ORF (open reading frame) (Nunes and Gomes, 2014; Carlson et al., 2005). Les variations génétiques concernent la zone de plasticité de 50
kb, *ompA* (gène codant pour la protéine MOMP), la famille de gènes codant pour les protéines Pmp (protéines membranaires polymorphiques) et un petit nombre d’autres gènes dont *ct622* (Carlson et al., 2005; Nunes and Gomes, 2014). Un total de 39 SNP a été détecté dans la séquence de *ct622* dont plus de la moitié sont non synonymes, faisant de CT622 une des rares protéines polymorphe de *C. trachomatis* (Nicholson et al., 2003; Carlson et al., 2005; Belland et al., 2003).

CT622 est une protéine de *C. trachomatis* exprimée essentiellement à partir de 24h d’infection, ce qui la classe dans la catégorie des gènes tardifs (Gong et al., 2011; Nicholson et al., 2003; Belland et al., 2003). En 2011, l’équipe de Zhong a montré que CT622 était sécrétée dans l’inclusion ainsi que dans le cytoplasme de la cellule hôte aux temps longs d’infection, soit après 36h d’infection, l’intégrant ainsi dans la catégorie des protéines effectrices de *C. trachomatis* (Saka et al., 2011; Gong et al., 2011).

Cependant, CT622 a été montré comme étant largement accumulée dans les CE comparativement aux CR (Heuer et al., 2009; Saka et al., 2011). Cela pourrait dès lors suggérer une production en fin de cycle afin d’être accumulée dans les CE et avoir un rôle à jouer dans les premières étapes de l’infection.

Figure 9 : Alignement de différents homologues de CT622

Alignement de différentes séquences de CT622 et différents homologues avec le logiciel CLUSTALW. En violet sont montrés les acides aminés désorganisant la structure de la protéine, en jaune les résidus avec des chaines latérales hydrophiles et en vert les résidus hydrophobes ou similaires. En rouge sont visualisés les acides aminés consistant un domaine polyproline, interagissant souvent avec les domaines WW ou SH3, ainsi que les protéines liées à l’actine. *Analyse réalisée par Pierre Dehoux.*
III - L’inclusion, une interface privilégiée entre *C. trachomatis* et sa cellule hôte

1. Le microenvironnement de l’inclusion

L’inclusion est entourée par la majorité des organelles cellulaires : appareil de Golgi, dont la structure s’effrite autour de l’inclusion (Derré et al., 2011; Heuer et al., 2009; Dumoux et al., 2012; Giles and Wyrick, 2008), réticulum endoplasmique (Beatty, 2008; Derré et al., 2011; Dumoux et al., 2012; Giles and Wyrick, 2008), corps multivésiculaires (Kokes and Valdivia, 2015; Beatty, 2008). Certains marqueurs de ces compartiments ont même été détectés à l’intérieur des inclusions. Cependant il a été montré que la fixation des échantillons pouvait entraîner la relocalisation de certains marqueurs à l’intérieur de l’inclusion, et certains de ces résultats sont donc à confirmer en faisant, lorsque c’est possible, des observations de vidéo-microscopie sur cellules vivantes (Cocchiaro et al., 2008; Kokes and Valdivia, 2015). Cette technique a été utilisée pour montrer la translocation de gouttelettes lipidiques à l’intérieur de l’inclusion, assurant ainsi une source possible de lipides neutres pour les bactéries (Dumoux et al., 2012; Cocchiaro et al., 2008). Egalement, l’usage d’une sonde fluorescente associée au réticulum endoplasmique semble confirmer les liens étroits entre ce compartiment et l’inclusion (Hackstadt et al., 1995; Dumoux et al., 2012; Hackstadt et al., 1996).

Comme abordé brièvement dans la partie II-1, une grande partie de ces compartiments viennent fournir aux bactéries les nutriments et lipides nécessaires au développement. *C. trachomatis* acquière ainsi des Sphingomyélines (SM) de l’hôte grâce à une interception directe des vésicules du trafic antérograde, qui transportent les lipides du trans-Golgi vers la membrane plasmique. En effet, l’utilisation de la bréfeldine A, un composé inhibant le trafic antérograde, bloque le transport de la sonde fluorescente C6-NBD-Cer (un analogue fluorescent du céramide) vers l’inclusion et son incorporation dans les CE (Scidmore, 1996; Hackstadt et al., 1995; 1996). L’acquisition de SM de l’hôte a été montrée dès 1h p.i.. A ce temps si précoce d’infection, les bactéries n’ont pas encore été déplacées vers la région péri-nucléaire proche du Golgi dans laquelle elles resteront par la suite tout au long de leur cycle de développement. Le trafic antérograde est donc spécifiquement dévié vers la jeune inclusion. De plus, l’interception est sélective, l’exocytose des glycoprotéines du Golgi vers la
membrane plasmique par exemple n’étant pas impactée (Derré et al., 2011; Scidmore, 1996; Agaisse and Derré, 2014). Une partie de la SM serait en parallèle directement extraite du RE, grâce au recrutement d’une protéine de transfert appelée CERT (Heinzen and Hackstadt, 1997; Derré et al., 2011; Agaisse and Derré, 2014) (cf III 2).

Figure 10 – Interactions entre C. trachomatis et la cellule hôte – 1ère figure.

De nombreuses organelles cellulaires, dont l’appareil de Golgi fragmenté, les corps multi-vésiculaires (MVB), le réticulum endoplasmique (ER), les gouttelettes lipidiques (LD), les endosomes de recyclage (RE), les lysosomes (L) et les mitochondries servent de source de sphingomyéline (SM), cholestérol, lipides neutres, acides aminés, nucléotides à la bactérie. Différentes protéines de l’hôte sont recrutées à la membrane de l’inclusion grâce notamment aux protéines Inc, présentes à la surface de la membrane de l’inclusion. Adapté d’après (Aeberhard et al., 2015; Damiani et al., 2014).

La membrane de l’inclusion est l’interface d’interactions entre les bactéries confinées à l’intérieur et leur cellule hôte. Elle est activement modifiée au cours de l’infection grâce à
l’insertion de protéines bactériennes comme les Inc et au recrutement de protéines eucaryotes, et représente une véritable barrière physique protégeant les bactéries. Ainsi, elle n’est pas permissible pour la diffusion de molécules supérieures à 520 Da (Damiani et al., 2014; Heinzen and Hackstadt, 1997).

Jusqu’à récemment, la description de cette interface clé dans le cycle de développement de *C. trachomatis* reposait sur des études portant sur une ou plusieurs protéines identifiées individuellement. Ce n’est qu’en 2015 qu’une étude portée par l’équipe d’Heuer a essayé d’apporter une description exhaustive du microenvironnement de l’inclusion. Pour ce faire, ils ont mis au point un processus de purification de l’inclusion qu’ils ont couplé à une analyse protéomique quantitative par spectrométrie de masse avec la technique SILAC. Ils ont ainsi pu dresser le protéome de l’inclusion et mettre en évidence que le compartiment intracellulaire interagissait notamment avec certains composants du système retromère, les Sorting nexin (SNX) 1, 2, 5 et 6. Le système retromère est un complexe multi-protéique essentiel au recyclage des récepteurs transmembranaires des endosomes au réseau trans-Golgi. L’extinction de l’expression de SNX5 résultant en l’augmentation de la production de progénie, il a été postulé que ce complexe restreint la croissance bactérienne (Mirrashidi et al., 2015; Aeberhard et al., 2015). En parallèle de cette étude, l’équipe d’Engel s’est elle concentrée sur l’établissement de l’interactome des Inc, obtenant les mêmes résultats quant à la présence du système retromère. C’est la protéine IncE qui serait responsable d’une partie du recrutement des sorting nexins (Moore et al., 2011; Mirrashidi et al., 2015).

2. Protéines eucaryotes recrutées à l’inclusion

Précédemment à ces deux larges études, il avait été déjà montré que *C. trachomatis* recrute à la membrane de l’inclusion un certain nombre d’acteurs cellulaires impliqués dans les trafics vésiculaires notamment.

Outre les protéines GTPases Rab qui seront présentées dans le point suivant (voir partie III-3), *Chlamydia* contrôle la fusion à l’inclusion des vésicules de l’hôte grâce au recrutement de protéines SNARES, qui sont des acteurs clés de la machinerie intracellulaire de fusion. Au moins deux SNARES du Golgi : la Syntaxin 6 (Pokrovskaya et al., 2012; Moore et al., 2011)
et GS15 (Delevoye et al., 2008; Pokrovskaya et al., 2012), et des vésicules contenant les SNARES endocytiques Vamp3, Vamp7 et Vamp8 ont été trouvées à proximité de l’inclusion (Pokrovskaya et al., 2012; Delevoye et al., 2008). Le recrutement à l’inclusion du complexe COG serait le déclencheur pour rediriger les vésicules du trafic rétrograde marquées par la SNARE GS15 vers l’inclusion (Damiani et al., 2014; Pokrovskaya et al., 2012).

Figure 11 – Interactions entre C. trachomatis et la cellule hôte – 2ème figure.

De nombreuses organelles cellulaires, dont l’appareil de Golgi fragmenté, les corps multi-vésiculaires (MVB), le réticulum endoplasmique (ER), les gouttelettes lipidiques (LD), les endosomes de recyclage (RE), les lysosomes (L) et les mitochondries servent de source de sphingomyéline (SM), cholestérol, lipides neutres, acides aminés, nucléotides à la bactérie. Différentes protéines de l’hôte sont recrutées à la membrane de l’inclusion grâce notamment aux protéines Inc, présentes à la surface de la membrane de l’inclusion. *Adapté d’après* (Delevoye et al., 2008; Damiani et al., 2014).
Plusieurs protéines Inc de Chlamydia présentent des motifs similaires aux SNARES : IncA, CT813 et CT223, et les deux premières sont capables de lier les SNARE Vamp3, 7 et 8 (Delevoye et al., 2008; Paumet et al., 2009). Ces molécules pourraient interagir avec les SNARES de l’hôte, soit afin de promouvoir des fusions de compartiments cellulaires avec l’inclusion, soit au contraire afin de les inhiber (Delevoye et al., 2008; Paumet et al., 2009). IncA est capable de s’oligomériser et a aussi été impliquée dans la régulation de la fusion homotypique entre jeunes inclusions (lorsque plusieurs bactéries ont infecté la même cellule hôte) (Dumoux et al., 2015a; Delevoye et al., 2008). Outre son rôle potentiel de type SNARE, CT223 (ou IPAM pour inclusion protein acting on microtubules) a récemment été montrée comme régulant le réseau de microtubules entourant l’inclusion via le recrutement et la stimulation de la protéine centrosomale CEP170. Cette dernière est essentielle à la croissance bactérienne et à la production de progénie et permet à C. trachomatis d’interférer directement dans les fonctions organisationnelles des microtubules (Moorhead et al., 2010; Dumoux et al., 2015a).

Les phosphoinositides (PI) sont des dérivés phosphorylés du phosphatidylinositol jouant un rôle important dans la signalisation cellulaire et le trafic vésiculaire. Les différentes phosphorylations possibles des PI produisent des composés ayant des localisations et assurant des fonctions différentes. Elles sont donc finement régulées par des phosphatases et des kinases spécifiques. Plusieurs protéines impliquées dans le métabolisme du phosphoinositol-4-phosphate (PI4P) ont été montrées comme étant recrutées à la membrane de l’inclusion : la protéine OCRL1, qui est une phosphatase du Golgi produisant du PI4P, la phosphatidylinositol 4-kinase (PI4KIIa) et Arf1, une GTPase recrutant les enzymes PI4K et les protéines liant le PI4P au Golgi (Derré et al., 2011; Moorhead et al., 2010). L’extinction de l’expression de chacune de ces trois protéines affecte négativement la croissance de l’inclusion et la production de progénie infectieuse, suggérant un rôle important de la production à l’inclusion de PI4P pour le développement de C. trachomatis.

Enfin, en dehors des protéines impliquées dans le trafic cellulaire, les bactéries interagissent aussi avec des composants essentiels des voies de synthèse ou d’acquisition de lipides. La protéine CERT (Ceramide transfert protein) a ainsi été montrée comme étant recrutée à la membrane de l’inclusion grâce à la protéine IncD (Derré et al., 2011; Elwell et al., 2011). CERT est une enzyme cytosolique transportant les céramides, un précurseur de la sphingomyéline (SM), du RE au trans-Golgi. La protéine est recrutée à la membrane de
l’inclusion en association avec ses partenaires du RE : VAPA/B et deux SM synthases, ouvrant la possibilité de la création d’un pôle de néosynthèse de SM à la membrane de l’inclusion nécessaire à la multiplication bactérienne, la déplétion de CERT diminuant significativement la production de la progénie (Elwell et al., 2011; Derré et al., 2011). Au contraire, le recrutement à l’inclusion de GBF1 afin d’acquérir de la SM via l’interception de vésicules est nécessaire à la croissance et la stabilité de l’inclusion mais n’est pas essentiel à la réplication bactérienne (Damiani et al., 2014; Elwell et al., 2011; Brumell and Scidmore, 2007). C. trachomatis semble donc être capable d’interagir spécifiquement avec différentes voies cellulaires d’acquisition de lipides afin de répondre à différents besoins lors de sa croissance.

3. Les protéines Rab, des régulateurs clés du trafic cellulaire

a. Généralités sur les Rab

Les protéines Rab constituent la plus grande famille de la super famille Ras des petites guanosine triphosphatases (GTPases), avec plus de 60 membres, très conservés parmi les cellules eucaryotes. Les Rab sont des acteurs clés du trafic intracellulaire, régulant la formation et le tri des compartiments intracellulaires à partir de compartiments donneurs, leur déplacement le long du cytosquelette ainsi que leur fusion spécifique avec les compartiments accepteurs. Les Rabs déterminent aussi l’identité des organelles qu’elles décorent.

Ces protéines agissent comme des interrupteurs moléculaires grâce à leur capacité à lier et hydrolyser le GTP. Elles alternent entre un état actif membranaire (liées au GTP) et un état inactif cytosolique (liées au GDP). Cette alternance est régulée par des protéines activant les GTPases (GAPs), qui provoquent l’hydrolyse du GDP, et par des facteurs d’échange de nucléotide guanine (GEFs), qui activent le remplacement du GDP par du GTP (Vieira et al., 2003; Damiani et al., 2014; Wang et al., 2011a; Brumell and Scidmore, 2007). Afin de pouvoir s’ancrer dans les membranes, les Rab sont modifiées de façon post-traductionnelle et sont géranylgéranylées (cf point suivant). Lorsqu’elles ne sont pas insérées dans les membranes, les Rab-GDP interagissent avec la protéine GDI (GDP dissociation factor) et deviennent cytosoliques. Dix-huit Rab majoritaires contrôlent la route d’endocytose-
exocytose, et plus particulièrement Rab5 et Rab7, qui sont présentes respectivement sur les endosomes précoces et tardifs. Rab5 contrôle notamment la fusion entre les endosomes précoces et les phagosomes précoces, tandis que Rab7 facilite la maturation des endosomes et leur transport jusqu’aux lysosomes (Zhang and Casey, 1996; Vieira et al., 2003; Wang et al., 2011a).

b. La prénylation

La prénylation est une modification post-traductionnelle des protéines qui consiste en l’attachement en C-terminal d’un groupe prényl, conférant ainsi des propriétés hydrophobes aux protéines matures afin de les diriger vers les membranes cellulaires ou de jouer un rôle dans les interactions protéines-protéines.

Les premières notifications de peptides prénylés datent de la fin des années 1970, avec la description de la structure d’une phéromone issue d’un jelly fungi ressemblant à la structure bien déterminée d’une phéromone de *S. cerevisiae*, contenant un groupe farnesyl sur une cystéine en C-terminal. Il faudra cependant attendre les années 1980 et la description de la voie de synthèse du cholestérol pour découvrir que cette modification concerne aussi les protéines de mammifères (Goldstein and Brown, 1990; Zhang and Casey, 1996).

Les lipides isoprénoïdes ajoutés aux protéines sont composés de 15 (farnesyl) ou 20 (géranylgéranyl) carbones et sont des dérivés de la voie de synthèse du mévalonate, précurseur essentiel du cholestérol et d’hormones stéroïdiennes entre autres (Zhang and Casey, 1996; Goldstein and Brown, 1990; Chan et al., 2009). Trois enzymes catalysent cette modification post-traductionnelle : la farnésyl transférase (FTase) et les géranylgéranyl transférases de type I (GGTase I) et II (GGtase II). Ces enzymes hétérodimériques utilisent l’ion Zn2+ comme cofacteur catalytique.

La FTase et la GGTase I catalysent le transfert d’un groupe farnésyl ou géranylgéranyl à partir de farnesyl diphosphate (FPP) ou de géranylgéranyl diphosphate (GGPP), sur la cystéine de protéines possédant un motif CaaX en C-terminal. La composition en acides aminés de ce motif détermine quel isoprénoïde est ajouté. Ainsi, lorsque X est une méthionine, une sérine, une cystéine, une alanine ou encore une glutamine, les protéines sont reconnues par la FTase tandis que lorsque X est une leucine ou une phénylalanine, les
protéines sont reconnues par la GGTase I (Konstantinopoulos et al., 2007; Zhang and Casey, 1996; Chan et al., 2009). A la suite de l’étape de prénylation, le motif aaX est clevé par l’endoprotéase RCE1 et la cystéine modifiée est méthylée par la méthyltransférase ICMT (Philips and Cox, 2007; Konstantinopoulos et al., 2007).

Figure 12 - Géranylgéranylation des protéines

Deux enzymes sont en capacité de géranylgéranylérer les protéines : la GGTase I et la GGTase II ou Rab géranylgéranyl transférase. La GGTase I catalyse le transfert d’un groupe GG sur la cystéine de protéines possédant un motif CaaX en C-terminal. Les protéines seront ensuite modifiées successivement par une endoprotéase, Rce1, et une méthyltransférase, Icmt, avant d’être dirigées vers les membranes. La GGTase II catalyse le transfert d’un groupe GG sur les deux cystéines en C-terminal des protéines Rab. Les Rab seront aussi méthylées par Icmt avant de s’insérer dans les membranes qu’elles caractérisent.
Adapté d’après (Taylor et al., 2003; Philips and Cox, 2007; Amaya et al., 2011)

Ainsi, les protéines de la famille Ras, Hdj2, les lamines nucléaires A et B et les protéines Rheb sont farnesylées tandis que les substrats principaux de la GGTase I incluent notamment Cdc42, RhoA, Rac1 et neuf sous unités gamma sur douze de la protéine G hétérotrimérique (Konstantinopoulos et al., 2007; Taylor et al., 2003; Amaya et al., 2011).
La GGTase II, aussi appelée Rab génylgényl transférase, ne modifie que les protéines Rab et agit en association avec la protéine escorte des Rab (REP), qui lui présente les protéines Rab non génylées. L’enzyme catalyse alors le transfert de deux groupes génylgényl à partir de GGPP sur les deux cystéines en C-terminal de sites CC ou CxC (Rzomp et al., 2003; Konstantinopulos et al., 2007).

c. Les protéines Rabs recrutées autour de l’inclusion

Chlamydia trachomatis recrute à la membrane de l’inclusion un certain nombre de protéines Rab bien spécifiques et réussi à en éviter d’autres, modulant par ce biais les possibilités de fusion entre l’inclusion et les autres compartiments cellulaires.

Les premières études sur ce sujet se sont basées sur l’utilisation de constructions Rab marquées par la GFP afin de visualiser par immunofluorescence leur localisation dans des cellules infectées. Il a été ainsi montré que les protéines Rab4, Rab11, associées aux endosomes précoces, et Rab1, qui joue un rôle dans le trafic du réticulum endoplasmique (ER) vers l’appareil de Golgi, sont recrutées à la membrane de l’inclusion et ceci chez différentes espèces de *Chlamydia* (*C. trachomatis*, *C. pneumoniae* et *C. muriradum*) (Gambarte Tudela et al., 2015; Rzomp et al., 2003). Rab34, une rab endocytique et lysosomale a aussi été montrée comme s’associant à la membrane de l’inclusion (Rzomp et al., 2003; Gambarte Tudela et al., 2015; Rzomp et al., 2006). Ce recrutement peut avoir lieu très tôt dans l’infection à l’instar de Rab11 et Rab4 qui ont été visualisées à l’inclusion respectivement dès 1h et 2h d’infection (Rzomp et al., 2003; 2006). D’autres Rab comme Rab6, une protéine impliquée dans les trafics rétrogrades Golgi - ER et endosomes - Golgi, ou Rab10, une Rab du Golgi, n’ont été vues en association qu’avec certaines espèces de *Chlamydia* (respectivement *C. trachomatis* et *C. pneumoniae / C. muriradum*) (Stein et al., 2012; Rzomp et al., 2003). Une particularité à signaler est que les Rab Rab5 et Rab7, souvent associées aux phagosomes internalisant diverses bactéries dans la cellule, ne sont pas recrutées autour de l’inclusion mature et que le knock-down de Rab5 n’affecte pas la croissance bactérienne (Capmany and Damiani, 2010; Stein et al., 2012; Gambarte Tudela et al., 2015; Rzomp et al., 2003). Cela est en accord avec l’impossibilité de détecter des marqueurs endosomaux ou lysosomaux autour de l’inclusion et montre bien la spécificité du recrutement.
De plus, deux rab endogènes ont aussi été montrées comme interagissant avec la membrane de l’inclusion : Rab14, dès 10h d’infection et Rab39, dès 4h d’infection, et ce jusqu’à la fin du cycle de développement. À l’instar des autres Rab recrutées, ces deux protéines participent à la multiplication et à l’infectivité des bactéries en leur délivrant des sphingolipides et autres lipides provenant respectivement des vésicules du Golgi et des MVB (multivesicular bodies) (Gambarte Tudela et al., 2015; Capmany and Damiani, 2010).

Figure 13 – Caractérisation du recrutement de Rab39a à l’inclusion

Des cellules Hela ont été transfectées de façon transitoire avec pEGFP-Rab7a WT, pEGFP-Rab34 WT, pEGFP-Rab39a WT ou pEGFP-Rab39b WT, et infectées 24h après avec C. trachomatis L2 à une MOI de 1 pour 24h. La membrane de l’inclusion est visualisée avec l’anticorps anti-IncA (rouge). La barre d’échelle est de 10 μm. D’après (Gambarte Tudela et al., 2015; Capmany and Damiani, 2010; Moorhead et al., 2007; Rzomp et al., 2006).

Le recrutement des protéines Rab à la membrane de l’inclusion nécessite la synthèse de protéines de Chlamydia et dépend de l’état d’activation des Rab : seule la forme active liée au GTP est présente (Brumell and Scidmore, 2007; Gambarte Tudela et al., 2015; Capmany and Damiani, 2010; Moorhead et al., 2007; Rzomp et al., 2006). Ce dernier point suggère que le
recrutement des Rab puisse être lié à la présence de leurs protéines effectrices respectives dans la membrane de l’inclusion ou bien à la présence de protéines de *Chlamydia* mimant ces effecteurs (Rzomp et al., 2006; Brumell and Scidmore, 2007). On pourra ainsi citer la protéine Inc CT229 qui interagit avec la forme active de Rab4 et qui est suggérée comme étant impliquée dans son recrutement à l’inclusion (Moorhead et al., 2007; Rzomp et al., 2006).

Figure 14 – Interactions entre *C. trachomatis* et la cellule hôte – 3ème figure.

De nombreuses organelles cellulaires, dont l’appareil de Golgi fragmenté, les corps multi-vésiculaires (MVB), le réticulum endoplasmique (ER), les gouttelettes lipidiques (LD), les endosomes de recyclage (RE), les lysosomes (L) et les mitochondries servent de source de sphingomyéline (SM), cholestérol, lipides neutres, acides aminés, nucléotides à la bactérie. Différentes protéines de l’hôte sont recrutées à la membrane de l’inclusion grâce notamment aux protéines Inc, présentes à la surface de la membrane de l’inclusion. *Adapté d’après* (Shibutani and Yoshimori, 2014; Damiani et al., 2014).
De même plusieurs protéines effectrices associées aux Rab ont été visualisées à la membrane de l’inclusion : les protéines Bicaudal D1 (Moorhead et al., 2010; 2007) et OCRL1 (Leiva et al., 2013; Moorhead et al., 2010), interagissant notamment avec Rab6, et FIP2, un double effecteur de Rab11 et Rab14 (Damiani et al., 2014; Leiva et al., 2013). Curieusement, le recrutement de Bicaudal D1 par exemple a lieu même en absence de Rab6, suggérant qu’une autre protéine Rab puisse être impliquée.

4. Contrôle de l’autophagie par *C. trachomatis*

 a. Les principaux acteurs du système autophagique

L’homéostasie des cellules est obtenue grâce à une situation d’équilibre entre biosynthèse et dégradation des composants intracellulaires. L’autophagie est le procédé permettant la dégradation de protéines, d’organelles défectueux et même de pathogènes invasifs grâce à leur intégration au sein de vésicules membranaires appelées autophagosomes. Une fois leurs cibles séquestrées, les autophagosomes migrent jusqu’aux lysosomes avec lesquels ils fusionnent, permettant alors la dégradation des cargos par les protéases des lysosomes. Les molécules issues du processus de dégradation peuvent être recyclées vers le cytosol. L’autophagie est un processus clé des cellules et son disfonctionnement entraîne une variété de pathologies telles que des cancers, des maladies neurodégénératives ou cardiovasculaires ou encore des infections microbiennes.

L’autophagie est induite en cas de stress cellulaires (du RE, stress oxydatif, hypoxie) ou par des signaux physiologique tels que la paucité d’énergie ou de nutriments. Elle est dans ces cas non-spécifique, répondant seulement à des besoins cellulaires. Elle peut aussi être sélective lorsque les cargos visés sont des pathogènes, des mitochondries ou encore des agrégats de protéines (Zavodszky et al., 2013; Shibutani and Yoshimori, 2014).

Les différentes étapes du processus autophagiques sont orchestrées grâce à l’intervention d’une famille de protéines appelées protéines Atg, et en particulier d’une quinzaine de ses membres, très conservés chez les mammifères (He and Klionsky, 2009; Zavodszky et al., 2013). L’autophagie commence par une étape d’initiation avec le recrutement et l’assemblage de membranes au niveau du site d’assemblage des phagophores, formant un phagophore.
Cette initiation est assurée par l’intervention de deux complexes, le complexe Atg1/ULK et le complexe PI3K de classe III, et grâce aux vésicules d’Atg9. L’élongation et l’expansion du phagophore nécessitent le recrutement de deux systèmes de conjugation de type ubiquitine : le complexe Atg12-Atg5-Atg16 et le complexe Atg8/LC3-phophatidylethanolamine (PE). Le premier est formé par la conjugation des protéines Atg12 et Atg5, qui interagissent ensuite avec la protéine Atg16. Atg16 catalyse la formation de tetramères par oligomérisation et l’insertion du complexe dans la membrane en formation du phagophore (Shibutani and Yoshimori, 2014; He and Klionsky, 2009). Le complexe Atg12-Atg5-Atg16 agit en tant qu’enzyme de type E3 dans le processus de conjugation de LC3 à la PE (la protéine s’appelant LC3-II une fois conjuguée), l’associant ainsi de façon stable aux membranes du phagophore. La quantité de LC3-II présent dans une cellule corrélant bien avec le nombre d’autophagosome, LC3-II est devenu un marqueur largement utilisé dans la quantification de l’activité autophagique des cellules en comparaison à LC3-I (protéine à l’état non conjugué) (Glick et al., 2010; Shibutani and Yoshimori, 2014).

Figure 15 - Modèle schématisé de l’autophagie chez les cellules mammifères

L’initiation de l’autophagie est assurée par le regroupement de trois complexes clés, les complexes ULK1/2, PI3Ket les vésicules d’Atg9. Des membranes sont regroupées et assemblées et le phagophore est formé. Deux nouveaux complexes de conjugation de type ubiquitine sont ensuite recrutés : le complexe Atg5-Atg12-Atg16 qui permet la conjugation dans la membrane du phagophore du...

Durant l’étape de maturation le phagophore s’agrandit, recrute ses cargos et fusionne ses membranes, la vésicule alors formée devenant un autophagosome. La fusion des membranes entraîne la dissociation du complexe Atg12-Atg5-Atg16. Lorsque les autophagosomes fusionnent dans une dernière étape avec les lysosomes, leur contenu est dégradé par l’action des protéases lysosomales acides (Birgisdottir et al., 2013; Glick et al., 2010).

b. Pathogènes et autophagie

Outre son rôle essentiel dans la régulation de l’homéostasie des cellules, l’autophagie joue aussi un rôle dans la réponse immunitaire innée en visant les bactéries intracellulaires, via le processus d’autophagie sélective évoqué ci-dessus. Des autophagosomes marqués par LC3 se forment autour des bactéries ciblées, les transportant ensuite vers les lysosomes afin de les dégrader. En réponse à ce système, les bactéries ont établi des stratégies via des interactions entre des protéines effectrices bactériennes et les composants du système autophagique, leur permettant ainsi de bloquer l’autophagie, d’éviter la reconnaissance par les protéines autophagiques, ou encore d’éviter la fusion avec les lysosomes, comme montré sur la figure 16 (Huang and Brumell, 2014).
Figure 16 - Autophagie et bactéries

A) Schématisation des actions du système autophagique dans la destruction de bactéries pathogènes. L’autophagie peut viser les bactéries présentes au sein de vacuoles abimées (comme *M. tuberculosis* et *S. typhimurium*) ou dans le cytosol (*Streptococcus*) et les intégre dans un phagosome qui sera ensuite fusionné aux lysosomes. B) Schématisation des stratégies développées par les bactéries afin d’utiliser le système autophagique pour leur propre survie. Elles peuvent viser différentes étapes de l’autophagie : inhiber le signal d’induction (*M. tuberculosis* avec Eis, ou *B. anthracis* et *V. cholera* avec leurs toxines), empêcher la reconnaissance par le système autophagique (*S. flexneri* avec la protéine IcsB ou *L. monocytogenes* avec InlK), directement interagir avec les composants de l’autophagie ou encore bloquer la fusion avec les lysosomes. D’après (Heinzen et al., 1996; Huang and Brumell, 2014)

Par exemple, *Shigella flexneri* bloque la formation de l’autophagosome en interférant directement avec les composants du système autophagique, permettant ainsi à la bactérie de se multiplier dans le cytoplasme. *Mycobacterium tuberculosis* est internalisé dans les phagosomes mais bloque leur maturation en autolysosome et se multiplie à l’intérieur. Certaines bactéries sont même capables d’utiliser la machinerie autophagique pour leur propre croissance intracellulaire, à l’instar de *Coxiella burnetii* qui assure son développement au sein d’une vacuole acidifiée caractéristique des autophage-lysosomes (Al-Younes et al., 2011; Heinzen et al., 1996).
c. *Chlamydia* et l’autophagie

Contrairement à d’autres pathogènes plus étudiés, peu d’études ont porté sur les relations entre *C. trachomatis* et le système autophagique. La protéine LC3 est observée sur la membrane de l’inclusion mais son recrutement a aussi lieu dans les cellules déficientes en Atg5 et impliquerait sa capacité à s’associer aux microtubules (Al-Younes et al., 2011; Yasir et al., 2011). Il a été montré qu’en cas d’infection de fibroblastes embryonnaires de souris déficientes en Atg5 avec *C. trachomatis*, la taille des inclusions augmente dans ces cellules comparativement aux cellules sauvages, de même que la production de la progénie (Al-Younes et al., 2004; 2011; Yasir et al., 2011). Le pourcentage de cellules infectées ne varie pas entre les deux types cellulaires. La différence d’infectiosité serait donc due à une accélération du cycle de développement plus qu’à la survie de multiples bactéries, suggérant ainsi que l’autophagie n’est pas capable seule d’éliminer les bactéries entrées dans les fibroblastes.

Cependant, une étude de Al Younes en 2004 vient en contradiction avec ces différents résultats. L’ajout d’un excès d’acides aminés, ce qui a pour conséquence d’inhiber les processus autophagiques, impacte dramatiquement l’inclusion, provoquant un arrêt de sa croissance et une diminution de la production de progénie (Al-Zeer et al., 2013; Al-Younes et al., 2004). L’autophagie serait donc potentiellement nécessaire à l’infection. Cependant il ne peut être exclu que l’excès d’acide aminé impacte d’autres voies cellulaires en plus de l’autophagie qui seraient responsables des conséquences observées sur les bactéries.

Dans les macrophages, et en présence d’interféron γ, l’autophagie a été impliquée dans l’élimination des inclusions (Lane et al., 2008; Al-Zeer et al., 2013).

En conclusion, si l’autophagie semble, dans quelques circonstances, limiter le développement de *C. trachomatis*, la bactérie a su développer des stratégies afin de contrer cette ligne de défense de l’hôte. Le fonctionnement de ces stratégies n’est pas connu.
5. L’inclusion précoce, un compartiment mal caractérisé

a. Enseignements tirés des observations de microscopie aux temps précoces

Les premières heures de l’infection sont difficiles à étudier de par la petite taille des bactéries. Les repérer en microscopie électronique est de ce fait très fastidieux, et même en microscopie optique, il est plus difficile d’étudier leur environnement que sur des inclusions matures. Ainsi, on ne dispose que peu d’informations sur les caractéristiques de l’inclusion précoce.

A l’entrée, les bactéries recrutent les protéines GEF (guanine nucleotide exchange factor) Sos1, en complexe avec Eps8 et Abi1, et Vav2, grâce à une cascade de signalisation déclenchée par la phosphorylation de l’effecteur Tarp (voir point suivant pour plus de détails concernant cette protéine, partie III-5-b). La protéine kinase PI3K est aussi recrutée, amenant une production autour des bactéries de phosphatidylinositol 3,4,5-triphosphate (PIP₃), un composé nécessaire à l’activation de Vav2 (Heinzen et al., 1996; Lane et al., 2008; Scidmore et al., 2003).

Une fois endocytés dans la cellule, les CE restent séquestrés à l’intérieur de l’inclusion tout au long de leur cycle de développement. Une caractéristique de *Chlamydia* réside dans la composition de la membrane de son inclusion. En effet, celle-ci ne présente ni marqueurs endosomaux tardifs ou lysomomaux tels que LAMP 1 et 2, la cathepsine ou encore l’ATPase vacuolaire à protons, ni marqueurs endosomaux précoces, tels que la transferrine ou EEA1 (Scidmore, 1996; Heinzen et al., 1996; Hackstadt et al., 1996; Scidmore et al., 2003). La bactérie a de ce fait été pendant longtemps considérée comme étant l’un des rares pathogènes intracellulaires non-fusogénique. En réalité, il a été montré ensuite que pour assurer son développement, *Chlamydia* provoque très tôt au cours de l’infection la fusion à l’inclusion de vésicules de l’exocytose dérivées de l’appareil de Golgi afin d’acquérir de la sphingomyéline et du cholestérol, comme présenté dans la partie III-1 (Scidmore et al., 1996; Scidmore, 1996; Hackstadt et al., 1996). Un consensus existe donc sur le fait que très tôt, une fois formée, l’inclusion est capable d’éviter la route endo-phagocytaire et au contraire d’intercepter des structures de la route biosynthèse-exocytose. Ainsi que nous l’avons exposé précédemment, cette capacité repose sur l’expression de gènes chlamydiens et la néosynthèse de protéines en partie sécrétées telles que les Incs qui modifient la membrane de l’inclusion (Rzomp et al.,
2003; Scidmore et al., 1996; Rzomp et al., 2006). Dès les premières heures d’infection, les bactéries recrutent autour de leur inclusion précoce un certain nombre de protéines eucaryotes telles que Rab11 et Rab4 respectivement dès 1h et 2h d’infection (Gambarte Tudela et al., 2015; Rzomp et al., 2003; 2006), Rab39 dès 4h d’infection, et possiblement encore plus précocement (Leiva et al., 2013; Gambarte Tudela et al., 2015), ou encore FIP2 qui, en condition de surexpression, a été vue entourant les bactéries dès 2h d’infection (Nicholson et al., 2003; Leiva et al., 2013).

b. Les effecteurs précoces de *C. trachomatis*

Comme décrit rapidement lors de la description du cycle de développement dans la partie I-2-a, *C. trachomatis* contrôle son entrée dans la cellule grâce aux actions successives de différentes protéines effectrices, sécrétées dans la cellule hôte dès l’étape d’adhésion. Ces protéines sont codées par des gènes ayant une expression tardive, c’est à dire après 24h d’infection (Clifton, 2004; Nicholson et al., 2003). Elles sont accumulées dans les bactéries afin de pouvoir être utilisées dès les toutes premières étapes de l’infection.

La protéine Tarp (Translocated actin-recruiting protein) constitue l’effecteur majoritaire ainsi sécrété de façon précoce (Jewett et al., 2006; Clifton, 2004; Jewett et al., 2010; Jiwani et al., 2013). Tarp est une protéine multi-domaines, capable d’interagir avec le cytosquelette à différents niveaux. Elle permet la polymérisation et la nucléation de l’actine ainsi que la création de faisceaux grâce à ses différents domaines (liant la G-actine ou la F-actine) (Thwaites et al., 2014; Jewett et al., 2006; Thwaites et al., 2015; Jewett et al., 2010; Jiwani et al., 2013). Elle est aussi capable d’interagir avec des protéines liant l’actine, telles que FAK (Focal Adhesion Kinase) et la vinculine (Clifton, 2004; Thwaites et al., 2014; 2015). Tarp est sécrétée dans le cytosol de la cellule au cours des cinq premières minutes de l’infection (Jewett et al., 2008; Clifton, 2004; Mehlitz et al., 2008). Elle est alors phosphorylée au niveau de sa partie N-terminale par différentes kinases de l’hôte telles que Abi1, Syk et des membres de la famille Src (Lane et al., 2008; Jewett et al., 2008; Mehlitz et al., 2008). La phosphorylation n’est pas nécessaire à l’activité de nucléation de l’actine de Tarp. Elle permet cependant à la protéine d’interagir avec deux facteurs d’échange de nucléotide guanine ce qui résulte en l’activation de Rac (Hower et al., 2009; Lane et al., 2008).
En plus de Tarp, trois protéines ont été observées comme étant sécrétées à des temps très précoces d’infection : CT694, CT695 et TepP. Une fois sécrétée, CT694 interagit avec la protéine AHNAK, qui est impliquée dans la formation des fibres de stress d’actine (Chen et al., 2014; Hower et al., 2009). Comme Tarp, TepP (Translocated Early Phosphoprotein) est phosphorylée dans le cytoplasme de l’hôte, légèrement postérieurement à Tarp. Cette phosphorylation permet à la protéine d’interagir avec les protéines d’échafaudage CrkI/II, des protéines importantes dans le système de signalisation cellulaire. Il a aussi été montré que TepP pourrait jouer un rôle dans l’amplification de cascade de signalisation modulant l’expression de gènes impliqués dans la réponse immunitaire innée aux temps précoces de l’infection (Mueller and Fields, 2015; Chen et al., 2014). La sécrétion précoce de CT695 a été décrite très récemment mais sa fonction n’a pas encore été caractérisée (Chen et al., 2014; Mueller and Fields, 2015).

Un point intéressant à noter concernant ces quatre effecteurs précoces est qu’ils partagent tous la même chaperone, Slc1 (voir partie II-2). Dans les CE, la majorité des protéines Tarp sont complexées avec Slc1, ce qui n’est pas le cas de TepP par exemple (Thalmann et al., 2010; Chen et al., 2014). Slc1 régulerait la sécrétion des différents effecteurs dans un ordre précis.

La polymérisation de l’actine autour du point d’attache ment des CE étant transitoire, d’autres effecteurs bactériens sont certainement responsables de sa désorganisation. Ainsi, les serovars génitaux de C. trachomatis possèdent un gène supplémentaire dans la zone de plasticité du génome codant pour la protéine CT166. Cette protéine supposée sécrétée glucosyle la GTPase Rac1, l’inactivant, ce qui pourrait participer à l’arrêt de la polymérisation de l’actine (Gong et al., 2011; Thalmann et al., 2010).
IV - Conclusion et objectifs du travail de thèse

Un certain nombre de protéines de *C. trachomatis* ont été identifiées comme étant des protéines effectrices, voire ont déjà été montrées comme étant sécrétées dans le cytosol de la cellule hôte, mais leur fonction reste inconnue. CT622 fait partie de ces protéines. Comme décrit dans la partie II-4, cette protéine présente un ensemble de caractéristiques telles que sa variabilité génétique et son immunogénicité, qui en font une cible intéressante à étudier. Gong et ses collègues ont montré dans leur article publié en 2011 qu’elle était sécrétée dans le cytosol de la cellule hôte après 24h d’infection (Slepenkin et al., 2007; Gong et al., 2011; Engström et al., 2013). Cette étude a également proposé que la sécrétion de CT622 était médiée par le SST3 mais leur démonstration de ce dernier point est critiquable car l’inhibiteur qu’ils ont utilisé a depuis été montré comme non spécifique (Vromman et al., 2014; Slepenkin et al., 2007; Engström et al., 2013).

L’objectif de ce travail de thèse a été de réaliser une étude fonctionnelle de la protéine CT622 dans le cadre de l’infection par *C. trachomatis*.
Matériel et Méthodes
Cells and bacteria

HeLa cells (ATCC) were cultured in Dulbecco's modified Eagle's medium with Glutamax (DMEM, Invitrogen), supplemented with 10% (v/v) fetal bovine serum (FBS). Cells were routinely checked for absence of mycoplasma contamination by PCR. *C. trachomatis* LGV serovar L2 strain 434 (ATCC), or GFP-expressing L2 (L2IncDGFP) (Scidmore, 2005; Vromman et al., 2014) were purified on density gradients as previously described (Allaoui et al., 1993; Scidmore, 2005). The *ipaB* and *mxiD* strains are derivate of M90T, the virulent wild-type strain of *Shigella flexneri*, in which the respective genes (*ipaB* and *mxiD*) have been inactivated (Subtil et al., 2001; Allaoui et al., 1993). The *Escherichia coli* strain DH5α was used for cloning purposes and plasmid amplification. Both *S. flexneri* and *E. coli* strains were grown in Luria-Bertani medium with ampicillin at 0.1 mg/ml.

Immunofluorescence

HeLa cells grown on coverslips were infected with *C. trachomatis* LGV serovar L2 strain 434 or L2IncDGFP with an MOI < 1 (unless specified differently) and fixed in 4% PFA in PBS for 20 min at room temperature. Cells were blocked and permeabilized in 0.3% Triton X-100 in PBS for 5 min before followed with 5 min incubation with 1% bovine serum albumin (BSA) in PBS. Antibodies were diluted in 1% BSA in PBS. Mouse anti-MOMP and anti-Hsp60 antibodies were from Argene (#11-114) and Affinity BioReagents (MA3-023) respectively. Rabbit anti-CT260 and anti-TarP by Dr. R. Valdivia (Durham, NC) and Dr. T. Hackstadt (Hamilton, MT), respectively. Atg16L1 and Atg5 were from Cell Signaling Technology (#8089) and Novus Biologicals (NB 110-53818) respectively. Goat secondary antibodies were conjugated to Alexa488 (Molecular Probes), or to Cy3 or Cy5 (Amersham Biosciences). Images were acquired on an Axio observer Z1 microscope equipped with an ApoTome module (Zeiss, Germany) and a 63× Apochromat lens. Images were taken with an ORCA-flash4.OLT camera (Hamamatsu, Japan) using the software Zen.

Plasmids and transfections

Genomic DNA from *C. trachomatis* D/UW-3/CX, *C. caviae* GPIC and *C. pneumoniae* TW183 was prepared from bacteria using the RapidPrep Micro Genomic DNA isolation kit
(Amersham Pharmacia Biotech). The first 26 to 29 codons of ct622, and its homologs cca00015 and cpn0728, including about 20 nucleotides upstream from the translation start sites, were amplified by PCR using primers listed in Table 1 and cloned into the pUC19cya vector as described (Parsot et al., 2005; Subtil et al., 2001). Full length CT635 was cloned in the vector pKJ3 (Subtil et al., 2001; Parsot et al., 2005) downstream of Lacl operator binding sites, using BamHI and KpnI restriction sites, in frame with a N-terminal 6-Histidine tag. ct622 (full length or truncated of the first 94 codons) was cloned downstream of ct635, using KpnI and SalI restriction sites, for co-translation in an operon. attB-containing primers (Table 1, Gateway®, Life technologies) were used to amplify and clone ct622 into a destination vector derived from the mammalian expression vector pCiNeo, providing an amino-terminal 3xflag tag, and into pDEST15 or pDEST17 (Gateway), for production of GST or HIS-tagged proteins, respectively.

Cells were transfected with plasmid DNA 24 h after seeding using jetPRIME transfection kit (Polyplus transfection) according to the manufacturer's protocol. GFP-Rab14, GFP-Rab34 and GFP-Rab39a (WT, DA, DN) plasmids were obtained from Dr. M.T. Damiani. GFP-Rab5 and GFP-Rab7 plasmids were obtained from Dr. A. Echard (Institut Pasteur).

Tableau 1 – List of primers used

<table>
<thead>
<tr>
<th>Entry vector for CT622 and Rab59a cloning into pDONR207 (Gateway):</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT622f</td>
</tr>
<tr>
<td>CT622r</td>
</tr>
<tr>
<td>CT622'r</td>
</tr>
<tr>
<td>CT622'Cf</td>
</tr>
<tr>
<td>GW1attB1</td>
</tr>
<tr>
<td>GW2attB2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primers used in a second PCR step to reconstitute the complete attB recombinaison sites:</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW1attB1</td>
</tr>
<tr>
<td>GW2attB2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cloning into pUC19cya for secretion assays in S. flexneri (Subtil et al., 2001):</th>
</tr>
</thead>
<tbody>
<tr>
<td>HindIII CT622</td>
</tr>
<tr>
<td>CT622Xba</td>
</tr>
<tr>
<td>HindIII CPn0728</td>
</tr>
<tr>
<td>CPn0728 Xba</td>
</tr>
<tr>
<td>HindCCA00015</td>
</tr>
<tr>
<td>CCA00015Xba</td>
</tr>
</tbody>
</table>

57
Cloning into pKJ3 for co-expression of CT635-HIS and CT622 (Parsot et al., 2005):

<table>
<thead>
<tr>
<th>Restriction Enzyme</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>BamHI CT635</td>
<td>agtcGGATCCaaaataattcgcctaaaaaattatatagacctc</td>
</tr>
<tr>
<td>CT635STOP KpnI</td>
<td>agtcGGTACCttataagggaatccaattttttttcttactt</td>
</tr>
<tr>
<td>KpnI RBS CT622</td>
<td>AGTCggtaccAGGAGAtatattgtggaatcaggaccagaatca</td>
</tr>
<tr>
<td>CT622 STOP SalI</td>
<td>agtcGTCGACttaagaagataaccagagaatagagaagc</td>
</tr>
<tr>
<td>KpnI RBS D94 CT622</td>
<td>AGTCggtaccAGGAGAtatatgtgATgcgagattataatgaggctaatcgaat</td>
</tr>
</tbody>
</table>

Cloning of pTTmut9aadA and analysis of AS9 clones

<table>
<thead>
<tr>
<th>Clone</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL0886_447-448s-IBS</td>
<td>AAAAAGCTTATAATTATCCTTAGAAGACTTAAATGTGCGCCCAGATAGGGTG</td>
</tr>
<tr>
<td>CTL0886_447-448s-EBS1</td>
<td>CAGATTGTACAAATGTGGTGATAACAGATAAGTCTTTAATAATAAATCTACCTTTC TTGT</td>
</tr>
<tr>
<td>CTL0886_447-448s-EBS2</td>
<td>TGAACGCAAGTTTTCTAAATTTCCAGATTTTCTTCGATAGAGGAAAGTGTCCT</td>
</tr>
<tr>
<td>aadA5</td>
<td>TCTACCGGTTGCCTGACGAGTGGTGGAG</td>
</tr>
<tr>
<td>GIIR</td>
<td>TCTCGGAGTATACGGCTCTG</td>
</tr>
<tr>
<td>Hyp08F</td>
<td>CTCGTAATATGCAAGAGCATTGTAAG</td>
</tr>
<tr>
<td>Hyp08R</td>
<td>GGCCCGCAGAGATATTCTGAAG</td>
</tr>
<tr>
<td>GlInewF</td>
<td>CGCCGAGAAGATAGGTTAAG</td>
</tr>
<tr>
<td>GlInewR</td>
<td>GATCTCGGCGATCGTCTTCGTTTG</td>
</tr>
<tr>
<td>886seqF</td>
<td>GGCAAAATCGCTTCTAATTCGGAAAC</td>
</tr>
<tr>
<td>886seqR</td>
<td>CGCAAGAATCTGATCCGCAGAGGCTG</td>
</tr>
<tr>
<td>pJETF</td>
<td>CGACTCACTATAGGGAGAGCGGC</td>
</tr>
<tr>
<td>pJETR</td>
<td>AAGAACATCGATTTCATGAGCAG</td>
</tr>
</tbody>
</table>

Production of GST-CT622 protein and of rabbit polyclonal antibody to CT622.

GST-CT622, GST-CT622^N (aa 1-345) and GST-CT622^C (aa 346-647) were expressed in BL21DE3(pLysS). Overnight cultures were inoculated into 500 ml LB broth containing 0.1 mg/mL ampicillin, incubated at 37 °C until the optical density at 600 nm was 0.4 to 0.6. The production of recombinant protein was initiated with the addition of 0.25 mM IPTG and cultures were incubated at 37 °C for 3 h. Cultures were then centrifuged at 4000 x g for 20 min, and pellets were lysed for 30 min at 4 °C in lysis buffer (0.3 M NaCl, 50 mM Tris-HCl pH 7.5, 1% Triton X-100 (Sigma), 5% glycerol, 2 mM DTT, supplemented with 0.5 mg/mL
lysozyme (Sigma #L6876), 330 U DNase I (Roche, #04716728001), and protease inhibitors cocktail (CIP, Sigma # P8340, 1:100)). Insoluble material was removed by centrifugation at 17,000 x\text{g} for 20 min at 4°C. Supernatants were rotated on a rocking platform for 1 hour onto 300 µl glutathione sepharose 4B beads (GE Healthcare) and transferred to columns. Beads were washed two times with the lysis buffer and then once with the following buffer: 50 mM tris-HCl pH 7.5, 0.3 M NaCl, 5% glycerol, 2 mM DTT. GST fusion proteins on glutathione agarose beads were eluted in elution buffer (20 mM glutathione, 50 mM Tris-HCl pH 7.4, 300 mM NaCl, 5% glycerol), dialyzed overnight against 0.15 M NaCl, 30 mM Tris-Hcl pH 7.5, 5% Glycerol, 1 mM DTT and stored at -80 °C. An additional step of purification by gel filtration on HiLoad columns 16/60 Superdex-200 was added before using the proteins in MST experiments.

GST-CT622 was used as immunogen for the production of specific polyclonal antibodies in New Zealand White rabbits (Agro-Bio, La Ferté Saint-Aubin, France). HIS-CT622 was expressed in \textit{E. coli} and purified on Ni2+-NTA-Sepharose column as described below. Sera were purified against HIS-CT622 to recover only CT622 specific antibodies.

\textit{Shigella heterologous secretion assay}.

Analysis of secreted proteins was performed as described previously (Muschiol et al., 2011; Subtil et al., 2001). Briefly, 1 ml of a 30°C overnight culture of \textit{Shigella flexneri ipaB} or \textit{mxiD} transformed with different Cya chimeras was inoculated in 30 ml of LB broth with 0.1 mg/ml ampicillin and incubated at 37°C for 4 h. For experiments using full-length proteins expression was induced by adding 100 µM isopropyl 1-thio-β-D-galactopyranoside (IPTG) over the 4 h growth period. Bacteria were then harvested by centrifugation and the supernatant was filtered through a Millipore filter (0.2 µm). To precipitate the proteins 1/10 (v/v) of trichloroacetic acid was added to the supernatant and the precipitate as well as the bacterial pellet resuspended in sample buffer for analysis by SDS-PAGE and immunoblot.

\textit{Immunoprecipitation, immunodetection and pull-down experiments.}

\textit{Immunoprecipitations}: Confluent monolayers of HeLa cells grown in 10 cm-dishes were used for each immunoprecipitation. Cells were harvested at 24 hours after transfection, pelleted and lysed with NP40 lysis buffer with gentle rocking at 4 °C (150 mM NaCl, 50 mM Tris-
HCl pH 7.5, 1 mM EDTA, 1 mM EGTA, 10 mM NaF, 5% glycerol supplemented with 0.5% NP40 for the first 20 min of lysis in a 0.1 ml volume, and diluted 1:10 to reach 0.05% NP40 for the last 20 min of lysis, and the rest of the procedure). Cell lysates were centrifuged at 15000xg for 20 min at 4 °C. Supernatants were incubated with anti-flag M2 affinity gel (Sigma #A2220) for 2h, or with 1µg of anti-GFP antibodies (clone 3E6, Molecular Probes #A-11120) 1.5 hours at 4 °C on a rocking platform, followed by 1 hour incubation with G-Sepharose beads (Amersham). Immunoprecipitates were collected by a brief centrifugation and were washed four times in lysis buffer and once in 1x PBS. The bound proteins were eluted with urea buffer (8M urea, 1% SDS, 150 mM NaCl, 30 mM Tris-HCl pH 8.0) and 1x SDS-PAGE sample buffer (63 mM Tris-HCl pH 7.4, 10% glycerol, 2% SDS, 0.01% bromophenol blue, 1% β-mercaptoethanol), boiled for 10 minutes and frozen.

Immunodetections: Proteins were subjected to SDS-PAGE, transferred to Immobilon-P (PVDF) membranes and immunoblotted with the proper primary antibodies diluted in 1X PBS containing 5% milk and 0.01% Tween-20. Primary antibodies used were: rabbit anti-GFP (Santa Cruz #sc-8334), mouse anti-flag M2 (Sigma F3165), mouse anti-β actine (Sigma A5441), rabbit anti-CT621 antibody (Gehre et al., 2016; Muschiol et al., 2011), rabbit anti-RNA polymerase (Abcam #ab191598, rabbit anti-Cap1 (Geisbrecht et al., 2006; Gehre et al., 2016), mouse anti-cya, rabbit anti-CRP and rabbit anti-IpaD antibodies generously given by Drs N. Guiso, A. Ullmann and C. Parsot, respectively (Institut Pasteur, Paris). Goat anti-mouse and anti-rabbit IgG-HRP (GE Healthcare) were used at 1:10000 dilution. Blots were developed using the Western Lightning Chemiluminescence Reagent (GE Healthcare).

Pull-downs: For GST pulldowns, cells were lysed in 0.5 to 0.05% NP40 lysis buffer described above. EBs were lysed in the same buffer and were additionally sonicated for 20 min with cell ruptor. Lysates were centrifuged at 17000 xg for 15 minutes at 4 °C and precleaned with glutathione-agarose beads with 200 µg of GST for 90 minutes at 4°C in a rocking platform. Equal amount of precleaned supernatants were incubated with 50 µl of a 50 % slurry of glutathione sepharose 4B beads and 30 µg of purified GST or GST-CT622 for 90 min at 4 °C, on a rocking platform. After a brief centrifugation, beads were washed five times with cold GST lysis buffer. The bound proteins were eluted with urea buffer (8M urea, 1% SDS, 150 mM NaCl, 30 mM Tris-HCl pH 8.0) then identified by mass spectrometry by the Proteopole of the Institut Pasteur.
For HIS-CT635 pull-down, an overnight culture of *E. coli* transformed with a plasmid coding for HIS-CT635 and CT622, CT622 alone, or HIS-CT635 and D94CT622 was diluted 1:25 in 50 ml of fresh LB supplemented with 0.1 mg/ml ampicillin. Culture were grown to an OD$_{600}$ of ~0.5 and protein expression was induced with 0.1 mM IPTG. Three h later, bacteria were collected, resuspended in 3.5 ml of lysis buffer (300 mM NaCl, 50 mM NaH$_2$PO$_4$, pH 8.0) supplemented with 5 mM imidazole, and lysed by sonication. Soluble material was incubated for 1 h at 4 °C with 0.3 ml of Ni$^{2+}$-NTA-Sepharose slurry previously washed three times with lysis buffer, and transferred to a column. The beads were washed with 2x10 ml of lysis buffer supplemented with 10 mM and 50 mM imidazole respectively. Proteins were eluted by increasing the imidazole concentration to 250 mM and 500 mM. The fractions eluted in 500 mM imidazole are shown.

Cloning, Overexpression and Purification of HIS-CTL0886

The following gene fragments were amplified from *C. trachomatis* (serovar L2 434/Bu) genomic DNA via PCR and subcloned into BamHI/NotI-digested pT7HmT (Geisbrecht et al., 2006): residues 94-651 (CTL0886$^\text{FL}$), 94-322 (CTL0886$^\text{N}$) and 353-651 (CTL0886$^\text{C}$). Expression and purification were performed in a similar manner for all 3 constructs. Upon DNA sequence confirmation, each vector was transformed into Rosetta 2(DE3) pLysS *E. coli* competent cells. This strain was grown to an OD$_{600}$ of ~1.5 at 37 °C within Terrific Broth supplemented with Kanamycin (50 μg ml$^{-1}$) and Chloramphenicol (30 μg ml$^{-1}$), and protein expression was induced overnight at 16 °C by the addition of IPTG to a 1 mM final concentration. Bacterial cells were harvested by centrifugation, resuspended in lysis buffer (20 mM Tris-HCl (pH 8.0), 500 mM NaCl, and 10 mM imidazole), and then lysed by sonication. The soluble tagged protein was collected in the supernatant following centrifugation of the cell homogenate and purified on a Ni$^{2+}$-NTA-Sepharose column according to published protocols (Doublié, 2007; Geisbrecht et al., 2006). Recombinant tobacco etch virus (TEV) protease was used to digest the fusion affinity tag from the target protein. After desalting into 20 mM Tris-HCl (pH 8.0), final purification was achieved by ResourceQ anion-exchange chromatography followed by size exclusion chromatography (GE Healthcare). The purified protein was concentrated to 10 mg ml$^{-1}$ and buffer exchanged by ultrafiltration into 10 mM Tris-HCl (pH 7.5), 50 mM NaCl, and stored at 4 °C for further use. Selenomethionine (SeMet)-substituted CTL0886$^\text{C}$ was grown according to standard protocols (Walter et al., 2006; Doublié, 2007), purified as described above (all buffers contained 5 mm
β-mercaptoethanol), and concentrated to 10 mg ml\(^{-1}\) in 10 mM Tris-HCl (pH 7.5), 50 mM NaCl buffer for crystallization.

Reductive Methylation

CTL0886\(^N\) and CTL0886\(^C\) failed to produce diffraction quality crystals despite extensive screening. Reductive methylation of surface exposed lysines was performed in order to enhance potential intra- and intermolecular interactions involving these residues (Kabsch, 2010; Walter et al., 2006). Each purified protein was dialyzed into PBS at a concentration of 10 mg ml\(^{-1}\) and pipetted into a 5 ml eppendorf tube covered in foil. Fresh solutions of DMAB (1 M) and formaldehyde (1 M) were prepared. For each 1 ml of protein, 20 ul of DMAB and 40 ul of formaldehyde were added to the protein solution, which was then gently rocked in the dark at 4 °C for 2 hours. This step was repeated two more times. Finally, 10 ul of DMAB per 1 ml of protein was added, followed by gentle rocking overnight in the dark at 4 °C. The reaction was quenched and excess reagent was removed by a final size exclusion purification step (20 mM Tris-HCl (pH 8.0), 200 mM NaCl). Methylated proteins were concentrated to 10 mg ml\(^{-1}\) and buffer exchanged by ultrafiltration into 10 mM Tris-HCl (pH 7.5), 50 mM NaCl, and stored at 4 °C for further use. SeMet-substituted CTL0886\(^C\) was methylated in an equivalent manner.

Crystallization

Methylated *C. trachomatis* CTL0886\(^N\) and CTL0886\(^C\) were crystallized by vapor diffusion in Compact Jr. (Emerald Biosystems) sitting drop plates at 20 °C. Specifically, 0.5 µl of protein solution (10 mg ml\(^{-1}\) in 10 mM Tris-HCl (pH 7.5) and 50 mM NaCl) was mixed with 0.5 µl of reservoir solution. Crystals of CTL0886\(^N\) were produced with a reservoir solution containing 30% (w/v) Polyethylene glycol 1,500, from the Crystal HT screen condition D7 (Hampton). Single bipyramidal-shaped crystals appeared after 2 days and reached a maximum size of ~100 microns after 5 days. Crystals of CTL0886\(^C\) were produced with an optimized reservoir solution containing 0.1 M Bis-Tris (pH 7.2), 1.9 M ammonium sulfate, from the Index HT screen condition A4 (Hampton). Large block-shaped crystals appeared after 1 day and reached a maximum size of ~300 microns after 3 days. Crystals were flash-cooled in a
cryoprotectant solution consisting of 40% (w/v) Polyethylene glycol 1,500 or saturated ammonium sulfate for CTL0886N and CTL0886C, respectively. Methylated SeMet-CTL0886C crystals were obtained in essentially the same manner as described above, and large block-shaped crystals were harvested as described above.

Diffraction Data Collection, Structure Determination, Refinement and Analysis

X-ray diffraction data were collected at 1.000 Å at 100K using a Dectris Pilatus 6M pixel array detector at beamline 17ID at the APS IMCA-CAT. Crystals of CTL0886N diffracted at best to 6.3 Å and will not be discussed any further within this manuscript. Following data collection, individual reflections were integrated with XDS (Evans, 2011; Kabsch, 2010). Laue class analysis and data scaling were performed with Aimless (Adams et al., 2010; Evans, 2011; Adams et al., 2002), which suggested the Laue class was \(m \)-3 with a likely space group of \(I \)23 or \(I \)213. Experimental phase information was obtained for the CTL0886C structure by Se-SAD using AutoSol within the Phenix suite (Collaborative, 1994; Adams et al., 2010; 2002), which identified nine unique selenium atoms in the asymmetric unit. Phenix.Autobuild correctly traced 148/299 C\(_\alpha\) atoms (Map-model CC = 0.58, \(R_{\text{work}}/R_{\text{free}} = 41.32/46.48 \)) within a single CTL0886C polypeptide. Anomalous phases were combined with the complete 1.90 Å native diffraction dataset using CAD (Adams et al., 2010; Collaborative, 1994; Adams et al., 2002). Subsequently, Phenix.Autobuild (Adams et al., 2010; 2002), was then used to trace 241/299 of the expected amino acids from the combined experimental maps with \(R_{\text{work}}/R_{\text{free}} = 23.05/26.88 \). Structure refinement was carried out using Phenix (Emsley and Cowtan, 2004; Adams et al., 2010; Emsley et al., 2010; Adams et al., 2002). One round of individual coordinates and isotropic atomic displacement factor refinement was conducted, and the refined model was used to calculate both \(2F_o-F_c \) and \(F_o-F_c \) difference maps. These maps were used to iteratively improve the model by manual building with Coot (Painter et al., 2006; Emsley and Cowtan, 2004; Emsley et al., 2010) followed by subsequent refinement cycles. TLS refinement (Thompson et al., 1994; Painter et al., 2006) was incorporated in the final stages to model anisotropic atomic displacement parameters. Ordered solvent molecules were added according to the default criteria of Phenix and inspected manually using Coot prior to
model completion. Regions of poor map quality precluded the modeling of the following residues, chain A: 428, 524-530, 591-597 and 650-651.

Multiple Sequence Alignments and Figure Modeling

Representations of all structures were generated using PyMol. Multiple sequence alignments were carried out using ClustalW (Gouet et al., 1999; Thompson et al., 1994) and aligned with secondary structure elements using ESPRIPT (Zemla, 2003; Gouet et al., 1999). Three-dimensional structures were superimposed using the Local-Global Alignment method (LGA) (Rocchia et al., 2002; Zemla, 2003). Calculations of electrostatic potentials at the CTL0886C molecular surface were carried out using DELPHI (Lowden et al., 2015; Rocchia et al., 2002).

Microscale thermophoresis

Binding interactions between GST-tagged proteins and geranylgeranyl pyrophosphate (Sigma G6025) were measured using microscale thermophoresis {Seidel, 2013 #2296}. Briefly, for each tested protein, a titration series with constant protein concentration and varying GGPP concentrations was prepared in 30 mM Tris-HClpH 7.0, 150 mM NaCl, 5% glycerol and 1mM DTT. A serial dilution was set up, starting with a concentration of 2 mM GGPP, with 2:1 dilutions down to 4.6 mM. Separately, proteins were diluted to 1.5 mM. Proteins and GGPP dilution series were mixed 1:1 to obtain final measurement samples. Four μL of each sample was loaded in standard capillaries (NanoTemper Technologies) and tryptophan fluorescence was measured on a NanoTemper Monolith NT.LabelFree instrument (30% UV light-emitting diode, 40% IR laser power).

Construction of pTTmut9aadA

Intron in pDFTT3bla was retargeted for ctl0886 using primer sequences listed in Table 1 to create an insertion after nucleotide 447 of the ctl0886 coding sequence, as described in TargeTron™ (Sigma). The finale PCR product was cloned between the HindIII and BsrGI restriction sites of pDFTT3, creating pTTmut9bla. The aadA gene was digested from pDFTT3aadA (Subtil et al., 2005; Lowden et al., 2015) using MluI, purified on a 0.8% agarose gel, and ligated into a similarly digested pTTmut9aadA. The ligation product was
transformed into *E. coli* DH5α and transformants were selected on LB agar supplemented with 100 μg/ml of spectinomycin at 30 °C. Transformants were tested for the orientation of *aadA* using colony PCR with the primers GIIR and aadA5 and 2X PCR Master Mix (Thermo Fisher). A PCR-positive colony was selected for plasmid extraction (GeneJet Plasmid Miniprep Kit, Thermo Fisher) following overnight growth in LB supplemented with chloramphenicol (20 μg/ml) and spectinomycin (100 μg/ml).

Isolation of AS9 - *C. trachomatis* L2 ctl0886::GII(aadA).

AS9 was generated using the methods described in Lowden *et al.* for the *aadA*-based vectors. The L2 strain used was L2 434/Bu ACE051 originating from Tony Morelli’s lab. After five passages in L2 cells under spectinomycin selection (500 μg/ml), EBs were harvested and clonal isolates were obtained using the plaque assay (L2 cells, 14 days for growth with spectinomycin). Nine plaques were picked and immediately used to infect L2 cells in a 96 well plate (EB attachment mediated via centrifugation) with selection. After 48 hours, the wells were scraped and the contents were used to infect L2 cells in a 24 well plate with selection. Inclusions were visible at 48 hours for wells containing plaques 1, 2, 5, 6, 7, and 9 (designated p1, p2, p5, p6, p7, and p9). The contents of the wells were collected and used to infect L2 cells in T25 flasks. After 48 hours, the cells were harvested, lysed via sonication, and the EBs were pelleted by centrifugation at 13000×g, 4 °C, 15 min. The EBs were suspended in 2 ml of SPG and stored at -80°C. Stocks were tittered using the inclusion forming unit assay.

Analysis of AS9 plaque isolates.

Genomic DNA was extracted from each clone using the DNeasy Blood and Tissue kit from Qiagen. PCR was performed using 2X PCR Master Mix and products were analyzed on 1% agarose gels (see Table 1 for primers. hyp08F/R primers were used for detection of the L2 plasmid, GIInewF/R for detection of the GII intron and 886seqF/R for amplifying *ctl0886*). Gels were stained with ethidium bromide and viewed under UV trans-illumination. To sequence the insertion locus, the PCR product generated from the 886seqF/R PCR reaction was excised from the gel, purified (GeneJet Gel extraction kit, Thermo Fisher), and ligated into pJET (Thermo Fisher). Ligation products were transformed into DH5α and transformants
were selected on LB agar supplemented with spectinomycin (100 μg/ml). A colony was then grown overnight in LB supplemented with ampicillin (100 μg/ml) and spectinomycin (100 μg/ml) for plasmid extraction. The insert was sequenced via Sanger sequencing (Macrogen USA) using the primers pJETF and pJETR.

For protein analysis, EBs were mixed with Laemmli plus β-mercaptoethanol and heated at 95 °C for 5 min. Samples were then run on 12% SDS-PAGE gels and stained with Coomassie Brilliant Blue for total protein analysis or transferred to nitrocellulose for anti-MOMP western blot analysis. For anti-CTL0886 western blots, 8% SDS-PAGE gels were used. Blots were blocked with 5% milk TBS (mTBS) following transfer and incubated with either mouse anti-MOMP antibodies (1:1000, Abcam) or rabbit anti-CTL0886 antibodies (1:1000) overnight at 4°C. Blots were then washed with 0.05% tween-20 TBS (TTBS) and probed for one hour at room temperature with HRP-conjugated goat anti-mouse or anti-rabbit secondary antibodies diluted 1:1000 in mTBS. Finally, blots were washed with TTBS followed by TBS, incubated with chemiluminescent substrate (Millipore), and imaged using a Bio-Rad Chemidoc MP with Image Lab software.
Résultats
I - CT622 est un effecteur précoce du SST3

1. CT622 possède un signal de sécrétion du SST3

Le signal de sécrétion des effecteurs du SST3 de *C. trachomatis* est mal caractérisé et ne présente pas une séquence typique. Il réside généralement dans les 20 à 25 premiers acides aminés des protéines. Notre laboratoire a largement utilisé un test de sécrétion hétérologue chez *Shigella flexneri*, se basant sur le fait que le SST3 est extrêmement conservé et que les signaux de sécrétion sont reconnus entre différentes espèces (Ménard et al., 1994; Subtil et al., 2005; Allaoui et al., 1993). Les 25 premiers acides aminés des protéines ciblées sont fusionnés à une protéine reportrice, l’adénylate cyclase dépendante de la calmoduline (Cya) de *Bordetella pertussis*. Les constructions sont transformées dans deux souches mutantes de *S. flexneri*: la souche *ipaB* dont le SST3 est dérégulé et sécrète de façon constitutive les protéines effectrices, et la souche *mxiD* dont le SST3 est totalement inactivé (Espina et al., 2006; Ménard et al., 1994; Allaoui et al., 1993). Les bactéries transformées sont cultivées en LB liquide sous sélection antibiotique, puis sont fractionnées en culot / surnageant. La présence des protéines chimères dans l’une ou l’autre fraction est ensuite visualisée par western blot grâce à l’anticorps anti-Cya. La protéine cytosolique CRP (cAMP receptor protein) nous sert de contrôle de lyse des bactéries tandis que la protéine IpaD, une des premières protéines sécrétée par *Shigella*, est utilisée comme contrôle de la bonne fonctionnalité de la sécrétion de type III (Saka et al., 2011; Espina et al., 2006).

Afin de vérifier si CT622 possède un signal de sécrétion de type III, ses 25 premiers acides aminés ainsi que ceux de deux protéines homologues, CPrn0728 chez *C. pneumoniae* et CCA0015 chez *C. caviae*, ont été fusionnés à la protéine Cya et testés avec le test de sécrétion hétérologue présenté ci-dessus. Cette courte séquence présente très peu d’homologie entre les trois protéines homologues, ce qui justifie de les tester chacune séparément (figure 17 A). Les différentes protéines chimères sont bien exprimées dans les deux souches utilisées, *mxiD* et *ipaB*, et sont détectées dans les culots de bactéries, fraction « P » (figure 17 B). Le contrôle CRP, dont le marquage est restreint aux culots dans les deux souches étudiées, indique qu’il n’y a pas eu de lyse bactérienne. La bonne sécrétion d’IpaD dans la souche *ipaB* montre que la transformation des bactéries ne perturbe pas le SST3. Lorsque l’on observe les fractions
surnageants « S », ils est clair que les trois protéines chimères sont sécrétées (présence dans le surnageant de la souche *ipaB*) et que cette sécrétion est spécifique du SST3 (absence dans le surnageant de la souche *mxID*).

CT622, CPn0728 et CCA0015 présentent donc un signal de sécrétion de type III.

![Figure 17 - Identification de signaux de sécrétion de type III grâce au test de sécrétion hétérologue chez *S. flexneri*](image)

Les 25 premiers acides aminés de CT622 et deux protéines homologues de *C. pneumoniae*, Cpn728 et de *C. Caviae*, CCA0015 ont été fusionnés à la protéine rapporteur Cya. A) Alignement des séquences avec le logiciel CLUSTAW. B) Les constructions créées ont été transformées dans deux souches de *S. flexneri*. La souche mutante *ipaB* (T3S +) possède un SST3 dérégulé, sécrétant de façon constitutive les effecteurs tandis que la souche mutante *mixD* (T3S-) possède un SST3 inactif. Les bactéries transformées ont fait l’objet d’une culture en milieu liquide puis ont été séparées en culots (P) et surnageant (S). Après réalisation d’un Western Blot, les protéines chimériques ont été détectées avec un anticorps anti-Cya. CRP est une protéine cytosolique de *S. flexneri* et sert de contrôle de lyse. IpaB est un effecteur du SST3 et sert de contrôle de la fonctionnalité du SST3.

2. Identification d’une nouvelle protéine chaperone chez *C. trachomatis*

La présence d’un signal de sécrétion de type III chez CT622 identifie cette protéine comme étant un effecteur du SST3 de *C. trachomatis*. La sécrétion des effecteurs de la bactérie étant finement régulée grâce notamment à l’action de protéines chaperones, la question s’est posée de savoir si CT622 possédait une protéine chaperone.
a. Identification d’un partenaire bactérien pour CT622

Pour répondre à cette question nous avons réalisé un pull down contre des lysats de CE purifiés sur gradient, en utilisant des protéines recombinantes marquées par une queue GST en tant que proies : la GST seule et la GST-CT622 que nous avons préalablement purifiées.

Un marquage au nitrate d’argent des protéines retenues a été réalisé afin de valider le protocole utilisé. Les protéines récupérées par les billes couplées au glutathione lors du pull down ont été analysées par spectrométrie de masse. Les protéines identifiées présentées dans la figure 18 sont celles ayant interagit avec la GST-CT622 et pas du tout, ou en quantité moindre, avec la GST seule. Les échantillons ont été produits en duplicata et l’expérience a été réalisée deux fois.

<table>
<thead>
<tr>
<th>Expérience 1</th>
<th>Gene names</th>
<th>Unique peptides</th>
<th>% coverage</th>
<th>Gene names</th>
<th>Unique peptides</th>
<th>% coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST-CT622</td>
<td>MOMP</td>
<td>2</td>
<td>10,4</td>
<td>GST</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CT623</td>
<td>1</td>
<td>4,2</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CT635</td>
<td>4</td>
<td>20,8</td>
<td></td>
<td>1</td>
<td>8,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expérience 2</th>
<th>Gene names</th>
<th>Unique peptides</th>
<th>% coverage</th>
<th>Gene names</th>
<th>Unique peptides</th>
<th>% coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST-CT622</td>
<td>EFTU</td>
<td>1</td>
<td>2,3</td>
<td>GST</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>dnaK</td>
<td>1</td>
<td>1,4</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>groL</td>
<td>0</td>
<td>0</td>
<td></td>
<td>1</td>
<td>2,2</td>
</tr>
<tr>
<td></td>
<td>pmpC</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>fljY</td>
<td>2</td>
<td>16,5</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>copD</td>
<td>1</td>
<td>6,6</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ahpC</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CT635</td>
<td>1</td>
<td>8,3</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 18 – Résultat du pull down GST avec les lysats de CE

Sont listées dans ce tableau les protéines présentant une interaction avec la GST-CT622 et pas (ou peu) avec la GST. Cette interaction est visible par le nombre de peptides uniques trouvés. La protéine CT635 qui est sortie lors des deux expériences menées est surlignée en orange. Sont surlignées en gris les protéines présentant des scores plus intéressants que celles laissées en blanc.

Sur les deux screens réalisés, un petit nombre de protéines de Chlamydia répondaient à ce critère et parmi celles-ci, une seule protéine a été identifiée lors des deux expériences, CT635.
CT635 est une petite protéine acide de Chlamydia et est présente en équimolarité avec CT622 dans les CE (Belland et al., 2003; Saka et al., 2011). Avant d’étudier son possible rôle en tant que chaperone de CT622, nous avons tout d’abord souhaité confirmer l’interaction entre les deux protéines par une autre technique biochimique. Pour ce faire, nous avons exprimé de façon conjointe les deux protéines chez Escherichia Coli.

Nous avons cloné dans un même plasmide le gène codant pour la protéine CT635, auquel nous avons ajouté une étiquette 6-Histidines, et le gène codant pour CT622. Nous avons également construit un plasmide similaire, excepté que les 94 premiers codons de CT622 étaient absents (figure 19 A). Nous avons choisi d’enlever les 94 premiers acides aminés car notre collaborateur structuraliste, Michael Barta, a mis en évidence la désorganisation de ce domaine chez CT622 (voir partie résultats III-1). Le domaine N-terminal étant communément utilisé par les effecteurs bactériens des SST3 dans l’interaction avec leur protéine chaperone, nous avons émis l’hypothèse qu’il puisse être impliqué dans l’interaction avec CT622. Un plasmide codant seulement pour la protéine CT622 seule a aussi été produit afin de servir de contrôle quant à la non interaction de CT622 avec les billes nickel.

Les différentes constructions ont été transformées chez E. coli et la production des protéines par la bactérie a été induite avec l’ajout dans le milieu de culture d’isopropyl β-D-1-thiogalactopyranoside (IPTG) à une concentration de 100 µM pendant 3h à 37°C. Les bactéries ont été lysées et les protéines His-CT635 ont été retenues sur des billes nickel. Après plusieurs lavages, les protéines accrochées aux billes ont été éluées avec 500 mM d’imidazole. Pour chaque condition, deux fractions différentes sont présentées (figure 19 B): les lysats originels, qui permettent de juger de la bonne expression des différentes protéines dans les bactéries, et les protéines éluées avec 500 mM d’imidazole.

Le marquage au bleu de Coomassie montre que les protéines CT622 (têtes de flèches blanches) et Δ94-CT622 (étoiles blanches) sont présentes en grande quantité dans les lysats. La protéine His-CT635 est indiquée par les flèches blanches.
On note que lorsqu’elle est exprimée en absence de His-CT635, la quantité de CT622 visible dans le lysat est moindre. Pour faciliter sa détection les échantillons ont été analysés en parallèle par western blot (Figure 19 B, panel inférieur).

Figure 19 – CT622 interagit avec CT635 au travers de son domaine N-terminal

A) Constructions créées contenant a protéine CT635 marquée par un tag His en combinaison avec deux versions différentes de CT622 : la protéine entière ou Δ94-CT622. CT622 seule a aussi été exprimée en contrôle du pull down. B) His pull down. Des bactéries *E. coli* ont été transformées avec les constructions décrites en A. Les bactéries ont été lysées et les protéines immunoprécipitées sur billes nickel. Deux fractions sont présentées pour chaque condition, les lysats (L) et l’élution à 500 mM d’imidazole (E). La figure présente les résultats de la co-immunoprécipitation analysés en SDS-PAGE. Une coloration du gel au bleu de Coomassie a permis de mettre en évidence la protéine CT635 (flèches blanches) ainsi que les protéines CT622 (têtes de flèches blanches) et Δ94CT622 (étoiles blanches). La membrane a été marquée par l’anticorps anti-CT622 afin de permettre une meilleure visualisation des protéines CT622. Les astérisques blancs montrent une bande contaminante ne correspondant pas à CT622.
CT622 est abondante dans la fraction élution lorsqu’elle a été co-exprimée avec CT635. En absence de His-CT635, ou en absence des 94 premiers acides aminés, CT622 n’est par retenue de façon significative sur les billes. Ce résultat nous permet de confirmer l’interaction entre CT622 et CT635 et d’avancer que cette interaction dépend de la partie N-terminale de CT622 (résidus 1-94), un domaine caractéristique des interactions « effecteurs du SST3 - Chaperone ». L’observation que la co-expression de His-CT635 semble stabiliser CT622 va également dans ce sens.

c. La présence de CT635 augmente la sécrétion de CT622 dans un test de sécrétion hétérologue

Afin d’aller plus loin dans la caractérisation du rôle potentiel de CT635 en tant que chaperone de CT622, nous avons réalisé un test de sécrétion hétérologue chez S. flexneri. Les plasmides construits précédemment ont été transformés dans la souche ipaB. Comme expliqué plus tôt, cette souche mutante possède un SST3 dont l’activité est constitutive. Les bactéries transformées ont été cultivées en culture liquide sous sélection antibiotique et la production des protéines a été induite avec 100 µM d’IPTG pendant 4h. Les bactéries ont ensuite été fractionnées en culots et surnageant. Après filtration du surnageant avec un filtre de 0,22 µm afin d’éliminer bactéries et contaminants, les protéines ont été concentrées par un traitement à l’acide trichloroacétique.

Le western blot présenté dans la figure 20 montre les résultats obtenus lors de cette expérience. Les protéines sont bien exprimées par la souche ipaB. Lorsqu’elle est exprimée seule CT622 est légèrement détectée dans la fraction surnageant, suggérant qu’elle puisse en partie être sécrétée même en l’absence de chaperone, ou en utilisant une chaperone de Shigella. Cependant, lorsque la protéine est co-exprimée avec His-CT635, la fraction détectée dans le surnageant est augmentée de façon significative. Afin de contrôler s’il y a eu de la lyse bactérienne, les membranes ont été marquées avec un anticorps anti-CRP. Une légère lyse est détectée dans la culture CT622 + His-CT635, mais qui ne rend pas compte de l’abondance de CT622 dans le surnageant.

Il est de plus intéressant de noter que dans le culot comme dans le surnageant, lorsque CT622 est transformée seule chez Shigella, la protéine se dégrade (multiples bandes visibles sur le
western blot). On n’observe pas cette dégradation lorsque CT622 est co-exprimée avec CT635.

![Figure 20 – La sécrétion de CT622 par S. flexneri est augmentée en présence de CT635](Image)

Les constructions crées ont été transformées dans la souche mutante de *S. flexneri*, *ipaB* (T3S +) qui possède un SST3 dérégulé, sécrétant de façon constitutive les effecteurs. Les bactéries transformées ont fait l’objet d’une culture en milieu liquide puis ont été séparées en culots (P) et surnageant (S). Après analyse par SDS-PAGE, les protéines ont été détectées avec un anticorps anti-CT622. CRP est une protéine cytosolique de *S. flexneri* et sert de contrôle de lyse. Les fractions S sont concentrées 25x fois par rapport aux fractions P.

En conclusion, cette expérience confirme que CT635 joue le rôle de chaperone pour assister la sécrétion de CT622, par un mécanisme de SST3.

3. CT622, un nouvel effecteur précoce de *C. trachomatis*

a. Expression tardive de CT622 et accumulation dans les CE

Afin de pouvoir étudier la localisation de CT622 lors de l’infection, le laboratoire a produit un anticorps polyclonal contre CT622, par immunisation de lapins avec la protéine recombinante GST-CT622 et purification des anticorps obtenus. La spécificité de l’anticorps en immunofluorescence a été vérifiée de la façon suivante. Des cellules infectées par *C. trachomatis* L2 pendant 24h ont été fixées en PFA 4%,
perméabilisées en Triton 0,3% et marquées par l’anticorps anti-CT622 seul, ou préalablement incubé pendant 30 min avec 4 µg de protéine recombinante GST-CT622 ou 4 µg d’une protéine GST sans rapport, la protéine GST-IncC. Sans incubation, à 24h d’infection, le marquage de CT622 est présent dans l’inclusion sous forme de spots associés généralement aux bactéries (figure 21 A). Lorsque l’anticorps a été incubé avec la protéine recombinante GST-CT622, le marquage de CT622 est totalement perdu alors que l’incubation de l’anticorps avec la protéine GST-IncC n’affecte pas le marquage. L’anticorps est donc spécifique de la protéine CT622.

Figure 21 - Spécificité de l’anticorps anti-CT622 et cinétique d’expression de CT622 au cours de l’infection

A) Des cellules Hela ont été infectées par la bactérie transformée C. trachomatis GFP-LGV L2 (bactéries visualisées en vert) pendant 24h. La protéine CT622 est marquée par l’anticorps anti-CT622 (rouge). Afin de tester la spécificité de l’anticorps anti-CT622, avant le marquage par immunofluorescence, ce dernier a été mis en contact pendant 30 min avec un excès (4µg) de la protéine recombinante GST-CT622, ou de la protéine GST sans rapport, GST-IncC. La barre d’échelle est de 10 µm. B) Des cellules Hela non infectées ou infectées pour différents temps avec la bactérie C.
trachomatis L2 à une MOI de 1 ont été lysées en urée 8M et leurs concentrations protéiques ont été normalisées. Les différents échantillons ainsi obtenus ont été analysés par électrophorèse en gel dénaturant. Les différents marquages des membranes ont été réalisés en utilisant les anticorps anti-CT622, anti-actine et anti-RNA polymérase.

La figure 21 B présente une cinétique d’expression de CT622. Des cellules Hela ont été lysées en urée 8M à différents temps d’infection ainsi qu’en condition de non infection et la quantité de protéines des lysats a été normalisée après quantification des protéines dans les lysats. L’anticorps anti-RNA polymérase sert à visualiser la quantité de bactéries présentes dans les lysats. L’anticorps anti-Actine a été utilisé en contrôle quant à la quantité de protéines cellulaires chargées. Ce western blot a permis de montrer que l’anticorps contre CT622 est spécifique d’une protéine bactérienne (absence de signal dans le lysat non infecté). Il marque une protéine à la taille attendue (69 kDa) ainsi que, plus faiblement, une protéine de taille légèrement supérieure, autour de 75 kDa, ayant la même cinétique d’expression.

Outre la spécificité de l’anticorps, cette expérience nous a aussi renseigné sur l’expression de CT622 lors du cycle bactérien. En effet, il est clair sur le western blot présenté en figure 21 B que la protéine est synthétisée majoritairement après 24h d’infection, un résultat en accord avec les données de transcriptomique (Saka et al., 2011; Belland et al., 2003). On sait de plus qu’elle est largement accumulée dans les CE grâce aux données de protéomique (Clifton, 2004; Saka et al., 2011).

b. CT622 est un effecteur précoce de C. trachomatis

On a vu précédemment que CT622 est un effecteur du SST3 et qu’elle se lie avec une chaperone capable de réguler sa sécrétion chez Shigella, elle-même présente dans les CE plus que dans les CR. Le fait que CT622 soit fortement exprimée au cours de la seconde partie du cycle de développement de C. trachomatis et qu’elle soit accumulée dans les CE suggère qu’elle puisse jouer un rôle lors des premières étapes de l’infection, à l’instar de Tarp, TepP ou encore CT694 qui suivent ce patron d’expression.

Nous avons donc réalisé des expériences d’infection à des temps très précoces afin de regarder la localisation de CT622 par immunofluorescence. Des cellules Hela ont été infectées de façon synchrone avec des bactéries C. trachomatis L2 à une MOI de 10, pendant
45 min à 4°C puis incubées 1h à 37°C après changement du milieu de culture. Les lamelles ont été fixées en PFA 4%, perméabilisées en Triton 0,3% et marquées par les anticorps anti-MOMP et anti-CT622, anti-Tarp ou anti-CT260. La localisation de la protéine Tarp est un contrôle de la sécrétion précoce comme déjà décrit (Spaeth et al., 2009; Clifton, 2004) tandis que la protéine CT260 (ou Mcsc), qui est une protéine chaperone de *C. trachomatis*, nous sert de marqueur cytosolique (Gong et al., 2011; Spaeth et al., 2009).

Figure 22 – Sécrétion précoce de CT622 lors des premières heures de l’infection

Des cellules Hela ont été infectées de façon synchrone avec des bactéries *C. trachomatis* L2 à une MOI de 10 pendant 40 min à 4°C puis pendant 1h à 37°C après changement du milieu. Les cellules ont été fixées en paraformaldehyde pendant 20 min puis marquées avec les anticorps contre MOMP (rouge) et CT622, Tarp ou CT260 (vert). Les flèches blanches indiquent les bactéries sécrétant CT622 ou Tarp. La barre d’échelle est de 5 µm.
A plusieurs reprises, le marquage de CT622 (en rouge) ne coïncide pas avec celui de MOMP (en vert), la protéine majoritaire des membranes externes des bactéries, et se trouve adjacent aux bactéries (figure 22). On peut observer le même phénomène pour la protéine TarP (en rouge), qui est aussi visualisée à côté des bactéries. Au contraire, dans le cas de CT260, on observe une excellente colocalisation entre le marquage par l’anticorps anti-CT260 (rouge) et celui contre MOMP (vert).

Ces observations indiquent que, de même que TarP, CT622 est sécrétée de façon précoce lors du cycle infectieux de *C. trachomatis*.

c. **CT622 est également détectée dans le cytosol à des temps tardifs d’infection**

Un article publié en 2011 montrait par des expériences d’immunofluorescence que la protéine CT622 est détectée dans le lumen de l’inclusion ainsi que dans le cytoplasme de la cellule après 36h d’infection et attribuait ainsi à CT622 un rôle d’effecteur de *C. trachomatis* (Gong et al., 2011). Pour confirmer cette observation avec notre propre anticorps, nous avons réalisé des expériences d’immunofluorescence sur des cellules infectées avec les bactéries transformées *C. trachomatis* GFP-LGV L2 pendant 32h. Les cellules ont été fixées et perméabilisées, puis marquées par les anticorps anti-CT622 (en rouge) et anti-Hsp60 (en violet). La GFP et Hsp60 nous servent de contrôles pour vérifier que l’inclusion n’est pas perméabilisée et que les bactéries ne sont pas lysées. Les résultats sont montrés par la figure 23.

Il est clair que les marquages GFP (en vert) et Hsp60 (en violet) sont strictement restreints à l’inclusion tandis que le marquage de CT622 (en rouge) est présent sous forme de spots brillants dans l’inclusion et diffus dans le cytosol et le noyau de la cellule. Ce marquage est spécifique des cellules infectées, étant absent dans la cellule non infectée en haut à droite de la photo, et n’est donc pas dû à un bruit de fond de l’anticorps anti-CT622 par exemple.
Figure 23 – Sécrétion tardive de CT622 au cours de l’infection

Des cellules Hela ont été infectées de façon synchrone avec des bactéries *C. trachomatis* GFP-LGV L2, visualisées en vert, à une MOI de 0,5 pendant 32h. Les cellules ont été fixées en PFA pendant 20 min, perméabilisées en Triton 0,3% puis marquées avec les anticorps contre CT622 (rouge) et Hsp60 (violet). Les noyaux cellulaires et les bactéries sont marqués par le Hoechst (bleu). La barre d’échelle est de 5 µm.

Cette expérience confirme le fait que la protéine CT622 est également détectée dans le cytoplasme et le noyau de la cellule à des temps longs d’infection, un résultat en accord avec celui préalablement publié (Johnson and Fisher, 2013; Gong et al., 2011).
II - CT622 n’est pas essentielle pour le développement de C. trachomatis in vitro

1. Obtention de bactéries mutantes LGV AS9 par la technique Targetron

Le laboratoire de Derek Fischer, de la Southern Illinois University, a adapté à C. trachomatis la technique Targetron (Sigma) afin de créer des mutants knock-out (KO) de gènes chlamydiens par insertion d’un intron dans la séquence du gène ciblé (Fling et al., 2001; Johnson and Fisher, 2013; Subtil et al., 2005; Belland et al., 2003). Cette technique utilise un intron mobile de groupe II qui se déplace dans les gènes par un mécanisme classique de rétrotransposition. Pour ce faire il nécessite l’aide d’une protéine, IEP (pour intron encoded protein) qui possède tout à la fois des activités de maturase à ARN, d’endonucléase et de transcriptase inverse. On peut cibler les gènes dans lequel va s’insérer l’intron grâce à l’existence de petites séquences de reconnaissance. Il suffit alors de modifier ces séquences de l’intron en fonction du gène que l’on choisit pour provoquer la reconnaissance et l’insertion.

Les séquences sont choisies grâce à un algorithme développé par Sigma. Le système Targetron consiste ensuite en un plasmide suicide portant l’intron que l’on peut modifier par PCR et la protéine IEP. Il a été adapté à C. trachomatis par l’ajout d’un promoteur de Chlamydia devant l’intron et par l’ajout au milieu de l’intron de Bla (β lactamase) afin de pouvoir sélectionner les clones ayant intégré l’intron.

Nous avons décidé d’utiliser ce système afin d’essayer d’obtenir un mutant KO de ct622, un outil utile dans le cadre de l’étude de la fonction de CT622. Après avoir obtenu les possibles sites d’insertion de l’intron dans ct622, nous en avons sélectionné deux. Les plasmides modifiés ont été construits en suivant le protocole établi. Nous n’avons cependant pas été en mesure de reproduire correctement le protocole de transformation décrit par le laboratoire ayant publié le système. Une collaboration a alors été établie avec ce laboratoire afin qu’ils testent nos plasmides dans leurs conditions expérimentales. Après avoir changé la cassette de résistance Bla par une résistance à la Spectinomycine, et après avoir transformé des bactéries C. trachomatis avec les nouveaux plasmides, ils ont été en mesure d’obtenir une population de bactéries AS9 résistantes à l’antibiotique. Les clones mutants ont été isolés par plaque avant d’être purifiés.
Différents tests ont été effectués sur les clones purifiés en comparaison avec la population de bactéries contrôle afin de vérifier la bonne insertion de l’intron et l’extinction de l’expression de la protéine CT622.

Figure 24 – Caractérisation des mutants AS9

A) PCR caractérisant l’insertion de l’intron. L’ADN génomique a été extrait des bactéries *C. trachomatis* LGV L2 et des bactéries AS9 et des PCR ont été réalisées à partir de ces ADN. La PCR 1 sert à vérifier la présence du plasmide endogène, les PCR 2 et 3 servent à vérifier la présence de l’intron et la PCR 4 le sens de l’insertion de l’intron. Ne sont présentés ici que les résultats obtenus pour le clone n°2. B) Western blot montrant l’expression de CT622 chez des bactéries LGV L2 et chez les mutants AS9. Les différentes bactéries ont été lysées en Laemmli buffer. Les membranes ont été marquées avec les anticorps anti-RNA polymérase et anti-CT622. Les appellations P1 à P9 sont les appellations des différents clones obtenus.

Dans ces bactéries, l’intron portant la résistance à la Spectinomycine est inséré entre les nucléotides 447 et 448 de la séquence de CT622, soit après le 149ème acide aminé. La figure 24 A présente une série de PCR effectuées sur le clone n°2 (6 clones ont été isolés, tous ont été vérifiés et présentent les mêmes profils). Les deux populations de bactéries, parentales et mutée, possèdent encore le plasmide cryptique (PCR 1). La PCR 2 montre que l’insertion a eu lieu dans la séquence du gène *ct622* et la PCR 3 que l’intron est bien présent. Enfin la quatrième PCR a permis de vérifier que l’intron est inséré dans le sens attendu.
La figure 24 B présente les différents clones testés en western blot afin de vérifier l’expression de CT622. On peut observer une bande à près de 75 kDa dans la série de clones purifiés qui se trouve être à la taille de la bande supplémentaire légèrement supérieure à celle attendue pour CT622 que l’on voit dans les CE LGV utilisés en contrôle. La bande majoritaire des CE à 69 kDa a disparu des clones AS9, témoignant de l’absence d’expression de CT622.

2. **L’absence de CT622 affecte le cycle de développement des bactéries**

Le fait que nous ayons pu obtenir une souche n’exprimant pas CT622 signifie que la protéine n’est pas absolument requise pour le développement des bactéries *in vitro*. Nous avons entrepris de caractériser cette souche plus en détail. Les résultats qui sont présentés ici sont préliminaires et certaines expériences importantes, comme les essais de réinfection, n’ont pas été réalisées par manque de temps avant la remise de ce manuscrit. Pour chaque expérience, au moins deux clones différents ont été utilisés et ont donné des résultats identiques.

Nous avons regardé l’expression et la sécrétion de la protéine Cap1 à différents temps d’infection. Cap1 (CT529) est une protéine sécrétée par le SST3 dans la membrane de l’inclusion et dont le gène appartient à la catégorie des gènes immédiatement transcrits, soit dès 1h p.i. (Jerabek-Willemsen et al., 2014; Fling et al., 2001; Subtil et al., 2005; Belland et al., 2003). Des cellules Hela ont été infectées avec les clones 1 et 2 de AS9 et par des bactéries *C. trachomatis* LGV L2 pendant 7h et 24h. Les cellules ont été fixées en PFA, perméabilisées et marquées avec des anticorps anti-MOMP (rouge) et anti-Cap1 (vert). Les résultats de cette expérience sont présentés dans la figure 25.

A 7h, les bactéries LGV L2 sont regroupées autour du noyau, ont commencé leur division (taille plus large des bactéries) et le marquage de Cap1 est bien visible dans la membrane des petites inclusions. Au contraire, les bactéries AS9 sont encore très petites (marquage MOMP en rouge) et plus dispersées dans la cellule. Elles n’ont donc pas encore démarré leur division cellulaire. Une partie des bactéries sont marquées par l’anticorps anti-Cap1 (vert) ce qui signifie que la protéine est exprimée, cependant elle n’est pas visible dans la membrane des petites inclusions mais est localisée dans les bactéries. Elle ne semble donc pas encore être sécrétée.
De même, à 24h, différents points peuvent être observés. Le marquage de Cap1 est homogène et régulier dans la membrane de l’inclusion des bactéries LGV L2. De plus, leurs inclusions sont pleines de bactéries, une caractéristique visible par le marquage MOMP (rouge) et par le marquage de l’ADN bactérien (bleu) qui sont tous deux très denses. Au contraire, chez les bactéries AS9, le marquage de Cap1 est moins homogène et une partie semble toujours liée aux bactéries. Les bactéries sont très grosses (marquage MOMP) et beaucoup moins nombreuses, les inclusions sont peu remplies.

Figure 25 – L’absence de CT622 affecte le cycle de développement des bactéries

Des cellules Hela ont été infectées avec des bactéries C. trachomatis LGV L2 et AS9 avec une MOI de 15 pendant 7h et une MOI de 0,5 pendant 24h. Les细胞ules ont été fixées en PFA 4%, perméabilisées en Triton 0,3% et marquées avec les anticorps anti-Cap1 (vert) et anti-MOMP (rouge). L’ADN cellulaire et bactérien est visualisé en bleu (marquage Hoechst). A) Infection des cellules pendant 7h. B) Infection des cellules pendant 24h. C) Zoom sur une inclusion après 24h d’infection. Barre d’échelle 5 µm.
Il semble donc y avoir chez les bactéries AS9 un défaut de la sécrétion de Cap1 malgré une expression en apparence correcte, et un développement des bactéries anormal : division plus tardive et formation de CR plus gros que de normal.

La réalisation d’un western blot sur des lysats de bactéries a permis de confirmer l’existence d’un problème de sécrétion dans les clones AS9 (figure 26). En effet, la protéine CT621 qui est une protéine des CR absente des CE est largement accumulée dans les différents clones AS9 alors qu’elle est absente des CE de C. trachomatis LGV L2. De même, la protéine Cap1, qui est sécrétée dans la membrane de l’inclusion est trouvée en grande quantité dans les clones AS9, alors qu’elle n’est pas détectée dans les bactéries sauvages.

Figure 26 – Analyse de l’expression de différentes protéines bactériennes dans la souche AS9

Des expériences supplémentaires sont en cours, en particulier pour déterminer si la souche AS9 produit moins de bactéries infectieuses par cycle que la souche parentale.
III - CT622 lie le géranylgéranyl

1. Analyse structurelle de CT622

Au cours de la thèse, une collaboration a été mise en place avec le laboratoire de Scott Hefty, de l’Université du Kansas, qui a déterminé la structure de plusieurs protéines de *C. trachomatis*.

CT622 ne présente des orthologues qu’au sein de la famille des *Chlamydiaceae* (avec des identités de séquences de 30 à 99%) et pas au sein des *Chlamydia* environnementales, suggérant un possible rôle exclusif dans l’interaction avec les vertébrés. Une comparaison de la séquence de CT622 par rapport à des bases de données n’a pas permis d’identifier des protéines homologues en dehors de cette famille. Certains domaines sont cependant prédicables dans la séquence de CT622, incluant une extrémité N-terminale désorganisée (résidus 1-94), un domaine SMC riche en coil-coil (maintenance structurelle des chromosomes ; résidus 120-300) et un domaine Exodeoxyribonuclease V de la sous unité γ (résidus 369-444).

Il est important de préciser à cette étape la distinction qui s’opère entre les appellations CT622 et CTL0886, qui correspondent à la même protéine dans deux serovars de *C. trachomatis* différents, respectivement le serovar D et le serovar LGV L2.

Au cours de cette thèse, toutes les constructions réalisées afin d’exprimer CT622 de façon recombinante ou en condition de surexpression dans des cellules Hela ont été faites à partir de l’ADN bactérien de la souche D/UW-3/CX, qui était le premier génome chlamydien séquencé et sert communément de souche de référence. Cependant les expériences comprenant une étape d’infection et étudiant la protéine endogène ont été réalisées avec les bactéries *C. trachomatis* LGV L2/434/Bu pour des raisons de convenance. En effet les bactéries LGV sont particulièrement invasives et ont un cycle de développement plus court que les bactéries *C. trachomatis* D.

Cependant, comme la très grande majorité des travaux publiés utilisent la nomenclature établie dans *C. trachomatis* D/UW-3/CX, nous avons choisi de continuer de désigner la protéine en question par « CT622 », et non par CTL0886. Les deux protéines, présentent 89%
d’identité, et nous n’attendons pas de différences fonctionnelles majeures entre ces deux formes.

Dans le cadre de l’analyse structurelle présentée ci-après, réalisée au sein du laboratoire de nos collaborateurs à l’Université du Kansas, c’est la protéine CTL0886 qui a été produite de façon recombinante et qui a servi à l’établissement de la structure. Dans ce cas seulement, l’appellation correcte a été conservée.

Figure 27 - Expression et purification de CTL0886 chez C. trachomatis

La protéine CTL0886 sans sa partie N-terminale désorganisée (résidus 94-651, CTL0886 FL) a été exprimée et purifiée (figure 27 A). Lors de la purification et du stockage à 4°C, il a été observé que CTL0886 FL se dégradait en un fragment d’environ 25 kDa. Une inspection plus précise du fragment a mis en évidence la présence d’un doublet de bandes (montré par les
Une analyse LC-MS/MS des ces deux bandes a suggéré que CTL0886 FL possèderait deux domaines : résidus 94-334 (ou CT0886 N) et résidus 353-651 (ou CT0886 C). Ces deux régions ont été produites sous forme recombinante, purifiées et cristallisées. Des cristaux de CTL0886 N ont été obtenus mais ont donné une faible résolution (environ 6 Å) suite à la diffraction des rayons X (données non montrées). Malgré les essais d’optimisation du protocole, il n’a pas été possible d’obtenir des cristaux diffractant à une meilleure résolution.

Figure 28 – Structure cristallisée (1,90 Å) de CTL0886 C de C. trachomatis

La structure cristallisée de CTL0886 C est représentée schématiquement en utilisant les couleurs de l’arc-en-ciel, du bleu (partie N-terminale) au rouge (partie C-terminale). Deux domaines apparents sont identifiés, le domaine 1 comrenant les hélices α1-7 et le domaine 2 les hélices α8-13. Le deuxième schéma montre la structure pivotée de 90° autour de l’axe horizontal.

Initialement, des cristaux donnant une aussi faible résolution ont aussi été obtenus pour CT0886 C. Cependant une méthylation réductive des lysines exposées en surface (CT0886 C-dm) a permis la croissance de cristaux diffractant les rayons X à une résolution de 1,90 Å. La structure de CT0886 C-dm a alors pu être déterminée. Elle comprend 13 hélices α présentes
dans deux domaines séparés (figure 28). Le domaine 1 est composé des hélices α 1 à 7, regroupées en faisceau (résidus 353-517). Les hélices α 8 à 13 du domaine 2 adoptent quant à elles une structure globulaire avec les trois dernières hélices, α 11 à 13 entourant les autres. Une analyse par chromatographie d’exclusion de taille (SEC) de CT0886C (figure 27 B) suggère que la protéine existe sous forme de dimères en solution. En effet le poids moléculaire apparent est de 73,0 kDa alors que le poids attendu est de 31,6 kDa.

2. Homologie de structure entre la partie C-terminale de CTL0886 et des enzymes géranylgeranyl transférases et synthases

Une fois la structure de la partie C-terminale de CTL0886 connue, nous avons souhaité savoir si cette structure pouvait présenter une homologie avec des protéines de fonctions connues. Pour ce faire, le serveur DALI a été utilisé. Lorsque la structure entière de CT0886C a été utilisée dans la demande, aucun résultat significatif n’a été obtenu (Z-score > 8,0). Les domaines 1 et 2 ont donc été utilisés séparément dans les recherches.

Figure 29 - Superposition des structures du domaine 1 de CTL0886C avec l’homologue structurel présentant le plus haut score d’après une recherche DALI

Alignement structurel du domaine 1 de CTL0886C (résidus 353-517, bleu cyan) et de la géranylgeranyltransférase de *Enterococcus faecalis* (PDB ID : 3PL, gris), pivoté ensuite à 90°C autour de l’axe horizontal.

Pour le domaine 1, les structures présentant une homologie appartiennent à des membres de la famille des polyprényl transférases et synthases. La superposition structurelle du domaine 1
de CT0886^C et de la géranylgéranyl transférase de *E. faecalis* (PDB ID : 3P8L) indique que ces deux protéines s’alignent avec une RMSD de 2,52 Å au travers de 110/164 atomes C_α (figure 29), malgré une identité de séquences de seulement 5%.

La plus grande similarité entre ces deux structures réside dans l’organisation spatiale hautement conservée de chaque hélice α dans le faisceau. Cependant, il faut noter que plusieurs hélices α typiquement trouvées dans la famille PTS sont absentes dans le domaine 1 de CT0886^C.

CT0886 et ses orthologues chez les *Chlamydiaceae* encodent une région de résidus Asp/Glu. Ce motif est présent dans la structure CT0886^C dans une région collante en amont de l’hélice α 1. Du fait du manque de données structurelles quant à la région CT0886^N, il n’est pas possible de savoir comment ce motif est structuré dans la protéine entière.

Les homologies de structures du domaine 2 de CTL0886^C sont beaucoup moins informatives avec des scores statistiquement non significatifs. Elles ne seront donc pas présentées ici.

3. Interaction entre CT622 et le géranylgéranyl diphosphate

Une partie de la structure de CTL0886^C présente donc une homologie avec celle de protéines synthétisant ou transférant le géranylgéranyl à d’autres protéines. Au niveau de leurs parties C-terminales, CTL0886 et CT622 présentent 99% d’identité. Nous avons donc continué la suite de l’étude en utilisant la protéine recombinante CT622 (produite dans notre laboratoire).

Avant d’étudier une possible activité enzymatique de la part de CT622, nous nous sommes tout d’abord demandés si CT622 interagissait avec le composé lipidique géranylgéranyl diphosphate.

Pour répondre à cette question, nous avons décidé d’utiliser la technique MicroScale Thermophoresis (MST), car elle permet de tester de façon simple et robuste l’interaction entre deux molécules ou protéines. Le mouvement de thermophorèse des molécules testées le long d’un gradient de température microscopique induit par un laser Infra-Red est mesuré grâce à la présence d’un fluorophore ou par la fluorescence intrinsèque de la molécule. Tout changement de forme ou de charge des molécules entrainera une modification de la
thermophorèse et sera enregistré par cette technique d’où la possibilité d’identification de la formation de complexes entre deux protéines par exemple. Le principe de la MST est expliqué en détails dans la figure 30.

Figure 30 – Principe de la technique Microscale thermophoresis (MST)

A) Machine Monolith NT.115 de Nanotemper Technologies GmbH. B) Représentation schématique du fonctionnement optique de la MST. La MST est mesurée dans des capillaires d’un volume d’environ 4 µl. La fluorescence à l’intérieur du capillaire est excitée et détectée au travers de l’objectif. Un laser Infra-Red (IR) est utilisé pour chauffer un volume défini de l’échantillon. La thermophorèse des molécules fluorescentes le long du gradient de température est détectée. C) Signal typique d’une expérience de MST. Les molécules sont initialement réparties de façon homogène et une « fluorescence initiale » est détectée. Dans la première seconde après activation du laser, le « T-jump » (saut de température) est observé, qui correspond à un changement rapide des propriétés des fluorophores du au changement rapide de température. Le mouvement de thermophorèse des molécules fluorescentes en dehors du volume chauffé peut être enregistré. Ce changement est enregistré pendant 30 sec. Après désactivation du laser IR, un « T-jump inverse » est observé avec le retour à la normale des molécules. D) Expérience typique d’interaction entre deux molécules. Le mouvement thermophorétique d’une molécule fluorescente (en noir, « unbound ») change lorsqu’elle se lie à une molécule non fluorescente (en rouge, « bound ») et ce changement est visible sur les courbes enregistrées. Pour l’analyse, le changement de thermophorèse est exprimé comme le changement dans la fluorescence normalisée (ΔFnorm), qui est définie par Fhot/Fcold (ces valeurs
correspondant à la moyenne de valeurs dans les zones identifiées par les lignes bleues et rouges respectivement). Une courbe de liaison peut ensuite être construite.

D’après (Gambarte Tudela et al., 2015; Jerabek-Willemsen et al., 2014).

Lors de cette expérience, nous avons testé l’interaction entre le géranylgéralyl diphosphate (GGPP) et la protéine recombinante GST-CT622. La GST seule a été utilisée comme contrôle négatif. La fluorescence intrinsèque des protéines recombinantes a été utilisée afin de ne pas perturber la structure du petit composé lipidique (20 carbones) par la présence d’un fluorophore. Cette fluorescence intrinsèque réside essentiellement dans la présence de tryptophanes, apportés majoritairement par la GST (4 chez la GST, 1 seul dans la séquence de CT622). Avant de procéder à l’expérience de MST, les protéines ont été purifiées par gel filtration afin d’obtenir la pureté nécessaire. La concentration finale des protéines recombinantes utilisée lors de l’expérience a été fixée à 0,75 µM et le GGPP a été ajouté selon un ratio de dilution 2 : 1, avec des concentrations finales allant de 1 mM à 2,3 µM.

Les résultats de cette expérience montrent clairement une distinction entre la thermophorèse de la GST et celle de la GST-CT622 lorsque ces protéines sont mises en contact avec le géranylgéralyl diphosphate (figure 31 A et B) : la thermophorèse de la GST reste stable tandis que celle de CT622 est modifiée par l’ajout de concentrations de plus en plus importantes de GGPP, traduisant une interaction entre les deux molécules. L’interaction entre la GST-CT622 et CT622 est de ce fait spécifique de la présence de CT622. Un point intéressant à noter sur la courbe de la figure 31 B est la présence de deux sauts successifs : un premier autour de 20 µM de GGPP et un second autour de 200 µM. Ces deux sauts peuvent signifier une double interaction de CT622 avec le GGPP. Les valeurs mentionnées précédemment correspondaient aux Kd approximatifs de ces interactions.
Figure 31 – CT622 lie le géranylgeranyl diphosphate

Résultat de l’expérience de MST entre le GGPP et les différentes protéines recombinantes testées. A) GST + GGPP. B) GST-CT622 + GGPP. C) GST-CT622Nter + GGPP. D) GST-CT622Cter + GGPP.

Le domaine C-terminal de CT622 étant celui présentant une similitude structurale avec géranylgeranyl transférase / synthase, nous nous sommes posés la question de savoir si l’interaction entre CT622 et le GGPP était due à ce domaine. Les deux domaines de CT622, à savoir les résidus 1-345 pour CT622Nter et résidus 346-647 pour CT622Cter, marqués par la GST, ont donc été exprimés sous forme recombinante et purifiés par affinité et chromatographie. De même que pour l’expérience précédente, les protéines recombinantes ont été utilisées à une concentration de 0,75 µM et le GGPP a été dilué avec un ratio de 2 : 1, de 1 mM à 2,3 µM.

Les résultats de cette expérience sont présentés dans la figure 31 C et D. Etonnamment, les deux domaines de CT622 sont capables d’interagir individuellement avec le GGPP. Cela pourrait expliquer la double interaction potentielle hypothérisée précédemment.
4. CT622 ne présente pas d’activité de géranylgéralnyl transférase in vitro

Une fois l’interaction entre CT622 et le GGPP confirmée, la question de l’utilité de cette liaison pour la fonction de CT622 s’est posée. Nous avons voulu vérifier dans un premier temps si CT622 pourrait produire une activité enzymatique de type géranylgéralnyl transférase (GGTase). Différentes expériences in vitro ont été menées afin de répondre à cette question.

Tout d’abord nous avons regardé l’impact de la surexpression de CT622 dans des cellules eucaryotes sur le prénylome global des cellules. Afin de visualiser le géranylgéralnyl incorporé dans les protéines, nous nous sommes servis de l’outil de détection Clik-It (ThermoFischer) qui utilise la réaction chimique permettant de lier un alkyne à un azide en présence de CuSO₄ (figure 32). Dans notre cas, nous avons utilisé du géranylgéralnyl azide (GG azide) et de la biotine alkyne. Le GG azide a été mis en contact avec les cellules, qui sont alors capables de l’utiliser naturellement comme substrat de réaction grâce à la très petite taille de l’azide. Une fois les cellules lysée, la réaction chimique est provoquée en présence de la biotine alkyne, ce qui permet ensuite de repérer facilement le GG azide incorporé dans les protéines par une analyse en SDS-PAGE par exemple.

Figure 32 – Réaction Click-it

L’étiquette azide- est assez petite pour que les biomolécules qui la porte (sucres, acides aminés, lipides..) puissent être acceptées comme substrat par les enzymes et incorporées dans les protéines par exemple. Afin de visualiser l’inclusion, une réaction chimique, est provoquée en présence d’un fluorophore ou hapten-alkyne par l’ajout de CuSO₄.
Des cellules Hela non transfectées ont été comparées à des cellules transfectées par un plasmide portant CT622 étiquetée en N-terminal par flag. La similitude structurale avec les GGTases ayant lieu avec CT622Cter, nous avons également comparé les résultats obtenus avec des cellules exprimant CT622Nter marquée par. Les cellules ont été transfectées et traitées à la lovastatine pendant 24h. La lovastatine est une drogue bloquant la voie de synthèse du melanovate. Le GGPP étant un dérivé de cette voie de synthèse, sa production est arrêtée lors de l’utilisation de cette drogue et les protéines cellulaires ne peuvent être géranylgéranylées. En même temps que la lovastatine a été ajouté dans le milieu cellulaire le GG azide pour se substituer au GGPP et être incorporé à sa place dans les protéines. 24h après la transfection, les cellules ont été lysées et la réaction Click-It a été réalisée sur les lysats (figure 33 A). L’incorporation du géranylgéranyl marqué par la biotine dans les protéines a été visualisée en Western Blot avec de la Streptavidine HRP.

Comme montré sur la figure 33 B, la surexpression de CT622 dans les cellules Hela n’impacte pas le prénylome global des cellules, les trois lysats cellulaires présentant exactement le même marquage à la streptavidine.
Figure 33 – CT622 surexprimée dans les cellules Hela n’impacte pas le prénylome global des cellules

A) Schématisation de l’expérience réalisée. B) Des cellules Hela ont été transfectées avec des constructions codant pour CT622FL ou pour CT622Nter (CT622∆302), étiquetées en N-terminal par flag, et traitées à laLovastatine pendant 24h. Durant ce même temps, les cellules ont été en contact avec du geranylgeranyl diphasphate azide. Les lysats obtenus à partir de ces cellules ont servis pour la réaction Click-it et les échantillons ont été analysés en SDS-PAGE. La membrane a été marquée par la Streptavidine couplée à la HRP puis colorée en Coomassie.

La même expérience a été menée en réduisant le temps d’incubation avec le GG azide à 2h, mais n’a pas révélé de différences d’incorporation de la sonde dans les différentes populations cellulaires.
Il a alors été décidé d’utiliser la protéine recombinante GST-CT622 dans des expériences in vitro. Des cellules traitées à la lovastatine pendant 24h puis mises en contact avec le GG azide pendant 2h ont été lysées. La protéine recombinante GST-CT622 a été incubée avec le lysat de cellules pendant 5 ou 15 min à 25°C. La protéine recombinante GST-CT622Nter (GST-CT622\(\Delta\)302) a été utilisée en contrôle. A nouveau, aucune différence n’a été détectée entre l’échantillon avec la GST-CT622\(\text{FL}\) et l’échantillon contrôle pour les différentes conditions testées (figure 34).

Figure 34 – La protéine recombinante CT622 ne joue pas un rôle de GGTase

Des cellules Hela ont été traitées à la lovastatine pendant 24h. Du géranylgéral diphosphate azide a été ajouté dans le milieu 2h avant la lyse des cellules. Les lysats ont été mis en contact avec les protéines recombinantes GST-CT622 ou GST-CT622\(\Delta\)302 pendant 5 ou 15 min à 25°C. Les échantillons ont ensuite subis la réaction Click-it et ont été analysés en SDS-PAGE. T0 correspond au lysat n’ayant pas été mis en contact avec les protéines et ayant été conservé sur glace pendant la réaction. L’échantillon « control » est un contrôle du background de la biotine, le réactif CuSO\(_4\) n’ayant pas été ajouté lors de la réaction Click-it. La membrane a été marquée par la Streptavidine couplée à la HRP.

Différents temps d’incubation et différentes températures ont été essayées. Tous ces essais n’ont pas permis de mettre en évidence l’activité de CT622 en tant Géranylgéral transférase.
IV - Rab39a, un partenaire cellulaire de CT622

1. Identification de protéines Rab comme partenaires de CT622

Ayant démontré précédemment que CT622 est un effecteur du SST3 et afin d’approcher sa fonction, nous avons cherché à identifier des partenaires cellulaires de CT622. Pour ce faire nous avons choisi d’utiliser la technique du pull down GST associé à une analyse par spectrométrie de masse, explicitée dans la partie I-1. Cette fois, les protéines recombinantes purifiées GST et GST-CT622 ont été mises en contact avec deux types de lysats cellulaires : des cellules Hela non infectées et des cellules Hela infectées avec *C. trachomatis* L2 pendant 24h à une MOI de 1. Les échantillons ont été produits en duplicat et l’expérience a été réalisée deux fois. Les protéines récupérées par les billes glutathione et présentant un profil intéressant après analyse ont été listées dans la figure 35.

Lors de la première expérience, différentes protéines Rab ont été ainsi identifiées : Rab2, Rab5c, Rab7a et un peptide commun à Rab6, Rab39a et Rab34.

Afin de confirmer la possible interaction entre CT622 et les Rab identifiées dans ce screen, nous avons réalisé des expériences de co-immunoprécipitation. Des cellules Hela ont été co-transfectées transitoirement avec un plasmide portant CT622 étiquetée en N-terminal par flag et différentes Rab portant un tag GFP en N-terminal. Après 24h de transfection les cellules ont été lysées et immunoprécipitées par des billes G-sepharose couplées à un anticorps anti-GFP. Après lavages, les billes ont été reprises dans de l’urée 8M et du tampon Laemmlli et les échantillons ont été analysés en SDS-PAGE. Les résultats sont présentés en figure 36.
Figure 35 - Résultat du pull down GST contre des lysats cellulaires

Sont listées dans ce tableau, les protéines présentant une interaction avec la GST-CT622 et pas (ou peu) avec la GST. Cette interaction est visible par le nombre de peptides uniques (UP) trouvés. Le sigle (%) signifie le pourcentage de couverture des peptides uniques trouvés. Les protéines Rab identifiées lors de la première expérience sont surlignées en jaune. Les protéines Atg16L1 et ATG5, qui sont sorties lors des deux expériences menées avec de beaux scores, sont surlignées en orange. Le surlignage gris différencé les protéines plus intéressantes (comparativement aux protéines en blanc).
En condition de surexpression des protéines étudiées, l’interaction entre Rab5 et Rab7 et CT622 n’a pu être confirmée (données non montrées), au contraire de celle entre Rab39a et CT622 (figure 36). CT622 lie de façon équivalente la protéine sauvage (Rab39a WT), son dominant négatif (Rab39a S22N) ainsi que son dominant actif (Rab39a Q67L). CT622 interagit aussi avec Rab34, de façon plus faible que Rab39a. Elle n’interagit cependant pas non plus avec Rab14.

CT622 interagit donc de façon sélective avec les protéines Rab ; Rab39a étant un variant plus court de Rab34 (Gambarte Tudela et al., 2015), il n’est pas étonnant que CT622 se lie au deux protéines.

Figure 36 – Interaction entre CT622 et Rab39

Des cellules HeLa ont été transfectées avec différentes constructions codant pour les protéines CT622, Rab39a, Rab39a DN (S22N), Rab39a DA (Q67L) et Rab34, marquées en N-terminal par flag pour CT622 ou la GFP pour les autres. Les cellules ont été lysées et les protéines ont été immunoprécipitées sur des billes G-sépharose couplées à un anticorps anti-GFP (Molecular Probes). Après lavages des billes, les protéines ont été élutées dans de l’urée 8M et analysées en SDS-PAGE. Les inputs correspondent aux lysats avant l’immunoprécipitation sur billes. Les membranes ont été marquées avec un anticorps anti-GFP (Santa Cruz) ou anti-flag M2 (Sigma).
2. Rab39 est recrutée à l’inclusion en condition d’infection

Un article publié récemment a montré que la protéine Rab39 était recrutée à l’inclusion dès des temps précoces d’infection (4h p.i.) et ce jusqu’aux temps longs d’infection (Fujita et al., 2008; Gambarte Tudela et al., 2015; Mizushima et al., 2003). Des expériences d’immunoﬂuorescence nous ont permis de conﬁrmer ces résultats. Des cellules Hela ont été transfectées avec GFP-Rab39a puis infectées avec C. trachomatis LGV L2 pendant 24h à une MOI de 0,5. Les cellules ont été ﬁxées, perméabilisées puis marquées avec un anticorps anti-CT622 (rouge) et anti-MOMP (violet). Il est visible sur la ﬁgure 37 que la protéine Rab39a (vert) est accumulée tout autour de l’inclusion.

![Figure 37 – Rab39 est recrutée autour de l’inclusion lors de l’infection](image)

Des cellules Hela ont été transfectées avec la GFP-Rab39a (visualisée en vert). Après 24h de transfection, les cellules ont été infectées de façon synchrone avec des bactéries C. trachomatis LGV L2, à une MOI de 0,5 pendant 24h. Les cellules ont été ﬁxées en PFA pendant 20 min, perméabilisées en Triton 0,3% puis marquées avec les anticorps contre CT622 (rouge) et MOMP (violet). Les noyaux cellulaires et les bactéries sont marqués par le Hoechst (bleu). La barre d’échelle est de 5 µm.

3. L’absence de CT622 n’affecte pas le recrutement de Rab39 à l’inclusion

Comme CT622 interagit avec Rab39 et que celle ci est recrutée à la membrane de l’inclusion au cours de l’infection, nous avons regardé si l’absence de CT622 dans le mutant AS9 perturbait le recrutement de Rab39. Des expériences d’IF ont été réalisées aprè 24h d’infection de cellules Hela par des bactéries C. trachomatis LGV L2 et AS9. Ces cellules ont été ﬁxées, perméabilisées et marquées avec un anticorps anti-MOMP. Aucune différence n’a pu être visualisée entre les différentes infections, Rab39 étant toujours enrichie autour de l’inclusion (données non montrées).
V - Recrutement des protéines de l’autophagie lors de l’infection

1. Atg16L1 est un partenaire cellulaire de CT622

 a. Identification d’Atg16L1

 b. Colocalisation d’Atg16L1 et de CT622 en condition de surexpression

 Des cellules Hela ont été transfectées avec des plasmides codant pour la protéine CT622 étiquetée en N-terminal par flag et Atg5 ou Atg16L1 identifiables grâce à la présence en N-terminale de la GFP. Après 24h de transfection, les cellules ont été fixées au PFA 4%, perméabilisées en Triton 0,3% et marquées en immunofluorescence par un anticorps anti-flag. La figure 38 montre les résultats obtenus avec CT622 visualisée en rouge et Atg5 ou Atg16L1 en vert.

 Cette expérience nous a permis d’observer un recrutement clair de CT622 au niveau des vésicules d’Atg16L1 lorsque les deux protéines sont co-transfectées. Au contraire, lorsque CT622 et Atg5 sont co-transfectées, il n’y a pas de colocalisation particulière entre les deux marquages.
Figure 38 – Co-transfection d’Atg5 et Atg16L1 avec CT622

Des cellules Hela ont été transfectées avec la protéine CT622 étiquetée en N-ter par flag (premier panel) ou co-transfectées avec flag-CT622 et Atg5 ou Atg16L1 marquées par la GFP en N-ter (second et troisième panel). Après 24h de transfection, les cellules ont été fixées en PFA 4% et perméabilisées en Triton 0,3%. CT622 est marquée par l’anticorps anti-CT622 (rouge) ; les noyaux sont marqués par Hoechst (bleu) ; Atg5 et Atg16L1 sont visibles grâce à la GFP (vert). Barre d’échelle : 5 µm.

c. CT622 interagit avec Atg16L1 au travers de sa partie C-terminale

Des expériences de co-immunoprecipitation ont été menées afin de regarder l’interaction entre Atg16L1/Atg5 et CT622. Des cellules Hela ont été co-transfectées avec CT622 étiquetée en N-terminal par flag et avec Atg16L1 ou Atg5 marquées par la GFP en N-ter. Les
cellules ont été lysées et les protéines ont été immunoprécipitées sur des billes couplées à l’anticorps anti-flag. Les échantillons ont ensuite été analysés en SDS-PAGE.

Figure 39 – CT622 interagit avec ATG16L1

Des cellules Hela ont été transfectées avec différentes constructions codant pour les protéines CT622, Atg5 et Atg16L1, respectivement marquées en N-terminal par flag ou la GFP. Les cellules ont été lysées et les protéines ont été immunoprécipitées sur des billes sépharose directement couplées à un anticorps anti-flag (anti-flag M2 affinity gel, Sigma). Après lavages des billes, les protéines ont été éluées dans de l’urée 8M et analysées en SDS-PAGE. Les inputs correspondent aux lysats avant l’immunoprécipitation sur billes. Les membranes ont été marquées avec un anticorps anti-GFP (Santa Cruz) ou anti-flag M2 (Sigma).

D’après cette expérience, CT622 interagit avec Atg16L1 en condition de surexpression, mais n’interagit pas avec Atg5 (figure 39). Atg5 est connu pour s’associer à Atg16L1 (Itoh et al., 2008; Fujita et al., 2008; Mizushima et al., 2003). Il est donc probable que dans le pull-down effectué avec GST-CT622 qui nous a permis d’identifier Atg16L1 comme partenaire, Atg5 ait été retenu du fait de son association à Atg16L1.

Du fait de l’existence de différents domaines fonctionnels chez Atg16L1 et du clivage entre le domaine N-terminal et C-terminal de CT622, nous avons cherché à savoir quel domaine de
chaque protéine était impliqué dans l’interaction. Pour ce faire nous avons testé en co-immunopréципitation différentes co-transfections : les deux domaines de CT622 (figure 40 A) avec la forme entière d’Atg16L1 et différents domaines d’Atg16L1 (figure 40 C) avec la forme entière de CT622. Les résultats de la première co-immunopréципitation sont présentés dans la figure 40 B et ceux de la deuxième sont présentés dans la figure 40 D.

Figure 40 – Atg16L1 interagit avec la partie C-terminale de CT622

Il est clair d’après la première co-immunopréципitation présentée ci-dessus (figure 40 B) qu’Atg16L1 interagit avec CT622 grâce au domaine C-terminal de cette dernière. La deuxième expérience de co-immunopréципitation n’a pas permis d’établir quel domaine d’Atg16L1 est en jeu dans l’interaction avec CT622. Il est possible que les formes tronquées d’Atg16L1 soient mal repliées, et que l’interaction soit perdue. Alternativement, il se peut que l’interaction mette en jeu des acides aminés appartenant à des domaines distincts.
2. **Atg16L1 et Atg5 sont recrutées à l’inclusion**

Atg16L1 interagissant avec CT622, nous avons regardé quelle était la localisation de cette protéine au cours de l’infection, de même que la localisation d’Atg5. Pour ce faire, nous avons réalisé des expériences d’immunofluorescence sur des cellules Hela infectées pour différents temps avec des bactéries *C. trachomatis* LGV L2 à une MOI de 0,5 pour les temps longs et de 15 pour les temps précoces. Une fois fixées et perméabilisées, les cellules ont été marquées avec un anticorps contre Atg16L1 ou Atg5 (vert) et contre MOMP (rouge).

Les résultats présentés en figure 41 montrent que lors de l’infection, Atg16L1 et Atg5 sont recrutées autour de l’inclusion de façon précoce (dès des temps courts d’infection) et sont accumulées sous formes de spots brillants autour de l’inclusion mature.
Figure 41 – Recrutement d’Atg16L1 et Atg5 autour de l’inclusion

Des cellules Hela ont été infectées avec des bactéries *C. trachomatis* LGV L2 à une MOI de 0,5 pour les temps longs et de 15 pour les temps précoces. Une fois fixées et perméabilisées, les cellules ont été marquées avec un anticorps contre Atg16L1 ou Atg5 (vert) et contre MOMP (rouge). Les noyaux et l’ADN bactérien sont marqués avec le Hoechst. **A)** Localisation d’Atg16L1 à 1h p.i. et 24h p.i. **B)** Localisation d’Atg5 à 6h p.i. et 24h p.i. Barre d’échelle : 5 µm
3. **Atg5 et Atg16L1 sont recrutées à l’inclusion en l’absence de CT622**

Comme CT622 interagit avec Atg16L1 et que celle-ci est recrutée à la membrane de l’inclusion au cours de l’infection, nous avons examiné si l’absence d’expression de CT622 dans le mutant AS9 perturbait la redistribution d’Atg16L1 dans l’infection. Nous avons également suivi la distribution d’Atg5, car les anticorps contre Atg5 donnent en général un signal plus fort que ceux contre Atg16L1.

Des expériences d’IF ont été réalisées avec des cellules Hela infectées par des bactéries *C. trachomatis* LGV L2 et AS9 pour différents temps d’infection (1h, 4h, 7h, 24h). Les cellules ont été fixées, perméabilisées et marquées avec un anticorps anti-MOMP et par un anticorps anti-Atg16L1 ou Atg5. Nous avons constaté que les deux protéines étaient recrutées autour des bactéries aux différents temps étudiés, de façon similaire pour les deux souches bactériennes. CT622 n’est donc pas requise pour recruter ou maintenir Atg16L1 et Atg5 à l’inclusion (données non montrées).
Discussion
Il est largement accepté que des protéines sécrétées de façon très précoces dans l’infection par *C. trachomatis* permettent non seulement l’entrée des bactéries, mais également leur protection vis à vis des défenses de l’hôte, et l’établissement d’un environnement favorable à leur prolifération (Pais et al., 2013; Cossé et al., 2016). L’identification des effecteurs précoces, et leur caractérisation fonctionnelle, est difficile du fait de leur faible abondance, à un moment où la cellule est infectée par une bactérie unique. Lorsque ce travail a été initié, seules deux protéines sécrétées lors de l’entrée (« effecteurs immédiats ») étaient connues, toutes deux probablement impliquées dans le remodelage du cytosquelette. Mon travail de thèse identifie un nouvel effecteur immédiat, CT622, ainsi que sa protéine chaperone. Il a été initié juste au moment où les premiers outils de manipulation du génome de *C. trachomatis* étaient publiés. J’ai moi-même investi beaucoup d’énergie pour construire des outils pour étudier la fonction de CT622, et certains ont porté fruit et sont décrits dans ce manuscrit. Je récapitulerai dans cette discussion les connaissances sur CT622 obtenues par ce travail, ainsi que les questions qu’il a ouvertes.

I - **CT622 est un effecteur du SST3, et CT635 est sa protéine chaperone**

1. **Identification d’une nouvelle protéine chaperone de *C. trachomatis*, CT635**

 L’analyse, par spectrométrie de masse, des protéines bactériennes susceptibles de lier CT622 a désigné la protéine CT635 comme chaperone potentielle. CT635 est une petite protéine (16,8 kDa), légèrement acide (pI = 6,17), présentant ainsi les caractéristiques physico-chimiques de base des protéines chaperones. Une étude publiée en 2013 sur l’identification de nouvelles chaperones chez *C. trachomatis* à partir de protéines hypothétiques l’avait exclue de l’étude car elle ne formait pas de dimères avec elle même (Saka et al., 2011; Pais et al., 2013). Ils utilisaient dans leur étude la technique du double hybride bactérien. Depuis, notre collaborateur structuraliste a pu montrer par des méthodes biophysiques que CT635 s’apparait avec elle même. Il est de plus intéressant de noter que CT635 est une protéine des CE, à l’instar de CT622, et que ces deux protéines sont présentes en situation d’équimolarité dans les corps élémentaires (Spaeth et al., 2009; Saka et al., 2011; Brinkworth et al., 2011; Pais et al., 2013). Toutes ces informations nous ont mené à penser que CT635 puisse jouer le rôle de chaperone pour CT622.
Afin de répondre à cette hypothèse, nous avons dans un premier temps cherché à confirmer l’interaction entre les deux protéines. Nous avons pu montrer que CT622 et CT635 interagissent ensemble, au travers du domaine N-terminal de CT622 (résidus 1-94), qui est un domaine classique bactérien d’interaction « chaperone – effecteur ». De plus, chez *E. coli*, CT635 stabilise CT622 lorsque les deux protéines sont exprimées ensemble. Par la suite, un test de sécrétion hétérologue chez *S. flexneri* a montré que la présence de CT635 permettait aussi de stabiliser CT622 et d’augmenter largement sa sécrétion par la machinerie de type 3.

Ajoutées aux caractéristiques physico-chimiques citées précédemment, la mise en évidence de ces différentes fonctions assurées par CT635 (stabilisation, régulation de la sécrétion) nous a permis de conclure que nous avions découvert une nouvelle protéine chaperone de *C. trachomatis*. Nous proposons de désigner cette protéine par Scc5, à la suite de la dernière chaperone identifiée chez *C. trachomatis*, Scc4 (pour *Specific chlamydial chaperone 4*).

Chez *C. trachomatis*, seulement deux chaperones d’effecteurs (*Sle1* et *Msc*, avec CT584 faisant un troisième candidat prometteur) ont pour le moment été identifiées (Gong et al., 2011; Spaeth et al., 2009; Brinkworth et al., 2011; Pais et al., 2013). Cependant, au vu du nombre d’effecteurs chlamydiens déjà décrits, il n’est pas étonnant de trouver de nouvelles protéines chaperones. Le fait que CT635 soit la protéine chaperone de CT622 la place dans la catégorie des chaperones de type I (chaperones des effecteurs du SST3). Un projet de recherche du laboratoire résultant de mon travail consistera à déterminer si CT635 joue le rôle de chaperone pour d’autres effecteurs de *C. trachomatis*, ce qui permettra, le cas échéant, d’identifier de nouveaux effecteurs.

2. Sécrétion de CT622

Nous avons montré avec un test de sécrétion hétérologue chez *S. flexneri* que CT622 est un effecteur du SST3. L’étude sommaire déjà publiée sur CT622 (Slepenkin et al., 2007; Gong et al., 2011; Engström et al., 2013) arrivait à cette conclusion, mais en utilisant une drogue censée inhiber la sécrétion de type 3, qui a depuis été montrée comme agissant au niveau de l’acquisition du fer, et non sur la sécrétion (Belland et al., 2003; Slepenkin et al., 2007; Saka
et al., 2011; Engström et al., 2013). Notre travail clarifie donc le mécanisme de sécrétion de CT622. Cette protéine est exprimée majoritairement lors de la seconde partie du cycle de développement, après 24h-28h d’infection, et est abondante dans les corps élémentaires (Clifton, 2004; Belland et al., 2003; Chen et al., 2014; Saka et al., 2011; Hower et al., 2009; Mueller and Fields, 2015). Au vu de ces caractéristiques, nous avons émis l’hypothèse que CT622 puisse jouer un rôle dans les premières étapes d’infection. Les expériences d’immunofluorescences réalisées à 1h p.i. nous ont confirmé que CT622 était sécrétée hors des CE à ce temps d’infection. Elle présente ainsi le même schéma de sécrétion que les protéines TarP, TepP, CT694 et CT695 décrites précédemment (Gong et al., 2011; Clifton, 2004; Chen et al., 2014; Hower et al., 2009; Mueller and Fields, 2015). Toutes ces protéines suivent le même patron d’expression et sont accumulées dans les CE. Ils constituent ainsi un groupe d’effecteurs précoces, pré-chargés dans les bactéries et utiles à ces dernières dans leurs processus invasifs, lors des premières étapes de l’infection (modification du cytosquelette, adaptation de l’inclusion précoce…).

Une caractéristique étonnante de cette sécrétion précoce de CT622 réside dans sa concentration à proximité des bactéries. On sait que les appareils de sécrétion sont concentrés à un pôle des bactéries, il est donc attendu que la sécrétion soit polarisée. Cependant on pourrait s’attendre à ce qu’une fois sécrétée, CT622 soit diluée dans l’ensemble du cytoplasme. Le marquage observé suggère que CT622 puisse interagir avec la membrane de l’inclusion, une fois sécrétée. En transfection nous avons observé que CT622 s’associe largement aux membranes, une propriété qui pourrait favoriser sa rétention au niveau de l’inclusion. Il est intéressant de remarquer que TarP, TepP, CT694 et CT695 présentent la même distribution que CT622. On ignore s’ils ont aussi une propension à s’associer aux lipides, et/ou si des protéines spécifiques les retiennent à l’inclusion. Enfin il est à noter que la densité de protéines liées au cytosquelette d’actine autour des petites inclusions en ces temps précoces pourrait limiter la diffusion des effecteurs dans le reste du cytoplasme.

Nous avons aussi confirmé la sécrétion tardive de CT622 déjà décrite auparavant (Mueller and Fields, 2015; Gong et al., 2011). CT622 constituerait donc un effecteur sécrété à la fois lors des premières étapes de l’infection et ultérieurement, comme cela a été décrit pour CT695 (Belland et al., 2003; Mueller and Fields, 2015; Saka et al., 2011). La cinétique de translocation de CT622 dans le cytoplasme demeure inconnue. CT622 pourrait être sécrétée tout au long du cycle mais détectée dans le cytoplasme qu’aux temps précoces, car la protéine
II - *ct622* n’est pas un gène essentiel, mais en son absence le cycle de développement bactérien est perturbé.

Afin d’appréhender la fonction de la protéine CT622 il paraissait essentiel d’essayer d’obtenir des bactéries n’exprimant plus cette protéine. Nous avons opté pour la seule méthode publiée initialement, utilisant l’insertion d’introns (Stein et al., 2012; Johnson and Fisher, 2013; Rzomp et al., 2003). Nous nous sommes rapidement heurtés à une efficacité de transformation insuffisante pour déterminer si nos échecs étaient liés au fait que le gène était essentiel, ou à des raisons techniques. Nous avons établi une collaboration avec le laboratoire de Derek Fisher, qui a testé les plasmides que nous avions construits. Sa première tentative a également échoué, et ce n’est qu’après avoir remplacé le gène de résistance à l’ampicilline par celui de résistance à la spectinomycine qu’il a réussi à obtenir une souche mutante, AS9. Six clones issus de la transformation ont été isolés sur plaques et ont été testés par PCR et western blot pour vérifier la bonne insertion de l’intron et l’absence d’expression de CT622. L’insertion de l’intron au site attendu sur le génome a été vérifiée par séquençage.

Chacun des clones isolés avait perdu l’expression de CT622. Ces clones nous ont permis de clarifier qu’une protéine bactérienne de poids moléculaire légèrement supérieur à celui de CT622, mais distincte de CT622, était reconnue par notre anticorps anti-CT622. Des expériences sont en cours à ce sujet, pour confirmer que cette réaction croisée ne remet pas en cause les conclusions tirées des immunofluorescence utilisant cet anticorps.

Au vu des expériences préliminaires réalisées, AS9 semble présenter un retard de développement ainsi qu’un défaut de sécrétion. Des expériences de réinfection afin de mesurer l’infectivité de ces bactéries sont en cours. Nous allons également chercher à
déterminer si l’entrée des bactéries, et leur survie dans la cellule, sont affectées par l’absence de CT622.

III - CT622 interagit avec le géranylgéranyl diphosphate

La résolution de la structure de la moitié de CT622 (CT622Cter) nous a permis de mettre en évidence une similitude structurale entre le domaine 1 de CT622Cter et des géranylgéranyl transférases (GGTases) ou synthases. Les GGTases sont des enzymes à l’origine d’une modification post-traductionnelle des protéines, attachant à leur extrémité C-terminale un composé lipidique et leur conférant ainsi des propriétés hydrophobes. Le composé lipidique utilisé, le géranylgéranyl diphosphate (GGPP), est un dérivé de la voie de synthèse du mélanovate. Les géranylgéranyl synthases au contraire catalysent la production de GGPP à partir d’un autre composé lipidique, le farnesyl diphosphate.

Avant d’étudier une possible activité enzymatique de la part de CT622, nous avons montré que la protéine recombinante GST-CT622 purifiée était capable d’interagir avec le GGPP et que cette interaction est spécifique de CT622. Deux épaulements sont présents sur la courbe montrant l’interaction CT622 - GGPP. Ils signifient que CT622 interagit potentiellement deux fois avec le GGPP, avec des Kd d’approximativement 20 µM et 200 µM. Ces valeurs, et particulièrement la deuxième, sont élevées. Cependant, il faut noter que le tampon utilisé (0,15 M NaCl, 30 mM Tris-Hcl pH 7,5, 5% Glycerol, 1 mM DTT) est loin de représenter l’environnement cellulaire du cytoplasme et que des composants facilitants l’interaction viennent probablement à manquer. Les valeurs pourraient de ce fait être plus élevées que les Kd physiologiques.

Deux possibilités s’ouvrent alors quant à la signification de l’interaction CT622 - GGPP dans l’infection. CT622 pourrait présenter une activité de géranylgéranyl transférase ou interagir avec des protéines de l’hôte géranylgéranylées.

Nous avons tenté de mettre en évidence in vitro une activité de géranylgéranyl transférase dans CT622, sans succès. En absence de témoin positif satisfaisant dans ces expériences nous ne pouvons pas exclure que nos conditions expérimentales n’étaient pas optimales. Cependant, nous favorisons l’hypothèse d’une absence d’activité catalytique, mais d’un double module d’interaction avec le géranylgéranyl.
Afin d’étayer cette hypothèse il serait intéressant d’identifier les protéines géranylgéranylées interagissant avec CT622. Dans le pull-down que nous avons effectué, plusieurs Rabs ont été retrouvées dans la fraction liée à CT622, et il est possible que leur prenylation ait contribué à leur enrichissement dans la fraction. Une requête spécifique sur les résultats de spectrométrie de masse recherchant d’hypothétiques peptides modifiés par ajout d’un geranylgeranyle a été infructueuse. Une analyse de type SILAC, avec ou sans géranylgéranyl disponible, pourrait permettre de mieux cartographier les éventuels partenaires de CT622 interagissant via leur queue géranylgéranyl.

IV - CT622 interagit avec Rab39a

Afin d’identifier le (ou les) partenaire(s) cellulaire(s) de CT622 une fois sécrétée dans le cytosol, nous avons réalisé un pull down en utilisant les protéines recombinantes GST et GST-CT622 produites au laboratoire contre différents lysats cellulaires. Les protéines retenues ont été identifiées par spectrométrie de masse. L’expérience a été faite deux fois avec des duplicats des échantillons. Lors de la première expérience, quelques protéines Rab ont été identifiées comme interagissant avec la protéine GST-CT622 et pas du tout, ou en quantité moindre, avec la GST seule : Rab2, Rab5c, Rab7a et un peptide commun à Rab6, Rab39 et Rab34. Les protéines Rab sont des acteurs clés du trafic intracellulaire. Elle déterminent l’identité des organelles qu’elles décorent et régulent leur formation, leur tri, leur déplacement dans la cellule ainsi que leur fusion spécifique avec des compartiments accepteurs. C. trachomatis recrute à la membrane de l’inclusion un certain nombre de ces protéines, lui permettant ainsi d’orchestrer la fusion avec des organelles sélectionnées ou à éviter. Rab5 et Rab7 ne font pas partie des protéines recrutées (Rzomp et al., 2003; Stein et al., 2012; Gambarte Tudela et al., 2015) au contraire de Rab6, Rab34 et Rab39a (Gambarte Tudela et al., 2015; Rzomp et al., 2003). Cette dernière est particulièrement intéressante dans notre cas car elle a récemment été montrée comme étant recrutée à l’inclusion dès des temps précoces d’infection (He and Klionsky, 2009; Gambarte Tudela et al., 2015).

Nous avons donc entrepris de confirmer les interactions mises en évidence lors de l’expérience du pull down, cette fois ci par des expériences de co-immunoprécipitations des protéines surexprimées dans des cellules Hela. L’interaction avec Rab5 et Rab7 n’a pu être
confirmée au contraire de celle avec Rab34 et Rab39a. CT622 interagit de façon équivalente avec les deux formes mutées de Rab39a, soit le dominant négatif (DN) ou le dominant actif (DA). Le statut d’activité de Rab39a, à savoir son état lié au GTP (DA) ou GDP (DN), n’est de ce fait pas un facteur important dans sa liaison avec CT622. CT622 interagit aussi avec Rab34, un point qui n’est pas étonnant dans la mesure où Rab39 est un variant plus court de Rab34.

L’obtention de bactéries mutantes n’exprimant plus CT622 a permis de montrer que CT622 n’était pas responsable de l’accumulation de Rab39 autour de l’inclusion. Le rôle de l’interaction entre CT622 et Rab39 n’est pas encore clair.

Comme discuté précédemment, la capacité de CT622 à lier le géranylgéranyl pourrait expliquer la présence de plusieurs Rab protéines dans la fraction liée à GST-CT622, puisque les Rabs sont géranylgéralylées. Une interaction forte avec CT622 n’a été retrouvée qu’avec Rab39 (et dans une moindre mesure Rab34), suggérant que la queue lipidique de Rab39 n’est pas la seule surface d’interaction avec l’effecteur bactérien.

V - CT622 interagit avec Atg16L1

Des expériences de co-immunoprécipitation ont permis de confirmer l’interaction entre CT622 et Atg16L1 en condition de surexpression dans des cellules Hela, mais pas celle avec Atg5. Le fait qu’Atg5 ait été identifié deux fois lors du screen de partenaires est de ce fait probablement dû à l’interaction forte ayant lieu entre Atg5 et Atg16L1 (Gondek et al., 2012; Mizushima et al., 1999; 2003).
Des expériences d’immunofluorescence ont révélé que les deux protéines de l’autophagie sont recrutées de façon précoce autour des bactéries, dès 1h p.i., et restent en périphérie de l’inclusion sur des temps plus tardifs. Du fait de l’interaction existant entre CT622 et Atg16L1, une question évidente à se poser est de savoir si la sécrétion précoce de CT622 est responsable de cette accumulation protéique en périphérie des bactéries. L’utilisation des bactéries mutantes AS9 a permis de répondre négativement à cette question.

Cependant les résultats préliminaires obtenus nous laissent supposer une accumulation supérieure d’Atg16L1 et Atg5 dans le cas des mutants que dans le cas des bactéries LGV L2 contrôles. Ces résultats nécessitent d’être confirmés et analysés plus en profondeur. De même, vu l’apparent retard de développement présenté par la souche AS9, nous examinerons s’il pourrait être dû à un nombre plus important de bactéries échouant à se développer et à former des inclusions comparativement aux populations bactériennes contrôles, du fait de processus de l’autophagie. Si tel était le cas, il pourrait être attribué à CT622 un rôle non pas dans le recrutement d’Atg16L1 et Atg5 à l’inclusion mais dans les processus d’évasion des bactéries C. trachomatis face à l’autophagie, un mécanisme encore peu étudié chez C. trachomatis. Des études supplémentaires seront nécessaires pour caractériser les relations avec les protéines Atg16L1 et Atg5 et Chlamydia.

VI - Conclusion

L’objet de cette thèse était de caractériser la fonction d’une protéine hypothétique de C. trachomatis, CT622. Nous avons pu mettre en évidence que CT622 est un effecteur du SST3 de Chlamydia et qu’il s’associe dans les CE avec une nouvelle protéine chaperone, Scc5 (CT635). CT622 est sécrétée dès les temps très courts d’infection, rejoignant ainsi le petit groupe d’effecteurs précoces de C. trachomatis préalablement identifiés. La protéine est aussi détectée dans le cytosol et le noyau des cellules hôtes à des temps tardifs d’infection. L’obtention de bactéries mutantes n’exprimant plus CT622 a démontré que CT622 n’est pas une protéine essentielle au développement de Chlamydia in vitro. Cependant, les études préliminaires réalisées sur les mutants montrent que ceux-ci semblent présenter un retard de développement ainsi qu’un défaut de sécrétion de type III. Il serait également intéressant de
tester la souche AS9 dans le modèle souris d’infection par *C. trachomatis* (Gondek et al., 2012).

CT622 est une molécule d’assez grande taille, présentant au moins deux domaines distincts, qui pourraient s’articuler par exemple lors de la liaison de gérénylgényanyl. A l’instar de TarP, il est très probable que CT622 puisse avoir plusieurs fonctions, éventuellement utilisées de façon séquentielle au cours du cycle de développement. Au cours de la thèse, nous avons pu initier l’étude de ces fonctions en identifiant plusieurs molécules avec lesquelles CT622 est capable d’interagir, au moins dans les conditions expérimentales testées: le gérénylgényanyl diphosphate, la protéine Rab39 (et dans une moindre mesure la protéine Rab34) et la protéine Atg16L1. La suite de ce travail s’attachera à comprendre, en disséquant le comportement de la souche AS9 n’exprimant pas CT622, comment les interactions déjà identifiées, ou d’autres partenaires eukaryotes ou prokaryotes encore à découvrir, contribuent à l’établissement d’une niche favorable à l’essor de l’infection.
Références Bibliographiques

doi:10.1371/journal.ppat.1002092.

Hackstadt, T., W.J. Todd, and H.D. Caldwell. 1985. Disulfide-mediated interactions of the
chlamydial major outer membrane protein: role in the differentiation of chlamydiae?

Harris, S.R., I.N. Clarke, H.M.B. Seth-Smith, A.W. Solomon, L.T. Cutcliffe, P. Marsh, R.J.
Skilton, M.J. Holland, D. Mabee, R.W. Peeling, D.A. Lewis, B.G. Spratt, M. Unemo, K.
Persson, C. Bjartling, R. Brunham, H.J.C. de Vries, S.A. Morré, A. Speksnijder, C.M.
Bébéar, M. Clerc, B. de Barbeyrac, J. Parkhill, and N.R. Thomson. 2012. Whole-
genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic
relationships masked by current clinical typing. *Nat Genet.* 44:413–419.
doi:10.1038/ng.2214.

Hatch, T.P. 1996. Disulfide cross-linked envelope proteins: the functional equivalent of

membrane proteins during the developmental cycle of Chlamydia psittaci and

He, C., and D.J. Klionsky. 2009. Regulation mechanisms and signaling pathways of

vacuolar membrane is not passively permeable to low-molecular-weight

interaction with endocytic and exocytic pathways distinguish parasitophorous

Heuer, D., A. Rejman Lipinski, N. Machuy, A. Karlas, A. Wehrens, F. Siedler, V. Brinkmann,
and T.F. Meyer. 2009. Chlamydia causes fragmentation of the Golgi compartment to

translocation of chlamydial protease during acute and persistent infection of the
5:315–322.

Hower, S., K. Wolf, and K.A. Fields. 2009. Evidence that CT694 is a novel Chlamydia
trachomatis T3S substrate capable of functioning during invasion or early cycle
2958.2009.06732.x.

Hsia, R.C., Y. Pannekoek, E. Ingerowski, and P.M. Bavoil. 1997. Type III secretion genes

Paumet, F., J. Wesolowski, A. Garcia-Diaz, C. Delevoye, N. Aulner, H.A. Shuman, A. Subtil,

Vandahl, B.B., A.S. Pedersen, K. Gevaert, A. Holm, J. Vandenkerckhove, G. Christiansen, and

Annexe
Abstract The lifestyle of *Chlamydiae* is unique: the bacteria alternate between two morphologically distinct forms, an infectious non-replicative elementary body (EB), and a replicative, non-infectious reticulate body (RB). This review focuses on recent advances in understanding the structure and function of the infectious form of the best-studied member of the phylum, the human pathogen *Chlamydia trachomatis*. Once considered as an inert particle of little functional capacity, the EB is now perceived as a sophisticated entity that encounters at least three different environments during each infectious cycle. We review current knowledge on its composition and morphology, and emerging metabolic activities. These features confer resistance to the extracellular environment, the ability to penetrate a host cell and ultimately enable the EB to establish a niche enabling bacterial survival and growth. The bacterial and host molecules involved in these processes are beginning to emerge.

Contents

1 The Infectious Particle: Not so Elementary, My Dear Bedson! ..
 1.1 A Morphology Tailored for Specific Needs ..
 1.2 Non-dividing, But Not Inactive ..
 1.3 A Metabolism Centred on Glucose Catabolism ..

2 From the Generation to the Conversion of EBs: A Chronological Perspective
 2.1 EB Biogenesis ..

M.M. Cossé · A. Subtil (✉)
Unité de Biologie cellulaire de l’infection microbienne, Institut Pasteur,
25 rue du Dr Roux, 75015 Paris, France
e-mail: agathe.subtil@pasteur.fr

M.M. Cossé · A. Subtil
CNRS UMR3691, Paris, France

R.D. Hayward
Institute of Structural and Molecular Biology, Birkbeck and University
College London, Malet Street, London, WC1E 7HX, UK

© Springer International Publishing Switzerland 2016
Current Topics in Microbiology and Immunology
DOI 10.1007/82_2016_12
In the first half of the twentieth century, Sir Samuel Phillips Bedson (1886–1969) made several seminal contributions to the thriving field of microbiology (Downie 1971). As a prominent pioneer in the description of Chlamydia biology, he proposed, based only on rudimentary light microscopy observations, that the agent of psittacosis (now known as Chlamydia psittaci) exhibited a “morphological change from the small infecting elementary body (EB) to the large form or initial body” (Bedson and Gostling 1954). At the time, Bedson believed what he observed through the lenses of his microscope to be a virus, and it was more than a decade later until the chlamydiae were definitively classified as bacteria (Moulder 1966). Nevertheless, his description of two morphologically distinct forms was confirmed with the advent of the electron microscope and the ultramicrotome. Today, the small form remains designated as the EB, while the second larger one is termed the reticulate body (RB). Most importantly, Bedson introduced the concept that the infectious agent underwent a “developmental cycle,” which is now recognized as a hallmark of the chlamydiae (AbdelRahman and Belland 2005; Omsland et al. 2014). All the members of this phylum are obligate intracellular pathogens and symbionts of eukaryotic cells. The developmental cycle begins with the adhesion of the EB to a eukaryotic host cell. Subsequently, EB force their own actin-dependent internalization. The remainder of the cycle occurs within the host cell, within a specialized membrane-bound compartment termed “the inclusion.” Once inside this compartment, the EB differentiates into the RB. This is the only replicative form of the bacteria, which divides by binary fission and within a few days yields several hundred bacteria per infected cell. The cycle is completed by the redifferentiation of RBs into EBs, and their release in the extracellular space, from where they initiate a novel cycle.

For half a century, the EB has been considered as a largely “passive” element of the developmental cycle, unable to divide, with its range of activity limited to adhesion to the host cell, followed by internalization. In contrast, the ability of replicative RBs to manipulate host metabolism, and some of the mechanisms involved, were rapidly recognized (Hackstadt et al. 1997; Schachter 1988). Over the last 15 years, we have gained new insights into the morphology and composition of EBs. Most importantly, our perception of their properties has radically changed with the realization that these “particles” have active roles in the infectious process. This chapter will review the current knowledge of EBs and describes the initial steps of Chlamydia infection, until EB differentiation into RBs. We will focus predominantly on C. trachomatis, the agent of trachoma and genital tract infection (Batteiger 2012). However, data suggest that the principal properties
of EBs are conserved across the Chlamydiae (Omsland et al. 2014). Where relevant, data obtained from species other than C. trachomatis will also be introduced.

1 The Infectious Particle: Not so Elementary, My Dear Bedson!

1.1 A Morphology Tailored for Specific Needs

Early investigators focused their attention on EBs rather than RBs for two reasons. For one thing, EBs were easier to purify, because they were much less fragile. Secondly, with the ultimate aim to define protective antigens to design a vaccine against Chlamydia infection, it made sense to study primarily the extracellular form of the bacteria. Blocking the adhesion or entry step performed by EBs would prevent Chlamydia infection, since RBs do not have the capacity to invade host cells.

Transmission electron microscopy revealed that EBs are small (0.3 μm in diameter), and this contributed largely to their initial erroneous classification as viruses. Images also showed a highly condensed nucleoid, not observed in RBs. Two histone-like proteins Hc1 and Hc2 (encoded by hctA and hctB, respectively) were identified, that were expressed specifically in EBs, concomitant with nucleoid compaction (Brickman et al. 1993; Hackstadt et al. 1991). By analogy with the role of histones in eukaryotic cells, these proteins are responsible for nucleoid compaction in EBs and are sufficient to induce genome compaction following their expression in Escherichia coli (Barry et al. 1992; Brickman et al. 1993; Christiansen et al. 1993). These two chlamydial histone-like proteins have distinct properties (Brickman et al. 1993; Pedersen et al. 1996), the regulation of their expression differ to some extent (Grieshaber et al. 2006) and Hc2 is specific to the Chlamydiaceae (Collingro et al. 2011). Whether other proteins participate to the unique organization of the nucleoid in EBs remains unknown.

A second characteristic feature of EB morphology is the composition and structure of the outer membrane. EBs are enveloped by the chlamydial outer membrane complex (COMC), which is defined as the insoluble fraction during extraction with the weak anionic detergent sodium lauryl sarcosinate (Sarkosyl). The COMC comprises a shell of proteins cross-linked through intra- and intermolecular disulphide bonds. This dense network confers rigidity and limits permeability, resulting in the resistance of EBs to physical or osmotic stress (Hackstadt et al. 1985). In contrast, while several COMC components remain in RBs, the cysteine residues within component proteins become reduced, and consequently a tight network does not assemble. This simple change in COMC properties is central to the biology of the bacterium, as COMC rigidity confers resistance to the fluctuating environmental conditions encountered outside the host cell. EBs can exploit this simple strategy because they do not divide. Conversely, RBs need to divide,
and reduction of the COMC disulphide bonding is central to the conversion of EBs to the replicative state. In the intracellular space within the inclusion lumen, RBs are exposed to a quite constant environment. The relative fragility of RBs, which becomes obvious during purification protocols, is not challenged in the inclusion lumen. The COMC is comprised of many proteins, but is dominated by only a few, which are more abundant. These include the major outer membrane protein (MOMP, representing 60% of the weight of the outer membrane) and the cysteine-rich proteins OmcA and OmcB [reviewed in (Hatch 1999)]. Several studies, including more recent approaches taking advantage of proteomics (Birkeland et al. 2009; Liu et al. 2010), have aimed at defining the composition of the COMC. Although these studies all agree on the major components, discrepancies still exist regarding less abundant proteins, most likely due to variations in experimental procedures, since the COMC is defined by biochemical properties. Presumably, the incorporation of proteins into the COMC largely depends on the number of accessible free cysteine residues. In addition to providing rigidity, disulphide bonding may also regulate the activity of some outer membrane proteins. This is certainly the case for the major porin MOMP (Bavoil et al. 1984), but remains for the most part unexplored for other components.

Besides proteins, the principal component of the outer leaflet of the outer membrane of Gram-negative bacteria is the lipopolysaccharide. This is also the case in Chlamydia, although lipooligosaccharide (LOS) is predominant (Rund et al. 1999). Another more striking difference is the absence of peptidoglycan in EBs (Liechti et al. 2014), a polymer that plays a crucial structural role in other bacteria. It is likely that the rigidity provided by the chlamydial COMC is sufficient to eliminate the metabolic cost of synthesizing additional cell envelope components.

The differences in the structure of the EB and RB envelope were not readily apparent when conventional ultrathin section methods were used (Tamura et al. 1971), but became evident when observed using cryo-electron microscopy, where the thickness of the outer membrane in EBs appeared nearly twice that of RBs (Huang et al. 2010). Cryo-electron tomography has recently allowed striking refinements in the description of EB morphology (Nans et al. 2014; Pilhofer et al. 2014). Although seminal early imaging had revealed the presence of asymmetrically distributed electron dense structures on the surface of EBs, the nature of these “projections” remained unknown (Gregory et al. 1979; Matsumoto 1981; Nichols et al. 1985). The polymorphic membrane protein D (PmpD) exists as an oligomer, with a distinct 23-nm flower-like structure and an asymmetric distribution, reminiscent of the surface projections or rosettes described by Matsumoto and others (Swanson et al. 2009). PmpD belongs to a family of membrane proteins, which functions in adhesion (see Sect. 2.3), and it remains possible that other Pmp family members might also form protruding complexes on the EB surface. Besides outer membrane protein complexes and COMC components, the prominent appendages of the infectious bacteria are macromolecular type 3 secretion (T3S) complexes. T3S are conserved amongst many medically important bacterial pathogens, and T3S structure has been investigated extensively. T3S directs the translocation of bacterial effector protein substrates across both bacterial membranes and a third
One Face of *Chlamydia trachomatis*: The Infectious Elementary Body

eukaryotic membrane (Galan et al. 2014). Immunogold electron microscopy using an antibody raised against the protein comprising the needle that protrudes from the outer membrane proximal face of the T3S apparatus, was consistent with a non-homogeneous distribution of these complexes on the bacterial surface (Betts et al. 2008). Furthermore, recent observations by cryo-electron tomography demonstrated that EBs indeed exhibit two distinct poles. One hemisphere is characterized by a pronounced expansion of the periplasmic space, which accommodates an array of T3S complexes. The opposing pole often more proximal to the nucleoid is characterized by a complex membranous structure, arising from an invagination of the inner membrane (Nans et al. 2014; Nichols et al. 1985) (Fig. 1).

1.2 Non-dividing, But Not Inactive

Originally coined to describe a virus-like particle, the name EB persisted: after all, the term “elementary” seemed appropriate for an inert particle lacking many characteristics shared by other bacteria. It fitted the notion that this form behaved like a dormant spore, well adapted to resist damage in the extracellular environment, but with little if any discernible metabolic activity. In short, the EB was believed to have only a passive role in the chlamydial developmental cycle. Half a century later, the EB has won more consideration. The first move in this direction came from the discovery by the Hackstadt group of a protein translocated from EBs into the host cell during invasion, revealing an active role for the infectious form in this initial step for the first time (Clifton et al. 2004) (see Sect. 2.4). Transcriptomics and proteomics have since demonstrated that EBs are endowed with strong metabolic abilities and a specific cohort of proteins likely engaged in triggering invasion (Albrecht et al. 2011; Saka et al. 2011; Skipp et al. 2016). The development of an axenic medium supporting RNA and protein synthesis in EBs confirmed their metabolic abilities and definitively altered perceptions of this “elementary” particle (Omsland et al. 2012).

Before further considering recent advances in understanding the structure and function of EBs, it is important to emphasize that the generic name “EB” likely encompasses several bacterial states. Historically, EB analysis has started with the purification of particles of a certain density from infected cultures using a gradient. This procedure isolates particles of homogenous size and morphology. However, because RB-to-EB conversion is asynchronous, a mixture of “young” and “old” EBs are acquired, which might differ in their metabolic activities. Secondly, the environmental conditions encountered by EBs within the inclusion, or following release into the extracellular environment, are very different. Additionally, upon internalization in the host cells, EBs rapidly sense the change in the environment and respond to it by initiating differentiation into RBs. Some of the metabolic abilities of EBs are probably only required in this third, highly specialized context. Thus, EBs encounter at least three distinct environments: the inclusion lumen, which is shared with RBs that can supply some metabolic products required by
Fig. 1 Morphology and main properties of the *C. trachomatis* elementary body. **Left** Schematic view. The cellular envelope shows several remarkable features. The chlamydial outer membrane complex (COMC) is made of a dense network of heavily cross-linked proteins. Several of the outer membrane proteins, mainly OmcB and the Pmps, participate to the adhesion step. The periplasm is free of peptidoglycan. It enlarges at one pole to accommodate an array of T3S apparatuses. The inner membrane invaginates at the opposite pole and contains a number of proteins, including transporters. The nucleoid is condensed around histone-like proteins, but still allows for some transcriptional activity. In contrast to RBs, EBs contain glycogen. They produce ATP, and this activity is sustained mainly through the import of glucose-6-phosphate. Effector proteins, associated or not to chaperones, are ready for translocation through the T3S apparatuses upon contact with the host cell. The pie chart depicts the relative abundance of proteins associated with the indicated functions, adapted from Saka et al. (2011). **Top right** 10-nm slice from denoised cryo-electron tomogram of a plunge frozen *C. trachomatis* LGV2 elementary body in contact with the membrane of an early bacterial containing vacuole via the T3S. Right hand side shows overlay of 3-D surface rendering, highlighting features observed in the micrograph. Bacterial outer (green), inner (cyan) and host (yellow) membranes are shown. T3S (top) are shown in the rendering with secretin (orange), inner membrane ring (blue), sorting platform, export apparatus and ATPase (red) highlighted. Bacterial ribosomes are discernible in the upper cytoplasmic hemisphere, and the inner membrane invagination observed at the lower pole.
EBs; the extracellular space, where other microorganisms may be present and where EBs face a variety of extracellular antimicrobial activities; and the nascent tight bacterial containing vacuoles, against which the host cell have developed innate defence strategies (Fig. 2). Each of these environments have different pH, osmotic and nutritional compositions, and it is possible that EBs sense and adapt to them, although this has only been illustrated so far during the transition from the extracellular space to the early tight bacterial containing vacuole (see Sect. 2.6).

Early comparisons of the metabolic properties of EBs and RBs revealed striking differences between the two forms [reviewed recently by Omsland et al. (2014)]. For instance, the RNA-to-DNA ratio is three times lower in EBs than RBs (Tamura et al. 1967). Since EBs do not actively divide, the protein pool is not replenished to the same extent as in RBs, thus this lower RNA-to-DNA ratio is expected. DNA

Fig. 2 EBs face different environments. EB genesis occurs in the mature inclusion (left, EBs are depicted as orange circles), separated from the host cytoplasm. RBs control the import of ions and small molecules through the inclusion membrane, providing a stable environment. In particular, RB activities lead to the accumulation of glycogen in the *C. trachomatis* inclusion lumen, before it is stored in the EBs themselves. It is very different from the extracellular conditions to which EBs are exposed before entering a new host cell (centre). In the lower genital tract, EBs are exposed to the genital flora, which generates a low pH. The squamous stratified epithelium is protected by an abundant glycocalyx. Upon ascending the genital tract, EBs face a sterile environment with close to neutral pH. The epithelium of the endometrium and the fallopian tubes are made of single columnar cells. The presence of ciliated cells, which provide mechanical clearance, and the secretion of a thick layer of mucus restrain EB adhesion and internalization. Both in the lower and the upper genital tracts, the extracellular environment changes during the menstrual cycle. Once internalized (right), EBs are transiently shielded from external resources and become exposed to some innate defence mechanisms. Within a couple of hours, novel genes are expressed to start establishing exchanges with the host cytoplasm.
condensation in the EB nucleoid reduces access of components of the transcription machinery to the nucleic acid, which contributes to reduced transcriptional activity. However, transcription takes place in EBs (Sarov and Becker 1971), and beyond the mere quantitative aspect, RBs and EBs exhibit very different transcriptional profiles (Albrecht et al. 2011). Consistently, proteomics data also showed that EBs contain a specific set of proteins, with a high representation of proteins involved in energy metabolism, transcription and translation. This supports the view that energy-dependent activities play a central role in the biology of the infectious particle (Saka et al. 2011; Skipp et al. 2016; Vandahl et al. 2001) (Fig. 1).

The second category of proteins enriched in EBs was the components of the T3S machinery, and associated chaperones and effector substrates. This protein group represented ~14 % of the EB proteome compared to ~5 % of the RB (Saka et al. 2011). Consistent with these observations, many of the genes encoding elements of the T3S apparatus and effectors are strongly expressed at the end of the infectious cycle, when EBs predominate in the bacterial population (Albrecht et al. 2011). Thus, EBs are released primed with a battery of T3S complexes clustered on one pole of the outer membrane (Mueller et al. 2014). The large pool of ATP measured in EBs (Tipples and McClarty 1993) likely provides the energy for rapid effector translocation upon contact with the host cell plasma membrane.

1.3 A Metabolism Centred on Glucose Catabolism

Although sequencing of the C. trachomatis genome revealed an intrinsic ability to produce ATP, it was unclear whether this capacity was actually utilized by the EBs. Proteomic analysis of C. pneumoniae EBs revealed a large number of proteins involved in ATP-generating metabolic pathways such as glycolysis and the tricarboxylic acid cycle (Vandahl et al. 2001), a finding later confirmed by quantitative proteomics on C. trachomatis EBs (Saka et al. 2011; Skipp et al. 2016).

An axenic medium, that sustained transcriptional and translational activities, was used to distinguish the nutritional requirements of the two forms of the bacteria. Most notably, EBs were dependent upon glucose-6-phosphate (G6P) for ATP synthesis, as well as for transcription and translation, while RBs were entirely dependent upon exogenous ATP as an energy source (Omsland et al. 2012). These data definitively established the fact that EBs do indeed produce ATP. Whether this occurs when the bacteria are still within the large inclusion (an environment largely mimicked by the axenic media), in the early bacterial containing vacuoles after invasion, or whether they equally use this capacity during the extracellular stage of the developmental cycle, now requires further investigation (Omsland et al. 2014).

How do the EBs obtain glucose? The ability for the protein Uhpc of C. pneumoniae to transport G6P was demonstrated in E. coli (Schwoppe et al. 2002). Very recently, it was shown that C. trachomatis EBs import only G6P, but not glucose-1-phosphate or glucose (Gehre et al. 2016), consistent with the fact that Chlamydiaceae have dispensed with the gene encoding hexokinase, in contrast to
the environmental chlamydiae (Collingro et al. 2011). Uhpc is more abundant in RBs, but is also detectable in EBs (Saka et al. 2011; Skipp et al. 2016) and likely mediates G6P import from the inclusion lumen. In *C. trachomatis* inclusions, glucose is stored in the lumen as glycogen. Glycogen accumulation proceeds via two pathways, the bulk uptake of host glycogen and de novo synthesis by secreted bacterial enzymes (Gehre et al. 2016). The polymer is also detectable in EBs, but not in RBs. Glycogen stores in EBs are likely to provide the energy required to sustain extracellular metabolism, as well as the rapid activities required during invasion, when transcription and translation must be initiated prior to the RBs possessing the means to hijack ATP pools from the host. However, ATP-driven metabolism rapidly takes over, with rapid transcription of the ADP/ATP translocase occurring within one hour of infection (Belland et al. 2003).

2 From the Generation to the Conversion of EBs: A Chronological Perspective

2.1 EB Biogenesis

Traditionally, the description of *Chlamydia* biology starts with the step of adhesion to the host cell, which defines the beginning of a new infectious cycle (AbdelRahman and Belland 2005). However, determinants of invasion were prepared at the end of the previous cycle, during the generation of the infectious progeny. Indeed, internalization occurs relatively fast with 75% entry within 15 min for serovar L2 (Vromman et al. 2014), leaving the early bacterial containing vacuole immediately exposed to innate cellular defences. The bacterium must secure its niche faster than de novo protein synthesis allows, thus proteins required early during infection are synthesized at the end of the previous cycle and stored. Consequently, this section begins with a brief recapitulation of the current stage of knowledge on EB biogenesis.

The differentiation of RBs into EBs is asynchronous. The first EBs are observed about 18 hpi, while most of the bacteria are still in the replicative form and continue to divide for several hours. Mature inclusions contain a mixture of EBs and RBs, and other diverse forms, together referred to as intermediate bodies. EBs thus initially reside in a very controlled environment and likely benefit nutritionally from proximity to the surrounding RBs (Fig. 2). The signal(s) that trigger RB-to-EB differentiation are still unknown and are not reproduced in an axenic medium. Since the bacteria residing within one inclusion do not initiate the differentiation programme simultaneously, this might involve stochastic variations in the expression of a given sensor. In any event, alterations in the gene expression pattern are observed in the second half of the infectious cycle, with the expression of late genes (Belland et al. 2003), presumably driving the physiological and morphological changes during EB biogenesis. In particular, the expression of histone-like proteins
leads to the compaction of the nucleoid, a phenotype observed by electron microscopy. Interestingly, inhibition of LOS synthesis does not impact upon RB replication but inhibited the expression of selected late-stage proteins and the generation of EBs, suggesting the existence of an outer membrane check point to proceed to EB transition (Nguyen et al. 2011). Also, muramidase is enriched in EBs, suggesting that peptidoglycan structures synthesized in the RB are degraded during the conversion (Skipp et al. 2016).

2.2 The Extracellular Episode

This is the least well documented episode of the EB journey. Different species of Chlamydia are exposed to very diverse extracellular environments, depending on the specific niche. Raman microspectroscopy revealed that extracellular Protochlamydia amoebophila showed metabolic activity and remained infectious for as long as three weeks after release (Haider et al. 2010). A second study showed that the availability of D-glucose is essential to sustain metabolic activity. Likewise, the infectivity of C. trachomatis declined more rapidly in the absence of nutrients (Sixt et al. 2013). While Haider et al. (2010) demonstrated amino acid uptake and protein synthesis after extracellular incubation of C. trachomatis, it is unknown how long C. trachomatis EBs can persist viably in the natural extracellular environment and to what extent an active metabolism sustains this. Ascension through the genital tract exposes the bacteria to different stimuli including the absence or presence of other microorganisms, and changes in pH, oxygen and nutrient concentration, or exposure to antimicrobial defence systems. A recent study showed that LL-37, a member of the cathelicidin family of antimicrobial peptides produced by mucosal epithelial cells and neutrophils, exhibited anti-chlamydial activity (Tang et al. 2015). This was blocked when the antimicrobial peptides were pre-incubated with a chlamydial protease named CPAF, known to be translocated into the host cytoplasm during infection. The authors proposed that CPAF may be released to counteract antimicrobial peptide activities during the extracellular stage of infection.

2.3 The Adhesion Step

In contrast, adhesion of EBs to host cells has been investigated extensively, with the hope that the identification of the factors involved in this crucial early step would enable the design of new inhibitory molecules that could act as potential therapeutics. C. trachomatis EBs normally target polarized epithelial cells of mucosal surfaces. In vitro, almost all the cell types that have been tested, whether polarized or not, can be infected with only very little variation in the attachment or entry efficiency (Guseva et al. 2007). While the molecular mechanisms underlying
attachment are still not well understood, all the data to date suggest that chlamydial adhesion relies on multiple redundant adhesion molecules, both on the bacteria and on the host surface. This distinguishes the entry mechanism from those of *Listeria monocytogenes* and *Yersinia enterocolitica* where defined bacterial surface invasins engage specific host cell receptors to promote pathogen internalization. Considering the fact that a failure in bacterial adhesion would definitively interrupt the developmental cycle, it seems only logical that the bacteria have evolved several redundant mechanisms to attach to eukaryotic cells. Over the years, a number of molecules on the bacterial surface have demonstrated to possess adhesin-like properties in vitro. These have been recently reviewed in detail (Hegemann and Moelleken 2012).

One prominent mediator of bacterial attachment is actually derived from host molecules. Glycosaminoglycans (GAGs) are linear glycoside chains composed of negatively charged disaccharide repeat units, such as heparan sulphate. Proteoglycans, proteins with covalently attached GAGs, are abundant in the extracellular matrix and on the plasma surface of eukaryotic cells, and are used for adhesion of a number of viruses and bacteria. Compelling evidence indicated that chlamydiae bound exogenous heparan sulphate and exploited it in a tripartite configuration, to mediate invasion by engaging a host receptor (Chen and Stephens 1994). Later, it was shown that the N-terminal domain of the bacterial protein OmcB contained a heparin-binding domain, and that OmcB behaved as an adhesin (Moelleken and Hegemann 2008). Several studies had reported that different *C. trachomatis* biovars showed different requirements for GAGs (Hegemann and Moelleken 2012). The N-terminal domain of OmcB is variable, and the data obtained in vitro regarding OmcB adhesive properties from different species corresponded to the differences in the requirement for GAGs observed during infection studies. Thus, OmcB is likely the bacterial component of the tripartite interaction between the bacteria, GAGs and the host cell, although it cannot be ruled out that as yet unidentified bacterial molecules are also involved.

In addition to OmcB/GAGs, a number of molecules present on the surface of EBs have been implicated in their ability to bind eukaryotic cells, including MOMP, the major constituent of the COMC (Hegemann and Moelleken 2012). More recently, attention has turned to a family of polymorphic membrane proteins (Pmps), whose existence was revealed by genome sequencing (Stephens et al. 1998). *C. trachomatis* have a repertoire of 9 Pmps, while *C. pneumonia* have 21. They are autotransporters, present on the outer membrane of EBs, where they associate to varying degrees with the COMC (Liu et al. 2010) and undergo proteolytic cleavage (Hegemann and Moelleken 2012). Patients with *C. trachomatis* genital infection display different antibody profiles against individual or multiple Pmps (Tan et al. 2009), suggesting that these proteins are variably expressed. In vitro heterogeneity in the expression of the different Pmps was indeed observed, but the underlying mechanism is not known (Tan et al. 2010). Members of the family show little overall similarity, except for the presence of multiple tetrapeptide repeats of GGA(I,L,V) and FxxN. The Hegemann laboratory demonstrated that these motifs mediate adhesion to cell surface receptor(s), and incubation with
recombinant Pmps led to a decrease in bacterial infectivity as would be predicted (Molleken et al. 2010). The adhesin-like properties of Pmps appear to be species specific as incubation with recombinant Pmps from *C. trachomatis* inhibited subsequent infection with *C. trachomatis* but not with *C. pneumoniae*, and vice versa (Becker and Hegemann 2014). In agreement with the view that Pmps exhibit species specificity, the epidermal growth factor (EGF) receptor was identified as the binding partner *C. pneumoniae* Pmp21, but did not mediate adhesion of *C. trachomatis* (Becker and Hegemann 2014; Molleken et al. 2013). Many questions about how Pmps operate at a molecular level remain open. Pre-incubation of cells with individual Pmps blocked infection to a similar degree, whether they were mixed together or employed alone. This indicates that Pmps of one species recognize the same host cell receptor or group of receptors. Also, Pmps may form hetero-oligomeric complexes on the bacterial surface (Swanson et al. 2009). This could reconcile why despite apparent redundancy between adhesive Pmps, interfering with adhesive properties of one specific Pmp, for instance by incubating with recombinant PmpX or using anti-PmpX serum, significantly impairs bacterial adhesion (Becker and Hegemann 2014). Intriguingly, a subset of Pmps is exclusively expressed by RBs (Albrecht et al. 2011; Saka et al. 2011; Skipp et al. 2005), indicating that their role in infection might not be restricted to EB adhesion alone.

Antibodies against LOS or the inhibition of LOS synthesis significantly reduce chlamydial infectivity (Fadel and Eley 2008), indicating that LOS is involved in adhesion, and/or in a subsequent step during bacterial internalization. A recent study showed that a small molecule that binds lipid A with high affinity inhibits both adhesion and entry, resulting in a strong inhibition of cellular infection (Osaka and Hefty 2014). It is not known whether the inhibitory effect observed on entry reflects a direct role of LOS in this step or is a indirect consequence of functional disruption to other outer membrane surface molecules important for entry, such as T3S systems.

Snapshots of surface attached EBs reveal that an array of T3S complexes is exposed on the EB pole facing the plasma membrane (Nans et al. 2014). This is consistent with the idea that this secretion system is activated upon attachment, and that the translocation of effectors triggers bacterial uptake. It is not yet known, however, whether the bacterial proteins that promote attachment show the same polarization as the secretion machineries. Finally, comparison of the T3S complexes from free or cell-attached *C. trachomatis* revealed a marked compaction of the basal body of the secretion apparatus when the needle tip contacted the host cell, indicating that the periplasmic domains of the basal body components compress during effector translocation (Nans et al. 2015).

Adhesion involves two partners, the bacterium and the host. It appears that several host proteins bind EBs, mirroring the diversity of bacterial adhesins [reviewed by (Hegemann and Moelleken 2012)]. The platelet-derived growth factor receptor (Elwell et al. 2008), the fibroblast growth factor 2 (Kim et al. 2011) and, more recently, the ephrinA2 receptor (Subbarayal et al. 2015) have been implicated in *C. trachomatis* adhesion to cells. These transmembrane receptors are signalling molecules, and some data indicate that their activity is also exploited to enhance
bacterial invasion. Two chaperone proteins of the endoplasmic reticulum present at the plasma membrane have also been implicated in *C. trachomatis* adhesion, the protein disulphide isomerase (PDI) (Conant and Stephens 2007; Davis et al. 2002) and the glucose regulated protein 96 (Gp96) (Karunakaran et al. 2015), and in their absence bacterial adhesion is reduced. Part of this effect is likely indirect, as the absence of each of these chaperones negatively impacts the levels of several other proteins at the plasma membrane, including some of the other putative EB targets mentioned above. Interestingly, PDI has a second role in EB entry as its thiol-mediated oxidoreductase activity is necessary for invasion (Abromaitis and Stephens 2009). One attractive hypothesis is that this host isomerase reduces the abundant disulphide bonds present on the surface of EBs, in particular in components of the secretion apparatus, thereby contributing to the translocation of bacterial proteins required for invasion (see below) (Abromaitis and Stephens 2009; Betts-Hampikian and Fields 2011; Ferrell and Fields 2016).

2.4 The Entry Step

Entry of all chlamydiae relies on the plasticity of the actin cytoskeleton, as inhibitors of actin polymerization attenuate bacterial entry (Carabeo et al. 2002). *C. trachomatis* invasion is sustained by discreet and transient actin polymerization, which drives the engulfment of the particle into a tight membrane bounded vesicle, disconnected from the extracellular medium (Carabeo et al. 2007; Nans et al. 2014). Bacterial uptake is orchestrated by factors from both the bacteria and the host. On the host side, regulators of the actin network are activated upon infection, such as the small GTPase Rac1 (Carabeo et al. 2004), and regulators of plasma membrane trafficking such as the small GTPase Arf6 (Balañá et al. 2005). Rac1 interacts with the WAVE actin nucleation promoting factor complex, which in turn stimulates the Arp2/3 complex. Bacterial adhesion to signalling receptors may initiate part of these signalling cascades that trigger the activation of host actin regulators (Elwell et al. 2008). Concomitantly, the bacteria secrete effector proteins that also directly modify the host cytoskeleton and fully participate in the entry process. A significant contributor is the bacterial protein translocated actin-recruiting phosphoprotein (TarP) (Clifton et al. 2004). TarP is a multi-domain scaffold protein that interacts with the actin cytoskeleton at several levels, either directly via its intrinsic actin nucleation activity (Jewett et al. 2006, 2010), or indirectly by engaging actin (Jiwani et al. 2013), or actin-binding proteins such as focal adhesion kinase (Thwaites et al. 2014) and vinculin (Thwaites et al. 2015). Additionally, the N-terminal of *C. trachomatis* TarP is phosphorylated by host cell kinases (Jewett et al. 2008; Mehlitz et al. 2008), leading to the engagement of Rac1 guanine nucleotide exchange factors, and in turn to Rac1 activation (Lane et al. 2008). Less is known about the other immediate effectors (discussed below), but it is likely that, in addition to TarP, they contribute to the fine tuning of actin polymerization and depolymerization, as well as the membrane encapsulation of internalized bacteria.
TarP translocation is likely activated upon intimate attachment to the host cell, an event that probably serves as a trigger for T3S, although the molecular details of the mechanisms controlling this process remain unknown. Many questions remain regarding the control of T3S in chlamydiae (recently reviewed by Ferrell and Fields 2016), and it is likely that only a few of the pre-packed effectors, translocated into the host cell within the first minutes of infection, have been identified. In addition to TarP, the actions of two additional effectors are partially understood: CT694, which interacts with the cytoskeletal organizing protein AHNAK (Hower et al. 2009), and the translocated early phosphoprotein or TepP (CT875). Like TarP, TepP is phosphorylated in the host cytoplasm, allowing its interaction with the scaffolding protein CrkI/II. Cells infected with a tepP mutant showed altered expression of a subset of genes associated with the innate immune response, suggesting that this effector may serve to interfere with signalling cascades important for the regulation of the innate immune response to Chlamydia (Chen et al. 2014). Interestingly, TarP, CT694, CT695 [another immediate effector of unknown function (Mueller and Fields 2015)] and TepP share the same T3S chaperone, Slc1 (Brinkworth et al. 2011; Chen et al. 2014; Pais et al. 2013). In EBs, the majority of TarP, but only a minor proportion of TepP, is found pre-complexed with Slc1. Pre-engagement with its cognate chaperone could prime TarP for rapid translocation and explain why its translocation is detected earlier than that of TepP (Chen et al. 2014).

Finally, the urogenital serovars of C. trachomatis possess a supplementary gene in the plasticity zone, ct166. The encoded protein presents homology with the N-terminal glucosyltransferase domain of clostridial glucosylating toxins (CGTs). The glucosylation activity of these enzymes specifically blocks GTP-binding proteins of the Rho and Ras families. CT166 is detected within EBs, although the proof of its translocation into the host cytosol upon infection is still missing. However, ectopic production of the protein induces actin reorganization comparable to that induced by CGTs. Moreover, expression of CT166 in trans severely impaired chlamydial uptake (Thalmann et al. 2010). Thus, CT166 could locally mediate the glucosylation of Rac1 leading to its inactivation, and an associated reduction in actin polymerization once invasion is complete. In addition, it is also possible that CT166 glucosylates Ras, although the potential consequence of this awaits experimental validation in an infection system (Bothe et al. 2015).

A major challenge in the field is to define what determines the specificity of each chlamydial species for a host or for a particular tissue. Factors on the EB surface are likely part of the answer, since they show differences in their adhesion properties, especially through OmcB and the Pmp family. TarP also exhibits sequence polymorphism between species and has been proposed to be one potential determinant of host specificity (Lutter et al. 2010). Finally, the ct166 gene, which is located in the plasticity zone and is not expressed in all species, might also modulate infectivity (Belland et al. 2001).
2.5 Still Space for Early Effectors

As mentioned above, once encapsulated within the tight early bacterial containing vacuole, the EB must secure this niche faster than de novo protein synthesis would allow (Fig. 3). This is probably the role of yet uncharacterized effectors, which might be translocated soon after the invasion step. In the absence of tools to specifically manipulate Chlamydia genome, several laboratories have searched for putative effector proteins based on the presence an N-terminal amino acid sequence recognized by the T3S machineries of other bacteria such as Yersinia or Shigella. Large-scale screens have identified a number of potential effectors (da Cunha et al. 2014; Subtil et al. 2005). An alternative strategy has been used to identify putative T3S chaperones, based on similarities with known chaperones of T3S in other bacteria and to identify interacting partner proteins that also constitute effector candidates (Pais et al. 2013). Validation of the candidates has long been a bottleneck, due to the need to obtain good antibodies to detect the putative effector. Even then, the arising data were not always conclusive, since effectors that are translocated at such a small dose become diluted in the host cytoplasm and consequently escape antibody-based detection. Recently, a strategy based on the detection of fluorescently labelled ß-lactamase reporters has been successfully adopted to detect the translocation of chlamydial T3S effectors (Mueller and Fields 2015). It is likely that this method will accelerate the identification of novel effectors and enable new functional studies.

Fig. 3 Synopsis of C. trachomatis invasion in epithelial cells. Attachment of the infectious particle triggers the activation of T3S. Reduction of the disulphide bonds at the EB surface might be initiated at this stage, to allow for effector translocation. The time needed for completion of this step is not known. Early effector actions include manipulation of the host cytoskeleton and of membrane traffic. Signalling through host membrane receptors also contribute to membrane rearrangement and closure, resulting in the engulfment of the infectious particle in the nascent inclusion. T3S apparatuses may transiently disassemble, until a second wave of secretion begins, this time of neo-synthesized effectors (immediate early genes turned on). Nucleoid decompaction is only observed later. Mature inclusions show remodelling of peripheral actin (and of other cytoskeleton elements), when this is initiated is not known.
What do we know about host cell defence against intruders, and the strategies used by *Chlamydia* to circumvent them? It has long been recognized that the *Chlamydia* inclusion engages in few interactions with endocytic compartments, thereby escaping the default pathway of fusion with late endocytic compartments. When bacterial protein synthesis is inhibited, the inclusion eventually fuses with late compartments, suggesting that bacterial effectors contribute to the escape from the default pathway (Scidmore et al. 1996). However, even under inhibited conditions, the fusion with acidic endosomal compartments occurred only later. Thus, it is possible that pre-synthesized effectors define the nascent inclusion as a non-endocytic compartment, acting prior to further effectors that are synthesized later in the infection cycle. Another very ancestral cellular defence strategy against microbial invasion is the autophagic machinery. Intracellular bacteria are recognized, and eliminated by this process, unless they have acquired escape strategies (Randow and Youle 2014). *C. trachomatis* appears to cope well with evading the host autophagic response, at least in cell culture models, since good EB preparations can result in close to one inclusion per EB (Omsland et al. 2012). The autophagosome marker LC3 associates with the inclusion membrane; however, it appears that it does so as a microtubule-associated protein rather than an autophagosome component (Al-Younes et al. 2011). In mouse embryonic fibroblasts deficient for conventional autophagy, the generation of infectious chlamydial progeny increases (Yasir et al. 2011). This effect occurs predominantly through acceleration of the bacterial growth rate, rather than by the formation or retention of more inclusions, suggesting that autophagy per se is unable to eliminate inclusions, at least in fibroblasts. By contrast, in macrophages and in the presence of interferon γ, autophagy appears to be mobilized for the elimination of inclusions (Al-Zeer et al. 2013). Thus, it appears that while the autophagy machinery can limit chlamydial development under some circumstances, *C. trachomatis* has developed strategies to significantly counteract this arm of the host defence. How this is achieved is not known. One classical signal to recruit the autophagy machinery is ubiquitination (Rogov et al. 2014). During invasion, a transient enrichment in ubiquitin was observed at the site of entry of *C. caviae*. This species encodes for a protein with deubiquitinase activity, *ChlaOTU*, and it was proposed that *ChlaOTU* is involved in the rapid dissipation of ubiquitin at the site of entry, presumably to avoid the formation of autophagic membranes around early bacterial containing vacuoles (Furtado et al. 2013). *C. trachomatis* has no *chlaOTU* gene; however, it encodes two deubiquitinases, which are translocated in the host cytoplasm during infection (Misaghi et al. 2006). ChlaDub1 is enriched in RBs, but it is also present in EBs (Saka et al. 2011). Whether this effector also functions at a very early stage of infection remains to be investigated.

Finally, host molecules recruited to early bacterial containing vacuoles directly or indirectly might promote inclusion biogenesis. For instance, the EphA2 receptor remains active after bacterial internalization and supports the activation of the PI3K/Akt signalling pathway that is required for normal chlamydial development (Subbarayal et al. 2015).
2.6 Setting Up the Decor Before Leaving the Stage to the RB

Following invasion, the bacteria undergo dramatic morphological changes, which only become apparent 2 hpi (Shaw et al. 2000). Nucleoid relaxation certainly contributes to the enhancement of gene transcription during the EB-to-RB transition, but this is only fully completed 6–8 hpi, although transcription is initiated less than 1 hpi (Belland et al. 2003). In fact, bacterial protein synthesis is needed for DNA decondensation itself. Early bacterial protein synthesis results in the production of a small metabolite that disrupts the association of the two histone-like proteins with DNA (Grieshaber et al. 2004, 2006). Thus, the selective early gene transcription, restricted to a subset of less than 30 genes called immediate early genes (Belland et al. 2003), is not regulated by nucleoid decondensation. These genes are transcribed by the σ^{66} RNA polymerase. Whether they are specifically activated, and how, is still an open question. Another possibility is that transcription of these genes may be constitutively active, while others remain repressed. Experimental data using in vitro transcription assays led the Tan laboratory to propose that early in the developmental cycle, DNA supercoiling levels are low (Niehus et al. 2008), allowing only the transcription of genes with supercoiling independent promoters (Cheng and Tan 2012). One of these immediate early gene is euo, which codes for a transcriptional repressor that silences the expression of σ^{66} and σ^{28} dependent late genes (Rosario et al. 2014). Scc4, a small protein that interacts with two subunits of the RNA polymerase, potentially links T3S and transcriptional regulation (Rao et al. 2009), as it also serves as a chaperone for the T3S substrate CopN (Silva-Herzog et al. 2011). Two recent papers confirmed that the dual functions of Scc4 may link T3S to the regulation of gene expression in Chlamydia (Hanson et al. 2015; Shen et al. 2015). However, when Scc4 regulates RNA polymerase during the bacterial developmental cycle is not yet clear. One study suggested that Scc4 regulates early transcription once released from CopN (Shen et al. 2015). This contradicts the initial characterization of Scc4 as a negative regulator of transcription, which suggested that transcriptional regulation by Scc4 is limited to late in the developmental cycle (Hanson et al. 2015).

One intriguing finding arising from recent cryo-EM studies was the seemingly early disappearance of T3S complexes once invasion was completed (Nans et al. 2014). This would mean that effector translocation is potentially paused early after entry and only resumes when novel T3S complexes are assembled. However, the immediate early genes include ten bacterial proteins that are translocated by a T3S mechanism into the inclusion membrane, called Inc proteins (Belland et al. 2003; Dehoux et al. 2011; Weber et al. 2015). Inc proteins do not accumulate in bacteria and are probably immediately translocated upon synthesis. Thus if indeed, T3S complexes are disassembled after invasion, they must be rapidly reassembled, possibly reusing former constituents or with subtly altered composition, as the genes coding for the components of the apparatus are not amongst the early transcribed genes. These “immediate” Inc proteins constitute a second generation of effectors, which, in continuity with the action of pre-packed effectors secreted
during the invasion step, define the characteristics of the early inclusion membrane. Consequently, they dictate the interactions between the inclusion and the host, even before the EB-to-RB conversion is completed. Amongst the ten immediate Inc proteins, three have been functionally studied. IncD links the host lipid transfer protein CERT to the inclusion membrane, allowing for ceramide uptake directly from the endoplasmic reticulum (Agaisse and Derre 2014; Derre et al. 2011). CT229 interacts with Rab4, which is one of the several small Rab GTPases recruited to the inclusion membrane (Rzomp et al. 2006). Finally, CT850 interacts with dynein light chain DYNLT1, indicating that it might promote appropriate positioning of the inclusion at the microtubule-organizing centre (Mital et al. 2015).

3 Conclusion

Most bacteria exhibit morphological changes in response to environmental cues. What makes chlamydiae unusual is the pronounced dichotomy between its two forms, and the fact that cycling between them has become absolutely required. In the last decade, several unsuspected capacities have been discovered in EBs. One big challenge in the field remains to understand when these capacities are used, and to what extent EBs adapt to the different environments they face between two growth phases.

Acknowledgments We thank Dr. Andrea Nans for providing the EM image shown in Fig. 1. This work was supported by the European Research Council (NUChLEAR grant number 282046), the Agence Nationale pour la Recherche (Expendo ANR-14-CE11-0024-02), the Institut Pasteur and the Centre National de la Recherche Scientifique. Research on EB structure and inclusion biogenesis is supported by projects grants MR/N000846/1 and MR/I008696/1 from the Medical Research Council to R.D.H.

References

One Face of *Chlamydia trachomatis*: The Infectious Elementary Body

Davis CH, Raulston JE, Wyrick PB (2002) Protein disulfide isomerase, a component of the estrogen receptor complex, is associated with Chlamydia trachomatis serovar E attached to human endometrial epithelial cells. Infect Immun 70:3413–3418

One Face of *Chlamydia trachomatis*: The Infectious Elementary Body

Résumé

C. trachomatis est une bactérie Gram-négative intracellulaire obligatoire et un pathogène humain. Elle est la première cause de maladie sexuellement transmissible d’origine bactérienne et est également responsable, dans les pays en développement, d’infections oculaires pouvant conduire à la cécité (trachome).

Son cycle de développement est complexe et bi-phasique, et a lieu au sein d’un compartiment cellulaire appelé une inclusion. Cette compartimentation restreint les interactions de la bactérie avec la cellule hôte. Grâce à un système de sécrétion de type III (SST3), *Chlamydia* sécrète des protéines effectrices (appelées effecteurs) dans le cytosol de la cellule, qui interagissent avec différentes fonctions cellulaires afin de promouvoir la survie et la multiplication de la bactérie. Identifier les fonctions des effecteurs peut donc permettre de mieux comprendre la biologie du pathogène.

L’objet de cette thèse a été l’étude fonctionnelle de CT622, une protéine hypothétique de *C. trachomatis*. Nous avons mis en évidence par des tests de sécrétion hétérologue chez *S. flexneri* que CT622 est un effecteur du SST3 de *Chlamydia*. Nous avons en outre identifié une protéine bactérienne qui s’associe à CT622 et démontré que cette protéine, CT635, agit comme chaperone, stabilisant CT622 et assistant sa sécrétion. Nous proposons en conséquence de désigner CT635 par Scc5 (Special chlamydia chaperone 5). Des expériences d’immunofluorescence nous ont permis de montrer que CT622 est sécrétée dès les temps très courts d’infection (1h). L’obtention de bactéries n’exprimant plus CT622 a démontré que CT622 n’est pas une protéine indispensable au développement de *Chlamydia in vitro*. Cependant, les études préliminaires indiquent que l’absence de CT622 entraîne un retard de développement ainsi qu’un défaut de sécrétion de type III. Enfin, nous avons initié l’étude de la fonction de CT622 en identifiant plusieurs molécules avec lesquelles CT622 est capable d’interagir : le geranylgéranyle diphosphate, la protéine Rab39 et la protéine Atg16L1. La suite de ce travail s’attachera à comprendre, en disséquant le comportement de la souche n’exprimant pas CT622, comment les interactions déjà identifiées, ou d’autres partenaires eukaryotes ou prokaryotes encore à découvrir, contribuent à l’établissement d’une niche favorable à l’essor de l’infection.