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Résumé

Cette thése est consacrée a 1’étude mathématique de deux systémes quan-
tiques décrits par des modéles non linéaires : le polaron anisotrope et les électrons
d’un cristal périodique. Aprés avoir prouvé 'existence de minimiseurs, nous nous
intéressons a la question de 1'unicité pour chacun des deux modéles. Dans une
premiére partie, nous montrons 'unicité du minimiseur et sa non-dégénérescence
pour le polaron décrit par I'équation de Choquard—Pekar anisotrope, sous la
condition que la matrice diélectrique du milieu est presque isotrope. Dans le cas
d’une forte anisotropie, nous laissons la question de 'unicité en suspens mais ca-
ractérisons précisément les symétries pouvant étre dégénérées. Dans une seconde
partie, nous étudions les électrons d’un cristal dans le modeéle de Thomas—Fermi—
Dirac-Von Weizsédcker périodique, en faisant varier le paramétre devant le terme
de Dirac. Nous montrons 'unicité et la non-dégénérescence du minimiseur lorsque
ce parameétre est suffisamment petit et mettons en évidence une brisure de symé-
trie lorsque celui-ci est grand.

Abstract

This thesis is devoted to the mathematical study of two quantum systems
described by nonlinear models: the anisotropic polaron and the electrons in a
periodic crystal. We first prove the existence of minimizers, and then discuss
the question of uniqueness for both problems. In the first part, we show the
uniqueness and nondegeneracy of the minimizer for the polaron, described by
the Choquard—Pekar anisotropic equation, assuming that the dielectric matrix
of the medium is almost isotropic. In the strong anisotropic setting, we leave
the question of uniqueness open but identify the symmetry that can possibly be
degenerate. In the second part, we study the electrons of a crystal in the periodic
Thomas—Fermi-Dirac-Von Weizsédcker model, varying the parameter in front of
the Dirac term. We show uniqueness and nondegeneracy of the minimizer when
this parameter is small enough et prove the occurrence of symmetry breaking
when it is large.
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Introduction

Les modéles non linéaires tiennent une place importante dans la description
et I'é¢tude des systéemes quantiques. En effet, les modéles exacts, qui décrivent
le comportement individuel de chacune des particules du systéme, sont le plus
souvent linéaires. Cependant, ils sont inaccessibles numériquement si l'on veut
obtenir des prédictions suffisamment précises, dés que le nombre de particule
dépasse 'ordre d’une dizaine. Ceci est dii au fait que ces modeéles exacts sont
posés en trés grande dimension (qui diverge exponentiellement avec le nombre de
particules du systéme), ce qui induit une complexité de calcul inabordable. C’est
afin de palier a cette difficulté que sont introduits des modéles simplifiés qui sont
presque tous non-linéaires mais néanmoins posés en bien plus basse dimension.

Dans certains régimes, il est possible de montrer que les modéles exacts sont,
au premier ordre, correctement approchés par des modéles non-linéaires simples.
Ces derniers peuvent a leur tour servir de base pour des modéles non-linéaires
empiriques utilisés en dehors du régime d’origine. L’exemple le plus célebre de
cette approche est la Théorie de la Fonctionnelle de la Densité (DFT) qui uti-
lise des modéles non-linéaires empiriques dépendant uniquement de la densité p
du systéme, voir par exemple [PY94] et ses références. Cette approche connait
un succes inégalé en chimie quantique, dans la théorie de la matiére condensée,
jusqu’au applications industrielles.

Comparés aux problémes linéaires, les modéles non-linéaires apportent de nou-
velles difficultés mathématiques qui a leur tour influencent leur caractére prédic-
tif. Pour les problémes linéaires, grace au théoréme de diagonalisation simultanée,
nous savons qu’il existe toujours des vecteurs propres respectant les symétries du
probléme. En dehors du cas convexe, cet argument ne s’applique pas aux pro-
blémes non-linéaires. Il devient alors important de savoir si les états d’équilibre du
systéme respectent ou non les symétries. Une brisure de symétrie n’est pas néces-
sairement un inconvénient et peu méme étre nécessaire a I’'obtention de meilleure
prédiction. Sur ces questions dans le cas de la DFT, nous renvoyons par exemple
a [SLHG99| et a [PSB95|.

Mentionnons également que méme dans le cas linéaire des brisures de symé-
trie peuvent étre obtenues dans une limite ot le nombre de particules tend vers

9



10 INTRODUCTION

Iinfini. Auquel cas, les avantages mathématiques du caractére linéaire tendent a
disparaitre. Ces brisures de symétrie se manifestent par exemple dans les transi-
tions de phases étudiées en physique statistique [Rue99]. Un solide est I'exemple
typique d’une brisure de la symétrie de translation [BL15|.

Des phénoménes de brisure de symétrie ont été mis en évidence mathémati-
quement dans de nombreux modéles. Dans le cadre de modéles discrets sur des
réseaux, 'instabilité des solutions ayant la méme périodicité que le réseau a été
démontrée dans [Fr654), [Pei55| pour les modéles qu'ils y considérent, tandis que
IKL86, Lie86), [KT.87, LIN95b, L.IN95a, LIN96, [FL11, (GAS12| ont prouvé,
pour différents modéles (et differentes dimensions), que les solutions ont une pé-
riodicité distincte de celle du réseau. Concernant des modéles & température finie
et sur des domaines finis, une brisure de symétrie est mise en évidence dans
[PNO1] pour un gaz unidimensionnel sur un cercle et dans [Pro05] sur des tores
et des sphéres en dimension d < 3. Enfin, sur tout I'espace R?, une brisure de
symeétrie est prouvée dans [BG16| pour le modéle considéré : les minimiseurs ne
sont pas radiaux lorsque le nombre d’électrons est assez grands.

Cette thése s’intéresse & deux modéles non-linéaires : le modéle de Choquard-—
Pekar anisotrope et le modéle de Thomas-Fermi-Dirac-von Weizsécker (TFDW)
périodique décrivant des électrons dans un cristal, que nous décrivons plus précisé-
ment ci-aprés et pour lesquels nous nous sommes intéressés a l’existence, I'unicité
et la non-dégénérescence des minimiseurs ainsi qu’aux questions de symétrie et
de brisure de symétrie.

1. Présentation des travaux sur le polaron anisotrope

Un polaron est un électron interagissant avec un cristal polarisable et capable
de former un état lié via la déformation du cristal que sa propre charge induit.

Nous nous intéressons dans le premier chapitre de cette thése au modele de
Pekar du polaron, dans lequel le cristal est remplacé par un milieu polarisable
continu. Ce modéle décrit bien le systéme lorsque le polaron s’étend sur une
région tres grande comparée a la taille caractéristique du cristal. Dans ce modéle,
I'interaction entre 1’électron et le milieu est alors un champ coulombien attractif
effectif.

Dans le cas d’un milieu polarisable isotrope, caractérisé par sa constante di-
électrique ep; = 1 (un réel), ce modéle de Pekar du polaron a été étudié par Lieb
[Lie77|. D’une part il a montré I'existence de minimiseurs a valeurs complexes,
sous contrainte de masse, pour la fonctionnelle

J|w )2 dz — 1 5M LJR O] )y dy da (0.1)

|z —y|
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FIGURE 1. Représentation de la déformation du cristal due a la
présence d’'un I’électron (tache bleue diffuse) qui attire les charges
positives (disques rouges) et repousse les charges négatives (disques
bleus). Les anneaux représentent les positions des charges du cristal
au repos.

Source : Image transmise par Lewin, Mathieu.

associée a 1’équation non linéaire de Choquard—Pekar

(=5 @)1 * 0P = o, (0:2)

également appelée équation de Schrodinger—Newton ou équation de Choquard.
D’autre part, il a prouvé l'unicité a translation spatiale et phase pres, du mini-
miseur sous contrainte de masse. Ce minimiseur est strictement positif, radial,
indéfiniment différentiable, (radialement) strictement décroissant avec une dé-
croissance exponentielle a I'infini.

Notons que les équations ci-dessus sont données dans le systéme d’unités dans
lequel la masse de 1’électron, la constante de Planck réduite et la permittivité
diélectrique du vide vérifient m = 1, h = 1 et 4meq = 1. Dans ce systéme d’unités,
une constante diélectrique €); = 1 correspond au cas du vide.

Ensuite, Lenzmann a prouvé dans [Len09] que I'unique minimiseur positif @
est non dégénéré. C’est-a-dire que la linéarisation

Sof = —3AC+uE — (V +[QP) €20 (V » (Q€) 03



12 INTRODUCTION
de I'équation de Choquard-Pekar (0.2)), ou V(z) = (1—¢ep ') |z|™?, a pour noyau
ker|L2(R3) SQ = Span {(3331627 512Q7 axSQ} .

Cette non-dégénérescence est une propriété importante qui est utile dans des
arguments de type fonctions implicites.

Le polaron anisotrope. Le premier chapitre de cette thése se propose
d’étendre I’étude du modeéle du Polaron de Pekar au cas d’'un milieu anisotrope.
Un milieu anisotrope n’a plus un réel €, pour constante diélectriqgue mais une
matrice symétrique réelle M~! > 1, rendant ainsi compte du fait que le com-
portement du milieu n’est pas le méme selon toutes les directions de 1’espace.
Ainsi, dans la fonctionnelle et dans I’équation de Choquard—Pekar , le

potentiel (1 — ey, 1)|xz|~! doit étre remplacé par le potentiel

1t
| M)

Vi(z) = (0.4)

ot 'on peut supposer, sans perte de généralité puisque M ~! est symétrique réelle,
que M vérifie M < 1 et est diagonale avec des valeurs propres vérifiant mo < 1
et 0 < m3 < my < my < 1. La fonctionnelle anisotrope est alors

s (w) = 5| vo@Pds =3[ [ W@t - o) dyda,

le probléme de minimisation, pour une masse A > 0 donnée, est
Ini(\) := min &M 0.5
) = min, £() 05
[l5=

et I’équation non linéaire associée est

(=5 Vi ) = —o. (0.6)

Le premier chapitre de cette thése se propose donc de voir quels résultats
obtenus dans le cadre isotrope s’étendent au modéle anisotrope.

Dérivation du modéle. L’équation de Choquard—Pekar isotrope a été
obtenue par Donsker—Varadhan [DV83| puis par Liecb-Thomas [LT97| & partir
du modéle linéaire de Frohlich dans une limite de couplage fort. Ce modéle décrit
un électron en interaction avec un champ de phonons second quantifié, supposé
homogeéne et isotrope. Dans ce modéle, la structure du cristal sous-jacent est donc
absente. Le Hamiltonien du systéme prend la forme

T
H=—A+ o dle — Ve U ko | b —ika dk,
Lg W T V2 S \ TR T TR
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ot les k sont les vecteurs d’ondes des phonons, aL et ay, les opérateurs de création
et d’annihilation. Le modeéle de Choquard-Pekar s’obtient lorsque la constante
de couplage « tend vers 'infini, un régime qui est similaire & une limite semi-
classique pour le champ des phonons. A la limite, les phonons sont au premier
ordre décrits par un état cohérent, c’est-a-dire un champ classique. Pour des
travaux similaires dans le cas de N électrons, voir [MS07, FLST10, [FLST11),
FLS12, [FLS13, BFL15, [AH16|. Le cas dynamique a été récemment étudié
dans [FS14), [FZ17, |Gril6l, [GSS16|. De plus, le cas avec champ magnétique
a été considéré dans [AG14, I GHW12, [GW13|. Remarquons que méme si la
dérivation de I’équation de Choquard—Pekar anisotrope a partir du Hamiltonien
anisotrope de Frohlich n’a jamais été réalisée a notre connaissance, on peut penser
que les mémes arguments s’appliquent.

Dans [LR13al, LR13b|, Lewin et Rougerie ont adopté un point de vue dif-
férent. Ils ont dérivé le modéle de Choquard—Pekar & partir du modéle microsco-
pique Hartree—Fock réduit du cristal dans une limite multi-échelle. Le caractere
isotrope ou anisotrope de 1’équation finale dépend alors du cristal considéré.

Reésultats obtenus. Les résultats que nous avons obtenus pour ce modele
ont été publiés dans [Ric16]. La premiére partie de la thése en donne une version
plus détaillée. Le résultat d’existence de minimiseurs s’étend au cas anisotrope
bien que la méthode preuve soit différente de celle donnée par Lieb dans le cas iso-
trope. En effet, la démonstration faite par Lieb repose sur l'isotropie puisqu’elle
est basée sur le fait que z — |z|™! est radiale décroissante et utilise le réarran-
gement symétrique. Cette preuve ne fonctionnant plus dans le cas anisotrope,
nous prouvons le résultat via la méthode de concentration-compacité de Lions
|[Lio84al, Lio84b].

THEOREME (Existence de minimiseurs). Soient A > 0 et Vi défini par (0.4).
Alors, In(N\) a un minimiseur et toute suite minimisante converge fortement dans
H'(R3) vers un minimiseur, a extraction d’un sous-suite prés et a une translation
spatiale pres.

De plus tout minimiseur v vérifie

(1) ¢ est une H?*(R3)-solution de I’équation de Choquard—Pekar ol

—p = %I(A) < 0 est la plus petite valeur propre de l'opérateur auto-
adjoint Hy := —A/2 — || * V, laquelle est simple ;

d 3 3
(2) iA = =M I(N) = =3NI(1) = D[Vl = 5V * [l [

(3) || est un minimiseur et || > 0;

(4) ¥ = z|Yp| pour un z donné tel que |z| = 1.
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De plus, les résultats d'unicité et de non-dégénérescence du minimiseur sont
étendus dans cette thése au cas que nous appelons de faible anisotropie et qui
correspond au cas ou la matrice M est proche d'une homothétie. Nous prouvons
ce résultat, donné dans le théoréme ci-dessous, via un théoréme de fonctions
implicites dans le cadre d’'un argument perturbatif autour du cas isotrope. Le
résultat de non-dégénérescence du cas isotrope, prouvé dans |[Len09|, est un
ingrédient clé de notre démonstration.

THEOREME (Unicité et non-dégénérescence). Soient A\ > 0 et 0 < s < 1.
1l existe € > 0 tel que, pour toute matrice 3 x 3 symétrique réelle 0 < M < 1
vérifiant |M — s -1d|| < e, le minimiseur ¢ du probléme de minimisation In(\)
défini par est unique a phase et translation prés. De plus, le minimiseur est
pair selon chacun des vecteurs propres de M et

ker £ = span {09, 0,9, 0.9},
ou Ly est Uopérateur linéarisé défini par (0.3)).

Nous développons également dans ce premier chapitre un travail sur les pro-
priétés de symétrie des minimiseurs, en fonction de critéres sur la matrice M.
Nous prouvons que les minimiseurs sont toujours symétriques et strictement dé-
croissants le long du demi-axe positif défini par le vecteur propre associé a la plus
petite valeur propre de la constante (matricielle) diélécrique et donnons, pour
chacune des deux autres directions principales du milieu, une condition suffisante
assurant que les minimiseurs soient symétriques et strictement décroissants le
long de chacun des demi-axes positifs définis par ces autres directions.

THEOREME (Symétrie des minimiseurs). Soient A > 0, Vi définie par (0.4),
0 <mg <mo <my <1 les trois valeurs propres de M et ey, ey et e3 des vecteurs
propres associés. Si Yy = 0 est un minimiseur de I (N) alors, a translation
spatiale pres, ¥y, est symétrique dans la direction de ey et strictement décroissante
selon le demi-azxe positif de cette direction. De plus, si m3 < m3, alors 1y est
également symétrique et strictement décroissante selon ey. Enfin, si m3 < m3,
alors 1y est également symétrique et strictement décroissante selon es.

Enfin, nous étudions dans la derniére partie du premier chapitre 'opérateur
linéarisé, sous les conditions suffisantes mises en évidence précédemment. L’ob-
jectif serait de prouver la non-dégénérescence

ker £, = span {0,1), 0,1, 0.1}

au-dela du cas de faible anisotropie. Les travaux de cette thése n’ont pas permis
d’aboutir & ce résultat mais ont cependant conduit a un résultat partiel dans
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lequel nous n’avons pu exclure que des fonctions paires (a translation prés) par
rapport & chacune des directions principales du milieu ne puissent étre dans le
noyau. Précisément, nous démontrons le résultat suivant.

THEOREME. Supposons que la matrice M décrivant le milieu polarisable vé-
rifie 0 < m3 < mg < my <1 et my < 1, ainsi que m3 < m3 et m3 < m3. Si ¢
est une solution strictement positive et symétrique strictement décroissante (par
rapport & chacune des directions principales du milieu) de [’équation de Choquard—

Pekar (0.6), alors
ker £, = span {01, 0,1, .1} P ker (Ew)wiﬁ+ 7

ol L%ﬁ+7+ est le sous-espace de L*(R?) des fonctions paires par rapport a chacune
des directions principales. En particulier, 1 peut étre un minimiseur de Ip ().

Questions ouvertes. Cette thése laisse ouverte la question de 'unicité du
minimiseur en dehors du cas d’un milieu faiblement anisotrope. Nous conjecturons
quil y a unicité (a translation prés) au moins sur tout le domaine défini par
0 <mg<my <my <1, m} <m3 et m$ <mj, c’est-a-dire 1a ou les minimiseurs
sont symétriques. Au dela de ce domaine, nous ne saurions nous prononcer.

2. Présentation des travaux sur le modéle TFDW périodique

Dans cette seconde partie, nous étudions le modéle TFDW périodique dans
lequel des électrons sont placés dans un arrangement périodique de noyaux que
nous supposons étre classiques et étre disposés selon un réseau périodique 3D. La
question posée dans cette partie est si les électrons s’organisent selon la méme
symétrie que le réseau.

Nous étudions cette question pour le modéle TFDW sans spin, qui est une
approximation simple du véritable probléme de Schrodinger & N corps, et dont
la fonctionnelle d’énergie prend la forme

3 5 3 4 1
19y Zere [ ph=Ge [ 045 | Garnlo | Gen 0)
K 5 K 4 K 2 K K

ou K est la cellule unité, p est la densité des électrons et Gk est le potential
de Coulomb périodique sur K. Notons que la non-convexité de ce modéle est
due (uniquement) a la présence du terme —%cgpg qui est une approximation
de I'énergie d’échange-correlation, ou la valeur de ¢ n’est en pratique déterminée
qu’empiriquement.

Nous menons notre étude sur ’éventuelle brisure de symétrie, en fonction du
parameétre ¢ > 0 et nous démontrons que
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e pour ¢ suffisamment petit, la densité p des électrons solution au probléme est
unique et présente la méme périodicité que les noyaux;

e pour ¢ suffisamment grand, il existe (au moins) une organisation 2-périodique
des électrons dont I'énergie est plus basse que n’importe quelle organisation
1-périodique : il y a une brisure de symétrie.

Le modéle. L’énergie associée a une fonction d’onde w, dans le modele
TFWD périodique, est

3 1 3
Si.o(w) =J Vuwl? + CTFJ ¥ — cf w3
K 5 K 4 K

+5 ]| lnt@PGet =l dyds — | Gelul

et nous nous intéressons au probléme de minimisation

EK,)\(C) = we[irlllf(]K) éaK,c(w).

lwl A

2 _
LK)~

Dérivation du modéle. Il n’existe pas, a notre connaissance, de dérivation
du modéle TEFWD périodique que nous étudions. En revanche, plusieurs dériva-
tions de modéles de type Thomas—Fermi peuvent étre trouvées dans la littérature.
Le cas le plus céleébre est celui des atomes neutres pour lequel N = Z tend vers
I'infini. C’est un systéme ot les N électrons se concentrent dans un voisinage de
la position de I'unique noyau, ils sont donc trés concentrés en espace. La premiére
preuve de la validé du modéle de Thomas-Fermi [Tho27, [Fer27| dans ce régime
est due & Lieb—Simon [LS73, [LS77a, LS77b|. Une autre limite du méme type
pour les systémes gravitationnels a été considérée par Lieb, Thirring et Yau dans
ILT84), LY8T7|. Ces deux résultats ont récemment généralisés & des potentiels
quelconques par Fournais-Lewin—Solovej dans [FLS15].

Plus proche de notre situation, Graf et Solovej ont étudié dans [GS94]| la
limite de haute densité pour un systéme périodique infini (décrit par le probléme
de Schrodinger exact) dans lequel les noyaux ponctuels sont remplacés par une
distribution de charge positive uniforme dans tout I’espace. Dans ce modéle sys-
teme appelé Jellium, seuls les termes en p% et pg subsistent. Pour des travaux du
méme type, voir [Fri97, [Sei06]. Pour d’autres résultats dans le cas périodique,
voir [BM99, BGMO03].

Reésultats. Les résultats que nous avons obtenus pour ce modéle ont été
soumis pour publication (voir [Ric17]). La seconde partie de la thése en donne une
version plus détaillée. Les résultats principaux sont les deux théorémes suivants.
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THEOREME (Unicité pour c¢ petit). Soit K la cellule unité et crp, A deux
constantes strictement positives. Il existe 6 > 0 tel que pour tout 0 < ¢ < 0, les
assertions suivantes sotent vraies :

i. Le minimiseur w. du probléme TFDW périodique Ex x(c) est unique, a phase
pres. Il est non-constant, strictement positif, dans H, (K) et est l'unique fonc-

tion propre de l’état fondamental de l’opérateur auto-adjoint K-périodique
4 2
H,:= —A + crplwe|? — clw.|? — Gk + (Jwe|* * Gk).

1. Cette fonction K-périodique w, est [’unique minimiseur de tous les problémes
TFDW (N - K)-périodiques Enx nsx(c), pour tout entier N > 1.

Pour démontrer ce résultat, nous suivons l'esprit de la preuve de Le Bris
[Le 93] dans le cas de I'espace R? tout entier. Nous utilisons un argument per-
turbatif autour de ¢ = 0 — modéle de Thomas-Fermi-von Weizsiacker (TFW)
périodique — et utilisons I'unicité et la non-dégénérescence des minimiseurs du
modeéle TFW, laquelle découle de la stricte convexité de la fonctionnelle associée.

THEOREME (Brisure de symétrie pour ¢ grand). Soit K la cellule unité, crp, A
deux constantes strictement positives et N = 2 un entier. Il y a brisure de symétrie
dans le modéle TFWD périodique pour ¢ assez grand :

EN-]K,N3)\(C) < NSEK7/\(C).

Plus précisément, le probleme TFDW périodique sur N - K, Enx nsr(c), admet
(au moins) N3 minimiseurs positifs distincts qui sont des translations les uns des
autres par les vecteurs du réseau. Si ’'on dénote par w,. l'un de ces minimiseurs,
il existe alors a sous-suite ¢, — o0 telle que

n—0o0

cn_%wcn <R + 7) — Q,
Cn

fortement dans LY (R?®) pour 2 < p < +0, o R est la position de l'une des N*
charges dans N - K. Ici, Q) est un minimiseur du probleme effectif

. 3 w3 8
VN = b v Zene [ =3 i}, 09

3
‘|U”L2(R3)—N A

qut de plus minimise

SN = { LI |x—y| e o] %)P d“’}’
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ot la minimisation est faite sur tous les minimiseurs de . Enfin, lorsque
¢ — ©, Exx nsa(c) a pour développement

Enx.nsa(c) = Jps(N?X) + cS(N?X) + o(c).

Ce second théoréme est la principale nouveauté apportée par cette partie de la
these. Le terme de Dirac —3c¢ { lw|5 dans tend a regrouper les électrons et
ce théoréme dit que, dans la limite ¢ — o0, la densité électronique se concentre en
certains point de la cellule unité K. Il précise également que si 'on fait un zoom
d’échelle 1/c sur I'un des points o se concentre la densité électronique, nous
obtenons un modéle effectif simple dans tout R?, modéle dans lequel les termes
de Coulomb ont disparu. L’argument derriére ce résultat est qu’il est favorable
de concentrer la masse électronique présente dans la cellule unité en un point du
fait de fait de I'inégalité stricte de liaison :

Jp3 (/\) < JRS(/\/) + Jgs ()\ — /\/)

De ce fait, les N3 électrons de la cellule unité du probléme N-périodique se
concentreront en un point de masse N? lorsque c est trés grand, plutot que de se
concentrer en N3 points de masse 1.

Cette seconde partie de la thése s’intéresse également en détails au probléme
effectif limite . Ce probléme effectif de minimisation est un probléme NLS
avec deux non-linéarités a puissance sous-critique : [v|3 — |v[3. L'unicité de ses
minimiseurs est un probléme ouvert. Si cette thése ne répond pas a ce probléme,
elle démontre néanmoins que toute solution positive de 1’équation non-linéaire
d’Euler-Lagrange associée

— AQ, + crrlQuFQu — Q5 Q, = —pQ, (0.10)

est unique et non-dégénérée (& translations spatiales pres).

THEOREME (Unicité et non-dégénérescence des solutions positives a 1’équa-
tion d’E-L associée au probléme effectif sur R3). Soit cpp > 0. Si %CTF,LL > 1,
alors l’équation d’Fuler—Lagrange n’a pas de solution non triviale dans
HY(R?). Si 0 < Seppp < 1, Uéguation d’Euler-Lagrange a, a transla-
tions pres, une unique solution positive Q, # 0 dans H'(R®). Cette solution est
radialement décroissante et non-dégénérée : l'opérateur linéarisé

7 a4 D 2
Ly = =A+ gerrlQul = 51QulF + 1

de domaine H?(R3) et agissant sur L*(R?®) a pour noyau

Ker L:j = span {0y, Qs Oy Qs Oy Quu} -
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Enfin, cette seconde partie de la thése formule la conjecture que SQMQ est une
fonction strictement croissante en la variable u, ce qui est fortement corroboré
par les simulations numériques que nous avons menées et qui sont également
présentées dans cette thése. En supposant cette conjecture vraie, nous prouvons
que le probléme N-périodique a exactement N3 minimiseurs distincts pour ¢ assez
grand.

Les simulations numériques présentées dans cette thése ont été menées avec
le programme PROFESS v.53.0 [CXH*15]| et nous avons ajouté a son code notre
fonctionnelle d’énergie. Nos simulations ont été effectuées sur un cristal cubique
centré de Lithium de coté de longueur 4A pour lequel un électron est traité
tandis que les deux autres sont inclus dans un pseudo-potentiel, simulant ainsi un
réseau de pseudo-atomes de pseudo-charges Z = A\ = 1. Nos résultats numériques,
présentés en Figure 2] montrent une brisure de symétrie vers ¢ ~ 3,30. En effet,

0% e ° . e =, |
®e
°

—2 %[ ° f
—4%| |
—6%!- |
—8%l- o |
| | | | | | | | | | |

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C

8Lk A(c)—Laxsa(c)
8Ex, A (c)

FIGURE 2. Estimation du gain relatif d’énergie

pour ¢ < 3,30, les minimisations des problémes sur 2- K (contenant 8 atomes) et
sur K (contenant 1 atome) donnent la méme énergie minimale a un facteur 8 prés
tandis que, pour ¢ 2 3,31, nous trouvons une fonction 2-périodique pour laquelle
I'énergie du probléme sur 2 - K est inférieure a (8 fois) I’énergie minimale pour le
probléme sur K. De plus, la brisure de symétrie est confirmée visuellement par la
représentation, pour trois valeurs de ¢, de la densité de probabilité du minimiseur
2-périodique simulé (Figure : pour ¢ ~ 3,30, le miniminiseur 2-périodique
obtenu est en fait 1-périodique tandis que, pour ¢ = 3,31, le miniminiseur 2-
périodique obtenu n’est plus 1-périodique.
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(a) ¢~ 3,30 (b) ¢~ 3,31 (¢c) c~ 3,45

FIGURE 3. Densité de probabilité, pour trois valeurs de ¢, du mi-
nimiseur 2-périodique simulé.

Questions ouvertes. Le premier probléme concernant ce modéle laissé ou-
vert par cette thése est évidemment la question de I'unicité des minimiseurs du
probléme limite que nous conjecturons. D’autre part, un travail intéressant serait
d’étudier les questions développées dans cette thése pour le modéle de Kohn—
Sham qui est celui utilisé dans la pratique.



PARTIE 1

Study of the anisotropic polarons

Ce chapitre est une version plus détaillée de 'article publié

Julien Ricaud, On uniqueness and non-degeneracy of anisotropic polarons,
Nonlinearity 29 (2016), no. 5, 1507-1536.

Abstract

We study the anisotropic Choquard—Pekar equation which describes a polaron in an
anisotropic medium. We prove the uniqueness and non-degeneracy of minimizers in
a weakly anisotropic medium. In addition, for a wide range of anisotropic media, we
derive the symmetry properties of minimizers and prove that the kernel of the associated
linearized operator is reduced, apart from three functions coming from the translation
invariance, to the kernel on the subspace of functions that are even in each of the three
principal directions of the medium.
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1. Introduction

A polaron describes a quantum electron in a polar crystal. The atoms of the
crystal are displaced due to the electrostatic force induced by the charge of the
electron, and the resulting deformation is then felt by the electron itself. This
coupled system (the electron and its polarization cloud) is a quasi-particle, called
a polaron.

When the polaron extends over a domain much larger than the characteristic
length of the underlying lattice, the crystal can be approximated by a continu-
ous polarizable medium, leading to the so-called Pekar nonlinear model [Pek54),
Pek63|. In this theory, the energy functional is

6w =5 | we@Par =3[ | pwPB@PE -t @)

where 1 is the wave function of the electron, in units such that the vacuum
permittivity, the mass, and the charge of the electron are all normalized to one:
4meg = m.- = e = 1. While, on the other hand,

V0P @) == WPV =) dy

is the mean-field self-trapping potential felt by the electron.

For an isotropic and homogeneous medium, characterized by its relative per-
mittivity (or relative dielectric constant) e)r = 1, the effective interaction poten-
tial is

1_ —1
V(z) = —M

(1.2)

]
For ), > 1 (equality corresponds to the medium being the vacuum), the so-called
Choquard—Pekar or Schridinger—Newton equation

(=5 - ValP)y = - (13)

is obtained by minimizing the energy & in (L.1)) under the constraint {3, [¢)|> = 1,
with associated Lagrange multiplier i > 0. Lieb proved in |[Lie77| the uniqueness
of minimizers, up to space translations and multiplication by a phase factor. This
ground state @) is positive, smooth, radial decreasing, and has an exponential
decay at infinity. That () is also the unique positive solution to (|1.3)) was proved
in [MZ10].

In [Len09|, Lenzmann proved that @ is nondegenerate (this was also proved
independently by Wei and Winter in [WWQ09]). Namely, the linearization

Sof = —3A¢+ e — (V +[QP) €~ 20 (V » (Q€) (1.4
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of (1.3]) has the trivial kernel
ker| 2msy £ = span {0y, Q, 02, @, 02,Q} (1.5)

which stems from the translation invariance. This nondegeneracy result is an im-
portant property which is useful in implicit function type arguments. Uniqueness
and nondegeneracy were originally used in [Len09] to study a pseudo-relativistic
model, and then in [KMRO09, [Liu09, RN10, [Stul0, FLS13|, [Sok14), Xial6|
for other models.

The purpose of this paper is to study the case of anisotropic media, for which

the corresponding potential is
1 1
V(r)=— — 0<M<1, (1.6)

2] /det(M1)| M2z |

where M~! > 1 is the (real and symmetric) static dielectric matrix of the medium.
The mathematical expression is simpler in the Fourier domain:

~ 1 1
k) =4 — .
76 =47 33~ )

The form of the potential V' in the anisotropic case is well-known in the

physics literature and it has recently been derived by Lewin and Rougerie from
a microscopic model of quantum crystals in [LR13al.

From a technical point of view, the fact that V in is a difference of two
Coulomb type potentials complicates the analysis. For this reason, we will also
consider a simplified anisotropic model where V' is replaced by

-
(1= 5)"ta|

V(z) = 0<S<1, (1.7)

and S is also a real and symmetric matrix. This simplified potential can be seen
as an approximation of the potential in the weakly anisotropic regime, that
is, when M is close to an homothecy.

In this paper, we derive several properties of minimizers of &V and of posi-
tive solutions to the nonlinear equation , when V' is given by formulas
and . After some preparations in Section , we discuss the existence of min-
imizers and the compactness of minimizing sequences in Section 3] Then, based
on the fundamental non degeneracy result [Len09|, we prove in Section {4 the
uniqueness and non-degeneracy of minimizers in a weakly anisotropic material.
In Section [§ considering back general anisotropic materials, we investigate the
symmetry properties of minimizers using rearrangement inequalities. Finally we
discuss the linearized operator in Section [l By using Perron-Frobenius type
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arguments, we are able to prove that for ¢ a positive solution of the so-called
Choquard—Pekar equation (1.3]) sharing the symmetry properties of V', we have

ker £ = span {0,1, 0,1, 0.1} P ker (Sw)lLiym(RS) : (1.8)

Where L2, (R?) is the subspace of function in L?(R?) sharing the symmetry
properties of V. For instance, in the general case where the three eigenvalues of
M (or S) are distinct from each other and V' is decreasing in the corresponding
directions, Lgym(RS) is the subspace of functions that are even in these directions.
On the other hand, if exactly two eigenvalues are equal, it is the subspace of
cylindrical functions that are also even in the directions of the principal axis.
The main difficulty in proving is that the operator £, is non-local and
therefore the ordering of its eigenvalues is not obvious. The next step would be
to prove that ker £y ;5 (s = {0} which we only know for now in the weakly
anisotropic regime below) and in the radial case (see [Len09]). We

hope to come back to this problem in the future.
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2. Elementary properties

We define the energy &V as in ((1.1)) and consider, for all A > 0, the minimiza-

tion problem
Vi . . v
I"(\) = werfrllll(%@)g (). (1.9)
lel3=A

Let (e, eq,e3) be the principal axis of the medium, that is, such that each
e; € R? is a normalized eigenvector associated with the eigenvalue m; of the real
symmetric matrix M, where 0 < m; < my < mg < 1 with m; < 1 (otherwise the
medium would be the vacuum), or associated with the eigenvalue s; of the real
symmetric matrix S where 0 < s3 < s < s1 < 1 in the simplified model.

We define the map M — V as

{0 < M < 1| M symmetric real} — L*(R*) + L*(R?)

MHv(x):if 1 (1.10)

|z \/det(M—1)|M/2z]
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with, in particular, M = Id — V = 0 which corresponds to the vacuum. And, in
the simplified model, S — V is defined as
{0 < S < 1] S symmetric real} — L*(R*) + L*(R?)

S—V(x)=|(1- S)flxrl (1.11)

with, in particular, S = 0 — V = V. We denote the isotropic potentials by
Vi(x) = (1 —¢)|z|™, for 0 < ¢ < 1, and I the associated minimization problem.

Both maps are well-defined. Indeed, let V' be as in or then one
can easily show that there exist a > b > 0 such that

Vo e RM\{0}, 0<blz|™' <V(z)<alz|™' <zt (1.12)

Consequently, V' € L*(R?) + L*(R3). Moreover, if we restrict ourselves to 0 <
M <1 then there exist @ > b > 0 such that

vre RMN\{0}, 0<blz|™' <V(z)<alz|™ <z (1.13)

LEMMA 1.1. Let M — V be defined as in (1.10), S — V asin (1.11)) and let
f, g be two functions in H'(R3). Then V % (fg) € WY and, for any 0 < a < 1,
we have

(1) local Lipschitzity of
{a < M < 1| M symmetric real} x H' x H' — Wh®
(M, f,9) =V *(fg),
(2) uniform Lipschitzity of
{0< S <al|S symmetric realy x H' x H' — Wh®
(5,f.9) = V= (fg).

PROOF OF [LEMMA 1.1l First, for any f € L?*(R3) and g € H'(R3), by (1.12)
together with Hardy's inequality, |V » (7g)(x)| < (|- |-« fgl)(x) < 2| I, I V]l
holds. Consequently, for any f,g e H'(R?), we have

IV * (FDlwre < IV > (Dl + IV * gV Do + IV = £V,
<2[fl Vgl + 41Vl 1Vl < 61 F g 9l e -

Thus V*(fg) is in Wh®. For the rest of the proof, we denote by | M|| the spectral
norm of M and fix an « such that 0 < a < 1.
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For (S,T) € {0 < M < o | M symmetric real}?, f € L%(R3), g € H'(R?) and
x € R3, we have

A-=7)"- -0 =9

(Vs = Vi) » (f9)(@)] < EGER S * | fgl(x)
@ _T)Tél -5, Fol(@)
a —S)‘I(T|.—25)(1 -7, Fol(x)
<[ @ =8I - s - 1H *|fgl(x

<2(1=a) | fl Vol 1S =T -
Thus, for any f,g € H'(R?), we have

(Vs = V) % (£9)lwnce < 6(1 =) [ FlL gl 1S — 11,

which concludes the proof of (2).
For (M, N) € {a < M < 1| M symmetric real}’, we have

©r M N ds
M1/2 o N1/2 _ IJ _ _—
" o \s+M s+N) /s

—wlfo Lo - v)— s ds
B s+ N ’

0 S+M

which leads to

_N|| [ M~ N| [
HM%_N% M NHJ vs oo | I YCIp
s+ a) ma  Jy (s+1)?
M=)
2 /a

Moreover, with a similar computation and since det M, det N > o3, we obtain

|det M — det N|
203/2

Vdet M — v/det N| <
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Thus, for f e L?(R3?), g e H'(R3) and z € R?, we have

1 e e P |
(Ve — V) x (fg)(7)] < Wlfgl* (M2 [|NV2 | ()
1 1

|Fgl * [ MY ()

* Vdet N-1 a Vdet M1
< 2vdet N [ MNP 1 £l Vgl |12 = NY2|

—1nl/2
42|22 £, Vgl [ Vot N — Vdet 11
< (IM = N|| + 072 det N = det M]) o= | ], [Vl

Finally, the determinant being locally Lipschitz, we obtain that M — V x (fg) is
locally Lipschitz. 0

Since M~ is real and symmetric, there exists R € O(3) such that
RTMR = diag(ms, ma, my)
and so, for any x € R3, after a simple computation, we have

. B _ -~ -1
V(Rx) = |z|™" — |diag ((mims) ™2, (mama) ™2, (mamg) ™) x|,

where 0 < \/mimy < \/mims < \/mamz < 1 and \/myms < 1 since m; < 1.
Thus, we can consider, without any loss of generality, that
M = diag(mq,mg,m3), 0 < mz < myg <my <1 and my < 1,
1 1 (1.14)

M -
V@) =~ i

Similarly, for the simplified model, we can also assume that
V(z) = |diag(1 — s1,1 — 89,1 — s3) |, 0<s3<sy<s;<1l. (1.15)

For clarity, from now on we denote by &) (resp. &s) the energy and by I/())
(resp. Is(A)) the minimization problem since V' depends only on the matrix M
(resp. on the matrix S). However, for shortness, we will omit the subscripts when
no confusion is possible.

LEMMA 1.2. Let ¢p € HY(R?) be a solution of the equation (1.3)), for V defined
as in (L.14) or in (L.15), then (z,y,2) — ¥(tz, ty, +2) are H'(R?)-solutions
to (T3).

PROOF OF [LEMMA 1.2] This follows from the symmetry properties of V. [
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3. Existence of minimizers

We prove in this section the existence of minimizers for the minimization
problems. As preparation, we first give some properties of these variational prob-
lems.

LEMMA 1.3. Let V' be defined as in (1.14) or (1.15) and I be defined as
in (1.9). Then

I(\) = N1(1) <0, if A > 0. (1.16)
Consequently,
(1) X\ — I(\) is C* on RY,
(2) I(N) < I(A—= X))+ I(XN), for any X et X' such that 0 < X < A,
and, in particular,
(3) I(\) < I(N), for any 0 < N < A
PROOF OF [LEMMA 1.3l Let ¢ € H'(R®) with [¢|72s) = 1, then we have
Py = ANp(\) € HYR?) and Hw,\HiQ(RP,) = )\ and, by a direct computation,
&(1hy) = A3&(2p) which leads to I(\) = A*I(1). If we now define 1, = 32y (t-)
and use , we find that

1 b
E () < 5 IVl = 5 Il (a1 1)

12 bt
< 5 IVOlLe = 5 [P (WP *1- 7).

and taking ¢ small enough leads to the claimed strict negativity. The rest follows
immediately. 0

LEMMA 1.4. Let V' be defined as in (1.14)) or (1.15). Let I be as in ((1.9) and
let \ > 0. Then I(t\) > tI(X), for allt e (0,1).

PROOF OF [LEMMA 1.4l Let t € (0,1). By [Lemma 1.3, 0 > I(t\) = t3I()\) >
tI(N). 0

These two lemmas imply the existence of minimizers and the compactness of
minimizing sequences, as stated in the following theorem which gives also some
properties of these minimizers.

THEOREM 1.5 (Existence of a minimizer). Let V' be as in or
and X\ > 0. Then I(\) has a minimizer and any minimizing sequence strongly
converges in H'(R3) to a minimizer, up to extraction of a subsequence and after
an appropriate space translation.

Moreover for any minimizer 1, we have
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(1) ¢ is a H*(R3)-solution of the Choquard—Pekar equation (1.3))
with —p = %[(A) < 0 being the smallest eigenvalue of the self-adjoint
operator Hy = —A/2 — [|* x V, which is simple;

d 3 3
(2) pA = AT () = =3NI(1) = SV = LV o wys (117)

(3) 1| is a minimizer and || > 0;
(4) ¥ = z|Y| for a given |z| = 1.

For the isotropic potentials V., Lieb proved several of these statements in
[Lie77] using only the fact that |z|™! is radially decreasing. In the general case,
the proof is now standard and follows from Lions’ concentration-compactness
method |[Lio84al, Lio84b|. A sketch is given in Section [7.1|of the Appendix. For
a related result dealing with the case where |1)|? is replaced by || in the energy

see [MS13.

4. Uniqueness in a weakly anisotropic material

We recall that the uniqueness of the minimizer, up to phases and space trans-
lations, in the isotropic case, was proven by Lieb in [Lie77]. In this section, we
extend this result to the case of weakly anisotropic materials, meaning that we
consider static dielectric matrices close to an homothecy.

We first prove the continuity of I, (\), with respect to (M, A), which we will
need in the proof of uniqueness.

LEMMA 1.6 (Minimums’ convergence). Let V' be defined as in (1.14)) or (1.15)),
I be defined as in (1.9) and (A, \N) € (Rj)z. Then

I (X)) I ().

| M’ —M|—0
IV —A|—0

Thus, the continuity of the corresponding Euler-Lagrange multiplier, —pe y,
holds as well:

Kt \ AL -

|M7 M| >0
IN—A|—0

PROOF OF [LEMMA 1.6l Let ¢ (resp. ') be a minimizer of I (\) (resp.
Iy (M) for a given A > 0.
First, for any ¢ € H*(R?), we have

E0c() = Exn@)] = 5 Il ol » (V = V] < 3 el » (V= V), ol
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Thus, by M — En() is Lipschitz for any ¢ € H'(R?). Moreover
En() = Ewr(¥) < In(N) — I (N) < Enr(¥) — Emr (YY),
which implies that M +— Ij;(\) is Lipschitz for any A > 0.
Thanks to [Lemma 1.3 we conclude the proof of the convergence of I since
[T (N) = D ()] < [T (D] [N = (V)P + M= M
Then, the equality —pry = 3A2I(1) gives the convergence of the iy y’s. O

We now give our theorem of uniqueness in the weakly anisotropic case.

THEOREM 1.7 (Uniqueness and non-degeneracy in the weakly anisotropic
case).
Let A > 0.

i. Let 0 < s < 1. There exists € > 0 such that, for every real symmetric 3 x 3
matriz 0 < M < 1 with |M — s - 1d| < e, the minimizer ¢ of the minimization
problem Iy (X), for V(z) = |z| 7' —|M ‘2| as in (1.14)), is unique up to phase
and space translations.

it. Let 0 < s < 1. There exists € > 0 such that, for every real symmetric 3 x 3
matriz 0 < S < 1 with ||S — s - 1d| < e, the minimizer ¢ of the minimization
problem Is(\), for V(z) = [(1 — S)'z|™" as in (L.15), is unique up to phase
and space translations.

Moreover, in both cases, the minimizer is even along each eigenvectors of M
and ker £, = span {00, 0,0, 0,1}, where £y is the linearized operator defined

in (T4).

The proof of this theorem is based on a perturbative argument around the
isotropic case, using the implicit functions theorem. The fundamental nonde-
generacy result in the isotropic case, proved by Lenzmann in [Len09|, is a key
ingredient of our proof.

PRrROOF OF [THEOREM 1.7 The proof of ii being similar to the one of 7, we
will only give the latter. Let us fix 0 < s < 1, define

2 :={0 < M < 1| M symmetric real}

and denote by () the unique positive minimizer of the isotropic minimization
problem I(\) := I,1q(A) for V(z) = Via(z) = (1 — s)|z|~!, which is radial and
solves (|1.3):
1
~5AQ+1Q ~ (IQF +V)Q =0,

with Q]2 = A. There X is fixed hence is p1 := fio1ax > 0 by [Lemma 1.3
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Step 1: Implicit function theorem and local uniqueness. By Proposi-
tion 5 in [Len09|, we know that the linearized operator £¢ given by

1
€l = =5 AL+ pg = (V+[QF) € =2Q (V+ (Q9)) . (1.18)
acting on L?(R3) with domain H?(R?), has the kernel
ker £¢o = span {0,,Q, 0,,Q, 0, Q} - (1.19)

Let us define u as

H'(R* R) x 2 % L*(R* R)

(¥, M) > = (WP *V) o
and G as
(ker £0)* x 2 % H'(R®,R)

(1, M) =+ (=8/2 + puar) ™ (e, M),
where (ker £4)* is the orthogonal of ker £¢ for the scalar product of L*(R?), which
we endow with the norm of H'(R?), and pups := parn = 3M?1(1). We emphasize
here that we consider real valued functions, meaning that we are constructing a
branch of real valued solutions. Moreover, G(1, M) = 0 is equivalent to —%Aw +
pp — (|¢]? » V)i = 0. Differentiating with respect to w;, for i = 1,2, 3, we get
L40:,¢ = 0, for ¢ = 1,2, 3, and thus span {0,1, 0,1, 0,1} < ker £,.

By the Hardy-Littlewood-Sobolev and Sobolev inequalities, u is well defined.
Moreover, splitting u (v, M)—u(¢’, M") into three pieces and using ((1.13]) together
with the Hardy inequality, one obtains
lu(eh, M) = u(y’, M) 2 < ||V > [P o 10 = ¢l 2 + | (V= V) [ 1912

H IV (] = [ DA+ [ D) e 18] 2 -

Therefore, using [Lemma 1.1}, u is locally Lipschitz on H'(R? R) x &. Then, since
(=A/2 + par)”" maps L2(R3) onto H2(R?) < H'(R®), G is also well defined.
Moreover, since ||(=A + v) 7|2, 2 < max{1,v" !} (for v > 0) and

(=A2+a) " = (=A2+b) 7 = (b—a)(=A/2+a) " (=A/2+b)7",
for all a,b > 0, we have
IG (), M) = G, M')||
< = g + | (=A/2 + par) ™ (o, M) — (@', M) .
+ e = i [[ (=82 + puar) ™ (=A/2 + par) " w(@, M)
<Y = ¥+ max{2, (par) 7} [Ju(, M) — u(y’, M) 2
+max{2, (puar) ™y max{2, (uar) 7 u(y’, M) 2 [|M = M|,
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which proves that G is also locally Lipschitz.
A simple computation shows that

dpu(, M)E = — (|0 » V) & = 20 ((v€) x V), (1.20)
acting on ¢ € (ker £¢9)*, and that
OpG(1h, M) = 14 (=A/2 + ppr) " Opu(h, M). (1.21)

We claim 04G(p, M), defined from (ker £9)* x 2 into £ ((ker £o)4, LQ(]RS,]R)),
to be continuous. Indeed,
10pu(ep, MEN > < (1€l |V * [P, + 21100l 1(€) * V| o
< 3Dl 100 22 1611 22

thus oyu(v, M)E € L2(R3,R) for any (¢, M, &) € (ker £9)* x 2 x (ker £g)*.
Splitting again the term into pieces and using (1.13)), for £ € L*(R3,R), one
obtains

10pu(e), M)E — Oru(e', M)E]
< Vo (0P = WP 1802 + [V = V) [P N
+ 2[[V o () o 190 = ' + 21V * (& = ) oo |19 2
+2[|(V = V) * () oo 14']] 2
=0 ([, M) = (@', M) 1) €]l 2 -

Then, since

’|3¢G(¢a M>§ - adiG(w,? M,)é-”[—[l
< max{2, (puar) "} |Opu(, M) — Qyu(y, M')| 1
+max(2, (uar) " max(2, (uar) 1} 8, M) o 1M — M),
we have
120G, M) — 0G0 MY = 0, 3 [0, M) = (0, M) 15— O

This concludes the proof of the continuity of 0,G (¢, M) from (ker ,SQ)L x 9 into
L ((ker £¢9)*, H'(R®, R)).

We now apply the implicit function theorem to GG. Indeed, by the definition
of (ker £9)*, the restriction of £ to (ker £5)* has a trivial kernel. On the
other hand, the operator (—A/2 + par) ' yu(Q, s-1d) is compact on L?(R?) (see

section in Appendix), therefore —1 does not belong to its spectrum. We
deduce from this the existence of the inverse operator

(0,G(Q,s-1d)) " : Ran(G) « HY(R? R) — (ker £4)*. (1.22)
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Then, by the continuity of G and d,G, the existence of (0,G(Qs, s -1d))™" and
since G(Q, s-1d) = 0, the inverse function theorem 1.2.1 of [Cha05] implies that
there exist d,& > 0 such that there exists a unique (M) € (ker £5)* satisfying:

GW(M),M) =0 for |M—s-1d| <cand (M) — Q| <6.  (1.23)

Moreover, the map M — (M) is continuous.

Additionally, ker 0,G(¢(M), M) = {0}, i.e. ker|ker ooyt £y = {0} which leads
to dimker (£,) < 3 since dimker (£¢9) = 3 by (L.19).

We now claim that ¢(M) is symmetric with respect to the three eigenvectors
of M, {e;}i=123, and consequently that, for i = 1,2, 3, d,,%(M) is odd along e; and
even along e; for j # i. Indeed V' being symmetric, the eight functions (z,y, z) —
(M) (£, +y, £2), which are in (ker £5)*, are zeros of G(-, M). If ¢»(M) were not
symmetric with respect to each e;, then at least two of the functions (z,y, z) —
¢Y(M)(+z, +y, +2) would be distinct functions but both verifying (1.23)), since Q
is symmetric with respect to each e;, which is impossible by local uniqueness.

Thus the 0,,1(M)’s are orthogonal and we have dim span {0, 0,1, 0,9} = 3.
Since span {0,¢, 0,1, 0,1} < ker £, this leads to dim ker (£,) > 3. Which proves
that ker £, = span {0,1, 0,9, 0,1}.

Let us emphasize that, at this point, we do not know the masses ||[1v’(M)|5 of
those 1(M). Note also that we could prove here that [¢)| > 0, since —puy, stays
the first eigenvalue by continuity and with a Perron—Frobenius type argument,
but we do not give the details here since this fact will be a consequence of Step
2.

Step 2: Global uniqueness. Let (M,), be a sequence of matrices in 2
such that M, — s-1d and let (¢a1,, )n be a sequence of minimizers of (I, (X)),

which we can suppose, up to phase, strictly positive by and, up to
a space translation (for each M,,), in (ker £5)*. Indeed, for any 1 € H'(R?), let

us define the continuous function
9= [ w0t )
which is bounded, by the Cauchy-Schwarz inequality. Then
Jf(’r) dt = Jw(a:) JVQ(:L‘ —1)dtdr =0
since { VQ = 0. Thus, f being continuous, there exists T such that
£ = [ 4o~ 9VQ) s —0,
i.e. P(- — 1) € (ker £g)* since ker £¢ = span {0,,Q, 02, Q, 0., Q}-
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By continuity of (Ips,(\)),, given by [Lemma 1.6 (¢, ), is a minimizing
sequence of I,1q(\). So, by [Theorem 1.5 (¢, ), strongly converges in H'(R?)

to a minimizer of I,1q()), up to extraction of a subsequence. But, since the 1y,
are positive and in (ker £4)*, they converge to a positive minimizer of I,14(A) in
(ker £o)* which is Q.

So, there exists ¢’ < e such that if |[M —s-1d|,, < €, then each 9y, veri-
fies G(Yu,, M,) = 0, by definition of (Yar,),,, and [[¢a, — Q|1 < 6 ie. veri-
fies . So the 1y, are unique (up to phases and spaces translation). Which
concludes the proof of [Theorem 1.7

Moreover, we now know that, in fact, the masses |[¢)(M,)|5 of the unique
(M,) found in the local result were in fact all equal to A\. We also proved
incidentally that our choice of translation to obtain (¢, ), < (ker £9)* was, in
fact, unique. 0

5. Rearrangements and symmetries

The goal of this section is to prove that minimizers are symmetric and strictly
decreasing in the directions along which V' is decreasing, without assuming that V'
is close to the isotropic case as we did in the previous section. More precisely, we
will consider here the general anisotropic case ms < mo < my (resp. 3 < s9 < 1)
and, in particular, the two cylindrical cases m3 = my < my (resp. s3 = sg < 81)
and m3 < mg = my (resp. 3 < sp = $1). Our main result in this section is
below. As a preparation, we first give conditions for V' to be its own
Steiner symmetrization.

As in [Cap14], for f defined on R™ = span{ey,...,e,}, we denote:

— by f* its Schwarz symmetrization, for n > 1;

— by Sti, i, (f) its Steiner symmetrization (in codimension k) with respect
to the subspace spanned by e;,,...,e;,,forn>2and 1 <k <n.

Let us remark that the Steiner symmetrization St;, _; (f) of f is the Schwarz
symmetrization of the function (x;,, -+ ,2; ) — f(z1, -, n).

PROPOSITION 1.8 (Criterion for V' to be its own Steiner symmetrization).

(1) Let V' be given by , with 0 < ms < my < my < 1. ThenV =
St1 (V) (thus V' is ey-symmetric strictly decreasing). Moreover, for k €
{2,3}, V. = Stx(V) (thus V is ex-symmetric strictly decreasing) if and
only if

m} < ma. (1.24y)

Moreover,
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i. if mg < mg = my, then V= St15(V). Thus V is (e, ea)-radial
strictly decreasing.
ii. if mg = mg < my, then V.= Sta3(V) — thus V is (ea,es)-radial
strictly decreasing — if and only if
m} < m3 =m3; (1.25)
(2) Let V' be given by (1.15]), with 0 < s3 < s9 < s1 < 1. Then V = Sti(V)
(thus V' is e-symmetric strictly decreasing) for k = 1,2,3. Moreover,
i. if s3 < s9 = s1, then V. = St12(V). Thus V is (e, e2)-radial strictly
decreasing;

ii. if s3 = s9 < s1, then V = Sta3(V). ThusV is (e, es3)-radial strictly
decreasing.

PROOF OF [PROPOSITION 1.8 Suppose V is given by , then it obvi-
ously has the claimed properties of symmetry and, moreover, the cylindrical ones
in cases 7. and 7.. So the proof that V' is equal to its symmetrization is reduced
to the proof of decreasing properties.

For any = # 0 and k£ = 1,2, 3, we have

Ol |V (21, 9, 73) = —— m';;'xk’ 3 E i . (1.26)
' (mi22% + my%ad + m32a3)32 (2} + 23 + 23)32

Thus, V' = St(V) and V is radially decreasing with respect to zj if and only if

0< (mj?— m,:4/3)x§ + (my? — m,;4/3)x§ +(m32 —m a2 ae on R?
which is equivalent to m; < mz/ 5, Consequently, V' = St; (V') always holds.

If msg = my < myq, denoting u = |(x2, x3)|, and computing 0, V', we obtain that
V' = Sty 3(V) if and only if m; < m2® = m3® in which case V is (eq, e3)-radial
decreasing.

If mg < my = my, denoting u = |(z1,x2)|, and computing 0,V, we obtain
that V = St15(V) if and only if ms < m3> = m?’®, which always holds thus V is
(e1, ez)-radial decreasing.

We now need to prove the strict monotonicity. Thanks to , VV =0
holds only on measure-zero sets (note that we use the computation but do not
use any condition on mq, mg and mg except that they are strictly less than 1).
Thus {V =t}| = 0 for any t € R, and then |{V* =t}| = 0 for any ¢t € R,.
Hence V* is radially strictly decreasing. Same results of strict decreasing hold
for Steiner symmetrizations since, as noted before, a Steiner symmetrization is a
Schwarz symmetrization on a subspace.

The proof for V given by (1.15]) is very similar and easier. U
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We now state our main result about the symmetries of minimizers.
THEOREM 1.9 (Symmetries of minimizers). Let A > 0.

(1) Let V' be given by (1.14) and ¥y = 0 be a minimizer of Iy (X). Then,
up to a space translation, y; is ei-symmetric strictly decreasing. If
m3 < m3 as in (1.24h), then ¥y is also eg-symmetric strictly decreasing.
Finally, if m$ < m? as in (1.24y), then 1y is additionally e3-symmetric
strictly decreasing. Moreover,

1. if mz < mo = my, then 1y is cylindrical strictly decreasing with
azis es. Meaning that 1y is (e, ex)-radial strictly decreasing. If
additionally (1.245) holds, then ) is cylindrical-even strictly de-
creasing with axis ez. This means that 1y, is cylindrical strictly
decreasing with azis es and es-symmetric strictly decreasing;

. if mg = my < my and m3 < m3 = m3 as in (1.25), then ¢y is
cylindrical-even strictly decreasing with axis e;.

(2) LetV be given by (L.15)) and s = 0 be a minimizer of Is(\). Then, up to
a space translation, Vg is ep-symmetric strictly decreasing for k = 1,2, 3.
Moreover,

1. if s3 < s9 = 81, then Yg is cylindrical-even strictly decreasing with
azris es;

1. If s3 = s9 < 81, then g is cylindrical-even strictly decreasing with
axis e;.

To prove the symmetry properties of the minimizers, we need symmetrizations
of a minimizer to be minimizers, which is proved in the following lemma.

LEMMA 1.10. Suppose that V', given by (1.14) or by (1.15)), verifies one of the
symmetric strictly decreasing property (resp. radial strictly decreasing property)

described in |Proposition 1.8, and define V>t the symmetrization of 1 correspond-
ing to this symmetric strictly decreasing property of V.
If ¥ is a minimizer then > too. Moreover the following equalities hold

. 2 2
i IVYll; = [V,
ii. (I [P V), = (2 [0 P« V),
PROOF OF [LEMMA 1.10l On one hand, since the symmetrization conserves
the L? norm and ¢ is a minimizer, we have & () < &(¢°%). On the other
hand, given the Riesz inequality (see [Bur96]), the fact that the kinetic energy

is decreasing under symmetrizations (see Theorem 2.1 in [Cap14]) and since
V = V5 by [Proposition 1.8 we have &(¢) > &(¢5). So finally I(\) = &(v) =
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&(Y5). Consequently, given (1.17)) in [Theorem 1.5] and that minimizers 1) and
¥ have the same Lagrange multiplier u = —3A2I(1), we immediately obtain
both equalities. O

Using the analycity of minimizers (Lemma 1.12)) we can now prove the strict

monotonicity of Steiner symmetrizations of minimizers.

LEMMA 1.11. Let A > 0 and ¢ be a real minimizer of I(\) for V given
by (1.14)) or by (1.15), then ¥* is radially strictly decreasing. Moreover, for any
permutation {i,j, k} of {1,2,3}, we have

i. for any x € span{e;, e}, St;(¢)(x, ) is radially strictly decreasing,
ii. for any x € span{e;}, St;x(¢)(z,-) is radially strictly decreasing.

PROOF OF [LEMMA T.111 By [Theorem 1.5 4 is in H*(R? R) and a solution
of (|1.3]) with a real Lagrange multiplier . Then, by the following lemma (proved

in the Section of the Appendix), ¢ is real analytic.

LEMMA 1.12. Any ¢ € H*(R3 R) solution of (1.3) for u e R is analytic.

Thus |[{¢ =t}| = 0 for any t € R, and this is equivalent to [{)* =t}| =0
for any ¢t € R,. Hence ¢* is radially strictly decreasing.

Given that for any 1 < k < 3 and any z € R37* 4(z,-) is analytic and since
a Steiner symmetrization is a Schwarz symmetrization, we obtain #¢. and ¢i2. by
the same reasoning to ¥ (z,-). O

Finally, to prove our on the symmetries of minimizers, we need
a result on the case of equality in Riesz’ inequality for Steiner’s symmetrizations.
We emphasize that different Steiner symmetrizations do not commute in general.
However, if the Steiner symmetrizations are made with respect to the vectors of
an orthogonal basis then the radial strictly decreasing properties are preserved.

For shortness, we write uSt% Stz .=

St12(u) and uS'23 := Sty 3(u).

:= Sti(u) and, in cylindrical cases, u

PROPOSITION 1.13 (Steiner symmetrization: case of equality for g strictly
decreasing). Let f,g,h be three measurable functions on R3 such that g > 0 and
f,h =0 where 0 # f e LP(R3), with 1 < p < 4+, and 0 # h € LY(R3), with
1 < q < +w. Define

J(f.9.h) f F(@)g(z — y)h(y) do dy <
R3R3

(1) Let (i,7,k) be a permutation of (1,2,3) and J (fSti,g,hSti) < 0. If for any
(zj,21) € R? the functions g, f5% and hS% are all strictly decreasing with
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respect to |x;|, then

= (- —a),
_ 14— a),
(2) Let (i, j, k) be a permutation of (1,2,3) and J (fSt*, g, h%%+) < co. If for any

z; € R the functions g, 5%+ and hS%* are all radially strictly decreasing with
respect to (z;,xy), then

a.e. on R>.

f
J(f,9:h) = J (f%,9,h™) < Jae R, {h

J(f,g,h) = J (f5%*, g, %) < JaeR? f =4 ), a.e. on R?
7g7 7g7 bl h:hstj’k(._a)’ .C. .
(3) Let St and St' be two Steiner symmetrizations, acting on two orthogonal di-
rections, T = St' o St and J (f7,g,h") < 0. If the functions g, f5, K" are
all radially strictly decreasing in the direction (or the plane) of St, and g, 18
and BSY are all radially strictly decreasing in the direction (or the plane) of
St’, then
f = fT< - CL),
J(f.qg,h) =J(fF,¢9,h") = JaeR?, a.e. on R
(f.9.h) =T (f",9,h") b= W(— a)
PRrROOF OF [PROPOSITION 1.13l The implications < all follow from a simple
changes of variable. We show the implications = and start with (7). Define, for
any permutation (i, , k) of (1,2,3) and any (z;, 2}, zx, z},) € R, the functions

Ji(frg. )y 7 f f FO9(X — Xh(X') da, dat,

where X = (x1,29,23) and X' = (2,2}, 2%). We claim that for almost all
(2, 2%, x5, 77,) € R*, we have

Ji(f, 9, h) (s, @, w, ) = Ji( 59, g, hS) (g, o), e, @)
Indeed, assume that there exists a non-zero measure set £ < R? x R? such
that Ji(f,g,h)(y,y') # Ji(f5%, g,h5%%)(y,y) for any (y,y') € E. Thus, by Riesz
inequality on R, J;(f, g, h) < Ji(f5%, g, hs“) necessarily holds on E, since g = g%,
and consequently J(f,g,h) < J(f5%, g, h5%), reaching a contradiction.
We now use the following result of Lieb [Lie77]:

LEMMA 1.14 (JLie77, Lemma 3]: Case of equality in Riesz’ inequality for g
strictly decreasing). Suppose g is a positive spherically symmetric strictly decreas-
ing function on R", f € LP(R™) and h € LY(R™) are two nonnegative functions,
with p,q € [1; +o0], such that J(f*,g,h*) < . Then

J(fyg,h)=J(f* g,h*)=TaeR" f=f*(—a) and h = h*(- — a) a.e.
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Thus, for almost all (y,y’) € R? x R?, there exists a;(y,y’) € R such that

fly,z:) = £ (y, 2 — ai(y, y))
and h(y',x;) = B (v, z; — ai(y,y')), for almost all z; € R. Using now the
assumed strict monotonicity of f5(y, ) and h%%(y/,-), it follows that a; does not
depend on (y,%'), and (1) is proved.
The case (2) is very similar, defining this time

’]Lk(f?g? h)('xza ZC;) = ;<f<7 SL’@),Q(', Ti — SL’;) * h(v x;)>L2(R2) )

for all (z;,z}) € R%
We now prove (3). Let St be one of the Steiner’s symmetrization described
(1) and (2) and the same for St’. We claim that

JSt(fagah) - JSt(fStvg7hSt) and JSt'(faga h) = JSt'(fStlagahSt/)7 a.c..

Indeed, Riesz inequality gives J(f,g,h) < J(f5, g,h%) < J(fT,g,hT). Since
first and third terms are equal, the three of them are. From the first equality,
there exists a € R® (¢ = 1,2) such that f = f5(- —a,-) and h = (- —a,-).
Then, since St and St’ act on orthogonal directions, we have

T g by = (£ 4 a0 b5+ a)) = T g, h)

and so the second claim holds true too. Then we have

(fT (y . (CLI,G)) _ (fSt(x _a, '))St' (Z _ a/) _ fSt/<CL',Z N a/)
< = f(z,2) = f(y),
W' (y — (d,a)) = (B (z — a, -))St/ (z—a) =h"(z,z—d)
= h(l‘, Z) = h(y),
for almost every y := (z,2) € R? O

We now have all the ingredients to prove [I'heorem 1.9,

PROOF OF [THEOREM 1.9l Let ¢ be a minimizer and 15 one (or a compo-
sition) of its Steiner symmetrizations with a direction (or a plane) for which
V = Vst

We take f = h = |[¢)|> € and g = V. So we have f = h > 0 (thanks

to [Theorem 1.5), g > 0 (thanks to (1.13)) and J(f5,V, f5) finite. Indeed by
the Hardy-Littlewood-Sobolev inequality and (T.I3), J(f5,V, f%) < | f5t|‘2/5 -

HfH§/5 < 4o since f € HY(R?). Moreover, the assumption on the my’s gives

that ¢ = ¢° is radially strictly decreasing by [Proposition 1.8, and the strict

monotonicity of f5* = A5 is obtained by [Lemma 1.11]
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Finally, by [Lemma 1.10} ¢t is a minimizer and
TP Vo) = T (1P (V)P (1)) = 7 ()™ V(e )™) -

By [Proposition 1.13] there exists a such that [1|? = (|¢*)%* (- —a) = (|¢%*)2(- —a)
holds a.e. thus ¢ = ¥S(- — a) since ¢ > 0. This concludes the proof of
rem 1.9 ([l

6. Study of the linearized operator

In this section we study the linearized operator £¢, on L*(R*) with domain
H?(R3), associated with the Euler-Lagrange equation —AQ + Q — (|Q|> * V)Q =
0 (1.3]), which is given by

€06 = —AE+ 6~ (V|Q) € —2Q (V + (Q€)), (1.27)

and we give partial characterization of its kernel. We first consider the true
model for which, following the scheme in [Len09|, we will use a Perron-
Frobenius argument on subspaces adapted to the symmetries of the problem.
The main difficulty will stand in dealing with the non-local operator @ (V * (Q€))
and, in particular, with proving that this operator is positivity improving. The

fundamental use of Newton’s theorem in the proof of this property in the isotropic
case does not work here, therefore we need a new argument. Our proof will rely
on the conditions ’s for which V' is eg-symmetric strictly decreasing for
each k (see [Proposition 1.8). Then we discuss in a similar way the cylindrical
case for the simplified model , which will need another argument.

6.1. The linearized operator in the symmetric decreasing case. We
consider the general case for V, given by ([1.14]), verifying the three conditions
(1.244)), for k = 1,2,3, and define the subspaces of L*(R?)

f(—ZL', Y, Z) = Tmf(m’ Y, Z)7
L3 on = [ 2R |fz,—y,2) = v f(x,9,2), ¢, (1.28)
fla,y,—2) = ©.f(z,y, 2)
obtained by choosing 1,,T,,T, € {£1}. We prove the following theorem which

is basically saying that the kernel of the linearized operator around solutions is
reduced to the kernel on functions that are even in all three directions.

THEOREM 1.15. Let V', be given by (1.14), verifying (1.244), for all k, and

let Q be a positive and symmetric strictly decreasing (with respect to each ey,

separately) solution of (1.3). Then
ker £9 = span {0,Q, 0,Q, 0,Q} @ ker (}:Q)\Li,+,+ ) (1.29)
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For instance, Q could be a minimizer for In ().

The proof of this result is inspired by Lenzmann’s proof in [Len09] of the
fundamental similar result for the linearized operator in the radial case which
corresponds to m; = mgy = mg. In that case, Lenzmann proved that

ker (£0) = {0}.

Note that by the result of Section [d] we know that this is still true in the weakly
anisotropic case. Moreover, a theorem similar to holds true for the
simplified model (with no conditions on the matrix S) but we do not state
it here for shortness.
The rest of this Section [6.1] being dedicated to the proof of the theorem, let
V and () verify the assumptions of for the entire Section [6.1]
6.1.1. Direct sum decomposition. First, one can easily verify that £ stabilizes

the spaces L?%Tyﬂz. Let us then introduce the direct sum decomposition

2
1LY 4+

LZ(R3) = Lif S L§+ = sz ® L121+ = Li— ® LZ+

where
(12 ._ 2 2 . 2
Lx— T @ L—,Tyﬁz’ Lx+ T @ L"F,Tyffz
Tvazzi Ty/tz:i
2 2 2 2
< Ly* = @ LszTz’ Ly+ = @ LTZ,Jr,Tz
Te,To=1 Tz, Tz=1%
2 . 2 2 . 2
LZ— T @ LvaT_m_’ Lz+ T G_) LTvayv“"
szTy:i TI»Ty:i

\

We claim that those spaces — with corresponding projectors P*~, P*t, PV,
Pt P>~ and P** — reduce the linearized operator £¢ (see [Tes09| for a defi-
nition of reduction), where
x+ w(:r;,y, Z) iw(_'xay72)

P QXJ(QZ, Y,z ) - 9

and similarly for the other projections. The reduction property is straightforward
for —A + 1 — (V % |Q|*). Moreover, since @ is even in z, we have

V(@) £V QU )
2
V * Q¢iv* Qw BRI T
_ V@) £ 2( )( ):Pi[v*(Q¢)]
and, () being also even in y and in z, we obtain the result for the other projections.
Thus we can apply [Tes09), Lemma 2.24] which gives us that

Lo=2L5 @LL =LY LY = L5 2Ly,

V* (QP™)
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with the six operators £§, for w € {x—, v+, y—,y+, 2—, 2+}, being self-adjoint
operators on the corresponding L?(R?) spaces with domains P¥H?(R3). Note
that P*~H*(R3) = H2 (R®) := H*(R®) n L2_(R?®) and similarly for P¥~ and
P
Let us then redefine from now on the operator £5 (resp. 272'2_ and £7°) by
restricting it to x-odd (resp. y-odd and z-odd) functions through the isomorphic
identifications L2 (R, x R?) ~ L2 (R?®) and H? (R, x R?) ~ H2 (R?). Thus,
G » as an operator on L7 (R, x R?) with domain H; (R, x R?), can be written

£ = A+ 1+ )+ Wi

where the strictly negative multiplication local operator, on R, x R2?, is
Opy(2,Y) = = (V+[Q]) (z,Y)
= —f [V(z—2Y =Y+ V(z+2Y —-Y')]x

e x Q*(z',Y')dY’ da’

and the non-local term W{,_), on Ry x R?, is
W) /)2, Y)
_ 20(x,Y) J V-2,V — V)= Vi +2,Y —YV')|x
o « Q@ Y') f(«, V") dY" da'.

The same properties hold for £5" and £, with corresponding ®,_), W(,_), .
and W(Z,).

The key fact to deal with the non-local operator, in order to adapt Lenzmann’s
proof to anisotropic case, is the positivity improving property of the —W_’s.

LEMMA 1.16. The operator —W ,_) is positivity improving on L2 (R, x R?).
The same holds true for —W,_y and —W,_y on corresponding spaces.

PROOF OF [LEMMA 1.76l Since X — V(X,Y) is | X|-strictly decreasing, due
to conditions (1.24;]), and = + 2’ > |z — 2/| on (R, )?, we obtain, for z,2’ > 0 and
(Y,Y") e (R2)®, that V(z —a',Y =Y') =V (z+2,Y —Y’) > 0. Moreover Q > 0.
Thus, —W(_) is positivity improving on LZ_(R, x R?). O

6.1.2. Perron—Frobenius property. We can now prove that the three operators
0, L6 and £5 verify a Perron-Frobenius property.

PROPOSITION 1.17 (Perron-Frobenius properties). The operator £ is self-
adjoint on L2 (R, x R?) with domain H? (R, x R?), is bounded below and has
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the Perron—Frobenius property: if \j~ denotes the lowest eigenvalue of £, , then
Ao~ ts simple and the corresponding eigenfunction ¥y~ is strictly positive.

The same holds true for 275 and L5 with the corresponding domains, lowest
eigenvalues and eigenfunctions.

PROOF OF [PROPOSITION 1.17 We follow the proof’s structure of [Len09,
Lemma 8]. Moreover, we only write the proof for £ thus the superscripts and
subscripts "z—"

will everywhere in this proof be replaced by "—" for simplicity.
The argument is the same for the other directions.

Self-adjointness. We have Q € H*(R3) < C°(R?) n L?*(R3) n L*(R?) and, by
[T13), V * Q| is in LA(R3) n L*(R?) since V = Vi + Vi € L2(R?) + L*(R3).
Defining, for any f € L? (R, x R?), fe L?(R?) by f(z,-) = f(z,-) for x = 0, we
have 2(f, )12 @, g2y = [+ G)12 gs) and so ®(_) + 1 is bounded on L2 (R, x R?).
Moreover, by Young inequalities, for any ¢ € L (R, x R?),

[V (@) e < (IVall o QN o + Vel 2 Q1 o) €] 22

holds. Thus, for p € [2, 0], we have
HW(—)éuLp(R+XR2) <2 HQ||LP(R+><R2) HV * (QE)HLW(]&. xR?)
< QL [V * (QE)]| e
and W)€ € L% (R x R?) n L®(R, x R?). Consequently, 1 + ®_y + W_) and,
thus, £ is bounded below on L? (R, x R?).
Finally, we deduce the self-adjointness of the operator £, on L? (R, x R?)

with domain H? (R, x R?) from the self-adjointness of the operator £, on L? (R?)
with domain H? (R?).

Positivity improving. We know (see the proof of [Lemma 1.30|in the Appendix)

that
A ) = 2 [ ey ay
(A + )" ¢( )_47TJR3|)(—Y|£( )dY,
for all p > 0 and all £ € L*(R3). Consequently, for £ € L?(R, x R?) and

(z,7) € Ry x R% we have

(A +p) " ¢(, )

1 J [@—ﬁ(z—m—m o~ VAl @ Hy,E-3)|
R+XR2 ’

Thus, with the same arguments as in the proof of [Lemma 1.16, (—=A + u)™! is
positivity improving on L% (R x R?) for all 4 > 0. Moreover, —(®) + W_))
is positivity improving on L? (R, x R?) since —®_y is a positive multiplication
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operator and —W(_, is positivity improving by [Lemma T.16| Then similarly to
the proof of [Len09, Lemma 8], for > 1,we have

_ -1 - _
(Co+n) =CFA+p+D)7 (14 (@) + W) (A +u+1)7)
Since (®—y + W(_)) is bounded, we have
(@) + W) (A + )7 1

-1

R+XR2) < 17

for u large enough. This implies, for i > 1, by Neumann’s expansion that
0
_ -1 - _
(E/Q + /L) = (—A + pn+ 1) ! Z [—((I)(_) + W(_))(—A +pun+ 1) l]p,
p=0
which is consequently positivity improving on L% (R, x R?) for u » 1.

Conclusion. We choose p » 1 such that (£, + p)~" is positivity improving and
bounded. Then, by [RS78, Thm XIII.43], the largest eigenvalue sup o((£, +
w)~1) is simple and the associated eigenfunction ¢, € L% (R, x R?) is strictly
positive. Since, for any ¢ € L? (R x R?), having ¢ being an eigenfunction of £;

for the eigenvalue A is equivalent to having 1 being an eigenfunction of (£, + p)~t
1

for the eigenvalue (A + p)~!, we have proved [Proposition 1.17] O

6.1.3. Proof of [Theorem 1.15. Differentiating, with respect to x the Euler-
Lagrange equation —AQ + Q — (|Q* * V)Q = 0 (L.3), we obtain £40,Q = 0.
Moreover, @ is positive symmetric strictly decreasing, thus 0,Q € L2 (R?), and
this shows that £5 0,() = 0. Then, @ > 0 being symmetric strictly decreasing,
2.Q < 0 on R, x R? and, by the Perron-Frobenius property, it is (up to sign) the

unique eigenvector associated with the lowest eigenvalue of £, namely A\j~ = 0.
Since £f acts on L} = @ . L? . .., We obtain
Ty, Tz=T

ker (£q) 12 LR T span{d,Q};
ker (£Q>\L3,7,+(R3) = ker (£Q>|L3,+,—(R3) = ker (SQ)|L377‘7(R3) = {0}.
This the exact same arguments for the two other directions we finally obtain that

ker £¢ = span {0,Q, 9,Q, 0.Q} P ker (EQ)|L2+ L LE)
Which concludes the proof of [Theorem 1.15| 0]

6.2. The linearized operator in the cylindrical case for the simplified
model. We now consider the case where the static dielectric matrix has exactly
two identical eigenvalues. Obviously, holds and it tells us that the
kernel is reduced to the kernel on functions that are even in the z-direction and
even in any direction of the plane orthogonal to z. However, this does not tell
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us that it is reduced to the kernel on cylindrical functions, which is what we
are interested in. Indeed, instead of the kernel of £4 on L?h + L (R?), we want

the remaining term in the direct sum to be the kernel on L2, | (R?), namely the

subset of cylindrical functions that are also even in the direction of their principal
axis.

Unfortunately, our method fails to prove it for V given by since we
are not able to prove a positivity improving property for the non local operator.
Therefore, in this section, we will only consider the simplified model where V' is

given by (L15).

We use the cylindrical coordinates (r, 0, z) where e, is the vector orthogonal
to the plane of symmetry. Namely, e, = e3 if s3 < s9 = 51 and e, = ey if
$3 = S9 < s1. We then define the following subspaces

Lz(R3) = {f € LZ(Rg) | f(x,y, _Z) = Tf(x,y,z)} ) for T = +;
LA (Ry x R) :={fe L*(Ry x R,rdrdz) | f(r,—z) = f(r,2)}; (1.30)
D (B9) = 2R, x B)® (¥}

Thus L4, (R?) is the space of square-integrable functions which are even in z
and radial in the (x,y) plane.

THEOREM 1.18. Let V' be given by (1.15) with S having one eigenvalue of
multiplicity 2 and let ) be a cylindrical-even decreasing and positive solution

of (1.3). Then
ker £ = span {0,Q, 0,Q, 0.Q} @ ker (SQ)lLEad @) (1.31)
For instance, @ could be a minimizer for Is(\).

Several parts of the proof of this theorem being identical to the ones in the

proof of [I'heorem 1.15] we will only give the details for the parts that differ.

6.2.1. Cylindrical decomposition. Since V' is cylindrical-even strictly decreas-

ing by |Proposition 1.8/and since minimizers are cylindrical-even strictly decreasing

by [Proposition 1.9 £ commutes with rotation in the plane of symmetry. Let us

then introduce the direct sum decomposition
PE)=LE)e @ LR, xR)O{Y} (1.32)
n=0,0=+
with
1
Yot = (2m) % Yy =0;
Y =n2cos(n); Y, =n zsin(n:), forn> 1.

The operator £¢ stabilizes L? (R?) and the spaces L (R, x R) ® {Y,7}.

I

(1.33)



6. STUDY OF THE LINEARIZED OPERATOR 47

Let us immediately decompose the potential V' in order to give the fundamen-
tal property in the cylindrical case (Proposition 1.19|below), which is what allows
us to adapt the original work of Lenzmann, namely the strict positivity of each

z-odd terms of the cylindrical decomposition of V. For any r = (1, ¢, z) € R? and
/

v = (1, ¢, 2') € R® defining p := (r — 1,0,z — 2/) and 0 := ¢ — ¢/, we have, as
soon as (', z') # (r, 2):

O —V(r—r)= ! > 0, (1.34)

\/\(1 — S)*lp\2 + 2(1 — s9)72rr'(1 — cos )

which is in C*(R), 27-periodic and even. Thus, for any r # r/,

V(I‘ - I',) = Z Un(T’, Tla = Z/)Yn+(go - S0/>7
n=0
with
vp(r,r' 2 —2) = J V(ir—r)Y, " (0)do = QJ Vi(r—r')Y,"(6)do. (1.35)

0

—Tr

PROPOSITION 1.19. Let V' be given by (1.15)), the Y, ’s by (1.33)) and the v, ’s
by (1.35) for any (n,r, 1",z 2) e N x RY x R% x R x R. Then

va(ryr’ 2z —2") >0, V(n,r,r',z,2") e Nx R} x RY x R x R.

PROOF OF [PROPOSITION .19l Defining for r,7’ > 0,

r+r 2+ z— 2z 2+ r—r! 2+ 2 — 2 \?
m* = 4
1— 59 1—s, 1— 59 1—s,

(1-9)"(r—r )|+;n1n’(1—5) 'r—1')| >0,

+

o=y’
we note that m™ > m~ and obtain

2 1
Vie—1r)=—

m* \/1—2%COS€+ (%)2

We now give the explicit expansion of (1—2¢ cos #+t?)~2 in the following lemma.

LEMMA 1.20. For (0,1) # (0,t) € R x [0,1], we have
1 % o o©
= 2Ry H(0) + w2kt 2V (0
V1 —2tcosf + t2 ’;)6072"3 o (0) ;Z o2kt Yo (0)

o0 o0
+ Z Z 52n+1,2k+1t2k+15/22+1(9)-
n=0k=n

(1.36)
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with
( ()
50,2k:ﬁ24k > 0, 0<k;
( (k+n)) (Q(k—n))
) Bonok = 24/T kin ik kn 250, 0<n<k;
(2(k+n+1)) (Q(k—n))
\B2n+172k+1 =24/ k+"+214k+2 knl 50, 0<n<k.

PROOF OF [LEMMA 1.20. The proof of this lemma is entirely inspired by the
original computation of Legendre[] in his famous mémoire [Le 84] where he in-
troduced the polynomials that are nowadays called after him. Let us first rewrite
the fraction, for (0,1) # (6,t) e R x [0, 1]:

1

= (1 — eiet -1/2 1 — e*iet 71/2.
v/1 —2tcosf + t2 ( ) ( )

Then, since I'(1/2 — p) = (( ;;p 'T'(1/2) and using the following expansion

oy 1/2) v G,
-z ZF1/2 )T 1)(_”3):2270:”’

we obtain:

w i(p—q)0yptq

1
= (&
V1 —2tcosf + t2 (p%EJNQ 22(r+a)
k+n
Z Z (k+47_1)/2) ((k; n)/Q) mgtk
k=0 n=—k
k even n even
(kli—:znﬂ) ( kk_r;)z/Q) ingtk
! ZZI n—z—:k 22k ’
k odd n odd
N S ) () ok
n n
2 + Z 2 ik 2 cos(2nd)t
k=0 k=0n=
ok k+n+1)) (2(k n))
+ Z Z k+”+214k+2 2 cos((2n + 1)9)t**+1
k=0n=0
0 2k;) o’ Q(kk-&-n))( (k— n))
; 2’1,{ % 4 Z Z +n I 2 cos(2n0)t**
=0 n=1k=n

1. or Legendre and Laplace, according to a famous paternity controversy.
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k+n+1)>( (k— n))

+ Z}; k+”+214k+2 2cos((2n + 1))+,

With the definition of the Y,'’s, this concludes the proof of [Lemma 1.20} 0

Defining all the others 3, ,’s to be zero, this proves [Proposition 1.19}

2 m=\"
Un('r'7 7"” z — Z/) = W Z ﬁn,k (W) > 0,

forn >0, r,7 >0 and z, 2z € R. Moreover, for r # r’, we have

Vir—1') :ZW (Z@nk< )k) Y (6).

n

O

REMARK 1.21. (The anisotropic potential (1.14})) If we define v,, in a similar
fashion for the true model based on (|1.14]), even with the conditions ([1.24}) and

(1.25)), the v,’s have no sign for n > 2, since we have

v(rr’z—z’)ziZB L (1 k— L (1 k
n\’' " 4 n,k er m;d m& m?\FJ

which changes sign for n > 2. This is why our method fails if V' is given by ((1.14 -
Note that the strict positivity however holds true for vy and for vy if r,7" > 0,

which is straightforward using (1.35)).

As proved in the last Section, L?(R?), with corresponding projectors P,
reduces £g. We claim that the spaces L2 (R; x R) ® {Y,7}, with corresponding
projectors

PLutes) = ( )y (o) d@') V7 (p),

also reduce £. Given that (V' «|Q|?) is radial and z-odd, that — Yn“' = —n?Y?
and that

27r¢(7’7 gp’, Z) + w(T7 (p/, -z
0 2

02 10 02 1 02
=Sttt e 1.
Or? * ror * 022 + r2 0p?’ (1.37)

we have
[SA+ 1= (V +1QP)] (FYD) = [“Aa + 1 - (V+ Q)] (Y7, (139)
for any f e L3 (R; x R), and so belonging to L% (R; x R) ® {Y,7}, and where
2 10 * n?
Ay =—=5——5 — 25+ 2

or2  ror 022
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Thus the reduction property follows for —A + 1 — (V % |Q|?). Moreover, since
V x (Q-) and P/, are linear and using the decomposition

U(rp2) =c(re2)+ D, arn2)Y(p),

n=0,0=+

we have to prove that

Vx (QP) et Y7 =Pl (V*(Qc! YY),

n,o - no-n

for any n,n’ > 0 and 0,0’ = +, in order to conclude. We have
[V > Qe oY) (0, 2)

J f JQT ep (7, YT ()Y (e — ')’ d2 dy’ dr

Ry (1.39)

= v ([ [ @i et entrrtz = a2 ar ) v o
R, JR

with 7,, = 2Lt»=0}, Then using the parity of v, with respect to its third variable
(which is straightforward with (1.35)), we obtain V * (Qc; ,V,7) € L% (Ry x R) ®
{Y,?} and the reduction property follows. Thus we can apply [TeSOQ, Lemma
2.24] which gives us that
o=@ @ £,
n=0,0=1

with £7 = £5 being the same operator as before and each £, a self-adjoint
operator on L3 (R, x R)®{Y,7} with domain P, H*(R?). For shortness, we now
omit the () subscript in the decomposition £,.

Given (1.38) and (1.39), for any n > 0 we note £, the operator on L? (R, xR)
such that £F  (fY,") = £ ()Y, and £7 _(fY,) = £7(f)Y,, . This operator is

£ =—Ap + 1+ 0+ W,
where @ is the strictly negative multiplication local potential, on R, x R,
O(r,2) = — (V+[Q?) (r,2)
= —\Vor 1Q(r', 2 Pvo(r, ', 2 — )’ d2/ dr’ < 0

R+ xR

and W, is the non-local operator, on R, x R,

(W f)(r, 2) = =2Q(r, 2) QUr', 2 f(r', 2 v (ryr' 2 — 2" )" d2’ dr’. (1.40)

R+ xR
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Similarly to the non-cylindrical case, we need to prove that —W,, is positivity
improving on L% (R, x R) and this is where the result of [Proposition 1.19| is

needed.

LEMMA 1.22. For n > 0, the operator —W(y, is positivity improving on
L2 (R, x R).

PRrROOF OF [LEMMA 1.221 Given the definition (1.40)) of —W/,, the fact that
the v,,’s are strictly positive as soon as 7,7’ > 0 (by [Proposition 1.19)) and that
Q) > 0, it follows that —W,) is positivity improving on L% (R, x R) for any
n = 0. O

6.2.2. Perron—Frobenius property. We now prove that the £'’s verify the
Perron—Frobenius property.

PROPOSITION 1.23 (Perron—Frobenius properties). For n > 0, the £'’s are
essentially self-adjointness on C°(R; x R) and bounded below.

Moreover they have the Perron—Frobenius property: if \j denotes the lowest
eigenvalue of £F, then Ay is simple and the corresponding eigenfunction ¥ is
strictly positive.

PROOF OF [PROPOSITION 1.23] We follow the proof’s structure of [Len09,
Lemma 8§|.

Self-adjointness. We still have V « |Q|* € L*(R?) n L*(R?). Moreover, defining
flr,2) = f(r,2)Y,F € L2 (R, x R)®@{Y,'} < L*(R?), for any f € L2 (R, x R),
we have (f, g) L2 Ry xR) = gy 12(r#) and, consequently, that ® + 1 is a bounded
operator on L2 (R} x R). Then, for any { € L% (R, x R) and p € [2, 0], we have

Wkl ey xmy < 1@ IV 5 (Q€) -

Thus Wi,)€ € L2 (Ry xR)nL®(Ry xR) and, finally, 1+®+ W, and, thus, £ are
bounded below on L (R} xR). Furthermore, it is known that —A,) is essentially
self-adjoint on Cg°(R, x R) provided that n > 0. Thus, given that 1+ ® 4 W/, is
bounded (so —A(,)-bounded of relative bound zero), symmetric (moreover self-
ajoint) and that its domain contains the domain of —A(,), we obtain by the
Rellich-Kato theorem the essentially self-adjointness of £ on C°(R; x R).

Positivity improving. We claim that e is positivity improving for all ¢ > 0

on L*(R, x R). Indeed we have the explicit formula for the integral kernel e'2
on R3, namely,

7‘2+T/2+(z7z/)2 /

r— 2 T /
ez, y) = (477‘25)_3/26_‘ i = (4mt) 3% at e 21 csle=¢) (1.41)
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for all z := (r,p, z) and y := (", ¢', Z’). On the other hand we have
=
"0 = \or Y V2L (2)Y, 1 (), VoeR, (1.42)
m=0

where I,(z) = 7! [ exp(x cos f) cos(nf) df are the modified Bessel functions of
the first kind, that are strictly positive for n > 0 and x > 0. From these two
relations, we deduce the integral kernel e!2 acting on L?(R; x R) and that it
is positive, which are the two points of the following lemma.

LEMMA 1.24. Let f € L* (R, x R), r,7’ > 0 and n = 0. Then the integral
kernel e acting on L*(R, x R) verifies

—50
9 n 2,02, .2, 02 / /
e ((r,2), (1, ) = 1/7;;3/26_ L (2:;) exp (Z) >0. (1.43)

PROOF OF [LEMMA 1.24l Let f € L*(R, x R). Using (1.41)), for n > 0, we

have

(e (YY) (1,0, 2)

T +r’2+(z—z')2

_ (47Tt>3/2f P T f(?”',z’) <J e% cos(@ﬂp/)Yng“D/) dgp’) ' dr’ dy

Ry xR -
0
\/5_6n _7‘2+'r/2+22+z/2 / / 7“7“/ ZZ/ / ’ NSO
= R+XR6 ai flr' 21, o )Pl o) dr' dz"Y7 ().
Which allows to conclude the proof of [Lemma 1.24] O

So, for all n = 0, e!®™ is positivity improving on L*(R, x R) for all ¢ > 0
and consequently on L2 (R, x R). Then, by functional calculus, we have

0
(—Aw) + u)fl = J e HeBm dt, V>0,
0
thus (—Ag,) + p) ! is positivity improving on L% (Ry x R) for all p > 0.
Moreover we claim that —(® + W) is positivity improving on L% (R; x R)
since —® is a positive multiplication operator and —W/,) is positivity improving
on L2 (R; x R).

The end of the proof uses the exact same arguments as in the proof of the

Perron—Frobenius property in the non-cylindrical case (Proposition 1.17)) and,
consequently, this ends the proof of |Proposition 1.23| O
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6.2.3. Proof of[Theorem 1.18 First, using the results of the previous Section,
we have
ker (£q) 12 (rs) = ker (QQ)|L1Y+’7(R3) = span{0.Q}
and £00,Q = £90,Q) = 0. But now @ is furthermore cylindrical-even, thus
0,Q = 20,Q € L1 (Ry xR) ® {Yf“} and 0,Q = £0,Q € L3 (Ry x R) ® {Yf},
which implies that £70,Q = 0. Then, Q > 0 being cylindrical-even strictly
decreasing, 0,() < 0 on R, x R and, by the Perron—Frobenius property

sition 1.23)), it is (up to sign) the unique eigenvector associated with the lowest
eigenvalue of £{, namely A} = 0. Consequently, 0,Q (resp. d,Q) is the unique

eigenvector — up, in addition, to rotations in the cylindrical plane — associated
with the lowest eigenvalue A\y™ = 0 (resp. Ay~ = 0) of £, (resp. £f_). To
summarize, we know at this point that
ker £ = span {0,Q, 0,Q, 0,Q} @ ker (SQ)|Lfad‘+(R3) ® n@i ker (SQ)|L3(R+xR)®{YT;'}’
o=+

and we have to deal with the higher orders. The end of the paper is devoted to
the proof that

ker &7, = {0}, Vn=>2,0==. (1.44)
For n > 2, let 0 < ¢" € L2 (R; x R) be an eigenvector of £ associated with Aj.
Then ©"Y,F (resp. ©"Y,") is an eigenvector of £F , (resp. £, ) associated to the
eigenvalue \y'" = A2 (resp. Ay~ = A2). Thus, for n > 2 and o = +, we have

)\é,o . )\g,a
<O L) o xry — L) g, xmy

2

—1

<—f z 5 (¢"(r, 2))* rdrdz
RyxR T

+2 JJ [Qe™](r, 2)[Qe" (', 2) [vn — v1] (ry 7, 2 — 2')rr’ dz d2 dr dr.

(R4 xR)?

Since @ > 0 and ¢" > 0 (by the Perron—Frobenius property in [Proposition 1.23)),
in order to prove that A" > Ay”, it is sufficient to prove that v, < v; almost
everywhere on (R, xR)2. Using the explicit formula for V, this is equivalent
to prove that

™

T . cos(nf) — cos 6

" Jo VK + 2037 (1 — cosh)
for a.e. (r,z),(1",2') € (Ry x R)?, where K = |(1 — S)"'(r —+,0, 2z — 2)|* and
ay = 1 — sy (where we recall that s, is the second largest eigenvalue of 5).

df < 0,
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First, let us remark that the points {2%#}% and {2n+17r}keZ are the zeros of
cos(n-) — cos(+) and that the function

g= [K +2(1 — s9) 27’ (1 — (308(-))]_1/2
is strictly decreasing on ]0,7[. Let us define, 0y, 5] := 7 and, for k£ an integer

in [0,|n/2] — 1], O = 27151 and 0oy = 2k+17r which are all the zeros of

cos(n-) — cos(-) in [0, 7], except Oy /o) if 1 is even. Then7 noticing that cos(n-) —

cos(+) is strictly negative on intervals |0o, Oori1[, strictly positive on intervals
]92k+1, 02k+2 [ and that nfy, = 2k + o, we have

92k+1 92k+2
Z f cos(n@) — cos 9) do + J g(0)  (cos(nf) — cosf)dé
ng " 62k+1 \W—J ~ ~" -~
>g(02k+1)>0 <0 0<-<g(f2r11) >0
02k 12
< Z (Ook11 J (cos(nf) — cos @) db.
25
If n = 2 or n = 3, this immediately leads to T,, < 0. Otherwise, if n > 4, we have
025 +2
T, < Z (O2r41) J (cos(nf) — cosf) db
02k
It 511
< - ( 2 9(92k+1) sin Oog 42 — Z 9(92k+1) sin ‘92k)
" k=0 k=1
n—1 l3]-1 .
< - [9(02—1) — g(Oar41)]sin Oz < 0.
n =1 — ~ ) ——
>0 >0

Thus we have just proved, for n > 2 and ¢ = +, that A\j” > A7 = 0,
consequently ker £+ = {0}.
This concludes the proof of [I’heorem 1.18]| 0
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7. Appendix

This appendix is devoted to the proof of the existence of minimizers and of
two technical results used in the core of the paper.

7.1. Proof of [Theorem 1.5l This follows from Lions’ concentration-com-
pactness method [Lio84al, Lio84b] that we will present in another way, follow-
ing [Lew10].

Preliminary results. To overcome the lack of radially decreasing properties,
we need to introduce the largest possible mass of weak limits of any sequence {v,,}
bounded in L?(R3), up to subsequences and space translations. Let ¥ = {¢,,} be
a bounded sequence in L?(R?), we define the following number

m(s) —sup | [0f (1.45)

where the sup is taken over the functions ¢ for which there exist a sequence {z;} <
R? and a subsequence ), of 1, such that 1, (- + ;) — ¢ weakly in L*(R?).

We first give an estimate that we will need later and a characterization of
being of null highest local mass.

LEMMA 1.25 (A subcritical estimate). Let ¥ = {1} be a bounded sequence
in HY(RY), with d = 3. Then there exists a constant Cy, independent of 1, such
that

limsupj Wn‘%% < Cdm(w)% limsoglp ||¢n||§{1(Rd)-
R? n=

n—o0
PROOF OF [LEMMA 1.25 The proof is essentially due to Lions (see [Lio84b]).
d
Let us consider the tiling C, = [] [2;,2; + 1) of the whole space RY = |J C..
Jj=1 2€74

By Holder’s inequality on each C, we obtain that

0 1-6
|l = 3 |l < 35 Wl Il

2€74 2€74

where p* =2+4/(d—2) and 1/q = 6/2+ (1 —0)/p*. We now choose ¢(1 —0) = 2,
for which ¢ = 2 + 4/d. Then, by the Sobolev embeddings, in each C,, one gets

2 2 2
[l oy < Ca (IenllFacy + IV enlaces) )

with Cy being independent of z. This finally leads to

2
4 2 d 2
[t < (supuwnum)) ol g -
R4 2€Z4
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Passing now to the limit, we obtain

%
limsup | [vuf* < Cy (hmsupsup||¢n||L2 >) lim sup [ s oy (1:46)
R n—

n—00 n—o ,c7

Let {2,} = R be such that

lim [ |* = hm 15Up supf |9 |?.
n—w C.n zeZd

Then, {¢,} being bounded in H'(R?), {1,(- + 2,)} is bounded too and there
exists a subsequence such that v, (- + 2,,) — 1 weakly in H!(R?). But, by the

Rellich-Kondrachov Theorem |[LLO1) Section 8.9], this convergence is strong in
L*(Cy) and finally

limsupsup | [¢,]> = lim |thn|? = lim f [y (- + 20|
Cap Co

ng—00
n—o0 ,c7d C, k

~ [ 1wk < | P < mew).
Co R4

This concludes the proof of [Lemma 1.25] [

(1.47)

LEMMA 1.26 (Characterization of null mass). Let ¥ = {¢,,} be a bounded
sequence in HY(R?), with d = 3. The following assertions are equivalent:

i. m(ep) = 0;

7. lim su 2 =
Ay sup CZ|¢n|

oo . 2 _
wi. VR >0, nlgrolo:;lﬂg $Biem) [¥nl* =0
. 1, — 0 strongly in LP(R?) for all p €]2,p*[, with p* = 2d/(d —2) .
PrOOF OF [LEMMA 1.26l We will follow the proof in |[Lew10|. First, if
m(1p) = 0, then the estimate ((1.47)) leads to

lim sup supj [ |* =

n—o0 ye7d JOo

hence [iz] and is proved.
Second, if [s7.| holds true, then the estimate ([1.46|) gives

||¢n||L2+§

Since, by the Sobolev embedding, {1} is bounded in LP(R?) for any p € [2,p*],
we conclude that by Holder’s inequality.

—
(R?4) n—0c0
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Suppose now that [iv.| holds true. Let {x,, } € R? and ¢ be such that i, (- +
T,,) — 1 weakly in H'(R?). Since for any 2 < p < p*, we have

19, (- + x”k)HLP(Rd) = HwnkHLP(Rd) — 0,

then ¢, (- +z,, ) — 0 strongly in LP(R?). Then, by uniqueness of the weak-limit,
we obtain ¢ = 0 hence m(t) = 0 and is proved.

Since any ball of fixed radius R can be covered by a finite union of C,’s, the
implication holds true.

Finally, since the size of the C.’s is fixed, we obtain by choosing a R
large enough. This concludes the proof of [Lemma 1.26] |

We now give a lemma which is going to be useful in the proof of the existence
of minimizers.

LEMMA 1.27. Let p > 1. If f, — [ strongly in LP(K) for any compact
K < R® and there exists C' > 0 such that || ful|;, < C for all n, then f, — f
weakly in LP(R3).

PROOF OF [LEMMA 1.27] Let g € LY(R®) with 1/p + 1/¢ = 1. For a given &,
let R > 0 be such that (C' + ||f[|;,) 9]l e, < € and then n be such that
1o = fllzo (g 9]l e < €, by strong convergence. Then

o= Do pa < 1 = oy 19lle + (€ + 1 FllLo) 190 Loy < 26

Therefore we have proved the lemma. 0J

Existence of minimizers. Our strategy to prove the existence of minimizers
will be to first prove that
EWn) — EWn — ) —> (V)

n—o0

where 1) is the weak limit in H!(R?) of a minimizing sequence (¢,),. Denoting
N = |||, we also know that A < A by weak convergence. We will then prove
that ¢ is a minimizer of I(X\') and that I(A — X') + I(X) = I(\), which finally
leads to A" = \.

We first claim that m(v) > 0. Indeed, suppose m(v) = 0, then ¢, — 0
strongly in L for any p €]2,6[ by and in particular in L'?/°. Con-
sequently, by the Hardy-Littlewood-Sobolev inequality and , the Coulomb
term of & converges to 0, which leads to 2& (¢,) = || Vb2 + o(1). So I(\) =0,
which contradicts [Lemma 1.3l

Since m({¢,,}) > 0, there exist a function ¢ # 0, a sequence (y;), < R® and
a subsequence ny such that ¥, (- + yx) — ¢ in L*. The sequence (¢, (- + yi))k
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being also a minimizing sequence, we assume in the following for simplicity of
notation that v, — ¢ # 0 with [[¢|3 = V.
We can now prove the following equality:

LEMMA 1.28.
EWn) = EW) + E(Un — ¥) +0(1) (1.48)
PROOF OF 8. By weak convergence of Vi),
Vb, — V¢H2 IV ¢nlls + V0[5 = 2R Vb, Vi)
= [IVeull; = V5 + o(1).

We now deal with the coulomb term. We introduce the bilinear form

5] | r@stvie - vz,

—*) + o(1). (1.49)

and we show that

D(|wn|2’ |¢n|2) = D(|77Z}|27 |¢|2) + D<|¢n - 'l/)|27 an

To do so we give two results of convergence.

Since 1, — 1 weakly in H*(R?), by the Rellich-Kondrachov Theorem [LLOT,
Section 8.9], |1,|* — [¥]? strongly in LP(K) for 1 < p < 3 and any compact K.
On the other hand, by the Sobolev embeddings, ||[¢,]?|;, is uniformly bounded
for p € [1,3]. With these two properties, by [n]? — |[¥]* weakly in
LP(R3) for any 1 < p < 3.

With the same kind of arguments as in , we obtain that ¢, —
|| strongly in L'(R®). On the other hand |[¢nt) — 2|, < [¥nll 20 9]l 20 +
142 ,4, for any g € [1,3[, which is uniformly bounded. Finally, by interpolation,
forany 1 <r <g<3and 6+ (1—-0)/q=1/r, we have

H¢n¢ - ¢ Lr(R3) H%lﬁ ¢ HL1 (R3) H¢n¢ ¢ HLq (R3) nooo 07

which means that 1,10 — |¢|? strongly in L? for any 1 < p < 3.
We also recall that [1]? * V e LY(R3) n L®(R3) (see (1.13)) and now prove
(1.49). First, since [,|* — |[¢|? weakly in L*3 and |1|?> « V is in L*, one has

| PR vy = | [wP(uf « 1)
RS R3

This leads to
D([thnl? = 192, [90n* = [©1*) = D(1nl?, [90al?) = D0, [917) = 2D (Jn]?, [9]%),

and consequently to

D(|voul* = [, [¥nl* = [*) + D(% %, [0*) = D(|¢onl*, [¢oa]*) —2 0
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Second, a simple computation gives

1
7 DUl = 11 [onl® = 1) = Db = &, [9n = ¥ )]
= D(¥nth — [, uth — [0) + D0 = [¢ul?, hutp — [¢).
But since [|¢,1) — [¢]?] ;45 — 0 and
H(q/)ndj - |77Z)|2) * VHL4 < H'@Z)n¢ - |¢|2HL4/3 ||‘/2||L2 + H%%U - |7/)|2HL1 ||‘/4||L4 - 0’
where V =V, + V, € L*(R?) + L*(R?), we have
D(%ﬂﬁ - |¢|27 wnw - |¢|2) < H%w - W|2HL4/3(R3) H(wnw - WP) o V‘|L4(R3) —0
and
DI = [nl* nto = [01) < (I10all s + (197 oo [ (nt0 = W)+ V]| s = 0.
We have finally proved which concludes the proof of . O

We now prove that ¢ is a minimizer of I(\') and that I(A—=X)+I(\) = I(\).
First, gives, for any n, that

&) = EW) + I (|[vn — ¥l3) + o(1).

Since [, — |3 = A+ N — 2R, ) — A — XN and A — I()\) is continuous,

we conclude that
IO = N) + IN) < T = N) + &) < I(A).
On the other hand, by we have the inequality
IO < I(A— ) + I(N).
This immediately gives
IN=XN)+1I(N)=1(N) (1.50)

and &(¢) = I(XN), that is, ¥ is a minimizer of [(\') = [ (HM@)
We now conclude the proof of the existence of minimizers by proving that

N = \. By we then have (A — X)3 + (X)? = A% which is only possible

if ' =0or X = \. Since X' # 0, we have just proved the existence of minimizers.
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Convergence of all the minimizing sequences. The fact that any minimizing
sequence strongly converges in H'(R?®) to a minimizer follows directly from the
following compactness criterion.

LEMMA 1.29 (Compactness criterion). Let {1} be a minimizing sequence for
I(\) such that v, — v weakly in H'(R?). Then

U, — 1 strongly in H'(R?) < J [y|? =
R3

Moreover, if this criterion is verified then ¢ is a minimizer of 1()\).

PRrOOF OF [LEMMA 1.29. By assumption, for any n, we have |1, |3, = A. So
if we suppose the strong convergence in H'(R?) of (¢,),, we have X = [|th,|[7. —

2
17 -

We now prove the converse implication. For that we will prove that & (1,)
(resp. that the Coulomb term of &(1,)) converges in L?(R?) to &(v) (resp. to
the Coulomb term of &(1,)), which implies the same convergence for the kinetic
term of &(1,). Suppose that |[¢/]%, = A. By the weak convergence ¢, — ¥ in
L?(R3), we have

n — 72 = [¥al72 + [¢]72 — 2R W, ) = 2X — 2R (¢, ¥y — 0.

On another hand, by the Sobolev embedding, 1, — 1 is bounded in L5(R?),
wich leads by interpolation to the strong convergence 1,, — ¢ in LP(R3?) for any
p € [2,6[ and in particular in L'?5(R3). Since |[gs f (g * V)| < C || fll 1o 9]l o5
for any f,g e L%5(R?) (by the Hardy-Littlewood-Sobolev inequality and (L.13)),
the Coulomb term of & is then continuous for the strong topology of L'*°(R?)

gggof ) (0 + V) @) do = [ W@ (0F + V) @)de. (151

Secondly, we have lim V]2 = | V4|5, by the weak convergence Vb, — Vi
in L?(R3). This, combined with (1.51) and recalling that {1} is a minimizing
sequence of (), leads to

1) = lim £(1,) = E(¥) = 1(N).

So we have in fact an equality between the three terms and, combining this
again with (L.51)), leads to |V, — [V¢[.. We finally obtain the strong
convergence Vi, — Vi in L?(R?) recalling that we had the weak convergence
already:. O

We now prove the remaining properties. Let 1 be a minimizer of I(\).
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Proof that v is an H?*(R?)-solution of (1.3)). We first show that it is a solution
in H~'(R?). Let x € H'(R?). For ¢ € R small enough such that [[¢ + x| ;2(gs) >
0, we define 1, € H'(R?) as

B Y +ex
10 + exll2rs)

Pe
Thus .7 = X and a straightforward computation gives

E(We) = E(W) + R UR (=A% = 2([9* « V)Y + 2u3)) x] +0(e%),
with
1 2 2 9
—2pi= o (HVpr(RS) - QJRJRSW(@! () V(z —y)dy dx> :

Replacing y by iy, we get the same result except for having the imaginary part
instead of the real part. Since ¢ is a minimizer, we conclude that v is a solution

of (1.3) in H 1(R?).
Since |¢]>* V € LY(R3) n L®(R?), the Rellich-Kato Theorem [RST5] Section
X.12] implies that H, is self-adjoint with domain H?(R?). Moreover,

|, Hypy | = [, o) | < lul ol 1] e

for any ¢ € H*(R*). Thus ¢ € D(H};) = D(Hy) = H*(R?) and we conclude that
e H*(R3).

Proof that p = —%I(A) > 0 and norms equalities. Let ¢ be a minimizer of
I()), then for any € € (—1,1),

EW1+ ) = EW) — epur + O(£?).
Moreover, by [Lemma 1.3 one has I((1+&)A) = I(A)(1 + 3¢) + O(¢?) thus
0<EWT+ep) —I((1+e)X) = —e (uA + 3I(\)) + O(e?), for any € € (—1,1).

Then, sending ¢ to 07 and 0~, we obtain pu\ = —3I()\) and leads
to = —3A2I(1) = —&I(X) > 0. Thus, ¢ being a minimizer and a solution of

(1.3]), we have
IVl =2V > [P, [0?) = =2pA = 61(A) = 3[[Vll; = 3V x [0, [vf).
This gives (1.17]).
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Proof that |1| is a minimizer and || > 0. Since

HVW‘HLZ(H@) < HVWHL?(RS)’

for any ¢ € H'(R3), and v being a minimizer, it is straightforward that |¢| is
also a minimizer. Consequently || is a H?*(R3)-solution of with the same p.
Moreover, 0 || € H*(R?), since 0 # o, and W := —2[y|? « V + 2 € L®(R3).
We then use the following lemma to conclude that |¢| > 0.

LEMMA 1.30. Let W € L}, (R3) such that there exists C' € R such that W < C.
If 0 # p € HX(R3) is such that p = 0 and (—A + W)p = 0 then ¢ > 0.

REMARK 1.31. This lemma is of course a special case of [LLO1, Theorem
9.10] or of results in [RS78|, Section XIII.12] but we give here a more adapted
and easier version.

PROOF OF [LEMMA 1.30l Let #? > max(C,0). We define 0 < (—A + £%)p :=
g € L*(R?) because p € H*(R3). But g > (k* — C)¢ # 0 and so g # 0. Since $ =
(|k|? + k?)~'g and using Yukawa’s formula giving the inverse Fourier transform
of k — (|k|* + K?)7', one obtains ¢(z) = (4m)~" (e " ¥z — y| 71 g(y) dy and
finally ¢ > 0. U

Proof that —p is the lowest eigenvalue, ¥ = z|1p| and —p is simple. Those
results come from the following lemma.

LEMMA 1.32. Let H = —A + W with W € L®(R?) with a strictly negative
lower eigenvalue v. Then v s simple and the associated eigenfunction ¢, s
strictly positive up to a phase vector.

Moreover, for any 0 # u = 0 and X such that Hu = A\u, then A = v.

PROOF OF [LEMMA 1.32 Given that W e L®(R3), H is self-adjoint with do-
main H?(R3). Thus 0 # ¢, € H*(R?) and (H|p, |, |¢.|> < (Hp,,p,). Moreover,
since

v = inf Hop, ),
<P€D7H<P||:1< 20

|0, | is also a ground state of H and gives that |¢,| > 0.

Let suppose there exist two strictly positive normalized distinct ground states
et pof H. Then ¢4 —1p is also a ground state of H and, as before, |04 — 5|
too thus |4 — ¥ p| > 0 everywhere. So either 14 > ¥ everywhere or ¥4 < ¥p
everywhere. But this contradicts the fact that they are both normalized. We
conclude that |, |/ [|¢. ||, is the unique normalized strictly positive ground state.

If ¢, is real valued (resp. purely imaginary valued), since |¢,| > 0 and ¢, is
continuous (H?(R?) — C°(R?)), we have p, = +|p,| (resp. ¢, = Filp,|).
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Otherwise, let us define v, % 0 and 1); # 0 real valued such that ¢, = 1, +i;.
The operator H being real, Hi, = vi,. and Hvy; = vi; hold. Thus, as for |, |
just above, |1, > 0 and [¢;] > 0 are two strictly positive ground states and
consequently [1),.|ocli);| > 0, by uniqueness of normalized strictly positive ground
states. Moreover, since 1, and 1; are continuous (by continuity of ¢,), 1, = |1, |
and ¢; = +|¢;]. This leads to ¢, = z|p,| and to the fact that v is simple.

Let 0 %2 u > 0 and A such that Hu = Au. Since |¢,| > 0 and u > 0 are two
eigenfunctions, they are eigenfunctions of the same eigenvalue otherwise they
should be orthogonal. Thus A\ = v and so uoxc|p,| > 0. U

Applying the second part of this lemma to —p and its eigenfunction |¢)| > 0,
we obtain that —p is the lowest eigenvalue of H, and is simple. Then, the first
part of the lemma gives ¥ = z|¢|.

This concludes the proof ot [Theorem 1.5 O

7.2. Compactness of the operator 0,G(Q, s:-Id)—1. The following lemma
states the compactness result asserted in the proof of

LEMMA 1.33. Let V' be given by (1.14) or (1.15)), ¢» € H'(R?) and u > 0.
Then € — (—A + ) [= (W2« V) € — 20 ((w€) » V)] is a compact operator on
L*(R3).

PROOF. Since [1)|? * V € L*(R?) n L*(R3) and (u + |- [2)7' € L3?*5(R?) n
L*(R3), by [RS79], Theorem XI.20|, the operator (—A + u)~ " |t)|2* V is compact
on L?*(IR3). For the second term, we first prove the following lemma:

LEMMA 1.34. Let 1 < p,q,r < © such that 1 +1/r = 1/p+ 1/q. If f,, — 0
weakly in LP(R3) and g € LY(R3) then f,*g — 0 in L] (R3).

loc

PROOF OF [LEMMA 1.34l Since f, converges weakly in LP(R?), f,, is bounded
in LP(R3). Let By be a fixed ball of R?, and let ¢ > 0. Let ¢’ € C*(R?) be such
that |lg — ¢'||;, < . Since ¢’ € CX(R3) = LY (R?), we have [ ¢'(2) f.(y — ) dz —
0 a.e.. Applying the dominated convergence theorem to (1, (f, * ¢'))", we obtain
that f, x ¢’ — 0 in L} (R?). Thus, for n big enough

loc
[ar gl < dlly +1fas (0=l <t 1l llg — ol < (1+C).
O
Since
Il = 28) 7 oo < maxc{L, 7,

it then suffices to prove that & — ¥ (1&,) * V is a compact operator on L?(IR3)
in order to prove that (u — A)71& — (E€,) = V is also a compact operator on
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L2(R3). Let &, — 0 weakly in L*(R?). Since v € L?(R3) n L%(R3), we have
Y€, — 0 weakly in L!'(R?) n L¥?(R?) and then, given that V e L?(R3) + L4(R?),
we have ||(¢§,) » V||« < C for all n. Then, using [Lemma 1.34] we have

[0(&n) * Vil < st (8€n) * Vil + 1550 (080) * V],
< [l 1(6) * Vil +C g0,

Consequently, for any given e, choosing the radius R of the Br and n both big
enough, we have ||t (&) * V| ;2 < &, thus [|¢(¥&,) * V||, — 0. This concludes
the proof of the [Lemma 1.33] O

7.3. Real analicity of minimizers. We prove here [Lemma 1.12]

PROOF OF [LEMMA 1.12 The function 1 is continuous and bounded since
it belongs to H?(R3). Then the equation and elliptic regularity give ¢ €
C™(R3).

We define V' = 1/|A-[x|4p|?, for any ¢ € H*(R?) and A = diag(ay, az, az) > 0
and have —4n[¢[* = AV/* and V;[*(A-) = det(A)V}} 5, thus, with B = A~

3

—Ar|y? = —4x|ip o BP(A) = > 7 (Vi) (A)

=1

3 3
= Z ai—2§i2 [VJfB(A.)] — det(A) Z ai—zalzvf‘
i=1

i=1
Noticing that V), = le d_ V¢M , this yields

-A 0 0

b —2up + 2V — 2V My
0 —a 0 v | = 4o (1.52)
3 1Z) . .
0 0 =Yg \VM 4rr(det M) ~14)?
i=1

This also proves that V¢ and V' are in H*(R*) n C*(R?). And we now follow
a method (and the notations) of K. Kato in [Kat96] to prove that ¢, V/¢ and
V! are analytic.

Let B and B’ be open balls such that B < B’ and B’ < R?, and r a cut-off
function: r € C*(R?) such that 0 < r < 1, supp(r) € B’ and r = 1 on B. We
show by induction on |«| that there exist A,C' > 0 such that (H|,) holds for any
multi-index «, where

(Hq)) : max {Hr|a|aaw‘|1{2(3') ’ HZ(B’)}

In addition to some results of [Kat96], we will need the following generaliza-
tion of Proposition 2.3 in Kato’s paper.

< CAPq)!

Pl

a0V
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LEMMA 1.35. Let Q be a domain of R® and a1 = ay = a3 = 1. Then

3

272
Z ay, “Opv
k=1

10°V] 2y < @

H2(Q)
holds for any v € H$ () and any multi-index o such that |o| = 2.

PROOF OF [LEMMA 1.35 Adapting the proof in [Kat96], from Plancherel’s
theorem and for any v € C°(Q2) and 4,j € {1,2,3}, we have

”aijUHHz(Q) = aiaj ”(1 + |£|2) azlgiailfjﬁ(g)HL%R%

(1+[¢P) Za

3

—2 42
Zak Opv

k=1

2

2(R3)

H(2)

O

Let A > 1 be an arbitrary constant, there exists a constant C' such that, for
la| < 1, we have

e {02y [0V g IV g} < € < A

We now suppose that (H,) holds for any ~ such that |y| < n. For shortness
we will denote in the following |-|| := ||- ||H2(B, Let || =n —1 and |f| = 2.

Let u € H*(R?) n C*(R?) such that |rMovul| < CAMA|! for any |y < n
Then, using Proposition 2.2 of [Kat96], one has

Hrn-&-laa+BuH

< |07 (ot u)|| + n(n + 1)Cy ||oirsr| |~ 0%y

+ (n+ DO [|[rd?r| |r" o] + o[l Ir™0;0%u + (|07 7" ;0% ul]
< |07 (rTrotu)|| + CCLA™  (n + 1) || 0oy

+ CCLA™  (n = Dl(n+ D[ ||rd’r| + An (o] + |0;r]) ]
< |07 (P ot u)|| + CCoA™(n + 1),

where we have used that A > 1 and defined

Gy = max Cy (lwdyrl + [ro’r] + ] + ;] + r])-

1<zq,
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Then, by [Lemma 1.35| and [Kat96l Proposition 2.2|, we have

3
Z (CA™(n + DICy [||okrwr| + |réir| + 2 10r]] )

3
H&ﬁ (r”“&au)H = 2 £, 0% (r”“&‘lu)

k=1

3
< el |l tto” (Z 5,;25,§u)

since
op (r*1o%u) = r" o u+ (n+1) [nr™ N (0pr)?0%u + 1" (Opro®u + 2040k 0%u) | .
Thus, since ;2 < &7 and C) (||0prdpr| + |ro2r|| + 2 [0kr|) < O, this leads to

3
rntloe (Z €k28zu>

k=1

[r ot || < €3 + (1 + 3e3e;?) CCoA™(n + 1)

And when €3 = 5 = ¢y = 1, we have
[rm ot ou)| < |lrm o™ (Au)|| + ACCA™(n + 1))

Thanks to (1.52]), we will conclude, using the following lemma, by applying
the above results to u being ¥, led or VwM.

LEMMA 1.36. For any multi-index o, we have ) ("‘)\fy|!|a — ! = (Jof + D)L

Yo

PROOF OF [LEMMA 1.36l Using [Kat96, Proposition 2.1] and |a—~| = ||a|—
|||, one has

2 ( )Ivlv!a—vh = i > <(;z>|oz|!(|04|>_1 :gow = (Joo| + D).

<« k=0~v<a,|y|=k |,y|

U

We first treat V' (and V,}'='%), using Proposition 2.2 of [Kat96]. We have

3
rn+1aa (Z 8[;282V¢M>

det M

‘ = 4 Hrn+1aa(’¢|2)H

k=1

=A4r

r2 Z <:> r‘”‘&”@br'a_”&a_“@

<o
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hence
3
seest|en ()| < amcrcz e 3 () ahia o —on)
k=1 TS i
< 4 C*CE |r?]| A" 'l
< 4#02010214"(71 + 1)'
Thus 2 4200
n+laa+ﬁvM <C 1 3@ & Cs| A™ 1)!.
Ir | [(+8%+ ) G A1)
Finally, if A > maX{1,4C'2(1 + 7CCY), Cy (1 + 3?% + 47;2%%;1> },
1
M Id
Hrh\gvvw HH2(B’) < CAMy1 and HTM@”‘@ HHQ(B,) < CAM|,

for any v such that |y| =n + 1.
We now deal with . Similar computations give

1

5 H,rn+1aa (Aw)H < W‘ HrnJrlaaw” + HrnJrlaa(Vd{dw)H + H,r,n+1aa(Vwa)”
< [ulCy ||[r?]| C At + 2C2CF || r? | A !
< (|u| +20Cy) CCoA™ (n + 1)),

thus
[r ot P < 2(2 + |u| + 20C1) CCyA™(n + 1)1,
Finally, (H),) holds for any « such that |y| = n + 1, if
2 4werCC
A= max{1,4Cy(1 + 1CCh),2(2 + |p| + 20C))Cy, Cy ( 1+ 33 4 o1 L
&1 det M
This concludes the induction and the proof of [Lemma 1.12] O






PARTIE 2

Symmetry breaking in the periodic TFDW model

Ce chapitre est une version plus détaillée d'un article soumis

Julien Ricaud, Symmetry Breaking in the Periodic Thomas-Fermi-Dirac-Von
Weizsdcker Model, ArXiv:1703.07284 (2017).

Abstract
We consider the Thomas—Fermi—Dirac—von Weizsdcker model for a system composed
of infinitely many nuclei placed on a periodic lattice and electrons with a periodic
density. We prove that if the Dirac constant is small enough, the electrons have the
same periodicity as the nuclei. On the other hand if the Dirac constant is large enough,
the 2-periodic electronic minimizer is not 1-periodic, hence symmetry breaking occurs.
We analyze in detail the behavior of the electrons when the Dirac constant tends to
infinity and show that the electrons all concentrate around exactly one of the 8 nuclei of
the unit cell of size 2, which is the explanation of the breaking of symmetry. Zooming
at this point, the electronic density solves an effective nonlinear Schrédinger equation
in the whole space with nonlinearity u”/3 — u%3. Our results rely on the analysis of
this nonlinear equation, in particular on the uniqueness and non-degeneracy of positive

solutions.
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2. SYMMETRY BREAKING IN THE PERIODIC TFDW MODEL
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1. Introduction

Symmetry breaking is a fundamental question in Physics which is largely
discussed in the literature. In this second part of the thesis, we consider the
particular case of electrons in a periodic arrangement of nuclei. We assume that
we have classical nuclei located on a 3D periodic lattice and we ask whether the
quantum electrons will have the symmetry of this lattice. We study this question
for the Thomas—Fermi-Dirac—von Weizsdcker (TFDW) model which is the most
famous non-convex model occurring in Orbital-free Density Functional Theory.
In short, the energy of this model takes the form

3 s 3 i1
J Vol + CTFJ p? — CJ p3 + f (G*p)p—f Gp,  (2.1)
K 5 K 4 K 2 K K

where K is the unit cell, p is the density of the electrons and G is the periodic
Coulomb potential. The non-convexity is (only) due to the term —%cgp%. We
refer to [GS94), [Fri97, BM99, BGMO03, [Sei06] for a derivation of models of
this type in various settings.

We study the question of symmetry breaking with respect to the parameter
¢ > 0. In this second part of the thesis, we prove for ¢ > 0 that:

e if ¢ is small enough, then the density p of the electrons is unique and has the
same periodicity as the nuclei, that is, there is no symmetry breaking;

e if ¢ is large enough, then there exist 2-periodic arrangements of the electrons
which have an energy that is lower than any 1-periodic arrangement, that is,
there is symmetry breaking.

Our method for proving the above two results is perturbative and does not
provide any quantitative bound on the value of ¢ in the two regimes. For small ¢
we perturb around ¢ = 0 and use the uniqueness and non degeneracy of the TFW
minimizer, which comes from the strict convexity of the associated functional.
This is very similar in spirit to a result by Le Bris [Le 93] in the whole space.

The main novelty of this part of the thesis, is the regime of large ¢. The p%
term in favours concentration and we will prove that the electronic density
concentrates at some points in the unit cell K in the limit ¢ — oo (it converges
weakly to a sum of Dirac deltas). Zooming around one point of concentration at
the scale 1/c we get a simple effective model posed on the whole space R where
all the Coulomb terms have disappeared. The effective minimization problem is
of NLS-type with two subcritical power nonlinearities:

3 10 3 8
_ : 2 10 8
s =t A el Zene [ -1 pih e

HUHiQ(D@):)‘
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The main argument is that it is favourable to put all the mass of the unit cell at
one concentration point, due to the strict binding inequality

JRS()\> < Jgs (/\/) + JRs()\ — /\/)

that we prove in Section [3.1] Hence for the 2-periodic problem, when c is very
large the 8 electrons of the double unit cell prefer to concentrate at only one
point of mass 8, instead of 8 points of mass 1. This is the origin of the symmetry
breaking for large c¢. Of course the exact same argument works for a union of n?
unit cells.

Let us remark that the uniqueness of minimizers for the effective model Jgs(\)
in is an open problem that we discuss in Section We can however prove
that any nonnegative solution of the corresponding nonlinear equation

—AQ” + CTFQ,ug - Qu% = _MQ;L

is unique and nondegenerate (up to translations). We conjecture (but are unable
to prove) that the mass SQuZ is an increasing function of . This would imply
uniqueness of minimizers and is strongly supported by numerical simulations.
Under this conjecture we can prove that there are exactly 8 minimizers for ¢
large enough, which are obtained one from each other by applying 1-translations.

The TFDW model studied in this second part of the thesis is a very simple
spinless empirical theory which approximates the true many-particle Schréodinger
problem. The term —%cgp% is an approximation to the exchange-correlation
energy and c is only determined on empirical grounds. The exchange part was
computed by Dirac [Dir30| in 1930 using an infinite non-interacting Fermi gas
leading to the value cp := /6~ Im— !, where ¢ is the number of spin states.
For the spinless model (i.e. ¢ = 1) that we are studying, this gives c¢p ~ 1.24,
which corresponds to the constant 0.93 generally appearing in the literature,
namely, %CD ~ 0.93. It is natural to use a constant ¢ > ¢p in order to account for
correlation effects. On the other hand, the famous Lieb-Oxford inequality [Lie79),
LO80, KH99, [LS10] suggests to take 2cp < 1.64. It has been argued in [Per91,
PWO92, [LP93| that for the classical interacting uniform electron gas one should
use the value %c ~ 1.44 which is the energy of Jellium in the body-centered
cubic (BCC) Wigner crystal and is implemented in the most famous Kohn-Sham
functionals [PBE96]. However, this has recently been questioned in [LL15| by
Lewin and Lieb. In any case, all physically reasonable choices lead to ¢ of the
order of 1.

We have run some numerical simulations presented later in Section using
nuclei of (pseudo) charge Z = 1 on a BCC lattice of side-length 4A. We found
that symmetry breaking occurs at about ¢ &~ 3.3. More precisely, the 2-periodic



2. MAIN RESULTS 73

ground state was found to be 1-periodic if ¢ < 3.30 but really 2-periodic for
¢ 2 3.31. The numerical value ¢ ~ 3.3 (which corresponds to 3¢ ~ 2.48) obtained
as critical constant in our numerical simulations is above the usual values chosen
in the literature. However, it is of the same order of magnitude and this critical
constant could be closer to 1 for other periodic arrangements of nuclei.

There exist various works on the TFDW model for N electrons on the whole
space R3. For example, Le Bris proved in [Le 93] that there exists € > 0 such that
minimizers exist for N < Z +¢, improving the result for N < Z by Lions [Lio87].
It is also proved in [Le 93| that minimizers are unique for ¢ small enough if
N < Z. Non existence if N is large enough and Z small enough has been proved
by Nam and Van Den Bosch in [NVDB17].

On the other hand, symmetry breaking has been studied in many situations.
For discrete models on lattices, the instability of solutions having the same peri-
odicity as the lattice is proved in [Fr654, Pei55| while [KL86, [Lie86), KL87,
LN95b, LN95a, LIN96, FL11l, [GAS12| prove for different models (and differ-
ent dimensions) that the solutions have a different periodicity than the lattice. On
finite domains and at zero temperature, symmetry breaking is proved in [PINO1]
for a one dimensional gas on a circle of finite length and in [Pro05| on toruses
and spheres in dimension d < 3. On the whole space R3, symmetry breaking is
proved in [BG16|, namely, the minimizers are not radial for N large enough.

This part of the thesis is organized as follows. We present our main results
for the periodic TFDW model and for the effective model, together with our
numerical simulations, in Section [2] In Section [3] we study the effective model
Jr3(\) on the whole space. Then, in Section , we prove our results for the regime
of small c¢. Finally, we prove the symmetry breaking in the regime of large ¢ in
Section[pl The Appendix collects some detailed proofs and some technical results.

Acknowledgments

The author is grateful to M. Lewin for helpful discussions and advices, and to
Pr. Lenzmann for bringing our attention to the facts mentioned in [Remark 2.7]
The author acknowledges financial support from the European Research Council
under the European Community’s Seventh Framework Program (FP7/2007-2013
Grant Agreement MNIQS 258023).

2. Main results

For simplicity, we restrict ourselves to the case of a cubic lattice with one
atom of charge Z = 1 at the center of each unit cell. We denote by .k our

lattice which is based on the natural basis (eq, ea, e3) and its unit cell is the cube

K:=[-3; %)3, which contains one atom of charge Z = 1 at the position R = 0.
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The Thomas—Fermi-Dirac—von Weizsécker model we are studying in this second
part of the thesis is then the functional energy

3 3 1
Solw) = f Vol + Sere f w]¥ - 2 f ]} + D (P, [wf?) - f Grclwl?,
K 5 K 4 K 2 K

(2.3)
on the unit cell K. Here

De(f.g) = fK fo<x>GK<as ~ y)gly) dy da,

where Gx is the K-periodic Coulomb potential which satisfies

— AGg = 47 ( Z Op — 1) (2.4)

kefK

and is uniquely defined up to a constant that we fix by imposing miﬂg Gx(z) = 0.
xTe

We are interested in the behavior when ¢ varies of the minimization problem

EK)\(C) = inf gK,c(w>7 (25)

u)EHéer (K)
A

2
Hw”L2(K):

where the subscript per stands for K-periodic boundary conditions. We want to
emphasize that even if the true K-periodic TFDW model requires that A = Z
(see [CLL98|), we study it for any .

Finally, for any N € N\{0}, we denote by N - K the union of N3 cubes K
forming the cube

N NY’°
N-K=|—-——;—| .
272
The N3 charges are then located at the positions

N+1 N+1 N+1
{Rj}1<j<N3 - { (nl —T,Th— T7n3— 9 )

nieNm[l;N]}.

2.1. Symmetry breaking. The main results presented in this second part
of the thesis are the two following theorems.

THEOREM 2.1 (Uniqueness for small ¢). Let K be the unit cube and crp, A
be two positive constants. There exists & > 0 such that for any 0 < ¢ < ¢, the
following holds:

i. The minimizer w. of the periodic TFDW problem Ex x(c) in (2.5)) is unique,

up to a phase factor. It is non constant, positive, in ngr(]@ and the unique

ground-state eigenfunction of the K-periodic self-adjoint operator

H, = —A + crplwe|s — clwe|3 — Gk + (Jwe|? * Gx).
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it. This K-periodic function w, is the unique minimizer of all of the (N - K)-
periodic TFDW problems En.x nsa(c), for any integer N > 1.

THEOREM 2.2 (Symmetry breaking for large ¢). Let K be the unit cube, crp, A
be two positive constants, and N = 2 be an integer. For c large enough, symmetry
breaking occurs:

Enx.noa(c) < N*Eg (o).
Precisely, the periodic TFDW problem Enx nysa(c) on N - K admits (at least)
N3 distinct nonnegative minimizers which are obtained one from each other by
applying translations of the lattice £k. Denoting w. any one of these minimizers,
there exists a subsequence ¢, — o0 such that

cn_gwcn <R + C—) — Q, (2.6)

strongly in L, (R?) for 2 < p < 400, with R the position of one of the N3 charges
in N-K. Here Q) is a minimizer of the variational problem for the effective model

3 10 3 8
N3\) = inf 2+ - s 2
Jos () ue}[rll(RB) {Ls Val”+ 5TF fRs ful® 4 JRS ]u‘S} ’ (2.7)

2 —N3
”’U‘HLQ(R3)7N A

which must additionally minimize

S(N3)) = 1nf{ JR JRs |x|_|“y| Ol dx—ng |”T§|)|2 dx}, (2.8)

where the minimization is performed among all possible minimizers of (2.7). Fi-
nally, when ¢ — 0, Eng ns\(c) has the expansion

Enx.nea(c) = Jgs(N?X) + cS(N?X) + o(c). (2.9)

will be proved in Section [4] while Section [5] will be dedicated
to the proof of A natural question that comes with

is to know if ¢ needs to be really large for the symmetry breaking to happen.

We present some numerical answers to this question later in Section [2.3] Notice

that the inequality Exx nsa(c) < N®FEg(c) in [Theorem 2.2 is an immediate

consequence of the first order expansion in ([2.9)
Engnsa(c) = A Jps(N°X) + o(c?)

which is proved in [Proposition 2.37 since one has Jgs(N3X) < N3Jgs()\) as it
will be proved in [Proposition 2.16] of Section [3]

REMARK (Generalizations). For simplicity we have chosen to deal with a
cubic lattice with one nucleus of charge 1 per unit cell, but the exact same results
hold in a more general situation. We can take a charge Z larger than 1, several
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charges (of different values) per unit cell and a more general lattice than Z3.
More precisely, the K-periodic Coulomb potential Gk appearing in (2.3), in both
Dy and { G|w|?, should then verify

_AGK—47T<2 Oy — Iﬂé\)

keﬁfK

and the term {, Gx|w|? should be replaced by {. SN 2Gr (- — Ri)|w]? where z;
and R; and the charges and locations of the IV, nuclei in the unit cell K which
can defined by three linearly independent vectors (eq, e, e3).

Finally, in , denoting by z, := max;<<n, {2} > 0 the largest
charge inside K and by N, > 1 the number of charges inside K that are equal
to 24, the location R would now be one of the N, K3 positions of charges z, —
which means that the minimizer concentrate on one of the nuclei with largest
charge — and S would be replaced by

2
mf{ J J @) Ple)l” dydx—erJ V()] dx}.
R3 JR3 ]x—y\ R |7

2.2. Study of the effective model in R?. We present in this section the
effective model in the whole space R3. We want to already emphasize that the
uniqueness of minimizers for this problem is an open difficult question as we will

explain later in this section.
The functional to be considered is

3 w3
wes Fas(u) :J Yl + cTFJ ol ¥ — f 5 (2.10)
R3 5 R3 4 R3
and the minimization problem ({2.7)) is
Jr3(N) = E;II}ng Irs(u). (2.11)
”u"LQ ]RS) =A

The first important result for this effective model is about the existence of
minimizers and the fact that they are radial decreasing. We state those results
in the following theorem, the proof of which is the subject of Section [3.1]

THEOREM 2.3 (Existence of minimizers for the effective model in R3). Let
crrp > 0 and A > 0 be fized constants.

i. There exist minimizers for Jgs(X). Up to a phase factor and a space transla-
tion, any minimizer Q is a positive radial strictly decreasing H?(R3)-solution
of

4 2
—AQ + erp|QIFQ — Q5 Q = —pQ. (2.12)
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Here —p < 0 is simple and is the smallest eigenvalue of the self-adjoint oper-
ator Hy == —A + crp|Q|F — Q5.

1. We have the strictly binding inequality
Vo< N <), Jrs(N) < Jrs(N) + Jrs(A = X). (2.13)

iti. For any minimizing sequence (Qy,)n of Jrs(X), there exists {x,} = R? such that
Qn(- — x,) strongly converges in H'(R?) to a minimizer, up to the extraction
of a subsequence.

An important result about the effective model on R? is the following result
giving the uniqueness and the non-degeneracy of positive solutions () to the
Euler-Lagrange equation for any admissible 4 > 0. The proof of this
theorem is the subject of Section [3.2]

THEOREM 2.4 (Uniqueness and non-degeneracy of positive solutions). Let
crrp > 0. If %CTF/L > 1, then the Euler—Lagrange equation has no non-
trivial solution in H'(R3). For 0 < %CTFM < 1, the Fuler-Lagrange equa-
tion has, up to translations, a unique nonnegative solution Q, # 0 in
H'(R3). This solution is radial decreasing and non-degenerate: the linearized
operator

7 4 D 2
Ly = =0+ gere|Qult = 51Qul7 + (2.14)
with domain H*(R?®) and acting on L*(R3) has the kernel
Ker L} = span {0y, Qu, 0z, Qu, 023 Qpu} - (2.15)

Note that the condition %CTF,U > 1 comes directly from Pohozaev’s identity,
see, e.g., [BL83|, p. 318].

REMARK. The linearized operator L, for the Euler-Lagrange equation (2.12)
at @, is

2 1 _
Luh = =Ah + (erelQul* — 1Qu[F) b+ <3cTF|QM|3 - 3mli) (h+ ) + puh.
Note that it is not C-linear. Separating its real and imaginary parts, it is conve-

Lt 0)
(50,
P00 L,

where L} is as in (2.14)) while L is the operator

nient to rewrite it as

_ 4 2
L, = =A+orp|Qul® — |Qul® + 1= Hg, + p. (2.16)
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The result about the lowest eigenvalue of the operator Hg in[Theorem 2.3]exactly

gives that Ker L | = span {Q,,}. Hence, [Theorem 2.4/ implies that

Ker LN = Span { (620M> 7 <a:c1OQM) : (amOQM> 7 <a:c30Qu) } )

The natural step one would like to perform now is to deduce the uniqueness
of minimizers from the uniqueness of Euler-Lagrange positive solutions as it has
been done for many equations [Lie77, [TM99, Len09, FL13, [FLS16, Ric16].
An argument of this type relies on the fact that u — M(u) = ||Qu||i2(R3) is a
bijection, which is an easy result for models with trivial scalings like the non-
linear Schrédinger equation with only one power nonlineartity. However, for the
effective problem of this section, we are unable to prove that this mapping is a
bijection.

In [KOPV17|, Killip, Oh, Pocovnicu and Visan study extensively a simi-
lar problem with another non-linearity including two powers, namely the cubic-
quintic NLS on R3 which is associated with the energy

1 o 16 14
— — - = . 2.17
ng2|Vu| +6|u| 4|u| ( )

They discussed at length the question of uniqueness of minimizers and could also
not solve it for their model. An important difference between and effective
problem of this section is that the map p — M (u) is for sure not a bijection in
their case. But it is conjectured to be one if one only retains stable solutions
[KOPV17, Conjecture 2.6].

If we cannot prove uniqueness of minimizers, we can nevertheless prove that
for any mass A > 0 there is a finite number of y’s in (0; ﬁ) for which the
unique positive solution to the associated Euler—Lagrange problem has a mass
equal to A and, consequently, that there is a finite number of minimizers of the

TEFDW problem for any given mass constraint.

PROPOSITION 2.5. Let A > 0 and crp > 0. There exist finitely many p’s for
which the mass M () of Q, is equal to .

Proor orF [PROPOSITION 2.5l By [Theorem 2.3] we know that for any mass
constraint A € (0, +00), there exist at least one minimizer to the corresponding
Jgr3(A) minimization problem. Therefore, for any A € (0,+0), there exists at
least one p such that the unique positive solution @), to the associated Euler—
Lagrange equation is a minimizer of Jgs(\) and thus is of mass M (u) = X\. We

therefore obtain that (O' 15 ) 5 p— M(u) € (0;4+0) is onto. Moreover, this

? 6der

map is real-analytic since the non-degeneracy in and the analytic
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implicit function theorem give that p — @, is real analytic. The map M being
onto and real-analytic, then for any A € (0; +00) there exists a finite number of

w’s, which are all in (O' 15

? bder R

), such that the mass M (u) of the unique positive
solution @), is equal to A. O

We have performed some numerical computations of the solution ), and the
results strongly support the uniqueness of minimizers since M was found to be
increasing, see Figure [4]
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FIGURE 4. Plot of y— In (M (u)) on (O' L >

CONJECTURE 2.6. The function

15
0; — (05 400
( 64CTF> ( ) (2.18)
o= M(p)
is strictly increasing and one-to-one. Consequently, for any 0 < u < ¢ 41;;1?, there

exists a unique minimizer @, of Jgs(X), up to a phase and a space translation.

REMARK. Following the method of [KOPV17], one can prove there exist

C,C" > 0 such that M(p) = Cus + O(M%)u—>0+ and M(u) = C'(u — ps) ™3 +

0 ((H’ - Iu*)is)u—»u; where M = 641Ci‘F'

REMARK 2.7. It should be possible to show that the energy p+— _Zrs(Q,,) is
strictly decreasing close to y = 0 and p = p,, and real-analytic on (0, j14). Using

the concavity of A — Jgs(A) (see [Lemma 2.12)) one should be able to prove that

the function A — p(\) is increasing and continuous, except at a countable set of
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points where it can jump. From the analyticity there must be a finite number of
jumps and we conclude that A — Jgs(A) has a unique minimizer for all lambda
except at these finitely many points.

This conjecture on M is related to the stability condition on (L})~" that ap-
pears in works like [Wei85), [GSS87|. Indeed, differentiating the Euler—Lagrange
equation ([2.12) with respect to p, we obtain that L:(%) = —(@Q, which thus

du
leads to
d 5 dQ,
— =2
du f O <Q’“ du

)= -2(Qut) Q).

Thus our conjecture is that (@Q,,, (L:j)_1 Q> <0 forall 0 < pu < =2 and this

64cTp
corresponds to the fact that all the solutions are local strict minimizers.

THEOREM 2.8. If|Conjecture 2.6| holds then, in the case of one charge per unit

cell (N, = 1) and for ¢ large enough, there are exactly N* nonnegative minimizers
for the periodic TFDW problem Ey.g n3a(c).

The proof of is the subject of Section [5.4]

2.3. Numerical simulations. The occurrence of symmetry breaking is an
important question in practical calculations. Concerning the general behavior of
DFT on this matter, we refer to the discussion in [SLHG99| and the references
therein.

Our numerical simulations have been run using the software PROFESS v.3.0
[CXH"15] which is based on pseudo-potentials (see below): we have
used a (BCC) Lithium crystal of side-length 4A (in order to be physically relevant
as the two first alkali metals Lithium and Sodium organize themselves on BCC
lattices with respective side length 3.51A and 4.29A) for which one electron is
treated while the two others are included in the pseudo-potential, simulating
therefore a lattice of pseudo-atoms with pseudo-charge Z = XA = 1. The relative
gain of energy of 2-periodic minimizers compared to 1-periodic ones is plotted
in Figure [f] Symmetry breaking occurs at about ¢ ~ 3.30 which corresponds to
%c ~ 2.48. More precisely, minimizing the 2 - K problem and the 1 - K problem
result in the same minimum energy (up to a factor 8) if ¢ < 3.30 while, for
¢ 2 3.31, we have found (at least) one 2-periodic function for which the energy
is lower than the minimal energy for the 1 - K problem.
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FIGURE 5. Relative gain of energy

8FEx,(c)

(a) ¢ = 3.35¢cp ~ 3.30 (b) ¢ = 3.36¢p ~ 3.31 (c) ¢ =3.50cp ~ 3.45

FIGURE 6. Electron density for Z = 1 and length side 4A. Same
"dark-blue to white to dark-red" density scale for (a), (b) and (c).
(a) The computed 2-periodic minimizer is still 1-periodic.
(b-¢) The computed 2-periodic minimizer is not 1-periodic.

The plots of the computed minimizers presented in Figure [f] visually confirm
the symmetry breaking. They also suggest that the electronic density is very
much concentrated. However, since the computation uses pseudo-potentials, only
one outer shell electron is computed and the density is sharp on an annulus for
these values of c.

The numerical value of the critical constant %c ~ 2.48 obtained in our nu-
merical simulations is outside the usual values 3¢ € [0.93;1.64] chosen in the
literature. However, it is of the same order of magnitude and one cannot exclude
that symmetry breaking would happen inside this range for different systems,
meaning for different values of Z and/or of the size of the lattice.

REMARK 2.9 (Pseudo-potentials). The software PROFESS v.3.0 that we used
in our simulations is based on pseudo-potentials [Joh73|. This means that only
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n outer shell electrons among the N electrons of the unit cell are considered.
The N — n other ones are described through a pseudo-potential, together with
the nucleus. Mathematically, this means that we have A = n and that the
nucleus-electron interaction —N § Gx|wl|? is replaced by — § Gps|w|* where the
K-periodic function Gps(z) behaves like n/|x| when |x| — 0. All our results apply
to this case as well. More precisely, we only need that Gs(x) —n/|x| is bounded
on K. We emphasize that the electron-electron interaction Dk is not changed by
this generalization, and still involves the periodic Coulomb potential Gg.

3. The effective model in R?

This section is dedicated to the proof of [Theorem 2.3l and [Theorem 2.4, Since
some steps of [Theorem 2.3| (for example in the proof of [Corollary 2.16)) have to

be proved for a slightly generalized model, we prove the whole theorem for such

a generalized model. The generalization consists in the presence of the coefficient
¢ = 0 in front of the non-convex term:

3 3
u— Fgso(u) = J (Vul? + CTFJ |u|§ - cf |u|% (2.19)
R3 5 R3 4 R3
and the minimization problem is then
Jrs o(A) = ue}ilrll{]Rf’) Irs o(u). (2.20)
”u||iQ(R3):)‘

The associated Euler-Lagrange equation in obviously becomes
—AQ+err|QFQ — QIFQ = —pQ,  in H(R?). (2.21)
We first give a lemma on the functional #gs .

LEMMA 2.10. For ¢ > 0, cpp, A > 0 and u € H'(R®) such that |ul> = \, we
have

2
Hrac(u) 2 ||VU||L2(1R3) - @;FC (2.22)
REMARK 2.11. One can obtain a bound independent of crp: for any a < 1,
9A5 552
2 3
jRZS’C(U) = a ”VUHLQ(R3) - 64(1 o a)C2

where S3 the Sobolev constant |[ul;6gs) < S3(Vul[p2(rs). See the proof in Sec-
tion [6.3

Proor or [LEMMA 2.10. By Hélder’s inequality

Jul3 ™" < X7 uligs Y, V1<p<d<3,
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where, for shortness, we write ||-[|, instead of [-[|,gs), We conclude that
2 22
3cTF lu ”3 B 5cA B 25¢° )\ _ 15\ 2
SCTF 64CTF2 64CTF

We deduce from this some preliminary properties for the effective model in
R3.

3 o 3

serr fullh = efulld =

wloo

wl|

O

LEMMA 2.12 (A priori properties of Jgs .(A)). Let cpp >0, ¢ =0 and A > 0
be constants. We have

— — - < Jgs(N) = Pgsg (M) <0, (2.23)

The function, A — Jgs .(\) is continuous on [0;+0) and strictly negative, con-
cave and strictly decreasing on (0; +00).

PROOF OF [LEMMA 2.12] Let u be in the minimizing domain. Then, for any
v >0, V_%U(V*L) belongs to the minimizing domain too and

3 1 3
/Rs’c(l/*%u(ufl-)) =2 (f |Vu|2 + 5CTFf \u|?0 — 4I/CJ |u]§>
R3 R3 R3

which is strictly negative for v large enough since ¢ > 0, hence Jgs .(A) < 0.

gives the lower bound in ([2.23]), which implies the continuity at A = 0.

Moreover, after scaling, we have

10
o) = int AUVl + Sere il — ety b
||UH2LQ(R3):/\
. 3 10
it DI + Bty el |

2
Hu"LQ(RS):l
o J/

Z; F(\—2/3)
where F' is concave on [0; +o0), hence continuous on (0; +00) on which it is also
negative (because Jgs is negative) and increasing. The continuity of F' gives that
A — Jgs(A) is continuous as well. Moreover, if f is a concave non-decreasing
negative function, we claim that A — \f(A*3) is concave on (0, c0), which proves
that our energy J is concave. To prove the claim we can regularize f by means
of a convolution and then compute its second derivative, leading to

2

Jhs (X)) = F(A™3) — §A—2/3F/(A—2/3) <0, YA >0,
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and
Jgs o(A) = —§A5/3F’(A2/3) + 3A7/3F”()\2/3) <0, YA > 0.
O

3.1. Proof of [Theorem 2.3 We divide the proof into several steps for
clarity.
Step 1: Large binding inequality.

LEMMA 2.13. Let crp = 0 and ¢ > 0 be constants. Then
JR3,C()\) < J]R3,c()\,) + JR?’,C()\ - )\/), V 0 < )\/ < )\ (224)
PROOF OF [LEMMA 2.13 To prove (2.24)), let us fix ¢ > 0. By density of
C*(R?) in H'(R?) and the continuity of u — #gs .(u) in H'(R?), let ¢ and x be
in CP(IR?), respectively such that #gs .(p) < Jgs(X) + ¢, with ||g0||i2(R3) =N,
and _Zgs .(x) < Jgs (A —N) + ¢, with |‘XHi2(R3) =A—N. Let 0 # v € R® and
define up := ¢ + x(- + Rv). Choose R large enough such that the supports of ¢
and x(- + Rv) are disjoints. Thus

2 2 2 2
lurlre@sy = o+ x(- + R)|f2@sy = [©l12@s) + IX( + RO) |72y = A

So ug belongs to the minimizing domain of Jgs .(\). Moreover, since the supports
are disjoint, we obtain that #gs .(ur) = Frs () + Zrs(x). Thus

JR3,C<)\) < /R37C(UR) = /R3,c((10) + /R3,0<X) < JR3,C<)\/) + JR3,C()\ - >\/> + 2e.
This concludes the proof of ([2.24)). O

REMARK 2.14. The strict inequality in (2.24)), which is important for apply-
ing Lions’ concentration-compactness method, actually holds and is proved later
in |Proposition 2.16|

REMARK 2.15. The fact that X\ — Jgs .(A) is strictly decreasing on [0; +0),

proved in [Lemma 2.12| also can be deduced directly (and only) from (2.24) and

the strict negativity of Jgs .(A).

Step 2: For any \,c >0, Jgs.(\) has a minimizer. First, by rearrange-
ment inequalities, we have Zgs .(v) = _Fgs (v*) for every v € H'(R?), see [LLO1],
Theorem 7.8 & Lemma 7.17|. Therefore, one can restrict the minimization to non-
negative radial decreasing functions. Any minimizing sequence of nonnegative
radial decreasing functions (Q,), is uniformly bounded in H'(R?) due to
Consequently, Q,, weakly converges in H'(R?), up to a subsequence, to
a nonnegative radial decreasing function ). Thus, by the compact embedding
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H} 4(R?) — LP(R?), for 2 < p < 6, and since liminf §, [VQ,|* = {5, [VQ[?, we
obtain

Jrs () < _Frs o(Q) < liminf Fgs (Qn) = Jrs (N (2.25)
where N := HQHiQ(W) < A. Then, f#gs. being strictly decreasing by |[Lem-

N = X and the limit is strong in L?(IR3). This proves that the limit Q
is a minimizer.

Moreover, the strong convergence holds in fact in H(R?). Indeed, the strong
convergence in L?(R3) — together with the Sobolev embeddings and the fact
that @, is uniformly bounded in H'(R3) — implies the strong convergence in
LP(R?) for 2 < p < 6. Then, the fact that all terms in are in fact equal
gives the norm convergence |[VQ, | L2(R3) IvVQ|; L2(R3)- Together with the weak
convergence of V@Q,, in L*(R?), this leads to the strong convergence of V@, in
L?(R3) and finally to the claimed strong convergence in H'(IR?).

Step 3: Any minimizer is in H*(R3®) and solves the E-L equation.
Let Q be a minimizer. For any f € H'(R3), we define

VA
1Q + e fll 12 gey

We obviously have that Q. € H'(R?) and ||Q5Hiz(R3) = \. Moreover, ) being a

minimizer of Jgs .(\), we have d‘{lﬂf’c‘Q = 0. Thus, computing f#gs .(Q.) for f
and if, we obtain that

(= +errlQI? = QP + 1) Q. f) pa(ss) = 0.

Q. = (Q+¢ef).

with
10/3 8/3
VI + crr Q105 sy — < QN ais s

= 5 . (2.26)

Finally, given that v € H'(R3), equation gives u € H?*(R?) by elliptic
regularity.

Step 4: Strict binding inequality. As mentioned in [Remark 2.14] we in
fact have the following strict binding inequality.

PROPOSITION 2.16. Let crp > 0, A > 0 and ¢ > 0.
VO<XN <\ Jrse(N) < Jgso(N) + Jgs (A= N). (12.13))
In particular, for any integer N = 2,

Jrao(N?X) < N®Jgs .(N) < 0. (2.27)
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PROOF OF [PROPOSITION 2.16l By the same scaling as in [Lemma 2.12) we

have

' 3
o=t (I + Gty = el |
Hu”L2(JR<3) L Y=:<9A(u) ]
(2.28)

Let A > X > 0. The minimization problem

. 3 10 3 .2
ueﬁfrll(fw) {HV“”L2 @) T 5orrN l ey 2 I HZ 3 (R?) }

has by [Step 2 9 taking A = 1 and making the replacements Sepp © CTF)\/2/3 >0
and % > %X 23 - 0 under which the previous steps obv1ously hold — a minimizer
Qx # 0 which, by [Step 3| is in H?*(R®) thus continuous and non constant. In
particular, [VQu|2gsy > 0 thus Fyn(Qn) > FA(Qy), where F, is defined

in (2.28). Therefore

N N
Jrs (V) = NFn(Qx) > NFA(Qx) = X/R?’,c(QX(/\_l/?")) = X‘]R37c(>\),
and we finally obtain
, , A=\ N
JR3,C(>\ - ) + JR3,C()\) > JR3,C(/\) + XJR?)’C(/\) = JRS,C()\);
as we wanted. O

Step 5: —p < 0. Let us choose v in the minimization domain of Jgs .(1).

Then, defining the positive number
8/3
3 cllolgsa

Qo = 3 2 10/3
8|1Vl + Zerr ullgs A3

we can obtain for any A > 0 an upper bound on Jgs (). Namely

y o . (el
Jeao(\) < Fra, (ﬁao/umo.)) — T\ (2.29)

2 10/3
647 IVully + Sere vl A2
Moreover, for all € and for () a minimizer to Jgs .(\), we have

I o(1=6)Q) = Froo(Q) + 2eAu + O(?),

which leads, together with (2.24) and the fact that () is a minimizer of Jgs .(A),
to

2eMi + O(?) = Jga (1 — €)°A) — Jgs o(\) = —Jgs o(e(2 — €)N),
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for any e € (0;2). Using this last inequality together with the upper bound (2.29)),
we get for any ¢ € (0;1) that

2
o\ > ) 239 5/335/3 <C||U”§g> o
S e ] E e IO T
(clol)”
> 282/3)\5/3 i + O(e).
64 [Vull3 + 22%3crr |[v]l ol A2/

Which leads to p > 0 by taking € small enough.

Step 6: Positivity of nonnegative minimazers. Let () = 0 be a mini-
mizer. By , 0% Qe H2(R?) < CUR3) and W := crp|Q|5 — Q5 + 1
is in L°(R3). We can obtain that @ > 0 by [LLO1, Theorem 9.10], by results
in [RS78| Section XIII.12] or by

Step 7: nonnegative minimizers are radial strictly decreasing up to
translations. This step is a consequence of and is the subject of the
following proposition.

PROPOSITION 2.17. Let A\, ¢ > 0. Any positive minimizer to Jgs () is radial
strictly decreasing, up to a translation.

PROOF OF [PROPOSITION 2.17) Let 0 < Q € H'(R*R) be a minimizer of
Jrs o(A). We denote by Q* its Schwarz rearrangement which is, as explained in
first part of [Step 2| also a minimizer and, consequently, {., [VQ*|* = {. [VQ|*.
Moreover, by [Step 3| and [Step 6, @ > 0 and Q* > 0 are in H*(R3*R) and
solutions of the Euler—Lagrange equation . They are therefore real-analytic
(see e.g. [Mor58|) which implies that [{z|Q(z) = t}| = [{z|Q*(z) =t}| = 0 for
any t. In particular, the radial non-increasing function Q* is in fact radial strictly
decreasing. We then use [BZ88|, Theorem 1.1] to obtain Q* = @ a.e., up to
a translation. Finally, @) and Q* being continuous, the equality holds in fact

everywhere. O

Step 8: —p is the lowest etgenvalue of Hg, is simple, and Q = z|Q)|.
These are classical results, apply e.g. [LLO1), Chapter 11] to Vg := cTF\Q\g — ]Q]%
which is in L®(R3) by the previous steps.

More precisely, the function Vg is in L®(R?) for any @) minimizer to Jgs(\)
and, for such @, |Q| is also a minimizer. It also verifies, for a given u > 0, the
Euler—Lagrange equation

HolQ| = —A[Q] + VolQ| = —4lQ].
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We then have by [LLO1, Corollary 11.9] that |@] is the unique minimizer (up to
a constant phase) of
o=}

and —pu is equal to this infimum. This immediately gives that the lowest eigen-

e { [ 196 + Valplo)P do

value of Hg is simple and is equal to —pu.
Finally, @ verifying the Euler-Lagrange equation, it is an eigenfunction of Hy
with an associated eigenvalue given by ([2.26))

10/3 8/3
||VQ||L2 (R3) +crr ||Q||L1/0/3 (R3) ||Q||L/s/3(R3
A

!/

But the lowest eigenvalue of Hg being the Euler-Lagrange coefficient for |Q)], it
verifies

10/3 8/3
IR s + cre I1QU s gy — NI esy
. |

Since [VI|Q|| 12 (s ||VQ|| L2(re)» by the convexity inequality for gradients (see
Step 2), it implies that W< p Wthh leads to ¢/ = p (because p is the lowest
eigenvalue of Hg) and then it implies that there exists z € C such that Q = z|Q)|
because () and |Q)| are eigenfunctions of H associated with the same eigenvalue
4 which is simple.

Step 9: Minimizing sequences are precompact up to a translations.
Since the strict binding inequality holds, this follows from a result of Lions
in [Lio84bl Theorem I.2]. For completeness, we give a detailed proof of this
known result in Section of the Appendix.

This concludes the proof of [Theorem 2.3

O

This existence of minimizers gives us immediately the following continuity
result.

COROLLARY 2.18. On [0, +®), ¢ — Jgs x(c) is continuous.

PROOF OF [COROLLARY 2.18| Let 0 < ¢ < ¢ and, )1 and ()3 be cor-
responding minimizers which exist by [[heorem 2.3l By [Lemma 2.10] ¢, —
|Q2[l 1 ) 1s uniformly bounded on any bounded interval [0; ¢, ], ¢, > 0, since

Jrs A(0) = Jrs r(c2) = Irso(Q2) = ||VQ2||2L2(R3) oo 02 ‘
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Therefore, by [Lemma 2.13] we have for any 0 < ¢; < ¢z < ¢, that

4

3
< Jrsp(c2) + 1(02 —c)CIN/° Q2] g1 )

3 8
Jrsa(c2) < Jrsa(cr) < Frse (Q2) = Jrsp(c2) + ~(c2 — 1) HQQH;%(K)

3
< JRS’)\(CQ) + CC*/\E)/GZ(CQ — Cl)

which gives the continuity and concludes the proof of |Corollary 2.23| 0

We now give the following decay result of positive continuous solutions (so,
of solutions in H?(R?) for example) to the Euler-Lagrange equation. This result
will be useful later.

LEMMA 2.19 (Exponential decay of positive continuous solutions to the E-L
equation ) Let Q) be a continuous positive solution to the Euler—Lagrange
equation , that vanishes as |x| goes to infinity, with —p < 0 the associated
Lagrange multiplier. Then for every 0 < € < u, there exists a constant C. such
that

0 < Q(z) < CemVrell, (2.30)

Moreover, for any p,q > 0, there ewist C. 4, C. 4 and C’{;q such that

f 1Q(z)|P dr < C. o~ POVE—ER, (2.31)

lz|=R

f IVQ(x)* de < C. e~ 1 OVE—eR, (2.32)
|z|=R

f AQ(a)[? dr < C ¢~ B-OVI<R, (2.33)
|z|=R

PROOF OF [LEMMA 2.19] Let 0 < & < u. Then, by (2.12), we have

(A + (1 —2)Q = (& — crp|QI5 +|QH)Q = g

with g(z) < 0 for |z| = R. for R. large enough. Indeed, |Q[5 and |Q|5 vanish as
|z| goes to infinity and @ > 0. Using the Yukawa potential, we obtain that

0<Qe) = P— 9(y)dy < — P— 9(y) dy.

S Ar

1 J< 6—\/F|x—y| 1 J‘ e—x//ﬁlw—y\
R3 ly|<Re
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Recalling that ¢ is continuous, since @) is continuous, and that for any |z| > 2R,
and |y| < R. we have |r —y| = |z| — |y| = R., we have for |z| > 2R, that

1
0 < Of) < sup g J e~Viriyl g
(2) 41 R, (3(0,36) ly|<R-

< ! sup g (J ex/ﬁh/dy) e Vil
47 R. \ B(o,R.) lyl<R-

The estimate Q(z) < C.e”V#~#ll on all R? then follows from the fact that @ is
bounded on B(0,2R.).
From ([2.30) we obtain

e}
f |Q(z)|P dx < (C’E)pf e PVi—elel qp = 47T(C'5)pf e PVIETET 2 e
lz|=R lz|>R R

= P(R)e PVi—eF

where P is an order 2 polynomial with coefficients depending on ¢ and p. Thus,
for any ¢ > 0, R — P(R)e~%V*~=E is bounded by a constant depending on ¢, p
and ¢. This leads to (2.31]).

Multiplying (2.12)) by x@Q with xy € C*(R?), 0 < x < 1, x = 1 on B(0, R),
x=0on B(0,R—1) and ||Vx| sy < 2 we obtain

f Wvar+ [ ovo-vy - f V9@ — (- <) f WVQP.
R3 R3 R3 R3

Since SR3 xg@ is non-positive for R — 1 > R,, it follows that

lz|=R |lz|=R

. vewras | xve@re- | o@vew i) i

|z|=R—1

|z|=R
< j Q) (IVQ() ||V x(x)| dx

z|=R—1

o= 3 [ (o= :
<2 ( | o le@ ) ( j| RCE das)

<2 ||VQ||L2(]R3) (fl |Q(l‘)|2> 2 .

z|>R—-1

Thus, applying (2.31)) for p = 2, we obtain ([2.32]).
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By [12). we have
0< J |IAQ(z)]* dx = J cTF2|Q\1?4 + (1 + 2uch)|Q\1?TO + 12| Q)?
lz|=R ||=R
- 2J cre?|Q[t — 2u|Q)5.
>R

Using (2.31]), we see that largest term is due to p?|Q|? and this leads to (2.33). O

3.2. Proof of [I'heorem 2.4. The uniqueness of radial solutions has been
proved by Serrin and Tang in [ST00|. However, we need the non-degeneracy of

the solution. Both uniqueness and non-degeneracy can be proved following line
by line the method in [LRN15, Thm. 2| (the argument is detailed in Section
in the Appendix). One slight difference is the application of the moving plane
method to prove that positive solutions are radial. Contrarily to [LRN15| we
cannot use [GNNS81, Thm. 2| because our function

Fu(y) = —crry® +y3 — uy (2.34)

is not C?. However, given that nonnegative solutions are positive, one can show
that they are C* and, therefore, we can apply [Li91, Thm. 1.1]. O

4. Regime of small ¢: uniqueness of the minimizer

We first give some useful properties of Gk in the following lemma.

LEMMA 2.20 (The periodic Coulomb potential Gx). The function Gx — |- |~
is bounded on K. Thus, there exits C' such that for any x € K\{0}, we have
C
0 < Gk(z) < Tl (2.35)
T

In particular, Gx € LP(K) for 1 < p < 3. The Fourier transform of Gk is

Gele) =4 3, M4 0l) [ Gelo) o (2.36)
ke ZF\{0} K

where £ is the reciprocal lattice of Lk. Hence, for any f # 0 for which D (f, f)
is defined, we have Dg(f, f) > 0.

PROOF OF [LEMMA 220l The first part follows from the fact that

lim Gr() — lz| 7' = M e R.
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is continuous — this can be seen from the fact that, for

Indeed, f(z) =, -2 P
any 0 < |z — x()] < 1, we have

|f(x) — <l

z — '|_1”L2(K) H|x0 | 1HL2(11< A7 (|zo| + 1 + R)

where R is such that K ¢ B(0, R) — then the stated limit is obtained following
the argument in [LS77b, VI.2|. It implies, together with the fact that both Gk
and |-|~! are bounded on the complementary in @ of any B(0, R) = Q for R > 0,
the bounds on Gk. The positivity of Dk(f, f) comes directly from the expression
of the Fourier transform since we choose Gk such that I;lelﬂg Gk (xr) = 0 hence

CA;K(O) = (¢ Gx > 0. We now prove the stated expression. For any ¢ # 0, we
have by (2.4) that

\w@@:mf S g —an Y a(e)
R ke 23\ (0} ke ZF\{0}
where we have used that

Z 5@ Z 6217r<k in ,@/(R3)

leZx kej x

which we prove using the Fourier series of the Dirac comb »; d,, which is
el

DA =N (x) i Z'(R).

keZ LeZ

Indeed, let denote A the application sending Z? onto %k hence |K| = det A and
tA™! sends Z3 onto 4. For ¢ € C*(R?), we have

2k, _ 2im(k, A~ > > K 2im(k,> )
> e i > e K¢ D e (A ).
ke > keZ3 kezZ3

Moreover, for any ¢ € C¥ (]R3) such that 1 (z) = 1 (x1)a(22)13(x3), we have
217r<k ) w _ 217rk wz>
:H 26€i7¢2> <26€7 > = Zw(€)7
i=1 L2(R 2(R3)

LeZ LeZ3 LeZ3

where we have used the Fourier series of the Dirac comb. The above computation
holds on 2'(R?) by density of the functions that can be decomposed like 7). We



4. REGIME OF SMALL C: UNIQUENESS OF THE MINIMIZER 93

then deduce that

(o 3 ) = Sotan = 3ot 3 o)

ke 073 le L le %
O

4.1. Existence of minimizers to Ex »(c). In order to prove [Theorem 2.1}
we need the existence of minimizers to Ex »(c), for any ¢ > 0, which is done in
this section.

PROPOSITION 2.21 (Existence of minimizers to Ex »(c)). Let K be the unit
cube and, crp > 0, A > 0 and ¢ = 0 be real constants.

i. There exists a nonnegative minimizer to Ex x(c) and any minimizing sequence

(wn)n strongly converges in H,, (K) to a minimizer, up to extraction of a

subsequence.

1. Any minimizer w, s in ngr(K), is non-constant and solves the E-L equation

(—A + orp|we]® — clwe|? — Gy + (Jwe] * GK)> We = — [y, We, (2.37)
with
10/3 8/3
IVl ere 95— ellwel + Dl fwel®) — (G, e
lu’wc )\ .
(2.38)

1. Up to a phase factor, a minimizer w, is positive and the unique ground-state
eigenfunction of the self-adjoint operator, with domain ngr(K)
Hy, = —A + orplwe|® — clwe]? — Gx + (Jw.|* * Gg).
Note that for shortness, we have denoted |-, = ||| s x,

PROOF OF [PROPOSITION 2.21]. In order to prove i., we need the following
result that will be useful all along the rest of this second part of the thesis, and
is somewhat similar to [Lemma 2.10l

LEMMA 2.22. For any ¢ = 0, crp, A > 0, there exist positive constants a < 1
and C such that, for any u e H), (K) such that |ul3 = A, we have
15 A
Eie(u) = a||Vuljag — ——
K, (U) a H uHLQ(K) 64 crp

PROOF OF [LEMMA 2.221 As in|[Lemma 2.10] Holder’s inequality (but on K)

gives us that

& — \C. (2.39)

3 15 A

J— - 3 Y
5CTF ||U|| To( || ||L (&) 64CTFC
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Moreover, we have
UK Cielu?] < ey + AC:. Vge(3:6], > 0. (2.40)

Indeed, suppose ¢ € (3;6], € > 0 and define ¢’ such that 1/¢’ + 2/q = 1, thus
q € [%, 3). By the upper bound in , the function Gk can be written G =
G '+ G« where G r = ]1{| \<r}GK € Lq,( ) and GOO = ]IK\“ ‘<,«}GK € LOO(K) Then
choosing r small enough such that [|Gy|| ., k) < &, we obtain (2.40). The above
results (for ¢ = 6), together with Sobolev embeddings and Dy (u?, u?) > 0, gives

3 10 3 8
= 2 — 3 _ 3 2
Ee(u) = [Vl o + P CTF ||u||L%(K) 4c||u||L%(K) + DK u?, u? JKGKu
15 A
2 2
> Vil - g = <lulfsgy — AC.

15 A
K) — 674@0
for any € > 0 and where S is the constant from the Sobolev embedding. Choosing
¢ such that €S < 1 concludes the proof. O

> (1—£9) | Vul 72 2 X\C. +€S)

Let ¢ be fixed and let (w,,), be a minimizing sequence. The above result gives
that (w,), is uniformly bounded in H*(K) and, together with Sobolev embed-
dings, it implies that there exists w, such that, up to a subsequence (denoted the
same for shortness),

Vw, — Vuw., weaklyin L*(K);

n—o0

w, — w., weaklyin L”(K) for all 2 < p <6.

n—o0

Moreover, the cube K being bounded, H'(K) is compactly embedded in LP(K)
for 1 < p < 6. Consequently, up to another subsequence (still denoted the same),
we have

Vw, — Vuw,., weakly in L*(K);
wy, — w,, weakly in L°(K);
w, — w., a.e. and strongly in LP(K) for all 2 < p < 6.

It follows that

f|wn|130—>f w2 f |wn|§—>J o5 and nmmff |an|2>J Vw2
K K K K n=o Jk K

Moreover, by Fatou’s Lemma, we have

lim inf Dy (jwn[?, [wa|?) = De(Jwel?, Juwel?),
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and, by the convergence in L3(K) for example, we have

J GK”LU”F —’J GK”LUCIZ.
K K

FEx () = liminf &k .(w,) = k (w.)

This leads to

thus w, is a minimizer since it verifies ||wc||i2(K) = A and belongs to H,(K). We

then, in fact, obtain up to a subsequence that Dg(w,?, w,?) — Dg(|w.|?, |w.|?)
and § [Vw,|> — {, [Vw|?. This last convergence gives us that any minimiz-
ing sequence of Eg x(c) strongly converges in H,(K) to a minimizer up to a
subsequence.

Moreover, by the convexity inequality for gradients (see [LLO1l Theorem 7.8|)

”V‘f‘”LQ(K) < ”VfHL2(K) ’ Vf € Hl;l)er(Ka (C)a

we obtain that |w.| € H},(K,R,) and that it is a minimizer since w, is a mini-
mizer. This concludes the proof of .

We now prove that any minimizer w, solves an Euler-Lagrange equation. For
any f e Hy (K), we define

er

VA

Jwe + efllr2m)

w, (we + €f).

We obviously have that w. € H! (K) and ||wa||2Lz(K) = . Moreover, w,. being

per
dék.. ) .
i o = 0 Thus, computing &k .(w.) for f and if, we

a minimizer, we have
obtain

<(—A + CTF|wc|4/3 — c|wc|2/3 + (GK * |'LUC|2) - GK + Uwc) We, f>L2(K) = O?

with g, defined as in (2.38]).
To prove that any minimizer w, is in A2, (K), using (2.37) in H;L(K) and
(2.38]) which are classical computations, we write

4 2
—Aw, = —crp|w 3w, + clw.|3w, + Ggw, — (|wc|2 * G )We — W,

and prove that the right hand side is in L?*(K), which will give w, € HZ _(K) by

per
elliptic regularity for the periodic Laplacian. We note that |w.|3w, and |we|3w.
are in L*(K), by Sobolev embeddings, since w. € H,(K) which also gives, to-
gether with Gk € L?(K) by [Lemma 2.20] that |w.|?  Gx € L*(K). It remains to
prove that Ggw, € L*(K): equation and the periodic Hardy inequality on
K (see Section [6.5in the Appendix) give

||GKwC||L2(K) <C H| ' ‘_lwcup(K) < HMCHHI{H(K) :
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Finally, since Gk is not constant, the constant functions are not solutions of the
Euler-Lagrange equation hence are not minimizers. This concludes the proof of
1.

Let w. be a nonnegative minimizer, then 0 # w, > 0 is in H*(K) < L*(K)
and is a solution of (—A + C)u = (f + Gk + C) u, with Gk bounded below and

4 2
f=—crrlwel® + clwel — (Jwel* * Gx) — pru, € L(K),

thus (—A + C) w, = 0 for C » 1. Hence, w. > 0 on K since the periodic Laplacian
is positive improving [LLO1, Theorem 9.10]. Therefore 0 < w.™! € L*(K) and,
for any u € H! (K), it holds that ww, and uw.™! are in H*(K). Indeed, we of

per
course have that uw.™! € L*(K) and uw, € L*(K) but also

HV(uwc_l)Hm(K) < ch_lHLoo(K) ||vu||L2(K) + ch_luim(K) ||Vw6||L4(]K) ||u||L4(K)
and
HV(Uwc)Hm(K) < HUHL4(K) vaCHL‘l(K) + HwCHLOO(]K) HVUHL2(K) )
which are both bounded since w, € H*(K) and v € H'(K). We obtain
(u, —Auy = (V(uw,), V(uw, ")) — 2{uVwe, V(uw. ")) + {JulPw. ™", —Aw,)
— <wc2, |V(uw[1)‘2> + (JuPw. ™, —Awy,

where (-, -) stands for (-, )1, and since w, is real valued. Consequently, w. > 0
verifies Hy, w, = — i, w, and this implies that for any u € H!_ (K) it holds

per

—1v]2
V(UU)C 1)| >L2(K) = 0.

<u7 (ch + Iuwc>u>L2(K) = <wc27

This vanishes only if there exists a € C such that u = aw, ae.

Let now w, be a minimizer. The convexity inequality for gradients gives that
lw,| is a nonnegative minimizer and that — g, < —f..|. But we just proved that
—Hjw,| is the lowest eigenvalue of H,,, = H|,, | and is simple, hence —f1,, = —fiju,|
and, w, and |w,.| are equal up to a constant phase factor. This concludes the

proof of [Proposition 2.21} O

From this existence result, we deduce two useful corollaries.

COROLLARY 2.23. On [0,4©), ¢ — Ex\(c) is continuous and strictly de-
creasing.
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PROOF OF [COROLLARY 2.23l Let 0 < ¢; < ¢y and, let w; and ws be corre-
sponding minimizers, which exist by [Proposition 2.21 On one hand, we have

3
Brea(ca) < Gn(w1) = Ggr (wn) — (2 — 1) f jun 3
K

4

4

with the second inequality being strict since, for ¢ > 0, any corresponding min-

3 8
= Eg(c1) — = (e — Cl)f |w1|§ < Ex\(c1),
K

imizer is nonnegative with positive L?*(K)-norm thus { |w1|% > (0. This gives
that Ex ,(c) is strictly decreasing on [0, +00) but also, fixing ¢o and sending ¢;
to ¢, by below, the left-continuity for any c; > 0. Moreover, ¢ — [[wa ) is

uniformly bounded on any bounded interval since
15 A
= NC (2.41)

B 6ZCTF

by [Cemma 2.22] Hence, by the Sobolev embedding, we have

3
Ega(ca) < Exa(cr) < Exa(cz) + 1(02 - C1)Cl>\5/6 ||w2||H1(K) )

Exa(0) = Exa(c2) = Ekes(w2) = a || Vo] 72,

which gives the right-continuity and concludes the proof of [Corollary 2.23. [

COROLLARY 2.24. If w. is a minimizer of Ex x(c), then

A
< — < max |w.|*.

. 2 2

mK1n|wc| K| 2 |
PROOF OF [LEMMA 2.24l This is a direct consequence of w, € H?*(K) <
C°(K) being non-constant and verifying [lw,|| ®) = A 0

4.2. Limit case ¢ = 0: the TFW model. In order to prove [Theorem 2.1]
we need some results on the TFW model which corresponds to the TFDW model
for ¢ = 0. For clarity, we denote

3 1 1
EE7 (w) = Exow) = [ IVl + Zern [ ul¥ + 3Deul ) - | Gl
K K K

(2.42)
and similarly Ex5" := Ex »(0).
By |Proposition 2.21|, there exist minimizers to Eﬂrgiw.
LEMMA 2.25.
TFW
Ex a(c) C_)—O; KA -
PROOF OF [LEMMA 2.25] This is a particular case of [Corollary 2.23| O

We now prove the uniqueness of minimizer for the TF'W model.
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PROPOSITION 2.26. The minimization problem EgXW admits, up to phase,
a unique minimaizer wy which s non constant and positive. Moreover, wq is the
unique ground-state eigenfunction of the self-adjoint operator

H = —A + crplwo|? — G + (Jwol? * G),

with domain H2, (K), acting on L2, (K), and with ground-state eigenvalue

2 10/3
B IVwol; + err ||w0||10§3 + Die(wg, wg) — (G, w(2)>L2(K)

— Mo = \
PROOF OF [PROPOSITION 2.26[ By [Proposition 2.21| we only have to prove
the uniqueness. Since p — Ggp is linear, thus convex, and p — p%? is strictly
convex on R, then their integrals over K are respectively convex and strictly

(2.43)

convex. Therefore, the uniqueness of nonnegative H'(K) minimizers, of unitary
L'(K)-norm, to

3 1
p— J Vol + CTFJ p3 + < Dg(p, p) — f Grp,
K 5 K 2 K

is obtained by the convexity of the p — |V, /p|* (see [Lie81], Proposition 7.1]) and
by the (strict) convexity of p — Dk(p, p). The later being due to Dx(p,p) > 0
for p # 0, by [Lemma 2.20, and to 2|Dk(p1, p2)| < Dx(p1, p1) + Dx(p2, pa), for
p1, p2 = 0, when the expressions are well defined. This concludes the proof since
any minimizer wy to Ex5" is equal to |wo| up to a phrase factor by
[tion 2.211 O

4.3. Proof of [I’heorem 2.1 uniqueness in the regime of small c. We
first prove one convergence result and a uniqueness result under a condition on
mKin p-

LEMMA 2.27. Let {c,}, = Ry be such that ¢, — ¢. If {w,,}, is a sequence
of respective positive minimizers to Ex x(cn) and {fu, }n the associated Euler—
Lagrange multipliers, then there exists a subsequence c,, such that the convergence

(Wen, s ey, ) 2, (@5 10)
holds strongly in ngr(K) x R, where w is a positive minimizer to Ex \(¢) and pus
18 the associated multiplier.
Additionally, if Ex \(¢) has a unique positive minimizer w then the result holds

for the whole sequence ¢, — ¢C:

(wcn7#'wm> — (QI),,LLE) .

n—o0

We will only use the case ¢ = 0, for which we have proved the uniqueness of
the positive minimizer, but we state this lemma for any ¢ > 0.
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PROOF OF [LEMMA 2.271 We first prove the convergence in H!_(K) x R. By

per
the continuity of ¢ — Ex \(c) proved in |Corollary 2.23] {w, }n—s is a positive
minimizing sequence of Ex »(¢). Thus, by [Proposition 2.21] up to a subsequence

(denoted the same for shortness), w., converges strongly in H,,.(K) to a mini-

mizer w of Ek (¢).
Moreover, for any ¢, (we, iy, ) is a solution of the Euler-Lagrange equation

(—A + chwc% — cwC% — Gg + (w2 * GK)> We = — o, W
Thus, as ¢, goes to ¢, i, converges to p € R satisfying
— AW + cppWd — e — G + (p* Gg ) = — .

In particular, p = p15. At this point, we proved the convergence in H! (K) x R:

per

(Weps thue,, ) — (0, 1)

n—ao0
If, additionally, the positive minimizer @ of Ex »(¢) is unique, then any posi-
tive minimizing sequence must converge in H,,.(K) to @, so the whole sequence
{we, }nsw in fact converges to the unique positive minimizer w.

We turn to the proof of the convergence in H2,_(K). For any ¢, > 0, by

per
sition 2.21), w,, is in H2, (K) thus we have

(—A - Gk + ) (w,, —w) = — CTF(an% — u_)%) + (cn — c‘:)wcn% c (wcng — @D%)

Moreover,

H5n||L2(K)

B 4
< CrF H’wcn — wl|w,, + w3 L2(K) L3 (K)

+ECH\wcn—wchn+wﬁ 2

—2
L2 (K) —w HLQ(K) HGKHL2(K) HanHL2(K)

_ — 2
e, = @y (1803000 16 oy + 18 = o) + Ve, = st 20, e

_ 2 _ 2
< lew = el g+ e, = Dlagey (1000 Gy + 18 —

(K)
4
+ |, — ol chnHLQ(K) + [lwe, — w”mmg (CTF we, + sz%ﬁ(K) +
2 —
+ eC ||we,, + w”zg(K) + [lwe, + Ol pagey |Gl 2y lwenll 22 >7

where we wrote ||, instead of |||, and used the two technical inequalities

which are the object of [Lemma 2.78in the [Appendixl. Since (wcn, uw%) strongly
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converges in H!, (K) xR, we have ||&,], —> 0. Now, by the Rellich-Kato theorem

per

(see the Appendix for details), we have for ’s large enough that
(—Aper — Gx + B) " LA(K) — H?(K)

per

is a bounded operator, hence {w,,} converges in ngr(K) since

We, — W = (—Aper — Gx + B) " en.
This concludes the proof of [Lemma 2.27] [

PROPOSITION 2.28 (Conditional uniqueness). Let K be the unit cube, N > 1
be an integer, crp > 0, ¢ = 0 and pu € R be constants. Let w > 0 be such that
we H(N-K) and w is a N - K—periodic solution of

<—A + chwg —cws + (w® * Gxg) — GK> w = —pw. (2.44)

3
. e\ 2 . ‘ L
If minw > (E) , then w is the unique minimizer of EN'K»SN.KIWIZ(C)'

PROOF OF [PROPOSITION 2.28. First, the hypothesis give w € HZ (N - K),
by the same proof as in [Proposition 2.21] Moreover, we have the following lemma.

LEMMA 2.29. Let p > 0 and p' = 0 such that \/p € H., (K) and \/p' €
H!, (K). Then

per

2 A P ,
[ |7Vl = [ 1wver+ [ 20— =0
K K K \/ﬁ
PROOF OF [LEMMA 2.29] First, we notice that
p 1 1
VAAE = IV [pV )] = LpA(np) + o[V (in o).

Defining h = p’ — p, and using the Cauchy—Schwarz inequality, we have

I WO W

1f V(p+h)° 1f Vol® 1f 1f 2
= _ LR U A E — 4+ = hA(Inp) + - V(In h
T s it § 3] AAp) + 1] [Vinp)

P N-K
1J IVl h 1J hVpVh 1J ) 1J IVh|?
- Ao ==EE s Vinp)Ph+-| L
4 )y plp+h) 2 )yxplp+h) 4 N-K‘ (np) 4 vk p+h
_1f fﬂWﬂQ_lf < hVp ) (‘m )+1J [Vh[
4 vk PP(p+h) 2]y \pVp+h Vpt+h) Alyxpth
hVp Vh |

_1f
4 vk

pVoth p+h
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Let w’ be in H},,.(N-K) such that {, . w® = {, . [w'|* and |w'| # w. Defining

per
p = w® and p' = |w'|?, this means that {, . h = 0 where h := p' —p # 0. We
have

Enie(|0]) = Eng.e(w)

= f |V\/p+h|2—J |Vﬁ|2—J GNKh-i-,UJJ h
N-K N-K N-K N

K

1 1
+ 5Dvk(p+hp+h) = SDyxlp, p)

-%3ch<J;K(p4—h) J;Kpg)-—iC<J;K(p4-h) J;Kp

5
=<( A+cTFw3—cw3 +w *GNK—GNK+u)w hw™ >
N

wlo
i
ol

)

L?2(NK)

i .]KW\/[m’Q_JN.KW\/E|2 JNK \/\[h+2DNK(h Y

3 s 5 s 3 .4 4
° h)s —pi — 2pih ) —° h)s —pi — -
i 5CTF <JN~K (p " ) ’ 3p3 > 4C (JNJK <p+ >3 ’ 3p

> fN_K F(#) - Flo) - F'(0)(# — ),

wlo
Wl

)

with F(X) = 2erpX §— 3eX 3. The above inequality comes from (2.44) together
with [Lemma 2.29 and with Dk (h,h) > 0 for h # 0. Defining now

Fx(Y) = F(Y) = F(X) = F(X)(Y = X),

one can check, as soon as X > g¢/-%, that Fi < 0 on (0,X) and F§ > 0 on

(X, +0). Moreover, F(0) < 0if X > 8/-=. Thus Fx has a global strict

minimum on R, at X and this minimum is zero. Consequently, if I]I\;liﬂgw >
(:)%, then &io(w') > Eo(|w']) > Sx.o(w) for any w’ € HY, (N -K) such that
/|2

jw'| # w and (. |w w?. This ends the proof of [Proposition 2.28 O

Svx

We have now all the tools to prove the uniqueness of minimizers for ¢ small.

PROOF OF [THEOREM 2.1l We have already proved all the results of i. of
[Theorem 2.1]in [Proposition 2.21]except for the uniqueness that we prove now. Let
(we)e—o+ be a sequence of respective positive minimizers to Ex x(c). By
tion 2.26| Ek »(0) has a unique minimizer thus, by [Proposition 2.27] w,. converges

strongly in H?(K) hence in L*(K) to the unique positive minimizer wy to Fi (0).
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Therefore, for ¢ small enough we have
3
: I . c \?2
minw, = —mimuwg > | —

and we can apply |[Proposition 2.28| (with N = 1) to the minimizer w, > 0 to
conclude that it is the unique minimizer of Ex )(c).

We now prove . of [Theorem 2.1] We fix ¢ small enough such that Ex x(c)
has an unique minimizer w.. Then w,. being K-periodic, it is N - K—periodic for
any integer N > 1 and verifies all the hypothesis of [Proposition 2.28| hence it is
also the unique minimizer of Ey g ju.2(¢) = Enx nsr(c)- O

5. Regime of large c¢: symmetry breaking

This section is dedicated to the proof of the main result of the paper, namely
[Theorem 2.2 We introduce for clarity some notations for the rest of this section.
We will denote the minimization problem for the effective model on the unit cell
K by

JK’,\(C> = lnf(K) /]K,c(v)) (245)

1
vEH o,

”U"iZ(K):)‘

where

() :J Vol? + 3cTFJ o] 2 —3cf ). (2.46)
K 5 K 4 K

We recall that the two other minimizing problems we consider are

FE = inf EK.c 2.9
kA (C) weflIEleT(K) K.c(w) (2.5)
HwHZLQ(]K):)\

for the complete model on K, where

1
Seolw) = Frow) + 3Dxlul’ ) - | Gl &)
K
and
Jrs ) = udi{l}(fR:i) Irs(u) (2.11))
||UH2L2(R3):>\

for the effective model on R3, where

3 1 3
s (u) :J Vul? + CTFJ | ® — J ul. £10)
R3 5 R3 4 R3

3
The first but important result is the existence of minimizers for Jg y which is

equivalent to [Proposition 2.21| but for Jk .
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PROPOSITION 2.30 (Existence of minimizers to Jx \(c)). Let K be the unit
cube and, crp > 0, A > 0 and ¢ = 0 be real constants.

i. There exists a nonnegative minimizer to Jx x(c) and any minimizing sequence

(Un)n strongly converges in Hzl,eT(K) to a minimizer, up to extraction of a

subsequence.
1. Any minimizer v, is in ngr(K), 1s non-constant and solves the Fuler—Lagrange
equation
4 2
(—A + crplve|3 — c|vc|3> Ve = —[ly, Ve,
with 2 10/3 8/3
IVelly + erp [vell1s = ¢ llvells)s
My, = — \ .

1. Up to a phase factor, a minimizer v. is positive and the unique ground-state
eigenfunction of the self-adjoint operator, with domain H?, (K),

per
4 2
H,, == —A+ crp|ve]3 — clog|3.

COROLLARY 2.31. On [0,+x), ¢ — Jg(c) is continuous and strictly de-
creasing.

COROLLARY 2.32. If v. is a minimizer of Jxa(c), then IIlKiIl|UC|2 < ‘T’;' <
mHgXIUCP.

The proofs are the same as the proofs of [Proposition 2.21], [Corollary 2.23| and
[Corollary 2.24], and will therefore be omitted.

The minima of the effective model and of the TEFDW model also verify the
following a priori estimates which will be useful all along this section.

LEMMA 2.33 (A priori estimates on minimal energy). Let K be the unit cube
and cpp and ¢ be two positive constant. Then Ex x(c) verifies
15 A 5 _ 33X 3 A3 >\<)\

<" Tt Serpog o (2= 1) 1Gx ] e
1KEST 3T RE ORI\ 2 )H N
(2.47)

for some constant C' > 0, and Jx x(c) verifies Jx \(c) = *Jx (1) and

15 A, 3A 3 A3
< < ———=Cc+ —Crr—>- 2.48
aKE T 5K R (2.48)
Moreover, for all K such that 0 < K < —Jgs y, there exists c, > 0 such that for
all ¢ = ¢, we have

15 A
— < Jgale) < K <. (2.49)
64 CTF ’
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REMARK 2.34. The upper bound in (2.47)) implies, in particular, that there
exists ¢p := co(\, K, epp) > 0 such that Ex »(c) < 0 for all ¢ > ¢.

PROOF OF [LEMMA 233 The lower bound in (2.47) has been proved in [Lem-]
the proof of which also leads to the inequality

15 A
Hke(v) = ||VU||2L2(K) - ?

6dorp
hence the lower bound in ([2.48]).
REMARK 2.35. One can obtain a bound independent of crp: for any a < 1,

9\3 S 3 . .4
/K,c(v> = a ||VUH§/2(]K) - m02 - ESK)\?)C

where Sy is the Sobolev constant [[v] ) < Sk [v] 1) See the proof in Sec-
tion [6.3

The upper bounds in (2.48)) and (2.47) are simple computations of _Zx .(7)

and &k .(v) for the constant function v = , /ﬁ, defined on K, which belongs to

(2.50)

the minimizing domain.

To prove (2.49), let K be such that 0 < K < —Jgs . Fix f € CX(R?) such
that K = — Zrs(f) > 0. Such a f exists since Jgs, < 0 and CP(R?) is dense
in H'(R3). Thus, there exists ¢, > 0 such that for any ¢ > c,, the support of
f.:=c*%f(c) is strictly included in K. This implies, for any ¢ > c,, that

-2

Jer(e) < Feol ) = | IVAP+ Zere | AL = Te [ 11 =@ g,

and this concludes the proof of O

We introduce the notation K. which will be the dilation of K by a factor
¢ > 0. Namely, if K is the unit cube, then
K, :=c-K:= [—5- 6)3. (2.51)
272
Moreover, we use the notations % and u to denote the following dilations of w:
e for any v defined on K, ¢ is defined on K, by #(x) := ¢=32v(c ™ z);
e for any v defined on K., © is defined on K by o(z) := ¢™3/2v(cx).
A direct computation gives Zx (v) = ¢® fg, 1(0), for any v € H} (K). Conse-
quently,
Jra(e) = ¢ Jx A (1) (2.52)
and v is a minimizer of Jx (c) if and only if ¢ is a minimizer of Jk, 1(1). Finally,

when v is a minimizer of Jk »(c), we have some a priori bounds on several norms

of ¥ which are given in the following corollary of
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COROLLARY 2.36 (Uniform norm bounds on minimizers of Jx, (1)). Let K
be the unit cube and A be positive. Then there exist C' > 0 and ¢, > 0 such that
for any ¢ = ¢y, a minimizer v. of Jx. (1) verifies

1 y y y
& S IVl oy s 10l pross iy s 19ell Loss ey < C-

C
PROOF OF [COROLLARY 2.36l By (2.48)) and (2.50)), we have that there exists

1
0< e < derp (@) * such that, for all ¢ > ¢, it holds that

2
0= Jra(c) = Vel — Gdern’
for any minimizer v. of Jx (c). This leads to

15 A

o o112 —
IVOel2ky = €2 IVl 2y < 61 crm

REMARK. One can obtain an upper bound independent of crp (see Section

53).

Applying, on K, Holder’s inequality and Sobolev embeddings to v., we obtain

o ¥ < SANE (X + Vel )

L3 (K)

el i g < ISEPA (A + 190l )

where S(K) is the Sobolev constant on K, and it implies that

é A2
5, < SN e(nwcnmw )
(2.53)

2\ A
H Hi(i{)?;?’ (Ke) < [S<K>] 3 (”vvcHLz C2) .

Thus there exists C such that
Ve = cw VOl 2y 10l oy s 106l psss e,y < C-

By (2.49), for any K such that 0 < K < —Jgs ), there exists ¢, > 0 such that

4 4 v
Ve e, 0< K < 2l < il

and, consequently, such that

2 16 K?
10/3 8/3
Ve e il = 3 (Ilite,) > 5 >0
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. ~ 4
Finally, by (2.53)) and for any fixed ¢, > %S (K)A3 K, we have

inf ”V"u}ch(Kc)

c=max{Cy,Cx,Cx }
5 1 5\ 2 1\ ?
_ AKN 6 Mz [4AK)\ 6 A2
> max<{ ——— — —; s
35(K) ¢\ 35(K) ¢

5 1 5 2 1 2
- ma AK 76 Az [4K)\ s Az =0
3S(K) &'\ 35(K) Ca

This concludes the proof of [Corollary 2.36] O

5.1. Concentration-compactness. In order to prove the symmetry break-
ing stated in [Theorem 2.2 we prove the following result using the concentration-
compactness method as a key ingredient.

PROPOSITION 2.37. Let K be the unit cube and \ be positive. Then
lim P Eg(c) = Jrsp = lim c 2 Jxa(c).

Moreover, for any sequence w. of minimizers to Ex x(c), there ezists a subsequence
Cn — 00 and a sequence translations {x,} < R3 such that the sequence of dilated
functions b, := c, 3w, (c, ') verifies
i. Ig, Wy(- + x,) converges to a minimizer u of Jgs )y strongly in LP(R®) for
2 <p <6, asn goes to infinity;
. g, Vi,(- + z,) — Vu strongly in L*(R?).

The same holds for any sequence v. of minimizers of Jx x(c).

Before proving [Proposition 2.37, we give and prove several intermediate re-
sults, the first of which is the following proposition which will allow us to deduce
the results for Ex ) from those for Jx .

LEMMA 2.38. Let A > 0. Then
EK,)\<C) N
JK,)\(C) c—0

PROOF OF [LEMMA 2.38 Let w, and v. be minimizers of Ex ,(c) and Jg (c)
respectively which exist by [Proposition 2.21| and [Proposition 2.30, Thus

gK,c(wc) - /K,c(wc) < EK,)\(C) - JK,)\(C) < é[)K,C(,UC) - /K,c(vc)

which can be rewrite as

1 1
— Dy (w2, w.) — J Gxw.* < Ega(c) — Jga(c) < §DK(UC2)U02) — J Gxvc’.
K K

2
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By the Hardy inequality on K (see Section in the Appendix) and the upper
bound in (2.35), we have

J GK’UC2
K

and similarly |{, Gxw.?| < |we| (k) Moreover, we claim that
DK(U027 Uc2) < ||UC||H1(]K) . (254)

To prove (2.54) we define, for each spatial direction i € {1, 2,3} of the lattice, the
intervals I\ " = [=1;-1/2), I'” := [~1/2;1/2) and I'"" := [1/2;1), and the
parallelepipeds K(@192.93) — [ (1) x I8 x 1% which let us rewrite K = K(©:00)
and Ky = 2K := [~1;1)® as the union of the 27 sets

K, = LJ Ke.

< A[Grvellp2y < CA|ve] gy

oe{—1;0;+1}3
.(—1, +1) .(0, +1) .(+1, 1)
(—1,0). .(0,0) .(+14,0)
K =10 x 19
.(7'1.,71) .(07—1) .(+'l.,41)

FIGURE 7. Representation, in the 2D case, of the splitting of Ky into subsets.

We thus have by the upper bound in (2.35) and the Hardy-Littlewood—
Sobolev inequality that

JJ v (2)Gx(z — y)vl(y) do dy < JJ [F—— dydx < HUCH 2
T —

KxK
r—yeK?



108 2. SYMMETRY BREAKING IN THE PERIODIC TFDW MODEL

Consequently, by Holder’s inequality and Sobolev embeddings, we have

De(0.2,02)] = f f 2)Gx(z — y)v(y) dw dy

cre{ 10+1} ExK

r—yeK?

4 3
< el iz gy el IeeliBagey - (2:55)

This proves (2.54)) which also holds for w..

Then, on one hand, by (2.41)) applied to ¢; = 0 < ¢y = ¢, there exist positive
constants a < 1 and C' such that for any ¢ > 0 we have
15 A
64 cr

On the other hand, the upper bound in (2.49)) together with the (2.50|) applied
to v., give that there exists ¢, > 0 such that

a’”va”LQ(K) C +EK)\< )+>\C

15 A
IK >0,Vc>=c,, ||ch||i2(K) < (c — K) . (2.56)

Consequently, for ¢ large enough, HUCHHI(K) < ¢ hence |Jga(c) — Exa(c)| < c
Using ([2.49)), we finally obtain

EK,)\(C>
JK7 )\(C)
This concludes the proof of [Lemma 2.3§ O

— 1‘ <c L

REMARK 2.39. One can deduce directly from the symmetry
breaking Enx nsx(c) < N3Ei (c), see Section [6.6]in Appendix. However, since
it will be also a consequence of the results in proved below, we do
not write here the direct proof of symmetry breaking for shortness.

We now prove that the periodic effective model converges,
. ) .
lim ¢ Jra(c) = Jrs

by proving the two associated inequalities. We first prove the upper bound then
use the concentration-compactness method to prove the converse inequality. The

strong convergence of minimizers stated in [Proposition 2.37| will be a by-product
of the method.

LEMMA 2.40 (Upper bound). Let K be the unit cube and X\ be positive. Then
there exists B > 0 such that

Jra(c) < AJrs(\) + o(e™).
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In particular,
Jgay = limsup ¢ 2 Jg 5 (c). (2.57)

c—0

PROOF OF [LEMMA 2.40l Let @ be a minimizer of Jgs , which is, up to a
phase factor and a space translation, a positive radial strictly decreasing H?(IR?)-
solution — hence, it vanishes as |z| goes to infinity — to the Euler-Lagrange
equation (2.12), by [Theorem 2.3] Therefore, [Proposition 2.19 gives the expo-
nential decay when 7 goes to infinity of the norm [[VQ|| 2 p(, and the norms

||Q||LP(CB(O,T')) fOr P > O
We define €. the inner K-thick border of K.: €. = K,\K._1, and Q. =

_VAxeQ 0 (TR3 _ 3 -
el ey where x. € CP(R?), 0 < x. < 1, x. = 0on R\K,, x. =1on K._; and

VXcllpoo(gsy Pounded. Thus there exist B > 0 such that, for p € [2;6], we have
LO(R
IXe@% s = 1@, + o () and, in particular, that

o

||XcQ||i2(R3)

Moreover the following estimates hold
||XCVQ||i2(]R3) = ||VQ||i2(R3) +o(e™),

||QVXc||i2(R3) = HQVXc”iQ(%;) < HVXCH; HQ”QLQ(%;) = 0(67&)7

| @xeTxe V| < 190l 1 Q) [9QUsiry = o),

=1+ o(e”P).

and they lead to ||V(XCQ)H12(R3) = ||VQ||?:2(R3) + o(e7P¢). Consequently,

/]R3 (QC)

5 4

A FA3 10 3 A3
— 2 IV(xQ)|2 + —muxc 1P =22 QI
@3 5 Q)7 pYE) ) ol Lhe)

(1+0(e™)) (IVQI5 + o(e))

 Serr (1o (1001 ., + o)

3 4 3 e
_ 1(1 N CRIE (HQ“Ls(RS e ))
= I (Q) + o(e™)

and we finally have

Jen(1) € Fen(@) = Fus(@0) = (@ + 0 (675) = Jaar + o ()
This concludes the proof of [Lemma 2.40 O
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We now prove the converse inequality to .
LEMMA 2.41 (Lower bound). Let K be the unit cube and X be positive. Then
liminf ¢ Jiea(c) = Jas .
See Section [6.7]in the Appendix for a detailed proof.

SKETCH OF PROOF OF [LEMMA 2.47]. This result relies on Lions’ concentra-
tion-compactness method and on the following result. Since this lemma is well-

known, we omit its proof. Similar statements can be found for example in [Gér98|,
BG99, HKO05, KV08, Lew10].

LEMMA 2.42 (Splitting in localized bubbles). Let K be the unit cube, {p.}e=1
be a sequence of functions such that p. € H! (K.) for all c, with ||gac||H1(Kc)

per
uniformly bounded. Then there exists a sequence of functions {p™M, 3 ...} in
HY(R3) such that the following holds: for any € > 0 and any fived sequence
0 < Ry — oo, there exist:

e J >0,

e a subsequence {¢,, },

o sequences (6}, AG} (v} in H,(Ke,) |

e sequences of space translations {x,(cl)}, e ,{x,(g‘])} in R3
such that
0,

J
eo = D, &0 —a) — 0]
j=1

lim ’ =
k—co H(Ke,,)

where

o ‘{519)}7 e ,{5,(;7)}, {1} have uniformly bounded H'(K,,)-norms,

. ]IK%@(CJ') — ) weakly in H'(R®) and strongly in LP(R3) for 2 < p < 6,
supp(lg,, ,gj)) c B(0,Ry) forallj=1,---,J and all k,

J .
supp(lg,, ¥r) < Ke,\ Ul B2\ 2Ry, for all k,
;=

o |20 — 29| = 5Ry, for alli # j and all k,
° S]ch ¢k"% S €.

REMARK. In the proof of [Lemma 2.41], we really need to use all the bubbles
because we do not know well enough the energy of ;. In similar proofs, it is
often possible to conclude after extracting few bubbles, using that _Z (¢y) >
J(§ [¢%|*) which allows to conclude. However, in our case, Jx, ({[¥x]?) depends
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on ¢ hence the same inequality of course holds but does not allow us to conclude.
We therefore need to extract all the bubbles (up to ).

We apply [Lemma 2.42| to the sequence (7)., of minimizers to Jg, (1) which

verifies the hypothesis by the upper bound proved in [Corollary 2.36] The lower

bound in that corollary excludes the case J = 0. Indeed, in that case we would

have  lim lee, = Vel ,,,) = 0 and § vel5 < e hence §, |l < 2, for
00 c Cl Cl

k large enough, contradicting the mentioned lower bound. Consequently, there
exists J > 1 such that

J
Ve, = Y + € + Z Qj,g])(' — ZL';(CJ))
j=1

where ”5k||H1(KCk) — 0 and, for a each k, the supports of the 17,(3)(- - x,gj))’s and 1y,
are pairwise disjoint. The support properties, the Minkowski inequality, Sobolev
embeddings and the fact that supp(lg,, 1“),(5 )) c B(0, Ry) < K,,, give that

Jico (N) = T, (o) = Fi, (00) + > Fra (L, 0) + 0(1) ey cc

Jj=1

Fwe(Li, 5) + 0(1)epco.
1

= ——€+

J
4 &

J
Moreover, the strong convergence of ]lKL_kz“),(cj )in L? and the continuity of A —

Jgs x, proved in [Lemma 2.12] imply, for all j = 1,---,J, that
j]R@’(]chkij](cj)) = JR3(||?7JE;j)||%2(KCk)> —> Jgs (M),

k—0o0
where, for any j, AU := [|8U)|2gs) is the mass of the limit of ]lKCkT),(cj). We
also have denoted Jgs(\) := Jgs , to simplify notations here. Those inequalities
together with the strict binding proved in [Proposition 2.16|lead to

3 o J , S
“eliminf i, (V) = ) Jes (W) > Jas(N) = Jis ()\ -\ )\U)) > Jas(\).

J=1 J=1

The last inequality comes from the fact that

J
j=1

J J

thus A — > AU) > 0 and this implies that Jgs ()\ - > )\(j)> < 0. This concludes
j=1 i=1

the proof of [Lemma 2.41] O



112 2. SYMMETRY BREAKING IN THE PERIODIC TFDW MODEL

We can now compute the main term of Ek (c) stated in |Pr0position 2.37]

PROOF OF [PROPOSITION 2.37]. From Propositions [2.40 and [2.41], we obtain
for all A > 0 that

lim inf 2 Jga(c) = Jgay = limsup ¢ ?Jg x(c)

c—00
hence lim ¢ 2JgA(c) = Jgs, and [Lemma 2.38| gives then the same limit for
Ex.\(c |Prop051t10n 2.41| also gives that (7.),,; has at least a first extracted

bubble 0 # v € H'(R®) to which Tk, ¥, (- + x%) converges weakly in L?(R?).
This leads to

Jre (1) = Fke 1 (Ve (- +21)) = Frs (V) + Fie, 1(V, (- +21) = 0) +0(1) (2.58)

by the following lemma.

LEMMA 2.43. Let K be the unit cube and {¢.}.>1 be a sequence of functions on
R? with |[@cll 1 (x,) uniformly bounded such that I . — ¢ weakly in L*(R?).
Then ¢ € HY(R?) and, up to the extraction of a subsequence, we have
(1) 1 V. — Vi weakly in L*(R?),
2 2 2
(2) IV (pe = O)r2k.) = IVeelram,) = IVOli2@ey + o (1),
(3) lpe = @llir k) = Ieelir,) — ||90||Lp<Rs o (1), fOTPG {55}

PROOF OF [LEMMA 2.43 By the uniform boundedness in L?(R?) of 1k, .,
there exists such L?(IR?)-weak limit ¢ as stated in this lemma. Moreover, defining
Xe as in , we have that x.. is bounded in H'(R?) since [[¢.] g1 ) 1s
uniformly bounded. Thus there exists 1) € H'(R?) such that x.q. ol 1) weakly
in H'(R3) and

1k, o = (]l]KC - Xc)cpc + XcPe oo (0
weakly in H'(R3). Thus ¢ = ¢ € H'(R?) by uniqueness of the limit.
Let f be in C*(R?) and ¢* be such that suppf < K. For ¢ > ¢*, we have

Vo= | o5f — - [ ovi=| 17
R3 c g R3 R3
by the weak convergence of p Ik, in L?(R3). Moreover, 1k, Vi, is bounded in
L?(R3) thus, up to the extraction of a subsequence, 1g, V. converges weakly
in L*(R3) and its limit is Vi by uniqueness of the limit. Claim (1) is therefore
proved.
Claim (2), comes from the weak convergence of 1x, V. and using

f V(e —@)|* = J Vel — Qng 1k, V.- Vo + f V|
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together with ||V<PHL2(KC) - ||V<PHLZ(R3)-
We now prove (3). First we claim that |¢.—¢| — 0 weakly in L?(R3)n L°(R?).
Indeed,

llpexe =l oo@sy < lpexell Lo,y + 10l o@sy < lleell oy + 190 Lo es) »

for 2 < p < 6, which is bounded since ¢ #1(k.) 18 uniformly bounded by hypoth-
esis. Therefore, there exists £ = 0 such that, up to a subsequence, |@.x.—¢| — &
weakly in LP(R3). Thus for any bounded domain €2, by Rellich-Kondrachov The-
orem applied to X.¢p., which weakly converges to ¢ in H'(R3), we have that

J £ < liminfj lpexe — ¢]* = 0.
Q “=* Ja

Thus £ = 0 and |xepe — ¢| — 0 weakly in LP(R?) for 2 < p < 6. Consequently
|e — | — 0 weakly in LP(R3) for 2 < p < 6.
Second, we claim that we have the bound

[p] q
[FEST ST (2>|x—1|k, (2.59)
k=1

for all p > 2 and x € R\{1}. Indeed, for 0 < = # 1, we in fact have

o

lp] q
—Z (2)(x—1)k< |z — 1P — 2P + 1 < —p(x — 1),
o \k

where the right inequality can be proved by |p| derivations and using that = —
2P~IP! is increasing on R, , and the left inequality can be proved using the sub-
additive (concavity and f(0) = 0) of the previous power function when x > 1
while the case © < 1 is direct (separating |p| odd or even). So, for z > 0,
the claimed bound is a rough consequence of the above. For z < 0, we have
|z — 1|P — |z|P + 1 > 0 and the upper bound on |z — 1|? — |z’ + 1 is a simple
computation. For a more detailed proof of (2.59)), see [Lemma 2.75/in Appendix

6.7

p

We can now conclude. Indeed, defining K} = K.\{¢ = 0} and noting that
Pe Pe

P
[ tee=eb—tepriel = [ o r1)
Ke K¥ ¥ 'd
the bound ([2.59)) then reduces the end of the proof to the demonstration that
Pe

k
f " =f " oe — o
K ¥

Ke
convergences to 0 for k= 1,2 and p e {%, 13—0}, and for k = 3 and p = %. This is

obtained from the weak convergence of |p — .| — 0 in L?(R3) together with

-1

—1
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o the fact, for k =1 and p € {§, 1}, that gpp_l e L*(R3);

o the fact, for k = 2 and p e {5, '}, that ¢*~* € L*(R?) and that

3
< p—2 o 2< 2p—4 _ _ 2 — 5 0
0< chgo e — \(chso o so|) loe — el — 0

e the fact, for k = 3 and p = %, that

1
1 3 g
0< J @3 e — oI’ < (JK e — 90\) lpe = el =7, O-
This concludes the proof of [Lemma 2.43] O

To obtain for Ex ,(c) an expansion similar to (2.58)), we proceed the same
way. We first show that the sequence of minimizers w, is uniformly bounded in
H;er(Kc) using the upper bound in the following lemma, which is equivalent to

[Corollary 2.36| for ..

LEMMA 2.44 (Uniform norm bounds on minimizers of Ex ,(c)). Let K be the
unit cube, A\, crp and ¢ be positive. Then there exist C > 0 and c, > 0 such that
for any ¢ = ¢y, the dilation w.(r) := ¢~ ?w.(c"'z) of a minimizer w,. to Ex (c)
verifies

1 y y y
C < ||Vw0||L2(KC) ) ||w6||L10/3(KC) , ||w0||L8/3(KC) <C

PrOOF OF [LEMMA 2,44l As seen in the proof of [Lemma 2.38 | Vwe| 12 =
O(c) hence
- - 2
vach(Kc) =c? ”vaHLQ(K) =0(1)
and, using ([2.53)) for the two other norms, we have
Ve = e, Vel o, s 1Well pross e,y » el prs e,y < €

Let K be such that 0 < K < —Jgs and € > 0, then by (2.49)) and
there exists C' > 0 such that

CK — < —Jald) e < ~Beal) <o (C+ ully )
for ¢’s large enough and, consequently that
C+ 5 8/3
K= T8 < i,

We conclude this proof of[Lemma 2.44] as we did in the proof of[Corollary 2.36, [
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We now come back to the proof of [Proposition 2.37, We apply
to {w.} and, as for v, the lower bound in [Lemma 2.44| implies that J > 1,

namely that there exist at least a first extracted bubble 0 # w € H'(R?) such
that Tg, e, (- + yr) — w weakly in L*(R?). [Lemma 2.43| then leads to

o2 Bea(cr) = Fio 1 (W, (- + i) + Oler™)
= Irs(0) + Fie, 1 (We, (- + yx) — W) + o(1),

where the term O(c™") comes from Dg(w.*, w.*) = O(c) and §, Gxw.*> = O(c)

obtained in the proof of
Since in both cases J and E, the left hand side converges to Jgs(A), the end

of the argument will be the same and we will therefore only write it in the case

of E. Defining \; := ||1D||332(R3), which is positive since w # 0, we thus have
o 2 Exa(er) = Fas(0) + Fi,, 1 (e, (- + i) — @) + o(1)
> Jps(M) + Jk., (e, (- + y) — w”%%ch)) +o(1).
Since [[we(- + yr) — @[ 72, = A — M+ o(1), then for any & > 0, we have
e 2B a(cr) = Jrs(M1) + Jr., (A=A +¢) +o(1),
By the convergence of ¢™2Fk ,(c) for any A > 0, this leads to
Jr3(A) = Jrs(A1) + Jrs(A — A +¢€)
and, sending ¢ to 0, the continuity of A — Jgs(\), proved in [Lemma 2.12] gives
Jgs(A) = Jrs(A1) + Jrs (A — Aq).

We recall that A\; > 0 hence, if A\; < A then the above large inequality would
contradict the strict binding proved in [Proposition 2.16, hence A\; = A. This

convergence of the norms combined with the original weak convergence in L*(R?)
gives the strong convergence in L*(R?) of 1g w.(- + yx) to @ hence in LP(R?) for
2 < p < 6 by Holder’s inequality, Sobolev embeddings and the facts that w,. is
uniformly bounded in H},(K.) and that @w € H'(R®). The strong convergence
holds in particular in Lg(R?’) thus we have proved that  is the first and only
bubble.

Finally, for any € > 0, we now have, for k£ large enough, that
o 2 Exa(cr) = Fas(0) + Fi., 1 (e, (- + i) — @) + o(1)
> Irs(0) + Ji,, (e, (- + yi) — Z7’||%2(11<<%)) +0o(1)
> Irs(0) + Ji,, (€) + o(1).
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This leads to Jrs(\) = _Zrs(w) + Jrs(e), then to Jgs(A) > _Fgs(w) by the
continuity of Jgs(A) proved in [Lemma 2.12| Since ||u“)||ig(R3) = ), this concludes
the proof of |Proposition 2.37| up to the convergence of 1g, Vi, (- + ,) and
1k, V(- + x,) that we deduce now from the above results.

We first prove the convergence in L?(R?)-norm. As obtained during the proof

of [Lemma 2.44], we have

J GKUJC2
K

+ ‘DK(wf,wcz)‘ = 0(02).

Moreover, we have

8 8 8
e ity = W+ ally =Tl
e 2 ¥
Cn Wn ‘L% - Hwn( + ~Tn)HL% o) - H ”L%(R%
and ¢, 2Fx »(c,) convergences to Jgs(\) hence
o2 3 10 3. 8 )
vanHLQ(KC) o Jrs(A) — ECTF HU”;%(W) + 1 ”qug(Rg) = ”V“”L2(R3)

since u is a minimizer of Jgs(A) and w, of Ex x(cy).
For 1k, VU, (-+,) it is even simplier since it only comes from the convergence
in LP(R3) of ¥,(- + x,) together with the convergence of ¢, 2 Jx x(cy).

Then we apply [Lemma 2.43|to obtain the strong convergence in L?(R3) from
this convergence in norm just obtained. 0

Let us emphasize that all the results stated in this section still hold true
in the case of several charges per cell (for example for the union N - K) with
same proofs. Indeed, most of those results deal with the effective model and are
therefore not impacted by the presence of several charges in the unit cell. For
the other results, the modifications only come from the factor SK Gxrw.? being
replaced by §, 32V 2,Gic(- — Ry)|w,[> — see — therefore the statements
of [Proposition 2.37| [Lemma 2.38 and [Lemma 2.44] are unchanged and the only
slight changes are:

e a factor N, in the bounds of the modified term, in the proofs of those
three results;

e the upper bound in (2.47)) is modified by some constants but is anyway
not used in any proof.

Consequently, as mentioned in Section 2.1} the results

lim ¢ ?En.g ysr(c) = Jrs ysy and lim ¢ 2Ex \(c) = Jrsa
c—0 ’ ’ c—00 ’ )
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from [Proposition 2.37 and the result

Jrs (N?X) < N3 Jgs(\)

from [Proposition 2.16|imply together the symmetry breaking
EN-K,N?’/\(C) < N3EK7)\(C>.

We now give a corollary of [Proposition 2.37,

COROLLARY 2.45 (Convergence of Euler-Lagrange multiplier). Let {w.} be
a sequence of minimizers to Ex x(c) and {u.} the sequence of associated Euler—

Lagrange multipliers, as in |Proposition 2.21. Then there exists a subsequence
¢, — o such that

e, Do HR3 fwe, }
with pgs (., y the Eule'rfLagmnge multiplier associated with the minimizer to
Jr3(A\) to which the subsequence of dilated functions 1k, e, (- + x,) converges
strongly.

The same holds for sequences {v.} of Euler—Lagrange multipliers associated

with minimizers to Jx (c).

PROOF OF [COROLLARY 2.45] Let u be the minimizer of Jgs(A) to which
1k, We, (- + ) converges strongly in LP(R?) for 2 < p < 6, by [Proposition 2.37|
which also gives that 1k, V., (- + z,) — Vu strongly in LQ(R?’), and pigs, the
Euler-Lagrange multiplier associated with this u by [Theorem 2.3|

By and the formula giving an expression of y., we then

obtain

_ v 2 v 10/3 v 8/3
— a2 e A = | Ve, 3 + crr e, 1) — e, I5)s

o2 [ Daelfe, [ e, ) = (Gt [ ) e |

10/3 8/3
— IVullZa@s) + err [l s ggey — [0l 7oz

since, as obtained during the proof of [Lemma 2.44] we have

J GKU)C2 +
K

Therefore, by (2.26]) which gives an expression of the Euler-Lagrange parameter

| Di (w?, we?)| = o(c?).

g3 o, associated with this u, we have

—
,ucn o0 HR3

Since u depends on {w., }, we can of course rename jigs (, } := figs . The result
for Jx a(c) is proved the same way. O
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5.2. Location of the concentration points. In this section we consider
the union of N*® cubes K, each containing N, charges — not necessarily with the
same charge values z; — forming together the cube Ky := N - K. The energy of
the unit cell Ky is then

1
Exne(W) = Fry (W) + gDKN(IwF’ jw|?) —f Glwl?, (2.60)
Ky
where
Ng N3
G = D > Gy (- = Rui) (2.61)
m=1i=1

and {Ru,i}1<m<n,1<i<ns denote the positions of the N®N, charges in the N?®
copies of K which one contains NN, charges. We recall that

Dg,(f,9) = JK B f(2)Gky(z —y)g(y) dy dz.

In this section, we prove a localization type result (Proposition 2.47)) — that

any minimizer concentrates around the position of a charge of the lattice — and
a lower bound on the number of distinct minimizers (Proposition 2.49)). We first
state the following lemma, which is a consequence of [Proposition 2.37]

LEMMA 2.46 (L*-convergence). Let 1 < N € N and {w.}c 10 be a sequence
of minimizers to Ex, nsx(c) and u be the minimizer to Jgs(N3X) to which the
subsequence of rescaled functions 1k, e, (- + zn) converges. Then

chn( + In) B U||H2(]Kan) n—>—+)OO 0

and, consequently,

H]chancn<' + xn) - UHLOO(Kan) n—>—+)00 0.

Similarly, let {vc}emioo be a sequence of minimizers to Jx, nysx(c) and u be the

minimizer to Jgs(N®X) to which the subsequence of rescaled functions 1k, e, (-+
x,) converges. Then

||fb0n< + .Z'n) - UHHQ(KCnN) n—>—+)00 0

and, consequently,

”]lKCnNijcn(' + I‘n) - UHLOO(R?)) n—>—+)OO

PROOF OF [LEMMA 2.46] For shortness, we will omit the spatial translations
{x,} in the rest of this proof. By [Proposition 2.37| the convergence 1., x,w., — u

is strong in LP(R3), 2 < p < 6. For any ¢, we define u, = (.u where (. is a smooth
function such that 0 < ¢, < 1, {, = 0 on R*\K.y and ¢, = 1 on K_y_;. Since
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u € L*(R?), it vanishes as [z — oo, thus [|uc, — ul 1« —> 0 and proving

Kenn) n—+00

the stated result is equivalent to prove that [[we, — te, | Lo — 0.

enN) n——+0o0

Applying [Lemma 2.80| (in the Appendix) to v = ¢! < 1 and using [Lem-
ma 2.81 we obtain that there exists 0 < C' < 1 such that, for any 3 large enough
and any ¢ > 1, we have

ch — UcHLw(KcN) <C H (_Aper - C_Qg(c_l') + 5) (lf}c o UC)HLQ(KcN) '

Let us emphasize that the power in front of ¢ is ¢=2 while the scaling inside it is
¢~'. Moreover, by the Euler-Lagrange equations (2.12)) and (2.37), we have for
any ¢ > 0

(A =c?G(c")) (we — u,)
= CrF (Cc’u’%u - ‘wc‘%wc> + (’wc’%wc - Cc‘u’§u> + UR3Ue — C_Q,Ucuujc
+ G ue — 2 (Jwe? * Gx) (¢ ). + 2V Vu + uA,,

where pgs is the Euler-Lagrange parameter associated with w. Therefore, the
fact that
e [*(K.y) norms of (. and of it derivatives are finite,
e u e H*(R?) < L*(R3) n L*(R3),
o [Vull 2 yieon oy T lull 2 i, ) — O (Which is even an exponential
decay by [Proposition 2.19)),

1/5 |

L] ||Cilg(cil')||L5/2(KcN) =cC |g||L5/2(KN)7

o [[Ce, u— an”LP(]Kcn) = [(1- Ccna>u||LP(]Kcn) + u— wanLp(Kcn) — 0 for

any o > 0 and 2 < p <6,
leads, by |Corollary 2.45( and both inequalities (2.100) and (2.101)) detailed in

the [Appendix], to ||w., — ue, || L Eenn) w0 0 since

||wcn - ucn ||LOO(Kan)

4 4 o 4
Ccn7|u|3 + |/LUCn|3

3 o
< C'CTF CCn U — We,

LA(Ke,, n) LY (K, ~)

+C Con 5 + |10, |3

3
Ce, 35U — W
C C
" " L4(Ke, n)

+ C|/’L]R3 - Cn_21u0’ chnHLQ(Kan) + C(/’LRS + /6> ||Ccnu - an”LQ(KCnN)

L4(KCnN)

_4 _ v
+ CCn > HgHL%(KN) ”uCHLw(KCnN) + Ccn 2 H’uc‘z * GKNHLOO(KN) ”wC"”LQ(Kan)

21V el o e ) IVl 2 e )+ Tl 2 ) (1A i
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The proof for v, is similar, but does not need [Lemma 2.80] writing that

e = el e,y = 10— A) e — we) oo
3 4 4 4
<C U — H 7lulz + 9.3
= berr Cc vt LA (Kep, N) gc |U| |UC| LA(Kep, )
3 . 2 2 o2
+ C||(.5u — v, Co5luls + |03
LA(Ke,, n) LA(Ke,, n)

+ Clpugs — o2 prel ||1V)C||L2(KCHN) + Cprs + 1) [luc — f)CHL?(]Kan)
+ 2 VCell oo, ) VU L2y e, 1)

+ ||U||L2(KNCn\KNCn,1) HACCHLOO(]KC”N)

— 0.
n—+00
This ends the proof of |[Lemma 2.46)| O
PROPOSITION 2.47 (Minimizers’ concentration point). Let {le}}ifg\z be

the positions of the N3N largest charges inside Ky. Then the sequence {x,}
cn - Ky of translations associated with the subsequence {w.,} of minimizers to
Ex  .nsa(cn) such that the rescaled sequence lg, ., (- + x,) converges to Q, a
minimizer to Jgs nsy, verifies

Ty = cp R +0(1)

as n — oo, for one (m,i). Consequently, for 2 < p < +0,

Cn) n—+0o0

As the reader will notice, the proof of |Proposition 2.47|only needs (in addition

to things proved up to now) a convergence result on the nuclei-electron interaction
term § G|w|* — which will be proved in — but nothing new on the
electron-electron interaction term D(|w|?, |w|?), which will be needed to prove
the expansion of the energy (Proposition 2.53)).

PROOF OF [PROPOSITION 2.47| Since the w,,’s are minimizers, we have
Tn
gKN,Cn (wcn) < gKN,Cn <w0n ( - Rm*,i*)>;

Cn

for any R,,, ;,, which leads to

Ng N3

Y Y, JKM N )

m=11i=1 n

2

dx

o Tn
We,, (x + —)
Cn

Ng N3

D N T

m=11i=1

Do, (93 + ﬁ) ‘2 dzr (2.62)

Cn
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since the four first terms of &k, . are invariant under spatial translations. |Lem-
below then gives, on one hand, that the right hand side of this inequality
is equal to

Q*(z)
m |7l
because ¢,| R, iy — Rm,i| — o0 for (m,i) # (ms,i,). On the other hand,
also gives that |z, — ¢, R, ;| must be bounded for one (m,i), that we
denote (my,ig), because otherwise the left hand side would be equal to o(c,).
Therefore, still by [Lemma 2.48] the terms in the left hand side due to indices

(m, i) # (mqg,ig) are equal to o(c,) while the term for (my, i) is equal to

_C'I’L

dz + o(cy) (2.63)

— C”J Q*() dz + o(cy,) (2.64)

R3 ’5’5_77’

for a given n € R? (and up to a subsequence). Moreover, since @ is radial strictly
decreasing, for 0 # n € R? we have

) 1 1 2 1 1
R3Q(‘x|)<|x|_|x—n|> dx—ngQ ('2+x‘)(|g+x| |n—:c|> &

Sy @ () -0 (5 +) (25 - ) 2o

since Q%(r) and r~! have the same strict monotonicity. This last result together

with (2.62)), (2.63) and (2.64)) imply that n = 0, which means by [Lemma 2.48

that z,, = ¢, R, + 0(1) as n — 0.

The last result of [Proposition 2.47is a direct consequence of the convergence
of the LP(K,, )-norms proved in |Proposition 2.37 and [Lemma 2.46| together with
the fact that x,, — ¢, Ry, = 0(1).

LEMMA 2.48. Let {yn}n < K, {fe}. © L2 (K.) and {gc}. < L2, (K.) be
two sequences such that |[fell g ) + 19ellm, k. is uniformly bounded. We
assume that there exist [ and g in H'(R3) and a subsequence c, such that

_ N R o T2(TR3
Ife. = fllrak.,) =, 0 and 1k, g, — g weakly in L*(R®). Then,

—00

i. Zf Cn|yn| — +00, then Cnil SKcn GK(cnil ' _yn)fcngcn — 0;

n—00
0. Zf Cn|yn| - 07 then Cn_l SKCn GK(Cn_l ’ _yn)fcngcn 7:0 SR3 f(ﬁ)xg|($) dx;

iii. otherwise, there exist n € R3\{0} and a subsequence ny such that

@)

-1 -1
c Gxk(c - = — )
ng JKcnk K( ng ynk)fcnkgcnk koo s |[)3 _ ,'7|
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Moreover, replacing | fe, = fll2k.,) =, 0 0y 1fe = fllink.,) =, 0, the uni-

form bound on ||gcll 1.y by an uniform bound on |ge| 2 ., and g € H'(R?)
per C per c
by g € L?(R3), thenli| still holds true and, in the special case y, = 0, |ii] too.

REMARK. We state the lemma in a more general setting than needed for
[Proposition 2.47]in order for it to be also useful for the proof of [Lemma 2.58

PROOF OF [LEMMA 2.48 Using the same notation K as in the proof of [Lem-]
we notice that
K-t1={reRr-—1eKlc Ky, =Ku U K,
(0,0,0)£e{0;+1}3

for any T € K. Therefore, by [Lemma 2.20] there exists C' > 0 such that for any
v. € L*(K,), Y. € HY(K,), y € K and ¢ > 0,

c—l

J Gx(c™'w = y)pe(x)(z) da

C

=C

S I oL

—1:0:41)3
oe{—1;0;+1} 2eK,

clz—yek®
coo y [ laemel,
oc{—1;0;+1}3 ‘C r=Yy- 0"

c—

zeKe
r—yeK

PcWPe
|- —c(y + o)

1

<C

oe{—1;0;+1}3

LH(Ke) '

Then, by the Hardy inequality on K., which is uniform on [c,, o0) for any ¢, > 0,
there exists C’ such that for any y € K and any ¢ > 1, we obtain

C—l

f Gr(c™" —y)ectpe

< Z loel rageoy el g,y = 27C" el 2.

oc{—1;0;+1}3

¢CHH HKe) -
Therefore, the weak convergence of g., and the Hardy inequality to f on R3 give

cn_1

Crelen™ - =) (oo — fg)‘

Ke,

f(gen — 9)
<27(C'Var = Pl Ve b + 20|

|- —cly + o)

) - 0.
LI(KC) n—0o0
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Replacing | fe, — fHLQ(KCn) chnHHl(]KCn) by || fe, — f”Hl (Keyp) ||gcn||L2 ) gives this
same convergence to 0 under the second set of conditions.

We are therefore left with the study of ¢, ! SKC Gr(cn ™ —yn)fgasn — o
and we start with the case ¢,|y,| — +o. For ¢ > 0, y € K and o € {—1;0; +1}3,
we have

]ch'( - —y)
K. (?J‘FU)‘

|f9]
<C _—
< f ey + o)

clf Ige (¢! —y)Gx(c™' - —y)|fg] < C /9]

and

|fg| _ ]13(072|Z/+0'| ]lB (c(y+o),
Jo Tt = LT el | e s

]ICB c o R
+J y—“\fg\
0.cpyo)) | - —cly + o)l

hence

j Lo (¢ — )Gl — )| f (2)g()| da

2 1
cly + o] ||f9||L1(]R3 + [ fllm (R3) ||9||L2 (c(y+o)R) T R ||ngL1(CB(O7§|y+a'|)) )

<
for any R > 0. Since f is in H'(R®) and ¢ at least in L*(R?), the last two
terms tends to 0 and || fg| ;i (gs) is bounded hence, on one hand we obtain, for
o = (0,0,0), the convergence to 0 (for the subsequence ¢,) from c¢,|y,| — +w
and, on the other hand, there exists R’ > 0 such that |y + o| > R’ for any
{~=1;0; +1}®> 50 # (0,0,0) and any y € K, ending the proof that the above tends
to 0. We finally obtain that

1 N
S| Gl cwitsl = Y | teeGal et el 0
K

Cn Kep oe{0; +1}3 n cn

concluding the proof of [z.| under the two sets of hypothesis.

We now suppose that c¢,|y,| does not diverge hence it is bounded up to a
subsequence ny, and, consequently, y,, — 0. However, by [Lemma 2.20| there
exists M’ > 0 such that || - |7' — Gx| < M’ on K, thus there exists M > 0 such
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that
1 ' ]].Ko'
Lio(a)|Gele) = 1| < Do) | ML) + ZED € Y
oe{0; +1}3
o+#(0,0,0)
C
<Iga(x)| M +RT+ > )
(0,0,0)#£0€{0;£1}3 |ZE +T— 0'| — |T|
C
cnofr Y
R — |1
(0,0,0)#0€{0;£1}3

< Ig(z) (M + R+ 520R™") < Mg _+(z).
for T € B(0, R/2) and where R := min,eok || > 0 therefore B(0, R) < K. Hence

1 : ~ 1
J (GK( — Ynp) = |- —CnyYen, | 1) fg
K Cny, Cny,

M
. < o 1 9ll gy = 0(7)‘

Nk
Moreover,

o S
fR T, )P

and we are left with the study of

J f@)g(z)  fla)g(z)
R3 |IE

- anycnk |‘/E - 77|

TS ||f||L2(C]Kcnk) ||g||H1(]R3) —0

g(x)]
< |n-— anycnk| f dz

anycnk |l‘ - T]|

< 40 = Yo, L N e sy 9]

H'(R?)

which tends to 0 if we choose 1 as the limit (up to another subsequence) of the
bounded sequence c,,y,,. Finally, if we have in fact ¢,y, — 0 then n = 0,
otherwise, we can find a subsequence such that ¢,, y,, — n # 0.

Under the second set of conditions and if y,, = 0, we have

_ _ _ M’ _
JK (cn 1GK(Cn 155) — |z| 1)f($)g($) dr| < Ci 1f9ll 11 (R3) = O(cy, 1)'
This concludes the proof of [Lemma 2.48| O
This concludes the proof of [Proposition 2.47] 0]

We now prove that Eg, ysx(c) admits at least N? distinct minimizers.

PROPOSITION 2.49. For ¢, large enough, there exist at least N® nonnegative
minimizers to the minimization problem Ex nsy(cn) which are translations one
of each other by vectors of the lattice L.
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PROOF OF [PROPOSITION 2.49| First, in[Proposition 2.47, we have seen that

for any sequence {w.}._, 1« of minimizers of Ex, ns\(c) must concentrate, up to

a subsequence, at the position of one nucleus of the unit cell. Namely, that the
sequence of translations {z,} < ¢ Ky associated with {w,, },— 1+ verifies that
there exists (mq, jo) € [1; N3N, ] x [1; N3] such that ¢, "'z, converges, as n — o0,
to Ry, o, one of the positions of the N®N, charges 2z, in Ky. Then, by
below, we have for any 1 < ¢ < N® that w.(- + Ry — Rimg.jo) 18 also a

minimizer of Ex, ysx(c).

LEMMA 2.50. For any m € [1,N,], any 1 < j,k < N* and any Ky-periodic
function w, we have &k, (W(- + Ry j — Rini)) = Sk yc(w).

PROOF. The four first terms of &k, . being invariant under any translations,
to prove this lemma we have to prove the invariance of the term

> ), | G~ Rl

under those R, ; — R, translations. We recall that, by definition of the R,,;’s,
for any m € [1, N,] and any 1 < j,k < N?, the charge value at R, ; and at R,
are the same and the positions R,, ; and R, are obtained one from each other
by applying translations of the lattice Zk. Therefore the claimed invariance is
due to the fact that, for any m,

(Rm,l + Rm,j - Rm,k7 Rm,2 + Rm,j - Rm,ka T 7Rm,N3 + Rm,j - Rm,k)

is a permutation modulo Ky of (R, 1, B2, -+, Rmys) thus

N3
> [ Gl = RunwP (- + Ry = Rons)

N3 N3
=3 [ Gl G+ B~ Bl = 3 [ G Rwl?s D
iZIKN iZIKN

Since, the N3 sequences of minimizers {we, (- + Rimg,i — Ring,jo)}; have distinct
limits as n — o0, there are at least N2 distinct minimizers for n large enough. [

5.3. Second order expansion of Ex ,(c). The goal of this subsection is to
prove the expansion ([2.9)). To do so, we improve the convergence rate of the first

order expansion of Jk »(c¢) proved in [Proposition 2.37 Namely, we prove that
there exists > 0 such that

Jra(c) = AJTrs(\) + o(e™). (2.65)
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We recall that we have proved in that there exists 8 > 0 such that
Jra(c) < AJrs(N\) + o(e7°)
and we now turn to the proof of the converse inequality.

LEMMA 2.51. There exists 5 > 0 such that
Jra(c) = CQJR37,\ + o(e779).

Our proof relies on the exponential decay with ¢ of the minimizers to Jx_ (1)

close to the border of the cube K., proved in [Lemma 2.52]

PROOF OF [LEMMA 2.51l As the problems Jg ,(c) are invariant by spatial
translations, we can suppose that x,, = 0 in the convergences of the subsequence
of rescaled functions 1k, 0., (- + y).

LEMMA 2.52 (Exponential decrease of minimizers to Jg_(1)). Let {v.}. be a
sequence of nonnegative minimizers to Jx x(c) such that a subsequence of rescaled
functions 1, 0., converges weakly to a minimizer of Jgs(X). Then there exist
C,y > 0 such that for ¢ large enough, we have 0 < 0., (x) < Ce ¢ for z €
KAK._;.

PROOF OF [LEMMA 2.52] We denote by u the minimizer of Jgs(\) to which
1k, 7., converges strongly and by jigs the Euler-Lagrange parameter (2.12)) asso-
ciated with this specific u. The Euler-Lagrange equation associated with Jg_ (1)

— solved by 0., — gives
MRS o o 4w 2, MR8 - v
<_A + T) 'Ucn = <_CTF|/UCn’3 + ’UCH‘B + T - Cn 2/’Lcn> /Ucn
o2 3 — ~
< <|an 3 + ILLR - Cn 2[’[’Cn> vcn'

We now define ., = (1 +¢)K,, \B(0, ) where « is such that |u|5 < min{3, *22

on R3\ B(0, ). Such « exists by [Proposition 2.19] Moreover, by [Lemma 2.46), for

any c, large enough, we have

)1 pgs
o 2/3
e, = 1l e, < mm{Q’ 4 }

and, consequently, we have

i 5 < [, — S+ [ < min {1,222
on K., \B(0, ) but also on {2, by periodicity of 0., and for any ¢, large enough
(depending on €) in order to have

(1+¢9)K,, N U B(cpk,a) = &.
ke 2 \{0}
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Moreover by [Corollary 2.45| for any ¢, large enough, we have

cn 2 = 5
n cn = 3.
Hen, 4/va
Hence, for ¢, large enough, it holds on 2., that
s 2 Prs | pms 3

2
uc 3 - ni e S - — = =0
Ve, |3 + L G He 5 T T MR
what gives on (). , for ¢, large enough, that
<—A + ’%R) b <0 and  |b|<1.

We now define on R*\B(0,v), for any v > 0, the positive function

which solves
~Af,+EEf =0

on R*\B(0, v) and verifies f, = 1 on the boundary ¢B(0,v). On each (1+¢)K,,,
with e; the vectors defining Z%, we define the positive function

YR Wi (2 ()

7=1 cosh (v Ped (1 4 5)cn||82j”>

2

which solves
3
~Afo+ 55 fo =0

on (1+ ¢)K,, and verifies 1 < fy < 3 on the boundary 0 ((1 + ¢)K.). Denoting
by ¢ the function

g = fO + fom
we have for ¢, large enough that
(—A + %) (e, — ) <0, on Q,
Ve, — g <0, on oS,

hence the maximum principle implies that 0., < g on €., .

On one hand, since the function fj is even along each direction e; and in-
creasing on each [0; (1 + €)% )e;, we have that for any x € K., , so in particular
on K. \K,, _1, that

3

. Vs [lo]
0 < folz) < fo <C—(el,ez,eg)) < 226_5 7w,
2 o
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On the other hand, |z| = (¢, — 1)m > 0 for z € K, \K,, 1, with m := ngﬂi(n |z],
thus

0 ae T orm) g
< fa < ——— "2 ™Mo
on K, \K,, _1. Hence there exist C' > 0 and

im Y i L S i (e} = 0

2 2 1<5<3

such that for ¢, large enough and any z € K. \K., 1, we conclude that
0 <7, (x) <g(r) <Ce O

We now conclude the proof of [Lemma 2.51] We define y, € C*(R3), 0 < x. <
1, Xe =0 on R®\K, and y. =1 on K._;. By [Lemma 2.52| for p € [2;6] we have

o<w¢mmwmaamm%=f (1= o, ")
Kcn \Kcn —1

< Cpeipfycn ‘Kcn\Kcn*” .

Given that [K\K. ;| < |K.| = #|K| for any ¢ > 1, there exists 0 < a < 7 such
that

”chﬁcn ”ip(Rg’) = ||ijcn ||I£p(KCn) + o0 (e_pa‘:")
for any p € [2;6] and, in particular, that
A

T o 2 = 1+ 0(6_2a0n).
HXCnUCnHLQ(R?’)

Moreover,
y 1 y 1 g
f Xcvchc : vUc = J Xchc -V (|Uc|2) = _J |'Uc|2 (XCAXC + |vXc|2)
R3 2 R3 2 R3
1 y
-3 f [0e]? (XeDXe + [Vxe[?)
Kc\Kc—l
thus

1 o —2ac
So | P B+ [T P) = o)
Kcn \Kcn —1

J chi}cancn ' vzv)cn
RS
and it leads to

NN o2 v 2
IV Oen Ve ) 2@y = IXen Ve 12k, + 10en ViXen 22k, 80 —1)

+ f chq\jcnvxcn : V,l\jcn
R3

= X, Ve, [,y + (€725 < [V, 20, ) + 0le22).
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Consequently, there exists # > 0 such that

VAXe, )

||chu||L2(R3)

Jas(\) < _Fas <

A o2 3 crpA?/3 10/3
||V(X0nvcn)||L2 R3 ||XCn Cn”
1Xew T 32z &) 5 e Ve, | 14 ) T
RN
Ao 8B XenVen
4 e, Pz R%)

< it (1) + o(e77) = J,, (V) + o),
This concludes the proof of [Lemma 2.51} O

We can now turn to the proof of the second-order expansion of the energy.

PROPOSITION 2.53 (Second order expansion of the energy). We have the ex-
pansion

E]KN,N3>\(C) = CQJRB’NS)\

ju(z)?

1
+c inf {D]Rs(|u|27 [ul?) — 24 J dx} + o(c). (2.66)
{ |/]R3 ]R3 Nd)\} 2 R3 |x|

The infimum is performed over all the minimizers of Jgs ys) and we recall

that, as defined in [Lemma 2.54]

Dgs(f, g) JR f@)gly )dyd:z

3 JR3 ]a:—y\

PROOF OF [PROPOSITION 2.53| In order to deal with the term Dy, we first
prove a convergence result similar to what we did in|Lemma 2.48|for term § G|w|?.

LEMMA 2.54. Let v, be such that the rescaled function v, = ¢ *?v.(c ')
verifies

]l]Kcijc —> 0
c—0

strongly in L*(R3) A L5 (R®), then

2 2
¢ 'Dg (vt v2) — J J M dy dr =: Dygs(v?,v?).
R Jrs |7 — Yl
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PROOF OF [LEMMA 2.541 We have

Dgs (v?,v?) — ¢ ' D (v?, v?)

cr ”c

= Dgs(v?,v* — 1 0?) + Dgs(v? — g 02, 1 0?)
+c f f ) (|2 —yI™! = Gx(z — y)) v2(y) dy dz.
Moreover, by the Hardy-Littlewood—Sobolev inequality, it holds that
Dao(0, 0% — 1. 1)] = C oy % — 1,2
and that
Do (v? = L., 1 82)] < O 62 rngey 0% = T2 e

which both vanish by the strong convergence of 1k ¥, in L'*°(R?). Thus we are
left with the proof of the vanishing of

o f f ) |z — ™ — Gx(x — y)) v2(y) dy da.

To prove that, we split the double integral over K x K into several parts

depending on the location of xz — y.
We start by proving the convergence for  — y € K. By [Lemma 2.20)]

- H V(@) ||z — y| " = Gilz — y)| v (y) dy da

KxK
z—yeK
M M, 4 M, . 4
| ez deay < Tl = 5 Wl = 0
KxK
z—yeK
When x — y ¢ K, we treat first the term due to | - |7!. We have
JJ dy dx
Iw - yl
T— y€2K\K
< ff y)dydz < 2 el 32, — O,
mln \ez min |e;| L*®) oo
KxK ¢
z—ye2K\K

with e; the vectors defining Zk.
To deal with the remaining terms due to Gg when x — y ¢ K, we will use the
same notation K? as in the proof of [Lemma 2.38 By ([2.35)), we therefore have



5. REGIME OF LARGE C: SYMMETRY BREAKING 131

to prove, for o € {—1,0,+1}*\(0,0,0), the vanishing of

J] 2)Gre(x — y)i(y) dy da

KxK
2 2 V20 \ 52
—1 ff Uc (‘T)Uc (y) dy dl‘ _ ff Uc (ZL')UC (y) dy dCC
[z —y— o] [z —y — co]
KxK KexKe

z—yeK
z—yeK? r—yec- KT
Let 0 <v < imin le;|. Given that o # (0,0,0), we have
{(SL’,y) € KC X Kc‘ r—ye C'KU} M B(O,CV) X B(O,CI/) = .

Thus, for any integrand f positive, we have

|| vy - | revwe

KexKe KexK:\B(0,cv) x B(0,cv)
rz—yec K rz—yec- K
Cr r
< ] sewwes [ e
(KC\B(O,‘CJV)) xKe K¢ x (K\B(0,cv))
z—yec Ko r—yec K
rr r
< ] f(z,y)dydz + JJ f(z,y)dy da.
(KC\B(O,ZV)) xKe K x (K \B(0,cv))

Hence, using aditionnaly the Hardy-Littlewood—Sobolev inequality, we obtain

o2 o2
ff )Gy (z — y)vi(y) dy da < 2 ||UC||L12/5(KC\B(O,CV)) ||Uc||L12/5(KC)

KxK
z—yeK

and the right hand side vanishes when ¢ — 0 since ”66”112/5(&\3(0 evy) Vanishes
and Hiﬁc||im/5(Kc) is bounded, both by the L!%°(R3)-convergence of 1y #.. This

concludes the proof of [Lemma 2.54] O

Let w,. be a sequence of minimizers to Ex, ns(c). By Propositions and

2.47], the convergence rate (2.65]), and Lemmas and [2.54] we obtain
1 Q(z)|?
B noa(c) = ¢ Jga ysy + ¢ <2DR3(|Q|2, Q) — 24 J ) | |<$|>’ dx) + o(c),
R

where @) is the minimizer of Jgs ysy to which 1., .k, W, (- +x,) converges strongly.
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Let us now prove that () must also minimize the term of order c. We suppose
that there exists a minimizer u of Jgs ysy such that . (u) < .(Q), where

2
F) = 3Dl 1) - = [ L ar
re |7l

Since |u| is positive by and also a minimizer, and that . (Ju|) =
& (u), we will suppose u > 0 and that wu is radial. Let K be defined as Ky =
(1 —n)Ky for a fixed small n € (0;1) and x € C°(Ky) be such that 0 < x < 1,
X, = L Xpogy =0 and Vx|« (gs) bounded. By the exponential decay of u
proved in [Proposition 2.19] fixing R > 0 such that the ball B(0, R) is included in
Ky, denoting 1. := c¢*?u(c-), we have

J XucVX - Vi
Ky

f XucVX - Vi
(K=

< [Vl [l
IV X oo el L2 c0, ) IV ke

(*Ky) HV&C

("Ky)

A

R))

< |V, ||U’HL2(CB(0,CR)) HVU”Lz(EB(o,cR)) = 0(e™") o0,

f Vxlf? = f
Ky CKT

N

o 2 —vc
> < VNI Tl eoemy = 006 )emre:

0< f (1 = (P)Vi? < [ Vi
RS

2 —ve
L2(*Ky) < HVUHLQ(CB(QCR)) = 0(e7") e

and, for p > 0,

o p 3
0 < J];{3 (1 - ‘X‘p)’uc‘p HU’CHLP (KT ) < C 1) HUHLP CB OCR)) 0(6 VC)C_>OO7

for a given v > 0. This leads to

. 10 . 10 10, . 10 10 B
J IXUc| 3 = J |te| s — f (1 —|x|3)|t.]= = czf [u|® + 0(e7) eseps
Kn R3 R3 R3

f il = f )3 — f (1= 5 il = o f ful$ + oo,
Ky R3 R3 R3

2
Nx g

o 12 - o 12
HXUcHL2(KN) Ixtte

== 1 + 0(€_Vc)c—>()()
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and

[ weiar = [ vz ([ vawevi) s | o
Ky Ky Kn Kn

_ f Viio|? ff (1= ) Vaiel + o(e™) e
R3 R3
— CQJ [Vul? + o(e™) esep,
R3

and consequently to

/KN’C (m U(C)X ) _ C2JR3,N3)\ _i_O(efuc)CHOO.

lule)xl L2

On the other hand, since Texy i, — V”Nj(’\)x(c_l-)u — u strongly in L*(R3) n
elL2(k,y
L*(R3), we can apply Lemmas [2.48 and [2.54| to f. := W[XUC]( — Ry o)
eln2(k

with ng such that z,, = 2, and obtain

1
S DL LR = | 9ILP = e () + o),

Kn
where we recall that ¢ has been defined for shortness in (2.61)). We therefore

have

By e N3)\[U(CO)X](. = Fnon) | _ ¢ Jps nay + ¢ (u) + o(c)
lule)xl gy

< C2<]]R3,N3)\ + Cy(Q) + O(C) = E]KN,N?’)\(C)v
leading to a contradiction which finally proves that we in fact have

Z(Q) 7 (u)

= min
{“’ g3 (u)=JR3,N3)\ }

and thus concludes the proof of |[Proposition 2.53| 0]

is therefore proved combining the results of [Proposition 2.37,
[Proposition 2.47| |[Proposition 2.49| and [Proposition 2.53|

5.4. Proof of [Theorem 2.8 on the number of minimizers. The argu-
ments developed in this section do not rely on what we have done in Section [5.3]
We also recall that only holds in the case of one unique charge per
unit cell K, i.e. N, = 1.
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We can expand the functional &k . around a minimizer w, as
Sxc(we + f) = Exa(c) + <i:f17 f1>L2(1K) + <[Ozc_f2, f2>L2(K) — 21 (we., f1>L2(K)
— e | 72y + 2D (R(wef), R(we ) + o[l fl7p ), (2:67)

for f € H..(K,C), with f; := R(f), f2 := S(f) and where

L7 = =D+ orp|we]® — clwel + pe — F + Jwe)? * Gx (2.68)
and
[+ 7 4 D 2 2
LT =-A+ gcTF|wc|3 - §c|wc|3 + pe — 9 + |we|” * Gk, (2.69)

where we recall that ¢ is defined by

Ng N3

G = > 7Gxy (- — Ru). 2.61)

n=11:=1

The only terms of the expansion that are not one line computations, and that

we therefore explicitly prove in [Lemma 2.55 are those with the powers 8/3 and
10/3.

LEMMA 2.55. If 2 < p < 4, for any complex-valued w, h € H*, we have

[ = 1w o [ op-2un)

pp—2 _ = D _
—()J‘ \Mpﬂﬂw@ﬁ—fMW?MP:owmay
2 w()#0 2

PROOF OF [LEMMA 2,59 Since, |w(z)+h(z)] = ||w(x)|+ ﬁg;'h(xﬂ if w(x) #
0, proving

Rulf) = [lw+ 7= [1ol =p [ hop 2w,
—1
D [ap=2i =2 [P = o (1715

for w > 0 and f € H!, is equivalent to prove [Lemma 2.55|
If 3<p<4,for any (z,y) € R\{0} x (0; +00) we have

lp|—1 q p
‘|y + zP — Z (;:)ypkxk‘ < |z|P + <3>yp3]x|3 (2.70)

k=0
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hence | Ry (f1)| < IfI; + (5) llwlly™ [|1f e and

JHw + [P = w2 ] < IAP2LEP, + (0= 2) [lwP? 1 Al 1P,
< I+ @ =2 s 112,
while, if 2 < p < 3, for any (z,y) € R\{0} x (0; +o0) we have

2 /4
‘|y + zfP — Z (2) yp’kxk‘ < |z|P (2.71)

k=0
hence |R,(f1)] < [If[l}) and
JHU} + A7 = PP LR < LAPTELRE] < 115
Moreover, for any (z,p) € C\ {R x {0} U {0} x R} x [0; +00), we have
5l /p
=3 ()RR < P (2.72)
k=0

and identically exchanging the roles of the real part R and the imaginary part .
Thus, we have

p _
[+ s =t i = Do+ fip 2102 | < L2l < 151

We finally have that R, (f) = 0 for p = 2, that

Rl < 252 1+ [ () + 50— 2 Il 11, = 01515

hence |R,(f)| = of Hinp) if 3 <p<4and,if 2 <p <3, that

4
Rul) < B2 112 = O ) = o115 ).

Proofs of inequalities (2.70)), (2.71]) and ([2.72) can be found in the O

Let us suppose that|Conjecture 2.6/ holds and that there exist two sequences w,

and w, of nonnegative minimizers to Ek, ns(c) concentrating around the same
nucleus at position R € K. Then, by [Proposition 2.47], we have for 2 < p < 40
that

[e, (- + eaR) = Qll o,y + e, (- + enR) = Qll o,y —2 0

n—+0o0
for a subsequence c¢,,. We define the real-valued f,, := w., — w,,, which verifies
that | fn| sz, (k.,) uniformly bounded and, for ¢, > 0, the orthogonality properties

per

<wcn + Wey, s fn>Lger(K) = <wcn + C’jjcw fvn>L}2,er(]Kcn) =0 (273)
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and
<E¢(cn_1-) V((te, + ch)fn)>L

Indeed, on one hand,

20 (Kep) = 0 (2.74)
<wc + We, fC>K =29 (<w0? wC>K)

which vanishes since w,. and w, are real-valued. On the other hand, the orthogo-
nality property stated in the following lemma leads to (|2.74)).

LEMMA 2.56. Ifw. is a real-valued minimizer to Ex x(c), then w, is orthogonal
to YVw,.

PROOF OF [LEMMA 2.56l As mentioned in [Proposition 2.49 the four first
terms of &k . are invariant under any space translations thus we have

e e(wel- + 7)) = Exelwe) = (G, Jwe- +OP = [wel”) o g

— Ega(c) — 21 f GR(w.Vw,) + O(|T]).

Hence (&, R (w V) 25y = 0 for any minimizer w.. Since ¢ is real-valued,
then (w., 9Vw,) e =0 if w, is a real-valued minimizer. O

By property (2.74 - ) together with Dk (h,h) = 0 ( and
2, fadra(k.,) + ||fn||L2(]Kcn) = (Wy, + Wy, fn>L2(Kcn) =0,
we obtain from that
By a(cn) = Exen(We,) = Exa(en) + ™ Lt o fudie, + ol fulli )
where the operator L is defined on L*(K.,) by

7 5 c
Li = —A+ gerplids - S + ’c‘ + 002G + |we, 2 * Gl (e V). (2.75)
Therefore, by the ellipticity result (L} fo, fudr2x.,) = C| an%{l(Kc ) = 0 of the
next proposition, which rely on [Conjecture 2.6, we obtain (for ¢, large enough)
that

y N y g
0> CCnQanH%{l(Kcn) + O(anHHl(K)) = OCHQHJCTLH?{l(Kcn) + O(CnQanH%{l(Kcn))
hence that f,, = 0 for ¢ large enough, i.e. w., = w,,. This means that if
holds then there cannot be more than N?® nonnegative minimizers
for ¢ large enough and, together with [Proposition 2.49| this concludes the proof
of We are thus left with the proof of the following non-degeneracy

result.
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PROPOSITION 2.57. Let (w.). be a sequence of minimizer to Ex x(c) and L
the associated operator as in (2.75)). Then there exists C, c, > 0 such that for any
¢ > ¢, and any f, € H'(K., C) verifying the two orthogonality properties (2.73))

and (2.74)), we have
(L fus ) oy = CMallin.,) - (2.76)
PROOF OF [PROPOSITION 2.57] Following ideas in [Wei85], we define
<Lr—tf’ f>L2(KCn)
112 .

ay, = n
feH! (Ke)
<'l)lfn ‘H:’n 7f>L2 (Kcn ) =

(B (en™"),V (e +en) P2, =0

and we will show that a,, > 0 for ¢ large enough.

LEMMA 2.58. Let (w.). be a sequence of minimizer to Ex (c) and Q) the
positive minimizer of Jrs x associated with the converging subsequence g, ., (-+

cnR). Define as in (2.14)) the operator L associated with Q@ and, as in (2.75),
L} associated with w,. Let (fo)n be a uniformly bounded sequence of H,,,(K,,)

then
<L:f7 f>L2(R3) < llgiloglf<L:fn, fn>L2(Kcn)7
with f such that 1x,, fo(- + ¢,R) — [ weakly converges in L*(R?).

PROOF OF [LEMMA 2.58. Up to the extraction of a subsequence (that we will
omit in the notation), there exists f such that 1g, f.(- + c,R) — f weakly in
L*(R3) because f,,(- + ¢,R) is uniformly bounded in H'(K.,). Thus, by

ma 2.4

IV Fall o,y = 1V Flz2s) + 1V (o = Dz, + 2, (1)

c—00

hence
hgg}f ||an||L2(]Kcn) = hcnig}f IV ful- + cnR)HL?(]KCn) = ||Vf”L2(]R3) :

Moreover, || f,| (k. 18 uniformly bounded by hypothesis thus

_ _ _1 2
Cn G (en™ ) fus ) < 0072 Hg”L?(K) ||fn||L4(Kcn) -0

c—+00

and, by the same argument as the one to obtain (2.55]), we have

_ — — o 2 2
R O L R 1

Moreover, by [Proposition 2.37, 1k, W, (- + ¢, R) strongly converges in L?(R?) for
2<q<6henceforp=%andngwehave

<|wcn|p7 |fn|2>L2(KCn) = <|wcn(' + CnR)|pv |fn( + CnR)|2>L2(K6n) - <|Q|pa |f|2>L2(R3)'
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Indeed, ||fallzp,, ) is uniformly bounded for 2 < p < 6, since || fullgig, ) is
uniformly bounded, hence |1k, f.|* — |f|* converges weakly (up to an omitted

subsequence) in LP(R?) for any 1 < p < 3. Consequently {|Q[” f,, fu)r2(x..) —
(QIPf, frrzms) for p = % and p = % and we then obtain (|, [? fn, fn)r2x.,) —
(QIPf, for2ms) for p = % and p = % by the strong convergence of 1k, 10, (- +c,R).

Finally, by |Corollary 2.45|and weak convergence in L*(R?) of 1k, fu(-+c,R),

K 2 oM
o5 Wl = limint 5
n n

o 2 2
hTILlllolgf [ fa(- + CnR)HLQ(KCn) L ||f||L2(R3) :

This concludes the proof of [Lemma 2.58| 0

We now prove that «, cannot tend to zero. Let suppose it does, then there
exists a sequence of f,, € H'(K,,) such that 1 fall i,y = 1

<7I]cn + (:)cna fn>L2 (Key) = 0

per
and

<§¢(Cn—1.)’ v(<wcn + d}cn)fn»Lger(Kcn) =0,

with (L fous fud o, ) — 0.
Thus, by the uniform boundedness of | f,[ 1, )+ Lx., fn converges weakly in

L*(R?) n L9(R?) to a f which verifies (L f, f)r2@s) < 0, by [Lemma 2.58, and

/11 e,y < 1. We claim that f also solves the orthogonality properties

{f, Q>L2(R3) =0 and {(f,QV|- |_1>L2(R3) —0.

Indeed, on one hand we deduce from the uniqueness of Q > 0 (given by the
conjecture), that 1g,, (e, (- + ¢, R) + Oe, (- + ¢, R)) — 2Q in L*(R3) n L (R?).
This, together with (2.73) and the weak convergence of the subsequence f, in

L*(R?*) n L5(R?) leads to (f,@)r2s) = 0. On another hand, the uniqueness of
Q gives also the L?(IR?) strong convergence

oV (We, (- + cnR) + &0, (- + cnR)) = 2VQ € H'(R?).

Thus, applying [Lemma 2.48 on one hand to it and 1k, fo(- + ¢,R) — f €
H'(R3) with the first set of conditions in|[Lemma 2.48/and, on the other hand, to

Ik, (We, (- + nR) + @e, (- + ¢ R)) — 2Q and 1g, V fu(- + ¢, R) — V[ e L*(R?)
— which comes from [Lemma 2.43]— with the second set of conditions, we obtain

(G (cn™ +R), V][( e, (-+caR) 40, (-+6nR)) ful-+caR)Di2, e,y — 2 V(@)

re ||

Ix

Finally, (2.74) implies that (f,QV/|- | 2@s) = —(V(fQ),| |7 )r2®s) = 0 and

our claim is proved.
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As we will prove in [Proposition 2.59] if [Conjecture 2.6 holds then these two
orthogonality properties imply that there exists o > 0 such that

2
<L:f7 Prems) = a ||f||H1(R3)

hence f = 0 due to (L} f, f)r2ms) < 0 obtained previously. Since the terms
involving a power of |w,, | converge and f = 0, we have

2 2
0(1> = <L2fn’fn>L2(Kcn) = va”HL?(chn) + ﬂ ||fn”L2(Kcn) + 0(1)

hence both norms vanish, since p > 0, which means that || fu|/ 1, ) — 0. This
contradicts || f|| g1k, ) = 1 and concludes the proof that o, cannot vanish, hence
that of [Proposition 2.57| O

We are left with the proof of |Proposition 2.59|

PROPOSITION 2.59. If|Conjecture 2.6 holds then there exists o > 0 such that
<L:f7 f>L2(R3) =z ||f||§{1(]R3) s (277)

for all f € H'Y(R?) such that {f,Q)r2rsy = 0 and {f,QV|- |7 )12@s) = 0.

The proof of this proposition uses the celebrated method of Weinstein [Wei85)|
and Grillakis—Shatah—Strauss [GSS87|. The idea is the following. Using a
Perron-Frobenius argument in each spherical harmonics sector as in [Wei85),
Len09, LRIN15]|, one obtains that the linearized operator L; has only one neg-
ative eigenvalue with (unknown) eigenfunction g in the sector of angular mo-
mentum ¢ = (0, and has 0 as eigenvalue of multiplicity three with corresponding
eigenfunctions J,,). On the orthogonal of these four functions, L:[ is positive
definite. In our setting, we have to study L, on the orthogonal of @ and the
three functions z;|z|~3Q(z) which are different from the mentioned eigenfunc-
tions. Arguing as in [Wei85], we show below that the restriction of L to the
angular momentum sector ¢ = 1 is positive definite on the orthogonal of the
functions z;|x|72Q(z). The argument is general and actually works for functions
of the form d,,(n(|z]))Q(z) = z|z|~'(|z|)Q(x) where 1 is any non constant
monotonic function on R. On the other hand, the argument is more subtle for ()

in the angular momentum sector £ = 0 and this is where we need [Conjecture 2.6,

PROOF OF [PROPOSITION 2.59| First we note that it is obviously enough to
prove it for f real valued but also that it is enough to prove

<L;f’ f>L2(R3) = o ||f||i2(R3) (278)
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with a > 0. Indeed, if f verifies (2.78) then, for any £ > 0, we have

7 4 2
Wb D > (=) U+ IV S+ [ (Fersielf = J1alE ) 1

R3

7 4 5 2
> (=9 e (= gerellfe - J Q1L ) ) 11 + 19 1E:,

hence f verifies (2.77) too (for a smaller o > 0).
Since () is a radial function, the operator L;“ commutes with rotations in

R3 and we will therefore decompose L?(IR?) using spherical harmonics: for any
fe L*(R?),

0 4
fl@) =25 25 Y (),
{=0m=—¢
where z = rQ) with r = |z| and Q € S?. This yields the direct decomposition
0
L*(R?) = D Hoy
=0

and L maps into itself each

Hip := L*(Ry,7? dr) @ span{Y;"}}

m=—4"

Using the well-known expression of —A on H ), we obtain that

where the L ,’s are operators acting on L*(R,,r*dr) given by

a2 2d e+1) 7 i 5 2
wE T T g2 T oy dr * r2 * gcTF‘Q“P B §|Q“’3 M

We thus prove inequality (2.78)) by showing that there exists o > 0 such that
for each ¢ the inequality holds for any f € Hy n H*(R?) verifying (f,Q) = 0 and
QY ["Dre@sy = 0.

We first prove a Perron—Frobenius type result.

LEMMA 2.60 (Perron-Frobenius property of the L[,). For £ > 1, L}, is
essentially self-adjoint on CF(Ry) < L*(R,,r? dr) and bounded below.

Moreover, each L:;e has the Perron—Frobenius property: its lowest eigenvalue
e 15 simple and the corresponding eigenfunction py(r) is positive.

PROOF OF [LEMMA 2.60l We follow the structure of the proof of [Len09,
Lemma 8|.
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Self-adjointness. Since Q)(r) decays exponentially, |Q|§ and |Q|§ are bounded
multiplication operators on L*(R,r%dr). Moreover, the multiplication operator
1 is also bounded and

is bounded below hence L, is bounded below for £ > 0. On another hand, it is
known that —A ) is essentially self-adjoint on Cg°(R.) provided that £ > 1. Thus,
given that %cTF]QM\%— 2 ]Quﬁ—i—u is bounded (so —Ay-bounded of relative bound
zero), symmetric (moreover self-adjoint) and that its domain contains the domain

of —A(y), we obtain by the Rellich-Kato theorem the essential self-adjointness of
Li,on CF(Ry).

Positivity improving. We know (see [Len09]) that (—A) + )~ is positivity
improving on L*(R,,r?dr) for all 8 > 0. Moreover, denoting by Az the bounded
self-adjoint operator

7 4 ) 2
Ag = gerp|Qul® — (6 — p) = 31Qul,
we have that —Ag is positivity preserving on L*(Ry,r?dr) for all 8 > pu +
%CTF‘Q(O)’§ since () is radial decreasing and, for § large enough, that

[ As(=A@ +B) oo <1

since Ag is bounded. Consequently, a Neumann expansion on
1

(Lie+B) = (=80 +B) (L+ As(=Ap +5)7)

which holds for § large enough, yields
e}
(Liy+8)" = (-Apy+6)~" 2 (—As(—A@ +B)7Y)".
v=0

Finally, (—A«) + 3)~! and — A being respectively positivity improving and pre-
serving, we conclude that the resolvent (L, + )" is positivity improving for
large enough.

Conclusion. We choose 3 » 1 such that (L, + 3)~" is positivity improving and
bounded. Then, by [RS78, Thm XIII.43], the largest eigenvalue sup a((L:;g +
B)71) is simple and the associated eigenfunction ¢, € L*(R,,r*dr) is positive.
Since, for any v € L*(R,,r?dr), having ¢ being an eigenfunction of L:,f for the
eigenvalue \ is equivalent to having 1 being an eigenfunction of (L:,g + B)~! for

the eigenvalue (X + 8)~1, we have proved [Lemma 2.60 U
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Proof for the sector ¢/ = 1. We start with the case £ = 1 and prove that

LT f,
ap = inf M > 0. (2.79)
feH @ H! (R?) 1 1IZ2 sy
<f7QVH71>L2(]R3):O

Since (@ is radial, we have for ¢ = 1,2, 3, that
L
0z,Q(z) = Ql('f’)7 € Hy.
Moreover, by the non-degeneracy result of we know that 0,,Q

is an eigenfunction of L} associated with the eigenvalue 0 hence Q'(r) is an
eigenfunction of La) associated with the eigenvalue e, ; = 0. Therefore, the fact
that Q'(r) < 0 (as proved in implies, using the Perron-Frobenius
property verified by L(Jrl), that e,; = 0 is the lowest eigenvalue of La) and is
simple with —@Q" > 0 the associated eigenfunction. Consequently, we have for
any [ € Hy that

1

<LZf7 forems) = Z <L(+1)fm(7“)7 )@, r2ar) =0

m=—1
and in particular that aq > 0.
We thus suppose that «; = 0 and prove it is impossible. Let f,, be a mini-
mizing sequence to (2.79) with £, ;2gs) = 1. One has

5 2
IV falz2eey < <L fus Frdeacesy + 5 1Ql n oy

and consequently the sequence f, is bounded in H'(R3). We denote by f its
weak limit in H'(R?), up to a extraction of a subsequence, which is in Hay. We
have

0< <L:f, f>L2(R3) < lim iIlf<L:fm fn>L2(R3) =qap =0,

where the second inequality is due to
o 2 2 o 2 2
Hminf |V foll 72 gsy = |V fll72Rs) - Hminf [| fo|72gey = /1|72 -

>0 and to QP fu, furrzmsy — QP f, f)r2@s), for p = % and p = 5, obtained
by a similar argument to the one in proof of It implies that

Ly, forems) =0

hence, f = Zf’zl ¢i0z, @ by the Perron-Frobenius property and since {%, 2, 23} ig

an orthogonal basis of span{Y; ', Y, Y{'}. However, for any i = 1,2,3, we have
after passing to the weak limit that

fR " f(2)Q(x) dz = 0.

s |af?
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We then remark that, since () is radial, we have

ZT; X;T; ’ . . .
JRB |x|3Q<I>aij(x) = J]Rii Els QQrdr =0, w2
This gives, for ¢ = 1,2, 3, that
0= Z; de — fL’Z‘Q , q
- | fer@emar - o | @@

but @ > 0 and @)’ < 0, hence ¢; = 0 thus f = 0. We thus have obtained, if a; = 0,
that any minimizing sequence f,, to (2.79) converges weakly to 0 in H'(R?). This

gives {|Q fn, fn)r2(r3) — 0 and
”anHiZ(Ri%) +p ||aniQ(R3) = <L;rfnv fa)ras) +0(1) > a1 =0

therefore f, — 0 strongly in H'(R?), because p > 0, which contradicts the fact
that ||fn||L2(]R3) = 1. We have thus proved that a; > 0.

Proof for the sector ¢/ > 2. We now deal with the cases ¢ > 2 and prove that
there exists a > 0 such that

2
<L:,€()07 90>L2(R+,T2 dr) =« ||¢||L2(R+,T2 dr) (28())

for any ¢ € L*(R,,r?dr). Since for such ¢ we have

(L s 122 ar) = L1y O r2@e a2 ary + 200 = 1) | @/7II2 2, 2 ary» (2-81)
it is then sufficient to prove in the case £ = 2 in order to prove it for all
(=2

For ¢ = 2, we can assume that inf J(La)) is attained because, otherwise,

7 4 D 2
Vi TenelQult - DIl

being bounded and vanishing as r — o0, it is well-known (see e.g. [Tes09]) that
Oess(Ly) = [p; +0) and (2.80) follows. We thus have, by ([2.81) and L) > 0,

that the eigenvalue e, = inf U(Lé)) and its associated eigenfunction ¢y # 0

verify that

2
H()OQ/THL2(R+,7’2 dr) ~0

euo = info(Liy) =2 5
||902HL2(R+,7“2 dr)
and ([2.80)) is therefore proved. It concludes the case ¢ > 2.

Proof for the sector ¢/ = 0. We conclude with the case £ = 0 and prove that
for any f € H ), we have

L' f.
ap:=  inf M = 0. (2.82)
feHoynH! (R?) HfHLQ(R3)
<f’Q>L2(R3) =0
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We already know that cy = 0 because ) is a minimizer. Indeed, for f € H'(R?)
such that {(f,Q)r2msy = 0, through a computation similar to (2.67) and us-
ing (2.12)), (2.26]), [Lemma 2.55| and that @ is a minimizer of Jgs(\), we obtain

Q+tef
Fw(@ < s (101

= Jws(Q) + (LR, R 2wy + <L, S, SFr2me)) + o(e?)

which implies in particular that (L} f, f)r2®s) = 0 for as soon as (f, Q)r2@s) = 0.

We thus suppose ag = 0 and prove it is impossible. Let f,, be a minimizing
sequence to (2.82) with || fu[| 2gs) = 1. As in the proof of case £ = 1 above, f,
is in fact bounded in H'(R?) and denoting by f € H g its weak limit in H'(R?),
up to a subsequence, we have (L} f, f)r2@s)y = 0. This leads, to L} f = BQ thus,
using that L} is inversible, to f = 3 (L;f)*lQ. Indeed, for any n € H ) orthogonal
to @ and any T, f + T verifies

0 <L;f,éf>L2(R3) < <L:Lr(f + T), fQ+ T>L2(R3) _ 2T<L;rf7277>L2(R3) 0(’[72)7
1172 e 1+ 7oy 1/ 1172 (ge)
due to f minimizing (2.82) and to (L} f, f)r2ms) = 0, hence (L} f,n)r2ms) = 0
for any 7 € span{Q}+ which implies that L}, f is proportional to Q. Consequently,
0={f, Qre@s) = Q. (L)' Q2w

hence 8 = 0 since (Q, (L)™' Q)r2@3) < 0 by [Conjecture 2.6, We have obtained
f = 0 which is absurd as before. Indeed, we then have {|Q["f,, fn)r2®s) — 0,
thus

2 2
o(1) = (L fo: fipra@s) = [V full sy + 1l falz2ms) + o(1),

hence both norms would vanish (since y > 0), which would imply || f | 1 gs) — 0,

contradicting || f» | ;2gs)y = 1 and concluding the case £ = 0.

This concludes the proof of [Theorem 2.8 O
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6. Appendix: Complementary proofs and results

6.1. Details of of the proof of [Theorem 2.3} Minimizing
sequences are precompact up to a translations. Let {Q,}, = H'(R?) be

a minimizing sequence of Jgs .(A). We claim that there exist a subsequence and
translations {z;}, = R? such that Q,, (- — ) — QW # 0 weakly in H'(R?).
This result rely on the number

m(fon}) =sup{ [ |16 | 3o} = B g~ a0) — o weakly in 11(R) |

defined for any sequence {¢,} bounded in H'(R?), and on [Lemma 1.26| that we
recall here for clarity.

LEMMA. For any sequence {©,} bounded in H'(R3), the following assertions
are equivalent:

L. m({(pn}) =0;
4. lim supJ lon|? = 0;
N0 ez C,

: 2 _ (.
wi. VR >0, ggrolo:;lRpg SB(%R) ln]® = 0;

. o, — 0 strongly in LP(R®) for all 2 < p < 6,
3
where the C, = ] [2;,2; + 1), for any z = (21, 20, 23) € Z?, tile the whole space:

RS = | C..

2€73

7j=1

REMARK. Our definition of m is slightly different from our previous one in
as this new definition uses weak convergence on H! while the previous used
weak convergence on L2 Nevertheless, suppose that the function is
in H' hence its proof stay the same.

If our claim that Q,, (- — z) — QM) # 0 were not true it would mean that

m({Q,}) = 0 and, since {Q,} is bounded in H'(R?) due to|Lemma 2.10} it would

imply by [Lemma 1.26| that @Q,, — 0 strongly in LP(R?) for all 2 < p < 6 and
Q, — 0 weakly in H'(R?). But this contradicts Jgs(\) < 0 proved in

since it would give that
o) = limipf o (Qu) = Timint [ [VQ > 0.

and we have hence proved that Q,, (- — z3) — QW # 0.

Since @, (- — 73) — QW) weakly in H*(R?), using [Lemma 2.61} and its corol-

lary — that we both state and prove at the end of this Step 9, for the readability
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of the proof — we can write

Qn. (- — 1) = & + Vi + &
where & — QW weakly in H'(R?) and strongly in LP(R3) for 2 < p < 6,
supp(&,) < B(0, k), supp(¥r) < R3\B(0, 2k), and g, — 0 strongly in H'(R3).
The disjoint supports property and the strong convergence of ¢, give that

Frs e(Qny) = Irso(Qny (- — 1)) = I o(§k) + Frse(¥r) + 0(1)gooo-  (2.83)

On another hand, the strong and weak convergence of &, give that
liminf Froo(€r) = Froo(QY) = Jrs (M),
—0

where \; = HQ(DH;(W), while the respectively strong and weak convergences to

QW in L2(R?) of &, and Q,,, together with the strong convergence to 0 of &y,
give ”wk”;(n@) = A— X\ +0(1)k—w, hence

Srs (k) 2 Jrs o[Vl 72ms)) = Jrs (A = A1),

by the continuity of A — Jgs .(\) proved in . Passing to the limit
in , we obtain Jgs .(A) = Jgs (A1) +Jgs .(A—A1) but the strict binding
implies that either A\; = 0 or Ay = A. However, we have proved that Q) = 0
hence A\; = .

Now that we have proved that ||Q(1)||%2(R3) = ), we obtain the strong con-
vergence Q,, (- — ) — QW in L}(R?), by the weak convergence in L?(R?), and
this strong convergence holds in fact in LP(R?) for 2 < p < 6, by the Sobolev
embedding, the fact that @, (- — ) is H'-bounded and interpolation. But those
strong convergences and the H'-weak convergence give

Jes (V) = Hminf Feo o(Qu, (- = 21)) > Froo(Q) = Jos o(N)
which proves that Q) is a minimizer but also that

IV Qucllsey = IVQui (= 0l pagasy = 9@ s -

using that ||@Qy, ||LP(R3) = [|Qn, (- — l‘k)HLP(Rg) and again the strong convergence of
Qn, (- — x1) in the LP.

We have therefore proved that @, (- — z) converges strongly in H'(R?) to
QW which is a minimizer : @, is precompact up to translations.

We conclude this Step 9 by the statements and proofs of and
of [Corollary 2.62, For both results, we will follow the proof in [Lew10| which
itself follows Lions |Lio82] [Lio84al, [Lio84b].
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LEMMA 2.61 (Extracting the locally convergent part). Let {,} be a sequence
bounded in H'(R3) such that @, — ¢ weakly in H*(R®) and let 0 < R, < R},
such that Ry — 0. Then there exists {¢n, } such that, as k — o0, it holds that

| ten@p i | jet@)P (2.5)
|z| <Ry R3
and

| en@P+ [Ven@)P) do 0. (289
Rp<|z|<Ry,
In particular, it holds that 1p(o g,)Pn, — ¢ strongly in LP(R?) for all 2 < p < 6.

Note that this lemma will also be needed in [Lemma 2.41] our concentration-
compactness result for the effective model on the cube K.

COROLLARY 2.62. Let 0 < Ry < Ry be such that R, — oo and {p,} be a
sequence bounded in H'(R®) such that ¢, — ¢ weakly in H'(R®). Then there

exists a subsequence {¢n, },  such that
B [l on, = &k = k] g psy = 0
where {& ) and {1 are sequences bounded in H'(R?) such that
(1) & — ¢ weakly in H'(R3?) and strongly in LP(R3) for 2 < p < 6,
(2) supp (&) < B(0, Ry,) and supp(¢y) = R3\B(0, R},),
(3) m({¢}) < m({gn}) < m{en}).

PROOF OF [LEMMA 2.61l We introduce the so-called Levy concentration func-
tions |[Lev54|

M, (R) = J

ou? and  Ko(R) - j V|2
B(0,R)

B(0,R)
The functions M,, and K, are continuous nondecreasing functions on [0, o0) such
that

Vn > 1,YR > 0,M,(R) + K,(R) < J lonl? + [ Veu> < C
R3

since {p,} is bounded in H'(R?). Thus, by the Rellich-Kondrachov Theorem, we
obtain that
M,(R) — [o* =: M(R)
B(0,R)

for all R = 0. Moreover, up to extraction of a subsequence (we do not change
notation to simplify), there exists a nondecreasing function K such that, for all
R >0, K,(R) » K(R) as n — +00. We denote ¢ := limg_,,, K(R) which is
finite since K, (R) is bounded uniformly in n and R.
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Applying now the above limit result to our Ry and R}, we deduce that, up to
another subsequence, we have that

| My, (R) — M(Ry)| + [ My, (Ry) — M(Ry)|

+ | Ky (Bi) = K(Ri)| + [ K, (Ry) — K(Ry)| <

| =

Consequently, we have that

f o f P
|x|<Rk R3

1
f (onal? = Mo, (RL) — My, (Ri) <~ + M(RL) — M(Ry) — 0
Ry <|z|<Ry,

< [Mo (Re) — M(Ry)| + f o — 0,

k k—+00
and

k—+0

El e

J ’Vgpnk|2 = Knk(R;C) - Knk(Rk) <
Rp<|z|<Ry,

where the last convergence uses the fact that K(R},) — K(Ry) — { —{ = 0.
Moreover, 1p(o,g,)Pn, — ¥ Weakly in L?(R3) since ©n, — . But this conver-
gence is in fact strong given the norm convergence just proved. By the Sobolev
embeddings, we obtain that ,, and, consequently, 1p(o r,)¥n, are bounded in
LP(R3) for 2 < p < 6 which leads, by interpolation to the strong convergence
of 1p(0,ry)Pn, — ¢ in LP(R?) for 2 < p < 6. This concludes the proof of
(ma 2.61] O

PROOF OF [COROLLARY 2.62] We can apply to ¢, — ¢ with
Ry/2 and 4R, and obtain a subsequence {¢,, } such that

[ | (o + [T ) = 0. (250
|z|<Ry/2 R3 Ry /2<|z|<4R;,

Let x : R* — [0,1] be a smooth function such that 0 < x' < 2, x| = 1,
X|2,0) = 0. We then denote xi(z) := x(2|z|/Rr) and (i(x) := 1 — x(|z|/R),) and
introduce & := Xrn, and ¥y := (ppp, . Since

P — & — Uk = o, (X(|2]/Ry) — x(2]2]/Ri)),
we have supp (¢n, — & — ¥r) < {Ri/2 < |v| < 2Rj,} hence, using (2.86)), we have

klijglo lpn, — &k — @Z)kHHl(Riw‘) = 0.

Together with the disjoint support property, it implies in particular that

||§’€||H1(R3) + ||¢k||H1(R3) - ||§k + ¢k||H1(R3) = ||90nk||H1(R3) + 0(1)
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hence that &, and 1, are bounded sequences in H!(R3).
By construction, &, — ¢ weakly in H'(R?) and

lim [ Jef? = Jim 6l = [ 1P
—% Jgs k=% JB(0,Ry/2) R3
hence &, strongly converges to ¢ in LP(R3) for 2 < p < 6 by Sobolev embeddings
and because [[¢n|| 1 (gsy 18 uniformly bounded. In addition, it is easy to see that
Lp(0.4r;)¥x — 0 strongly in L3(R3).

We now prove that m({¢x}) < m({p,,}) < m({e,}). We suppose m({t}) >
0, otherwise there is nothing to prove. Thus, there exists k;’s, {z;} < R® and
¥ # 0 such that oy, (- — x;) — ¢ weakly in L*(R?). We first prove that, for j
large enough, we have |z;| > 3R] . Indeed, if for a subsequence (denoted the
same), we have |z;| < 3R} then ¢y, (- — 2;)1p.r,) — 0 = ¢ weakly in L*(R?)
— since B(zj, R;) < B(0,4R;) and 1pary)¥r — 0 strongly in L*(R?) — a
contradiction. Consequently, we have that

Vi (= 25) Loy ) = ¢ng (= 2)Lpomr, ) — ¥

since ¢, = 1 on B(z;, R;j) which implies that Pr, (- —z;) — ¢ weakly in L*(R?)
hence that m({ix}) < m({¢y,, }). O

6.2. Detailed proof of [I’heorem 2.4, This proof follows essentially line
by line the proof of [LRN15, Thm. 2|. We divide the proof into several steps
for clarity.

Step 1: Positivity of nonnegative H'(R3)-solutions. Let u > 0 be a
non trivial H!(R3)-solution to the Euler-Lagrange equation (2.12]). The equation
gives us the upper bound

2 i 10 2
|8l < el gy Bl o+ e

which is bounded since u € H'(R?). Hence, u € H*(R?) < CJ(R?) and we obtain
that ) > 0 with the same end of the proof as in of the proof of[Theorem 2.3]

Step 2: Positive solution are radial decreasing, the moving plane
method. Contrarily to [LRN15| we cannot use [GNN81, Thm. 2| because our
function

Fuy) = —crey® + 35 — py (2-34)
is not C? at y = 0 (F l’{ is not even defined at 0). However, given that we are
interested in nonnegative solution and since one can prove similarly to in

the proof of that any non trivial nonnegative solution is positive,

we have in particular that their inverse are locally bounded. Hence, when we
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recursively differentiate the Euler—-Lagrange equation, the negative powers that
will appear (due to powers 7/3 and 5/3 of E-L equation) will not create any difficulty
to obtain that such positive solutions are C*. Therefore, we can apply |[Li91]
Thm. 1.1] that we recall for clarity in the following lemma.

LEMMA (Positive solution are radial decreasing, [Li91]). Let f be a C func-
tion such that f'(0) < 0. Any C? positive solution of

Au+ f(u) =0, in R?
u(z) -0 as|z] > ©
is radial decreasing about some point in R3.

Consequently, we know at this point that any nonnegative H?(R3)-solutions
to the Euler-Lagrange equation ([2.12)) is, up to a spatial translation, a positive
radial decreasing solution of

2
u” + ;u' + F,(u)=0 onRy
u'(0) =0

(2.87)

with the condition
(u(r),u'(r)) — (0,0). (2.88)
We will show the uniqueness (for each admissible p) of solutions to that
fulfill that condition (2.88), that we will call solution of the problem (RPb-y).
Step 3: Admissible ;1’s. We first give some properties of F), together with
a first condition of admissibility for the u’s.

LEMMA 2.63. Let \,crp > 0. Then an admissible p verifies 4ucrrp < 1 and,
for such p, the function F,(z) := —erpxs + 28 — px verifies that
(1) F,, is positive on (f3,7) and negative on (0, 3) U (v, 0);
(2) H : x — aF,(x)/F.(x) is strictly decreasing from 1 to —oo on (0, 3),
from +o to —o0 on (B,7) and from +oo to 7/3 on (v, +0);

(3) for every X = 1, the function I(z) := xF}(r) — AF,(v) has ezactly one
root on (0,7) and this root x, verifies x, € (8,7) and I'(z,) < 0.

Where
5 . 1— \/1 — 4CTF[1, 32 and . 1+ A/ 1— 4CTF,LL 3/2
B 2crr T 2crp .

PROOF OF [LEMMA 2.63l By [Theorem 2.3| a minimizer u of Jgs (1) is in
H?*(R?), positive and verifies Au+ F),(u) = 0 where F},(u) = —Cppus +us — pu on
[0;00). We first claim that there necessarily exist « € (0; ) such that F),(x) > 0.
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Indeed, if it were not the case, then we would have that Au > 0 on R?® which
leads, since u > 0, to | Vul| j2zs) < 0 and thus to u = limy, . u(z) = 0 hence a
contradiction to [Theorem 2.3] The fact that F), is not nonpositive together with

rewriting

Fu(z) = 2 (1 — derpp — <2cTFx% - 1>2> , (2.89)

4CTF

gives that necessarily 4pucrp < 1. Moreover, (2.89)) immediately gives (1).

For shortness in the end of this proof, we will denote F), simply by F'. On
(0: +90)\{B; 7}, denoting G(z) = 2crpa3 — 23, we have

F’ 2G
H(z) := k() =1-c ($),
thus the sign of the derivative H' is the same as the sign of F'G — FG’ on
(0; +90)\{5;v}. Since 4ucrr < 1, it holds on (0; +o0) that
2 2
F'(2)G(x) - F()G'(x) = ~Zerra’ ((w — 2+ (1 - 4ucTF>) <0

CTF

and consequently H is strictly decreasing on each of the three intervals where it
is defined. The limit values are easy to check which concludes the proof of (2).
For every A > 1, we have on (0; ) that H(x) = zF'(z)/F(z) < 1 < X thus
it holds that I > 0 on (0; 5) since F' < 0 on this interval. Moreover, we deduce
from (2) that I has a unique zero on (f;v) that we denote z,. Finally, since
I'=FH' +£1, F(z.) >0, H'(2,) <0, F(2,) # 0 and I(z,) = 0, we obtain

F'(xy)

I'(zy) < I(z,) = 0.

[l

To conclude about the admissible p’s (but also for the proof of uniqueness
and non-degeneracy proved in the next Step), we define for any u the local energy

<

) (r)
Ho () = ) J F,(z)dx, (2.90)

2

for any a > 0 (we omit the dependency with u in the subscript for shortness).
For any u solution to ([2.87]), we have that

2 2 if r
H,)/(r) = " (r) + E,(u(r)))u'(r) = B ;(u( )7 <0 ifr>0, (2.91)

0 ifr=0.
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Therefore, H, is strictly decreasing on [0; ), for any u solution to (2.87). The
decrease is strict otherwise we would have an interval on which v’ = 0 and this
is impossible.

LEMMA 2.64. The existence of a solution to (RPb-u|) is equivalent to %,ucTF <
1. Moreover, if u is solution, then necessarily w < u(0) < 6 where

2 5 64 5 / 64
w3 = 1—A/1 = —pcrp and 0: 1+l — —pcrp
8crr S8crp 15

Wi

15 -
which verify 0 < f <w < v <86.
PROOF OF [LEMMA 2.64l A computation gives that

y 3 5\’ 5 \° /64
Fo(2)de = ——copy? | (45 = e —1) .
fo wlo)de = —qgerry <(y SCTF> * <8cTF) (15“CTF ))

On one hand, [BL83, Theorem 1] gives that if there exists y > 0 such that
§0 Fu(z)dz > 0 then a solution to (RPb-y|) exists. On the other hand, let us
suppose that there exists a solution u to (RPb-4)), then Hj is strictly decreasing
and lim,_,., Hy(r) = 0, hence

u(0)
0 < Hy(0) = f F,(z)dx.
0

We thus have proved that the existence of a solution is equivalent to the existence
of y > 0 such that §j F,,(x)dz > 0. In terms of , it says that the existence of a
solution is equivalent to %MCTF < 1. Then, under this condition on pu, a direct
computation gives the bounds w and 6.

One can easily find that § < w by checking that g < %w. But we can find all
the ordering by defining, on [0; g], the functions

1 5
B(x) = 5(1 —V1—4z), Q)= g(l —4/1 — 64z/15),
1 5
['(x) = 5(1 ++v1—4z), O(z)= §(1 +4/1 — 642/15)
and verifying that © <" < 0 < B’ < Q' on (0;15/64), that B(0) = ©(0) and
that ©(15/64) = ['(15/64) = Q(15/64). O
Before proving the uniqueness and non-degeneracy, we give a result about the
exponential decay of the solutions, which will be useful in the next Step.
LEMMA 2.65 (Exponential decrease). Let G be a continuous function on R,
with G(0) =0, and p > 0. If u >0, such that u — 0 as r — o0, is a solution to

"

2
v+ =u' = (u+Gu)u on Ry,
T
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then for any 0 < € < u, there exists a constant C' such that

C
0 <u,|u| < —e"VHE
r

PROOF OF [LEMMA 2,65 Since v — 0 at infinity, we rewrite the equation
and for any 0 < ¢ < pu we have for r large enough

(ru)" = (u+ G(u))ru = (p — e)ru.
Then we define o = 1 — ¢ and f(r) := —ru(r)e”Ve", and obtain
1< —2/af

for r large enough. Consequently, by Gronwall’s lemma, there exists R such that
for any r = ro = R, it holds that

F1(r) < fl(rg)e?Yeroe2ver. (2.92)

Since f — 0 as r — o0, integrating on (r; 20) the above inequality for r > rq > R,
we obtain
/
—f(r) < f (TO) 62\/&r06—2\/ar
2/«
thus f/(rg) = 0 for any 1o = R, since u = 0, and

/ —y/ar —ar
0 < u(r) MGQ‘/&"Oe = C° .

2/« r r
This concludes the proof for u. The fact that f'(r) > 0, combined with (2.92)
and the definition of f, implies for r > rq that

N

1 , 1 e~ver
Va—=]uzd(r)= | Va——)u—2yaC

r r r

Thus, for r = max{ry; a2} that
e vor e—ver
VaCl > (r) = —2v/aC :
r

This concludes the proof of [Lemma 2.65] U

Step 4: Uniqueness and non-degeneracy.

PROPOSITION 2.66 (Uniqueness and non-degeneracy of radial solutions). Let
crrp >0, fir € <0’ L1 ) and define F,, by (2.34). Then the problem (RPb-p

Y64 crp

has a unique non-trivial radial solution u. Moreover, it verifies

0 <w < [lull poo sy = w(0) <,
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with w and ~y defined as in[Lemma 2.6]), and is non-degenerate: the unique solu-
tion v to

2
L(v) =" + ;v’ + F(u)v =0

v'(0) =0

diverges exponentially fast when r — oo. More precisely, v(r) — —oo and v'(r) —
—oo exponentially fast when r — 0.

The pioneering works on uniqueness of solutions to the NLS nonlinearity
[Cof72, Kwo89] have been followed by many results introducing conditions on
F' ensuring uniqueness of radial solutions to semi-linear equations of the type
(A+ F(u))u =0, see e.g. [PS83), MS&87, KZ91l, McL93|, [ST00, LRN15|. For
our particular function F' as defined in , the uniqueness is given by [ST00),
Theorem 1’|, by means of The non-degeneracy result is not always
stated in those works although sometimes present in the middle of the proof.
Therefore, for clarity, we will give the detail of the proof of our Theorem, follow-
ing [LRN15| which is mainly based on the approach of McLeod in [McL93| and
its summary in [Tao06, App. B] and [Fral3|.

PROOF OF [PROPOSITION 2.66l We start by proving that the solutions w
to (RPb-p)) verify

0 <w < |ull, =u0) <n.
To do that, we state the following Lemma that we will need several times.

LEMMA 2.67. Let u be solution of (RPb-gf). If 1o = 0 is such that u'(rg) = 0
and u(rg) > 0 then u(r) < u(ro) for all v > ro. In particular, |ull,, = u(0).

PROOF OF [LEMMA 2,671 Let 79 = 0 be such that u/(rg) = 0 and u(rg) > 0
and suppose that u(r) < u(rg) for all » > ry does not hold. The function u
being continuous and vanishing at infinity, there would exist r, > 7y such that
u(ry) = u(ry) with u not constant over (r,ry). Then, for H defined in (2.90),
we have Hyq)(10) = 0 and Hyg)(rs) = 0 but the computation of H' made
in (2.91) and the fact that «’ is not identical to zero on [rg,r,] implies that
Hyr)(15) < Hygr)(10) giving a contradiction. O

By |[Lemma 2.64, we have u(0) > w. We now prove that u(0) < ~. Indeed,

suppose that u(0) > 7 then there exists o > 0 such that u > v on [0;79) and
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u(ro) = . Then, since H, is strictly decreasing, we have
iy [
u'(r
0> H,(ro) — H,(0) = TO —~ J F,(z)dz
o

which is impossible since «(0) > v and F,, < 0 on (y; ). Finally, r — 7 being a
stationary solution of (2.87)), we cannot have u(0) = v which concludes the proof
of w < u(0) <.

We now look at the unique solutions to (2.87)) with «(0) = y, that we denote
by u, and we let y vary in (0,7). As in [McL93|, we introduce the sets

S, = {ye (0.7 minu, > 0},
So ={y € (0,7)|u, > 0 and lim u, = 0},
S_ ={y € (0,7)|uy(ry) = 0 for some (first) r, > 0}

which form a partition of (0;7). We first remark that (r,y) — w,(r) is smooth
since real-analytic given that F), is analytic. Therefore, S_ is open. For conve-
nience, for y € Sy, we denote r, := +o0. Since H' decreases along a solution, as we
proved earlier, gives (0;w] < S which implies that Spu S_ < (w;7).
Moreover, the existence of positive radial minimizers proved in im-
plies that Sy # . We state first two lemmas giving properties of elements of
S_, Spand S,.

LEMMA 2.68. Let y € Sy u S_. Then u, <0 on (0,r,), that is, u, vanishes
before w,. In particular, u, is strictly decreasing on (0,7).

PROOF OF [LEMMA 2.681 By means of Sy u S_ < (w;7) < (8;7) and (2.87),
it holds that 3uy(0) = —F),(uy(0)) < 0, since u"(r) ~,0 “/Y). Hence u,(r) < 0
for » > 0 small enough. Moreover, by definition of r, together with the fact
that u, cannot have double zeroes since it is solution of , we know that
g (ry) < 0.

Let us assume that u; changes sign before r,. Then u, has a local strict

minimum at r, € (0,7,) with wu,(r,) > 0. But since lim,_,,, = 0, there must be
Te € (ry;7y) such that u,(r.) = w,(r,). This leads to a contradiction since we

then have
(uy (r4))? [ " (u,(s))?
yT :HB(T*)—HB(T’*) :f Hﬁ(s)ds: —2] Tds<0.

O

LEMMA 2.69. Let y € S,. Then u, vanishes at least once and, for the first
positive root vy of u,, we have Hy(r.) < 0. The set S, is open.
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PROOF OF [LEMMA 2.69. If y = 3 then u, = 3 and Hy(r) =

for all » > 0. Let us now suppose y # .

We claim that u, vanishes. Otherwise, since 3uy(0) = —F),(u,(0)) by means
of , either y > 8 and u, is decreasing or y < 8 and wu, is increasing, and
in both cases u, has a limit at infinity u, € (0,7). Then the equation (2.87)
leads to F),(ux) = 0 hence that u,, = 8. Now, following [BLP81, Fral3|, we
introduce V' := r(u — ) which solves

F,(z)dz <0

Ol

V. (2.93)

Recording that F,(u) = —crpu(us — B3)(us — 3), we obtain

}L%m = crpB(y — 5%)}£%ﬁ =3
Therefore V(1) ~,—o —%cTFB%('y% — B3)V(r). On one hand, if y > /8 then
V > 0 on (0;00) thus V' is strictly decreasing for r large enough. Let suppose
that 0 > lim,_,, V'(r) = —o0, then V(r) — —c0 when r — oo which is impossible
since V' > 0. If we now suppose that lim,_,,, V/(r) = 0 then there exists r, > 0
such that V’(r) > 0 on (r,; o0) — since V" is strictly decreasing for r large enough
— which implies that V' (r) = V(r,) > 0 for r > r,. Consequently, V" < 0 on
[7; 00) which contradicts our hypothesis lim,_,,, V'(r) = 0. On the other hand,
the case y < [ leads to a contradiction following the same arguments. We have
proved that u; vanishes and we denote by r, its first root.

We now prove that Hy(r,) < 0. On one hand, if y <  then

Hy(0) — JFu(x) dz < 0

and H being non-increasing, we conclude that Hy(r,) < 0. On the other hand, if
y > f then u, < 0 for small > 0 since 3uj(0) = —F),(u,(0)) by means of (2.87).
However wuy(r,) # 0, otherwise F},(uy(rs)) = 0 and then u, is constant, thus u,
attains a local minimum at 7, which implies by that F,(u,(r«)) < 0. Since
we have also u,(r,) < u,(0) < 7, we can conclude that w,(r,) < £ and finally
that Hy(r,) < 0.

We conclude by the proof that S, is open. We know that (0;w] < S, and we
recall that 0 < f < w <. Let y € Sy n (f;7). For z in a neighborhood of y, by
the smoothness of (r,y) — u,(r) and since u, has a local minimum at r, > 0, u,
has a local minimum at a point r, close to r,. Moreover, the local energy H*
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associated to u, verifies
uz(rz)
Hr) = BP0+ [ oo
uy (rs)

which is strictly negative for z close enough to ¥, since Hy*(r,) < 0 and by
the smoothness of (r,y) — u,(r). Since w, is solution to (2.87)), Hy* is strictly
decreasing on [0; o) hence, for any r > r,, we have

S ere(ua(n)? (et — i) (67— (wa()F) < Hig=(r) < Hi=(r2) < 0.

Thus there exists € > 0 such that for any r > r,, we have 0 < ¢ < u,(r) <w —e¢.
In particular u, does not vanish hence z € S.. We proved that S, is open. [

Those two lemmas stated, we consider v,, the unique solution to the ODE

2
L(v) :=v" + ;v' + F(u,)v =0
v(0) =1
v'(0) = 0.

This function is simply v, = dyu,, the variation of u, with respect to the initial
condition u,(0) = y. This implies the following Lemma.

LEMMA 2.70. Ify € Sy and v,(r),v,(r) — —o0 when r — <, then there evists
e > 0 such that (y —e,y) < Sy and (y,y +¢€) < S_.

PROOF OF [LEMMA 2.70l This lemma is [McL93|, Lemma 3(b)| and we fol-
low its proof. Let a > 0 be such that F, < —4 on [0; ). Then choose R such that
uy, < aon [R;+m). Finally, choose Ry > R such that v,(R;) < 0 and v, (R;) < 0.
Since v, = 0yu, and u,(R;) > 0 (because y € Sy), then there exists ¢ > 0 such
that for z € (y; y+¢) it holds that 0 < u.(R:1) < uy(R;) and w/(R1) < uy(Ry) < 0.
The function w := u, — u, is negative at Ry with w'(R;) < 0. Let suppose that
z € Sy u S, then either w tend to 0 or becomes positive at some point, since
y € Sp. Consequently, w must have a local minimum at some point Ry > Ry, and
with w(Ry) < w(r) < w(Ry) <0 for all Ry <r < Ry. Hence, implies that

0 < w'(Ry) = Fu(uy(Ry)) — Fu(u.(Rz)) = —F, (n)w(Ry)

)
for some 0 < u,(R2) < n < uy(R2) < a where the strict positivity comes from

the fact that z € Sp U Sy. But F(n) < —§ < 0 and w(Ry) < 0, leading to a

contradiction. The proof is the same for z < y. U
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We now prove that for all y € Sy, we have v,, v/
be based on the Wronskian identity

(r(f'vy = foy)) = v, L(f), (2.94)

that holds for any f twice differentiable. We first compute the three functions
L(uy), L(uy) and L(ru,). First, we have

y — —00. The argument will

2
L(uy) = u, + ru + F)(uy)uy = F,(uy)uy — Fu(uy). (2.95)
Moreover, F/(u,)u), = (F,(u,)) = —u) + Zu, — 2ul, thus
/! /// 2 !/ / 2
L(u,) = uy + u + u, I (uy) = r2uy

and

"

2
L(ruy,) = duy + ruy) + ;ug/ + 1 F), (uy)u,

2
—F,(uy) + ug +r <Tu + u”’ + (Fﬂ(uy))’> = —2F,(uy).

LEMMA 2.71. For every y € Sy, the function v, vanishes exactly once.

PROOF OF [LEMMA 2.71l We first prove that v, vanishes at least once. Sup-
pose on the contrary that v, does not vanishes, then v, > 0 on R, since v,(0) =
1> 0. From (2.94), for f = u;, we deduce that

(r*(ujvy — ) = 2v4u, <0

and, consequently, 7*(ujv, — w,v,) = r° vy ?(uy,/v,)" is decreasing and vanishes at
r = 0, thus there exists ¢ such that r (uyvy u,v,) < —¢ < 0 for v > 1 and
(uy,/vy)" < 0. The latter leads (up to taking an even smaller ¢) to u; /v, < —¢ <0
for r > 1, since u,(0)/v,(0) = 0, and 2ﬁnadly that 0 < v, < —u,/e. However,
for 7 large enough, r?|v, (r)uy(r)| < =|u,(r)||uy(r)| decays exponentially fast.

Indeed, [u,| decays exponentially fast by m and uy too by (2.87) and
the exponential decay of all the other terms in said equation. Hence r2u v’ >¢e/2

for r large enough. Using again that u; decays exponentially fast togezhgér with
u, < 0, we obtain that v; diverges exponentially fast to —oo, which contradicts
vy > 0.

We now prove that v, can only vanish once and our proof follows [Tao06, pp.
357-358|. First we note that for z = (5, at which the solution is stationary, the
function u, —u, = u, — 3 vanishes exactly once since, by [Lemma 2.68], u,, strictly
decreases from y > 2z = 3 to 0. Using on one hand that, for any z, u, —u, cannot

have double zeroes (because u, and u, solve the same second order ODE) and,
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on another hand, that v, = d,u,, we obtain by taking z — y that v, vanishes at
most once. O

This [Lemma 2.71| allows us to now prove that v, and v;, diverges to —oo.

LEMMA 2.72. For y € Sy, we have vy(r),v,(r) — —o0 as r — .

Proor oOF [LEMMA 2.72| By |Lemma 2.71] let ., be the unique root of v,,
which verifies v; (r,) < 0. We define

rul (r)
f(r) == uy(r) - muy(r*)
which vanishes at r,. We first note that ¢ := —u,(r.)/(r«u,(r+)) > 0, by means

of [Lemma 2.68] Then, by (2.94), we have

(r*(f'v, — fv;))' = r*v,L(u, + cru;) = r?o, (F;(uy)uy —(1+ QC)FH(uy)) )

Moreover, 72(f'v, — fv;) vanishes at r = 0 and r = 7, hence F}(uy)u, — (1 +
2¢)F,(u,) vanishes at least once in (0;7,). However, by means of [Lemma 2.63]
x> F)(z)r — (14 2c)F,(z) vanishes exactly once on (0,7) with strictly negative
derivative at the vanishing point which, together with the fact that w, is strictly
decreasing from y to 0, gives that F (u,)u, — (1 + 2¢)F,(u,) > 0 for any r
strictly larger than its vanishing point, in particular for any » > r,. Hence
(r*(f'vy — fuy)) is negative for r > r, since 7%v,(r) < 0 for r > r,. Thus
r2(f v, — fv,) is strictly decreasing after 7, (where it vanishes) and, in particular,
there exists € > 0 such that r?( fv, — f'vy) = e >0 for r large enough. However,
by , f and f’ decay exponentially fast to 0 at infinity. Assume v,
does not diverge exponentially fast (thus it either diverges at a slower rate or
is bounded), then —r*f'v, tends to 0 and r*fv, > £/2 > 0 for r large enough.
Hence v, diverges exponentially fast which contradicts the fact that v, does not
diverge exponentially fast. So we proved that v, — —o00 exponentially fast as
r — 0.
2,/

We now use (rv,)" = —TQFL(uy)vy — —0 exponentially fast since F,(u) —

—p < 0 at infinity and v, diverges to —oo exponentially fast. Consequently, TQU?’J

diverges exponentially fast to —oo which implies the same for v O

/
Y

This proves that u, is non-degenerate for any y € 5.

We can now conclude the proof of [Proposition 2.66] Indeed, S_ and S, are

open therefore they are separated by points in Sy. However, by
together with such points in Sy are isolated points that makes

transition between (part of) S, below and (part of) S_ above. This implies that

there can be only one element in Sy and finally the uniqueness of the solution to
our problem. O
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This concludes the proof of [Theorem 2.4 O

6.3. Proofs of Remarks and a priori bounds on Jgs ()
and Jg (1)), independent of cyp.

LEMMA 2.73. For any a <1, any ue H'(R3) and v e H(K), we have
2 N3 Sy
Hrse(u) = a HVUHL2(R3) - m&

and

9A3 G2 3., .4
/K,c('U) = a ||V'U||22(K) — mcz — ESK)\SQ

where Sk 1s the Sobolev constant |[v]| sy < Sk [[V] g1y and S the Sobolev con-

stant |[ull pogsy < S5Vl 2y In particular, together with (2.23) and (2.48),
this gives for any A > 0 and ¢ > 0 that

15, . (1 3/, 1\2
Jrs o(A) > —a)\c min {, R (Sg)\ ) } )

Crr
and
1 3
e’

15 2 16
Jx.o(\) > —— A’ min (SK/\%) + fSK/\%c_l )
’ 64 5
PROOF OF [LEMMA 2.73l For Q@ = K ou R3, using the non-negativity of
HuHL ¥ ) Holder’s inequality and Sobolev embeddings, we obtain
2 3 5 3 4
Soelw) [Vl = IVl 0 Ko (@A e — T Ra(@N e,
where K1(K) = K»(K) = Sk, K;(R?) = S3 and K»(R?) = 0. But, for any v > 0
and (X,a) e R?, —aX > —vX?— j—j hence defining a := 1—v < 1, we obtain the
announced inequalities. Finally, taking a = 0, we obtain the two final inequality
but with large inequalities while the strict inequalities are obtained from the
existence of minimizer and since Su% > () for a minimizer. 0]

6.4. Independency from crrp of the upper bound on ||V1“}c||ig(Kc) in
[Corollary 2.36 Using the lower bound independent of ¢y in and
the upper bound in ([2.48)), we obtain that there exists 0 < ¢, < %CTF«3/)\|K|—1
such that, for all ¢ > ¢, and any 0 < a < 1, we have
9 Si®Ai , 3.

_6741—aC _ESK)\

0= Jrale) = a ||VUC||i2(K) ¢
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thus

9 Sx’A\5 | 3SkAs T y
V| < — - e = 42
IVEelzew.) 64a(l—a) i ¢ a(l —a) T

and one can check, for x, y positive, that the right hand side attains its minimum
(with respect to a € (0;1)) at

+ +
aozzx y= (z +9) € (Y2;1)

and this minimum is 2z + y + 24/2(x + y). This gives

5 2\ 8 16
0 < [V Za, < 8 (1 ot CC)

for all ¢ > ¢, and where C' = C(K, /\) — 35kA3. The right hand side is a

decreasing function of ¢ that tends to 6)\ as ¢ goes to +o0 hence, for c large

1
enough, we have

y 9 5
0 < [|Voelfam,) < §5K2)\§7

a bound independent of c¢rr (and c).

6.5. Proof of the Hardy inequality on K.

LEMMA 2.74. For any c, > 0, there exists C' such that for any ¢ > ¢, we have

=

|- —cT|

< Clfllay,, x.) »
L2(Ke)

for any f e H), (K.) and any T e R®.

PROOF OF [LEMMA 2.74] First we can suppose that T is in the closure of K
otherwise, if m := d(1,K) > 0, we have
I

|- —eT|

< (em) 7 fll g, -
L2(K.)

Let x and 7 be such that y*+n? is a smooth partition of the unity with supp(y) <
B(0,R") and supp(n) < ‘B(0, R) where R > R > 0 is such that B(0,2R') <
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K., < K.. Thus, by the Hardy inequality on R?, we have

Jc ' ;fZT|2 B JCTHKC W
[ U,

|- [

J (f( +ct)n)?
(—ct+K:)nCB(0,R) ‘ ’ ’2

2 . 2
<4[V(f(-+ CT)X)’|L§er(R3) + R HfHL2(1KC)

1/11z2 e,
<8 (IVF( + ey, )+ 1FC+ OVNIEe,)) +
2 2 2 1/ 1z2 )
<8 <||Vf( + CT)HLI%H(KC) + Vx5 £ (- + CT)HL?(KC)) T
<C? ||Vf||?{;er(ﬂ<c),
where
€ = 232y /max{1, [V + B2},
This concludes the proof of [Lemma 2.74] O

6.6. Direct proof of symmetry breaking. As stated in [Remark 2.39|

we can deduce directly from [Lemma 2.38| the symmetry breaking Ey.x y3x(c) <
N3Eg \(c). Indeed, if there exists € > 0 and ¢; > 0 such that for all ¢ > ¢; we

have

Inivaa(c)
——=>1+¢, 2.96
N3 Jg(€) ) (2.96)
then, by there exists ¢, > ¢, such that for all ¢ > ¢, we have
Byians(@) |y, €
N3Ex \(c) 2

We thus have to prove (2.96). For any u € Héer(K) and 1 > 0, we have
u(n™") € Hp(nK),
[y = 7 ullngy o€ [2:50)
[Vun™ ) ey = 11Vl 72 -

Thus n* _Zx .(u) = (° — 1) ||Vu||i2(K) + Zoke (u(n™)). Let v be a minimizer of
Jx A(c) which exists by [Proposition 2.30[and 1 > 1, then

> Jea(e) = (1° = 0) IV0ll 2y + e (0(07"))
> (1> — 1) HVUHiQ(K) + g gpa(c).
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By [Corollary 2.36] we know that there exists C' > 0 such that for any c large
enough, we have ||VvHi2(K) > Cc?. Thus, for any 0 <& < C (1 —n7%) 8<e we
have by that

UBJK,A(C) = (713 - 77)002 + e (c).
n*—n 15 A
1—n"264crp
= 8773(—1711(,)\(0)) + JT)KWS)\(C)'

Consequently, for ¢ large enough, we have

> £ 02 + JWKWS)\(C)'

0> T]3JK7)\(C) > 773(1 + éT)JK,)\(C) > JnK,n3>\(C>
and finally, for n = N, that

JN~]K,N3>\(C>
N?’JK’)\ (C) ’

The proof of the symmetry breaking is thus complete.

l+e<

6.7. Details of the proof of |[Lemma 2.41 We start by proving the fol-
lowing lemma which allows us to obtain ([2.59)).

LEMMA 2.75. For any (x,y,p) € R\{0} x (0;+00) x [0; +0), we have

Lp]
ly + x|P — Z (Z) yP Rk | < |zfP if |p| is even,
k=0

~1
P _ R P\ o=k .k P P\ p=lpl | lp) ‘ ;
ly + x| Z I |z|P + ] Yz if |p| is odd.

k=0

Moreover, for any (x,y,p) € (0; +00)? x [0; +00), we have

|
, p) P\ ok
el - 3 (F)wto

k=0
and, consequently, for any (z,p) € C\ {R x {0} u {0} x R} x [0; 4+00), we have
15]

p-3 (

k=0

< |=f?

)\%(zw-%\%(z)r% <13

el TS

and identiquely exchanging ® — the real part — and & — the imaginary part.

PROOF OF [LEMMA 2.75] If p € N and p is even then

[
p < DY\ p—k k _
ly + x|P — E <k>y ¥ =0

k=0
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hence the first strict inequality holds for = # 0. If p € N and p is odd then, on

one hand we have
[p]—1 D
+ P — p—k .k _ ,.p
y+al’ = ] <k)y o=z

k=0
for x > —y, hence the second strict inequality holds for x # 0. On the other
hand, for z < —y , we have

lp]—1
ly + x|P — Z <p) yP Rk = 2(y 4+ x)P — a?
k
k=0

and one can check that |2(y + z)? — 2P| < |z|P since y > 0 and p is odd. Hence
the second strict inequality holds for x < —y too.

We now suppose that p ¢ N, thus 0 < p — |p| < 1, and |p| is even. We define
on R the functions

|p]

YN _ P\ p—k k
) =P ly+ap 35 (1)t

k=0
which is indefinitely differentiable on R\{0, —y} with its j-th derivative being

F29(@) = L O%mmmm“ﬁH%My+wvw+ﬂ“j

(p—J)!
] o
+ (p J)zﬂ’kwkj ,
=y k—J

for any integer j € [0;|p|]. Those derivatives can be continuously extended at 0
and at —y therefore, from now on, we will call fyi(] ) the continuous extensions

too. For any integer j € [0;|p]], we have ny—r(j)(O) = 0. Moreover,

FEID () — ) (» —lp]) ( Sgn(af)_ _ Sgn(yﬂfz )
(p = D! \Ja|Pl1=r = |y  flplrir
on R\{—y,0}. Thus f;(lpjﬂ) is positive on R\[—y;0] and negative on (—y;0)
while fy*([pJH) is positive on (—y; —y/2) U (0; +00) and negative on (—o0; —y) U
(—y/2;0). Therefore the monotonicity properties on intervals combined with the
fact that ff(lpj)(O) = fy_(lpj)(—y) =0 and

R R o—1p]
lim f," = =0

(r—[p))
imply that fzf([pj) > 0 on R\{—y,0}. Finally, since fzf(j)(O) = 0 for any integer
J €0;|p]], we conclude that fyi(j) < 0 on R_\{0} for j odd, f;—r(j) > 0 on R, \{0}
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for j odd and fyi(j) > 0 on R\{0} for j even. In particular, f5 > 0 on R\{0}.
This concludes the proof of the first inequality.
We now suppose that p ¢ N with |p| odd and define on R the functions

[p]—1
gyi(f) = |x|p + ([]ij)yp_lp”x“pj ¥ |y 4 x|p + 2 (z)yp—kmk7

k=0

which is indefinitely differentiable on R\{0, —y} with its j-th derivative being

0@ = 2 (%mmy<uwv+<p_fﬂwmwwkg

(p—17)! S
! j i S0 (P s
+W ((sgn(y+$)) ly + 2" - kz_; (k—j)y - >’

for any integer j € [0; |p| —1]. Those derivatives can be continuously extended at
+()
y

too. For any integer j € [0; |p| — 1], we have g (j)(O) = 0. Moreover,

0 and at —y therefore, from now on, we will call ¢ the continuous extensions

p! - ~lply -
gy " () = = (Gan(@)P (a4 g2 V) (sgu(y + )Py + oY)

(p— P!

on R\{0}, by continuous extension at —y. One can check that both g, ) and

g;r(lpj) are positive on (0;0) and negative on (—o0;0). Finally, since g;(j)(()) =0
for any integer j € [0;|p| — 1] and |p] is odd, we conclude that g;—r(j) < 0 on
(—o0;0) and gj(]) > 0 on (0;0) for j odd and g;—r(]) > 0 on R\{0} for j even. In
particular, g;- > 0 on R\{0}. This concludes the proof of the first two inequalities.

If we now restrict the study to z € R, the study of fyi for any p gives that

1
p p p—k, .k
el = 3 (7)o

k=0

<|z’,  V(z,y,p) € (0;+0)* x [0;+0).

Thus, for (¢, z) € (R\{0})?, applying the above to = = 2> > 0, y = t> > 0 and
p = £ leads to

14,
el = 30 (32 < Lot

k=0
This concludes the proof of [Lemma 2.75] O

We can now turn to the details of the proof of [Lemma 2.41} Let (7.).., be a

sequence of Ji, x(1)’s minimizers thus, in particular, 0. € H},,(K.) for each c. We

split the proof in several step for clarity. Note that our proof uses the number
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m (defined just below) but that it could be also proved without introducing it,
similarly to [Lemma 2.42]

Step 1: non vanishing. We prove here that there exits a sequence of trans-
lations y := {y.} = R3 such that 8¥1x, — u, # 0 weakly in L*(R?), up to the
extraction of a subsequence, where ©¥ := 0.(- — y.). First, by K.-periodicity, we
have that [|[0¥1k, L2(R?) does not depend on y and is equal to v/A. Thus such
L*(R3)-weak limits u, > 0 exist. This step consists therefore in proving that
there exists u, # 0.

Similarly to the proof of we introduce, for any sequence {p,}
bounded in L% _(R?), the number

loc

m({g,}) = sup U ol | Han} = R?, o, (- — z4) — ¢ weakly in L*(R?) } :
R3
We thus have to prove that m({v.}) > 0.

REMARK. Vy := {y.} = R*, m({¢)}) = m({en}) and m({en, }) < m({gn}).

For any z € R?, K + z will denote the z-translation of K. Then, for any ¢ > 1,

we take a finite family {z;};,ey < Zk such that |J(K + z;) forms an tiling of
{zi}
Kiq := [c] - K. We thus have that z; # z; and (K + 2;) n (K + z;) = Jif i # j

and that

U(K + ZZ) = K[C]'
{z:}

Consequently, we have

3 3
i g, < 31 Wl

< Z ’|?§C”EQ(K+%)

{z:}

4
o 3 o2
< Z (sup HUCHLQ(K+ZZ~)> C(K) ”UC||H1(K+ZZ')
s} "

~ 2
UCHLG(K+Z¢)

4

o TRV

<SCE)(8 sup il paqensy ) lielroge,)
(K+2z)cK,

where the factor 8 is a rough upper bound arising twice (respectively for L? and

H'! norms) from the fact that the (K + z;)’s on the edges belong at worst (when

z; s near a corner of K.) to 8 distinct replicas of K.. Passing to the limit ¢ — oo,
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we deduce that there exists C' depending only on K (not on K.) such that

2/3
10
limsup [|0c] % < C <limsup sup f |ch]2> lim sup ||z70||§{1(K ) -
c—0 L3 (Ke) K+z c—00 ¢

20 (K+z)cK,

Let now consider {y.} < R? such that (K + y.) < K, and such that
lim |0.|* = limsup sup J |0
20 JK+ye =0 (Ktz)cKe JK+2

and let x. € CF(K.) be such that 0 < x. < 1, e, , = 1, Xepayx, = 0 and
IV Xl oo g3y Pounded. The sequence (7Y x.). being bounded in H'(R?) by
, there exists, up to extraction of a subsequence, u, € H'(R?) such that
0¥ Xe, — uy, weakly in H'(R?) (which is the same weak limit as ©Y’s weak limit)
and, by Rellich-Kondrachov Theorem, strongly in L*(K). Thus

lim |92 hmJ [0Y)? = limf 1Y xe|* = f u,|> < m({0.})

c—00 Ktye c—00
and, consequently,
l1m 1sup HUC||1LO/O?;3 ®) SC (m({v.}))** 11151 sup ||1VJCH?L11(KC) . (2.97)
This concludes this step since

imsup [[0c[| g,y < 1 < Hmsup || Oc]| pross i,
c—0 €0

by [Corollary 2.36| thus m({o.}) > 0.

Similarly to - but using H’UCHLS/3 Kiz) S HUCHLQ (K+2)
first upper bound of this Step, one obtalns

lim sup 5]l Yo sy < C' (m({5))"° lim sup |5 1, (2.98)

Uell o4z I the

Step 2: bubbles’ extraction. We prove here that the minimizers split into a
sum of localized bubbles as ¢ goes to 0. Using Lemmas and we start

by proving a H'-convergence result in the following lemma.

LEMMA 2.76. Let K be the unit cube, 0 < Ry < R} be such that R, —

0 and {p:fes1 be a sequence of functions such that . € H;er( K.) for all ¢,

lecl 1 i,y uniformly bounded and p. — o weakly in L*(R®). Then there exists

a subsequence {¢¢, }, ., such that
khj{}o e, — &k — ¢k||H1(KC y =0
where B(0,4R},) < K., {&}e and {Y}i are in HY, (K.,) with their H'(K,,)-

per
norms uniformly bounded such that
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(1) 1k, & — ¢ weakly in H'(R®) and strongly in LP(R®) for 2 <p <6,
(2) supp(1k,, &) < B(0, Ry) and supp(lk,, ¢r) < K, \B(0, R}),
(3) m({¢}) < m({ee, }) < m({ec}).

PROOF OF [LEMMA 2.76l The proof is similar to the one of [Corollary 2.62|
but adapting it to our specific case which is periodic and the sequences are not,
per se, in H'(R?).

Since Ik @ — ¢ weakly in L*(R?) and [jp|| (k) uniformly bounded we

have by [Lemma 2.43| that ¢ € H'(R3) and ¢, — ¢ weakly in H'(R?).

Let {1.} be smooth functions such that, for any ¢, n. : R* — [0, 1], neg, = 1,
Nersvgo,, = 0 and [[Vne| e gsy bounded. Since nep. is H'(R3)-bounded and

converges weakly to ¢ in H'(R?), we apply [Lemma 2.61| to it together with

Ry/2 and 4R, and obtain a subsequence {¢., }, that can be chosen to verify
B(0,4R;) < K., for all k, such that

f oal = f 0P and f (e ? + [Viu [2) — 0. (2.99)
|| <Ry,/2 R3 Ry./2<|z|<4R),

Let x : R* — [0,1] be a smooth function such that 0 < x' < 2, xj,11 = 1,
X|i2,0) = 0. We then denote xi(x) := x(2|z|/R) and ((x) := 1 — x(|z|/R},) and
introduce &, and v, the two K, -periodic functions such that gklchk = XkPe, and
Uk, = Cipe,- It holds, on K, , that

o, — &k — Ui = o, (X(|ZI/Ry) — Xx(2|z|/Ry))
which leads to K., n supp (¢, — & — ¥x) < {Ri/2 < |z| < 2R} and finally,
using ([2.99)), to the fact that

klgglo [0e, — &k — WHHl(K%) = 0.

Moreover, by construction, 1k, ¢ — ¢ weakly in H 1(R3) and it also holds that

- Jim = [ 1P
R3

‘2
—%JB(0,Re/2)

lim 1
k—o0 RS‘ chfk‘

hence 1k, & also strongly converges to ¢ in L” (R3) for 2 < p < 6 by Sobolev
embeddings and because ||| (k. 18 uniformly bounded. In addition, it is easy
to see that 1p(4r,)¥x — 0 strongly in L?(R3).

We now prove that m({g}) < m({ge,}) < m({@.}). We suppose m({y}) >
0, otherwise there is nothing to prove. Thus, there exists k;’s, {z;} < R?® and
¥ # 0 such that ¢y, (- — ;) — ¢ weakly in L*(R?®). We first prove that, for j
large enough, we have |z;| > 3R] . Indeed, if for a subsequence (denoted the
same), we have |z;| < 3R} then ¢y, (- — 2;)1pr,) — 0 = ¢ weakly in L*(R?)
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— since B(x;, Ry) < B(0,4R;) and 1par,)¥r — 0 strongly in L*(R*) — a
contradiction. Consequently, we have that

Uiy (= 25) Lo, ) = Yo, (= 2)lpor, ) — ¥

since (; = 1 on B(x;, Ry,,) which implies that Per, (- — ;) — ¢ weakly in L*(R?)
hence that m({¢;}) < m({¢.,}). O

This result allows us to obtain which concludes this Step 2.

LEMMA 2.77 (Splitting in localized bubbles). Let K be the unit cube, {pc}es1

be a sequence of functions such that ¢. € H,, (K.) for all ¢, el g, uni-

formly bounded and m({p.}) > 0. Then there exists a sequence of functions
{oW @ ...} in HY(R?) such that the following holds: for any € > 0 and any
fized sequence 0 < Ry, — o0, there exist:

o J>1,

e a subsequence {¢., },

® Sequences {5}531)}, ) {SI(gJ)}7 {@ij} n H;ET(KCI@) ’

o sequences of space translations {:E,(:)}, e {xé‘])} in R3,
such that
J
L e L SR
]:

H'(Ke,)
where

. {5,(:)}, cee {g,(;’)}, {1} have uniformly bounded H'(K,,)-norms,
]1ch§,§?> — ) weakly in H'(R?) and strongly in LP(R3) for 2 < p < 6,

supp(lx., ,(Cj)) < B(0,Ry) forallj=1,---,J and all k,

J .
supp(lk., ¥r) = Ko\ U B(:cﬁj), 2Ry) for all k,
=1

J
o 20 — 29 > 5R,, for alli +# j and all k,
e m({{y}) <e.

PROOF OF [LEMMA 2.77] Let € > 0 and the sequence {R;} be fixed.
Since m({y.}) > 0, there exist a subsequence c.,, a sequence translation
{z\"} = R3 and a function 0 # ¢ e L2(R3) such that Do (- + M) — o

weakly in L?(R?). We apply [Lemma 2.76| to ¢, (- + x,gl)), Ry and R) = 2Ry.
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Thus, up to a subsequence (we keep the same notation for simplicity), {¢¢, }, .
is such that

=0

lim ’
k—o0 H(Ke,)

1 1 2
o — €0 o) = )

where ¢ and ¢\” are in H! (K, ) for all k£ and \]§£1)||H1(K%) and Hzp,?)HHl(K%)

per
uniformly bounded. Moreover

(1) ]lK%f,(cl) — V) weakly in H(R?) and strongly in LP(R?) for 2 < p < 6,
(2) supp(lx, &) < B0, Ri) and supp(l, ") = Ko, \B(x,”, 2Ry),
(3) m({vi”}) < m(fee}) < m({ech),

REMARK. Unlike how things have been written in [Lemma 2.76, from now on
w,(f) includes in its definition the translation sequence z} " .

If m({w,(f)}) = 0, then we can stop here. Otherwise, we apply the same to the
sequence {w,(f)} which verifies the same three properties as {.} was verifying.
There exist a subsequence (same notation for simplicity), a sequence translation
{z\?} « R3 and a function 0 # ¢® e L*(R3) such that > (-+2) — ¢ weakly
in L2(R3). We claim that [z\” — 2{"'| - o0. Indeed, if it were not divergent, then
up to another subsequence, we would have |x(2) - (1)\ — v. Then the fact
that ¢, — W (- — x,gl)) (2) + €k, where ||6k||H1(K ) — 0 thus g — 0 weakly
in L2(R®), would lead to the fact that ¢, (- + z\)) — gp( )+ @ (- + v) which

contradicts the fact that ¢, (- + x,gl)) — M smce +¢@ £0.

We now apply [Lemma 2.76| to > (- + xk ", Ry, and R, = 2R;,. Thus, up to

a subsequence (same notation for simplicity), |x(2) - x}(€1)| > 5R, for all k and
{1/1;(.32)}/.3_,00 is such that

lim 92 — 2 - 2) - vf?|

k—00

=0
HY(Ke,)

where ¢ and o}” are in H],(K,,) for all k and [|€7 1., and [0 .,
uniformly bounded. Moreover

(1) ]IK%é( ) — 0@ weakly in H'(R3) and strongly in LP(R3) for 2 <p <6,
(2) supp(]chkf,f)) < B(0, Rx) and supp(]lKCkw,(:’ ) < K\ U B( xk ) 2Ry,

j=1
(3) m({g"}) < m({”}). |

Repeating this, we obtain that for any ¢ > 1 such that m({l/}](:)}) > 0, we have

that

P = 25” o) -y Zﬂw —&0( =) v 0
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where the norm is the H'(K,, )-norm and z/;,(j) = ¢, and with all the wanted
properties verified, except the upper bound by e. This last one comes from the
fact that m({x){"}) > 0 for all i and their infinite sum is bounded by A thus the

sequence converges to 0. Hence, there exist J > 1 such that m({Q/J,(cJH)}) < e and

this concludes the proof of [Lemma 2.77] O

Step 3: end of the proof. We apply [Lemma 2.77to the sequence of minimizers
{v.} which verifies the hypothesis of the proposition by |[Corollary 2.36[ and does

not vanish (see [Step 1)). Thus

17,?)(- _ x(]))

J
ljckIVk-l-&k-i-

7=1
(j))a

where HE’fHHl(ch) — 0 and, for a given k, the supports of the T)Igj)(. —x7’)’s

and vy, are pairwise disjoint. Using the support properties of the functions, the
Minkowski inequality, Sobolev embeddings and the fact that supp(]lKCkﬁ,(j)) c

B(0, Ry) c K., , we then have that
J .
Ty (V) = Fie, (0e) = Fieo, () + 3 Fie, () + 0(1)e oo
j=1

J
= ., () + Y I, (Ix, 0) + 0(1)eymn
=1

J

J
= I, () + Y Fro(i, 0) + 0(1) o
j=1

Moreover, the strong convergence of ]IK%T),(CJ') in L? and the continuity of \

Jgs x, proved in [Lemma 2.12, imply, for all j = 1,---,J, that

S, ) 2 s (16, )) = s (A9,
where, for any j, AU := [|01)]| ;2gs) is the mass of the limit of ]1ch1‘3,§?). We also
have denoted Jgs(\) := Jgs » to simplify notations here. In addition, given that
the H'(K,,)-norms of {1} are uniformly bounded, we can use (2.98) to obtain
that there exist C' > 0 such that
3 8/3 5/6 5/6
o, i) = =7 |l = =C(m({n}))™” = ~C7.

Key,
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Those inequalities together with the strict binding proved in |[Proposition 2.16|
lead to

J
lim inf Ji, (V) > Z Jrs(AV)) — C/0

> Jas ( i )\(j)> ~ O > s (N) — s (/\ - EJ: A(j)> — O,
j=1

j=1

By the support properties, we have

J
< Il = 3= 20

J J
thus A — >} AU) > 0 and this implies that Jgs ()\ - )\(j)> < 0 which leads to
j=1

j=1
lim inf Ji,, (A) > Jea(A) — e,
This concludes the detailed proof of [Lemma 2.41]

6.8. Two technical inequalities.

LEMMA 2.78. There exists C' < T() such that, for all integers p > k > 1

and all nonnegative real numbers X and Y, we have
X =y < X =YX+ Y)Y (2.100)

and
X Y| < OIX = Y](X + V) (2.101)

PROOF OF [LEMMA 2.78] It is enough to prove the two results for 0 < Y <
X. Moreover, the equality cases being obvious in the two inequalities, we in fact
suppose that 0 <Y < X.

We start with the proof of (2.100). Defining, on (Y'; ), the function

fy(X) = (X _ Y)(X + Y)l-i—l/p o X2+1/p i Y2+1/p,

its derivative is

iz = gX(Y)’

FAX) = (X +Y)? [2X+ X_Y] Sl

p p

where gy is defined on (0; X). Its own derivative is

1) (X -Y)>0,

gx(Y) = p

;(X +Y)r ! (1 +
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hence gy is strictly increasing. Since gx(0) = 0, it implies that gx > 0 on (0; X).
Finally, for any Y > 0, fy is strictly increasing on its domain (Y’; o0). It concludes
the proof of since fy(Y) = 0.

We now prove . For p = k, the result is obvious hence we suppose that
p > k = 1. Defining, on (Y;0), the function

fY7C<X) = O(X — Y)(X + Y)’“/P _ X1+k/p + Y1+k/p’

its derivative is

froX)=C(X + Y)g‘1 lX (1 + ]Ij) +Y <1 — ];ﬂ - p;kaw =: gxc(Y),

where gy ¢ is defined on (0; X). Its own derivative is

/ _ ﬁ o E %—2 o <
IxcY) = —C’p <1 p) (X+Y)r (X -Y)<0.

Moreover, gx c(X) = <%2% - %) X%, thus it is sufficient for no(z) = £27—z

to be positive on (1;2) to have fy o increasing and then fyo(X) = fyc(Y) = 0.

We have n.(z) = In252% —1. Thus, for C = 615(2), we have n(z) = e 127 —1
1

thus 7/(1) < 0 and n;(2) > 0. Moreover, since n¢(z) = $(In2)?2* > 0, 29 = 5

In2
is the unique value in (1;2) such that 7;(z) = 0 and we have
ne(z) > nc(z0) =0,  Vze (1;2)\{z0}.
This concludes the proof of [Lemma 2.78] O

6.9. Detailed proof of boundedness property of (—Ape — Gk + 5)71.

LEMMA 2.79. Then the L2, (K)-operator —A,..— Gy 1is self-adjoint of domain

per

ngr(K) and, for B large enough,
(=Dper — Gx + )" - LK) — H*(K)
s bounded uniformly in 5.

PROOF OF [LEMMA 2.79 Let f, defined on R?, be K-periodic and in HZ_ (K).

per

We define K’ as the union of K with its twenty-six closest neighbors. Let x €
CP(R?) be such that 0 < x < 1, xjx = 1 and xjgs\g = 0. By Sobolev inequalities,
we have

I ey < Cies I ey
< o (DO sy + 1S ioesy)
= Crs (IA0D N2y + IF iz
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It leads to
ey = I oy < G (XA zgey + 219X 19 e
18X 1 2y + 1 2

< Cao (27181 |2y
+ 54 |Vl 1A F 15t 1 1 ot

+ 2701 A, + 1) 1
< 27Ck (14 V) 1A f 20y

+ (180 + 19X + 1) 1l agey )

By the definition of K’ and thus of x, [|Ax]|xgs) and [[Vx| ;s are bounded
thus we obtain that there exists C' > 0, depending only on K, such that

£ lmy < © (1=l oy + 1 1) - (2.102)
Consequently, for any R > 0, it holds that
||GKfHL2(K) < HGK]1|GK|>RHL2(K) ”f”LOO(K) + R HfHLQ(K) :
Since Gk € L*(K), by , Lebesgue’s dominated convergence theorem
gives
HGK]lIGK\ZRHH(K) —0
as R — oo hence, for any € > 0, it finally holds that there exists C. such that

HGKfHL2(K) S€ ”_AfHLQ(K) + C HfHLQ(K) : (2.103)
In particular for 0 < e < 1, the Rellich-Kato theorem (see e.g. [RS75, Theorem
X.12]) implies that the operator —A,, — Gk is self-adjoint of domain D(—Ape,) =
H? . (K) and is bounded below.

For # > 0, we then have

-A+1
Wiy = 184 Dl < | 255 -8+ 5) s

< max{1, 37} |[(-A + 5)fHL2(K) .

Indeed for any x € K, using the Fourier series on a lattice

f(x)= ), flk)e 2mdo,

ke ZF

(2.104)

with the Fourier transform on the lattice

ﬂM:QUW%=W“Lﬂ@f“”M,
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we have
5 .
1 ey = KT X F (R
ke.Z¥
In the above, .Z¥ is the reciprocal lattice of Zkx and is generated, in the general
case, by the vectors
1

(e1 A ez, e3)

(b17 b27 b3) =

(62 N €3,z N\ €1,€1 N 62).

In the general case we have {(e;, b;) = &7 but, for or orthonormal lattice, this
simplifies to (b, ba, bs) = (€1, €2, e3) and thus £ = Zk. Inequality (2.104) is
then obtained by

“A+1 P 2
.y | e a s nEa e @
H —A+ 87 2k K| ké*
1+ 472|k|2\ ok 2
= [K|™ ( 2R (1) da
kéﬂg B+ 4m?|k|? K

< max{1, 52K| Y [f (k)] = max{l, 57} |f]72x)

ke 2k
On the other hand
Gk fll 20y < € l=AF 2y + C= 1 fll o)

<e H -
<(e+Cp ) I(-A+ Bl 2y »

the last inequality being proved through Fourier series too. Consequently, since
(A +B)(~A+Gxg+B) ' =1+Gr(-A+Gx +5)7},

we obtain that for any 0 < € < 1, there exist 8, > 0 such that for any g € Lper(K)
and any (8 = 3y, we have

H -A+Gg+8)” gHH2 < max{1,f3 I}H —A+B)(—A+ Gk +0)” gHL2

(=2 + B) fll 2 i)

= |
AP

-2+ )l + C.

B

o\
< max{1, 3"} (1 —€— 5:;) 9 r2x)

o\l
< max{1, 37"} (1 —€— E) HgHLQ(K)

Thus, for 8 large enough, the operator
(_Aper Gk + 5) per(K) HI;Q)er(K)
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is bounded uniformly in . O

LEMMA 2.80. For any v,c > 0, the operator

per Z ZZGK T z)

is self-adjoint of domain H2, (K.) and, for B’s large enough and v < 1

per )

-1
( per — Z ZzGK ' _RZ) + B) : L2<KC) - H2(KC)
are bounded uniformey in ¢, § and v.

PROOF OF [LEMMA 2,80 Let f, defined on R?® be in HZ (K.). Let x €

per

C*(R?) be such that 0 < x < 1, g, = 1 and x|ga\g,,, = 0. Noticing that, by
the definition of X, [AX| e gs) and [[VX|| e gs) are bounded independently of K.
(it only depends on K) and using that by [Lemma 2.20 there exist C such that
|G| < C1] - |71, we can follow the same proof as for [Lemma 2.79| to obtain for
any r > 0 and with Z = . z; that

N
1
C_1 Z ZZ'GK(C_l : —Rl)f < C’lZ HH]lHSl
=1

1l + Cr2r || f]l 2 k.
L2(Ke.)

L2(Ke)

A7
< OO\ 1Al

e)
47
¥ (cw/r + ) i

where C' and C are independent of c¢. Finally, for any ¢ > 0, there exists
C* Z33C?
C.:=¢c+ 4#172
€
such that for any ¢ and 0 < v < 1 we have
N

% Z ZiGK(C_l . —Rz)f

i=1

S€ ||_Af||L2(KC) +C. ||f||L2(]KC) :
L2(K.)

In particular for 0 < e < 1, the Kato-Rellich theorem (see e.g. [RS75, Theorem
X.12]) implies that, for any ¢, the operator

per - Z ZzGK T z)

is self-adjoint of domain D(—A,e) = H2,(K.) and is bounded below.

per

The end of the proof is the same as for [Lemma 2.79] [
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We now show an inequality similar to (2.102)) but for K. and with a constant
independent of c.

LEMMA 2.81. For any c* > 0, there exists C such that for any c € [¢*;00) and
f e H*(K,.), we have
1A oy < C Il a2k,
PROOF OF [LEMMA 281l Using Fourier series, as in the proof of[Lemma 2.79,

we have

f@)l< )]

E3
keﬁKc

Jg(/ﬂ)‘ < <|KC_1 Z (1+ 47r2|k|2)_2)1/2><

ke L
1/2
(1) 3 avaripy|iw] )

kez*

for f € H*(K,). Then, on one hand, we have
K 3144wk |f)| = K] Y 12 10 - A)f (k)

k:ef* ke L}
C

= (1 = ) 2y = Ik,

and, on the other hand, denoting by A the application sending Z3 onto %k hence
K| = det A and 'A~! sends Z* onto fﬂi‘ For ¢ € C(R?), we have

K™ Y (1 +4n?|k*)”

<1+ (2me! |tA Lk|? )
ke L

kez3

-2
A" e AN
< < 2 ) |K] keZZ:3 27 + I&]

Moreover, the summands depending only on |k|, the sum can be decomposed as
dDo=8 D> 412 > 46 >+
k€L XLXL keNyg xNy XNy ke{0} x Ny x Ny ke{0}x{0}xNy  ke{0}x{0}x{0}
where N, = N\{0} and we have

3 (@) | =5 |
wp (@424 + 2 8 s (07 XY

ke(Ny)3
: B ﬂfoo r2dr B 2
2 )y (@2+712)2 8a’

_ dzd * d

Z <a2+|k|2) 2<J ray ZZWJ 271 7“22: 7T2’

ke()? ®o? (@2 +a?+y2)° 2y (@472 da
*

!K!
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and

) d
3@k s | T =
keNy R, (0% +712) da

It finally leads to

-2
-1 2|12\ ~2 IA| te c[*A ’ 2
K™ Y] (1 +4m? k) < < ) & 2\ ) Ik

ke L ke73

HtA”g[ 6 6 8 —3]

< c ~+ c ~+ c
87 [K]| I*All tA|* Al

So [Ke|™' > (1 + 472|k[*)~2 is uniformely bounded w.r.t. ¢ € [¢*;00) for any
ke

¢* > 0 and this concludes the proof of [Lemma 2.81] O
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