L. , T. Des-effecteurs-pro-tumoraux, ?. Favorisant-la-progression-tumorale, and .. , 39 II.3.2) Mécanismes médiés par les lymphocytes 40 II.3.2.1) Inhibition des réponses anti-tumorales 40 II.3.2.2) Rôles de l'IL-17 41 a) Impact sur l'angiogenèse, 41 b), p.42

I. Nos2 and .. Système-immunitaire-et-cancer, 46 III.1. NOS2, une synthétase inductible de l'oxyde nitrique (NO), p.46

.. 'organisme and N. Les, 46 III.1.1.1), III.1.1), p.47

N. Du, 48 III.1.2.1) Actions directes 49 a) Action sur les protéines, III.1.2) Mécanismes d'action......... 49 b) Action sur les lipides et les acides nucléiques, p.50

.. De-nos2-dans-les-cellules-immunes, 50 III.1.3.1) Cytokines et produits bactériens, p.52

.. De-nos2-sur-les-cellules-immunitaires, 52 III.2.1) Fonctions de NOS2 dans les cellules myéloïdes 52 III.2.1.2) Suppression des réponses immunitaires dans le contexte tumoral, ., p.53

N. Effet-du and T. Sur-les-lymphocytes, 54 III.2.2.1) Effets du NO exogène 54 a) Inhibition de la prolifération, p.54

M. Sur-le, 57 III.3.1) Effets du NO sur la transformation cellulaire néoplasique 57 III.3.2) Effets du NO sur la croissance tumorale et la dissémination métastatique, III.3. Effets ambivalents du NO dérivé de NOS2 dans le cancer, p.58

D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-74, 2011.
DOI : 10.1016/j.cell.2011.02.013

F. S. Hodi, Improved Survival with Ipilimumab in Patients with Metastatic Melanoma, New England Journal of Medicine, vol.363, issue.8, pp.711-734, 2010.
DOI : 10.1056/NEJMoa1003466

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549297

A. M. Eggermont, A. Spatz, C. Robert, and C. Melanoma, Cutaneous melanoma, The Lancet, vol.383, issue.9919, pp.816-843, 2014.
DOI : 10.1016/S0140-6736(13)60802-8

T. Boon, HUMAN T CELL RESPONSES AGAINST MELANOMA, Annual Review of Immunology, vol.24, issue.1, pp.175-208, 2006.
DOI : 10.1146/annurev.immunol.24.021605.090733

A. Mackensen, Direct evidence to support the immunosurveillance concept in a human regressive melanoma., Journal of Clinical Investigation, vol.93, issue.4, pp.1397-402, 1994.
DOI : 10.1172/JCI117116

H. Gogas, Prognostic Significance of Autoimmunity during Treatment of Melanoma with Interferon, New England Journal of Medicine, vol.354, issue.7, pp.709-727, 2006.
DOI : 10.1056/NEJMoa053007

G. P. Dunn, Cancer immunoediting: from immunosurveillance to tumor escape, Nature Immunology, vol.3, issue.11, pp.991-999, 2002.
DOI : 10.1038/ni1102-991

P. Matzinger, Tolerance, Danger, and the Extended Family, Annual Review of Immunology, vol.12, issue.1, pp.991-1045, 1994.
DOI : 10.1146/annurev.iy.12.040194.005015

N. P. Restifo, M. E. Dudley, and S. A. Rosenberg, Adoptive immunotherapy for cancer: harnessing the T cell response, Nature Reviews Immunology, vol.3, issue.4, pp.269-81, 2012.
DOI : 10.1038/nri3191

E. Vivier, Targeting natural killer cells and natural killer T cells in cancer, Nature Reviews Immunology, vol.5, issue.4, pp.239-52, 2012.
DOI : 10.1038/nri3174

URL : https://hal.archives-ouvertes.fr/hal-00685473

M. Messaoudene, Mature Cytotoxic CD56bright/CD16+ Natural Killer Cells Can Infiltrate Lymph Nodes Adjacent to Metastatic Melanoma, Cancer Research, vol.74, issue.1, pp.81-92, 2014.
DOI : 10.1158/0008-5472.CAN-13-1303

L. M. Weiner, R. Surana, and S. Wang, Monoclonal antibodies: versatile platforms for cancer immunotherapy, Nature Reviews Immunology, vol.279, issue.5, pp.317-344, 2010.
DOI : 10.1038/nri2744

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508064

P. Allavena, The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance, Immunological Reviews, vol.71, issue.1, pp.155-61, 2008.
DOI : 10.1158/0008-5472.CAN-05-2714

F. Klug, Low-Dose Irradiation Programs Macrophage Differentiation to an iNOS+/M1 Phenotype that Orchestrates Effective T Cell Immunotherapy, Cancer Cell, vol.24, issue.5, pp.589-602, 2013.
DOI : 10.1016/j.ccr.2013.09.014

URL : http://doi.org/10.1016/j.ccr.2013.09.014

J. D. Bui, R. D. Schreiber, and J. , Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes?, Current Opinion in Immunology, vol.19, issue.2, pp.203-211, 2007.
DOI : 10.1016/j.coi.2007.02.001

G. F. Hofbauer, Melan A/MART-1 immunoreactivity in formalin-fixed paraffin-embedded primary and metastatic melanoma: frequency and distribution, Melanoma Research, vol.8, issue.4, pp.337-380, 1998.
DOI : 10.1097/00008390-199808000-00007

M. D. Vesely, Natural Innate and Adaptive Immunity to Cancer, Annual Review of Immunology, vol.29, issue.1, pp.235-71, 2011.
DOI : 10.1146/annurev-immunol-031210-101324

A. A. Wu, Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients, Nat Med, issue.47 56, pp.677-85, 1999.

C. Maczek, Differences in phenotype and function between spontaneously occurring melan-A-, tyrosinase- and influenza matrix peptide-specific CTL in HLA-A*0201 melanoma patients, International Journal of Cancer, vol.101, issue.3, pp.450-455, 2005.
DOI : 10.1002/ijc.20901

L. Derre, BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination, Journal of Clinical Investigation, vol.120, issue.1, pp.157-67, 2010.
DOI : 10.1172/JCI40070DS1

R. Hino, Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma, Cancer, vol.17, issue.7 pt 2, pp.1757-66, 2010.
DOI : 10.1002/cncr.24899

M. Gordon-alonso, N. Demotte, P. Van-der-bruggen, and M. G. , Sugars boost exhausted tumor-infiltrating lymphocytes by counteracting immunosuppressive activities of galectins The regulatory role of B cells in autoimmunity, infections and cancer: Perspectives beyond IL10 production, FEBS Lett, 2015.

S. Sakaguchi, T. Takahashi, and Y. Nishizuka, Study on cellular events in postthymectomy autoimmune oophoritis in mice. I. Requirement of Lyt-1 effector cells for oocytes damage after adoptive transfer, Journal of Experimental Medicine, vol.156, issue.6, pp.1565-76, 1982.
DOI : 10.1084/jem.156.6.1565

M. G. Roncarolo, Interleukin-10-secreting type 1 regulatory T cells in rodents and humans Nitric oxide induces CD4+CD25+ Foxp3 regulatory T cells from CD4+CD25 T cells via p53, IL-2, and OX40, Immunol Rev Proc Natl Acad Sci, vol.212, issue.3039, pp.28-50, 2006.

M. Asano, Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation, Journal of Experimental Medicine, vol.184, issue.2, pp.387-96, 1996.
DOI : 10.1084/jem.184.2.387

A. M. Bilate and J. J. Lafaille, Regulatory T Cells in Immune Tolerance, Annual Review of Immunology, vol.30, issue.1, pp.733-58, 2010.
DOI : 10.1146/annurev-immunol-020711-075043

M. Viguier, Foxp3 Expressing CD4+CD25high Regulatory T Cells Are Overrepresented in Human Metastatic Melanoma Lymph Nodes and Inhibit the Function of Infiltrating T Cells, The Journal of Immunology, vol.173, issue.2, pp.1444-53, 2004.
DOI : 10.4049/jimmunol.173.2.1444

J. F. Jacobs, Regulatory T cells in melanoma: the final hurdle towards effective immunotherapy?, The Lancet Oncology, vol.13, issue.1, pp.32-42, 1999.
DOI : 10.1016/S1470-2045(11)70155-3

G. Zhou, H. I. Strauss, and L. , Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment, J Immunol Clin Cancer Res, vol.17815, issue.1, pp.2155-62, 2007.

S. P. Hilchey, Follicular Lymphoma Intratumoral CD4+CD25+GITR+ Regulatory T Cells Potently Suppress CD3/CD28-Costimulated Autologous and Allogeneic CD8+CD25- and CD4+CD25- T Cells, The Journal of Immunology, vol.178, issue.7, pp.178-4051, 2007.
DOI : 10.4049/jimmunol.178.7.4051

H. Li, CD4 +CD25 + regulatory T cells decreased the antitumor activity of cytokine-induced killer (CIK) cells of lung cancer patients Interleukin-2 is essential for CD4+CD25+ regulatory T cell function Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation, J Clin Immunol Eur J Immunol J Exp Med, vol.27, issue.1922, pp.317-343, 2000.

F. Fallarino, Modulation of tryptophan catabolism by regulatory T cells Van den Eynde, Tryptophan-degrading enzymes in tumoral immune resistance Coordinated regulation of myeloid cells by tumours, 47. Gabrilovich, D.I. and S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system, pp.1206-1218, 2003.

J. I. Youn, Subsets of Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice, The Journal of Immunology, vol.181, issue.8, pp.181-5791, 2008.
DOI : 10.4049/jimmunol.181.8.5791

C. Meyer, Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab, Cancer Immunology, Immunotherapy, vol.60, issue.10, pp.247-57, 2014.
DOI : 10.1007/s00262-013-1508-5

T. Condamine, Regulation of Tumor Metastasis by Myeloid-Derived Suppressor Cells, Annual Review of Medicine, vol.66, issue.1, pp.97-110, 2015.
DOI : 10.1146/annurev-med-051013-052304

S. P. Ostrand-rosenberg, Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer, Cancer Immunol Immunother Cancer Res, vol.70, issue.101, pp.59-99, 2010.

B. Huang, Gr-1+CD115+ Immature Myeloid Suppressor Cells Mediate the Development of Tumor-Induced T Regulatory Cells and T-Cell Anergy in Tumor-Bearing Host, Cancer Research, vol.66, issue.2, pp.1123-1154, 2006.
DOI : 10.1158/0008-5472.CAN-05-1299

P. Serafini, Myeloid-Derived Suppressor Cells Promote Cross-Tolerance in B-Cell Lymphoma by Expanding Regulatory T Cells, Cancer Research, vol.68, issue.13, pp.68-5439, 2008.
DOI : 10.1158/0008-5472.CAN-07-6621

L. Yang, Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses, Cancer Cell PLoS Biol Cancer Res Cancer Immunol Res, vol.13, issue.39, pp.23-35, 2004.

C. Uyttenhove, Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase, Nature Medicine, vol.9, issue.10, pp.1269-74, 2003.
DOI : 10.1038/nm934

A. Carbonnelle-puscian, The novel immunosuppressive enzyme IL4I1 is expressed by neoplastic cells of several B-cell lymphomas and by tumor-associated macrophages, Leukemia, vol.29, issue.5, pp.952-60, 2009.
DOI : 10.1038/leu.2008.380

URL : https://hal.archives-ouvertes.fr/inserm-00392067

G. Finak, Stromal gene expression predicts clinical outcome in breast cancer, Nature Medicine, vol.25, issue.5, pp.518-545, 2008.
DOI : 10.1038/nm1764

B. Silva-santos, K. Serre, and H. , ???? T cells in cancer, Nature Reviews Immunology, vol.45, issue.11, pp.683-91, 2015.
DOI : 10.1038/nri3904

V. Groh, Human lymphocytes bearing T cell receptor gamma/delta are phenotypically diverse and evenly distributed throughout the lymphoid system, Journal of Experimental Medicine, vol.169, issue.4, pp.1277-94, 1989.
DOI : 10.1084/jem.169.4.1277

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189233/pdf

Y. H. Chien, C. Meyer, M. Bonneville, S. R. , and P. J. Egan, T Cells: First Line of Defense and Beyond, Annual Review of Immunology, vol.32, issue.1, pp.121-55, 2002.
DOI : 10.1146/annurev-immunol-032713-120216

L. D. Mcvay, Regulated expression and structure of T cell receptor gamma/delta transcripts in human thymic ontogeny, EMBO J, vol.10, issue.1, pp.83-91, 1991.

A. Hayday, Intraepithelial lymphocytes: exploring the Third Way in immunology, Nat Immunol, issue.211, pp.997-1003, 2001.

C. T. Morita, Nonpeptide antigens, presentation mechanisms, and immunological memory of human V??2V??2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens, Immunological Reviews, vol.151, issue.16, pp.59-76, 2007.
DOI : 10.1002/eji.1830220506

M. Bonneville, R. L. O-'brien, and W. K. Born, ???? T cell effector functions: a blend of innate programming and acquired plasticity, Nature Reviews Immunology, vol.18, issue.7, pp.467-78, 2010.
DOI : 10.1038/nri2781

A. A. Dar, R. S. Patil, S. V. Chiplunkar-ribeiro, S. T. , J. C. Ribot et al., Insights into the Relationship between Toll Like Receptors and Gamma Delta T Cell Responses. Front Immunol, 2014. 5: p. 366. 72 Five Layers of Receptor Signaling in gammadelta T-Cell Differentiation and Activation Natural and synthetic non-peptide antigens recognized by human gamma delta T cells, Nature, issue.6527, pp.375-155, 1995.
DOI : 10.3389/fimmu.2014.00366

URL : http://doi.org/10.3389/fimmu.2014.00366

H. J. Gober, Human T Cell Receptor ???? Cells Recognize Endogenous Mevalonate Metabolites in Tumor Cells, The Journal of Experimental Medicine, vol.263, issue.2, pp.163-171, 2003.
DOI : 10.1038/sj.onc.1203002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193814

S. Vavassori, Butyrophilin 3A1 binds phosphorylated antigens and stimulates human ???? T cells, Nature Immunology, vol.87, issue.9, pp.908-924, 2013.
DOI : 10.1158/0008-5472.CAN-06-3069

A. Q. Gomes, D. S. Martins, and B. Silva-santos, Targeting gammadelta T lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application, Cancer Res, issue.24, pp.70-10024, 2010.
DOI : 10.1158/0008-5472.can-10-3236

E. Agea, Human CD1-restricted T cell recognition of lipids from pollens, The Journal of Experimental Medicine, vol.234, issue.2, pp.295-308, 2005.
DOI : 10.1016/S1074-7613(00)80539-7

M. Dieude, Cardiolipin binds to CD1d and stimulates CD1d-restricted gammadelta T cells in the normal murine repertoire, J Immunol, issue.8, pp.186-4771, 2011.

C. R. Willcox, Cytomegalovirus and tumor stress surveillance by binding of a human ???? T cell antigen receptor to endothelial protein C receptor, Nature Immunology, vol.16, issue.9, pp.872-881, 2012.
DOI : 10.1016/S1074-7613(00)80035-7

M. P. Crowley, The recognition of the nonclassical major histocompatibility complex (MHC) class I molecule, T10, by the gammadelta T cell, G8, J Exp Med, issue.7, pp.185-1223, 1997.

E. J. Adams, Y. H. Chien, K. C. Garcia-groh, and V. , Structure of a gammadelta T cell receptor in complex with the nonclassical MHC T22 Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB, Science Proc Natl Acad Sci, vol.308, issue.8212, pp.227-258, 1999.

Y. Kong, The NKG2D ligand ULBP4 binds to TCR??9/??2 and induces cytotoxicity to tumor cells through both TCR???? and NKG2D, Blood, vol.114, issue.2, pp.310-317, 2009.
DOI : 10.1182/blood-2008-12-196287

M. Corvaisier, V??9V??2 T Cell Response to Colon Carcinoma Cells, The Journal of Immunology, vol.175, issue.8, pp.5481-5489, 2005.
DOI : 10.4049/jimmunol.175.8.5481

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.328.3695

M. Girardi, Regulation of Cutaneous Malignancy by gamma delta T Cells, Science, vol.294, issue.5542, pp.605-614, 2001.
DOI : 10.1126/science.1063916

B. Farkas, Heat shock protein 70 membrane expression and melanoma-associated marker phenotype in primary and metastatic melanoma, Melanoma Research, vol.13, issue.2, pp.147-52, 2003.
DOI : 10.1097/00008390-200304000-00006

A. D. Laad, Human gamma delta T cells recognize heat shock protein-60 on oral tumor cells, International Journal of Cancer, vol.20, issue.5, pp.709-723, 1999.
DOI : 10.1002/(SICI)1097-0215(19990301)80:5<709::AID-IJC14>3.0.CO;2-R

M. L. Thomas, gammadelta T cells lyse autologous and allogenic oesophageal tumours: involvement of heat-shock proteins in the tumour cell lysis, Cancer Immunol Immunother, issue.11, pp.48-653, 2000.

X. Zeng, ???? T Cells Recognize a Microbial Encoded B Cell Antigen to Initiate a Rapid Antigen-Specific Interleukin-17 Response, Immunity, vol.37, issue.3, pp.524-558, 2012.
DOI : 10.1016/j.immuni.2012.06.011

URL : http://doi.org/10.1016/j.immuni.2012.06.011

P. Vantourout and A. Hayday, Six-of-the-best: unique contributions of ???? T cells to immunology, Nature Reviews Immunology, vol.101, issue.2, pp.88-100, 2013.
DOI : 10.1038/nri3384

N. Caccamo, Mechanisms underlying lineage commitment and plasticity of human ???? T cells, Cellular and Molecular Immunology, vol.8, issue.1, pp.30-34, 2013.
DOI : 10.1038/cmi.2012.42

J. C. Ribot, CD27 is a thymic determinant of the balance between interferon-??- and interleukin 17???producing ???? T cell subsets, Nature Immunology, vol.170, issue.4, pp.427-463, 2009.
DOI : 10.1038/ni.1717

S. Inoue, Enhancement of dendritic cell activation via CD40 ligand-expressing gammadelta T cells is responsible for protective immunity to Plasmodium parasites

P. Natl, A. Sci, U. , M. , K. Willimann et al., Professional antigen-presentation function by human gammadelta T Cells, Science, vol.109, issue.305732, pp.12129-12163, 2005.

L. Wen, Germinal center formation, immunoglobulin class switching, and autoantibody production driven by "non alpha/beta" T cells, Journal of Experimental Medicine, vol.183, issue.5, pp.2271-82, 1996.
DOI : 10.1084/jem.183.5.2271

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192585/pdf

J. Jameson and W. L. Havran, Skin ???? T-cell functions in homeostasis and wound healing, Immunological Reviews, vol.31, issue.1, pp.114-136, 2007.
DOI : 10.1016/0047-6374(94)90021-3

A. Toulon, A role for human skin???resident T cells in wound healing, The Journal of Experimental Medicine, vol.102, issue.4, pp.743-50, 2009.
DOI : 10.1046/j.1523-1747.1998.00265.x

A. S. Macleod, Skin-Resident T Cells Sense Ultraviolet Radiation-Induced Injury and Contribute to DNA Repair, The Journal of Immunology, vol.192, issue.12, pp.192-5695, 2014.
DOI : 10.4049/jimmunol.1303297

M. Girardi, T Cells to Different Stages of Chemically Induced Skin Cancer, The Journal of Experimental Medicine, vol.156, issue.5, pp.747-55, 2003.
DOI : 10.1073/pnas.96.12.6879

J. Strid, Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis, Nature Immunology, vol.7, issue.2, pp.146-54, 2008.
DOI : 10.1038/ni1556

Y. Gao, ???? T Cells Provide an Early Source of Interferon ?? in Tumor Immunity, The Journal of Experimental Medicine, vol.65, issue.3, pp.433-475, 2003.
DOI : 10.1084/jem.183.4.1681

W. He, Naturally Activated V??4 ???? T Cells Play a Protective Role in Tumor Immunity through Expression of Eomesodermin, The Journal of Immunology, vol.185, issue.1, pp.126-159, 2010.
DOI : 10.4049/jimmunol.0903767

T. Lanca, Protective role of the inflammatory CCR2/CCL2 chemokine pathway through recruitment of type 1 cytotoxic gammadelta T lymphocytes to tumor beds, J Immunol, issue.12, pp.190-6673, 2013.

S. E. Street, Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells, J Exp Med, issue.6, pp.199-879, 2004.

Z. Liu, Protective Immunosurveillance and Therapeutic Antitumor Activity of ???? T Cells Demonstrated in a Mouse Model of Prostate Cancer, The Journal of Immunology, vol.180, issue.9, pp.6044-53, 2008.
DOI : 10.4049/jimmunol.180.9.6044

D. V. Correia, Differentiation of human peripheral blood V??1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells, Blood, vol.118, issue.4, pp.992-1001, 2011.
DOI : 10.1182/blood-2011-02-339135

J. Gertner-dardenne, Human V??9V??2 T Cells Specifically Recognize and Kill Acute Myeloid Leukemic Blasts, The Journal of Immunology, vol.188, issue.9, pp.4701-4709, 2012.
DOI : 10.4049/jimmunol.1103710

M. J. Maeurer, Human intestinal Vdelta1+ lymphocytes recognize tumor cells of epithelial origin, Journal of Experimental Medicine, vol.183, issue.4, pp.1681-96, 1996.
DOI : 10.1084/jem.183.4.1681

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192504/pdf

A. Choudhary, Selective lysis of autologous tumor cells by recurrent gamma delta tumor-infiltrating lymphocytes from renal carcinoma, J Immunol, vol.154, issue.8, pp.3932-3972, 1995.

A. Cordova, Characterization of human gammadelta T lymphocytes infiltrating primary malignant melanomas, PLoS One, issue.711, p.49878, 2012.

D. Hannani, Harnessing ???? T cells in anticancer immunotherapy, Trends in Immunology, vol.33, issue.5, pp.199-206, 2012.
DOI : 10.1016/j.it.2012.01.006

A. A. Bialasiewicz, J. X. Ma, and G. Richard, alpha /beta - and gamma /delta TCR+ lymphocyte infiltration in necrotising choroidal melanomas, British Journal of Ophthalmology, vol.83, issue.9, pp.1069-73, 1999.
DOI : 10.1136/bjo.83.9.1069

B. A. Inman, Questionable Relevance of ???? T Lymphocytes in Renal Cell Carcinoma, The Journal of Immunology, vol.180, issue.5, pp.3578-84, 2008.
DOI : 10.4049/jimmunol.180.5.3578

C. Ma, Tumor-Infiltrating ???? T Lymphocytes Predict Clinical Outcome in Human Breast Cancer, The Journal of Immunology, vol.189, issue.10, pp.5029-5065, 2012.
DOI : 10.4049/jimmunol.1201892

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4832413

G. Peng, Tumor-Infiltrating ???? T Cells Suppress T and Dendritic Cell Function via Mechanisms Controlled by a Unique Toll-like Receptor Signaling Pathway, Immunity, vol.27, issue.2, pp.334-382, 2007.
DOI : 10.1016/j.immuni.2007.05.020

J. Hao, Regulatory Role of V??1 ???? T Cells in Tumor Immunity through IL-4 Production, The Journal of Immunology, vol.187, issue.10, pp.4979-86, 2011.
DOI : 10.4049/jimmunol.1101389

C. Paget, Role of ???? T Cells in ??-Galactosylceramide-Mediated Immunity, The Journal of Immunology, vol.188, issue.8, pp.3928-3967, 2012.
DOI : 10.4049/jimmunol.1103582

M. Cheng, Microbiota modulate tumoral immune surveillance in lung through a gammadeltaT17 immune cell-dependent mechanism, Cancer Res, issue.15, pp.74-4030, 2014.

Y. Ma, Contribution of IL-17???producing ???? T cells to the efficacy of anticancer chemotherapy, The Journal of Experimental Medicine, vol.178, issue.3, pp.491-503, 2011.
DOI : 10.1016/j.cell.2010.02.015

URL : https://hal.archives-ouvertes.fr/pasteur-00576679

M. Rei, D. J. Pennington, and B. Silva-santos, The emerging Protumor role of gammadelta T lymphocytes: implications for cancer immunotherapy, Cancer Res, issue.5, pp.75-798, 2015.

X. Li, Generation of human regulatory gammadelta T cells by TCRgammadelta stimulation in the presence of TGF-beta and their involvement in the pathogenesis of systemic lupus erythematosus, J Immunol, issue.12, pp.186-6693, 2011.

J. Ye, Tumor-Derived ???? Regulatory T Cells Suppress Innate and Adaptive Immunity through the Induction of Immunosenescence, The Journal of Immunology, vol.190, issue.5, pp.2403-2417, 2013.
DOI : 10.4049/jimmunol.1202369

Y. Ke, L. M. Kapp, and J. A. Kapp, Inhibition of tumor rejection by ???? T cells and IL-10, Cellular Immunology, vol.221, issue.2, pp.107-121, 2003.
DOI : 10.1016/S0008-8749(03)00066-2

M. R. Rutkowski, Microbially Driven TLR5-Dependent Signaling Governs Distal Malignant Progression through Tumor-Promoting Inflammation, Cancer Cell, vol.27, issue.1, pp.27-40, 2015.
DOI : 10.1016/j.ccell.2014.11.009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4293269

D. Wakita, Tumor-infiltrating IL-17-producing gammadelta T cells support the progression of tumor by promoting angiogenesis, Eur J Immunol, issue.7, pp.40-1927, 2010.

Y. Carmi, Microenvironment-Derived IL-1 and IL-17 Interact in the Control of Lung Metastasis, The Journal of Immunology, vol.186, issue.6, pp.3462-71, 2011.
DOI : 10.4049/jimmunol.1002901

S. Ma, IL-17A produced by gammadelta T cells promotes tumor growth in hepatocellular carcinoma, Cancer Res, issue.7, pp.74-1969, 2014.
DOI : 10.1158/0008-5472.can-13-2534

M. Rei, Murine CD27(-) Vgamma6(+) gammadelta T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages, Proc Natl Acad Sci, issue.34, pp.111-3562

S. B. Coffelt, IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis, Nature, issue.7556, pp.522-345, 2015.
DOI : 10.1038/nature14282

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475637

P. Wu, gammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity, pp.785-800, 2014.

L. V. Hooper, D. R. Littman, and A. J. Macpherson, Interactions Between the Microbiota and the Immune System, Science, vol.466, issue.7304, pp.336-1268, 2012.
DOI : 10.1038/nature09199

N. Iida, Commensal Bacteria Control Cancer Response to Therapy by Modulating the Tumor Microenvironment, Science, vol.47, issue.6, pp.967-70, 2013.
DOI : 10.1016/j.freeradbiomed.2009.06.013

S. Viaud, The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide, Science, vol.25, issue.24, pp.971-977, 2013.
DOI : 10.1002/sim.2687

URL : https://hal.archives-ouvertes.fr/hal-01204279

J. O. Lundberg, E. Weitzberg, and M. T. Gladwin, The nitrate???nitrite???nitric oxide pathway in physiology and therapeutics, Nature Reviews Drug Discovery, vol.336, issue.2, pp.156-67, 2008.
DOI : 10.1038/nrd2466

C. Oplander, Mechanism and biological relevance of blue-light (420???453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo, Free Radical Biology and Medicine, vol.65, pp.1363-77, 2013.
DOI : 10.1016/j.freeradbiomed.2013.09.022

B. Kraft, M. Strous, and H. E. Tegetmeyer, Microbial nitrate respiration ??? Genes, enzymes and environmental distribution, Journal of Biotechnology, vol.155, issue.1, pp.104-121, 2011.
DOI : 10.1016/j.jbiotec.2010.12.025

B. R. Crane, J. Sudhamsu, and B. A. Patel, Bacterial Nitric Oxide Synthases, Annual Review of Biochemistry, vol.79, issue.1, pp.445-70, 2010.
DOI : 10.1146/annurev-biochem-062608-103436

C. Bogdan, Nitric oxide synthase in innate and adaptive immunity: an update, Trends in Immunology, vol.36, issue.3, pp.161-78, 2015.
DOI : 10.1016/j.it.2015.01.003

A. Friebe and D. Koesling, Regulation of Nitric Oxide-Sensitive Guanylyl Cyclase, Circulation Research, vol.93, issue.2, pp.96-105, 2003.
DOI : 10.1161/01.RES.0000082524.34487.31

P. Hernansanz-agustin, Nitrosothiols in the Immune System: Signaling and Protection, Antioxidants & Redox Signaling, vol.18, issue.3, pp.288-308, 2013.
DOI : 10.1089/ars.2012.4765

Z. Yang, Lymphocyte Development Requires S-nitrosoglutathione Reductase, The Journal of Immunology, vol.185, issue.11, pp.6664-6673, 2010.
DOI : 10.4049/jimmunol.1000080

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070165

R. Radi, Peroxynitrite, a Stealthy Biological Oxidant, Journal of Biological Chemistry, vol.288, issue.37, pp.26464-72, 2013.
DOI : 10.1074/jbc.R113.472936

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772193

L. H. Jones, Chemistry and Biology of Biomolecule Nitration, Chemistry & Biology, vol.19, issue.9, pp.1086-92, 2012.
DOI : 10.1016/j.chembiol.2012.07.019

URL : http://doi.org/10.1016/j.chembiol.2012.07.019

D. S. Lima-junior, Inflammasome-derived IL-1?? production induces nitric oxide???mediated resistance to Leishmania, Nature Medicine, vol.70, issue.7, pp.909-924, 2013.
DOI : 10.1126/science.6451927

N. Obermajer, Induction and stability of human Th17 cells require endogenous NOS2 and cGMP-dependent NO signaling, The Journal of Experimental Medicine, vol.65, issue.7, pp.210-1433, 2013.
DOI : 10.1038/nri2742

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698515

Y. Jianjun, T cell-derived inducible nitric oxide synthase switches off Th17 cell differentiation, J Exp Med, issue.7, pp.210-1447, 2013.

A. S. Saini, Inducible nitric oxide synthase is a major intermediate in signaling pathways for the survival of plasma cells, Nature Immunology, vol.163, issue.3, pp.275-82, 2014.
DOI : 10.1007/s11033-008-9430-1

G. Tumurkhuu, B1 cells produce nitric oxide in response to a series of toll-like receptor ligands, Cellular Immunology, vol.261, issue.2, pp.122-129, 2010.
DOI : 10.1016/j.cellimm.2009.11.009

C. Li, Interleukin-33 Increases Antibacterial Defense by Activation of Inducible Nitric Oxide Synthase in Skin, PLoS Pathogens, vol.6, issue.2, p.1003918, 2014.
DOI : 10.1371/journal.ppat.1003918.s007

A. Diefenbach, Requirement for Type 2&nbsp;NO Synthase for IL-12 Signaling in Innate Immunity, Science, vol.284, issue.5416, pp.951-956, 1999.
DOI : 10.1126/science.284.5416.951

M. Nairz, Erythropoietin Contrastingly Affects Bacterial Infection and Experimental Colitis by Inhibiting Nuclear Factor-??B-Inducible Immune Pathways, Immunity, vol.34, issue.1, pp.61-74, 2011.
DOI : 10.1016/j.immuni.2011.01.002

URL : http://doi.org/10.1016/j.immuni.2011.01.002

V. Bronte and P. Zanovello, Regulation of immune responses by L-arginine metabolism, Nature Reviews Immunology, vol.174, issue.8, pp.641-54, 2005.
DOI : 10.1128/IAI.72.5.2723-2730.2004

E. Kasmi and K. C. , Toll-like receptor???induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens, Nature Immunology, vol.68, issue.12, pp.1399-406, 2008.
DOI : 10.1038/ni.1671

J. E. Qualls, Sustained Generation of Nitric Oxide and Control of Mycobacterial Infection Requires Argininosuccinate Synthase 1, Cell Host & Microbe, vol.12, issue.3, pp.313-336, 2012.
DOI : 10.1016/j.chom.2012.07.012

N. V. Serbina, TNF/iNOS-Producing Dendritic Cells Mediate Innate Immune Defense against Bacterial Infection, Immunity, vol.19, issue.1, pp.59-70, 2003.
DOI : 10.1016/S1074-7613(03)00171-7

URL : http://doi.org/10.1016/s1074-7613(03)00171-7

H. Ding and B. Demple, Direct nitric oxide signal transduction via nitrosylation of ironsulfur centers in the SoxR transcription activator, Proc Natl Acad Sci, issue.10, pp.97-5146, 2000.

A. J. Muller, Photoconvertible Pathogen Labeling Reveals Nitric Oxide Control of Leishmania major Infection In??Vivo via Dampening of Parasite Metabolism, Cell Host & Microbe, vol.14, issue.4, pp.460-467, 2013.
DOI : 10.1016/j.chom.2013.09.008

URL : https://hal.archives-ouvertes.fr/pasteur-01410262

S. Nagaraj, Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer, Nature Medicine, vol.166, issue.7, pp.828-863, 2007.
DOI : 10.1038/nm1609

S. Nagaraj, Mechanism of T Cell Tolerance Induced by Myeloid-Derived Suppressor Cells, The Journal of Immunology, vol.184, issue.6, pp.3106-3122, 2010.
DOI : 10.4049/jimmunol.0902661

T. Lu, Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice, Journal of Clinical Investigation, vol.121, issue.10, pp.121-4015, 2011.
DOI : 10.1172/JCI45862DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195459

A. Mazzoni, Myeloid Suppressor Lines Inhibit T Cell Responses by an NO-Dependent Mechanism, The Journal of Immunology, vol.168, issue.2, pp.689-95, 2002.
DOI : 10.4049/jimmunol.168.2.689

B. Molon, Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells, The Journal of Experimental Medicine, vol.57, issue.10, pp.1949-62, 2011.
DOI : 10.1158/0008-5472.CAN-07-5324

B. Everts, Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells, Blood, vol.120, issue.7, pp.1422-1453, 2012.
DOI : 10.1182/blood-2012-03-419747

G. Ren, Mesenchymal Stem Cell-Mediated Immunosuppression Occurs via Concerted Action of Chemokines and Nitric Oxide, Cell Stem Cell, vol.2, issue.2, pp.141-50, 2008.
DOI : 10.1016/j.stem.2007.11.014

V. Lukacs-kornek, Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes, Nat Immunol, issue.11, pp.12-1096, 2011.

S. Siegert, Fibroblastic Reticular Cells From Lymph Nodes Attenuate T Cell Expansion by Producing Nitric Oxide, PLoS ONE, vol.6, issue.11, p.27618, 2011.
DOI : 10.1371/journal.pone.0027618.s010

URL : http://doi.org/10.1371/journal.pone.0027618

F. P. Huang, Nitric oxide regulates Th1 cell development through the inhibition of IL-12 synthesis by macrophages, European Journal of Immunology, vol.165, issue.12, pp.28-4062, 1998.
DOI : 10.1002/(SICI)1521-4141(199812)28:12<4062::AID-IMMU4062>3.0.CO;2-K

W. Niedbala, Effects of nitric oxide on the induction and differentiation of Th1 cells, European Journal of Immunology, vol.182, issue.8, pp.2498-505, 1999.
DOI : 10.1002/(SICI)1521-4141(199908)29:08<2498::AID-IMMU2498>3.0.CO;2-M

S. W. Lee, Nitric oxide modulates TGF-beta-directive signals to suppress Foxp3+ regulatory T cell differentiation and potentiate Th1 development, J Immunol, issue.12, pp.186-6972, 2011.
DOI : 10.4049/jimmunol.1100485

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3113707

W. Niedbala, Nitric oxide enhances Th9 cell differentiation and airway inflammation, Nature Communications, vol.275, issue.5, p.4575, 2014.
DOI : 10.1038/ncomms5575

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131005

P. K. Lala and C. Chakraborty, Role of nitric oxide in carcinogenesis and tumour progression, The Lancet Oncology, vol.2, issue.3, pp.149-56, 2001.
DOI : 10.1016/S1470-2045(00)00256-4

D. Fukumura, S. Kashiwagi, and R. K. Jain, The role of nitric oxide in tumour progression, Nature Reviews Cancer, vol.278, issue.7, pp.521-555, 2006.
DOI : 10.1038/nrc1910

A. Dhar, Nitric oxide does not mediate but inhibits transformation and tumor phenotype, Mol Cancer Ther, issue.212, pp.1285-93, 2003.

D. J. Scott, Lack of inducible nitric oxide synthase promotes intestinal tumorigenesis in the ApcMin/+ mouse, Gastroenterology, vol.121, issue.4, pp.889-99, 2001.
DOI : 10.1053/gast.2001.27994

S. P. Hussain, Nitric Oxide, a Mediator of Inflammation, Suppresses Tumorigenesis, Cancer Research, vol.64, issue.19, pp.6849-53, 2004.
DOI : 10.1158/0008-5472.CAN-04-2201

Q. Shi, Influence of nitric oxide synthase II gene disruption on tumor growth and metastasis, Cancer Res, vol.60, issue.10, pp.2579-83, 2000.

K. Xie, Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells, Journal of Experimental Medicine, vol.181, issue.4, pp.1333-1376, 1995.
DOI : 10.1084/jem.181.4.1333

Z. Dong, Inverse correlation between expression of inducible nitric oxide synthase activity and production of metastasis in K-1735 murine melanoma cells, Cancer Res, vol.54, issue.3, pp.789-93, 1994.

P. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases, Nature, vol.407, issue.6801, pp.249-57, 2000.
DOI : 10.1038/35025220

C. J. Oliveira, Nitric oxide and cGMP activate the Ras-MAP kinase pathway-stimulating protein tyrosine phosphorylation in rabbit aortic endothelial cells, Free Radical Biology and Medicine, vol.35, issue.4, pp.381-96, 2003.
DOI : 10.1016/S0891-5849(03)00311-3

K. Kawasaki, Activation of the Phosphatidylinositol 3-Kinase/Protein Kinase Akt Pathway Mediates Nitric Oxide-Induced Endothelial Cell Migration and Angiogenesis, Molecular and Cellular Biology, vol.23, issue.16, pp.23-5726, 2003.
DOI : 10.1128/MCB.23.16.5726-5737.2003

C. Zaragoza, Activation of the Mitogen Activated Protein Kinase Extracellular Signal-Regulated Kinase 1 and 2 by the Nitric Oxide-cGMP-cGMP-Dependent Protein Kinase Axis Regulates the Expression of Matrix Metalloproteinase 13 in Vascular Endothelial Cells, Molecular Pharmacology, vol.62, issue.4, pp.927-962, 2002.
DOI : 10.1124/mol.62.4.927

D. C. Jenkins, Roles of nitric oxide in tumor growth., Proceedings of the National Academy of Sciences, vol.92, issue.10, pp.92-4392, 1995.
DOI : 10.1073/pnas.92.10.4392

T. E. Konopka, Nitric oxide synthase II gene disruption: implications for tumor growth and vascular endothelial growth factor production, Cancer Res, issue.7, pp.61-3182, 2001.

X. M. Zhang and Q. Xu, Metastatic melanoma cells escape from immunosurveillance through the novel mechanism of releasing nitric oxide to induce dysfunction of immunocytes, Melanoma Research, vol.11, issue.6, pp.559-67, 2001.
DOI : 10.1097/00008390-200112000-00002

K. Tanese, E. A. Grimm, and S. Ekmekcioglu, The role of melanoma tumor-derived nitric oxide in the tumor inflammatory microenvironment: Its impact on the chemokine expression profile, including suppression of CXCL10, International Journal of Cancer, vol.14, issue.4, pp.891-901, 2012.
DOI : 10.1002/ijc.26451

P. Jayaraman, Tumor-Expressed Inducible Nitric Oxide Synthase Controls Induction of Functional Myeloid-Derived Suppressor Cells through Modulation of Vascular Endothelial Growth Factor Release, The Journal of Immunology, vol.188, issue.11, pp.188-5365, 2012.
DOI : 10.4049/jimmunol.1103553

S. Ekmekcioglu, Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival, Clin Cancer Res, issue.612, pp.4768-75, 2000.

D. Massi, Inducible nitric oxide synthase expression in benign and malignant cutaneous melanocytic lesions, The Journal of Pathology, vol.103, issue.2, pp.194-200, 2001.
DOI : 10.1002/1096-9896(200106)194:2<194::AID-PATH851>3.0.CO;2-S

C. C. Johansson, Expression and prognostic significance of iNOS in uveal melanoma, International Journal of Cancer, vol.38, issue.11, pp.2682-2691, 2010.
DOI : 10.1002/ijc.24984

M. Kato, Transgenic mouse model for skin malignant melanoma, Oncogene, vol.17, issue.14, pp.17-1885, 1998.
DOI : 10.1038/sj.onc.1202077

N. Narita, Functional RET G691S polymorphism in cutaneous malignant melanoma, Oncogene, vol.3, issue.34, pp.3058-68, 2009.
DOI : 10.1038/nrc2037

R. Lengagne, Spontaneous Vitiligo in an Animal Model for Human Melanoma: Role of Tumor-specific CD8+ T Cells, Cancer Research, vol.64, issue.4, pp.1496-501, 2004.
DOI : 10.1158/0008-5472.CAN-03-2828

N. Atre, Role of nitric oxide in heat shock protein induced apoptosis of ????T cells, International Journal of Cancer, vol.33, issue.6, pp.1368-76, 2006.
DOI : 10.1002/ijc.21966

C. Sciorati, Autocrine Nitric Oxide Modulates CD95-induced Apoptosis in ???? T Lymphocytes, Journal of Biological Chemistry, vol.272, issue.37, pp.23211-23216, 1997.
DOI : 10.1074/jbc.272.37.23211

T. G. Coursey, P. W. Chen, and J. Y. Niederkorn, Abrogating TNF-alpha expression prevents bystander destruction of normal tissues during iNOS-mediated elimination of intraocular tumors, Cancer Res, issue.7, pp.71-2445, 2011.

O. A. Jensen and S. R. Andersen, SPONTANEOUS REGRESSION OF A MALIGNANT MELANOMA OF THE CHOROID, Acta Ophthalmologica, vol.11, issue.Suppl., pp.173-82, 1974.
DOI : 10.1111/j.1755-3768.1974.tb00365.x

A. Jain, Spontaneous regression of choroidal melanoma, Eye, vol.42, issue.8, pp.959-61, 2006.
DOI : 10.1038/sj.eye.6702071

B. Martin, Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals, Immunity, issue.2, pp.31-321, 2009.

C. Bogdan, Nitric oxide and the immune response, Nat Immunol, issue.210, pp.907-923, 2001.

P. Cidad, A. Almeida, and J. P. Bolanos, Inhibition of mitochondrial respiration by nitric oxide rapidly stimulates cytoprotective GLUT3-mediated glucose uptake through 5???-AMP-activated protein kinase, Biochemical Journal, vol.384, issue.3, pp.384-629, 2004.
DOI : 10.1042/BJ20040886

N. J. Maciver, R. D. Michalek, and J. C. , Metabolic Regulation of T Lymphocytes, Annual Review of Immunology, vol.31, issue.1, pp.259-83, 2013.
DOI : 10.1146/annurev-immunol-032712-095956

I. J. Fidler, Selection of Successive Tumour Lines for Metastasis, Nature New Biology, vol.242, issue.118, pp.242-148, 1973.
DOI : 10.1038/newbio242148a0

P. Quaglino, Vitiligo is an independent favourable prognostic factor in stage III and IV metastatic melanoma patients: results from a single-institution hospital-based observational cohort study, Annals of Oncology, vol.21, issue.2, pp.409-423, 2010.
DOI : 10.1093/annonc/mdp325

A. Pommier, Inflammatory monocytes are potent antitumor effectors controlled by regulatory CD4+ T cells, Proceedings of the National Academy of Sciences, vol.22, issue.1, pp.110-13085
DOI : 10.1016/j.ccr.2012.05.023

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740849

L. Galluzzi, Classification of current anticancer immunotherapies, Oncotarget, vol.5, issue.24, pp.12472-508, 2014.
DOI : 10.18632/oncotarget.2998

URL : https://hal.archives-ouvertes.fr/inserm-01142463

+. Mice, designated as MT/ret mice) expressed heterozygously the human RET oncogene They were used at different time points in the course of malignancy, and age-matched nontransgenic MT/ret ?/? littermates (designated as Ctrl mice) were used as control mice. MT/ret mice were crossed with C57BL/6 CD3e KO mice to obtain RetCD3e KO . Mice were killed at the indicated times or when considered moribund (prostrated, bristly, skinny) All these mice were maintained in our specific pathogen free animal facility

C. Antibody and . Treatments, 6.7) Abs were obtained from BioXCell Purified anti- Gr1 (RB6-8C5) and anti-NK1.1 (PK136) Abs were purified from hybridoma supernatants using a G protein-coupled Sephadex bead column. Mice were injected intraperitoneally twice a week with either 200 ?go fA b so r4 0 0n g of CCL2 (PeproTech), NAC was obtained from Sigma-Aldrich. Mice received 1 mg/mL NAC in drinking water from birth

. Pommier, | no. 32 | 13089 IMMUNOLOGY dorsal and ventral lobes. Lobes were cut in small parts and digested with 0, 2013.

A. Transfer and C. Cells, Cervical LNs and spleen cells were incubated on ice for 20 min with a mixture of anti-CD8 (53-6.7), anti-CD11b (Mac-1), and anti-CD19 (1D3) Abs, obtained from hybridoma supernatants, and then with magnetic beads coupled to anti-rat immunoglobulins (Dynal Biotech)

A. Titration and F. Cytometry, Sera from MT/ret and RetCD3e KO mice were obtained following intracardiac blood collection. Melan-ret cells (a cell line derived from a cutaneous metastases of a MT/ret mouse) and LLCs (American Type Culture Collection) were incubated with purified anti-CD16, p.32

S. Sakaguchi, N. Sakaguchi, M. Asano, M. Itoh, and M. Toda, Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25) Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases, J Immunol, vol.155, issue.3, pp.1151-1164, 1995.

S. Hori, T. Nomura, and S. Sakaguchi, Control of Regulatory T Cell Development by the Transcription Factor Foxp3, Science, vol.299, issue.5609, pp.1057-1061, 2003.
DOI : 10.1126/science.1079490

R. North and I. Bursuker, Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly-1+2- suppressor T cells down-regulate the generation of Ly-1-2+ effector T cells, Journal of Experimental Medicine, vol.159, issue.5, pp.1591295-1311, 1984.
DOI : 10.1084/jem.159.5.1295

J. Shimizu, S. Yamazaki, and S. Sakaguchi, Induction of tumor immunity by removing CD25+CD4+ T cells: A common basis between tumor immunity and autoimmunity, J Immunol, vol.163, issue.10, pp.5211-5218, 1999.

P. Antony, CD8+ T Cell Immunity Against a Tumor/Self-Antigen Is Augmented by CD4+ T Helper Cells and Hindered by Naturally Occurring T Regulatory Cells, The Journal of Immunology, vol.174, issue.5, 2005.
DOI : 10.4049/jimmunol.174.5.2591

N. Chaput, Regulatory T Cells Prevent CD8 T Cell Maturation by Inhibiting CD4 Th Cells at Tumor Sites, The Journal of Immunology, vol.179, issue.8, pp.4969-4978, 2007.
DOI : 10.4049/jimmunol.179.8.4969

G. Darrasse-jèze, Tumor emergence is sensed by self-specificC D 4 4 h i memory Tregs that create a dominant tolerogenic environment for tumors in mice, J Clin Invest, vol.119, issue.9, pp.2648-2662, 2009.

S. Quezada, K. Peggs, T. Simpson, and J. Allison, Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication, Immunological Reviews, vol.205, issue.1, pp.104-118, 2011.
DOI : 10.1111/j.1600-065X.2011.01007.x

A. Boissonnas, Foxp3+ T Cells Induce Perforin-Dependent Dendritic Cell Death in Tumor-Draining Lymph Nodes, Immunity, vol.32, issue.2, pp.266-278, 2010.
DOI : 10.1016/j.immuni.2009.11.015

URL : https://hal.archives-ouvertes.fr/hal-00553080

T. Fujimura, S. Ring, V. Umansky, K. Mahnke, and A. Enk, Regulatory T Cells Stimulate B7-H1 Expression in Myeloid-Derived Suppressor Cells in ret Melanomas, Journal of Investigative Dermatology, vol.132, issue.4, pp.1239-1246, 2012.
DOI : 10.1038/jid.2011.416

M. Kato, Transgenic mouse model for skin malignant melanoma, Oncogene, vol.17, issue.14, pp.1885-1888, 1998.
DOI : 10.1038/sj.onc.1202077

J. Eyles, Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma, Journal of Clinical Investigation, vol.120, issue.6, pp.2030-2039, 2010.
DOI : 10.1172/JCI42002DS1

B. Toh, Mesenchymal Transition and Dissemination of Cancer Cells Is Driven by Myeloid-Derived Suppressor Cells Infiltrating the Primary Tumor, PLoS Biology, vol.11, issue.9, p.1001162, 2011.
DOI : 10.1371/journal.pbio.1001162.s012

R. Lengagne, Spontaneous Vitiligo in an Animal Model for Human Melanoma: Role of Tumor-specific CD8+ T Cells, Cancer Research, vol.64, issue.4, pp.1496-1501, 2004.
DOI : 10.1158/0008-5472.CAN-03-2828

J. Bystryn, D. Rigel, R. Friedman, and A. Kopf, Prognostic Significance of Hypopigmentation in Malignant Melanoma, Archives of Dermatology, vol.123, issue.8, pp.1053-1055, 1987.
DOI : 10.1001/archderm.1987.01660320095019

P. Duhra and A. Ilchyshyn, Prolonged survival in metastatic malignant melanoma associated with vitiligo, Clinical and Experimental Dermatology, vol.50, issue.4, pp.303-305, 1991.
DOI : 10.1111/1523-1747.ep12284190

P. Quaglino, Vitiligo is an independent favourable prognostic factor in stage III and IV metastatic melanoma patients: results from a single-institution hospital-based observational cohort study, Annals of Oncology, vol.21, issue.2, pp.409-414, 2010.
DOI : 10.1093/annonc/mdp325

K. Byrne and M. Turk, New Perspectives on the Role of Vitiligo in Immune Responses to Melanoma, Oncotarget, vol.2, issue.9, pp.684-694, 2011.
DOI : 10.18632/oncotarget.323

M. Viguier, Foxp3 Expressing CD4+CD25high Regulatory T Cells Are Overrepresented in Human Metastatic Melanoma Lymph Nodes and Inhibit the Function of Infiltrating T Cells, The Journal of Immunology, vol.173, issue.2, pp.1444-1453, 2004.
DOI : 10.4049/jimmunol.173.2.1444

J. Jacobs, S. Nierkens, C. Figdor, and I. De-vries, Regulatory T cells in melanoma: the final hurdle towards effective immunotherapy?, The Lancet Oncology, vol.13, issue.1, pp.32-42
DOI : 10.1016/S1470-2045(11)70155-3

R. Lengagne, T Cells Contribute to Tumor Progression by Favoring Pro-Tumoral Properties of Intra-Tumoral Myeloid Cells in a Mouse Model for Spontaneous Melanoma, PLoS ONE, vol.3, issue.5, p.20235, 2011.
DOI : 10.1371/journal.pone.0020235.t001

R. Lengagne, Distinct Role for CD8 T Cells toward Cutaneous Tumors and Visceral Metastases, The Journal of Immunology, vol.180, issue.1, pp.130-137, 2008.
DOI : 10.4049/jimmunol.180.1.130

M. Sandoval-cruz, Immunopathogenesis of vitiligo, Autoimmunity Reviews, vol.10, issue.12, pp.762-765, 2011.
DOI : 10.1016/j.autrev.2011.02.004

N. Serbina and E. Pamer, Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2, Nature Immunology, vol.187, issue.3, pp.311-317, 2006.
DOI : 10.1038/ni1309

S. Soudja, Tumor-Initiated Inflammation Overrides Protective Adaptive Immunity in an Induced Melanoma Model in Mice, Cancer Research, vol.70, issue.9, pp.3515-3525, 2010.
DOI : 10.1158/0008-5472.CAN-09-4354

URL : https://hal.archives-ouvertes.fr/hal-00507316

I. Bronkhorst and M. Jager, Uveal Melanoma: The Inflammatory Microenvironment, Journal of Innate Immunity, vol.4, issue.5-6, pp.5-6454, 2012.
DOI : 10.1159/000334576

F. Piras, The predictive value of CD8, CD4, CD68, and human leukocyte antigen-D-related cells in the prognosis of cutaneous malignant melanoma with vertical growth phase, Cancer, vol.48, issue.6, pp.1246-1254, 2005.
DOI : 10.1002/cncr.21283

M. Varney, S. Johansson, and R. Singh, Tumour-associated macrophage infiltration, neovascularization and aggressiveness in malignant melanoma: role of monocyte chemotactic protein-1 and vascular endothelial growth factor-A, Melanoma Research, vol.15, issue.5, pp.417-425, 2005.
DOI : 10.1097/00008390-200510000-00010

S. Nizar, B. Meyer, C. Galustian, D. Kumar, and A. Dalgleish, T regulatory cells, the evolution of targeted immunotherapy, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1806, issue.1, pp.7-17, 2010.
DOI : 10.1016/j.bbcan.2010.02.001

S. Kimpfler, Skin Melanoma Development in ret Transgenic Mice Despite the Depletion of CD25+Foxp3+ Regulatory T Cells in Lymphoid Organs, The Journal of Immunology, vol.183, issue.10, pp.6330-6337, 2009.
DOI : 10.4049/jimmunol.0900609

B. Ahmed and M. , Functional defects of peripheral regulatory T lymphocytes in patients with progressive vitiligo, Pigment Cell & Melanoma Research, vol.8, issue.1, pp.99-109, 2012.
DOI : 10.1111/j.1755-148X.2011.00920.x

URL : https://hal.archives-ouvertes.fr/pasteur-00661665

J. Klarquist, Reduced skin homing by functional Treg in vitiligo, Pigment Cell & Melanoma Research, vol.112, issue.2, pp.276-286, 2010.
DOI : 10.1111/j.1755-148X.2010.00688.x

Y. Lili, Global Activation of CD8+ Cytotoxic T Lymphocytes Correlates with an Impairment in Regulatory T Cells in Patients with Generalized Vitiligo, PLoS ONE, vol.20, issue.5, p.37513, 2012.
DOI : 10.1371/journal.pone.0037513.t002

L. Gal and F. , Direct Evidence to Support the Role of Antigen-Specific CD8+ T Cells in Melanoma-Associated Vitiligo, Journal of Investigative Dermatology, vol.117, issue.6, pp.1464-1470, 2001.
DOI : 10.1046/j.0022-202x.2001.01605.x

G. Ogg, R. Dunbar, P. Romero, P. Chen, J. Cerundolo et al., High frequency of skin-homing melanocyte-specificc y t, JE x pM e, pp.1881203-1208, 1998.

K. Byrne, Autoimmune melanocyte destruction is required for robust CD8+ memory T cell responses to mouse melanoma, Journal of Clinical Investigation, vol.121, issue.5, pp.1797-1809, 2011.
DOI : 10.1172/JCI44849DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083789

C. Auffray, CR1 in their response to inflammation, The Journal of Experimental Medicine, vol.11, issue.3, pp.595-606, 2009.
DOI : 10.1172/JCI29919

URL : https://hal.archives-ouvertes.fr/pasteur-00428989

C. Auffray, M. Sieweke, and F. Geissmann, Blood Monocytes: Development, Heterogeneity, and Relationship with Dendritic Cells, Annual Review of Immunology, vol.27, issue.1, pp.669-692, 2009.
DOI : 10.1146/annurev.immunol.021908.132557

URL : https://hal.archives-ouvertes.fr/hal-00407757

A. Velde and C. Figdor, Monocyte mediated cytotoxic activity against melanoma, Melanoma Research, vol.1, issue.5, pp.5-6303, 1992.
DOI : 10.1097/00008390-199201000-00001

T. Griffith, Monocyte-mediated Tumoricidal Activity via the Tumor Necrosis Factor???related Cytokine, TRAIL, The Journal of Experimental Medicine, vol.88, issue.8, pp.1343-1354, 1999.
DOI : 10.1084/jem.186.8.1365

J. Martin and S. Edwards, Changes in mechanisms of monocyte/macrophagemediated cytotoxicity during culture Reactive oxygen intermediates are involved in monocyte-mediated cytotoxicity, whereas reactive nitrogen intermediates are employed by macrophages in tumor cell killing, J Immunol, vol.1508, issue.1, pp.3478-3486, 1993.

Y. Rubtsov, Regulatory T Cell-Derived Interleukin-10 Limits Inflammation at Environmental Interfaces, Immunity, vol.28, issue.4, pp.546-558, 2008.
DOI : 10.1016/j.immuni.2008.02.017

URL : http://doi.org/10.1016/j.immuni.2008.02.017

T. Bosschaerts, Tip-DC Development during Parasitic Infection Is Regulated by IL-10 and Requires CCL2/CCR2, IFN-?? and MyD88 Signaling, PLoS Pathogens, vol.108, issue.8, p.1001045, 2010.
DOI : 10.1371/journal.ppat.1001045.t001

URL : http://doi.org/10.1371/journal.ppat.1001045

B. Qian, CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis, Nature, vol.64, issue.7355, pp.222-225, 2011.
DOI : 10.1038/nature10138

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3208506

A. Lesokhin, Monocytic CCR2+ Myeloid-Derived Suppressor Cells Promote Immune Escape by Limiting Activated CD8 T-cell Infiltration into the Tumor Microenvironment, Cancer Research, vol.72, issue.4, pp.876-886, 2012.
DOI : 10.1158/0008-5472.CAN-11-1792

M. Wolf, Endothelial CCR2 Signaling Induced by Colon Carcinoma Cells Enables Extravasation via the JAK2-Stat5 and p38MAPK Pathway, Cancer Cell, vol.22, issue.1, pp.91-105, 2012.
DOI : 10.1016/j.ccr.2012.05.023

URL : http://doi.org/10.1016/j.ccr.2012.05.023