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Résumé
Cette thèse est consacrée à l’étude mathématique de deux systèmes quan-

tiques décrits par des modèles non linéaires : le polaron anisotrope et les électrons
d’un cristal périodique. Après avoir prouvé l’existence de minimiseurs, nous nous
intéressons à la question de l’unicité pour chacun des deux modèles. Dans une
première partie, nous montrons l’unicité du minimiseur et sa non-dégénérescence
pour le polaron décrit par l’équation de Choquard–Pekar anisotrope, sous la
condition que la matrice diélectrique du milieu est presque isotrope. Dans le cas
d’une forte anisotropie, nous laissons la question de l’unicité en suspens mais ca-
ractérisons précisément les symétries pouvant être dégénérées. Dans une seconde
partie, nous étudions les électrons d’un cristal dans le modèle de Thomas–Fermi–
Dirac–Von Weizsäcker périodique, en faisant varier le paramètre devant le terme
de Dirac. Nous montrons l’unicité et la non-dégénérescence du minimiseur lorsque
ce paramètre est suffisamment petit et mettons en évidence une brisure de symé-
trie lorsque celui-ci est grand.

Abstract
This thesis is devoted to the mathematical study of two quantum systems

described by nonlinear models: the anisotropic polaron and the electrons in a
periodic crystal. We first prove the existence of minimizers, and then discuss
the question of uniqueness for both problems. In the first part, we show the
uniqueness and nondegeneracy of the minimizer for the polaron, described by
the Choquard–Pekar anisotropic equation, assuming that the dielectric matrix
of the medium is almost isotropic. In the strong anisotropic setting, we leave
the question of uniqueness open but identify the symmetry that can possibly be
degenerate. In the second part, we study the electrons of a crystal in the periodic
Thomas–Fermi–Dirac–Von Weizsäcker model, varying the parameter in front of
the Dirac term. We show uniqueness and nondegeneracy of the minimizer when
this parameter is small enough et prove the occurrence of symmetry breaking
when it is large.
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Introduction

Les modèles non linéaires tiennent une place importante dans la description
et l’étude des systèmes quantiques. En effet, les modèles exacts, qui décrivent
le comportement individuel de chacune des particules du système, sont le plus
souvent linéaires. Cependant, ils sont inaccessibles numériquement si l’on veut
obtenir des prédictions suffisamment précises, dès que le nombre de particule
dépasse l’ordre d’une dizaine. Ceci est dû au fait que ces modèles exacts sont
posés en très grande dimension (qui diverge exponentiellement avec le nombre de
particules du système), ce qui induit une complexité de calcul inabordable. C’est
afin de palier à cette difficulté que sont introduits des modèles simplifiés qui sont
presque tous non-linéaires mais néanmoins posés en bien plus basse dimension.

Dans certains régimes, il est possible de montrer que les modèles exacts sont,
au premier ordre, correctement approchés par des modèles non-linéaires simples.
Ces derniers peuvent à leur tour servir de base pour des modèles non-linéaires
empiriques utilisés en dehors du régime d’origine. L’exemple le plus célèbre de
cette approche est la Théorie de la Fonctionnelle de la Densité (DFT) qui uti-
lise des modèles non-linéaires empiriques dépendant uniquement de la densité ρ
du système, voir par exemple [PY94] et ses références. Cette approche connaît
un succès inégalé en chimie quantique, dans la théorie de la matière condensée,
jusqu’au applications industrielles.

Comparés aux problèmes linéaires, les modèles non-linéaires apportent de nou-
velles difficultés mathématiques qui à leur tour influencent leur caractère prédic-
tif. Pour les problèmes linéaires, grâce au théorème de diagonalisation simultanée,
nous savons qu’il existe toujours des vecteurs propres respectant les symétries du
problème. En dehors du cas convexe, cet argument ne s’applique pas aux pro-
blèmes non-linéaires. Il devient alors important de savoir si les états d’équilibre du
système respectent ou non les symétries. Une brisure de symétrie n’est pas néces-
sairement un inconvénient et peu même être nécessaire à l’obtention de meilleure
prédiction. Sur ces questions dans le cas de la DFT, nous renvoyons par exemple
à [SLHG99] et à [PSB95].

Mentionnons également que même dans le cas linéaire des brisures de symé-
trie peuvent être obtenues dans une limite où le nombre de particules tend vers

9
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l’infini. Auquel cas, les avantages mathématiques du caractère linéaire tendent à
disparaître. Ces brisures de symétrie se manifestent par exemple dans les transi-
tions de phases étudiées en physique statistique [Rue99]. Un solide est l’exemple
typique d’une brisure de la symétrie de translation [BL15].

Des phénomènes de brisure de symétrie ont été mis en évidence mathémati-
quement dans de nombreux modèles. Dans le cadre de modèles discrets sur des
réseaux, l’instabilité des solutions ayant la même périodicité que le réseau a été
démontrée dans [Frö54, Pei55] pour les modèles qu’ils y considèrent, tandis que
[KL86, Lie86, KL87, LN95b, LN95a, LN96, FL11, GAS12] ont prouvé,
pour différents modèles (et differentes dimensions), que les solutions ont une pé-
riodicité distincte de celle du réseau. Concernant des modèles à température finie
et sur des domaines finis, une brisure de symétrie est mise en évidence dans
[PN01] pour un gaz unidimensionnel sur un cercle et dans [Pro05] sur des tores
et des sphères en dimension d ď 3. Enfin, sur tout l’espace R3, une brisure de
symétrie est prouvée dans [BG16] pour le modèle considéré : les minimiseurs ne
sont pas radiaux lorsque le nombre d’électrons est assez grands.

Cette thèse s’intéresse à deux modèles non-linéaires : le modèle de Choquard–
Pekar anisotrope et le modèle de Thomas–Fermi–Dirac–von Weizsäcker (TFDW)
périodique décrivant des électrons dans un cristal, que nous décrivons plus précisé-
ment ci-après et pour lesquels nous nous sommes intéressés à l’existence, l’unicité
et la non-dégénérescence des minimiseurs ainsi qu’aux questions de symétrie et
de brisure de symétrie.

1. Présentation des travaux sur le polaron anisotrope

Un polaron est un électron interagissant avec un cristal polarisable et capable
de former un état lié via la déformation du cristal que sa propre charge induit.

Nous nous intéressons dans le premier chapitre de cette thèse au modèle de
Pekar du polaron, dans lequel le cristal est remplacé par un milieu polarisable
continu. Ce modèle décrit bien le système lorsque le polaron s’étend sur une
région très grande comparée à la taille caractéristique du cristal. Dans ce modèle,
l’interaction entre l’électron et le milieu est alors un champ coulombien attractif
effectif.

Dans le cas d’un milieu polarisable isotrope, caractérisé par sa constante di-
électrique εM ě 1 (un réel), ce modèle de Pekar du polaron a été étudié par Lieb
[Lie77]. D’une part il a montré l’existence de minimiseurs à valeurs complexes,
sous contrainte de masse, pour la fonctionnelle

1

2

ż

R3

|∇ψpxq|2 dx´ 1´ εM
´1

2

ż

R3

ż

R3

|ψpyq|2|ψpxq|2

|x´ y|
dy dx (0.1)
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Figure 1. Représentation de la déformation du cristal due à la
présence d’un l’électron (tache bleue diffuse) qui attire les charges
positives (disques rouges) et repousse les charges négatives (disques
bleus). Les anneaux représentent les positions des charges du cristal
au repos.
Source : Image transmise par Lewin, Mathieu.

associée à l’équation non linéaire de Choquard–Pekar
´

´
∆

2
´ p1´ εM

´1
q| ¨ |

´1
‹ |ψ|2

¯

ψ “ ´µψ, (0.2)

également appelée équation de Schrodinger–Newton ou équation de Choquard.
D’autre part, il a prouvé l’unicité à translation spatiale et phase près, du mini-
miseur sous contrainte de masse. Ce minimiseur est strictement positif, radial,
indéfiniment différentiable, (radialement) strictement décroissant avec une dé-
croissance exponentielle à l’infini.

Notons que les équations ci-dessus sont données dans le système d’unités dans
lequel la masse de l’électron, la constante de Planck réduite et la permittivité
diélectrique du vide vérifient m “ 1, ~ “ 1 et 4πε0 “ 1. Dans ce système d’unités,
une constante diélectrique εM “ 1 correspond au cas du vide.

Ensuite, Lenzmann a prouvé dans [Len09] que l’unique minimiseur positif Q
est non dégénéré. C’est-à-dire que la linéarisation

LQξ “ ´
1

2
∆ξ ` µξ ´

`

V ‹ |Q|2
˘

ξ ´ 2Q pV ‹ pQξqq (0.3)
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de l’équation de Choquard–Pekar (0.2), où V pxq “ p1´εM´1q|x|´1, a pour noyau

ker|L2pR3q LQ “ span tBx1Q, Bx2Q, Bx3Qu .

Cette non-dégénérescence est une propriété importante qui est utile dans des
arguments de type fonctions implicites.

Le polaron anisotrope. Le premier chapitre de cette thèse se propose
d’étendre l’étude du modèle du Polaron de Pekar au cas d’un milieu anisotrope.
Un milieu anisotrope n’a plus un réel εM pour constante diélectrique mais une
matrice symétrique réelle M´1 ě 1, rendant ainsi compte du fait que le com-
portement du milieu n’est pas le même selon toutes les directions de l’espace.
Ainsi, dans la fonctionnelle (0.1) et dans l’équation de Choquard–Pekar (0.2), le
potentiel p1´ εM´1q|x|´1 doit être remplacé par le potentiel

VMpxq “
1

|x|
´

1

|M´1x|
, (0.4)

où l’on peut supposer, sans perte de généralité puisqueM´1 est symétrique réelle,
que M vérifie M ă 1 et est diagonale avec des valeurs propres vérifiant m2 ă 1

et 0 ă m3 ď m2 ď m1 ď 1. La fonctionnelle anisotrope est alors

E VM pψq :“
1

2

ż

R3

|∇ψpxq|2 dx´ 1

2

ż

R3

ż

R3

|ψpyq|2VMpx´ yq|ψpxq|
2 dy dx,

le problème de minimisation, pour une masse λ ą 0 donnée, est

IMpλq :“ min
ψPH1pR3q

||ψ||22“λ

E VM pψq (0.5)

et l’équation non linéaire associée est
´

´
∆

2
´ VM ‹ |ψ|

2
¯

ψ “ ´µψ. (0.6)

Le premier chapitre de cette thèse se propose donc de voir quels résultats
obtenus dans le cadre isotrope s’étendent au modèle anisotrope.

Dérivation du modèle. L’équation de Choquard–Pekar isotrope (0.2) a été
obtenue par Donsker–Varadhan [DV83] puis par Lieb–Thomas [LT97] à partir
du modèle linéaire de Fröhlich dans une limite de couplage fort. Ce modèle décrit
un électron en interaction avec un champ de phonons second quantifié, supposé
homogène et isotrope. Dans ce modèle, la structure du cristal sous-jacent est donc
absente. Le Hamiltonien du système prend la forme

H “ ´∆`

ż

R3

a:kak dk ´
?
α

π
?

2

ż

R3

˜

ak
|k|
eik¨x

`
a:k
|k|
e´ik¨x

¸

dk,
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où les k sont les vecteurs d’ondes des phonons, a:k et ak les opérateurs de création
et d’annihilation. Le modèle de Choquard–Pekar s’obtient lorsque la constante
de couplage α tend vers l’infini, un régime qui est similaire à une limite semi-
classique pour le champ des phonons. À la limite, les phonons sont au premier
ordre décrits par un état cohérent, c’est-à-dire un champ classique. Pour des
travaux similaires dans le cas de N électrons, voir [MS07, FLST10, FLST11,
FLS12, FLS13, BFL15, AH16]. Le cas dynamique a été récemment étudié
dans [FS14, FZ17, Gri16, GSS16]. De plus, le cas avec champ magnétique
a été considéré dans [AG14, GHW12, GW13]. Remarquons que même si la
dérivation de l’équation de Choquard–Pekar anisotrope à partir du Hamiltonien
anisotrope de Fröhlich n’a jamais été réalisée à notre connaissance, on peut penser
que les mêmes arguments s’appliquent.

Dans [LR13a, LR13b], Lewin et Rougerie ont adopté un point de vue dif-
férent. Ils ont dérivé le modèle de Choquard–Pekar à partir du modèle microsco-
pique Hartree–Fock réduit du cristal dans une limite multi-échelle. Le caractère
isotrope ou anisotrope de l’équation finale dépend alors du cristal considéré.

Résultats obtenus. Les résultats que nous avons obtenus pour ce modèle
ont été publiés dans [Ric16]. La première partie de la thèse en donne une version
plus détaillée. Le résultat d’existence de minimiseurs s’étend au cas anisotrope
bien que la méthode preuve soit différente de celle donnée par Lieb dans le cas iso-
trope. En effet, la démonstration faite par Lieb repose sur l’isotropie puisqu’elle
est basée sur le fait que x ÞÑ |x|´1 est radiale décroissante et utilise le réarran-
gement symétrique. Cette preuve ne fonctionnant plus dans le cas anisotrope,
nous prouvons le résultat via la méthode de concentration-compacité de Lions
[Lio84a, Lio84b].

Théorème (Existence de minimiseurs). Soient λ ą 0 et VM défini par (0.4).
Alors, IMpλq a un minimiseur et toute suite minimisante converge fortement dans
H1pR3q vers un minimiseur, à extraction d’un sous-suite près et à une translation
spatiale près.

De plus tout minimiseur ψ vérifie

(1) ψ est une H2pR3q-solution de l’équation de Choquard–Pekar (0.6) où
´µ “ d

dλ
Ipλq ă 0 est la plus petite valeur propre de l’opérateur auto-

adjoint Hψ :“ ´∆{2´ |ψ|2 ‹ V , laquelle est simple ;

(2) µλ “ ´λ
d

dλ
Ipλq “ ´3λ3Ip1q “

3

2
||∇ψ||22 “

3

4

@

V ‹ |ψ|2, |ψ|2
D

;

(3) |ψ| est un minimiseur et |ψ| ą 0 ;

(4) ψ “ z|ψ| pour un z donné tel que |z| “ 1.
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De plus, les résultats d’unicité et de non-dégénérescence du minimiseur sont
étendus dans cette thèse au cas que nous appelons de faible anisotropie et qui
correspond au cas où la matrice M est proche d’une homothétie. Nous prouvons
ce résultat, donné dans le théorème ci-dessous, via un théorème de fonctions
implicites dans le cadre d’un argument perturbatif autour du cas isotrope. Le
résultat de non-dégénérescence du cas isotrope, prouvé dans [Len09], est un
ingrédient clé de notre démonstration.

Théorème (Unicité et non-dégénérescence). Soient λ ą 0 et 0 ă s ă 1.
Il existe ε ą 0 tel que, pour toute matrice 3 ˆ 3 symétrique réelle 0 ă M ă 1

vérifiant ||M ´ s ¨ Id|| ă ε, le minimiseur ψ du problème de minimisation IMpλq
défini par (0.5) est unique à phase et translation près. De plus, le minimiseur est
pair selon chacun des vecteurs propres de M et

kerLψ “ span tBxψ, Byψ, Bzψu ,

où Lψ est l’opérateur linéarisé défini par (0.3).

Nous développons également dans ce premier chapitre un travail sur les pro-
priétés de symétrie des minimiseurs, en fonction de critères sur la matrice M .
Nous prouvons que les minimiseurs sont toujours symétriques et strictement dé-
croissants le long du demi-axe positif défini par le vecteur propre associé à la plus
petite valeur propre de la constante (matricielle) diélécrique et donnons, pour
chacune des deux autres directions principales du milieu, une condition suffisante
assurant que les minimiseurs soient symétriques et strictement décroissants le
long de chacun des demi-axes positifs définis par ces autres directions.

Théorème (Symétrie des minimiseurs). Soient λ ą 0, VM définie par (0.4),
0 ă m3 ď m2 ď m1 ă 1 les trois valeurs propres de M et e1, e2 et e3 des vecteurs
propres associés. Si ψM ě 0 est un minimiseur de IMpλq alors, à translation
spatiale près, ψM est symétrique dans la direction de e1 et strictement décroissante
selon le demi-axe positif de cette direction. De plus, si m3

1 ď m2
2, alors ψM est

également symétrique et strictement décroissante selon e2. Enfin, si m3
1 ď m2

3,
alors ψM est également symétrique et strictement décroissante selon e3.

Enfin, nous étudions dans la dernière partie du premier chapitre l’opérateur
linéarisé, sous les conditions suffisantes mises en évidence précédemment. L’ob-
jectif serait de prouver la non-dégénérescence

kerLψ “ span tBxψ, Byψ, Bzψu

au-delà du cas de faible anisotropie. Les travaux de cette thèse n’ont pas permis
d’aboutir à ce résultat mais ont cependant conduit à un résultat partiel dans
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lequel nous n’avons pu exclure que des fonctions paires (à translation près) par
rapport à chacune des directions principales du milieu ne puissent être dans le
noyau. Précisément, nous démontrons le résultat suivant.

Théorème. Supposons que la matrice M décrivant le milieu polarisable vé-
rifie 0 ă m3 ď m2 ď m1 ă 1 et m2 ă 1, ainsi que m3

1 ď m2
2 et m3

1 ď m2
3. Si ψ

est une solution strictement positive et symétrique strictement décroissante (par
rapport à chacune des directions principales du milieu) de l’équation de Choquard–
Pekar (0.6), alors

kerLψ “ span tBxψ, Byψ, Bzψu
à

ker pLψq|L2
`,`,`

,

où L2
`,`,` est le sous-espace de L2pR3q des fonctions paires par rapport à chacune

des directions principales. En particulier, ψ peut être un minimiseur de IMpλq.

Questions ouvertes. Cette thèse laisse ouverte la question de l’unicité du
minimiseur en dehors du cas d’un milieu faiblement anisotrope. Nous conjecturons
qu’il y a unicité (à translation près) au moins sur tout le domaine défini par
0 ă m3 ď m2 ď m1 ă 1, m3

1 ď m2
2 et m3

1 ď m2
3, c’est-à-dire là où les minimiseurs

sont symétriques. Au delà de ce domaine, nous ne saurions nous prononcer.

2. Présentation des travaux sur le modèle TFDW périodique

Dans cette seconde partie, nous étudions le modèle TFDW périodique dans
lequel des électrons sont placés dans un arrangement périodique de noyaux que
nous supposons être classiques et être disposés selon un réseau périodique 3D. La
question posée dans cette partie est si les électrons s’organisent selon la même
symétrie que le réseau.

Nous étudions cette question pour le modèle TFDW sans spin, qui est une
approximation simple du véritable problème de Schrödinger à N corps, et dont
la fonctionnelle d’énergie prend la forme

ż

K
|∇?ρ|2 ` 3

5
cTF

ż

K
ρ

5
3 ´

3

4
c

ż

K
ρ

4
3 `

1

2

ż

K
pGK ‹ ρqρ´

ż

K
GKρ, (0.7)

où K est la cellule unité, ρ est la densité des électrons et GK est le potential
de Coulomb périodique sur K. Notons que la non-convexité de ce modèle est
due (uniquement) à la présence du terme ´3

4
c
ş

ρ
4
3 qui est une approximation

de l’énergie d’échange-correlation, où la valeur de c n’est en pratique déterminée
qu’empiriquement.

Nous menons notre étude sur l’éventuelle brisure de symétrie, en fonction du
paramètre c ą 0 et nous démontrons que
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‚ pour c suffisamment petit, la densité ρ des électrons solution au problème est
unique et présente la même périodicité que les noyaux ;

‚ pour c suffisamment grand, il existe (au moins) une organisation 2-périodique
des électrons dont l’énergie est plus basse que n’importe quelle organisation
1-périodique : il y a une brisure de symétrie.

Le modèle. L’énergie associée à une fonction d’onde w, dans le modèle
TFWD périodique, est

EK,cpwq “

ż

K
|∇w|2 ` 3

5
cTF

ż

K
|w|

10
3 ´

3

4
c

ż

K
|w|

8
3

`
1

2

ż

K

ż

K
|wpxq|2GKpx´ yq|wpyq|

2 dy dx´
ż

K
GK|w|

2,

(0.8)

et nous nous intéressons au problème de minimisation

EK,λpcq “ inf
wPH1

perpKq
||w||2

L2pKq“λ

EK,cpwq.

Dérivation du modèle. Il n’existe pas, à notre connaissance, de dérivation
du modèle TFWD périodique que nous étudions. En revanche, plusieurs dériva-
tions de modèles de type Thomas–Fermi peuvent être trouvées dans la littérature.
Le cas le plus célèbre est celui des atomes neutres pour lequel N “ Z tend vers
l’infini. C’est un système où les N électrons se concentrent dans un voisinage de
la position de l’unique noyau, ils sont donc très concentrés en espace. La première
preuve de la validé du modèle de Thomas–Fermi [Tho27, Fer27] dans ce régime
est due à Lieb–Simon [LS73, LS77a, LS77b]. Une autre limite du même type
pour les systèmes gravitationnels a été considérée par Lieb, Thirring et Yau dans
[LT84, LY87]. Ces deux résultats ont récemment généralisés à des potentiels
quelconques par Fournais–Lewin–Solovej dans [FLS15].

Plus proche de notre situation, Graf et Solovej ont étudié dans [GS94] la
limite de haute densité pour un système périodique infini (décrit par le problème
de Schrödinger exact) dans lequel les noyaux ponctuels sont remplacés par une
distribution de charge positive uniforme dans tout l’espace. Dans ce modèle sys-
tème appelé Jellium, seuls les termes en ρ

5
3 et ρ

4
3 subsistent. Pour des travaux du

même type, voir [Fri97, Sei06]. Pour d’autres résultats dans le cas périodique,
voir [BM99, BGM03].

Résultats. Les résultats que nous avons obtenus pour ce modèle ont été
soumis pour publication (voir [Ric17]). La seconde partie de la thèse en donne une
version plus détaillée. Les résultats principaux sont les deux théorèmes suivants.
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Théorème (Unicité pour c petit). Soit K la cellule unité et cTF , λ deux
constantes strictement positives. Il existe δ ą 0 tel que pour tout 0 ď c ă δ, les
assertions suivantes soient vraies :

i. Le minimiseur wc du problème TFDW périodique EK,λpcq est unique, à phase
près. Il est non-constant, strictement positif, dans H2

perpKq et est l’unique fonc-
tion propre de l’état fondamental de l’opérateur auto-adjoint K-périodique

Hc :“ ´∆` cTF |wc|
4
3 ´ c|wc|

2
3 ´GK ` p|wc|

2
‹GKq.

ii. Cette fonction K-périodique wc est l’unique minimiseur de tous les problèmes
TFDW pN ¨Kq-périodiques EN ¨K,N3λpcq, pour tout entier N ě 1.

Pour démontrer ce résultat, nous suivons l’esprit de la preuve de Le Bris
[Le 93] dans le cas de l’espace R3 tout entier. Nous utilisons un argument per-
turbatif autour de c “ 0 — modèle de Thomas–Fermi–von Weizsäcker (TFW)
périodique — et utilisons l’unicité et la non-dégénérescence des minimiseurs du
modèle TFW, laquelle découle de la stricte convexité de la fonctionnelle associée.

Théorème (Brisure de symétrie pour c grand). Soit K la cellule unité, cTF , λ
deux constantes strictement positives et N ě 2 un entier. Il y a brisure de symétrie
dans le modèle TFWD périodique pour c assez grand :

EN ¨K,N3λpcq ă N3EK,λpcq.

Plus précisément, le problème TFDW périodique sur N ¨ K, EN ¨K,N3λpcq, admet
(au moins) N3 minimiseurs positifs distincts qui sont des translations les uns des
autres par les vecteurs du réseau. Si l’on dénote par wc l’un de ces minimiseurs,
il existe alors a sous-suite cn Ñ 8 telle que

cn
´ 3

2wcn

´

R `
¨

cn

¯

ÝÑ
nÑ8

Q,

fortement dans LplocpR3q pour 2 ď p ă `8, où R est la position de l’une des N3

charges dans N ¨K. Ici, Q est un minimiseur du problème effectif

JR3pN3λq “ inf
uPH1pR3q

||u||2
L2pR3q“N

3λ

"
ż

R3

|∇u|2 ` 3

5
cTF

ż

R3

|u|
10
3 ´

3

4

ż

R3

|u|
8
3

*

, (0.9)

qui de plus minimise

SpN3λq “ inf
v

"

1

2

ż

R3

ż

R3

|vpxq|2|vpyq|2

|x´ y|
dy dx´

ż

R3

|vpxq|2

|x|
dx

*

,
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où la minimisation est faite sur tous les minimiseurs de (0.9). Enfin, lorsque
cÑ 8, EN ¨K,N3λpcq a pour développement

EN ¨K,N3λpcq “ c2JR3pN3λq ` cSpN3λq ` opcq.

Ce second théorème est la principale nouveauté apportée par cette partie de la
thèse. Le terme de Dirac ´3

4
c
ş

K |w|
8
3 dans (0.7) tend à regrouper les électrons et

ce théorème dit que, dans la limite cÑ 8, la densité électronique se concentre en
certains point de la cellule unité K. Il précise également que si l’on fait un zoom
d’échelle 1{c sur l’un des points où se concentre la densité électronique, nous
obtenons un modèle effectif simple dans tout R3, modèle dans lequel les termes
de Coulomb ont disparu. L’argument derrière ce résultat est qu’il est favorable
de concentrer la masse électronique présente dans la cellule unité en un point du
fait de fait de l’inégalité stricte de liaison :

JR3pλq ă JR3pλ1q ` JR3pλ´ λ1q.

De ce fait, les N3 électrons de la cellule unité du problème N -périodique se
concentreront en un point de masse N3 lorsque c est très grand, plutôt que de se
concentrer en N3 points de masse 1.

Cette seconde partie de la thèse s’intéresse également en détails au problème
effectif limite (0.9). Ce problème effectif de minimisation est un problème NLS
avec deux non-linéarités à puissance sous-critique : |v|

10
3 ´ |v|

8
3 . L’unicité de ses

minimiseurs est un problème ouvert. Si cette thèse ne répond pas à ce problème,
elle démontre néanmoins que toute solution positive de l’équation non-linéaire
d’Euler–Lagrange associée

´∆Qµ ` cTF |Qµ|
4
3Qµ ´ |Qµ|

2
3Qµ “ ´µQµ (0.10)

est unique et non-dégénérée (à translations spatiales près).

Théorème (Unicité et non-dégénérescence des solutions positives à l’équa-
tion d’E–L associée au problème effectif sur R3). Soit cTF ą 0. Si 64

15
cTFµ ě 1,

alors l’équation d’Euler–Lagrange (0.10) n’a pas de solution non triviale dans
H1pR3q. Si 0 ă 64

15
cTFµ ă 1, l’équation d’Euler–Lagrange (0.10) a, à transla-

tions près, une unique solution positive Qµ ı 0 dans H1pR3q. Cette solution est
radialement décroissante et non-dégénérée : l’opérateur linéarisé

L`µ “ ´∆`
7

3
cTF |Qµ|

4
3 ´

5

3
|Qµ|

2
3 ` µ

de domaine H2pR3q et agissant sur L2pR3q a pour noyau

KerL`µ “ span tBx1Qµ, Bx2Qµ, Bx3Qµu .
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Enfin, cette seconde partie de la thèse formule la conjecture que
ş

Qµ
2 est une

fonction strictement croissante en la variable µ, ce qui est fortement corroboré
par les simulations numériques que nous avons menées et qui sont également
présentées dans cette thèse. En supposant cette conjecture vraie, nous prouvons
que le problème N -périodique a exactement N3 minimiseurs distincts pour c assez
grand.

Les simulations numériques présentées dans cette thèse ont été menées avec
le programme PROFESS v.3.0 [CXH`15] et nous avons ajouté à son code notre
fonctionnelle d’énergie. Nos simulations ont été effectuées sur un cristal cubique
centré de Lithium de côté de longueur 4Å pour lequel un électron est traité
tandis que les deux autres sont inclus dans un pseudo-potentiel, simulant ainsi un
réseau de pseudo-atomes de pseudo-charges Z “ λ “ 1. Nos résultats numériques,
présentés en Figure 2, montrent une brisure de symétrie vers c « 3, 30. En effet,

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

´8%

´6%

´4%

´2%

0%

c

Figure 2. Estimation du gain relatif d’énergie 8EK,λpcq´E2¨K,8λpcq
8EK,λpcq

.

pour c À 3, 30, les minimisations des problèmes sur 2 ¨K (contenant 8 atomes) et
sur K (contenant 1 atome) donnent la même énergie minimale à un facteur 8 près
tandis que, pour c Á 3, 31, nous trouvons une fonction 2-périodique pour laquelle
l’énergie du problème sur 2 ¨K est inférieure à (8 fois) l’énergie minimale pour le
problème sur K. De plus, la brisure de symétrie est confirmée visuellement par la
représentation, pour trois valeurs de c, de la densité de probabilité du minimiseur
2-périodique simulé (Figure 3) : pour c « 3, 30, le miniminiseur 2-périodique
obtenu est en fait 1-périodique tandis que, pour c Á 3, 31, le miniminiseur 2-
périodique obtenu n’est plus 1-périodique.
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(a) c « 3, 30 (b) c « 3, 31 (c) c « 3, 45

Figure 3. Densité de probabilité, pour trois valeurs de c, du mi-
nimiseur 2-périodique simulé.

Questions ouvertes. Le premier problème concernant ce modèle laissé ou-
vert par cette thèse est évidemment la question de l’unicité des minimiseurs du
problème limite que nous conjecturons. D’autre part, un travail intéressant serait
d’étudier les questions développées dans cette thèse pour le modèle de Kohn–
Sham qui est celui utilisé dans la pratique.



PARTIE 1

Study of the anisotropic polarons

Ce chapitre est une version plus détaillée de l’article publié

Julien Ricaud, On uniqueness and non-degeneracy of anisotropic polarons,
Nonlinearity 29 (2016), no. 5, 1507–1536.

Abstract
We study the anisotropic Choquard–Pekar equation which describes a polaron in an
anisotropic medium. We prove the uniqueness and non-degeneracy of minimizers in
a weakly anisotropic medium. In addition, for a wide range of anisotropic media, we
derive the symmetry properties of minimizers and prove that the kernel of the associated
linearized operator is reduced, apart from three functions coming from the translation
invariance, to the kernel on the subspace of functions that are even in each of the three
principal directions of the medium.
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1. Introduction

A polaron describes a quantum electron in a polar crystal. The atoms of the
crystal are displaced due to the electrostatic force induced by the charge of the
electron, and the resulting deformation is then felt by the electron itself. This
coupled system (the electron and its polarization cloud) is a quasi-particle, called
a polaron.

When the polaron extends over a domain much larger than the characteristic
length of the underlying lattice, the crystal can be approximated by a continu-
ous polarizable medium, leading to the so-called Pekar nonlinear model [Pek54,
Pek63]. In this theory, the energy functional is

E V
pψq “

1

2

ż

R3

|∇ψpxq|2 dx´ 1

2

ż

R3

ż

R3

|ψpyq|2|ψpxq|2V px´ yq dy dx, (1.1)

where ψ is the wave function of the electron, in units such that the vacuum
permittivity, the mass, and the charge of the electron are all normalized to one:
4πε0 “ me´ “ e “ 1. While, on the other hand,

´V ‹ |ψ|2pxq “ ´

ż

R3

|ψpyq|2V px´ yq dy

is the mean-field self-trapping potential felt by the electron.
For an isotropic and homogeneous medium, characterized by its relative per-

mittivity (or relative dielectric constant) εM ě 1, the effective interaction poten-
tial is

V pxq “
1´ ε´1

M

|x|
. (1.2)

For εM ą 1 (equality corresponds to the medium being the vacuum), the so-called
Choquard–Pekar or Schrödinger–Newton equation

´

´
∆

2
´ V ‹ |ψ|2

¯

ψ “ ´µψ (1.3)

is obtained by minimizing the energy E V in (1.1) under the constraint
ş

R3 |ψ|
2 “ 1,

with associated Lagrange multiplier µ ą 0. Lieb proved in [Lie77] the uniqueness
of minimizers, up to space translations and multiplication by a phase factor. This
ground state Q is positive, smooth, radial decreasing, and has an exponential
decay at infinity. That Q is also the unique positive solution to (1.3) was proved
in [MZ10].

In [Len09], Lenzmann proved that Q is nondegenerate (this was also proved
independently by Wei and Winter in [WW09]). Namely, the linearization

LQξ “ ´
1

2
∆ξ ` µξ ´

`

V ‹ |Q|2
˘

ξ ´ 2Q pV ‹ pQξqq (1.4)
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of (1.3) has the trivial kernel

ker|L2pR3q LQ “ span tBx1Q, Bx2Q, Bx3Qu (1.5)

which stems from the translation invariance. This nondegeneracy result is an im-
portant property which is useful in implicit function type arguments. Uniqueness
and nondegeneracy were originally used in [Len09] to study a pseudo-relativistic
model, and then in [KMR09, Liu09, RN10, Stu10, FLS13, Sok14, Xia16]
for other models.

The purpose of this paper is to study the case of anisotropic media, for which
the corresponding potential is

V pxq “
1

|x|
´

1
a

detpM´1q|M1{2x|
, 0 ăM ď 1, (1.6)

whereM´1 ě 1 is the (real and symmetric) static dielectric matrix of the medium.
The mathematical expression is simpler in the Fourier domain:

pV pkq “ 4π

ˆ

1

|k|2
´

1

kTM´1k

˙

.

The form of the potential V in the anisotropic case is well-known in the
physics literature and it has recently been derived by Lewin and Rougerie from
a microscopic model of quantum crystals in [LR13a].

From a technical point of view, the fact that V in (1.6) is a difference of two
Coulomb type potentials complicates the analysis. For this reason, we will also
consider a simplified anisotropic model where V is replaced by

V pxq “
1

|p1´ Sq´1x|
, 0 ď S ă 1, (1.7)

and S is also a real and symmetric matrix. This simplified potential can be seen
as an approximation of the potential (1.6) in the weakly anisotropic regime, that
is, when M is close to an homothecy.

In this paper, we derive several properties of minimizers of E V and of posi-
tive solutions to the nonlinear equation (1.3), when V is given by formulas (1.6)
and (1.7). After some preparations in Section 2, we discuss the existence of min-
imizers and the compactness of minimizing sequences in Section 3. Then, based
on the fundamental non degeneracy result [Len09], we prove in Section 4 the
uniqueness and non-degeneracy of minimizers in a weakly anisotropic material.
In Section 5, considering back general anisotropic materials, we investigate the
symmetry properties of minimizers using rearrangement inequalities. Finally we
discuss the linearized operator in Section 6. By using Perron–Frobenius type
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arguments, we are able to prove that for ψ a positive solution of the so-called
Choquard–Pekar equation (1.3) sharing the symmetry properties of V , we have

kerLψ “ span tBxψ, Byψ, Bzψu
à

ker pLψq|L2
sympR3q

. (1.8)

Where L2
sympR3q is the subspace of function in L2pR3q sharing the symmetry

properties of V . For instance, in the general case where the three eigenvalues of
M (or S) are distinct from each other and V is decreasing in the corresponding
directions, L2

sympR3q is the subspace of functions that are even in these directions.
On the other hand, if exactly two eigenvalues are equal, it is the subspace of
cylindrical functions that are also even in the directions of the principal axis.

The main difficulty in proving (1.8) is that the operator Lψ is non-local and
therefore the ordering of its eigenvalues is not obvious. The next step would be
to prove that kerLψ |L2

sympR3q
“ t0u which we only know for now in the weakly

anisotropic regime (Theorem 1.7 below) and in the radial case (see [Len09]). We
hope to come back to this problem in the future.
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2. Elementary properties

We define the energy E V as in (1.1) and consider, for all λ ą 0, the minimiza-
tion problem

IV pλq :“ min
ψPH1pR3q

||ψ||22“λ

E V
pψq. (1.9)

Let pe1, e2, e3q be the principal axis of the medium, that is, such that each
ei P R3 is a normalized eigenvector associated with the eigenvalue mi of the real
symmetric matrix M , where 0 ă m1 ď m2 ď m3 ď 1 with m1 ă 1 (otherwise the
medium would be the vacuum), or associated with the eigenvalue si of the real
symmetric matrix S where 0 ď s3 ď s2 ď s1 ă 1 in the simplified model.

We define the map M ÞÑ V as

t0 ăM ď 1 |M symmetric realu Ñ L2
pR3
q ` L4

pR3
q

M ÞÑ V pxq “
1

|x|
´

1
a

detpM´1q|M1{2x|

(1.10)
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with, in particular, M ” Id ÞÑ V ” 0̄ which corresponds to the vacuum. And, in
the simplified model, S ÞÑ V is defined as

t0 ď S ă 1 | S symmetric realu Ñ L2
pR3
q ` L4

pR3
q

S ÞÑ V pxq “ |p1´ Sq´1x|´1
(1.11)

with, in particular, S ” 0 ÞÑ V ” V0. We denote the isotropic potentials by
Vcpxq “ p1´ cq|x|

´1, for 0 ď c ď 1, and IVc the associated minimization problem.
Both maps are well-defined. Indeed, let V be as in (1.10) or (1.11) then one

can easily show that there exist a ą b ě 0 such that

@x P R3
zt0u, 0 ď b|x|´1

ď V pxq ď a|x|´1
ď |x|´1. (1.12)

Consequently, V P L2pR3q ` L4pR3q. Moreover, if we restrict ourselves to 0 ă

M ă 1 then there exist a ą b ą 0 such that

@x P R3
zt0u, 0 ă b|x|´1

ď V pxq ď a|x|´1
ď |x|´1. (1.13)

Lemma 1.1. Let M ÞÑ V be defined as in (1.10), S ÞÑ V as in (1.11) and let
f, g be two functions in H1pR3q. Then V ‹ pfgq P W 1,8 and, for any 0 ă α ă 1,
we have

(1) local Lipschitzity of

tα ăM ď 1 |M symmetric realu ˆH1
ˆH1

Ñ W 1,8

pM, f, gq ÞÑ V ‹ pfgq,

(2) uniform Lipschitzity of

t0 ď S ă α | S symmetric realu ˆH1
ˆH1

Ñ W 1,8

pS, f, gq ÞÑ V ‹ pfgq.

Proof of Lemma 1.1. First, for any f P L2pR3q and g P H1pR3q, by (1.12)
together with Hardy’s inequality, |V ‹ pfgqpxq| ď p| ¨ |´1 ‹ |fg|qpxq ď 2 ||f ||2 ||∇g||2
holds. Consequently, for any f, g P H1pR3q, we have

||V ‹ pfgq||W 1,8 ď ||V ‹ pfgq||8 ` ||V ‹ pg∇fq||8 ` ||V ‹ pf∇gq||8
ď 2 ||f ||2 ||∇g||2 ` 4 ||∇f ||2 ||∇g||2 ď 6 ||f ||H1 ||g||H1 .

Thus V ‹pfgq is inW 1,8. For the rest of the proof, we denote by ||M || the spectral
norm of M and fix an α such that 0 ă α ă 1.
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For pS, T q P t0 ďM ă α |M symmetric realu2, f P L2pR3q, g P H1pR3q and
x P R3, we have

|pVS ´ VT q ‹ pfgqpxq| ď

ˇ

ˇ

ˇ

ˇ

|p1´ T q´1 ¨ | ´ |p1´ Sq´1 ¨ |

|p1´ Sq´1 ¨ ||p1´ T q´1 ¨ |

ˇ

ˇ

ˇ

ˇ

‹ |fg|pxq

ď
|rp1´ T q´1 ´ p1´ Sq´1s ¨|

| ¨ |2
‹ |fg|pxq

ď
|p1´ Sq´1pT ´ Sqp1´ T q´1¨|

| ¨ |2
‹ |fg|pxq

ď
ˇ

ˇ

ˇ

ˇp1´ Sq´1
ˇ

ˇ

ˇ

ˇ ||T ´ S||
ˇ

ˇ

ˇ

ˇp1´ T q´1
ˇ

ˇ

ˇ

ˇ

1

| ¨ |
‹ |fg|pxq

ď 2p1´ αq´2
||f ||2 ||∇g||2 ||S ´ T || .

Thus, for any f, g P H1pR3q, we have

||pVS ´ VT q ‹ pfgq||W 1,8 ď 6p1´ αq´2
||f ||H1 ||g||H1 ||S ´ T || ,

which concludes the proof of (2).
For pM,Nq P tα ăM ď 1 |M symmetric realu2, we have

M1{2
´N1{2

“ π´1

ż 8

0

ˆ

M

s`M
´

N

s`N

˙

ds
?
s

“ π´1

ż 8

0

1

s`M
pM ´Nq

1

s`N

?
s ds,

which leads to

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
M

1
2 ´N

1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ď
||M ´N ||

π

ż 8

0

?
s

ps` αq2
ds “

||M ´N ||

π
?
α

ż 8

0

?
s

ps` 1q2
ds

“
||M ´N ||

2
?
α

.

Moreover, with a similar computation and since detM, detN ą α3, we obtain

ˇ

ˇ

ˇ

?
detM ´

?
detN

ˇ

ˇ

ˇ
ď
|detM ´ detN |

2α3{2
.
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Thus, for f P L2pR3q, g P H1pR3q and x P R3, we have

|pVM ´ VNq ‹ pfgqpxq| ď
1

?
detN´1

|fg| ‹

ˇ

ˇ

ˇ

ˇM1{2¨
ˇ

ˇ´
ˇ

ˇN1{2¨
ˇ

ˇ

ˇ

ˇ

|M1{2¨| |N1{2¨|
pxq

`

ˇ

ˇ

ˇ

ˇ

1
?

detN´1
´

1
?

detM´1

ˇ

ˇ

ˇ

ˇ

|fg| ‹
ˇ

ˇM1{2
¨
ˇ

ˇ

´1
pxq

ď 2
?

detN
ˇ

ˇ

ˇ

ˇM´1
ˇ

ˇ

ˇ

ˇ

1{2 ˇ
ˇ

ˇ

ˇN´1
ˇ

ˇ

ˇ

ˇ

1{2
||f ||2 ||∇g||2

ˇ

ˇ

ˇ

ˇM1{2
´N1{2

ˇ

ˇ

ˇ

ˇ

` 2
ˇ

ˇ

ˇ

ˇM´1
ˇ

ˇ

ˇ

ˇ

1{2
||f ||2 ||∇g||2

ˇ

ˇ

ˇ

?
detN ´

?
detM

ˇ

ˇ

ˇ

ď
`

||M ´N || ` α´1{2
|detN ´ detM |

˘

α´3{2
||f ||2 ||∇g||2 .

Finally, the determinant being locally Lipschitz, we obtain that M ÞÑ V ‹ pfgq is
locally Lipschitz. �

Since M´1 is real and symmetric, there exists R P Op3q such that

RTMR “ diagpm3,m2,m1q

and so, for any x P R3, after a simple computation, we have

V pRxq “ |x|´1
´
ˇ

ˇdiag
`

pm1m2q
´1{2, pm1m3q

´1{2, pm2m3q
´1{2

˘

x
ˇ

ˇ

´1
,

where 0 ă
?
m1m2 ď

?
m1m3 ď

?
m2m3 ď 1 and

?
m1m3 ă 1 since m1 ă 1.

Thus, we can consider, without any loss of generality, that
$

&

%

M “ diagpm1,m2,m3q, 0 ă m3 ď m2 ď m1 ď 1 and m2 ă 1,

M ÞÑ V pxq “
1

|x|
´

1

|M´1x|

(1.14)

Similarly, for the simplified model, we can also assume that

V pxq “ |diagp1´ s1, 1´ s2, 1´ s3q
´1x|´1, 0 ď s3 ď s2 ď s1 ă 1. (1.15)

For clarity, from now on we denote by EM (resp. ES) the energy and by IMpλq
(resp. ISpλq) the minimization problem since V depends only on the matrix M
(resp. on the matrix S). However, for shortness, we will omit the subscripts when
no confusion is possible.

Lemma 1.2. Let ψ P H1pR3q be a solution of the equation (1.3), for V defined
as in (1.14) or in (1.15), then px, y, zq ÞÑ ψp˘x,˘y,˘zq are H1pR3q-solutions
to (1.3).

Proof of Lemma 1.2. This follows from the symmetry properties of V . �
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3. Existence of minimizers

We prove in this section the existence of minimizers for the minimization
problems. As preparation, we first give some properties of these variational prob-
lems.

Lemma 1.3. Let V be defined as in (1.14) or (1.15) and I be defined as
in (1.9). Then

Ipλq “ λ3Ip1q ă 0, if λ ą 0. (1.16)
Consequently,

(1) λ ÞÑ Ipλq is C8 on R`,
(2) Ipλq ă Ipλ´ λ1q ` Ipλ1q, for any λ et λ1 such that 0 ă λ1 ă λ,

and, in particular,

(3) Ipλq ă Ipλ1q, for any 0 ď λ1 ă λ.

Proof of Lemma 1.3. Let ψ P H1pR3q with ||ψ||2L2pR3q
“ 1, then we have

ψλ :“ λ2ψpλ¨q P H1pR3q and ||ψλ||
2
L2pR3q

“ λ and, by a direct computation,
E pψλq “ λ3E pψq which leads to Ipλq “ λ3Ip1q. If we now define ψt “ t3{2ψpt¨q

and use (1.13), we find that

E pψtq ď
1

2
||∇ψt||2L2 ´

b

2

ˇ

ˇ

ˇ

ˇ|ψt|
2
`

|ψt|
2
‹ | ¨ |

´1
˘ˇ

ˇ

ˇ

ˇ

2

L2

ď
t2

2
||∇ψ||2L2 ´

bt

2

ˇ

ˇ

ˇ

ˇ|ψ|2
`

|ψ|2 ‹ | ¨ |´1
˘
ˇ

ˇ

ˇ

ˇ

2

L2 ,

and taking t small enough leads to the claimed strict negativity. The rest follows
immediately. �

Lemma 1.4. Let V be defined as in (1.14) or (1.15). Let I be as in (1.9) and
let λ ą 0. Then Iptλq ą tIpλq, for all t P p0, 1q.

Proof of Lemma 1.4. Let t P p0, 1q. By Lemma 1.3, 0 ą Iptλq “ t3Ipλq ą

tIpλq. �

These two lemmas imply the existence of minimizers and the compactness of
minimizing sequences, as stated in the following theorem which gives also some
properties of these minimizers.

Theorem 1.5 (Existence of a minimizer). Let V be as in (1.14) or (1.15)
and λ ą 0. Then Ipλq has a minimizer and any minimizing sequence strongly
converges in H1pR3q to a minimizer, up to extraction of a subsequence and after
an appropriate space translation.

Moreover for any minimizer ψ, we have
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(1) ψ is a H2pR3q-solution of the Choquard–Pekar equation (1.3)
with ´µ “ d

dλ
Ipλq ă 0 being the smallest eigenvalue of the self-adjoint

operator Hψ :“ ´∆{2´ |ψ|2 ‹ V , which is simple;

(2) µλ “ ´λ
d

dλ
Ipλq “ ´3λ3Ip1q “

3

2
||∇ψ||22 “

3

4

@

V ‹ |ψ|2, |ψ|2
D

; (1.17)

(3) |ψ| is a minimizer and |ψ| ą 0;

(4) ψ “ z|ψ| for a given |z| “ 1.

For the isotropic potentials Vc, Lieb proved several of these statements in
[Lie77] using only the fact that |x|´1 is radially decreasing. In the general case,
the proof is now standard and follows from Lions’ concentration-compactness
method [Lio84a, Lio84b]. A sketch is given in Section 7.1 of the Appendix. For
a related result dealing with the case where |ψ|2 is replaced by |ψ|p in the energy
(1.1) see [MS13].

4. Uniqueness in a weakly anisotropic material

We recall that the uniqueness of the minimizer, up to phases and space trans-
lations, in the isotropic case, was proven by Lieb in [Lie77]. In this section, we
extend this result to the case of weakly anisotropic materials, meaning that we
consider static dielectric matrices close to an homothecy.

We first prove the continuity of IMpλq, with respect to pM,λq, which we will
need in the proof of uniqueness.

Lemma 1.6 (Minimums’ convergence). Let V be defined as in (1.14) or (1.15),
I be defined as in (1.9) and pλ, λ1q P

`

R˚`
˘2. Then

IM 1pλ1q ÝÝÝÝÝÝÑ
||M 1´M ||Ñ0
|λ1´λ|Ñ0

IMpλq.

Thus, the continuity of the corresponding Euler-Lagrange multiplier, ´µM 1,λ1,
holds as well:

µM 1,λ1 ÝÝÝÝÝÝÑ
||M 1´M ||Ñ0
|λ1´λ|Ñ0

µM,λ.

Proof of Lemma 1.6. Let ψ (resp. ψ1) be a minimizer of IMpλq (resp.
IM 1pλq) for a given λ ą 0.

First, for any ϕ P H1pR3q, we have

|EMpϕq ´ EM 1pϕq| “
1

2

ˇ

ˇ

@

|ϕ|2, |ϕ|2 ‹ pV ´ V 1q
D
ˇ

ˇ ď
1

2

ˇ

ˇ

ˇ

ˇ|ϕ|2 ‹ pV ´ V 1q
ˇ

ˇ

ˇ

ˇ

8
||ϕ||22 .



4. UNIQUENESS IN A WEAKLY ANISOTROPIC MATERIAL 31

Thus, by Lemma 1.1, M ÞÑ EMpϕq is Lipschitz for any ϕ P H1pR3q. Moreover

EMpψq ´ EM 1pψq ď IMpλq ´ IM 1pλq ď EMpψ1q ´ EM 1pψ1q,

which implies that M ÞÑ IMpλq is Lipschitz for any λ ą 0.
Thanks to Lemma 1.3, we conclude the proof of the convergence of I since

|IMpλq ´ IM 1pλ1q| À |IMp1q|
ˇ

ˇλ3
´ pλ1q3

ˇ

ˇ` ||M ´M 1
|| .

Then, the equality ´µM,λ “ 3λ2IMp1q gives the convergence of the µM 1,λ1 ’s. �

We now give our theorem of uniqueness in the weakly anisotropic case.

Theorem 1.7 (Uniqueness and non-degeneracy in the weakly anisotropic
case).
Let λ ą 0.

i. Let 0 ă s ă 1. There exists ε ą 0 such that, for every real symmetric 3 ˆ 3

matrix 0 ăM ă 1 with ||M ´ s ¨ Id|| ă ε, the minimizer ψ of the minimization
problem IMpλq, for V pxq “ |x|´1´|M´1x|´1 as in (1.14), is unique up to phase
and space translations.

ii. Let 0 ď s ă 1. There exists ε ą 0 such that, for every real symmetric 3 ˆ 3

matrix 0 ď S ă 1 with ||S ´ s ¨ Id|| ă ε, the minimizer ψ of the minimization
problem ISpλq, for V pxq “ |p1 ´ Sq´1x|´1 as in (1.15), is unique up to phase
and space translations.

Moreover, in both cases, the minimizer is even along each eigenvectors of M
and kerLψ “ span tBxψ, Byψ, Bzψu, where Lψ is the linearized operator defined
in (1.4).

The proof of this theorem is based on a perturbative argument around the
isotropic case, using the implicit functions theorem. The fundamental nonde-
generacy result in the isotropic case, proved by Lenzmann in [Len09], is a key
ingredient of our proof.

Proof of Theorem 1.7. The proof of ii being similar to the one of i, we
will only give the latter. Let us fix 0 ă s ă 1, define

D :“ t0 ăM ă 1 |M symmetric realu

and denote by Q the unique positive minimizer of the isotropic minimization
problem Ipλq :“ Is¨Idpλq for V pxq “ Vs¨Idpxq “ p1 ´ sq|x|´1, which is radial and
solves (1.3):

´
1

2
∆Q` µQ´ p|Q|2 ‹ V qQ “ 0,

with ||Q||22 “ λ. There λ is fixed hence is µ :“ µs¨Id,λ ą 0 by Lemma 1.3.
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Step 1: Implicit function theorem and local uniqueness. By Proposi-
tion 5 in [Len09], we know that the linearized operator LQ given by

LQξ “ ´
1

2
∆ξ ` µξ ´

`

V ‹ |Q|2
˘

ξ ´ 2Q pV ‹ pQξqq , (1.18)

acting on L2pR3q with domain H2pR3q, has the kernel

kerLQ “ span tBx1Q, Bx2Q, Bx3Qu . (1.19)

Let us define u as
H1
pR3,Rq ˆD u

Ñ L2
pR3,Rq

pψ,Mq ÞÑ ´
`

|ψ|2 ‹ V
˘

ψ

and G as
pkerLQq

K
ˆD G

Ñ H1
pR3,Rq

pψ,Mq ÞÑ ψ ` p´∆{2` µMq
´1 upψ,Mq,

where pkerLQq
K is the orthogonal of kerLQ for the scalar product of L2pR3q, which

we endow with the norm of H1pR3q, and µM :“ µM,λ “ 3λ2IMp1q. We emphasize
here that we consider real valued functions, meaning that we are constructing a
branch of real valued solutions. Moreover, Gpψ,Mq “ 0 is equivalent to ´1

2
∆ψ`

µψ ´ p|ψ|2 ‹ V qψ “ 0. Differentiating with respect to xi, for i “ 1, 2, 3, we get
LψBxiψ “ 0, for i “ 1, 2, 3, and thus span tBxψ, Byψ, Bzψu Ă kerLψ.

By the Hardy-Littlewood-Sobolev and Sobolev inequalities, u is well defined.
Moreover, splitting upψ,Mq´upψ1,M 1q into three pieces and using (1.13) together
with the Hardy inequality, one obtains

||upψ,Mq ´ upψ1,M 1
q||L2 ď

ˇ

ˇ

ˇ

ˇV ‹ |ψ|2
ˇ

ˇ

ˇ

ˇ

L8
||ψ ´ ψ1||L2 `

ˇ

ˇ

ˇ

ˇpV ´ V 1q ‹ |ψ|2
ˇ

ˇ

ˇ

ˇ

L8
||ψ1||L2

` ||V 1 ‹ pp|ψ| ´ |ψ1|qp|ψ| ` |ψ1|qq||L8 ||ψ
1
||L2 .

Therefore, using Lemma 1.1, u is locally Lipschitz on H1pR3,RqˆD . Then, since
p´∆{2` µMq

´1 maps L2pR3q onto H2pR3q Ă H1pR3q, G is also well defined.
Moreover, since |||p´∆` νq´1|||L2ÑH2 ď maxt1, ν´1u (for ν ą 0) and

p´∆{2` aq´1
´ p´∆{2` bq´1

“ pb´ aq p´∆{2` aq´1
p´∆{2` bq´1 ,

for all a, b ą 0, we have

||Gpψ,Mq ´Gpψ1,M 1
q||H1

ď ||ψ ´ ψ1||H1 `
ˇ

ˇ

ˇ

ˇp´∆{2` µMq
´1
pupψ,Mq ´ upψ1,M 1

qq
ˇ

ˇ

ˇ

ˇ

H1

` |µM 1 ´ µM |
ˇ

ˇ

ˇ

ˇp´∆{2` µMq
´1
p´∆{2` µM 1q

´1 upψ1,M 1
q
ˇ

ˇ

ˇ

ˇ

H1

À ||ψ ´ ψ1||H1 `maxt2, pµMq
´1
u ||upψ,Mq ´ upψ1,M 1

q||L2

`maxt2, pµMq
´1
umaxt2, pµM 1q

´1
u ||upψ1,M 1

q||L2 ||M
1
´M || ,
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which proves that G is also locally Lipschitz.
A simple computation shows that

Bψupψ,Mqξ “ ´
`

|ψ|2 ‹ V
˘

ξ ´ 2ψ ppψξq ‹ V q , (1.20)

acting on ξ P pkerLQq
K, and that

BψGpψ,Mq “ 1` p´∆{2` µMq
´1
Bψupψ,Mq. (1.21)

We claim BψGpϕ,Mq, defined from pkerLQq
K ˆD into L

`

pkerLQq
K, L2pR3,Rq

˘

,
to be continuous. Indeed,

||Bψupψ,Mqξ||L2 ď ||ξ||L2

ˇ

ˇ

ˇ

ˇV ‹ |ψ|2
ˇ

ˇ

ˇ

ˇ

L8
` 2 ||ψ||L2 ||pψξq ‹ V ||L8

ď 3 ||ψ||H1 ||ψ||L2 ||ξ||L2 ,

thus Bψupψ,Mqξ P L2pR3,Rq for any pψ,M, ξq P pkerLQq
K ˆD ˆ pkerLQq

K.
Splitting again the term into pieces and using (1.13), for ξ P L2pR3,Rq, one

obtains

||Bψupψ,Mqξ ´ B1upψ
1,M 1

qξ||L2

ď
ˇ

ˇ

ˇ

ˇV ‹
`

|ψ|2 ´ |ψ1|2
˘
ˇ

ˇ

ˇ

ˇ

L8
||ξ||L2 `

ˇ

ˇ

ˇ

ˇpV ´ V 1q ‹ |ψ1|2
ˇ

ˇ

ˇ

ˇ

L8
||ξ||L2

` 2 ||V ‹ pψξq||L8 ||ψ ´ ψ
1
||L2 ` 2 ||V ‹ ppψ ´ ψ1qξq||L8 ||ψ

1
||L2

` 2 ||pV ´ V 1q ‹ pψ1ξq||L8 ||ψ
1
||L2

“ O
`

||pψ,Mq ´ pψ1,M 1
q||H1ˆD

˘

||ξ||L2 .

Then, since

||BψGpψ,Mqξ ´ BψGpψ
1,M 1

qξ||H1

À maxt2, pµMq
´1
u ||Bψupψ,Mq ´ Bψupψ

1,M 1
q||L2

`maxt2, pµMq
´1
umaxt2, pµM 1q

´1
u ||Bψupψ

1,M 1
q||L2 ||M

1
´M || ,

we have

|||BψGpψ,Mq ´ BψGpψ
1,M 1

q||| Ñ 0, if ||pψ,Mq ´ pψ1,M 1
q||H1ˆD Ñ 0.

This concludes the proof of the continuity of BψGpϕ,Mq from pkerLQq
KˆD into

L
`

pkerLQq
K, H1pR3,Rq

˘

.
We now apply the implicit function theorem to G. Indeed, by the definition

of pkerLQq
K, the restriction of LQ to pkerLQq

K has a trivial kernel. On the
other hand, the operator p´∆{2` µMq

´1
BψupQ, s ¨ Idq is compact on L2pR3q (see

section 7.2 in Appendix), therefore ´1 does not belong to its spectrum. We
deduce from this the existence of the inverse operator

pBψGpQ, s ¨ Idqq
´1 : RanpGq Ă H1

pR3,Rq Ñ pkerLQq
K. (1.22)
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Then, by the continuity of G and BψG, the existence of pBψGpQs, s ¨ Idqq
´1 and

since GpQ, s ¨ Idq “ 0, the inverse function theorem 1.2.1 of [Cha05] implies that
there exist δ, ε ą 0 such that there exists a unique ψpMq P pkerLQq

K satisfying:

GpψpMq,Mq “ 0 for ||M ´ s ¨ Id|| ď ε and ||ψpMq ´Q||H1 ď δ. (1.23)

Moreover, the map M ÞÑ ψpMq is continuous.
Additionally, ker BψGpψpMq,Mq “ t0u, i.e. ker|pkerLQqK Lψ “ t0u which leads

to dim ker pLψq ď 3 since dim ker pLQq “ 3 by (1.19).
We now claim that ψpMq is symmetric with respect to the three eigenvectors

ofM , teiui“1,2,3, and consequently that, for i “ 1, 2, 3, BxiψpMq is odd along ei and
even along ej for j ‰ i. Indeed V being symmetric, the eight functions px, y, zq ÞÑ
ψpMqp˘x,˘y,˘zq, which are in pkerLQq

K, are zeros ofGp¨,Mq. If ψpMq were not
symmetric with respect to each ei, then at least two of the functions px, y, zq ÞÑ
ψpMqp˘x,˘y,˘zq would be distinct functions but both verifying (1.23), since Q
is symmetric with respect to each ei, which is impossible by local uniqueness.

Thus the BxiψpMq’s are orthogonal and we have dim span tBxψ, Byψ, Bzψu “ 3.
Since span tBxψ, Byψ, Bzψu Ă kerLψ, this leads to dim ker pLψq ě 3. Which proves
that kerLψ “ span tBxψ, Byψ, Bzψu.

Let us emphasize that, at this point, we do not know the masses ||ψpMq||22 of
those ψpMq. Note also that we could prove here that |ψ| ą 0, since ´µM stays
the first eigenvalue by continuity and with a Perron–Frobenius type argument,
but we do not give the details here since this fact will be a consequence of Step
2.

Step 2: Global uniqueness. Let pMnqn be a sequence of matrices in D
such that Mn ÝÑ

nÑ8
s ¨ Id and let pψMnqn be a sequence of minimizers of pIMnpλqqn

which we can suppose, up to phase, strictly positive by Theorem 1.5 and, up to
a space translation (for each Mn), in pkerLQq

K. Indeed, for any ψ P H1pR3q, let
us define the continuous function

fpτq :“

ż

∇Qp¨qψp¨ ´ τq

which is bounded, by the Cauchy-Schwarz inequality. Then
ż

fpτq dτ “
ż

ψpxq

ż

∇Qpx´ τq dτ dx “ 0

since
ş

∇Q “ 0. Thus, f being continuous, there exists τ such that

fpτq “

ż

ψpx´ τq∇Qpxq dx “ 0,

i.e. ψp¨ ´ τq P pkerLQq
K since kerLQ “ span tBx1Q, Bx2Q, Bx3Qu.
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By continuity of pIMnpλqqn, given by Lemma 1.6, pψMnqn is a minimizing
sequence of Is¨Idpλq. So, by Theorem 1.5, pψMnqn strongly converges in H1pR3q

to a minimizer of Is¨Idpλq, up to extraction of a subsequence. But, since the ψMn

are positive and in pkerLQq
K, they converge to a positive minimizer of Is¨Idpλq in

pkerLQq
K which is Q.

So, there exists ε1 ď ε such that if ||M ´ s ¨ Id||
8
ď ε1, then each ψMn veri-

fies GpψMn ,Mnq “ 0, by definition of pψMnqn, and ||ψMn ´Q||H1 ď δ i.e. veri-
fies (1.23). So the ψMn are unique (up to phases and spaces translation). Which
concludes the proof of Theorem 1.7.

Moreover, we now know that, in fact, the masses ||ψpMnq||
2
2 of the unique

ψpMnq found in the local result were in fact all equal to λ. We also proved
incidentally that our choice of translation to obtain pψMnqn Ă pkerLQq

K was, in
fact, unique. �

5. Rearrangements and symmetries

The goal of this section is to prove that minimizers are symmetric and strictly
decreasing in the directions along which V is decreasing, without assuming that V
is close to the isotropic case as we did in the previous section. More precisely, we
will consider here the general anisotropic casem3 ď m2 ď m1 (resp. s3 ď s2 ď s1)
and, in particular, the two cylindrical cases m3 “ m2 ă m1 (resp. s3 “ s2 ă s1)
and m3 ă m2 “ m1 (resp. s3 ă s2 “ s1). Our main result in this section is The-
orem 1.9 below. As a preparation, we first give conditions for V to be its own
Steiner symmetrization.

As in [Cap14], for f defined on Rn “ spante1, . . . , enu, we denote:

— by f˚ its Schwarz symmetrization, for n ě 1;

— by Sti1,...,ikpfq its Steiner symmetrization (in codimension k) with respect
to the subspace spanned by ei1 , . . . , eik , for n ě 2 and 1 ď k ă n.

Let us remark that the Steiner symmetrization Sti1,...,ikpfq of f is the Schwarz
symmetrization of the function pxi1 , ¨ ¨ ¨ , xikq ÞÑ fpx1, ¨ ¨ ¨ , xnq.

Proposition 1.8 (Criterion for V to be its own Steiner symmetrization).

(1) Let V be given by (1.14), with 0 ă m3 ď m2 ď m1 ă 1. Then V “

St1pV q (thus V is e1-symmetric strictly decreasing). Moreover, for k P
t2, 3u, V “ StkpV q (thus V is ek-symmetric strictly decreasing) if and
only if

m3
1 ď m2

k. (1.24k)

Moreover,
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i. if m3 ă m2 “ m1, then V “ St1,2pV q. Thus V is pe1, e2q-radial
strictly decreasing.

ii. if m3 “ m2 ă m1, then V “ St2,3pV q — thus V is pe2, e3q-radial
strictly decreasing — if and only if

m3
1 ď m2

2 “ m2
3; (1.25)

(2) Let V be given by (1.15), with 0 ď s3 ď s2 ď s1 ă 1. Then V “ StkpV q
(thus V is ek-symmetric strictly decreasing) for k “ 1, 2, 3. Moreover,

i. if s3 ă s2 “ s1, then V “ St1,2pV q. Thus V is pe1, e2q-radial strictly
decreasing;

ii. if s3 “ s2 ă s1, then V “ St2,3pV q. Thus V is pe2, e3q-radial strictly
decreasing.

Proof of Proposition 1.8. Suppose V is given by (1.14), then it obvi-
ously has the claimed properties of symmetry and, moreover, the cylindrical ones
in cases i. and ii.. So the proof that V is equal to its symmetrization is reduced
to the proof of decreasing properties.

For any x ‰ 0 and k “ 1, 2, 3, we have

B|xk|V px1, x2, x3q “
m´2
k |xk|

pm´2
1 x2

1 `m
´2
2 x2

2 `m
´2
3 x2

3q
3{2
´

|xk|

px2
1 ` x

2
2 ` x

2
3q

3{2
. (1.26)

Thus, V “ StkpV q and V is radially decreasing with respect to xk if and only if

0 ď pm´2
1 ´m

´4{3
k qx2

1 ` pm
´2
2 ´m

´4{3
k qx2

2 ` pm
´2
3 ´m

´4{3
k qx2

3 a.e. on R3

which is equivalent to m1 ď m
2{3
k . Consequently, V “ St1pV q always holds.

Ifm3 “ m2 ă m1, denoting u “ |px2, x3q|, and computing BuV , we obtain that
V “ St2,3pV q if and only if m1 ď m

2{3
2 “ m

2{3
3 , in which case V is pe2, e3q-radial

decreasing.
If m3 ă m2 “ m1, denoting u “ |px1, x2q|, and computing BuV , we obtain

that V “ St1,2pV q if and only if m3 ď m
2{3
2 “ m

2{3
1 , which always holds thus V is

pe1, e2q-radial decreasing.
We now need to prove the strict monotonicity. Thanks to (1.26), ∇V “ 0

holds only on measure-zero sets (note that we use the computation but do not
use any condition on m1, m2 and m3 except that they are strictly less than 1).
Thus |tV “ tu| “ 0 for any t P R` and then |tV ˚ “ tu| “ 0 for any t P R`.
Hence V ˚ is radially strictly decreasing. Same results of strict decreasing hold
for Steiner symmetrizations since, as noted before, a Steiner symmetrization is a
Schwarz symmetrization on a subspace.

The proof for V given by (1.15) is very similar and easier. �
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We now state our main result about the symmetries of minimizers.

Theorem 1.9 (Symmetries of minimizers). Let λ ą 0.

(1) Let V be given by (1.14) and ψM ě 0 be a minimizer of IMpλq. Then,
up to a space translation, ψM is e1-symmetric strictly decreasing. If
m3

1 ď m2
2 as in p1.242q, then ψM is also e2-symmetric strictly decreasing.

Finally, if m3
1 ď m2

3 as in p1.243q, then ψM is additionally e3-symmetric
strictly decreasing. Moreover,
i. if m3 ă m2 “ m1, then ψM is cylindrical strictly decreasing with

axis e3. Meaning that ψM is pe1, e2q-radial strictly decreasing. If
additionally p1.243q holds, then ψM is cylindrical-even strictly de-
creasing with axis e3. This means that ψM is cylindrical strictly
decreasing with axis e3 and e3-symmetric strictly decreasing;

ii. if m3 “ m2 ă m1 and m3
1 ď m2

2 “ m2
3 as in (1.25), then ψM is

cylindrical-even strictly decreasing with axis e1.
(2) Let V be given by (1.15) and ψS ě 0 be a minimizer of ISpλq. Then, up to

a space translation, ψS is ek-symmetric strictly decreasing for k “ 1, 2, 3.
Moreover,
i. if s3 ă s2 “ s1, then ψS is cylindrical-even strictly decreasing with

axis e3;

ii. If s3 “ s2 ă s1, then ψS is cylindrical-even strictly decreasing with
axis e1.

To prove the symmetry properties of the minimizers, we need symmetrizations
of a minimizer to be minimizers, which is proved in the following lemma.

Lemma 1.10. Suppose that V , given by (1.14) or by (1.15), verifies one of the
symmetric strictly decreasing property (resp. radial strictly decreasing property)
described in Proposition 1.8, and define ψSt the symmetrization of ψ correspond-
ing to this symmetric strictly decreasing property of V .

If ψ is a minimizer then ψSt too. Moreover the following equalities hold

i. ||∇ψ||22 “
ˇ

ˇ

ˇ

ˇ∇ψSt
ˇ

ˇ

ˇ

ˇ

2

2
,

ii. x|ψ|2, |ψ|2 ‹ V y2 “
@

|ψSt|2, |ψSt|2 ‹ V
D

2
.

Proof of Lemma 1.10. On one hand, since the symmetrization conserves
the L2 norm and ψ is a minimizer, we have E pψq ď E pψStq. On the other
hand, given the Riesz inequality (see [Bur96]), the fact that the kinetic energy
is decreasing under symmetrizations (see Theorem 2.1 in [Cap14]) and since
V “ V St by Proposition 1.8, we have E pψq ě E pψStq. So finally Ipλq “ E pψq “
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E pψStq. Consequently, given (1.17) in Theorem 1.5 and that minimizers ψ and
ψSt have the same Lagrange multiplier µ “ ´3λ2Ip1q, we immediately obtain
both equalities. �

Using the analycity of minimizers (Lemma 1.12) we can now prove the strict
monotonicity of Steiner symmetrizations of minimizers.

Lemma 1.11. Let λ ą 0 and ψ be a real minimizer of Ipλq for V given
by (1.14) or by (1.15), then ψ˚ is radially strictly decreasing. Moreover, for any
permutation ti, j, ku of t1, 2, 3u, we have

i. for any x P spantej, eku, Stipψqpx, ¨q is radially strictly decreasing,

ii. for any x P spanteiu, Stj,kpψqpx, ¨q is radially strictly decreasing.

Proof of Lemma 1.11. By Theorem 1.5, ψ is in H2pR3,Rq and a solution
of (1.3) with a real Lagrange multiplier µ. Then, by the following lemma (proved
in the Section 7.3 of the Appendix), ψ is real analytic.

Lemma 1.12. Any ψ P H2pR3,Rq solution of (1.3) for µ P R is analytic.

Thus |tψ “ tu| “ 0 for any t P R` and this is equivalent to |tψ˚ “ tu| “ 0

for any t P R`. Hence ψ˚ is radially strictly decreasing.
Given that for any 1 ď k ă 3 and any x P R3´k, ψpx, ¨q is analytic and since

a Steiner symmetrization is a Schwarz symmetrization, we obtain ii. and iii. by
the same reasoning to ψpx, ¨q. �

Finally, to prove our Theorem 1.9 on the symmetries of minimizers, we need
a result on the case of equality in Riesz’ inequality for Steiner’s symmetrizations.
We emphasize that different Steiner symmetrizations do not commute in general.
However, if the Steiner symmetrizations are made with respect to the vectors of
an orthogonal basis then the radial strictly decreasing properties are preserved.

For shortness, we write uStk :“ Stkpuq and, in cylindrical cases, uSt1,2 :“

St1,2puq and uSt2,3 :“ St2,3puq.

Proposition 1.13 (Steiner symmetrization: case of equality for g strictly
decreasing). Let f, g, h be three measurable functions on R3 such that g ą 0 and
f, h ě 0 where 0 ‰ f P LppR3q, with 1 ď p ď `8, and 0 ‰ h P LqpR3q, with
1 ď q ď `8. Define

Jpf, g, hq “
1

2

ż

R3

ż

R3

fpxqgpx´ yqhpyq dx dy ď 8.

(1) Let pi, j, kq be a permutation of p1, 2, 3q and J
`

fSti , g, hSti
˘

ă 8. If for any
pxj, xkq P R2 the functions g, fSti and hSti are all strictly decreasing with
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respect to |xi|, then

Jpf, g, hq “ J
`

fSti , g, hSti
˘

ô D a P R3,

#

f “ fStip¨ ´ aq,

h “ hStip¨ ´ aq,
a.e. on R3.

(2) Let pi, j, kq be a permutation of p1, 2, 3q and J
`

fStj,k , g, hStj,k
˘

ă 8. If for any
xi P R the functions g, fStj,k and hStj,k are all radially strictly decreasing with
respect to pxj, xkq, then

Jpf, g, hq “ J
`

fStj,k , g, hStj,k
˘

ô D a P R3,

#

f “ fStj,kp¨ ´ aq,

h “ hStj,kp¨ ´ aq,
a.e. on R3.

(3) Let St and St1 be two Steiner symmetrizations, acting on two orthogonal di-
rections, T “ St1 ˝ St and J

`

fT , g, hT
˘

ă 8. If the functions g, fSt, hSt are
all radially strictly decreasing in the direction (or the plane) of St, and g, fSt1

and hSt1 are all radially strictly decreasing in the direction (or the plane) of
St1, then

Jpf, g, hq “ J
`

fT , g, hT
˘

ô D a P R3,

#

f “ fT p¨ ´ aq,

h “ hT p¨ ´ aq.
a.e. on R3.

Proof of Proposition 1.13. The implications ð all follow from a simple
changes of variable. We show the implications ñ and start with (1). Define, for
any permutation pi, j, kq of p1, 2, 3q and any pxj, x1j, xk, x1kq P R4, the functions

Jipf, g, hqpxj, x
1
j, xk, x

1
kq “

1

2

ż

R

ż

R
fpXqgpX ´X 1

qhpX 1
q dxi dx1i,

where X “ px1, x2, x3q and X 1 “ px11, x
1
2, x

1
3q. We claim that for almost all

pxj, x
1
j, xk, x

1
kq P R4, we have

Jipf, g, hqpxj, x
1
j, xk, x

1
kq “ Jipf

Sti , g, hStiqpxj, x
1
j, xk, x

1
kq.

Indeed, assume that there exists a non-zero measure set E Ă R2 ˆ R2 such
that Jipf, g, hqpy, y1q ‰ Jipf

Sti , g, hStiqpy, y1q for any py, y1q P E. Thus, by Riesz
inequality on R, Jipf, g, hq ă Jipf

Sti , g, hStiq necessarily holds on E, since g “ gSti ,
and consequently Jpf, g, hq ă JpfSti , g, hStiq, reaching a contradiction.

We now use the following result of Lieb [Lie77]:

Lemma 1.14 ([Lie77, Lemma 3]: Case of equality in Riesz’ inequality for g
strictly decreasing). Suppose g is a positive spherically symmetric strictly decreas-
ing function on Rn, f P LppRnq and h P LqpRnq are two nonnegative functions,
with p, q P r1;`8s, such that Jpf˚, g, h˚q ă 8. Then

Jpf, g, hq “ Jpf˚, g, h˚q ñ D a P Rn, f “ f˚p¨ ´ aq and h “ h˚p¨ ´ aq a.e.
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Thus, for almost all py, y1q P R2 ˆ R2, there exists aipy, y1q P R such that

fpy, xiq “ fSti py, xi ´ aipy, y
1
qq

and hpy1, xiq “ hSti py1, xi ´ aipy, y
1qq, for almost all xi P R. Using now the

assumed strict monotonicity of fStipy, ¨q and hStipy1, ¨q, it follows that ai does not
depend on py, y1q, and (1) is proved.

The case (2) is very similar, defining this time

Jj,kpf, g, hqpxi, x
1
iq “

1

2
xfp¨, xiq, gp¨, xi ´ x

1
iq ‹ hp¨, x

1
iqyL2pR2q

,

for all pxi, x1iq P R2.
We now prove (3). Let St be one of the Steiner’s symmetrization described

(1) and (2) and the same for St1. We claim that

JStpf, g, hq “ JStpf
St, g, hSt

q and JSt1pf, g, hq “ JSt1pf
St1 , g, hSt1

q, a.e..

Indeed, Riesz inequality gives Jpf, g, hq ď JpfSt, g, hStq ď JpfT , g, hT q. Since
first and third terms are equal, the three of them are. From the first equality,
there exists a P R` (` “ 1, 2) such that f “ fStp¨ ´ a, ¨q and h “ hStp¨ ´ a, ¨q.
Then, since St and St1 act on orthogonal directions, we have

JpfT , g, hT q “ J
´

fSt1
p¨ ` a, ¨q, g, hSt1

p¨ ` a, ¨q
¯

“ JpfSt1 , g, hSt1
q

and so the second claim holds true too. Then we have
$

’

’

’

’

’

&

’

’

’

’

’

%

fT py ´ pa1, aqq “
`

fSt
px´ a, ¨q

˘St1
pz ´ a1q “ fSt1

px, z ´ a1q

“ fpx, zq “ fpyq,

hT py ´ pa1, aqq “
`

hSt
px´ a, ¨q

˘St1
pz ´ a1q “ hSt1

px, z ´ a1q

“ hpx, zq “ hpyq,

for almost every y :“ px, zq P R3 �

We now have all the ingredients to prove Theorem 1.9.

Proof of Theorem 1.9. Let ψ be a minimizer and ψSt one (or a compo-
sition) of its Steiner symmetrizations with a direction (or a plane) for which
V “ V St.

We take f “ h “ |ψ|2 P and g “ V . So we have f “ h ą 0 (thanks
to Theorem 1.5), g ą 0 (thanks to (1.13)) and JpfSt, V, fStq finite. Indeed by
the Hardy-Littlewood-Sobolev inequality and (1.13), JpfSt, V, fStq À

ˇ

ˇ

ˇ

ˇfSt
ˇ

ˇ

ˇ

ˇ

2

6{5
“

||f ||26{5 ă `8 since f P H1pR3q. Moreover, the assumption on the mk’s gives
that g “ gSt is radially strictly decreasing by Proposition 1.8, and the strict
monotonicity of fSt “ hSt is obtained by Lemma 1.11.
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Finally, by Lemma 1.10, ψSt is a minimizer and

Jp|ψ|2, V, |ψ|2q “ J
`

p|ψ|2qSt, pV qSt, p|ψ|2qSt˘
“ J

`

p|ψ|2qSt, V, p|ψ|2qSt˘ .

By Proposition 1.13, there exists a such that |ψ|2 “ p|ψ|2qStp¨´aq “ p|ψ|Stq2p¨´aq

holds a.e. thus ψ “ ψStp¨ ´ aq since ψ ě 0. This concludes the proof of Theo-
rem 1.9. �

6. Study of the linearized operator

In this section we study the linearized operator LQ, on L2pR3q with domain
H2pR3q, associated with the Euler-Lagrange equation ´∆Q`Q´ p|Q|2 ‹ V qQ “

0 (1.3), which is given by

LQξ “ ´∆ξ ` ξ ´
`

V ‹ |Q|2
˘

ξ ´ 2Q pV ‹ pQξqq , (1.27)

and we give partial characterization of its kernel. We first consider the true
model (1.14) for which, following the scheme in [Len09], we will use a Perron–
Frobenius argument on subspaces adapted to the symmetries of the problem.
The main difficulty will stand in dealing with the non-local operator Q pV ‹ pQξqq
and, in particular, with proving that this operator is positivity improving. The
fundamental use of Newton’s theorem in the proof of this property in the isotropic
case does not work here, therefore we need a new argument. Our proof will rely
on the conditions (1.24k)’s for which V is ek-symmetric strictly decreasing for
each k (see Proposition 1.8). Then we discuss in a similar way the cylindrical
case for the simplified model (1.15), which will need another argument.

6.1. The linearized operator in the symmetric decreasing case. We
consider the general case for V , given by (1.14), verifying the three conditions
(1.24k), for k “ 1, 2, 3, and define the subspaces of L2pR3q

L2
τx,τy ,τz :“

$

’

&

’

%

f P L2
pR3
q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fp´x, y, zq “ τxfpx, y, zq,

fpx,´y, zq “ τyfpx, y, zq,

fpx, y,´zq “ τzfpx, y, zq

,

/

.

/

-

, (1.28)

obtained by choosing τx, τy, τz P t˘1u. We prove the following theorem which
is basically saying that the kernel of the linearized operator around solutions is
reduced to the kernel on functions that are even in all three directions.

Theorem 1.15. Let V , be given by (1.14), verifying (1.24k), for all k, and
let Q be a positive and symmetric strictly decreasing (with respect to each ek
separately) solution of (1.3). Then

kerLQ “ span tBxQ, ByQ, BzQu
à

ker pLQq|L2
`,`,`

. (1.29)
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For instance, Q could be a minimizer for IMpλq.

The proof of this result is inspired by Lenzmann’s proof in [Len09] of the
fundamental similar result for the linearized operator in the radial case which
corresponds to m1 “ m2 “ m3. In that case, Lenzmann proved that

ker pLQq|L2
`,`,`

“ t0u.

Note that by the result of Section 4, we know that this is still true in the weakly
anisotropic case. Moreover, a theorem similar to Theorem 1.15 holds true for the
simplified model (1.15) (with no conditions on the matrix S) but we do not state
it here for shortness.

The rest of this Section 6.1 being dedicated to the proof of the theorem, let
V and Q verify the assumptions of Theorem 1.15 for the entire Section 6.1.

6.1.1. Direct sum decomposition. First, one can easily verify that LQ stabilizes
the spaces L2

τx,τy ,τz . Let us then introduce the direct sum decomposition

L2
pR3
q “ L2

x´ ‘ L
2
x` “ L2

y´ ‘ L
2
y` “ L2

z´ ‘ L
2
z`

where
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

L2
x´ :“

à

τy ,τz“˘

L2
´,τy ,τz , L2

x` :“
à

τy ,τz“˘

L2
`,τy ,τz

L2
y´ :“

à

τx,τz“˘

L2
τx,´,τz , L2

y` :“
à

τx,τz“˘

L2
τx,`,τz

L2
z´ :“

à

τx,τy“˘

L2
τx,τy ,´, L2

z` :“
à

τx,τy“˘

L2
τx,τy ,`.

We claim that those spaces — with corresponding projectors P x´, P x`, P y´,
P y`, P z´ and P z` — reduce the linearized operator LQ (see [Tes09] for a defi-
nition of reduction), where

P x˘ψpx, y, zq “
ψpx, y, zq ˘ ψp´x, y, zq

2

and similarly for the other projections. The reduction property is straightforward
for ´∆` 1´ pV ‹ |Q|2q. Moreover, since Q is even in x, we have

V ‹ pQP x˘ψq “
V ‹ pQψq ˘ V ‹ pQψp´¨, ¨, ¨qq

2

“
V ‹ pQψq ˘ rV ‹ pQψqsp´¨, ¨, ¨q

2
“ P x˘

rV ‹ pQψqs

and, Q being also even in y and in z, we obtain the result for the other projections.
Thus we can apply [Tes09, Lemma 2.24] which gives us that

LQ “ Lx´Q ‘ Lx`Q “ Ly´Q ‘ Ly`Q “ Lz´Q ‘ Lz`Q ,
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with the six operators LwQ, for w P tx´, x`, y´, y`, z´, z`u, being self-adjoint
operators on the corresponding L2pR3q spaces with domains PwH2pR3q. Note
that P x´H2pR3q “ H2

x´pR3q :“ H2pR3q X L2
x´pR3q and similarly for P y´ and

P z´.
Let us then redefine from now on the operator Lx´Q (resp. Ly´Q and Lz´Q ) by

restricting it to x-odd (resp. y-odd and z-odd) functions through the isomorphic
identifications L2

x´pR` ˆ R2q « L2
x´pR3q and H2

x´pR` ˆ R2q « H2
x´pR3q. Thus,

Lx´Q , as an operator on L2
x´pR`ˆR2q with domain H2

x´pR`ˆR2q, can be written

Lx´Q “ ´∆` 1` Φpx´q `Wpx´q

where the strictly negative multiplication local operator, on R` ˆ R2, is

Φpx´qpx, Y q “ ´
`

V ‹ |Q|2
˘

px, Y q

“ ´

ż

R`ˆR2

rV px´ x1, Y ´ Y 1q ` V px` x1, Y ´ Y 1qsˆ

ˆQ2
px1, Y 1q dY 1 dx1

and the non-local term Wpx´q, on R` ˆ R2, is

pWpx´qfqpx, Y q

“ ´2Qpx, Y q

ż

R`ˆR2

rV px´ x1, Y ´ Y 1q ´ V px` x1, Y ´ Y 1qsˆ

ˆQpx1, Y 1qfpx1, Y 1q dY 1 dx1.

The same properties hold for Ly´Q and Lz´Q with corresponding Φpy´q,Wpy´q, Φpz´q
and Wpz´q.

The key fact to deal with the non-local operator, in order to adapt Lenzmann’s
proof to anisotropic case, is the positivity improving property of the ´Wp´q’s.

Lemma 1.16. The operator ´Wpx´q is positivity improving on L2
x´pR`ˆR2q.

The same holds true for ´Wpy´q and ´Wpz´q on corresponding spaces.

Proof of Lemma 1.16. Since X ÞÑ V pX, Y q is |X|-strictly decreasing, due
to conditions (1.24k), and x` x1 ą |x´ x1| on pR`q2, we obtain, for x, x1 ą 0 and
pY, Y 1q P pR2q

2, that V px´ x1, Y ´ Y 1q ´ V px` x1, Y ´ Y 1q ą 0. Moreover Q ą 0.
Thus, ´Wp´q is positivity improving on L2

x´pR` ˆ R2q. �

6.1.2. Perron–Frobenius property. We can now prove that the three operators
Lx´Q , Ly´Q and Lz´Q verify a Perron–Frobenius property.

Proposition 1.17 (Perron–Frobenius properties). The operator Lx´Q is self-
adjoint on L2

x´pR` ˆ R2q with domain H2
x´pR` ˆ R2q, is bounded below and has
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the Perron–Frobenius property: if λx´0 denotes the lowest eigenvalue of Lx´Q , then
λx´0 is simple and the corresponding eigenfunction ψx´0 is strictly positive.

The same holds true for Ly´Q and Lz´Q with the corresponding domains, lowest
eigenvalues and eigenfunctions.

Proof of Proposition 1.17. We follow the proof’s structure of [Len09,
Lemma 8]. Moreover, we only write the proof for Lx´Q thus the superscripts and
subscripts "x´" will everywhere in this proof be replaced by "´" for simplicity.
The argument is the same for the other directions.

Self-adjointness. We have Q P H2pR3q Ă C0pR3q X L2pR3q X L8pR3q and, by
(1.13), V ‹ |Q|2 is in L4pR3q X L8pR3q since V “ V2 ` V4 P L

2pR3q ` L4pR3q.
Defining, for any f P L2

´pR` ˆR2q, f̃ P L2
´pR3q by fpx, ¨q “ f̃px, ¨q for x ě 0, we

have 2 xf, gyL2
´
pR`ˆR2q

“ xf̃ , g̃yL2
´
pR3q

and so Φp´q` 1 is bounded on L2
´pR`ˆR2q.

Moreover, by Young inequalities, for any ξ P L2
´pR` ˆ R2q,

||V ‹ pQξ̃q||L8 ď p||V4||L4 ||Q||L4 ` ||V2||L2 ||Q||L8q ||ξ̃||L2

holds. Thus, for p P r2,8s, we have
ˇ

ˇ

ˇ

ˇWp´qξ
ˇ

ˇ

ˇ

ˇ

LppR`ˆR2q
ď 2 ||Q||LppR`ˆR2q

||V ‹ pQξ̃q||L8pR`ˆR2q

ď ||Q||Lp ||V ‹ pQξ̃q||L8

and Wp´qξ P L
2
´pR` ˆ R2q X L8pR` ˆ R2q. Consequently, 1 ` Φp´q `Wp´q and,

thus, L´Q is bounded below on L2
´pR` ˆ R2q.

Finally, we deduce the self-adjointness of the operator L´Q on L2
´pR` ˆ R2q

with domain H2
´pR`ˆR2q from the self-adjointness of the operator L´Q on L2

´pR3q

with domain H2
´pR3q.

Positivity improving. We know (see the proof of Lemma 1.30 in the Appendix)
that

p´∆` µq´1ξpXq “
1

4π

ż

R3

e´
?
µ|X´Y |

|X ´ Y |
ξpY q dY ,

for all µ ą 0 and all ξ P L2pR3q. Consequently, for ξ P L2
´pR` ˆ R2q and

px, x̃q P R` ˆ R2, we have

p´∆` µq´1ξpx, x̃q

“
1

4π

ż

R`ˆR2

„

e´
?
µ|px´y,x̃´ỹq|

|px´ y, x̃´ ỹq|
´

e´
?
µ|px`y,x̃´ỹq|

|px` y, x̃´ ỹq|



ξpy, ỹq dy dỹ.

Thus, with the same arguments as in the proof of Lemma 1.16, p´∆ ` µq´1 is
positivity improving on L2

´pR` ˆ R2q for all µ ą 0. Moreover, ´pΦp´q `Wp´qq

is positivity improving on L2
´pR` ˆ R2q since ´Φp´q is a positive multiplication
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operator and ´Wp´q is positivity improving by Lemma 1.16. Then similarly to
the proof of [Len09, Lemma 8], for µ " 1,we have

`

L´Q ` µ
˘´1

“ p´∆` µ` 1q´1
¨
`

1` pΦp´q `Wp´qqp´∆` µ` 1q´1
˘´1

.

Since pΦp´q `Wp´qq is bounded, we have
ˇ

ˇ

ˇ

ˇpΦp´q `Wp´qqp´∆` µq´1
ˇ

ˇ

ˇ

ˇ

L2
´
pR`ˆR2q

ă 1,

for µ large enough. This implies, for µ " 1, by Neumann’s expansion that
`

L´Q ` µ
˘´1

“ p´∆` µ` 1q´1
8
ÿ

p“0

“

´pΦp´q `Wp´qqp´∆` µ` 1q´1
‰p
,

which is consequently positivity improving on L2
´pR` ˆ R2q for µ " 1.

Conclusion. We choose µ " 1 such that pL´Q` µq´1 is positivity improving and
bounded. Then, by [RS78, Thm XIII.43], the largest eigenvalue supσppL´Q `

µq´1q is simple and the associated eigenfunction ψ´0 P L2
´ pR` ˆ R2q is strictly

positive. Since, for any ψ P L2
´ pR` ˆ R2q, having ψ being an eigenfunction of L´Q

for the eigenvalue λ is equivalent to having ψ being an eigenfunction of pL´Q`µq´1

for the eigenvalue pλ` µq´1, we have proved Proposition 1.17. �

6.1.3. Proof of Theorem 1.15. Differentiating, with respect to x the Euler-
Lagrange equation ´∆Q ` Q ´ p|Q|2 ‹ V qQ “ 0 (1.3), we obtain LQBxQ ” 0.
Moreover, Q is positive symmetric strictly decreasing, thus BxQ P L2

x´pR3q, and
this shows that Lx´Q BxQ ” 0. Then, Q ą 0 being symmetric strictly decreasing,
BxQ ă 0 on R`ˆR2 and, by the Perron–Frobenius property, it is (up to sign) the
unique eigenvector associated with the lowest eigenvalue of Lx´Q , namely λx´0 “ 0.
Since Lx´Q acts on L2

x´ :“
À

τy ,τz“˘
L2
´,τy ,τz , we obtain

#

ker pLQq|L2
´,`,`pR3q

“ spantBxQu;

ker pLQq|L2
´,´,`pR3q

“ ker pLQq|L2
´,`,´pR3q

“ ker pLQq|L2
´,´,´pR3q

“ t0u.

This the exact same arguments for the two other directions we finally obtain that

kerLQ “ span tBxQ, ByQ, BzQu
à

ker pLQq|L2
`,`,`pR3q

.

Which concludes the proof of Theorem 1.15. �

6.2. The linearized operator in the cylindrical case for the simplified
model. We now consider the case where the static dielectric matrix has exactly
two identical eigenvalues. Obviously, Theorem 1.15 holds and it tells us that the
kernel is reduced to the kernel on functions that are even in the z-direction and
even in any direction of the plane orthogonal to z. However, this does not tell



46 1. STUDY OF THE ANISOTROPIC POLARONS

us that it is reduced to the kernel on cylindrical functions, which is what we
are interested in. Indeed, instead of the kernel of LQ on L2

`,`,`pR3q, we want
the remaining term in the direct sum to be the kernel on L2

rad,`pR3q, namely the
subset of cylindrical functions that are also even in the direction of their principal
axis.

Unfortunately, our method fails to prove it for V given by (1.14) since we
are not able to prove a positivity improving property for the non local operator.
Therefore, in this section, we will only consider the simplified model where V is
given by (1.15).

We use the cylindrical coordinates pr, θ, zq where ez is the vector orthogonal
to the plane of symmetry. Namely, ez “ e3 if s3 ă s2 “ s1 and ez “ e1 if
s3 “ s2 ă s1. We then define the following subspaces

L2
τpR3

q :“
 

f P L2
pR3
q | fpx, y,´zq “ τfpx, y, zq

(

, for τ “ ˘;

L2
`pR` ˆ Rq :“

 

f P L2
pR` ˆ R, r dr dzq | fpr,´zq “ fpr, zq

(

;

L2
rad,`pR3

q :“ L2
`pR` ˆ Rq b

 

Y `0
(

.

(1.30)

Thus L2
rad,`pR3q is the space of square-integrable functions which are even in z

and radial in the px, yq plane.

Theorem 1.18. Let V be given by (1.15) with S having one eigenvalue of
multiplicity 2 and let Q be a cylindrical-even decreasing and positive solution
of (1.3). Then

kerLQ “ span tBxQ, ByQ, BzQu ‘ ker pLQq|L2
rad,`pR3q

. (1.31)

For instance, Q could be a minimizer for ISpλq.

Several parts of the proof of this theorem being identical to the ones in the
proof of Theorem 1.15, we will only give the details for the parts that differ.

6.2.1. Cylindrical decomposition. Since V is cylindrical-even strictly decreas-
ing by Proposition 1.8 and since minimizers are cylindrical-even strictly decreasing
by Proposition 1.9, LQ commutes with rotation in the plane of symmetry. Let us
then introduce the direct sum decomposition

L2
pR3
q “ L2

´pR3
q ‘

à

ně0,σ“˘

L2
`pR` ˆ Rq b tY σ

n u, (1.32)

with
#

Y `0 ” p2πq´
1
2 ; Y ´0 ” 0;

Y `n ” π´
1
2 cospn¨q; Y ´n ” π´

1
2 sinpn¨q, for n ě 1.

(1.33)

The operator LQ stabilizes L2
´pR3q and the spaces L2

`pR` ˆ Rq b tY σ
n u.
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Let us immediately decompose the potential V in order to give the fundamen-
tal property in the cylindrical case (Proposition 1.19 below), which is what allows
us to adapt the original work of Lenzmann, namely the strict positivity of each
z-odd terms of the cylindrical decomposition of V . For any r “ pr, ϕ, zq P R3 and
r1 “ pr1, ϕ1, z1q P R3, defining ρ :“ pr ´ r1, 0, z ´ z1q and θ :“ ϕ ´ ϕ1, we have, as
soon as pr1, z1q ‰ pr, zq:

θ ÞÑ V pr´ r1q “
1

b

|p1´ Sq´1ρ|2 ` 2p1´ s2q
´2rr1p1´ cos θq

ą 0, (1.34)

which is in C8pRq, 2π-periodic and even. Thus, for any r ‰ r1,

V pr´ r1q “
8
ÿ

n“0

vnpr, r
1, z ´ z1qY `n pϕ´ ϕ

1
q,

with

vnpr, r
1, z ´ z1q “

ż π

´π

V pr´ r1qY `n pθq dθ “ 2

ż π

0

V pr´ r1qY `n pθq dθ. (1.35)

Proposition 1.19. Let V be given by (1.15), the Y `n ’s by (1.33) and the vn’s
by (1.35) for any pn, r, r1, z, z1q P Nˆ R˚` ˆ R˚` ˆ Rˆ R. Then

vnpr, r
1, z ´ z1q ą 0, @pn, r, r1, z, z1q P Nˆ R˚` ˆ R˚` ˆ Rˆ R.

Proof of Proposition 1.19. Defining for r, r1 ą 0,

m˘ :“

d

ˆ

r ` r1

1´ s2

˙2

`

ˆ

z ´ z1

1´ sz

˙2

˘

d

ˆ

r ´ r1

1´ s2

˙2

`

ˆ

z ´ z1

1´ sz

˙2

“ max
ϕ´ϕ1

ˇ

ˇp1´ Sq´1
pr´ r1q

ˇ

ˇ˘ min
ϕ´ϕ1

ˇ

ˇp1´ Sq´1
pr´ r1q

ˇ

ˇ ą 0,

we note that m` ą m´ and obtain

V pr´ r1q “
2

m`

1
b

1´ 2m
´

m`
cos θ `

`

m´

m`

˘2
.

We now give the explicit expansion of p1´2t cos θ`t2q´1{2 in the following lemma.

Lemma 1.20. For p0, 1q ‰ pθ, tq P Rˆ r0, 1s, we have

1
?

1´ 2t cos θ ` t2
“

8
ÿ

k“0

β0,2kt
2kY `0 pθq `

8
ÿ

n“1

8
ÿ

k“n

β2n,2kt
2kY `2npθq

`

8
ÿ

n“0

8
ÿ

k“n

β2n`1,2k`1t
2k`1Y `2n`1pθq.

(1.36)
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with
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

β0,2k “
?

2π

`

2k
k

˘2

24k
ą 0, 0 ď k;

β2n,2k “ 2
?
π

`

2pk`nq
k`n

˘`

2pk´nq
k´n

˘

24k
ą 0, 0 ă n ď k;

β2n`1,2k`1 “ 2
?
π

`

2pk`n`1q
k`n`1

˘`

2pk´nq
k´n

˘

24k`2
ą 0, 0 ď n ď k.

Proof of Lemma 1.20. The proof of this lemma is entirely inspired by the
original computation of Legendre 1 in his famous mémoire [Le 84] where he in-
troduced the polynomials that are nowadays called after him. Let us first rewrite
the fraction, for p0, 1q ‰ pθ, tq P Rˆ r0, 1s:

1
?

1´ 2t cos θ ` t2
“ p1´ eiθtq´1{2

p1´ e´iθtq´1{2.

Then, since Γp1{2´ pq “ p´4qpp!
p2pq!

Γp1{2q and using the following expansion

p1´ xq´1{2
“

8
ÿ

p“0

Γp1{2q

Γp1{2´ pqΓpp` 1q
p´xqp “

8
ÿ

p“0

`

2p
p

˘

22p
xp,

we obtain:

1
?

1´ 2t cos θ ` t2
“

ÿ

pp,qqPN2

`

2p
p

˘`

2q
q

˘

22pp`qq
eipp´qqθtp`q

“

8
ÿ

k“0
k even

k
ÿ

n“´k
n even

`

k`n
pk`nq{2

˘`

k´n
pk´nq{2

˘

22k
einθtk

`

8
ÿ

k“1
k odd

k
ÿ

n“´k
n odd

`

k`n
pk`nq{2

˘`

k´n
pk´nq{2

˘

22k
einθtk

“

8
ÿ

k“0

`

2k
k

˘2

24k
t2k `

8
ÿ

k“0

k
ÿ

n“1

`

2pk`nq
k`n

˘`

2pk´nq
k´n

˘

24k
2 cosp2nθqt2k

`

8
ÿ

k“0

k
ÿ

n“0

`

2pk`n`1q
k`n`1

˘`

2pk´nq
k´n

˘

24k`2
2 cospp2n` 1qθqt2k`1

“

8
ÿ

k“0

`

2k
k

˘2

24k
t2k `

8
ÿ

n“1

8
ÿ

k“n

`

2pk`nq
k`n

˘`

2pk´nq
k´n

˘

24k
2 cosp2nθqt2k

1. or Legendre and Laplace, according to a famous paternity controversy.
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`

8
ÿ

n“0

8
ÿ

k“n

`

2pk`n`1q
k`n`1

˘`

2pk´nq
k´n

˘

24k`2
2 cospp2n` 1qθqt2k`1.

With the definition of the Y `n ’s, this concludes the proof of Lemma 1.20. �

Defining all the others βp,q’s to be zero, this proves Proposition 1.19:

vnpr, r
1, z ´ z1q “

2

m`

8
ÿ

k“n

βn,k

ˆ

m´

m`

˙k

ą 0,

for n ě 0, r, r1 ą 0 and z, z1 P R. Moreover, for r ‰ r1, we have

V pr´ r1q “
8
ÿ

n“0

2

m`

˜

8
ÿ

k“n

βn,k

ˆ

m´

m`

˙k
¸

Y `n pθq.

�

Remark 1.21. (The anisotropic potential (1.14)) If we define vn in a similar
fashion for the true model based on (1.14), even with the conditions p1.24kq and
p1.25q, the vn’s have no sign for n ě 2, since we have

vnpr, r
1, z ´ z1q “

8
ÿ

k“n

2βn,k

˜

1

m`
Id

ˆ

m´
Id

m`
Id

˙k

´
1

m`
M

ˆ

m´
M

m`
M

˙k
¸

which changes sign for n ě 2. This is why our method fails if V is given by (1.14).
Note that the strict positivity however holds true for v0 and for v1 if r, r1 ą 0,
which is straightforward using (1.35).

As proved in the last Section, L2
´pR3q, with corresponding projectors P´,

reduces LQ. We claim that the spaces L2
`pR` ˆ Rq b tY σ

n u, with corresponding
projectors

P`n,σψpr, ϕ, zq “

ˆ
ż 2π

0

ψpr, ϕ1, zq ` ψpr, ϕ1,´zq

2
Y σ
n pϕ

1
q dϕ1

˙

Y σ
n pϕq,

also reduce LQ. Given that pV ‹ |Q|2q is radial and z-odd, that d2

dϕ2Y
σ
n “ ´n

2Y σ
n

and that

∆ “
B2

Br2
`

1

r

B

Br
`
B2

Bz2
`

1

r2

B2

Bϕ2
, (1.37)

we have
“

´∆` 1´
`

V ‹ |Q|2
˘‰

pfY σ
n q “

“

´∆pnq ` 1´
`

V ‹ |Q|2
˘‰

pfqY σ
n , (1.38)

for any f P L2
`pR` ˆ Rq, and so belonging to L2

`pR` ˆ Rq b tY σ
n u, and where

´∆pnq :“ ´
B2

Br2
´

1

r

B

Br
´
B2

Bz2
`
n2

r2
.
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Thus the reduction property follows for ´∆ ` 1 ´ pV ‹ |Q|2q. Moreover, since
V ‹ pQ¨q and P`n,σ are linear and using the decomposition

ψpr, ϕ, zq “ c´pr, ϕ, zq `
ÿ

ně0,σ“˘

c`n,σpr, zqY
σ
n pϕq,

we have to prove that

V ‹ pQP`n1,σ1c
`
n,σY

σ
n q “ P`n1,σ1

`

V ‹ pQc`n,σY
σ
n q

˘

,

for any n, n1 ě 0 and σ, σ1 “ ˘, in order to conclude. We have
“

V ‹ pQc`n,σY
σ
n q

‰

pr, ϕ, zq

“

ż

R`

ż π

´π

ż

R
Qpr1, z1qc`n,σpr

1, z1qY σ
n pϕ

1
qV pr´ r1qr1 dz1 dϕ1 dr1

“
?
γnπ

ˆ
ż

R`

ż

R
Qpr1, z1qc`n,σpr

1, z1qvnpr, r
1, z ´ z1qr1 dz1 dr1

˙

Y σ
n pϕq,

(1.39)

with γn “ 21tn“0u . Then using the parity of vn with respect to its third variable
(which is straightforward with (1.35)), we obtain V ‹ pQc`n,σY σ

n q P L
2
`pR` ˆRq b

tY σ
n u and the reduction property follows. Thus we can apply [Tes09, Lemma

2.24] which gives us that

LQ “ L´ ‘
à

ně0,σ“˘

L`n,σ,

with L´ “ Lz´Q being the same operator as before and each L`n,σ a self-adjoint
operator on L2

`pR`ˆRqbtY σ
n u with domain P`n,σH2pR3q. For shortness, we now

omit the Q subscript in the decomposition LQ.
Given (1.38) and (1.39), for any n ě 0 we note L`n the operator on L2

`pR`ˆRq
such that L`n,`pfY `n q “ L`n pfqY

`
n and L`n,´pfY

´
n q “ L`n pfqY

´
n . This operator is

L`n “ ´∆pnq ` 1` Φ`Wpnq

where Φ is the strictly negative multiplication local potential, on R` ˆ R,

Φpr, zq “ ´
`

V ‹ |Q|2
˘

pr, zq

“ ´
?

2π

ż

R`ˆR
|Qpr1, z1q|2v0pr, r

1, z ´ z1qr1 dz1 dr1 ă 0

and Wpnq is the non-local operator, on R` ˆ R,

pWpnqfqpr, zq “ ´2Qpr, zq

ż

R`ˆR
Qpr1, z1qfpr1, z1qvnpr, r

1, z ´ z1qr1 dz1 dr1. (1.40)
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Similarly to the non-cylindrical case, we need to prove that ´Wpnq is positivity
improving on L2

`pR` ˆ Rq and this is where the result of Proposition 1.19 is
needed.

Lemma 1.22. For n ě 0, the operator ´Wpnq is positivity improving on
L2
`pR` ˆ Rq.

Proof of Lemma 1.22. Given the definition (1.40) of ´Wpnq, the fact that
the vn’s are strictly positive as soon as r, r1 ą 0 (by Proposition 1.19) and that
Q ą 0, it follows that ´Wpnq is positivity improving on L2

`pR` ˆ Rq for any
n ě 0. �

6.2.2. Perron–Frobenius property. We now prove that the L`n ’s verify the
Perron–Frobenius property.

Proposition 1.23 (Perron–Frobenius properties). For n ą 0, the L`n ’s are
essentially self-adjointness on C80 pR` ˆ Rq and bounded below.

Moreover they have the Perron–Frobenius property: if λn0 denotes the lowest
eigenvalue of L`n , then λn0 is simple and the corresponding eigenfunction ψn0 is
strictly positive.

Proof of Proposition 1.23. We follow the proof’s structure of [Len09,
Lemma 8].

Self-adjointness. We still have V ‹ |Q|2 P L4pR3qXL8pR3q. Moreover, defining
f̊pr, ¨, zq “ fpr, zqY `n P L2

`pR` ˆ Rq b tY `n u Ă L2pR3q, for any f P L2
`pR` ˆ Rq,

we have xf, gyL2
`
pR`ˆRq “ xf̊ , g̊yL2pR3q

and, consequently, that Φ` 1 is a bounded
operator on L2

`pR` ˆRq. Then, for any ξ P L2
`pR` ˆRq and p P r2,8s, we have

ˇ

ˇ

ˇ

ˇWpnqξ
ˇ

ˇ

ˇ

ˇ

LppR`ˆRq
ď ||Q||Lp ||V ‹ pQξ̊q||L8 .

ThusWpnqξ P L
2
`pR`ˆRqXL8pR`ˆRq and, finally, 1`Φ`Wpnq and, thus, L`n are

bounded below on L2
`pR`ˆRq. Furthermore, it is known that ´∆pnq is essentially

self-adjoint on C80 pR`ˆRq provided that n ą 0. Thus, given that 1`Φ`Wpnq is
bounded (so ´∆pnq-bounded of relative bound zero), symmetric (moreover self-
ajoint) and that its domain contains the domain of ´∆pnq, we obtain by the
Rellich-Kato theorem the essentially self-adjointness of L`n on C80 pR` ˆ Rq.

Positivity improving. We claim that et∆pnq is positivity improving for all t ą 0

on L2pR` ˆ Rq. Indeed we have the explicit formula for the integral kernel et∆

on R3, namely,

et∆px, yq “ p4πtq´3{2e´
|x´y|2

4t “ p4πtq´3{2e´
r2`r12`pz´z1q2

4t e
rr1

2t
cospϕ´ϕ1q, (1.41)



52 1. STUDY OF THE ANISOTROPIC POLARONS

for all x :“ pr, ϕ, zq and y :“ pr1, ϕ1, z1q. On the other hand we have

ex cos θ
“
?

2π
8
ÿ

m“0

?
2
δtmě1u

ImpxqY
`
m pθq, @x P R, (1.42)

where Inpxq “ π´1 ∫π0 exppx cos θq cospnθq dθ are the modified Bessel functions of
the first kind, that are strictly positive for n ě 0 and x ą 0. From these two
relations, we deduce the integral kernel et∆pnq acting on L2pR` ˆ Rq and that it
is positive, which are the two points of the following lemma.

Lemma 1.24. Let f P L2pR` ˆ Rq, r, r1 ą 0 and n ě 0. Then the integral
kernel et∆pnq acting on L2pR` ˆ Rq verifies

et∆pnqppr, zq, pr1, z1qq “

?
2
´δ0n

4πt3{2
e´

r2`r12`z2`z12

4t In

ˆ

rr1

2t

˙

exp

ˆ

zz1

2t

˙

ą 0. (1.43)

Proof of Lemma 1.24. Let f P L2pR` ˆ Rq. Using (1.41), for n ě 0, we
have
`

et∆pfY σ
n q

˘

pr, ϕ, zq

“ p4πtq´3{2

ż

R`ˆR
e´

r2`r12`pz´z1q2

4t fpr1, z1q

ˆ
ż π

´π

e
rr1

2t
cospϕ´ϕ1qY σ

n pϕ
1
q dϕ1

˙

r1 dr1 dz1

“

?
2
´δ0n

4πt3{2

ż

R`ˆR
e´

r2`r12`z2`z12

4t fpr1, z1qIn

ˆ

rr1

2t

˙

exp

ˆ

zz1

2t

˙

r1 dr1 dz1Y σ
n pϕq.

Which allows to conclude the proof of Lemma 1.24. �

So, for all n ě 0, et∆pnq is positivity improving on L2pR` ˆ Rq for all t ą 0

and consequently on L2
`pR` ˆ Rq. Then, by functional calculus, we have

`

´∆pnq ` µ
˘´1

“

ż 8

0

e´tµet∆pnq dt, @µ ą 0,

thus p´∆pnq ` µq
´1 is positivity improving on L2

`pR` ˆ Rq for all µ ą 0.
Moreover we claim that ´pΦ`Wpnqq is positivity improving on L2

`pR` ˆ Rq
since ´Φ is a positive multiplication operator and ´Wpnq is positivity improving
on L2

`pR` ˆ Rq.

The end of the proof uses the exact same arguments as in the proof of the
Perron–Frobenius property in the non-cylindrical case (Proposition 1.17) and,
consequently, this ends the proof of Proposition 1.23. �
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6.2.3. Proof of Theorem 1.18. First, using the results of the previous Section,
we have

ker pLQq|L2
´
pR3q

“ ker pLQq|L2
`,`,´pR3q

“ spantBzQu

and LQBxQ ” LQByQ ” 0. But now Q is furthermore cylindrical-even, thus
BxQ “ x

r
BrQ P L2

`pR` ˆ Rq b
 

Y `1
(

and ByQ “
y
r
BrQ P L2

`pR` ˆ Rq b
 

Y ´1
(

,
which implies that L`1 BrQ ” 0. Then, Q ą 0 being cylindrical-even strictly
decreasing, BrQ ă 0 on R` ˆ R and, by the Perron–Frobenius property (Propo-
sition 1.23), it is (up to sign) the unique eigenvector associated with the lowest
eigenvalue of L`1 , namely λ1

0 “ 0. Consequently, BxQ (resp. ByQ) is the unique
eigenvector — up, in addition, to rotations in the cylindrical plane — associated
with the lowest eigenvalue λ1,`

0 “ 0 (resp. λ1,´
0 “ 0) of L`1,` (resp. L`1,´). To

summarize, we know at this point that

kerLQ “ span tBxQ, ByQ, BzQu ‘ ker pLQq|L2
rad,`pR3q

‘
à

ně2
σ“˘

ker pLQq|L2
`
pR`ˆRqbtY σn u

,

and we have to deal with the higher orders. The end of the paper is devoted to
the proof that

kerL`n,σ “ t0u, @n ě 2, σ “ ˘. (1.44)

For n ě 2, let 0 ă ϕn P L2
`pR` ˆRq be an eigenvector of L`n associated with λn0 .

Then ϕnY `n (resp. ϕnY ´n ) is an eigenvector of L`n,` (resp. L`n,´) associated to the
eigenvalue λn,`0 “ λn0 (resp. λn,´0 “ λn0 ). Thus, for n ě 2 and σ “ ˘, we have

λ1,σ
0 ´ λn,σ0

ď
@

ϕn,L`1 ϕ
n
D

L2pR`ˆRq
´
@

ϕn,L`nϕ
n
D

L2pR`ˆRq

ď ´

ż

R`ˆR

n2 ´ 1

r2
pϕnpr, zqq2 r dr dz

` 2

ĳ

pR`ˆRq2

rQϕnspr, zqrQϕnspr1, z1q rvn ´ v1s pr, r
1, z ´ z1qrr1 dz dz1 dr dr1.

Since Q ą 0 and ϕn ą 0 (by the Perron–Frobenius property in Proposition 1.23),
in order to prove that λn,σ0 ą λ1,σ

0 , it is sufficient to prove that vn ă v1 almost
everywhere on pR`ˆRq2. Using the explicit formula (1.34) for V , this is equivalent
to prove that

Tn :“

ż π

0

cospnθq ´ cos θ
a

K ` 2a2
2rr

1p1´ cos θq
dθ ă 0,

for a.e. pr, zq, pr1, z1q P pR` ˆ Rq2, where K “ |p1 ´ Sq´1pr ´ r1, 0, z ´ z1q|2 and
a2 “ 1 ´ s2 (where we recall that s2 is the second largest eigenvalue of S).
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First, let us remark that the points
 

2 k
n´1

π
(

kPZ
and

 

2 k
n`1

π
(

kPZ
are the zeros of

cospn¨q ´ cosp¨q and that the function

g “
“

K ` 2p1´ s2q
´2rr1p1´ cosp¨qq

‰´1{2

is strictly decreasing on s0, πr. Let us define, θ2tn{2u :“ π and, for k an integer
in r0, tn{2u ´ 1s, θ2k :“ 2 k

n´1
π and θ2k`1 :“ 2 k`1

n`1
π which are all the zeros of

cospn¨q ´ cosp¨q in r0, πs, except θ2tn{2u if n is even. Then, noticing that cospn¨q ´

cosp¨q is strictly negative on intervals sθ2k, θ2k`1r, strictly positive on intervals
sθ2k`1, θ2k`2r and that nθ2k “ 2kπ ` θ2k, we have

Tn “

tn
2

u´1
ÿ

k“0

ż θ2k`1

θ2k

gpθq
loomoon

ągpθ2k`1qą0

pcospnθq ´ cos θq
looooooooomooooooooon

ă0

dθ `
ż θ2k`2

θ2k`1

gpθq
loomoon

0ă¨ăgpθ2k`1q

pcospnθq ´ cos θq
looooooooomooooooooon

ą0

dθ

ă

tn
2

u´1
ÿ

k“0

gpθ2k`1q

ż θ2k`2

θ2k

pcospnθq ´ cos θq dθ.

If n “ 2 or n “ 3, this immediately leads to Tn ă 0. Otherwise, if n ě 4, we have

Tn ă

tn
2

u´1
ÿ

k“0

gpθ2k`1q

ż θ2k`2

θ2k

pcospnθq ´ cos θq dθ

ă ´
n´ 1

n

ˆ tn
2

u´2
ÿ

k“0

gpθ2k`1q sin θ2k`2 ´

tn
2

u´1
ÿ

k“1

gpθ2k`1q sin θ2k

˙

ă ´
n´ 1

n

tn
2

u´1
ÿ

k“1

rgpθ2k´1q ´ gpθ2k`1qs
loooooooooooomoooooooooooon

ą0

sin θ2k
loomoon

ą0

ă 0.

Thus we have just proved, for n ě 2 and σ “ ˘, that λn,σ0 ą λ1,σ
0 “ 0,

consequently kerL`n,σ “ t0u.
This concludes the proof of Theorem 1.18. �
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7. Appendix

This appendix is devoted to the proof of the existence of minimizers and of
two technical results used in the core of the paper.

7.1. Proof of Theorem 1.5. This follows from Lions’ concentration-com-
pactness method [Lio84a, Lio84b] that we will present in another way, follow-
ing [Lew10].

Preliminary results. To overcome the lack of radially decreasing properties,
we need to introduce the largest possible mass of weak limits of any sequence tψnu
bounded in L2pR3q, up to subsequences and space translations. Let ψ “ tψnu be
a bounded sequence in L2pRdq, we define the following number

mpψq “ sup
ψ

ż

Rd
|ψ|2 , (1.45)

where the sup is taken over the functions ψ for which there exist a sequence txku Ă
Rd and a subsequence ψnk of ψn such that ψnkp¨ ` xkq á ψ weakly in L2pRdq.

We first give an estimate that we will need later and a characterization of
being of null highest local mass.

Lemma 1.25 (A subcritical estimate). Let ψ “ tψnu be a bounded sequence
in H1pRdq, with d ě 3. Then there exists a constant Cd, independent of ψ, such
that

lim sup
nÑ8

ż

Rd
|ψn|

2` 4
d ď Cdmpψq

2
d lim sup

nÑ8
||ψn||

2
H1pRdq.

Proof of Lemma 1.25. The proof is essentially due to Lions (see [Lio84b]).

Let us consider the tiling Cz “
d
ś

j“1
rzj, zj ` 1q of the whole space Rd “

Ť

zPZd
Cz.

By Hölder’s inequality on each Cz, we obtain that
ż

Rd
|ψn|

q
“

ÿ

zPZd

ż

Cz

|ψn|
q
ď

ÿ

zPZd
||ψn||

qθ
L2pCzq

||ψn||
qp1´θq

Lp› pCzq
,

where p› “ 2`4{pd´2q and 1{q “ θ{2`p1´ θq{p›. We now choose qp1´ θq “ 2,
for which q “ 2` 4{d. Then, by the Sobolev embeddings, in each Cz, one gets

||ψn||
2
Lp› pCzq

ď Cd

´

||ψn||
2
L2pCzq

` ||∇ψn||2L2pCzq

¯

,

with Cd being independent of z. This finally leads to
ż

Rd
|ψn|

2` 4
d ď Cd

ˆ

sup
zPZd

||ψn||
2
L2pCzq

˙
2
d

||ψn||
2
H1pRdq .
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Passing now to the limit, we obtain

lim sup
nÑ8

ż

Rd
|ψn|

2` 4
d ď Cd

ˆ

lim sup
nÑ8

sup
zPZd

||ψn||
2
L2pCzq

˙
2
d

lim sup
nÑ8

||ψn||
2
H1pRdq. (1.46)

Let tznu Ă Rd be such that

lim
nÑ8

ż

Czn

|ψn|
2
“ lim sup

nÑ8
sup
zPZd

ż

Cz

|ψn|
2.

Then, tψnu being bounded in H1pRdq, tψnp¨ ` znqu is bounded too and there
exists a subsequence such that ψnkp¨ ` znkq á ψ weakly in H1pRdq. But, by the
Rellich-Kondrachov Theorem [LL01, Section 8.9], this convergence is strong in
L2pC0q and finally

lim sup
nÑ8

sup
zPZd

ż

Cz

|ψn|
2
“ lim

nÑ8

ż

Czn

|ψn|
2
“ lim

nkÑ8

ż

C0

|ψnkp¨ ` znkq|
2

“

ż

C0

|ψ|2 ď

ż

Rd
|ψ|2 ďmpψq.

(1.47)

This concludes the proof of Lemma 1.25. �

Lemma 1.26 (Characterization of null mass). Let ψ “ tψnu be a bounded
sequence in H1pRdq, with d ě 3. The following assertions are equivalent:

i. mpψq “ 0;

ii. lim
nÑ8

sup
zPZd

ż

Cz

|ψn|
2
“ 0;

iii. @R ą 0, lim
nÑ8

sup
xPRd

ş

Bpx,Rq
|ψn|

2 “ 0;

iv. ψn Ñ 0 strongly in LppRdq for all p Ps2, p›r, with p› “ 2d{pd´ 2q .

Proof of Lemma 1.26. We will follow the proof in [Lew10]. First, if
mpψq “ 0, then the estimate (1.47) leads to

lim sup
nÑ8

sup
zPZd

ż

Cz

|ψn|
2
“ 0,

hence ii. and i.ñii. is proved.
Second, if ii. holds true, then the estimate (1.46) gives

||ψn||
L
2` 4

d pRdq
Ñ
nÑ8

0.

Since, by the Sobolev embedding, tψnu is bounded in LppRdq for any p P r2, p›s,
we conclude that ii.ñiv. by Hölder’s inequality.
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Suppose now that iv. holds true. Let txnku Ă Rd and ψ be such that ψnkp¨ `
xnkq á ψ weakly in H1pRdq. Since for any 2 ă p ă p›, we have

||ψnkp¨ ` xnkq||LppRdq “ ||ψnk ||LppRdq Ñ 0,

then ψnkp¨`xnkq Ñ 0 strongly in LppRdq. Then, by uniqueness of the weak-limit,
we obtain ψ “ 0 hence mpψq “ 0 and iv.ñi. is proved.

Since any ball of fixed radius R can be covered by a finite union of Cz’s, the
implication ii.ñiii. holds true.

Finally, since the size of the Cz’s is fixed, we obtain iii.ñii. by choosing a R
large enough. This concludes the proof of Lemma 1.26. �

We now give a lemma which is going to be useful in the proof of the existence
of minimizers.

Lemma 1.27. Let p ě 1. If fn Ñ f strongly in LppKq for any compact
K Ă R3 and there exists C ą 0 such that ||fn||Lp ď C for all n, then fn á f

weakly in LppR3q.

Proof of Lemma 1.27. Let g P LqpR3q with 1{p ` 1{q “ 1. For a given ε,
let R ą 0 be such that pC ` ||f ||Lpq ||g||LqpcBRq ď ε and then n be such that
||fn ´ f ||LppBRq ||g||Lq ď ε, by strong convergence. Then

xfn ´ f, gyLp,Lq ď ||fn ´ f ||LppBRq ||g||Lq ` pC ` ||f ||Lpq ||g||LqpcBRq ď 2ε.

Therefore we have proved the lemma. �

Existence of minimizers. Our strategy to prove the existence of minimizers
will be to first prove that

E pψnq ´ E pψn ´ ψq ÝÑ
nÑ8

E pψq

where ψ is the weak limit in H1pR3q of a minimizing sequence pψnqn. Denoting
λ1 :“ ||ψ||22, we also know that λ1 ď λ by weak convergence. We will then prove
that ψ is a minimizer of Ipλ1q and that Ipλ ´ λ1q ` Ipλ1q “ Ipλq, which finally
leads to λ1 “ λ.

We first claim that mpψq ą 0. Indeed, suppose mpψq “ 0, then ψn Ñ 0

strongly in Lp for any p Ps2, 6r by Lemma 1.26 and in particular in L12{5. Con-
sequently, by the Hardy-Littlewood-Sobolev inequality and (1.13), the Coulomb
term of E converges to 0, which leads to 2E pψnq “ ||∇ψn||22 ` op1q. So Ipλq ě 0,
which contradicts Lemma 1.3.

Since mptψnuq ą 0, there exist a function ψ ‰ 0, a sequence pykqk Ă R3 and
a subsequence nk such that ψnkp¨ ` ykq á ψ in L2. The sequence pψnkp¨ ` ykqqk
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being also a minimizing sequence, we assume in the following for simplicity of
notation that ψn á ψ ‰ 0 with ||ψ||22 “ λ1.

We can now prove the following equality:

Lemma 1.28.
E pψnq “ E pψq ` E pψn ´ ψq ` op1q (1.48)

Proof of Lemma 1.28. By weak convergence of ∇ψn,

||∇ψn ´∇ψ||22 “ ||∇ψn||
2
2 ` ||∇ψ||

2
2 ´ 2< x∇ψn,∇ψy

“ ||∇ψn||22 ´ ||∇ψ||
2
2 ` op1q.

We now deal with the coulomb term. We introduce the bilinear form

Dpf, gq :“
1

2

ż

R3

ż

R3

fpxqgpyqV px´ yq dy dx,

and we show that

Dp|ψn|
2, |ψn|

2
q “ Dp|ψ|2, |ψ|2q `Dp|ψn ´ ψ|

2, |ψn ´ ψ|
2
q ` op1q. (1.49)

To do so we give two results of convergence.
Since ψn á ψ weakly in H1pR3q, by the Rellich-Kondrachov Theorem [LL01,

Section 8.9], |ψn|2 Ñ |ψ|2 strongly in LppKq for 1 ď p ă 3 and any compact K.
On the other hand, by the Sobolev embeddings, |||ψn|2||Lp is uniformly bounded
for p P r1, 3s. With these two properties, by Lemma 1.27, |ψn|2 á |ψ|2 weakly in
LppR3q for any 1 ď p ă 3.

With the same kind of arguments as in Lemma 1.27, we obtain that ψnψ Ñ
|ψ|2 strongly in L1pR3q. On the other hand

ˇ

ˇ

ˇ

ˇψnψ ´ |ψ|
2
ˇ

ˇ

ˇ

ˇ

Lq
ď ||ψn||L2q ||ψ||L2q `

||ψ2||Lq , for any q P r1, 3r, which is uniformly bounded. Finally, by interpolation,
for any 1 ď r ď q ă 3 and θ ` p1´ θq{q “ 1{r, we have

ˇ

ˇ

ˇ

ˇψnψ ´ ψ
2
ˇ

ˇ

ˇ

ˇ

LrpR3q
ď
ˇ

ˇ

ˇ

ˇψnψ ´ ψ
2
ˇ

ˇ

ˇ

ˇ

θ

L1pR3q

ˇ

ˇ

ˇ

ˇψnψ ´ ψ
2
ˇ

ˇ

ˇ

ˇ

1´θ

LqpR3q
ÝÑ
nÑ8

0,

which means that ψnψ Ñ |ψ|2 strongly in Lp for any 1 ď p ă 3.
We also recall that |ψ|2 ‹ V P L4pR3q X L8pR3q (see (1.13)) and now prove

(1.49). First, since |ψn|2 á |ψ|2 weakly in L4{3 and |ψ|2 ‹ V is in L4, one has
ż

R3

|ψn|
2
p|ψ|2 ‹ V q Ñ

ż

R3

|ψ|2p|ψ|2 ‹ V q.

This leads to

Dp|ψn|
2
´ |ψ|2, |ψn|

2
´ |ψ|2q ´Dp|ψn|

2, |ψn|
2
q “ Dp|ψ|2, |ψ|2q ´ 2Dp|ψn|

2, |ψ|2q,

and consequently to

Dp|ψn|
2
´ |ψ|2, |ψn|

2
´ |ψ|2q `Dp|ψ|2, |ψ|2q ´Dp|ψn|

2, |ψn|
2
q ÝÑ
nÑ8

0.
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Second, a simple computation gives

1

4

“

Dp|ψn|
2
´ |ψ|2, |ψn|

2
´ |ψ|2q ´Dp|ψn ´ ψ|

2, |ψn ´ ψ|
2
q
‰

“ Dpψnψ ´ |ψ|
2, ψnψ ´ |ψ|

2
q `Dp|ψ|2 ´ |ψn|

2, ψnψ ´ |ψ|
2
q.

But since ||ψnψ ´ |ψ|2||L4{3 Ñ 0 and
ˇ

ˇ

ˇ

ˇpψnψ ´ |ψ|
2
q ‹ V

ˇ

ˇ

ˇ

ˇ

L4 ď
ˇ

ˇ

ˇ

ˇψnψ ´ |ψ|
2
ˇ

ˇ

ˇ

ˇ

L4{3 ||V2||L2 `
ˇ

ˇ

ˇ

ˇψnψ ´ |ψ|
2
ˇ

ˇ

ˇ

ˇ

L1 ||V4||L4 Ñ 0,

where V “ V2 ` V4 P L
2pR3q ` L4pR3q, we have

Dpψnψ ´ |ψ|
2, ψnψ ´ |ψ|

2
q ď

ˇ

ˇ

ˇ

ˇψnψ ´ |ψ|
2
ˇ

ˇ

ˇ

ˇ

L4{3pR3q

ˇ

ˇ

ˇ

ˇpψnψ ´ |ψ|
2
q ‹ V

ˇ

ˇ

ˇ

ˇ

L4pR3q
Ñ 0

and

Dp|ψ|2´ |ψn|
2, ψnψ´ |ψ|

2
q ď

`
ˇ

ˇ

ˇ

ˇ|ψn|
2
ˇ

ˇ

ˇ

ˇ

L4{3 `
ˇ

ˇ

ˇ

ˇ|ψ|2
ˇ

ˇ

ˇ

ˇ

L4{3

˘
ˇ

ˇ

ˇ

ˇpψnψ ´ |ψ|
2
q ‹ V

ˇ

ˇ

ˇ

ˇ

L4 Ñ 0.

We have finally proved (1.49) which concludes the proof of Lemma 1.28. �

We now prove that ψ is a minimizer of Ipλ1q and that Ipλ´λ1q`Ipλ1q “ Ipλq.
First, Lemma 1.28 gives, for any n, that

E pψnq ě E pψq ` I
`

||ψn ´ ψ||
2
2

˘

` op1q.

Since ||ψn ´ ψ||
2
2 “ λ` λ1 ´ 2< xψn, ψy Ñ λ´ λ1 and λ ÞÑ Ipλq is continuous,

we conclude that

Ipλ´ λ1q ` Ipλ1q ď Ipλ´ λ1q ` E pψq ď Ipλq.

On the other hand, by Lemma 1.3, we have the inequality

Ipλq ď Ipλ´ λ1q ` Ipλ1q.

This immediately gives

Ipλ´ λ1q ` Ipλ1q “ Ipλq (1.50)

and E pψq “ Ipλ1q, that is, ψ is a minimizer of Ipλ1q “ I
`

||ψ||22
˘

.
We now conclude the proof of the existence of minimizers by proving that

λ1 “ λ. By Lemma 1.3 we then have pλ´ λ1q3` pλ1q3 “ λ3 which is only possible
if λ1 “ 0 or λ1 “ λ. Since λ1 ‰ 0, we have just proved the existence of minimizers.
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Convergence of all the minimizing sequences. The fact that any minimizing
sequence strongly converges in H1pR3q to a minimizer follows directly from the
following compactness criterion.

Lemma 1.29 (Compactness criterion). Let tψnu be a minimizing sequence for
Ipλq such that ψn á ψ weakly in H1pR3q. Then

ψn Ñ ψ strongly in H1
pR3
q ô

ż

R3

|ψ|2 “ λ.

Moreover, if this criterion is verified then ψ is a minimizer of Ipλq.

Proof of Lemma 1.29. By assumption, for any n, we have ||ψn||
2
L2 “ λ. So

if we suppose the strong convergence in H1pR3q of pψnqn, we have λ “ ||ψn||
2
L2 Ñ

||ψ||2L2 .

We now prove the converse implication. For that we will prove that E pψnq
(resp. that the Coulomb term of E pψnq) converges in L2pR3q to E pψq (resp. to
the Coulomb term of E pψnq), which implies the same convergence for the kinetic
term of E pψnq. Suppose that ||ψ||2L2 “ λ. By the weak convergence ψn á ψ in
L2pR3q, we have

||ψn ´ ψ||
2
L2 “ ||ψn||

2
L2 ` ||ψ||

2
L2 ´ 2< xψn, ψy “ 2λ´ 2< xψn, ψy Ñ 0.

On another hand, by the Sobolev embedding, ψn ´ ψ is bounded in L6pR3q,
wich leads by interpolation to the strong convergence ψn Ñ ψ in LppR3q for any
p P r2, 6r and in particular in L12{5pR3q. Since |∫R3 f pg ‹ V q| ď C ||f ||L6{5 ||g||L6{5

for any f, g P L6{5pR3q (by the Hardy-Littlewood-Sobolev inequality and (1.13)),
the Coulomb term of E is then continuous for the strong topology of L12{5pR3q

and

lim
nÑ8

ż

R3

|ψnpxq|
2
`

|ψn|
2
‹ V

˘

pxq dx “
ż

R3

|ψpxq|2
`

|ψ|2 ‹ V
˘

pxq dx. (1.51)

Secondly, we have lim
nÑ8

||∇ψn||2L2 ě ||∇ψ||2L2 by the weak convergence ∇ψn á ∇ψ
in L2pR3q. This, combined with (1.51) and recalling that tψnu is a minimizing
sequence of Ipλq, leads to

Ipλq ě lim
nÑ8

E pψnq ě E pψq ě Ipλq.

So we have in fact an equality between the three terms and, combining this
again with (1.51), leads to ||∇ψn||L2 Ñ ||∇ψ||L2 . We finally obtain the strong
convergence ∇ψn Ñ ∇ψ in L2pR3q recalling that we had the weak convergence
already. �

We now prove the remaining properties. Let ψ be a minimizer of Ipλq.
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Proof that ψ is an H2pR3q-solution of (1.3). We first show that it is a solution
in H´1pR3q. Let χ P H1pR3q. For ε P R small enough such that ||ψ ` εχ||L2pR3q

ą

0, we define ψε P H1pR3q as

ψε :“
?
λ

ψ ` εχ

||ψ ` εχ||L2pR3q

.

Thus ||ψε||
2
2 “ λ and a straightforward computation gives

E pψεq “ E pψq ` ε<
„
ż

R3

`

´∆ψ ´ 2p|ψ|2 ‹ V qψ ` 2µψ
˘

χ



`Opε2
q,

with

´2µ :“
1

λ

ˆ

||∇ψ||2L2pR3q
´ 2

ż

R3

ż

R3

|ψpxq|2|ψpyq|2V px´ yq dy dx
˙

.

Replacing χ by iχ, we get the same result except for having the imaginary part
instead of the real part. Since ψ is a minimizer, we conclude that ψ is a solution
of (1.3) in H´1pR3q.

Since |ψ|2 ‹ V P L4pR3q XL8pR3q, the Rellich-Kato Theorem [RS75, Section
X.12] implies that Hψ is self-adjoint with domain H2pR3q. Moreover,

| xψ,Hψϕy | “ | xµψ, ϕy | ď |µ| ||ϕ||L2 ||ψ||L2

for any ϕ P H2pR3q. Thus ψ P DpH›
ψq “ DpHψq “ H2pR3q and we conclude that

ψ P H2pR3q.
Proof that µ “ ´ d

dλ
Ipλq ą 0 and norms equalities. Let ψ be a minimizer of

Ipλq, then for any ε P p´1, 1q,

E p
?

1` εψq “ E pψq ´ εµλ`Opε2
q.

Moreover, by Lemma 1.3, one has Ipp1` εqλq “ Ipλqp1` 3εq `Opε2q thus

0 ď E p
?

1` εψq ´ Ipp1` εqλq “ ´ε pµλ` 3Ipλqq `Opε2
q, for any ε P p´1, 1q.

Then, sending ε to 0` and 0´, we obtain µλ “ ´3Ipλq and Lemma 1.3 leads
to µ “ ´3λ2Ip1q “ ´ d

dλ
Ipλq ą 0. Thus, ψ being a minimizer and a solution of

(1.3), we have

||∇ψ||22 ´ 2
@

V ‹ |ψ|2, |ψ|2
D

“ ´2µλ “ 6Ipλq “ 3 ||∇ψ||22 ´ 3
@

V ‹ |ψ|2, |ψ|2
D

.

This gives (1.17).
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Proof that |ψ| is a minimizer and |ψ| ą 0. Since

||∇|ϕ|||L2pR3q
ď ||∇ϕ||L2pR3q

,

for any ϕ P H1pR3q, and ψ being a minimizer, it is straightforward that |ψ| is
also a minimizer. Consequently |ψ| is a H2pR3q-solution of (1.3) with the same µ.
Moreover, 0 ı |ψ| P H2pR3q, since 0 ı ψ, and W :“ ´2|ψ|2 ‹ V ` 2µ P L8pR3q.
We then use the following lemma to conclude that |ψ| ą 0.

Lemma 1.30. LetW P L1
locpR3q such that there exists C P R such thatW ď C.

If 0 ı ϕ P H2pR3q is such that ϕ ě 0 and p´∆`W qϕ ě 0 then ϕ ą 0.

Remark 1.31. This lemma is of course a special case of [LL01, Theorem
9.10] or of results in [RS78, Section XIII.12] but we give here a more adapted
and easier version.

Proof of Lemma 1.30. Let κ2 ą maxpC, 0q. We define 0 ď p´∆`κ2qϕ :“

g P L2pR3q because ϕ P H2pR3q. But g ě pκ2´Cqϕ ı 0 and so g ı 0. Since ϕ̂ “
p|k|2 ` κ2q´1ĝ and using Yukawa’s formula giving the inverse Fourier transform
of k ÞÑ p|k|2 ` κ2q´1, one obtains ϕpxq “ p4πq´1

ş

R3 e
´κ|x´y||x´ y|´1gpyq dy and

finally ϕ ą 0. �

Proof that ´µ is the lowest eigenvalue, ψ “ z|ψ| and ´µ is simple. Those
results come from the following lemma.

Lemma 1.32. Let H “ ´∆ `W with W P L8pR3q with a strictly negative
lower eigenvalue ν. Then ν is simple and the associated eigenfunction ϕν is
strictly positive up to a phase vector.

Moreover, for any 0 ı u ě 0 and λ such that Hu “ λu, then λ “ ν.

Proof of Lemma 1.32. Given that W P L8pR3q, H is self-adjoint with do-
main H2pR3q. Thus 0 ı ϕν P H

2pR3q and xH|ϕν |, |ϕν |y ď xHϕν , ϕνy. Moreover,
since

ν “ inf
ϕPD,||ϕ||“1

xHϕ,ϕy,

|ϕν | is also a ground state of H and Lemma 1.30 gives that |ϕν | ą 0.
Let suppose there exist two strictly positive normalized distinct ground states

ψA et ψB of H. Then ψA´ψB is also a ground state of H and, as before, |ψA´ψB|
too thus |ψA ´ ψB| ą 0 everywhere. So either ψA ą ψB everywhere or ψA ă ψB
everywhere. But this contradicts the fact that they are both normalized. We
conclude that |ϕν |{ ||ϕν ||2 is the unique normalized strictly positive ground state.

If ϕν is real valued (resp. purely imaginary valued), since |ϕν | ą 0 and ϕν is
continuous (H2pR3q ãÑ C0pR3q), we have ϕν “ ˘|ϕν | (resp. ϕν “ ˘i|ϕν |).
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Otherwise, let us define ψr ı 0 and ψi ı 0 real valued such that ϕν “ ψr`iψi.
The operator H being real, Hψr “ νψr and Hψi “ νψi hold. Thus, as for |ϕν |
just above, |ψr| ą 0 and |ψi| ą 0 are two strictly positive ground states and
consequently |ψr|9|ψi| ą 0, by uniqueness of normalized strictly positive ground
states. Moreover, since ψr and ψi are continuous (by continuity of ϕν), ψr “ ˘|ψr|
and ψi “ ˘|ψi|. This leads to ϕν “ z|ϕν | and to the fact that ν is simple.

Let 0 ı u ě 0 and λ such that Hu “ λu. Since |ϕν | ą 0 and u ě 0 are two
eigenfunctions, they are eigenfunctions of the same eigenvalue otherwise they
should be orthogonal. Thus λ “ ν and so u9|ϕν | ą 0. �

Applying the second part of this lemma to ´µ and its eigenfunction |ψ| ą 0,
we obtain that ´µ is the lowest eigenvalue of Hψ and is simple. Then, the first
part of the lemma gives ψ “ z|ψ|.

This concludes the proof ot Theorem 1.5. �

7.2. Compactness of the operator BψGpQ, s¨Idq´1. The following lemma
states the compactness result asserted in the proof of Theorem 1.7.

Lemma 1.33. Let V be given by (1.14) or (1.15), ψ P H1pR3q and µ ą 0.
Then ξ ÞÑ p´∆` µq´1

r´ p|ψ|2 ‹ V q ξ ´ 2ψ ppψξq ‹ V qs is a compact operator on
L2pR3q.

Proof. Since |ψ|2 ‹ V P L4pR3q X L8pR3q and pµ ` | ¨ |2q´1 P L3{2`εpR3q X

L8pR3q, by [RS79, Theorem XI.20], the operator p´∆` µq´1
|ψ|2‹V is compact

on L2pR3q. For the second term, we first prove the following lemma:

Lemma 1.34. Let 1 ď p, q, r ă 8 such that 1 ` 1{r “ 1{p ` 1{q. If fn á 0

weakly in LppR3q and g P LqpR3q then fn ‹ g Ñ 0 in LrlocpR3q.

Proof of Lemma 1.34. Since fn converges weakly in LppR3q, fn is bounded
in LppR3q. Let BR be a fixed ball of R3, and let ε ą 0. Let g1 P C8c pR3q be such
that ||g ´ g1||Lq ď ε. Since g1 P C8c pR3q Ă Lp

1

pR3q, we have ∫ g1pxqfnpy ´ xq dxÑ
0 a.e.. Applying the dominated convergence theorem to p1BR pfn ‹ g1qqr, we obtain
that fn ‹ g1 Ñ 0 in LrlocpR3q. Thus, for n big enough

||fn ‹ g||Lr
loc
ď ||fn ‹ g

1
||Lr

loc
` ||fn ‹ pg ´ g

1
q||Lr

loc
ď ε` ||fn||Lp ||g ´ g

1
||Lq ď εp1`Cq.

�

Since
ˇ

ˇ

ˇ

ˇ

ˇ

ˇpµ´∆q´1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L2ÑL2 ď maxt1, µ´1
u,

it then suffices to prove that ξ Ñ ψpψξnq ‹ V is a compact operator on L2pR3q

in order to prove that pµ ´ ∆q´1ξ Ñ ψpψξnq ‹ V is also a compact operator on



64 1. STUDY OF THE ANISOTROPIC POLARONS

L2pR3q. Let ξn á 0 weakly in L2pR3q. Since ψ P L2pR3q X L6pR3q, we have
ψξn á 0 weakly in L1pR3q XL3{2pR3q and then, given that V P L2pR3q `L4pR3q,
we have ||pψξnq ‹ V ||L4 ď C for all n. Then, using Lemma 1.34, we have

||ψpψξnq ‹ V ||L2 ď ||1BRψpψξnq ‹ V ||L2 `
ˇ

ˇ

ˇ

ˇ1BcRψpψξnq ‹ V
ˇ

ˇ

ˇ

ˇ

L2

ď ||ψ||L4 ||pψξnq ‹ V ||L4
loc
` C

ˇ

ˇ

ˇ

ˇ1BcRψ
ˇ

ˇ

ˇ

ˇ

L4 .

Consequently, for any given ε, choosing the radius R of the BR and n both big
enough, we have ||ψpψξnq ‹ V ||L2 ď ε, thus ||ψpψξnq ‹ V ||L2 Ñ 0. This concludes
the proof of the Lemma 1.33. �

7.3. Real analicity of minimizers. We prove here Lemma 1.12.

Proof of Lemma 1.12. The function ψ is continuous and bounded since
it belongs to H2pR3q. Then the equation (1.3) and elliptic regularity give ψ P
C8pR3q.

We define V A
ψ “ 1{|A ¨ |‹|ψ|2, for any ψ P H2pR3q and A “ diagpa1, a2, a3q ą 0

and have ´4π|ψ|2 “ ∆V Id
ψ and V Id

ψ pA¨q “ detpAqV A
ψ˝A, thus, with B “ A´1,

´4π|ψ|2 “ ´4π|ψ ˝B|2pA¨q “
3
ÿ

i“1

B
2
i

`

V Id
ψ˝B

˘

pA¨q

“

3
ÿ

i“1

a´2
i B

2
i

“

V Id
ψ˝BpA¨q

‰

“ detpAq
3
ÿ

i“1

a´2
i B

2
i V

A
ψ .

Noticing that VM “ V Id
ψ ´ V M

ψ , this yields
¨

˚

˚

˝

´∆ 0 0

0 ´∆ 0

0 0 ´
3
ř

i“1
ε´2
i B

2
i

˛

‹

‹

‚

¨

˝

ψ

V Id
ψ

V M
ψ

˛

‚“

¨

˝

´2µψ ` 2V Id
ψ ψ ´ 2V M

ψ ψ

4πψ2

4πpdetMq´1ψ2

˛

‚. (1.52)

This also proves that V Id
ψ and V M

ψ are in H2pR3q X C8pR3q. And we now follow
a method (and the notations) of K. Kato in [Kat96] to prove that ψ, V Id

ψ and
V M
ψ are analytic.
Let B and B1 be open balls such that B Ă B1 and B1 Ă R3, and r a cut-off

function: r P C8c pR3q such that 0 ď r ď 1, suppprq Ă B1 and r ” 1 on B. We
show by induction on |α| that there exist A,C ą 0 such that pH|α|q holds for any
multi-index α, where

pH|α|q : max
!

ˇ

ˇ

ˇ

ˇr|α|Bαψ
ˇ

ˇ

ˇ

ˇ

H2pB1q
,
ˇ

ˇ

ˇ

ˇr|α|BαV Id
ψ

ˇ

ˇ

ˇ

ˇ

H2pB1q
,
ˇ

ˇ

ˇ

ˇr|α|BαV M
ψ

ˇ

ˇ

ˇ

ˇ

H2pB1q

)

ď CA|α||α|!

In addition to some results of [Kat96], we will need the following generaliza-
tion of Proposition 2.3 in Kato’s paper.
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Lemma 1.35. Let Ω be a domain of R3 and a1 ě a2 ě a3 ě 1. Then

||B
αv||H2pΩq ď a2

1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3
ÿ

k“1

a´2
k B

2
kv

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

H2pΩq

holds for any v P H4
0 pΩq and any multi-index α such that |α| “ 2.

Proof of Lemma 1.35. Adapting the proof in [Kat96], from Plancherel’s
theorem and for any v P C80 pΩq and i, j P t1, 2, 3u, we have

||Bijv||H2pΩq “ aiaj
ˇ

ˇ

ˇ

ˇ

`

1` |ξ|2
˘

a´1
i ξia

´1
j ξj v̂pξq

ˇ

ˇ

ˇ

ˇ

L2pR3q

ď a2
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

1` |ξ|2
˘

v̂pξq
3
ÿ

k“1

a´2
k ξ2

k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L2pR3q

“ a2
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3
ÿ

k“1

a´2
k B

2
kv

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

H2pΩq

.

�

Let A ě 1 be an arbitrary constant, there exists a constant C such that, for
|α| ď 1, we have

max
!

ˇ

ˇ

ˇ

ˇr|α|Bαψ
ˇ

ˇ

ˇ

ˇ

H2pB1q
,
ˇ

ˇ

ˇ

ˇr|α|BαV Id
ψ

ˇ

ˇ

ˇ

ˇ

H2pB1q
,
ˇ

ˇ

ˇ

ˇr|α|BαV M
ψ

ˇ

ˇ

ˇ

ˇ

H2pB1q

)

ď C ď CA|α||α|!.

We now suppose that pH|γ|q holds for any γ such that |γ| ď n. For shortness
we will denote in the following ||¨|| :“ ||¨||H2pB1q. Let |α| “ n´ 1 and |β| “ 2.

Let u P H2pR3q X C8pR3q such that
ˇ

ˇ

ˇ

ˇr|γ|Bγu
ˇ

ˇ

ˇ

ˇ ď CA|γ||γ|! for any |γ| ď n.
Then, using Proposition 2.2 of [Kat96], one has

ˇ

ˇ

ˇ

ˇrn`1
B
α`βu

ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇ

ˇ

ˇB
β
`

rn`1
B
αu
˘ˇ

ˇ

ˇ

ˇ` npn` 1qC1 ||BirBjr||
ˇ

ˇ

ˇ

ˇrn´1
B
αu
ˇ

ˇ

ˇ

ˇ

` pn` 1qC1

“ˇ

ˇ

ˇ

ˇrBβr
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇrn´1
B
αu
ˇ

ˇ

ˇ

ˇ` ||Bir|| ||r
n
BjB

αu|| ` ||Bjr|| ||r
n
BiB

αu||
‰

ď
ˇ

ˇ

ˇ

ˇB
β
`

rn`1
B
αu
˘
ˇ

ˇ

ˇ

ˇ` CC1A
n´1
pn` 1q! ||BirBjr||

` CC1A
n´1
pn´ 1q!pn` 1q

“ ˇ

ˇ

ˇ

ˇrBβr
ˇ

ˇ

ˇ

ˇ` An p||Bir|| ` ||Bjr||q
‰

ď
ˇ

ˇ

ˇ

ˇB
β
`

rn`1
B
αu
˘ˇ

ˇ

ˇ

ˇ` CC2A
n
pn` 1q!,

where we have used that A ě 1 and defined

C2 :“ max
1ďi,jď3

C1

`

||BirBjr|| `
ˇ

ˇ

ˇ

ˇrBβr
ˇ

ˇ

ˇ

ˇ` ||Bir|| ` ||Bjr|| `
ˇ

ˇ

ˇ

ˇr2
ˇ

ˇ

ˇ

ˇ

˘

.
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Then, by Lemma 1.35 and [Kat96, Proposition 2.2], we have

ˇ

ˇ

ˇ

ˇB
β
`

rn`1
B
αu
˘ˇ

ˇ

ˇ

ˇ ď ε2
3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3
ÿ

k“1

ε´2
k B

2
k

`

rn`1
B
αu
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε2
3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rn`1
B
α

˜

3
ÿ

k“1

ε´2
k B

2
ku

¸ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

` ε2
3

3
ÿ

k“1

ε´2
k

`

CAnpn` 1q!C1

“

||BkrBkr|| `
ˇ

ˇ

ˇ

ˇrB2
kr
ˇ

ˇ

ˇ

ˇ` 2 ||Bkr||
‰ ˘

since

B
2
k

`

rn`1
B
αu
˘

“ rn`1
B
α
B

2
ku`pn`1q

“

nrn´1
pBkrq

2
B
αu` rn

`

B
2
krB

αu` 2BkrBkB
αu
˘‰

.

Thus, since ε´2
k ď ε´2

1 and C1 p||BkrBkr|| ` ||rB
2
kr|| ` 2 ||Bkr||q ď C2, this leads to

ˇ

ˇ

ˇ

ˇrn`1
B
α`βu

ˇ

ˇ

ˇ

ˇ ď ε2
3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rn`1
B
α

˜

3
ÿ

k“1

ε´2
k B

2
ku

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`
`

1` 3ε2
3ε
´2
1

˘

CC2A
n
pn` 1q!

And when ε3 “ ε2 “ ε1 “ 1, we have
ˇ

ˇ

ˇ

ˇrn`1
B
α`βu

ˇ

ˇ

ˇ

ˇ ď
ˇ

ˇ

ˇ

ˇrn`1
B
α
p∆uq

ˇ

ˇ

ˇ

ˇ` 4CC2A
n
pn` 1q!

Thanks to (1.52), we will conclude, using the following lemma, by applying
the above results to u being ψ, V Id

ψ or V M
ψ .

Lemma 1.36. For any multi-index α, we have
ř

γďα

`

α
γ

˘

|γ|!|α ´ γ|! “ p|α| ` 1q!.

Proof of Lemma 1.36. Using [Kat96, Proposition 2.1] and |α´γ| “ ||α|´
|γ||, one has

ÿ

γďα

ˆ

α

γ

˙

|γ|!|α ´ γ|! “

|α|
ÿ

k“0

ÿ

γďα,|γ|“k

ˆ

α

γ

˙

|α|!

ˆ

|α|

|γ|

˙´1

“

|α|
ÿ

k“0

|α|! “ p|α| ` 1q!.

�

We first treat V M
ψ (and V M“Id

ψ ), using Proposition 2.2 of [Kat96]. We have

detM

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rn`1
B
α

˜

3
ÿ

k“1

ε´2
k B

2
kV

M
ψ

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 4π
ˇ

ˇ

ˇ

ˇrn`1
B
α
p|ψ|2q

ˇ

ˇ

ˇ

ˇ

“ 4π

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

r2
ÿ

γďα

ˆ

α

γ

˙

r|γ|Bγψr|α´γ|Bα´γψ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,
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hence

detM

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rn`1
B
α

˜

3
ÿ

k“1

ε´2
k B

2
kV

M
ψ

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 4πC2C2
1

ˇ

ˇ

ˇ

ˇr2
ˇ

ˇ

ˇ

ˇ

ÿ

γďα

ˆˆ

α

γ

˙

A|γ||γ|!A|α´γ||α ´ γ|!

˙

ď 4πC2C2
1

ˇ

ˇ

ˇ

ˇr2
ˇ

ˇ

ˇ

ˇAn´1n!

ď 4πC2C1C2A
n
pn` 1q!.

Thus
ˇ

ˇ

ˇ

ˇrn`1
B
α`βV M

ψ

ˇ

ˇ

ˇ

ˇ ď C

„ˆ

1` 3
ε2

3

ε2
1

`
4πε2

3CC1

detM

˙

C2



Anpn` 1q!.

Finally, if A ě max
!

1, 4C2p1` πCC1q, C2

´

1` 3
ε23
ε21
`

4πε23CC1

detM

¯)

,
ˇ

ˇ

ˇ

ˇr|γ|BγV M
ψ

ˇ

ˇ

ˇ

ˇ

H2pB1q
ď CA|γ||γ|! and

ˇ

ˇ

ˇ

ˇr|γ|BγV Id
ψ

ˇ

ˇ

ˇ

ˇ

H2pB1q
ď CA|γ||γ|!,

for any γ such that |γ| “ n` 1.
We now deal with ψ. Similar computations give

1

2

ˇ

ˇ

ˇ

ˇrn`1
B
α
p∆ψq

ˇ

ˇ

ˇ

ˇ ď |µ|
ˇ

ˇ

ˇ

ˇrn`1
B
αψ

ˇ

ˇ

ˇ

ˇ`
ˇ

ˇ

ˇ

ˇrn`1
B
α
pV Id

ψ ψq
ˇ

ˇ

ˇ

ˇ`
ˇ

ˇ

ˇ

ˇrn`1
B
α
pV M

ψ ψq
ˇ

ˇ

ˇ

ˇ

ď |µ|C1

ˇ

ˇ

ˇ

ˇr2
ˇ

ˇ

ˇ

ˇCA|α||α|!` 2C2C2
1

ˇ

ˇ

ˇ

ˇr2
ˇ

ˇ

ˇ

ˇA|α||α|!

ď p|µ| ` 2CC1qCC2A
n
pn` 1q!,

thus
ˇ

ˇ

ˇ

ˇrn`1
B
α`βψ

ˇ

ˇ

ˇ

ˇ ď 2 p2` |µ| ` 2CC1qCC2A
n
pn` 1q!.

Finally, pH|γ|q holds for any γ such that |γ| “ n` 1, if

A ě max

"

1, 4C2p1` πCC1q, 2p2` |µ| ` 2CC1qC2, C2

ˆ

1` 3
ε2

3

ε2
1

`
4πε2

3CC1

detM

˙*

.

This concludes the induction and the proof of Lemma 1.12. �





PARTIE 2

Symmetry breaking in the periodic TFDW model

Ce chapitre est une version plus détaillée d’un article soumis

Julien Ricaud, Symmetry Breaking in the Periodic Thomas-Fermi-Dirac-Von
Weizsäcker Model, ArXiv:1703.07284 (2017).

Abstract
We consider the Thomas–Fermi–Dirac–von Weizsäcker model for a system composed
of infinitely many nuclei placed on a periodic lattice and electrons with a periodic
density. We prove that if the Dirac constant is small enough, the electrons have the
same periodicity as the nuclei. On the other hand if the Dirac constant is large enough,
the 2-periodic electronic minimizer is not 1-periodic, hence symmetry breaking occurs.
We analyze in detail the behavior of the electrons when the Dirac constant tends to
infinity and show that the electrons all concentrate around exactly one of the 8 nuclei of
the unit cell of size 2, which is the explanation of the breaking of symmetry. Zooming
at this point, the electronic density solves an effective nonlinear Schrödinger equation
in the whole space with nonlinearity u7{3 ´ u4{3. Our results rely on the analysis of
this nonlinear equation, in particular on the uniqueness and non-degeneracy of positive
solutions.
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1. Introduction

Symmetry breaking is a fundamental question in Physics which is largely
discussed in the literature. In this second part of the thesis, we consider the
particular case of electrons in a periodic arrangement of nuclei. We assume that
we have classical nuclei located on a 3D periodic lattice and we ask whether the
quantum electrons will have the symmetry of this lattice. We study this question
for the Thomas–Fermi–Dirac–von Weizsäcker (TFDW) model which is the most
famous non-convex model occurring in Orbital-free Density Functional Theory.
In short, the energy of this model takes the form

ż

K
|∇?ρ|2 ` 3

5
cTF

ż

K
ρ

5
3 ´

3

4
c

ż

K
ρ

4
3 `

1

2

ż

K
pG ‹ ρqρ´

ż

K
Gρ, (2.1)

where K is the unit cell, ρ is the density of the electrons and G is the periodic
Coulomb potential. The non-convexity is (only) due to the term ´3

4
c
ş

ρ
4
3 . We

refer to [GS94, Fri97, BM99, BGM03, Sei06] for a derivation of models of
this type in various settings.

We study the question of symmetry breaking with respect to the parameter
c ą 0. In this second part of the thesis, we prove for c ą 0 that:

‚ if c is small enough, then the density ρ of the electrons is unique and has the
same periodicity as the nuclei, that is, there is no symmetry breaking;

‚ if c is large enough, then there exist 2-periodic arrangements of the electrons
which have an energy that is lower than any 1-periodic arrangement, that is,
there is symmetry breaking.

Our method for proving the above two results is perturbative and does not
provide any quantitative bound on the value of c in the two regimes. For small c
we perturb around c “ 0 and use the uniqueness and non degeneracy of the TFW
minimizer, which comes from the strict convexity of the associated functional.
This is very similar in spirit to a result by Le Bris [Le 93] in the whole space.

The main novelty of this part of the thesis, is the regime of large c. The ρ
4
3

term in (2.1) favours concentration and we will prove that the electronic density
concentrates at some points in the unit cell K in the limit c Ñ 8 (it converges
weakly to a sum of Dirac deltas). Zooming around one point of concentration at
the scale 1{c we get a simple effective model posed on the whole space R3 where
all the Coulomb terms have disappeared. The effective minimization problem is
of NLS-type with two subcritical power nonlinearities:

JR3pλq “ inf
vPH1pR3q

||v||2
L2pR3q“λ

"
ż

R3

|∇v|2 ` 3

5
cTF

ż

R3

|v|
10
3 ´

3

4

ż

R3

|v|
8
3

*

. (2.2)
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The main argument is that it is favourable to put all the mass of the unit cell at
one concentration point, due to the strict binding inequality

JR3pλq ă JR3pλ1q ` JR3pλ´ λ1q

that we prove in Section 3.1. Hence for the 2-periodic problem, when c is very
large the 8 electrons of the double unit cell prefer to concentrate at only one
point of mass 8, instead of 8 points of mass 1. This is the origin of the symmetry
breaking for large c. Of course the exact same argument works for a union of n3

unit cells.
Let us remark that the uniqueness of minimizers for the effective model JR3pλq

in (2.2) is an open problem that we discuss in Section 2.2. We can however prove
that any nonnegative solution of the corresponding nonlinear equation

´∆Qµ ` cTFQµ

7
3 ´Qµ

5
3 “ ´µQµ

is unique and nondegenerate (up to translations). We conjecture (but are unable
to prove) that the mass

ş

Qµ
2 is an increasing function of µ. This would imply

uniqueness of minimizers and is strongly supported by numerical simulations.
Under this conjecture we can prove that there are exactly 8 minimizers for c
large enough, which are obtained one from each other by applying 1-translations.

The TFDW model studied in this second part of the thesis is a very simple
spinless empirical theory which approximates the true many-particle Schrödinger
problem. The term ´3

4
c
ş

ρ
4
3 is an approximation to the exchange-correlation

energy and c is only determined on empirical grounds. The exchange part was
computed by Dirac [Dir30] in 1930 using an infinite non-interacting Fermi gas
leading to the value cD :“ 3

?
6q´1π´1, where q is the number of spin states.

For the spinless model (i.e. q “ 1) that we are studying, this gives cD « 1.24,
which corresponds to the constant 0.93 generally appearing in the literature,
namely, 3

4
cD « 0.93. It is natural to use a constant c ą cD in order to account for

correlation effects. On the other hand, the famous Lieb-Oxford inequality [Lie79,
LO80, KH99, LS10] suggests to take 3

4
cD ď 1.64. It has been argued in [Per91,

PW92, LP93] that for the classical interacting uniform electron gas one should
use the value 3

4
c « 1.44 which is the energy of Jellium in the body-centered

cubic (BCC) Wigner crystal and is implemented in the most famous Kohn-Sham
functionals [PBE96]. However, this has recently been questioned in [LL15] by
Lewin and Lieb. In any case, all physically reasonable choices lead to c of the
order of 1.

We have run some numerical simulations presented later in Section 2.3, using
nuclei of (pseudo) charge Z “ 1 on a BCC lattice of side-length 4Å. We found
that symmetry breaking occurs at about c « 3.3. More precisely, the 2-periodic
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ground state was found to be 1-periodic if c À 3.30 but really 2-periodic for
c Á 3.31. The numerical value c « 3.3 (which corresponds to 3

4
c « 2.48) obtained

as critical constant in our numerical simulations is above the usual values chosen
in the literature. However, it is of the same order of magnitude and this critical
constant could be closer to 1 for other periodic arrangements of nuclei.

There exist various works on the TFDW model for N electrons on the whole
space R3. For example, Le Bris proved in [Le 93] that there exists ε ą 0 such that
minimizers exist for N ă Z`ε, improving the result for N ď Z by Lions [Lio87].
It is also proved in [Le 93] that minimizers are unique for c small enough if
N ď Z. Non existence if N is large enough and Z small enough has been proved
by Nam and Van Den Bosch in [NVDB17].

On the other hand, symmetry breaking has been studied in many situations.
For discrete models on lattices, the instability of solutions having the same peri-
odicity as the lattice is proved in [Frö54, Pei55] while [KL86, Lie86, KL87,
LN95b, LN95a, LN96, FL11, GAS12] prove for different models (and differ-
ent dimensions) that the solutions have a different periodicity than the lattice. On
finite domains and at zero temperature, symmetry breaking is proved in [PN01]
for a one dimensional gas on a circle of finite length and in [Pro05] on toruses
and spheres in dimension d ď 3. On the whole space R3, symmetry breaking is
proved in [BG16], namely, the minimizers are not radial for N large enough.

This part of the thesis is organized as follows. We present our main results
for the periodic TFDW model and for the effective model, together with our
numerical simulations, in Section 2. In Section 3, we study the effective model
JR3pλq on the whole space. Then, in Section 4, we prove our results for the regime
of small c. Finally, we prove the symmetry breaking in the regime of large c in
Section 5. The Appendix collects some detailed proofs and some technical results.

Acknowledgments
The author is grateful to M. Lewin for helpful discussions and advices, and to

Pr. Lenzmann for bringing our attention to the facts mentioned in Remark 2.7.
The author acknowledges financial support from the European Research Council
under the European Community’s Seventh Framework Program (FP7/2007-2013
Grant Agreement MNIQS 258023).

2. Main results

For simplicity, we restrict ourselves to the case of a cubic lattice with one
atom of charge Z “ 1 at the center of each unit cell. We denote by LK our
lattice which is based on the natural basis pe1, e2, e3q and its unit cell is the cube
K :“

“

´1
2
; 1

2

˘3, which contains one atom of charge Z “ 1 at the position R “ 0.
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The Thomas–Fermi–Dirac–von Weizsäcker model we are studying in this second
part of the thesis is then the functional energy

EK,cpwq “

ż

K
|∇w|2 ` 3

5
cTF

ż

K
|w|

10
3 ´

3

4
c

ż

K
|w|

8
3 `

1

2
DKp|w|

2, |w|2q ´

ż

K
GK|w|

2,

(2.3)
on the unit cell K. Here

DKpf, gq “

ż

K

ż

K
fpxqGKpx´ yqgpyq dy dx,

where GK is the K-periodic Coulomb potential which satisfies

´∆GK “ 4π

˜

ÿ

kPLK

δk ´ 1

¸

(2.4)

and is uniquely defined up to a constant that we fix by imposing min
xPK

GKpxq “ 0.
We are interested in the behavior when c varies of the minimization problem

EK,λpcq “ inf
wPH1

perpKq
||w||2

L2pKq“λ

EK,cpwq, (2.5)

where the subscript per stands for K-periodic boundary conditions. We want to
emphasize that even if the true K-periodic TFDW model requires that λ “ Z

(see [CLL98]), we study it for any λ.
Finally, for any N P Nzt0u, we denote by N ¨ K the union of N3 cubes K

forming the cube

N ¨K “
„

´
N

2
;
N

2

˙3

.

The N3 charges are then located at the positions

tRju1ďjďN3 Ă

"ˆ

n1 ´
N ` 1

2
, n2 ´

N ` 1

2
, n3 ´

N ` 1

2

˙ˇ

ˇ

ˇ

ˇ

ni P NX r1;N s

*

.

2.1. Symmetry breaking. The main results presented in this second part
of the thesis are the two following theorems.

Theorem 2.1 (Uniqueness for small c). Let K be the unit cube and cTF , λ

be two positive constants. There exists δ ą 0 such that for any 0 ď c ă δ, the
following holds:

i. The minimizer wc of the periodic TFDW problem EK,λpcq in (2.5) is unique,
up to a phase factor. It is non constant, positive, in H2

perpKq and the unique
ground-state eigenfunction of the K-periodic self-adjoint operator

Hc :“ ´∆` cTF |wc|
4
3 ´ c|wc|

2
3 ´GK ` p|wc|

2
‹GKq.
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ii. This K-periodic function wc is the unique minimizer of all of the pN ¨ Kq-
periodic TFDW problems EN ¨K,N3λpcq, for any integer N ě 1.

Theorem 2.2 (Symmetry breaking for large c). Let K be the unit cube, cTF , λ
be two positive constants, and N ě 2 be an integer. For c large enough, symmetry
breaking occurs:

EN ¨K,N3λpcq ă N3EK,λpcq.

Precisely, the periodic TFDW problem EN ¨K,N3λpcq on N ¨ K admits (at least)
N3 distinct nonnegative minimizers which are obtained one from each other by
applying translations of the lattice LK. Denoting wc any one of these minimizers,
there exists a subsequence cn Ñ 8 such that

cn
´ 3

2wcn

´

R `
¨

cn

¯

ÝÑ
nÑ8

Q, (2.6)

strongly in LplocpR3q for 2 ď p ă `8, with R the position of one of the N3 charges
in N ¨K. Here Q is a minimizer of the variational problem for the effective model

JR3pN3λq “ inf
uPH1pR3q

||u||2
L2pR3q“N

3λ

"
ż

R3

|∇u|2 ` 3

5
cTF

ż

R3

|u|
10
3 ´

3

4

ż

R3

|u|
8
3

*

, (2.7)

which must additionally minimize

SpN3λq “ inf
v

"

1

2

ż

R3

ż

R3

|vpxq|2|vpyq|2

|x´ y|
dy dx´

ż

R3

|vpxq|2

|x|
dx

*

, (2.8)

where the minimization is performed among all possible minimizers of (2.7). Fi-
nally, when cÑ 8, EN ¨K,N3λpcq has the expansion

EN ¨K,N3λpcq “ c2JR3pN3λq ` cSpN3λq ` opcq. (2.9)

Theorem 2.1 will be proved in Section 4 while Section 5 will be dedicated
to the proof of Theorem 2.2. A natural question that comes with Theorem 2.2
is to know if c needs to be really large for the symmetry breaking to happen.
We present some numerical answers to this question later in Section 2.3. Notice
that the inequality EN ¨K,N3λpcq ă N3EK,λpcq in Theorem 2.2 is an immediate
consequence of the first order expansion in (2.9)

EN ¨K,N3λpcq “ c2JR3pN3λq ` opc2
q

which is proved in Proposition 2.37, since one has JR3pN3λq ă N3JR3pλq as it
will be proved in Proposition 2.16 of Section 3.

Remark (Generalizations). For simplicity we have chosen to deal with a
cubic lattice with one nucleus of charge 1 per unit cell, but the exact same results
hold in a more general situation. We can take a charge Z larger than 1, several
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charges (of different values) per unit cell and a more general lattice than Z3.
More precisely, the K-periodic Coulomb potential GK appearing in (2.3), in both
DK and

ş

G|w|2, should then verify

´∆GK “ 4π

˜

ÿ

kPLK

δk ´
1

|K|

¸

,

and the term
ş

KGK|w|
2 should be replaced by

ş

K
řNq
i“1 ziGKp¨ ´Riq|w|

2 where zi
and Ri and the charges and locations of the Nq nuclei in the unit cell K which
can defined by three linearly independent vectors pe1, e2, e3q.

Finally, in Theorem 2.2, denoting by z` :“ max1ďiďNqtziu ą 0 the largest
charge inside K and by N` ě 1 the number of charges inside K that are equal
to z`, the location R would now be one of the N`K3 positions of charges z` —
which means that the minimizer concentrate on one of the nuclei with largest
charge — and S would be replaced by

Spλq “ inf
v

"

1

2

ż

R3

ż

R3

|vpxq|2|vpyq|2

|x´ y|
dy dx´ z`

ż

R3

|vpxq|2

|x|
dx

*

.

2.2. Study of the effective model in R3. We present in this section the
effective model in the whole space R3. We want to already emphasize that the
uniqueness of minimizers for this problem is an open difficult question as we will
explain later in this section.

The functional to be considered is

u ÞÑ JR3puq “

ż

R3

|∇u|2 ` 3

5
cTF

ż

R3

|u|
10
3 ´

3

4

ż

R3

|u|
8
3 (2.10)

and the minimization problem (2.7) is

JR3pλq “ inf
uPH1pR3q

||u||2
L2pR3q“λ

JR3puq. (2.11)

The first important result for this effective model is about the existence of
minimizers and the fact that they are radial decreasing. We state those results
in the following theorem, the proof of which is the subject of Section 3.1.

Theorem 2.3 (Existence of minimizers for the effective model in R3). Let
cTF ą 0 and λ ą 0 be fixed constants.

i. There exist minimizers for JR3pλq. Up to a phase factor and a space transla-
tion, any minimizer Q is a positive radial strictly decreasing H2pR3q-solution
of

´∆Q` cTF |Q|
4
3Q´ |Q|

2
3Q “ ´µQ. (2.12)
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Here ´µ ă 0 is simple and is the smallest eigenvalue of the self-adjoint oper-
ator HQ :“ ´∆` cTF |Q|

4
3 ´ |Q|

2
3 .

ii. We have the strictly binding inequality

@ 0 ă λ1 ă λ, JR3pλq ă JR3pλ1q ` JR3pλ´ λ1q. (2.13)

iii. For any minimizing sequence pQnqn of JR3pλq, there exists txnu Ă R3 such that
Qnp¨ ´ xnq strongly converges in H1pR3q to a minimizer, up to the extraction
of a subsequence.

An important result about the effective model on R3 is the following result
giving the uniqueness and the non-degeneracy of positive solutions Q to the
Euler–Lagrange equation (2.12) for any admissible µ ą 0. The proof of this
theorem is the subject of Section 3.2.

Theorem 2.4 (Uniqueness and non-degeneracy of positive solutions). Let
cTF ą 0. If 64

15
cTFµ ě 1, then the Euler–Lagrange equation (2.12) has no non-

trivial solution in H1pR3q. For 0 ă 64
15
cTFµ ă 1, the Euler–Lagrange equa-

tion (2.12) has, up to translations, a unique nonnegative solution Qµ ı 0 in
H1pR3q. This solution is radial decreasing and non-degenerate: the linearized
operator

L`µ “ ´∆`
7

3
cTF |Qµ|

4
3 ´

5

3
|Qµ|

2
3 ` µ (2.14)

with domain H2pR3q and acting on L2pR3q has the kernel

KerL`µ “ span tBx1Qµ, Bx2Qµ, Bx3Qµu . (2.15)

Note that the condition 64
15
cTFµ ě 1 comes directly from Pohozaev’s identity,

see, e.g., [BL83, p. 318].

Remark. The linearized operator Lµ for the Euler–Lagrange equation (2.12)
at Qµ is

Lµh “ ´∆h`
´

cTF |Qµ|
4
3 ´ |Qµ|

2
3

¯

h`

ˆ

2

3
cTF |Qµ|

4
3 ´

1

3
|Qµ|

2
3

˙

ph` h̄q ` µh.

Note that it is not C-linear. Separating its real and imaginary parts, it is conve-
nient to rewrite it as

Lµ “

ˆ

L`µ 0

0 L´µ

˙

,

where L`µ is as in (2.14) while L´µ is the operator

L´µ “ ´∆` cTF |Qµ|
4
3 ´ |Qµ|

2
3 ` µ “ HQµ ` µ. (2.16)
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The result about the lowest eigenvalue of the operator HQ in Theorem 2.3 exactly
gives that KerL´µ “ span tQµu. Hence, Theorem 2.4 implies that

KerLµ “ span

"ˆ

0

Qµ

˙

,

ˆ

Bx1Qµ

0

˙

,

ˆ

Bx2Qµ

0

˙

,

ˆ

Bx3Qµ

0

˙*

.

The natural step one would like to perform now is to deduce the uniqueness
of minimizers from the uniqueness of Euler–Lagrange positive solutions as it has
been done for many equations [Lie77, TM99, Len09, FL13, FLS16, Ric16].
An argument of this type relies on the fact that µ ÞÑ Mpµq :“ ||Qµ||

2
L2pR3q

is a
bijection, which is an easy result for models with trivial scalings like the non-
linear Schrödinger equation with only one power nonlineartity. However, for the
effective problem of this section, we are unable to prove that this mapping is a
bijection.

In [KOPV17], Killip, Oh, Pocovnicu and Visan study extensively a simi-
lar problem with another non-linearity including two powers, namely the cubic-
quintic NLS on R3 which is associated with the energy

ż

R3

1

2
|∇u|2 ` 1

6
|u|6 ´

1

4
|u|4. (2.17)

They discussed at length the question of uniqueness of minimizers and could also
not solve it for their model. An important difference between (2.17) and effective
problem of this section is that the map µ ÞÑ Mpµq is for sure not a bijection in
their case. But it is conjectured to be one if one only retains stable solutions
[KOPV17, Conjecture 2.6].

If we cannot prove uniqueness of minimizers, we can nevertheless prove that
for any mass λ ą 0 there is a finite number of µ’s in p0; 15

64cTF
q for which the

unique positive solution to the associated Euler–Lagrange problem has a mass
equal to λ and, consequently, that there is a finite number of minimizers of the
TFDW problem for any given mass constraint.

Proposition 2.5. Let λ ą 0 and cTF ą 0. There exist finitely many µ’s for
which the mass Mpµq of Qµ is equal to λ.

Proof of Proposition 2.5. By Theorem 2.3, we know that for any mass
constraint λ P p0,`8q, there exist at least one minimizer to the corresponding
JR3pλq minimization problem. Therefore, for any λ P p0,`8q, there exists at
least one µ such that the unique positive solution Qµ to the associated Euler–
Lagrange equation is a minimizer of JR3pλq and thus is of mass Mpµq “ λ. We
therefore obtain that

´

0; 15
64cTF

¯

Q µ ÞÑ Mpµq P p0;`8q is onto. Moreover, this
map is real-analytic since the non-degeneracy in Theorem 2.4 and the analytic
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implicit function theorem give that µ ÞÑ Qµ is real analytic. The map M being
onto and real-analytic, then for any λ P p0;`8q there exists a finite number of
µ’s, which are all in

´

0; 15
64cTF

¯

, such that the mass Mpµq of the unique positive
solution Qµ is equal to λ. �

We have performed some numerical computations of the solution Qµ and the
results strongly support the uniqueness of minimizers since M was found to be
increasing, see Figure 4.

0.00 0.05 0.10 0.15 0.20 0.25

10
-22

10
-16

10
-10

10
-4

100

10
8

c=1.

Figure 4. Plot of µ ÞÑ ln pMpµqq on
´

0; 15
64cTF

¯

.

Conjecture 2.6. The function
ˆ

0;
15

64cTF

˙

Ñ p0;`8q

µ ÞÑMpµq

(2.18)

is strictly increasing and one-to-one. Consequently, for any 0 ă µ ă 15
64cTF

, there
exists a unique minimizer Qµ of JR3pλq, up to a phase and a space translation.

Remark. Following the method of [KOPV17], one can prove there exist
C,C 1 ą 0 such that Mpµq “ Cµ

3
2 ` opµ

3
2 qµÑ0` and Mpµq “ C 1pµ ´ µ˚q

´3 `

o ppµ´ µ˚q
´3qµÑµ´˚

where µ˚ “ 15
64cTF

.

Remark 2.7. It should be possible to show that the energy µ ÞÑ JR3pQµq is
strictly decreasing close to µ “ 0 and µ “ µ˚, and real-analytic on p0, µ˚q. Using
the concavity of λ ÞÑ JR3pλq (see Lemma 2.12) one should be able to prove that
the function λ ÞÑ µpλq is increasing and continuous, except at a countable set of
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points where it can jump. From the analyticity there must be a finite number of
jumps and we conclude that λ ÞÑ JR3pλq has a unique minimizer for all lambda
except at these finitely many points.

This conjecture on M is related to the stability condition on pL`µ q´1 that ap-
pears in works like [Wei85, GSS87]. Indeed, differentiating the Euler–Lagrange
equation (2.12) with respect to µ, we obtain that L`µ p

dQµ
dµ q “ ´Qµ which thus

leads to

d
dµ

ż

Qµ
2
“ 2

B

Qµ,
dQµ

dµ

F

“ ´2
A

Qµ,
`

L`µ
˘´1

Qµ

E

.

Thus our conjecture is that xQµ,
`

L`µ
˘´1

Qµy ă 0 for all 0 ă µ ă 15
64cTF

and this
corresponds to the fact that all the solutions are local strict minimizers.

Theorem 2.8. If Conjecture 2.6 holds then, in the case of one charge per unit
cell (Nq “ 1) and for c large enough, there are exactly N3 nonnegative minimizers
for the periodic TFDW problem EN ¨K,N3λpcq.

The proof of Theorem 2.8 is the subject of Section 5.4.

2.3. Numerical simulations. The occurrence of symmetry breaking is an
important question in practical calculations. Concerning the general behavior of
DFT on this matter, we refer to the discussion in [SLHG99] and the references
therein.

Our numerical simulations have been run using the software PROFESS v.3.0
[CXH`15] which is based on pseudo-potentials (see Remark 2.9 below): we have
used a (BCC) Lithium crystal of side-length 4Å (in order to be physically relevant
as the two first alkali metals Lithium and Sodium organize themselves on BCC
lattices with respective side length 3.51Å and 4.29Å) for which one electron is
treated while the two others are included in the pseudo-potential, simulating
therefore a lattice of pseudo-atoms with pseudo-charge Z “ λ “ 1. The relative
gain of energy of 2-periodic minimizers compared to 1-periodic ones is plotted
in Figure 5. Symmetry breaking occurs at about c « 3.30 which corresponds to
3
4
c « 2.48. More precisely, minimizing the 2 ¨ K problem and the 1 ¨ K problem

result in the same minimum energy (up to a factor 8) if c À 3.30 while, for
c Á 3.31, we have found (at least) one 2-periodic function for which the energy
is lower than the minimal energy for the 1 ¨K problem.
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(b) Zoom: 3.25 ď c ď 3.35

Figure 5. Relative gain of energy 8EK,λpcq´E2¨K,8λpcq
8EK,λpcq

.

(a) c “ 3.35cD « 3.30 (b) c “ 3.36cD « 3.31 (c) c “ 3.50cD « 3.45

Figure 6. Electron density for Z “ 1 and length side 4Å. Same
"dark-blue to white to dark-red" density scale for (a), (b) and (c).
(a) The computed 2-periodic minimizer is still 1-periodic.
(b-c) The computed 2-periodic minimizer is not 1-periodic.

The plots of the computed minimizers presented in Figure 6 visually confirm
the symmetry breaking. They also suggest that the electronic density is very
much concentrated. However, since the computation uses pseudo-potentials, only
one outer shell electron is computed and the density is sharp on an annulus for
these values of c.

The numerical value of the critical constant 3
4
c « 2.48 obtained in our nu-

merical simulations is outside the usual values 3
4
c P r0.93; 1.64s chosen in the

literature. However, it is of the same order of magnitude and one cannot exclude
that symmetry breaking would happen inside this range for different systems,
meaning for different values of Z and/or of the size of the lattice.

Remark 2.9 (Pseudo-potentials). The software PROFESS v.3.0 that we used
in our simulations is based on pseudo-potentials [Joh73]. This means that only



82 2. SYMMETRY BREAKING IN THE PERIODIC TFDW MODEL

n outer shell electrons among the N electrons of the unit cell are considered.
The N ´ n other ones are described through a pseudo-potential, together with
the nucleus. Mathematically, this means that we have λ “ n and that the
nucleus-electron interaction ´N

ş

KGK|w|
2 is replaced by ´

ş

KGps|w|
2 where the

K-periodic function Gpspxq behaves like n{|x| when |x| Ñ 0. All our results apply
to this case as well. More precisely, we only need that Gpspxq ´ n{|x| is bounded
on K. We emphasize that the electron-electron interaction DK is not changed by
this generalization, and still involves the periodic Coulomb potential GK.

3. The effective model in R3

This section is dedicated to the proof of Theorem 2.3 and Theorem 2.4. Since
some steps of Theorem 2.3 (for example in the proof of Corollary 2.16) have to
be proved for a slightly generalized model, we prove the whole theorem for such
a generalized model. The generalization consists in the presence of the coefficient
c ě 0 in front of the non-convex term:

u ÞÑ JR3,cpuq “

ż

R3

|∇u|2 ` 3

5
cTF

ż

R3

|u|
10
3 ´

3

4
c

ż

R3

|u|
8
3 (2.19)

and the minimization problem is then

JR3,cpλq “ inf
uPH1pR3q

||u||2
L2pR3q“λ

JR3,cpuq. (2.20)

The associated Euler–Lagrange equation in Theorem 2.3 obviously becomes

´∆Q` cTF |Q|
4
3Q´ c|Q|

2
3Q “ ´µQ, in H´1

pR3
q. (2.21)

We first give a lemma on the functional JR3,c

Lemma 2.10. For c ě 0, cTF , λ ą 0 and u P H1pR3q such that ||u||22 “ λ, we
have

JR3,cpuq ě ||∇u||2L2pR3q
´

15

64

λ

cTF
c2. (2.22)

Remark 2.11. One can obtain a bound independent of cTF : for any a ă 1,

JR3,cpuq ě a ||∇u||2L2pR3q
´

9λ
5
3S3

2

64p1´ aq
c2

where S3 the Sobolev constant ||u||L6pR3q
ď S3 ||∇u||L2pR3q

. See the proof in Sec-
tion 6.3.

Proof of Lemma 2.10. By Hölder’s inequality

||u||2µpδ´1q
2µ ď λδ´µ ||u||2δpµ´1q

2δ , @ 1 ď µ ď δ ď 3,
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where, for shortness, we write ||¨||p instead of ||¨||LppR3q
, we conclude that

3

5
cTF ||u||

10
3
10
3

´
3

4
c ||u||

8
3
8
3

ě
3cTF
5λ

«

ˆ

||u||
8
3
8
3

´
5cλ

8cTF

˙2

´
25c2λ2

64cTF 2

ff

ě ´
15λ

64cTF
c2.

�

We deduce from this some preliminary properties for the effective model in
R3.

Lemma 2.12 (A priori properties of JR3,cpλq). Let cTF ą 0, c ě 0 and λ ą 0

be constants. We have

´
15

64

λ

cTF
c2
ă JR3,cpλq “ c2JR3,1pλq ă 0. (2.23)

The function, λ ÞÑ JR3,cpλq is continuous on r0;`8q and strictly negative, con-
cave and strictly decreasing on p0;`8q.

Proof of Lemma 2.12. Let u be in the minimizing domain. Then, for any
ν ą 0, ν´

3
2upν´1¨q belongs to the minimizing domain too and

JR3,cpν
´ 3

2upν´1
¨qq “ ν´2

ˆ
ż

R3

|∇u|2 ` 3

5
cTF

ż

R3

|u|
10
3 ´

3

4
νc

ż

R3

|u|
8
3

˙

which is strictly negative for ν large enough since c ą 0, hence JR3,cpλq ă 0. Lem-
ma 2.10 gives the lower bound in (2.23), which implies the continuity at λ “ 0.
Moreover, after scaling, we have

JR3,cpλq “ inf
uPH1pR3q

||u||2
L2pR3q“λ

"

||∇u||2L2pR3q
`

3

5
cTF ||u||

10
3

L
10
3 pR3q

´
3

4
c ||u||

8
3

L
8
3 pR3q

*

“ λ inf
uPH1pR3q

||u||2
L2pR3q“1

"

λ´
2
3 ||∇u||2L2pR3q

`
3

5
cTF ||u||

10
3

L
10
3 pR3q

´
3

4
c ||u||

8
3

L
8
3 pR3q

*

loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

“:F pλ´2{3q

where F is concave on r0;`8q, hence continuous on p0;`8q on which it is also
negative (because JR3 is negative) and increasing. The continuity of F gives that
λ ÞÑ JR3,cpλq is continuous as well. Moreover, if f is a concave non-decreasing
negative function, we claim that λ ÞÑ λfpλ2{3q is concave on p0,8q, which proves
that our energy J is concave. To prove the claim we can regularize f by means
of a convolution and then compute its second derivative, leading to

J 1R3,cpλq “ F pλ´2{3
q ´

2

3
λ´2{3F 1pλ´2{3

q ă 0, @λ ą 0,
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and

J2R3,cpλq “ ´
2

9
λ´5{3F 1pλ´2{3

q `
4

9
λ´7{3F 2pλ´2{3

q ď 0, @λ ą 0.

�

3.1. Proof of Theorem 2.3. We divide the proof into several steps for
clarity.

Step 1: Large binding inequality.

Lemma 2.13. Let cTF ě 0 and c ą 0 be constants. Then

JR3,cpλq ď JR3,cpλ
1
q ` JR3,cpλ´ λ

1
q, @ 0 ď λ1 ď λ. (2.24)

Proof of Lemma 2.13. To prove (2.24), let us fix ε ą 0. By density of
C8c pR3q in H1pR3q and the continuity of u ÞÑ JR3,cpuq in H1pR3q, let ϕ and χ be
in C8c pR3q, respectively such that JR3,cpϕq ď JR3,cpλ

1q ` ε, with ||ϕ||2L2pR3q
“ λ1,

and JR3,cpχq ď JR3,cpλ ´ λ1q ` ε, with ||χ||2L2pR3q
“ λ ´ λ1. Let 0 ‰ v P R3 and

define uR :“ ϕ` χp¨ ` Rvq. Choose R large enough such that the supports of ϕ
and χp¨ `Rvq are disjoints. Thus

||uR||
2
L2pR3q

“ ||ϕ` χp¨ `Rvq||2L2pR3q
“ ||ϕ||2L2pR3q

` ||χp¨ `Rvq||2L2pR3q
“ λ.

So uR belongs to the minimizing domain of JR3,cpλq. Moreover, since the supports
are disjoint, we obtain that JR3,cpuRq “ JR3,cpϕq `JR3,cpχq. Thus

JR3,cpλq ď JR3,cpuRq “ JR3,cpϕq `JR3,cpχq ď JR3,cpλ
1
q ` JR3,cpλ´ λ

1
q ` 2ε.

This concludes the proof of (2.24). �

Remark 2.14. The strict inequality in (2.24), which is important for apply-
ing Lions’ concentration-compactness method, actually holds and is proved later
in Proposition 2.16.

Remark 2.15. The fact that λ ÞÑ JR3,cpλq is strictly decreasing on r0;`8q,
proved in Lemma 2.12, also can be deduced directly (and only) from (2.24) and
the strict negativity of JR3,cpλq.

Step 2: For any λ, c ą 0, JR3,cpλq has a minimizer. First, by rearrange-
ment inequalities, we have JR3,cpvq ě JR3,cpv

˚q for every v P H1pR3q, see [LL01,
Theorem 7.8 & Lemma 7.17]. Therefore, one can restrict the minimization to non-
negative radial decreasing functions. Any minimizing sequence of nonnegative
radial decreasing functions pQnqn is uniformly bounded in H1pR3q due to Lem-
ma 2.10. Consequently, Qn weakly converges in H1pR3q, up to a subsequence, to
a nonnegative radial decreasing function Q. Thus, by the compact embedding
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H1
radpR3q ãÑ LppR3q, for 2 ă p ă 6, and since lim inf

ş

R3 |∇Qn|
2 ě

ş

R3 |∇Q|2, we
obtain

JR3,cpλ
1
q ď JR3,cpQq ď lim inf JR3,cpQnq “ JR3,cpλq (2.25)

where λ1 :“ ||Q||2L2pR3q
ď λ. Then, JR3,c being strictly decreasing by Lem-

ma 2.12, λ1 “ λ and the limit is strong in L2pR3q. This proves that the limit Q
is a minimizer.

Moreover, the strong convergence holds in fact in H1pR3q. Indeed, the strong
convergence in L2pR3q — together with the Sobolev embeddings and the fact
that Qn is uniformly bounded in H1pR3q — implies the strong convergence in
LppR3q for 2 ď p ă 6. Then, the fact that all terms in (2.25) are in fact equal
gives the norm convergence ||∇Qn||

2
L2pR3q

Ñ ||∇Q||2L2pR3q
. Together with the weak

convergence of ∇Qn in L2pR3q, this leads to the strong convergence of ∇Qn in
L2pR3q and finally to the claimed strong convergence in H1pR3q.

Step 3: Any minimizer is in H2pR3q and solves the E-L equation.
Let Q be a minimizer. For any f P H1pR3q, we define

Qε “

?
λ

||Q` εf ||L2pR3q

pQ` εfq.

We obviously have that Qε P H
1pR3q and ||Qε||

2
L2pR3q

“ λ. Moreover, Q being a

minimizer of JR3,cpλq, we have
dJR3,c

dε |Q
“ 0. Thus, computing JR3,cpQεq for f

and if , we obtain that
@`

´∆` cTF |Q|
4{3
´ c|Q|2{3 ` µ

˘

Q, f
D

L2pR3q
“ 0,

with

µ “ ´
||∇Q||2L2pR3q

` cTF ||Q||
10{3

L10{3pR3q
´ c ||Q||

8{3

L8{3pR3q

λ
. (2.26)

Finally, given that u P H1pR3q, equation (2.21) gives u P H2pR3q by elliptic
regularity.

Step 4: Strict binding inequality. As mentioned in Remark 2.14, we in
fact have the following strict binding inequality.

Proposition 2.16. Let cTF ą 0, λ ą 0 and c ą 0.

@ 0 ă λ1 ă λ, JR3,cpλq ă JR3,cpλ
1
q ` JR3,cpλ´ λ

1
q. (2.13)

In particular, for any integer N ě 2,

JR3,cpN
3λq ă N3JR3,cpλq ă 0. (2.27)
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Proof of Proposition 2.16. By the same scaling as in Lemma 2.12, we
have

JR3,cpλq “ λ inf
uPH1pR3q

||u||2
L2pR3q“1

"

λ´
2
3 ||∇u||2L2pR3q

`
3

5
cTF ||u||

10
3

L
10
3 pR3q

´
3

4
c ||u||

8
3

L
8
3 pR3q

*

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

“:Fλpuq

.

(2.28)
Let λ ą λ1 ą 0. The minimization problem

inf
uPH1pR3q

||u||2
L2pR3q“1

"

||∇u||2L2pR3q
`

3

5
cTFλ

1
2
3 ||u||

10
3

L
10
3 pR3q

´
3

4
cλ1

2
3 ||u||

8
3

L
8
3 pR3q

*

has by Step 2 — taking λ “ 1 and making the replacements 3
5
cTF Ø

3
5
cTFλ

12{3 ą 0

and 3
4
Ø 3

4
λ12{3 ą 0 under which the previous steps obviously hold — a minimizer

Qλ1 ı 0 which, by Step 3, is in H2pR3q thus continuous and non constant. In
particular, ||∇Qλ1 ||L2pR3q

ą 0 thus Fλ1pQλ1q ą FλpQλ1q, where Fλ is defined
in (2.28). Therefore

JR3,cpλ
1
q “ λ1Fλ1pQλ1q ą λ1FλpQλ1q “

λ1

λ
JR3,cpQλ1pλ

´1{3
¨qq ě

λ1

λ
JR3,cpλq,

and we finally obtain

JR3,cpλ´ λ
1
q ` JR3,cpλ

1
q ą

λ´ λ1

λ
JR3,cpλq `

λ1

λ
JR3,cpλq “ JR3,cpλq,

as we wanted. �

Step 5: ´µ ă 0. Let us choose v in the minimization domain of JR3,cp1q.
Then, defining the positive number

α0 “
3

8

c ||v||
8{3
8{3 λ

1{3

||∇v||22 `
3
5
cTF ||v||

10{3
10{3 λ

2{3
,

we can obtain for any λ ą 0 an upper bound on JR3,cpλq. Namely

JR3,cpλq ď JR3,c

´?
λα0

3{2vpα0¨q

¯

“ ´
9

64
λ5{3

´

c ||v||
8{3
8{3

¯2

||∇v||22 `
3
5
cTF ||v||

10{3
10{3 λ

2{3
. (2.29)

Moreover, for all ε and for Q a minimizer to JR3,cpλq, we have

JR3,cpp1´ εqQq “ JR3,cpQq ` 2ελµ`Opε2
q,

which leads, together with (2.24) and the fact that Q is a minimizer of JR3,cpλq,
to

2ελµ`Opε2
q ě JR3,cpp1´ εq

2λq ´ JR3,cpλq ě ´JR3,cpεp2´ εqλq,
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for any ε P p0; 2q. Using this last inequality together with the upper bound (2.29),
we get for any ε P p0; 1q that

2λµ ě
9

64
ε2{3
p2´ εq5{3λ5{3

´

c ||v||
8{3
8{3

¯2

||∇v||22 `
3
5
cTF ||v||

10{3
10{3 ε

2{3p2´ εq2{3λ2{3
`Opεq

ą
9

64
ε2{3λ5{3

´

c ||v||
8{3
8{3

¯2

||∇v||22 `
3
5
22{3cTF ||v||

10{3
10{3 λ

2{3
`Opεq.

Which leads to µ ą 0 by taking ε small enough.
Step 6: Positivity of nonnegative minimizers. Let Q ě 0 be a mini-

mizer. By Step 3, 0 ı Q P H2pR3q Ă C0
0pR3q and W :“ cTF |Q|

4
3 ´ c|Q|

2
3 ` µ

is in L8pR3q. We can obtain that Q ą 0 by [LL01, Theorem 9.10], by results
in [RS78, Section XIII.12] or by Lemma 1.30

Step 7: nonnegative minimizers are radial strictly decreasing up to
translations. This step is a consequence of Step 6 and is the subject of the
following proposition.

Proposition 2.17. Let λ, c ą 0. Any positive minimizer to JR3,cpλq is radial
strictly decreasing, up to a translation.

Proof of Proposition 2.17. Let 0 ď Q P H1pR3;Rq be a minimizer of
JR3,cpλq. We denote by Q˚ its Schwarz rearrangement which is, as explained in
first part of Step 2, also a minimizer and, consequently,

ş

R3 |∇Q˚|2 “
ş

R3 |∇Q|2.
Moreover, by Step 3 and Step 6, Q ą 0 and Q˚ ą 0 are in H2pR3;Rq and
solutions of the Euler–Lagrange equation (2.21). They are therefore real-analytic
(see e.g. [Mor58]) which implies that |tx|Qpxq “ tu| “ |tx|Q˚pxq “ tu| “ 0 for
any t. In particular, the radial non-increasing function Q˚ is in fact radial strictly
decreasing. We then use [BZ88, Theorem 1.1] to obtain Q˚ “ Q a.e., up to
a translation. Finally, Q and Q˚ being continuous, the equality holds in fact
everywhere. �

Step 8: ´µ is the lowest eigenvalue of HQ, is simple, and Q “ z|Q|.
These are classical results, apply e.g. [LL01, Chapter 11] to VQ :“ cTF |Q|

4
3´|Q|

2
3

which is in L8pR3q by the previous steps.
More precisely, the function VQ is in L8pR3q for any Q minimizer to JR3pλq

and, for such Q, |Q| is also a minimizer. It also verifies, for a given µ ą 0, the
Euler–Lagrange equation

HQ|Q| “ ´∆|Q| ` VQ|Q| “ ´µ|Q|.
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We then have by [LL01, Corollary 11.9] that |Q| is the unique minimizer (up to
a constant phase) of

inf
ϕ

"
ż

|∇ϕpxq|2 ` VQ|ϕpxq|2 dx
ˇ

ˇ

ˇ

ˇ

ż

|ϕ|2 “ λ

*

and ´µ is equal to this infimum. This immediately gives that the lowest eigen-
value of HQ is simple and is equal to ´µ.

Finally, Q verifying the Euler–Lagrange equation, it is an eigenfunction of HQ

with an associated eigenvalue given by (2.26)

µ1 “ ´
||∇Q||2L2pR3q

` cTF ||Q||
10{3

L10{3pR3q
´ c ||Q||

8{3

L8{3pR3q

λ
.

But the lowest eigenvalue of HQ being the Euler–Lagrange coefficient for |Q|, it
verifies

µ “ ´
||∇|Q|||2L2pR3q

` cTF |||Q|||
10{3

L10{3pR3q
´ c |||Q|||

8{3

L8{3pR3q

λ
.

Since ||∇|Q|||L2pR3q
ď ||∇Q||L2pR3q

, by the convexity inequality for gradients (see
Step 2), it implies that µ1 ď µ which leads to µ1 “ µ (because µ is the lowest
eigenvalue of HQ) and then it implies that there exists z P C such that Q “ z|Q|

because Q and |Q| are eigenfunctions of HQ associated with the same eigenvalue
µ which is simple.

Step 9: Minimizing sequences are precompact up to a translations.
Since the strict binding inequality (2.13) holds, this follows from a result of Lions
in [Lio84b, Theorem I.2]. For completeness, we give a detailed proof of this
known result in Section 6.1 of the Appendix.

This concludes the proof of Theorem 2.3.
�

This existence of minimizers gives us immediately the following continuity
result.

Corollary 2.18. On r0,`8q, c ÞÑ JR3,λpcq is continuous.

Proof of Corollary 2.18. Let 0 ď c1 ă c2 and, Q1 and Q2 be cor-
responding minimizers which exist by Theorem 2.3. By Lemma 2.10, c2 ÞÑ

||Q2||H1pKq is uniformly bounded on any bounded interval r0; c˚s, c˚ ą 0, since

JR3,λp0q ě JR3,λpc2q “ JR3,cpQ2q ě ||∇Q2||
2
L2pR3q

´
15

64

λ

cTF
c2

2.
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Therefore, by Lemma 2.13, we have for any 0 ď c1 ă c2 ă c˚ that

JR3,λpc2q ă JR3,λpc1q ď JR3,c1pQ2q “ JR3,λpc2q `
3

4
pc2 ´ c1q ||Q2||

8
3

L
8
3 pKq

ď JR3,λpc2q `
3

4
pc2 ´ c1qC1λ

5{6
||Q2||H1pKq

ď JR3,λpc2q ` Cc˚λ
5{6 3

4
pc2 ´ c1q

which gives the continuity and concludes the proof of Corollary 2.23. �

We now give the following decay result of positive continuous solutions (so,
of solutions in H2pR3q for example) to the Euler–Lagrange equation. This result
will be useful later.

Lemma 2.19 (Exponential decay of positive continuous solutions to the E–L
equation (2.12)). Let Q be a continuous positive solution to the Euler–Lagrange
equation (2.12), that vanishes as |x| goes to infinity, with ´µ ă 0 the associated
Lagrange multiplier. Then for every 0 ă ε ă µ, there exists a constant Cε such
that

0 ă Qpxq ď Cεe
´
?
µ´ε|x|. (2.30)

Moreover, for any p, q ą 0, there exist Cε,p,q, Cε,q and C 1ε,q such that

ż

|x|ěR

|Qpxq|p dx ď Cε,p,qe
´pp´qq

?
µ´εR, (2.31)

ż

|x|ěR

|∇Qpxq|2 dx ď Cε,qe
´p1´qq

?
µ´εR, (2.32)

ż

|x|ěR

|∆Qpxq|2 dx ď C 1ε,qe
´p2´qq

?
µ´εR. (2.33)

Proof of Lemma 2.19. Let 0 ă ε ă µ. Then, by (2.12), we have

p´∆` pµ´ εqqQ “ p´ε´ cTF |Q|
4
3 ` |Q|

2
3 qQ “: g

with gpxq ă 0 for |x| ě Rε for Rε large enough. Indeed, |Q|
4
3 and |Q|

2
3 vanish as

|x| goes to infinity and Q ą 0. Using the Yukawa potential, we obtain that

0 ă Qpxq “
1

4π

ż

R3

e´
?
µ´ε|x´y|

|x´ y|
gpyq dy ď

1

4π

ż

|y|ďRε

e´
?
µ´ε|x´y|

|x´ y|
gpyq dy.
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Recalling that g is continuous, since Q is continuous, and that for any |x| ě 2Rε

and |y| ď Rε we have |x´ y| ě |x| ´ |y| ě Rε, we have for |x| ě 2Rε that

0 ă Qpxq ď
1

4πRε

˜

sup
Bp0,Rεq

g

¸

ż

|y|ďRε

e´
?
µ´ε|x´y| dy

ď
1

4πRε

˜

sup
Bp0,Rεq

g

¸

ˆ
ż

|y|ďRε

e
?
µ´ε|y| dy

˙

e´
?
µ´ε|x|.

The estimate Qpxq ď Cεe
´
?
µ´ε|x| on all R3 then follows from the fact that Q is

bounded on Bp0, 2Rεq.
From (2.30) we obtain
ż

|x|ěR

|Qpxq|p dx ď pCεqp
ż

|x|ěR

e´p
?
µ´ε|x| dx “ 4πpCεq

p

ż 8

R

e´p
?
µ´εrr2 dr

“ P pRqe´p
?
µ´εR

where P is an order 2 polynomial with coefficients depending on ε and p. Thus,
for any q ą 0, R ÞÑ P pRqe´q

?
µ´εR is bounded by a constant depending on ε, p

and q. This leads to (2.31).
Multiplying (2.12) by χQ with χ P C8pR3q, 0 ď χ ď 1, χ ” 1 on Bp0, Rq,

χ ” 0 on Bp0, R ´ 1q and ||∇χ||L8pR3q
ď 2 we obtain

ż

R3

χ|∇Q|2 `
ż

R3

Q∇Q ¨∇χ “
ż

R3

χgQ´ pµ´ εq

ż

R3

χ|∇Q|2.

Since
ş

R3 χgQ is non-positive for R ´ 1 ě Rε, it follows that

ż

|x|ěR

|∇Qpxq|2 dx ď ´
ż |x|“R

|x|“R´1

χ|∇Qpxq|2 dx´
ż |x|“R

|x|“R´1

Qpxq∇Qpxq ¨∇χpxq dx

ď

ż |x|“R

|x|“R´1

|Qpxq||∇Qpxq||∇χpxq| dx

ď 2

˜

ż |x|“R

|x|“R´1

|Qpxq|2

¸
1
2
˜

ż |x|“R

|x|“R´1

|∇Qpxq|2 dx

¸
1
2

ď 2 ||∇Q||L2pR3q

ˆ
ż

|x|ěR´1

|Qpxq|2
˙

1
2

.

Thus, applying (2.31) for p “ 2, we obtain (2.32).
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By (2.12), we have

0 ď

ż

|x|ěR

|∆Qpxq|2 dx “
ż

|¨|ěR

cTF
2
|Q|

14
3 ` p1` 2µcTF q|Q|

10
3 ` µ2

|Q|2

´ 2

ż

|¨|ěR

cTF
2
|Q|4 ´ 2µ|Q|

8
3 .

Using (2.31), we see that largest term is due to µ2|Q|2 and this leads to (2.33). �

3.2. Proof of Theorem 2.4. The uniqueness of radial solutions has been
proved by Serrin and Tang in [ST00]. However, we need the non-degeneracy of
the solution. Both uniqueness and non-degeneracy can be proved following line
by line the method in [LRN15, Thm. 2] (the argument is detailed in Section 6.2
in the Appendix). One slight difference is the application of the moving plane
method to prove that positive solutions are radial. Contrarily to [LRN15] we
cannot use [GNN81, Thm. 2] because our function

Fµpyq “ ´cTFy
7
3 ` y

5
3 ´ µy (2.34)

is not C2. However, given that nonnegative solutions are positive, one can show
that they are C8 and, therefore, we can apply [Li91, Thm. 1.1]. �

4. Regime of small c: uniqueness of the minimizer

We first give some useful properties of GK in the following lemma.

Lemma 2.20 (The periodic Coulomb potential GK). The function GK´ | ¨ |
´1

is bounded on K. Thus, there exits C such that for any x P Kzt0u, we have

0 ď GKpxq ď
C

|x|
. (2.35)

In particular, GK P L
ppKq for 1 ď p ă 3. The Fourier transform of GK is

pGKpξq “ 4π
ÿ

kPL ˚
K zt0u

δkpξq

|k|2
` δ0pξq

ż

K
GKpxq dx (2.36)

where L ˚
K is the reciprocal lattice of LK. Hence, for any f ı 0 for which DKpf, fq

is defined, we have DKpf, fq ą 0.

Proof of Lemma 2.20. The first part follows from the fact that

lim
xÑ0

GKpxq ´ |x|
´1
“M P R.
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Indeed, fpxq :“
ş

K
dy
|x´y|

is continuous — this can be seen from the fact that, for
any 0 ă |x´ x0| ď η, we have

|fpxq ´ fpx0q|

|x´ x0|
ď
ˇ

ˇ

ˇ

ˇ|x´ ¨|´1
ˇ

ˇ

ˇ

ˇ

L2pKq

ˇ

ˇ

ˇ

ˇ|x0 ´ ¨|
´1
ˇ

ˇ

ˇ

ˇ

L2pKq ď 4πp|x0| ` η `Rq

where R is such that K Ă Bp0, Rq — then the stated limit is obtained following
the argument in [LS77b, VI.2]. It implies, together with the fact that both GK

and | ¨ |´1 are bounded on the complementary in Q of any Bp0, Rq Ă Q for R ą 0,
the bounds on GK. The positivity of DKpf, fq comes directly from the expression
of the Fourier transform since we choose GK such that min

xPK
GKpxq “ 0 hence

pGKp0q “
ş

KGK ą 0. We now prove the stated expression. For any ξ ‰ 0, we
have by (2.4) that

|ξ|2 pGKpξq “ 4π

ż

R3

ÿ

kPL ˚
K zt0u

e2iπxk´ξ,xy dx “ 4π
ÿ

kPL ˚
K zt0u

δkpξq

where we have used that
ÿ

`PLK

δ` “
1

|K|
ÿ

kPL ˚
K

e2iπxk,¨y in D 1
pR3
q

which we prove using the Fourier series of the Dirac comb
ř

`PZ
δ`, which is

ÿ

kPZ
e2iπkx

“
ÿ

`PZ
δ`pxq in D 1

pRq.

Indeed, let denote A the application sending Z3 onto LK hence |K| “ detA and
tA´1 sends Z3 onto L ˚

K . For ϕ P C8c pR3q, we have
C

ÿ

kPL ˚
K

e2iπxk,¨y, ϕ

G

“

C

ÿ

kPZ3

e2iπxk,A´1¨y, ϕ

G

“ |K|

C

ÿ

kPZ3

e2iπxk,¨y, ϕpA¨q

G

.

Moreover, for any ψ P C8c pR3q such that ψpxq “ ψ1px1qψ2px2qψ3px3q, we have
C

ÿ

kPZ3

e2iπxk,¨y, ψ

G

L2pR3q

“

3
ź

i“1

C

ÿ

kiPZ
e2iπki¨, ψi

G

L2pRq

“

3
ź

i“1

C

ÿ

`iPZ
δ`i , ψi

G

L2pRq

“

C

ÿ

`PZ3

δ`, ψ

G

L2pR3q

“
ÿ

`PZ3

ψp`q,

where we have used the Fourier series of the Dirac comb. The above computation
holds on D 1pR3q by density of the functions that can be decomposed like ψ. We
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then deduce that
C

1

|K|
ÿ

kPL ˚
K

e2iπxk,¨y, ϕ

G

“
ÿ

`PZ3

ϕpA`q “
ÿ

`PLK

ϕp`q “

C

ÿ

`PLK

δ`, ϕ

G

.

�

4.1. Existence of minimizers to EK,λpcq. In order to prove Theorem 2.1,
we need the existence of minimizers to EK,λpcq, for any c ě 0, which is done in
this section.

Proposition 2.21 (Existence of minimizers to EK,λpcq). Let K be the unit
cube and, cTF ą 0, λ ą 0 and c ě 0 be real constants.

i. There exists a nonnegative minimizer to EK,λpcq and any minimizing sequence
pwnqn strongly converges in H1

perpKq to a minimizer, up to extraction of a
subsequence.

ii. Any minimizer wc is in H2
perpKq, is non-constant and solves the E–L equation

´

´∆` cTF |wc|
4
3 ´ c|wc|

2
3 ´GK ` p|wc|

2
‹GKq

¯

wc “ ´µwcwc, (2.37)

with

µwc “ ´
||∇wc||22 ` cTF ||wc||

10{3
10{3 ´ c ||wc||

8{3
8{3 `DKp|wc|

2, |wc|
2q ´ xGK, |wc|

2yL2pKq

λ
.

(2.38)

iii. Up to a phase factor, a minimizer wc is positive and the unique ground-state
eigenfunction of the self-adjoint operator, with domain H2

perpKq,

Hwc :“ ´∆` cTF |wc|
4
3 ´ c|wc|

2
3 ´GK ` p|wc|

2
‹GKq.

Note that for shortness, we have denoted ||¨||p “ ||¨||LppKq.

Proof of Proposition 2.21. In order to prove i., we need the following
result that will be useful all along the rest of this second part of the thesis, and
is somewhat similar to Lemma 2.10.

Lemma 2.22. For any c ě 0, cTF , λ ą 0, there exist positive constants a ă 1

and C such that, for any u P H1
perpKq such that ||u||22 “ λ, we have

EK,cpuq ě a ||∇u||2L2pKq ´
15

64

λ

cTF
c2
´ λC. (2.39)

Proof of Lemma 2.22. As in Lemma 2.10, Hölder’s inequality (but on K)
gives us that

3

5
cTF ||u||

10
3

L
10
3 pKq

´
3

4
c ||u||

8
3

L
8
3 pKq

ě ´
15

64

λ

cTF
c2.
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Moreover, we have
ˇ

ˇ

ˇ

ż

K
GK|u|

2
ˇ

ˇ

ˇ
ď ε ||u||2LqpKq ` λCε, @ q P p3; 6s, ε ą 0. (2.40)

Indeed, suppose q P p3; 6s, ε ą 0 and define q1 such that 1{q1 ` 2{q “ 1, thus
q1 P r3

2
; 3q. By the upper bound in (2.35), the function GK can be written GK “

Gq1 `G8 where Gq1 “ 1t|¨|ăruGK P L
q1pKq and G8 “ 1Kzt|¨|ăruGK P L

8pKq. Then
choosing r small enough such that ||Gq1 ||Lq1 pKq ď ε, we obtain (2.40). The above
results (for q “ 6), together with Sobolev embeddings and DKpu

2, u2q ě 0, gives

EK,cpuq “ ||∇u||2L2pKq `
3

5
cTF ||u||

10
3

L
10
3 pKq

´
3

4
c ||u||

8
3

L
8
3 pKq

`
1

2
DKpu

2, u2
q ´

ż

K
GKu

2

ě ||∇u||2L2pKq ´
15

64

λ

cTF
c2
´ ε ||u||2L6pKq ´ λCε

ě p1´ εSq ||∇u||2L2pKq ´
15

64

λ

cTF
c2
´ λpCε ` εSq

for any ε ą 0 and where S is the constant from the Sobolev embedding. Choosing
ε such that εS ă 1 concludes the proof. �

Let c be fixed and let pwnqn be a minimizing sequence. The above result gives
that pwnqn is uniformly bounded in H1pKq and, together with Sobolev embed-
dings, it implies that there exists wc such that, up to a subsequence (denoted the
same for shortness),

∇wn á
nÑ8

∇wc, weakly in L2
pKq;

wn á
nÑ8

wc, weakly in LppKq for all 2 ď p ď 6.

Moreover, the cube K being bounded, H1pKq is compactly embedded in LppKq
for 1 ď p ă 6. Consequently, up to another subsequence (still denoted the same),
we have

∇wn á ∇wc, weakly in L2
pKq;

wn á wc, weakly in L6
pKq;

wn Ñ wc, a.e. and strongly in LppKq for all 2 ď p ă 6.

It follows that
ż

K
|wn|

10
3 Ñ

ż

K
|wc|

10
3 ,

ż

K
|wn|

8
3 Ñ

ż

K
|wc|

8
3 and lim inf

nÑ8

ż

K
|∇wn|2 ě

ż

K
|∇wc|2.

Moreover, by Fatou’s Lemma, we have

lim inf
nÑ8

DKp|wn|
2, |wn|

2
q ě DKp|wc|

2, |wc|
2
q,
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and, by the convergence in L3pKq for example, we have
ż

K
GK|wn|

2
Ñ

ż

K
GK|wc|

2.

This leads to
EK,λpcq “ lim inf EK,cpwnq ě EK,cpwcq

thus wc is a minimizer since it verifies ||wc||
2
L2pKq “ λ and belongs to H1

perpKq. We
then, in fact, obtain up to a subsequence that DKpwn

2, wn
2q Ñ DKp|wc|

2, |wc|
2q

and
ş

K |∇wn|
2 Ñ

ş

K |∇wc|
2. This last convergence gives us that any minimiz-

ing sequence of EK,λpcq strongly converges in H1
perpKq to a minimizer up to a

subsequence.
Moreover, by the convexity inequality for gradients (see [LL01, Theorem 7.8])

||∇|f |||L2pKq ď ||∇f ||L2pKq , @ f P H1
perpK,Cq,

we obtain that |wc| P H1
perpK,R`q and that it is a minimizer since wc is a mini-

mizer. This concludes the proof of i.
We now prove that any minimizer wc solves an Euler–Lagrange equation. For

any f P H1
perpKq, we define

wε “

?
λ

||wc ` εf ||L2pKq
pwc ` εfq.

We obviously have that wε P H1
perpKq and ||wε||

2
L2pKq “ λ. Moreover, wc being

a minimizer, we have dEK,c
dε |wc

“ 0. Thus, computing EK,cpwεq for f and if , we
obtain

@`

´∆` cTF |wc|
4{3
´ c|wc|

2{3
` pGK ‹ |wc|

2
q ´GK ` µwc

˘

wc, f
D

L2pKq “ 0,

with µwc defined as in (2.38).
To prove that any minimizer wc is in H2

perpKq, using (2.37) in H´1
perpKq and

(2.38) which are classical computations, we write

´∆wc “ ´cTF |wc|
4
3wc ` c|wc|

2
3wc `GKwc ´ p|wc|

2
‹GKqwc ´ µcwc

and prove that the right hand side is in L2pKq, which will give wc P H2
perpKq by

elliptic regularity for the periodic Laplacian. We note that |wc|
4
3wc and |wc|

2
3wc

are in L2pKq, by Sobolev embeddings, since wc P H1
perpKq which also gives, to-

gether with GK P L
2pKq by Lemma 2.20, that |wc|2 ‹GK P L

8pKq. It remains to
prove that GKwc P L

2pKq: equation (2.35) and the periodic Hardy inequality on
K (see Section 6.5 in the Appendix) give

||GKwc||L2pKq ď C
ˇ

ˇ

ˇ

ˇ| ¨ |
´1wc

ˇ

ˇ

ˇ

ˇ

L2pKq ď C 1 ||wc||H1
perpKq

.
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Finally, since GK is not constant, the constant functions are not solutions of the
Euler–Lagrange equation hence are not minimizers. This concludes the proof of
ii.

Let wc be a nonnegative minimizer, then 0 ı wc ě 0 is in H2pKq Ă L8pKq
and is a solution of p´∆` Cqu “ pf `GK ` Cqu, with GK bounded below and

f “ ´cTF |wc|
4
3 ` c|wc|

2
3 ´ p|wc|

2
‹GKq ´ µwc P L

8
pKq,

thus p´∆` Cqwc ě 0 for C " 1. Hence, wc ą 0 onK since the periodic Laplacian
is positive improving [LL01, Theorem 9.10]. Therefore 0 ă wc

´1 P L8pKq and,
for any u P H1

perpKq, it holds that uwc and uwc
´1 are in H1pKq. Indeed, we of

course have that uwc´1 P L2pKq and uwc P L2pKq but also
ˇ

ˇ

ˇ

ˇ∇puwc´1
q
ˇ

ˇ

ˇ

ˇ

L2pKq ď
ˇ

ˇ

ˇ

ˇwc
´1
ˇ

ˇ

ˇ

ˇ

L8pKq ||∇u||L2pKq `
ˇ

ˇ

ˇ

ˇwc
´1
ˇ

ˇ

ˇ

ˇ

2

L8pKq ||∇wc||L4pKq ||u||L4pKq

and

||∇puwcq||L2pKq ď ||u||L4pKq ||∇wc||L4pKq ` ||wc||L8pKq ||∇u||L2pKq ,

which are both bounded since wc P H2pKq and u P H1pKq. We obtain

xu,´∆uy “
@

∇puwcq,∇puwc´1
q
D

´ 2
@

u∇wc,∇puwc´1
q
D

`
@

|u|2wc
´1,´∆wc

D

“

A

wc
2,
ˇ

ˇ∇puwc´1
q
ˇ

ˇ

2
E

`
@

|u|2wc
´1,´∆wc

D

,

where x¨, ¨y stands for x¨, ¨yL2pKq and since wc is real valued. Consequently, wc ą 0

verifies Hwcwc “ ´µwcwc and this implies that for any u P H1
perpKq it holds

xu, pHwc ` µwcquyL2pKq “ xwc
2,
ˇ

ˇ∇puwc´1
q
ˇ

ˇ

2
yL2pKq ě 0.

This vanishes only if there exists α P C such that u “ αwc ae.
Let now wc be a minimizer. The convexity inequality for gradients gives that

|wc| is a nonnegative minimizer and that ´µwc ď ´µ|wc|. But we just proved that
´µ|wc| is the lowest eigenvalue of Hwc “ H|wc| and is simple, hence ´µwc “ ´µ|wc|
and, wc and |wc| are equal up to a constant phase factor. This concludes the
proof of Proposition 2.21. �

From this existence result, we deduce two useful corollaries.

Corollary 2.23. On r0,`8q, c ÞÑ EK,λpcq is continuous and strictly de-
creasing.
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Proof of Corollary 2.23. Let 0 ď c1 ă c2 and, let w1 and w2 be corre-
sponding minimizers, which exist by Proposition 2.21. On one hand, we have

EK,λpc2q ď EK,c2pw1q “ EK,c1pw1q ´
3

4
pc2 ´ c1q

ż

K
|w1|

8
3

“ EK,λpc1q ´
3

4
pc2 ´ c1q

ż

K
|w1|

8
3 ă EK,λpc1q,

with the second inequality being strict since, for c ě 0, any corresponding min-
imizer is nonnegative with positive L2pKq-norm thus

ş

K |w1|
8
3 ą 0. This gives

that EK,λpcq is strictly decreasing on r0,`8q but also, fixing c2 and sending c1

to c2 by below, the left-continuity for any c2 ą 0. Moreover, c2 ÞÑ ||w2||H1pKq is
uniformly bounded on any bounded interval since

EK,λp0q ě EK,λpc2q “ EK,c2pw2q ě a ||∇w2||
2
L2pKq ´

15

64

λ

cTF
c2

2
´ λC (2.41)

by Lemma 2.22. Hence, by the Sobolev embedding, we have

EK,λpc2q ă EK,λpc1q ď EK,λpc2q `
3

4
pc2 ´ c1qC1λ

5{6
||w2||H1pKq ,

which gives the right-continuity and concludes the proof of Corollary 2.23. �

Corollary 2.24. If wc is a minimizer of EK,λpcq, then

min
K
|wc|

2
ă

λ

|K|
ă max

K
|wc|

2.

Proof of Lemma 2.24. This is a direct consequence of wc P H2pKq Ă
C0pKq being non-constant and verifying ||wc||

2
L2pKq “ λ. �

4.2. Limit case c “ 0: the TFW model. In order to prove Theorem 2.1,
we need some results on the TFW model which corresponds to the TFDW model
for c “ 0. For clarity, we denote

E TFW
K pwq :“ EK,0pwq “

ż

K

|∇w|2 ` 3

5
cTF

ż

K

|w|
10
3 `

1

2
DKp|w|

2, |w|2q ´

ż

K

GK|w|
2,

(2.42)
and similarly ETFW

K,λ :“ EK,λp0q.
By Proposition 2.21, there exist minimizers to ETFW

K,λ .

Lemma 2.25.
EK,λpcq ÝÑ

cÑ0`
ETFW

K,λ .

Proof of Lemma 2.25. This is a particular case of Corollary 2.23. �

We now prove the uniqueness of minimizer for the TFW model.
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Proposition 2.26. The minimization problem ETFW
K,λ admits, up to phase,

a unique minimizer w0 which is non constant and positive. Moreover, w0 is the
unique ground-state eigenfunction of the self-adjoint operator

H :“ ´∆` cTF |w0|
4
3 ´GK ` p|w0|

2
‹GKq,

with domain H2
perpKq, acting on L2

perpKq, and with ground-state eigenvalue

´ µ0 “
||∇w0||

2
2 ` cTF ||w0||

10{3
10{3 `DKpw

2
0, w

2
0q ´ xGK, w

2
0yL2pKq

λ
. (2.43)

Proof of Proposition 2.26. By Proposition 2.21, we only have to prove
the uniqueness. Since ρ ÞÑ GKρ is linear, thus convex, and ρ ÞÑ ρ5{3 is strictly
convex on R`, then their integrals over K are respectively convex and strictly
convex. Therefore, the uniqueness of nonnegative H1pKq minimizers, of unitary
L1pKq-norm, to

ρ ÞÑ

ż

K
|∇?ρ|2 ` 3

5
cTF

ż

K
ρ

5
3 `

1

2
DKpρ, ρq ´

ż

K
GKρ,

is obtained by the convexity of the ρ ÞÑ |∇?ρ|2 (see [Lie81, Proposition 7.1]) and
by the (strict) convexity of ρ ÞÑ DKpρ, ρq. The later being due to DKpρ, ρq ą 0

for ρ ı 0, by Lemma 2.20, and to 2|DKpρ1, ρ2q| ă DKpρ1, ρ1q ` DKpρ2, ρ2q, for
ρ1, ρ2 ı 0, when the expressions are well defined. This concludes the proof since
any minimizer w0 to ETFW

K,λ is equal to |w0| up to a phrase factor by Proposi-
tion 2.21. �

4.3. Proof of Theorem 2.1: uniqueness in the regime of small c. We
first prove one convergence result and a uniqueness result under a condition on
min
K
ρ.

Lemma 2.27. Let tcnun Ă R` be such that cn Ñ c̄. If twcnun is a sequence
of respective positive minimizers to EK,λpcnq and tµwcnun the associated Euler–
Lagrange multipliers, then there exists a subsequence cnk such that the convergence

`

wcnk , µwcnk

˘

ÝÑ
kÑ8

pw̄, µw̄q

holds strongly in H2
perpKqˆR, where w̄ is a positive minimizer to EK,λpc̄q and µw̄

is the associated multiplier.
Additionally, if EK,λpc̄q has a unique positive minimizer w̄ then the result holds

for the whole sequence cn Ñ c̄:
`

wcn , µwcn
˘

ÝÑ
nÑ8

pw̄, µc̄q .

We will only use the case c̄ “ 0, for which we have proved the uniqueness of
the positive minimizer, but we state this lemma for any c̄ ě 0.
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Proof of Lemma 2.27. We first prove the convergence in H1
perpKqˆR. By

the continuity of c ÞÑ EK,λpcq proved in Corollary 2.23, twcnunÑ8 is a positive
minimizing sequence of EK,λpc̄q. Thus, by Proposition 2.21, up to a subsequence
(denoted the same for shortness), wcn converges strongly in H1

perpKq to a mini-
mizer w̄ of EK,λpc̄q.

Moreover, for any c, pwc, µwcq is a solution of the Euler–Lagrange equation
´

´∆` cTFwc
4
3 ´ cwc

2
3 ´GK ` pwc

2
‹GKq

¯

wc “ ´µwcwc.

Thus, as cn goes to c̄, µwcn converges to µ P R satisfying

´∆w̄ ` cTF w̄
7
3 ´ c̄w̄

5
3 ´GKw̄ ` pρ̄ ‹GKqw̄ “ ´µw̄.

In particular, µ “ µw̄. At this point, we proved the convergence in H1
perpKq ˆR:

`

wcn , µwcn
˘

ÝÑ
nÑ8

pw̄, µw̄q .

If, additionally, the positive minimizer w̄ of EK,λpc̄q is unique, then any posi-
tive minimizing sequence must converge in H1

perpKq to w̄, so the whole sequence
twcnunÑ8 in fact converges to the unique positive minimizer w̄.

We turn to the proof of the convergence inH2
perpKq. For any cn ě 0, by Propo-

sition 2.21, wcn is in H2
perpKq thus we have

p´∆´GK ` βq pwcn ´ w̄q “ ´ cTF pwcn
7
3 ´ w̄

7
3 q ` pcn ´ c̄qwcn

5
3 ` c̄

´

wcn
5
3 ´ w̄

5
3

¯

´
`

pwcn
2
´ w̄2

q ‹GK
˘

wcn ´
`

w̄2
‹GK

˘

pwcn ´ w̄q

´ pµwcn ´ µw̄qwcn ` pβ ´ µw̄q pwcn ´ w̄q “: εn.

Moreover,

||εn||L2pKq

ď cTF

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
|wcn ´ w̄||wcn ` w̄|

4
3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L2pKq
` |cn ´ c̄| ||wcn ||

5
3

L
10
3 pKq

` c̄C
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
|wcn ´ w̄||wcn ` w̄|

2
3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L2pKq
`
ˇ

ˇ

ˇ

ˇwcn
2
´ w̄2

ˇ

ˇ

ˇ

ˇ

L2pKq ||GK||L2pKq ||wcn ||L2pKq

` ||wcn ´ w̄||L2pKq

´

||w̄||2L4pKq ||GK||L2pKq ` |β ´ µw̄|
¯

` |µwcn ´ µw̄| ||wcn ||L2pKq

ď |cn ´ c̄| ||wcn ||
5
3

L
10
3 pKq

` ||wcn ´ w̄||L2pKq

´

||w̄||2L4pKq ||GK||L2pKq ` |β ´ µw̄|
¯

` |µwcn ´ µw̄| ||wcn ||L2pKq ` ||wcn ´ w̄||L4pKq

´

cTF ||wcn ` w̄||
4
3

L
16
3 pKq

`

` c̄C ||wcn ` w̄||
2
3

L
8
3 pKq

` ||wcn ` w̄||L4pKq ||GK||L2pKq ||wcn ||L2pKq

¯

,

where we wrote ||¨||p instead of ||¨||LppKq and used the two technical inequalities
which are the object of Lemma 2.78 in the Appendix. Since

`

wcn , µwcn
˘

strongly
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converges in H1
perpKqˆR, we have ||εn||2 ÝÑ 0. Now, by the Rellich-Kato theorem

(see the Appendix 6.9 for details), we have for β’s large enough that

p´∆per ´GK ` βq
´1 : L2

pKq Ñ H2
perpKq

is a bounded operator, hence twcnu converges in H2
perpKq since

wcn ´ w̄ “ p´∆per ´GK ` βq
´1 εn.

This concludes the proof of Lemma 2.27. �

Proposition 2.28 (Conditional uniqueness). Let K be the unit cube, N ě 1

be an integer, cTF ą 0, c ě 0 and µ P R be constants. Let w ą 0 be such that
w P H1pN ¨Kq and w is a N ¨K´periodic solution of

´

´∆` cTFw
4
3 ´ cw

2
3 ` pw2

‹GKq ´GK

¯

w “ ´µw. (2.44)

If min
N ¨K

w ą
´

c
cTF

¯
3
2 , then w is the unique minimizer of EN ¨K,şN ¨K |w|2pcq.

Proof of Proposition 2.28. First, the hypothesis give w P H2
perpN ¨ Kq,

by the same proof as in Proposition 2.21. Moreover, we have the following lemma.

Lemma 2.29. Let ρ ą 0 and ρ1 ě 0 such that ?ρ P H2
perpKq and

?
ρ1 P

H1
perpKq. Then

ż

K

ˇ

ˇ

ˇ
∇
a

ρ1
ˇ

ˇ

ˇ

2

´

ż

K
|∇?ρ|2 `

ż

K

∆
?
ρ

?
ρ
pρ1 ´ ρq ě 0.

Proof of Lemma 2.29. First, we notice that
?
ρ∆
?
ρ “

?
ρ

2
∇ r?ρ∇pln ρqs “ 1

2
ρ∆pln ρq `

1

4
ρ |∇pln ρq|2 .

Defining h “ ρ1 ´ ρ, and using the Cauchy–Schwarz inequality, we have
ż

N ¨K

ˇ

ˇ

ˇ
∇
a

ρ` h
ˇ

ˇ

ˇ

2

´

ż

N ¨K
|∇?ρ|2 `

ż

N ¨K

∆
?
ρ

?
ρ
h

“
1

4

ż

N ¨K

|∇pρ` hq|2

ρ` h
´

1

4

ż

N ¨K

|∇ρ|2

ρ
`

1

2

ż

N ¨K
h∆pln ρq `

1

4

ż

N ¨K
|∇pln ρq|2 h

“ ´
1

4

ż

N ¨K

|∇ρ|2 h
ρpρ` hq

´
1

2

ż

N ¨K

h∇ρ∇h
ρpρ` hq

`
1

4

ż

N ¨K
|∇pln ρq|2 h` 1

4

ż

N ¨K

|∇h|2

ρ` h

“
1

4

ż

N ¨K

h2 |∇ρ|2

ρ2pρ` hq
´

1

2

ż

N ¨K

ˆ

h∇ρ
ρ
?
ρ` h

˙

¨

ˆ

∇h
?
ρ` h

˙

`
1

4

ż

N ¨K

|∇h|2

ρ` h

“
1

4

ż

N ¨K

ˇ

ˇ

ˇ

ˇ

h∇ρ
ρ
?
ρ` h

´
∇h

?
ρ` h

ˇ

ˇ

ˇ

ˇ

2

ě 0.

�



4. REGIME OF SMALL C: UNIQUENESS OF THE MINIMIZER 101

Let w1 be in H1
perpN ¨Kq such that

ş

N ¨Kw
2 “

ş

N ¨K |w
1|2 and |w1| ı w. Defining

ρ “ w2 and ρ1 “ |w1|2, this means that
ş

N ¨K h “ 0 where h :“ ρ1 ´ ρ ı 0. We
have

EN ¨K,cp|w
1
|q ´ EN ¨K,cpwq

“

ż

N ¨K
|∇

a

ρ` h|2 ´

ż

N ¨K
|∇?ρ|2 ´

ż

N ¨K
GN ¨Kh` µ

ż

N ¨K
h

`
1

2
DN ¨Kpρ` h, ρ` hq ´

1

2
DN ¨Kpρ, ρq

`
3

5
cTF

ˆ
ż

N ¨K
pρ` hq

5
3 ´

ż

N ¨K
ρ

5
3

˙

´
3

4
c

ˆ
ż

N ¨K
pρ` hq

4
3 ´

ż

N ¨K
ρ

4
3

˙

“

A´

´∆` cTFw
4
3 ´ cw

2
3 ` w2

‹GN ¨K ´GN ¨K ` µ
¯

w, hw´1
E

L2pN ¨Kq

`

ż

N ¨K
|∇

a

ρ` h|2 ´

ż

N ¨K
|∇?ρ|2 `

ż

N ¨K

∆
?
ρ

?
ρ
h`

1

2
DN ¨Kph, hq

`
3

5
cTF

ˆ
ż

N ¨K
pρ` hq

5
3 ´ ρ

5
3 ´

5

3
ρ

2
3h

˙

´
3

4
c

ˆ
ż

N ¨K
pρ` hq

4
3 ´ ρ

4
3 ´

4

3
ρ

1
3h

˙

ą

ż

N ¨K
F pρ1q ´ F pρq ´ F 1pρqpρ1 ´ ρq,

with F pXq “ 3
5
cTFX

5
3 ´ 3

4
cX

4
3 . The above inequality comes from (2.44) together

with Lemma 2.29 and with DKph, hq ą 0 for h ı 0. Defining now

FXpY q “ F pY q ´ F pXq ´ F 1pXqpY ´Xq,

one can check, as soon as X ě 3

b

c
cTF

, that F 1X ă 0 on p0, Xq and F 1X ą 0 on

pX,`8q. Moreover, F 1Xp0q ă 0 if X ą 3

b

c
cTF

. Thus FX has a global strict
minimum on R` at X and this minimum is zero. Consequently, if min

N ¨K
w ě

`

c
cTF

˘3{2, then EK,cpw
1q ě EK,cp|w

1|q ą EK,cpwq for any w1 P H1
perpN ¨Kq such that

|w1| ı w and
ş

N ¨K |w
1|2 “

ş

N ¨Kw
2. This ends the proof of Proposition 2.28. �

We have now all the tools to prove the uniqueness of minimizers for c small.

Proof of Theorem 2.1. We have already proved all the results of i. of
Theorem 2.1 in Proposition 2.21 except for the uniqueness that we prove now. Let
pwcqcÑ0` be a sequence of respective positive minimizers to EK,λpcq. By Proposi-
tion 2.26, EK,λp0q has a unique minimizer thus, by Proposition 2.27, wc converges
strongly inH2pKq hence in L8pKq to the unique positive minimizer w0 to EK,λp0q.
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Therefore, for c small enough we have

min
K
wc ě

1

2
min
K
w0 ą

ˆ

c

cTF

˙
3
2

and we can apply Proposition 2.28 (with N “ 1) to the minimizer wc ą 0 to
conclude that it is the unique minimizer of EK,λpcq.

We now prove ii. of Theorem 2.1. We fix c small enough such that EK,λpcq

has an unique minimizer wc. Then wc being K-periodic, it is N ¨K´periodic for
any integer N ě 1 and verifies all the hypothesis of Proposition 2.28 hence it is
also the unique minimizer of EN ¨K,şN ¨K |wc|2pcq “ EN ¨K,N3λpcq. �

5. Regime of large c: symmetry breaking

This section is dedicated to the proof of the main result of the paper, namely
Theorem 2.2. We introduce for clarity some notations for the rest of this section.
We will denote the minimization problem for the effective model on the unit cell
K by

JK,λpcq “ inf
vPH1

perpKq
||v||2

L2pKq“λ

JK,cpvq, (2.45)

where
JK,cpvq “

ż

K
|∇v|2 ` 3

5
cTF

ż

K
|v|

10
3 ´

3

4
c

ż

K
|v|

8
3 . (2.46)

We recall that the two other minimizing problems we consider are

EK,λpcq “ inf
wPH1

perpKq
||w||2

L2pKq“λ

EK,cpwq (2.5)

for the complete model on K, where

EK,cpwq “ JK,cpwq `
1

2
DKp|w|

2, |w|2q ´

ż

K

GK|w|
2, (2.3)

and
JR3,λ “ inf

uPH1pR3q

||u||2
L2pR3q“λ

JR3puq (2.11)

for the effective model on R3, where

JR3puq “

ż

R3

|∇u|2 ` 3

5
cTF

ż

R3

|u|
10
3 ´

3

4

ż

R3

|u|
8
3 . (2.10)

The first but important result is the existence of minimizers for JK,λ which is
equivalent to Proposition 2.21 but for JK,λ.
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Proposition 2.30 (Existence of minimizers to JK,λpcq). Let K be the unit
cube and, cTF ą 0, λ ą 0 and c ě 0 be real constants.
i. There exists a nonnegative minimizer to JK,λpcq and any minimizing sequence
pvnqn strongly converges in H1

perpKq to a minimizer, up to extraction of a
subsequence.

ii. Any minimizer vc is in H2
perpKq, is non-constant and solves the Euler–Lagrange

equation
´

´∆` cTF |vc|
4
3 ´ c|vc|

2
3

¯

vc “ ´µvcvc,

with

µvc “ ´
||∇vc||22 ` cTF ||vc||

10{3
10{3 ´ c ||vc||

8{3
8{3

λ
.

iii. Up to a phase factor, a minimizer vc is positive and the unique ground-state
eigenfunction of the self-adjoint operator, with domain H2

perpKq,

Hvc :“ ´∆` cTF |vc|
4
3 ´ c|vc|

2
3 .

Corollary 2.31. On r0,`8q, c ÞÑ JK,λpcq is continuous and strictly de-
creasing.

Corollary 2.32. If vc is a minimizer of JK,λpcq, then min
K
|vc|

2 ă λ
|K| ă

max
K
|vc|

2.

The proofs are the same as the proofs of Proposition 2.21, Corollary 2.23 and
Corollary 2.24, and will therefore be omitted.

The minima of the effective model and of the TFDW model also verify the
following a priori estimates which will be useful all along this section.

Lemma 2.33 (A priori estimates on minimal energy). Let K be the unit cube
and cTF and c be two positive constant. Then EK,λpcq verifies

´λC ´
15

64

λ

cTF
c2
ď EK,λpcq ď ´

3

4

λ
4
3

|K| 13
c`

3

5
cTF

λ
5
3

|K| 23
`

λ

|K|

ˆ

λ

2
´ 1

˙

||GK||L1pKq ,

(2.47)

for some constant C ą 0, and JK,λpcq verifies JK,λpcq “ c2JK,λp1q and

´
15

64

λ

cTF
c2
ď JK,λpcq ď ´

3

4

λ
4
3

|K| 13
c`

3

5
cTF

λ
5
3

|K| 23
. (2.48)

Moreover, for all K such that 0 ă K ă ´JR3,λ, there exists c˚ ą 0 such that for
all c ě c˚ we have

´
15

64

λ

cTF
c2
ď JK,λpcq ď ´c

2K ă 0. (2.49)
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Remark 2.34. The upper bound in (2.47) implies, in particular, that there
exists c0 :“ c0pλ,K, cTF q ą 0 such that EK,λpcq ă 0 for all c ą c0.

Proof of Lemma 2.33. The lower bound in (2.47) has been proved in Lem-
ma 2.22, the proof of which also leads to the inequality

JK,cpvq ě ||∇v||2L2pKq ´
15

64

λ

cTF
c2, (2.50)

hence the lower bound in (2.48).

Remark 2.35. One can obtain a bound independent of cTF : for any a ă 1,

JK,cpvq ě a ||∇v||2L2pKq ´
9λ

5
3SK

2

64p1´ aq
c2
´

3

4
SKλ

4
3 c

where SK is the Sobolev constant ||v||L6pKq ď SK ||v||H1pKq. See the proof in Sec-
tion 6.3.

The upper bounds in (2.48) and (2.47) are simple computations of JK,cpv̄q

and EK,cpv̄q for the constant function v̄ “
b

λ
|K| , defined on K, which belongs to

the minimizing domain.
To prove (2.49), let K be such that 0 ă K ă ´JR3,λ. Fix f P C8c pR3q such

that K “ ´JR3pfq ą 0. Such a f exists since JR3,λ ă 0 and C8c pR3q is dense
in H1pR3q. Thus, there exists c˚ ą 0 such that for any c ě c˚, the support of
fc :“ c3{2fpc¨q is strictly included in K. This implies, for any c ě c˚, that

JK,λpcq ď JK,cpfcq “

ż

R3

|∇fc|2 `
3

5
cTF

ż

R3

|fc|
10
3 ´

3

4
c

ż

R3

|fc|
8
3 “ c2JR3pfq,

and this concludes the proof of Lemma 2.33. �

We introduce the notation Kc which will be the dilation of K by a factor
c ą 0. Namely, if K is the unit cube, then

Kc :“ c ¨K :“
”

´
c

2
;
c

2

¯3

. (2.51)

Moreover, we use the notations ŭ and ů to denote the following dilations of u:
‚ for any v defined on K, v̆ is defined on Kc by v̆pxq :“ c´3{2vpc´1xq;
‚ for any v defined on Kc, v̊ is defined on K by v̊pxq :“ c`3{2vpcxq.

A direct computation gives JK,cpvq “ c2JKc,1pv̆q, for any v P H1
perpKq. Conse-

quently,
JK,λpcq “ c2JKc,λp1q (2.52)

and v is a minimizer of JK,λpcq if and only if v̆ is a minimizer of JKc,λp1q. Finally,
when v is a minimizer of JK,λpcq, we have some a priori bounds on several norms
of v̆ which are given in the following corollary of Lemma 2.33.
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Corollary 2.36 (Uniform norm bounds on minimizers of JKc,λp1q). Let K
be the unit cube and λ be positive. Then there exist C ą 0 and c˚ ą 0 such that
for any c ě c˚, a minimizer v̆c of JKc,λp1q verifies

1

C
ď ||∇v̆c||L2pKcq , ||v̆c||L10{3pKcq , ||v̆c||L8{3pKcq ď C.

Proof of Corollary 2.36. By (2.48) and (2.50), we have that there exists

0 ă c˚ ď
4
5
cTF

´

λ
|K|

¯
1
3 such that, for all c ě c˚, it holds that

0 ě JK,λpcq ě ||∇vc||2L2pKq ´
15

64

λ

cTF
c2,

for any minimizer vc of JK,λpcq. This leads to

||∇v̆c||2L2pKcq “ c´2
||∇vc||2L2pKq ď

15

64

λ

cTF
.

Remark. One can obtain an upper bound independent of cTF (see Section
6.4).

Applying, on K, Hölder’s inequality and Sobolev embeddings to vc, we obtain
$

’

&

’

%

||vc||
8
3

L
8
3 pKq

ď SpKqλ
5
6

´

λ
1
2 ` ||∇vc||L2pKq

¯

,

||vc||
10
3

L
10
3 pKq

ď rSpKqs2λ
2
3

´

λ` ||∇vc||2L2pKq

¯

,

where SpKq is the Sobolev constant on K, and it implies that
$

’

’

’

&

’

’

’

%

||v̆c||
8{3

L8{3pKcq ď SpKqλ
5
6

˜

||∇v̆c||L2pKcq `
λ

1
2

c

¸

,

||v̆c||
10{3

L10{3pKcq ď rSpKqs
2λ

2
3

ˆ

||∇v̆c||2L2pKcq `
λ

c2

˙

.

(2.53)

Thus there exists C such that

@c ě c˚, ||∇v̆c||L2pKcq , ||v̆c||L10{3pKcq , ||v̆c||L8{3pKcq ď C.

By (2.49), for any K such that 0 ă K ă ´JR3,λ, there exists c‹ ą 0 such that

@c ě c‹, 0 ă
4

3
K ď ´

4

3
JKc,λp1q ď ||v̆c||

8{3

L8{3pKcq

and, consequently, such that

@c ě c‹, ||v̆c||
10{3

L10{3pKcq ě
1

λ

´

||v̆c||
8{3

L8{3pKcq

¯2

ą
16

9

K2

λ
ą 0.
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Finally, by (2.53) and for any fixed pc˚ ą
3
4
SpKqλ 4

3K, we have

inf
cěmaxtc˚,c‹,xc˚u

||∇v̆c||L2pKcq

ě max

$

&

%

4Kλ´
5
6

3SpKq
´
λ

1
2

c
;

˜

4Kλ´
5
6

3SpKq

¸2

´

˜

λ
1
2

c

¸2
,

.

-

ě max

$

&

%

4Kλ´
5
6

3SpKq
´
λ

1
2

pc˚
;

˜

4Kλ´
5
6

3SpKq

¸2

´

˜

λ
1
2

pc˚

¸2
,

.

-

ą 0.

This concludes the proof of Corollary 2.36. �

5.1. Concentration-compactness. In order to prove the symmetry break-
ing stated in Theorem 2.2, we prove the following result using the concentration-
compactness method as a key ingredient.

Proposition 2.37. Let K be the unit cube and λ be positive. Then

lim
cÑ8

c´2EK,λpcq “ JR3,λ “ lim
cÑ8

c´2JK,λpcq.

Moreover, for any sequence wc of minimizers to EK,λpcq, there exists a subsequence
cn Ñ 8 and a sequence translations txnu Ă R3 such that the sequence of dilated
functions w̆n :“ cn

´3{2wcnpcn
´1¨q verifies

i. 1Kcn w̆np¨ ` xnq converges to a minimizer u of JR3,λ strongly in LppR3q for
2 ď p ă 6, as n goes to infinity;

ii. 1Kcn∇w̆np¨ ` xnq Ñ ∇u strongly in L2pR3q.

The same holds for any sequence vc of minimizers of JK,λpcq.

Before proving Proposition 2.37, we give and prove several intermediate re-
sults, the first of which is the following proposition which will allow us to deduce
the results for EK,λ from those for JK,λ.

Lemma 2.38. Let λ ą 0. Then
EK,λpcq

JK,λpcq
ÝÑ
cÑ8

1.

Proof of Lemma 2.38. Let wc and vc be minimizers of EK,λpcq and JK,λpcq
respectively which exist by Proposition 2.21 and Proposition 2.30. Thus

EK,cpwcq ´JK,cpwcq ď EK,λpcq ´ JK,λpcq ď EK,cpvcq ´JK,cpvcq

which can be rewrite as
1

2
DKpwc

2, wc
2
q ´

ż

K
GKwc

2
ď EK,λpcq ´ JK,λpcq ď

1

2
DKpvc

2, vc
2
q ´

ż

K
GKvc

2.
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By the Hardy inequality on K (see Section 6.5 in the Appendix) and the upper
bound in (2.35), we have

ˇ

ˇ

ˇ

ˇ

ż

K
GKvc

2

ˇ

ˇ

ˇ

ˇ

ď λ ||GKvc||L2pKq ď Cλ ||vc||H1pKq

and similarly
ˇ

ˇ

ş

KGKwc
2
ˇ

ˇ À ||wc||H1pKq. Moreover, we claim that

DKpvc
2, vc

2
q À ||vc||H1pKq . (2.54)

To prove (2.54) we define, for each spatial direction i P t1, 2, 3u of the lattice, the
intervals Ip´1q

i :“ r´1;´1{2q, Ip0qi :“ r´1{2; 1{2q and I
p`1q
i :“ r1{2; 1q, and the

parallelepipeds Kpσ1,σ2,σ3q “ I
pσ1q
1 ˆ I

pσ2q
2 ˆ I

pσ3q
3 which let us rewrite K “ Kp0,0,0q

and K2 “ 2 ¨K :“ r´1; 1q3 as the union of the 27 sets

K2 “
ď

σPt´1;0;`1u3

Kσ.
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Figure 7. Representation, in the 2D case, of the splitting of K2 into subsets.

We thus have by the upper bound in (2.35) and the Hardy–Littlewood–
Sobolev inequality that

ĳ

KˆK
x´yPKσ

vc
2
pxqGKpx´ yqvc

2
pyq dx dy À

ĳ

KˆK

v2
c pxqv

2
c pyq

|x´ y ´ σ|
dy dx À ||vc||

4

L
12
5 pKq

.
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Consequently, by Hölder’s inequality and Sobolev embeddings, we have

ˇ

ˇDKpvc
2, vc

2
q
ˇ

ˇ “

ˇ

ˇ

ˇ

ÿ

σPt´1;0;`1u3

ĳ

KˆK
x´yPKσ

vc
2
pxqGKpx´ yqvc

2
pyq dx dy

ˇ

ˇ

ˇ

À ||vc||
4

L
12
5 pKq

À ||vc||H1pKq ||vc||
3
L2pKq . (2.55)

This proves (2.54) which also holds for wc.
Then, on one hand, by (2.41) applied to c1 “ 0 ď c2 “ c, there exist positive

constants a ă 1 and C such that for any c ą 0 we have

a ||∇wc||2L2pKq ď
15

64

λ

cTF
c2
` EK,λp0q ` λC.

On the other hand, the upper bound in (2.49) together with the (2.50) applied
to vc, give that there exists c˚ ą 0 such that

D K ą 0, @ c ě c˚, ||∇vc||2L2pKq ď

ˆ

15

64

λ

cTF
´K

˙

c2. (2.56)

Consequently, for c large enough, ||vc||H1pKq À c hence |JK,λpcq ´ EK,λpcq| À c.
Using (2.49), we finally obtain

ˇ

ˇ

ˇ

ˇ

EK,λpcq

JK,λpcq
´ 1

ˇ

ˇ

ˇ

ˇ

À c´1.

This concludes the proof of Lemma 2.38. �

Remark 2.39. One can deduce directly from Lemma 2.38 the symmetry
breaking EN ¨K,N3λpcq ă N3EK,λpcq, see Section 6.6 in Appendix. However, since
it will be also a consequence of the results in Theorem 2.2 proved below, we do
not write here the direct proof of symmetry breaking for shortness.

We now prove that the periodic effective model converges,

lim
cÑ8

c´2JK,λpcq “ JR3,λ,

by proving the two associated inequalities. We first prove the upper bound then
use the concentration-compactness method to prove the converse inequality. The
strong convergence of minimizers stated in Proposition 2.37 will be a by-product
of the method.

Lemma 2.40 (Upper bound). Let K be the unit cube and λ be positive. Then
there exists β ą 0 such that

JK,λpcq ď c2JR3pλq ` ope´βcq.
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In particular,
JR3,λ ě lim sup

cÑ8
c´2JK,λpcq. (2.57)

Proof of Lemma 2.40. Let Q be a minimizer of JR3,λ which is, up to a
phase factor and a space translation, a positive radial strictly decreasing H2pR3q-
solution — hence, it vanishes as |x| goes to infinity — to the Euler–Lagrange
equation (2.12), by Theorem 2.3. Therefore, Proposition 2.19 gives the expo-
nential decay when r goes to infinity of the norm ||∇Q||L2pABp0,rqq and the norms
||Q||LppABp0,rqq for p ą 0.

We define C ´
c the inner K-thick border of Kc: C ´

c “ KczKc´1, and Qc “?
λχcQ

||χcQ||L2pR3q
where χc P C8c pR3q, 0 ď χc ď 1, χc ” 0 on R3zKc, χc ” 1 on Kc´1 and

||∇χc||L8pR3q
bounded. Thus there exist β ą 0 such that, for p P r2; 6s, we have

||χcQ||
p
LppR3q

“ ||Q||pLppR3q
` o

cÑ8
pe´βcq and, in particular, that

λ

||χcQ||
2
L2pR3q

“ 1` ope´βcq.

Moreover the following estimates hold
$

’

’

’

’

&

’

’

’

’

%

||χc∇Q||2L2pR3q
“ ||∇Q||2L2pR3q

` ope´βcq,

||Q∇χc||2L2pR3q
“ ||Q∇χc||2L2pC´c q

ď ||∇χc||28 ||Q||
2
L2pC´c q

“ ope´βcq,
ˇ

ˇ

ˇ

ˇ

ż

R3

Qχc∇χc ¨∇Q
ˇ

ˇ

ˇ

ˇ

ď ||∇χc||L8pR3q
||Q||L2pC´c q

||∇Q||L2pC´c q
“ ope´βcq,

and they lead to ||∇pχcQq||2L2pR3q
“ ||∇Q||2L2pR3q

` ope´βcq. Consequently,

JR3pQcq

“
λ

||χcQ||
2
2

||∇pχcQq||22 `
3

5

cTFλ
5
3

||χcQ||
10
3

2

||χcQ||
10
3

L
10
3 pR3q

´
3

4

λ
4
3

||χcQ||
8
3
2

||χcQ||
8
3

L
8
3 pR3q

“
`

1` ope´βcq
˘ `

||∇Q||22 ` ope
´βc
q
˘

`
3

5
cTF p1` ope

´βc
qq

5
3

ˆ

||Q||
10
3

L
10
3 pR3q

` ope´βcq

˙

´
3

4
p1` ope´βcqq

4
3

ˆ

||Q||
8
3

L
8
3 pR3q

` ope´βcq

˙

“ JR3pQq ` ope´βcq

and we finally have

JKc,λp1q ď JKc,1pQcq “ JR3pQcq “ JR3pQq ` o
cÑ8

pe´βcq “ JR3,λ ` o
cÑ8

pe´βcq.

This concludes the proof of Lemma 2.40. �
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We now prove the converse inequality to (2.57).

Lemma 2.41 (Lower bound). Let K be the unit cube and λ be positive. Then

lim inf
cÑ8

c´2JK,λpcq ě JR3,λ.

See Section 6.7 in the Appendix for a detailed proof.

Sketch of proof of Lemma 2.41. This result relies on Lions’ concentra-
tion-compactness method and on the following result. Since this lemma is well-
known, we omit its proof. Similar statements can be found for example in [Gér98,
BG99, HK05, KV08, Lew10].

Lemma 2.42 (Splitting in localized bubbles). Let K be the unit cube, tϕcucě1

be a sequence of functions such that ϕc P H1
perpKcq for all c, with ||ϕc||H1pKcq

uniformly bounded. Then there exists a sequence of functions tϕp1q, ϕp2q, ¨ ¨ ¨ u in
H1pR3q such that the following holds: for any ε ą 0 and any fixed sequence
0 ď Rk Ñ 8, there exist:

‚ J ě 0,

‚ a subsequence tϕcku,

‚ sequences tξp1qk u, ¨ ¨ ¨ , tξ
pJq
k u, tψku in H1

perpKckq ,

‚ sequences of space translations txp1qk u, ¨ ¨ ¨ , tx
pJq
k u in R3

such that

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ϕck ´

J
ÿ

j“1

ξ
pjq
k p¨ ´ x

pjq
k q ´ ψk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

H1pKck q
“ 0,

where

‚ tξ
p1q
k u, ¨ ¨ ¨ , tξ

pJq
k u, tψku have uniformly bounded H1pKckq-norms,

‚ 1Kck ξ
pjq
k á ϕpjq weakly in H1pR3q and strongly in LppR3q for 2 ď p ă 6,

‚ suppp1Kck ξ
pjq
k q Ă Bp0, Rkq for all j “ 1, ¨ ¨ ¨ , J and all k,

‚ suppp1Kckψkq Ă Kckz
J
Ť

j“1
Bpx

pjq
k , 2Rkq for all k,

‚ |x
piq
k ´ x

pjq
k | ě 5Rk for all i ‰ j and all k,

‚
ş

Kck
|ψk|

8
3 ď ε.

Remark. In the proof of Lemma 2.41, we really need to use all the bubbles
because we do not know well enough the energy of ψk. In similar proofs, it is
often possible to conclude after extracting few bubbles, using that J pψkq ě

Jp
ş

|ψk|
2q which allows to conclude. However, in our case, JKcp

ş

|ψk|
2q depends
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on c hence the same inequality of course holds but does not allow us to conclude.
We therefore need to extract all the bubbles (up to ε).

We apply Lemma 2.42 to the sequence pv̆cqcě1 of minimizers to JKc,λp1q which
verifies the hypothesis by the upper bound proved in Corollary 2.36. The lower
bound in that corollary excludes the case J “ 0. Indeed, in that case we would
have lim

kÑ8
||ϕck ´ ψk||H1pKck q

“ 0 and
ş

Kck
|ψk|

8
3 ď ε hence

ş

Kck
|ϕk|

8
3 ď 2ε, for

k large enough, contradicting the mentioned lower bound. Consequently, there
exists J ě 1 such that

v̆ck “ ψk ` εk `
J
ÿ

j“1

v̆
pjq
k p¨ ´ x

pjq
k q

where ||εk||H1pKck q
Ñ 0 and, for a each k, the supports of the v̆pjqk p¨´x

pjq
k q’s and ψk

are pairwise disjoint. The support properties, the Minkowski inequality, Sobolev
embeddings and the fact that suppp1Kck v̆

pjq
k q Ă Bp0, Rkq Ă Kck , give that

JKck pλq “ JKck pv̆ckq “ JKck pψkq `
J
ÿ

j“1

JR3p1Kck v̆
pjq
k q ` op1qckÑ8

ě ´
3

4
ε`

J
ÿ

j“1

JR3p1Kck v̆
pjq
k q ` op1qckÑ8.

Moreover, the strong convergence of 1Kck v̆
pjq
k in L2 and the continuity of λ ÞÑ

JR3,λ, proved in Lemma 2.12, imply, for all j “ 1, ¨ ¨ ¨ , J , that

JR3p1Kck v̆
pjq
k q ě JR3

´

||v̆
pjq
k ||

2
L2pKck q

¯

ÝÑ
kÑ8

JR3pλpjqq,

where, for any j, λpjq :“ ||v̆pjq||L2pR3q is the mass of the limit of 1Kck v̆
pjq
k . We

also have denoted JR3pλq :“ JR3,λ to simplify notations here. Those inequalities
together with the strict binding proved in Proposition 2.16 lead to

3

4
ε` lim inf

kÑ8
JKck pλq ě

J
ÿ

j“1

JR3pλpjqq ą JR3pλq ´ JR3

´

λ´
J
ÿ

j“1

λpjq
¯

ě JR3pλq.

The last inequality comes from the fact that

0 ď ||ψk||
2
L2pKck q

“ λ´
J
ÿ

j“1

λpjq ` op1q

thus λ´
J
ř

j“1
λpjq ě 0 and this implies that JR3

´

λ´
J
ř

j“1
λpjq

¯

ď 0. This concludes

the proof of Lemma 2.41. �
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We can now compute the main term of EK,λpcq stated in Proposition 2.37.

Proof of Proposition 2.37. From Propositions 2.40 and 2.41, we obtain
for all λ ą 0 that

lim inf
cÑ8

c´2JK,λpcq ě JR3,λ ě lim sup
cÑ8

c´2JK,λpcq

hence lim
cÑ8

c´2JK,λpcq “ JR3,λ and Lemma 2.38 gives then the same limit for
EK,λpcq. Proposition 2.41 also gives that pv̆cqcě1 has at least a first extracted
bubble 0 ı v̆ P H1pR3q to which 1Kck v̆ckp¨ ` xkq converges weakly in L2pR3q.
This leads to

JKck ,λp1q “ JKck ,1pv̆ckp¨`xkqq “ JR3pv̆q`JKck ,1pv̆ckp¨`xkq´ v̆q` op1q (2.58)

by the following lemma.

Lemma 2.43. Let K be the unit cube and tϕcucě1 be a sequence of functions on
R3 with ||ϕc||H1pKcq uniformly bounded such that 1Kcϕc ácÑ8

ϕ weakly in L2pR3q.
Then ϕ P H1pR3q and, up to the extraction of a subsequence, we have

(1) 1Kc∇ϕc á ∇ϕ weakly in L2pR3q,
(2) ||∇pϕc ´ ϕq||2L2pKcq “ ||∇ϕc||

2
L2pKcq ´ ||∇ϕ||

2
L2pR3q

` o
cÑ8

p1q,

(3) ||ϕc ´ ϕ||
p
LppKcq “ ||ϕc||

p
LppKcq ´ ||ϕ||

p
LppR3q

` o
cÑ8

p1q, for p P
 

8
3
, 10

3

(

.

Proof of Lemma 2.43. By the uniform boundedness in L2pR3q of 1Kcϕc,
there exists such L2pR3q-weak limit ϕ as stated in this lemma. Moreover, defining
χc as in Lemma 2.40, we have that χcϕc is bounded in H1pR3q since ||ϕc||H1pKcq is
uniformly bounded. Thus there exists ψ P H1pR3q such that χcϕc á

cÑ8
ψ weakly

in H1pR3q and
1Kcϕc “ p1Kc ´ χcqϕc ` χcϕc ácÑ8

ψ

weakly in H1pR3q. Thus ϕ “ ψ P H1pR3q by uniqueness of the limit.
Let f be in C8c pR3q and c˚ be such that suppf Ă Kc˚ . For c ě c˚, we have

ż

R3

f1Kc∇ϕc “ ´
ż

Kc
ϕc∇f ÝÑ

cÑ`8
cěc˚

´

ż

R3

ϕ∇f “
ż

R3

f∇ϕ

by the weak convergence of ϕc1Kc in L2pR3q. Moreover, 1Kc∇ϕc is bounded in
L2pR3q thus, up to the extraction of a subsequence, 1Kc∇ϕc converges weakly
in L2pR3q and its limit is ∇ϕ by uniqueness of the limit. Claim (1) is therefore
proved.

Claim (2), comes from the weak convergence of 1Kc∇ϕc and using
ż

Kc
|∇pϕc ´ ϕq|2 “

ż

Kc
|∇ϕc|2 ´ 2

ż

R3

1Kc∇ϕc ¨∇ϕ`
ż

Kc
|∇ϕ|2



5. REGIME OF LARGE C: SYMMETRY BREAKING 113

together with ||∇ϕ||L2pKcq Ñ ||∇ϕ||L2pR3q
.

We now prove (3). First we claim that |ϕc´ϕ| á 0 weakly in L2pR3qXL6pR3q.
Indeed,

|||ϕcχc ´ ϕ|||LppR3q
ď ||ϕcχc||LppKcq ` ||ϕ||LppR3q

ď ||ϕc||LppKcq ` ||ϕ||LppR3q
,

for 2 ď p ď 6, which is bounded since ||ϕc||H1pKcq is uniformly bounded by hypoth-
esis. Therefore, there exists ξ ě 0 such that, up to a subsequence, |ϕcχc´ϕ| á ξ

weakly in LppR3q. Thus for any bounded domain Ω, by Rellich-Kondrachov The-
orem applied to χcϕc, which weakly converges to ϕ in H1pR3q, we have that

ż

Ω

ξ2
ď lim inf

cÑ8

ż

Ω

|ϕcχc ´ ϕ|
2
“ 0.

Thus ξ ” 0 and |χcϕc ´ ϕ| á 0 weakly in LppR3q for 2 ď p ď 6. Consequently
|ϕc ´ ϕ| á 0 weakly in LppR3q for 2 ď p ď 6.

Second, we claim that we have the bound

||x´ 1|p ´ |x|p ` 1| ă

tpu
ÿ

k“1

ˆ q
2

k

˙

|x´ 1|k, (2.59)

for all p ą 2 and x P Rzt1u. Indeed, for 0 ď x ‰ 1, we in fact have

´

tpu
ÿ

k“1

ˆ q
2

k

˙

px´ 1qk ă |x´ 1|p ´ xp ` 1 ă ´ppx´ 1q,

where the right inequality can be proved by tpu derivations and using that x ÞÑ
xp´tpu is increasing on R`, and the left inequality can be proved using the sub-
additive (concavity and fp0q “ 0) of the previous power function when x ą 1

while the case x ă 1 is direct (separating tpu odd or even). So, for x ě 0,
the claimed bound is a rough consequence of the above. For x ă 0, we have
|x ´ 1|p ´ |x|p ` 1 ą 0 and the upper bound on |x ´ 1|p ´ |x|p ` 1 is a simple
computation. For a more detailed proof of (2.59), see Lemma 2.75 in Appendix
6.7.

We can now conclude. Indeed, defining K˚c “ Kcztϕ “ 0u and noting that
ż

Kc
|ϕc ´ ϕ|

p
´ |ϕc|

p
` |ϕ|p “

ż

K˚c
ϕp

ˆˇ

ˇ

ˇ

ˇ

ϕc
ϕ
´ 1

ˇ

ˇ

ˇ

ˇ

p

´

ˇ

ˇ

ˇ

ˇ

ϕc
ϕ

ˇ

ˇ

ˇ

ˇ

p

` 1

˙

,

the bound (2.59) then reduces the end of the proof to the demonstration that
ż

K˚c
ϕp

ˇ

ˇ

ˇ

ˇ

ϕc
ϕ
´ 1

ˇ

ˇ

ˇ

ˇ

k

“

ż

Kc
ϕp´k |ϕc ´ ϕ|

k

convergences to 0 for k “ 1, 2 and p P t8
3
, 10

3
u, and for k “ 3 and p “ 10

3
. This is

obtained from the weak convergence of |ϕ´ ϕc| á 0 in L2pR3q together with
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‚ the fact, for k “ 1 and p P t8
3
, 10

3
u, that ϕp´1 P L2pR3q;

‚ the fact, for k “ 2 and p P t8
3
, 10

3
u, that ϕ2p´4 P L2pR3q and that

0 ď

ż

Kc
ϕp´2

|ϕc ´ ϕ|
2
ď

ˆ
ż

Kc
ϕ2p´4

|ϕc ´ ϕ|

˙
1
2

||ϕc ´ ϕ||
3
2

L3pKcq ÝÑcÑ`8
0;

‚ the fact, for k “ 3 and p “ 10
3
, that

0 ď

ż

Kc
ϕ

1
3 |ϕc ´ ϕ|

3
ď

ˆ
ż

Kc
ϕ |ϕc ´ ϕ|

˙
1
3

||ϕc ´ ϕ||
8
3

L4pKcq ÝÑcÑ`8
0.

This concludes the proof of Lemma 2.43. �

To obtain for EK,λpcq an expansion similar to (2.58), we proceed the same
way. We first show that the sequence of minimizers w̆c is uniformly bounded in
H1

perpKcq using the upper bound in the following lemma, which is equivalent to
Corollary 2.36 for v̆c.

Lemma 2.44 (Uniform norm bounds on minimizers of EK,λpcq). Let K be the
unit cube, λ, cTF and c be positive. Then there exist C ą 0 and c˚ ą 0 such that
for any c ě c˚, the dilation w̆cpxq :“ c´3{2wcpc

´1xq of a minimizer wc to EK,λpcq

verifies
1

C
ď ||∇w̆c||L2pKcq , ||w̆c||L10{3pKcq , ||w̆c||L8{3pKcq ď C.

Proof of Lemma 2.44. As seen in the proof of Lemma 2.38, ||∇wc||L2pKq “

Opcq hence
||∇w̆c||2L2pKcq “ c´2

||∇wc||2L2pKq “ Op1q

and, using (2.53) for the two other norms, we have

@c ě c˚, ||∇w̆c||L2pKcq , ||w̆c||L10{3pKcq , ||w̆c||L8{3pKcq ď C 1.

Let K be such that 0 ă K ă ´JR3,λ and ε ą 0, then by (2.49) and Lem-
ma 2.38, there exists C ą 0 such that

c2K ´ ε ď ´JK,λpcq ´ ε ď ´EK,λpcq ď c

ˆ

C `
3

4
||wc||

8
3

L
8
3 pKq

˙

for c’s large enough and, consequently that

K ´
C ` ε

c2
ď

3

4
||w̆c||

8{3

L8{3pKcq .

We conclude this proof of Lemma 2.44 as we did in the proof of Corollary 2.36. �
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We now come back to the proof of Proposition 2.37. We apply Lemma 2.42
to tw̆cu and, as for v̆c, the lower bound in Lemma 2.44 implies that J ě 1,
namely that there exist at least a first extracted bubble 0 ı w̆ P H1pR3q such
that 1Kck w̆ckp¨ ` ykq á w̆ weakly in L2pR3q. Lemma 2.43 then leads to

ck
´2EK,λpckq “ JKck ,1pw̆ckp¨ ` ykqq `Opck

´1
q

“ JR3pw̆q `JKck ,1pw̆ckp¨ ` ykq ´ w̆q ` op1q,

where the term Opc´1q comes from DKpwc
2, wc

2q “ Opcq and
ş

KGKwc
2 “ Opcq

obtained in the proof of Lemma 2.38.
Since in both cases J and E, the left hand side converges to JR3pλq, the end

of the argument will be the same and we will therefore only write it in the case
of E. Defining λ1 :“ ||w̆||2L2pR3q

, which is positive since w̆ ı 0, we thus have

ck
´2EK,λpckq “ JR3pw̆q `JKck ,1pw̆ckp¨ ` ykq ´ w̆q ` op1q

ě JR3pλ1q ` JKck
`

||w̆ckp¨ ` ykq ´ w̆||
2
L2pKck q

˘

` op1q.

Since ||w̆cp¨ ` ykq ´ w̆||2L2pKcq “ λ´ λ1 ` op1q, then for any ε ą 0, we have

ck
´2EK,λpckq ě JR3pλ1q ` JKck pλ´ λ1 ` εq ` op1q,

By the convergence of c´2EK,λpcq for any λ ą 0, this leads to

JR3pλq ě JR3pλ1q ` JR3pλ´ λ1 ` εq

and, sending ε to 0, the continuity of λ ÞÑ JR3pλq, proved in Lemma 2.12, gives

JR3pλq ě JR3pλ1q ` JR3pλ´ λ1q.

We recall that λ1 ą 0 hence, if λ1 ă λ then the above large inequality would
contradict the strict binding proved in Proposition 2.16, hence λ1 “ λ. This
convergence of the norms combined with the original weak convergence in L2pR3q

gives the strong convergence in L2pR3q of 1Kcw̆cp¨ ` ykq to w̆ hence in LppR3q for
2 ď p ă 6 by Hölder’s inequality, Sobolev embeddings and the facts that w̆c is
uniformly bounded in H1

perpKcq and that w̆ P H1pR3q. The strong convergence
holds in particular in L

8
3 pR3q thus we have proved that w̆ is the first and only

bubble.
Finally, for any ε ą 0, we now have, for k large enough, that

ck
´2EK,λpckq “ JR3pw̆q `JKck ,1pw̆ckp¨ ` ykq ´ w̆q ` op1q

ě JR3pw̆q ` JKck
`

||w̆ckp¨ ` ykq ´ w̆||
2
L2pKck q

˘

` op1q

ě JR3pw̆q ` JKck pεq ` op1q.
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This leads to JR3pλq ě JR3pw̆q ` JR3pεq, then to JR3pλq ě JR3pw̆q by the
continuity of JR3pλq proved in Lemma 2.12. Since ||w̆||2L2pR3q

“ λ, this concludes
the proof of Proposition 2.37 up to the convergence of 1Kcn∇w̆np¨ ` xnq and
1Kcn∇v̆np¨ ` xnq that we deduce now from the above results.

We first prove the convergence in L2pR3q-norm. As obtained during the proof
of Lemma 2.44, we have

ˇ

ˇ

ˇ

ˇ

ż

K
GKwc

2

ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇDKpwc
2, wc

2
q
ˇ

ˇ “ opc2
q.

Moreover, we have

cn
´1
||ẘn||

8
3

L
8
3 pKq

“ ||w̆np¨ ` xnq||
8
3

L
8
3 pKcn q

Ñ ||u||
8
3

L
8
3 pR3q

cn
´2
||ẘn||

10
3

L
10
3 pKq

“ ||w̆np¨ ` xnq||
10
3

L
10
3 pKcn q

Ñ ||u||
10
3

L
10
3 pR3q

and cn´2EK,λpcnq convergences to JR3pλq hence

||∇w̆n||2L2pKcq ÝÑcÑ8
JR3pλq ´

3

5
cTF ||u||

10
3

L
10
3 pR3q

`
3

4
||u||

8
3

L
8
3 pR3q

“ ||∇u||2L2pR3q

since u is a minimizer of JR3pλq and ẘn of EK,λpcnq.
For 1Kcn∇v̆np¨`xnq it is even simplier since it only comes from the convergence

in LppR3q of v̆np¨ ` xnq together with the convergence of cn´2JK,λpcnq.
Then we apply Lemma 2.43 to obtain the strong convergence in L2pR3q from

this convergence in norm just obtained. �

Let us emphasize that all the results stated in this section still hold true
in the case of several charges per cell (for example for the union N ¨ K) with
same proofs. Indeed, most of those results deal with the effective model and are
therefore not impacted by the presence of several charges in the unit cell. For
the other results, the modifications only come from the factor

ş

KGKwc
2 being

replaced by
ş

K
řNq
i“1 ziGKp¨ ´Riq|wc|

2 — see (2.60) — therefore the statements
of Proposition 2.37, Lemma 2.38 and Lemma 2.44 are unchanged and the only
slight changes are:

‚ a factor Nq in the bounds of the modified term, in the proofs of those
three results;

‚ the upper bound in (2.47) is modified by some constants but is anyway
not used in any proof.

Consequently, as mentioned in Section 2.1, the results

lim
cÑ8

c´2EN ¨K,N3λpcq “ JR3,N3λ and lim
cÑ8

c´2EK,λpcq “ JR3,λ
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from Proposition 2.37 and the result

JR3pN3λq ă N3JR3pλq

from Proposition 2.16 imply together the symmetry breaking

EN ¨K,N3λpcq ă N3EK,λpcq.

We now give a corollary of Proposition 2.37.

Corollary 2.45 (Convergence of Euler–Lagrange multiplier). Let twcu be
a sequence of minimizers to EK,λpcq and tµcu the sequence of associated Euler–
Lagrange multipliers, as in Proposition 2.21. Then there exists a subsequence
cn Ñ 8 such that

cn
´2µcn ÝÑnÑ8

µR3,twcnu

with µR3,twcnu
the Euler–Lagrange multiplier associated with the minimizer to

JR3pλq to which the subsequence of dilated functions 1Kcn w̆cnp¨ ` xnq converges
strongly.

The same holds for sequences tvcu of Euler–Lagrange multipliers associated
with minimizers to JK,λpcq.

Proof of Corollary 2.45. Let u be the minimizer of JR3pλq to which
1Kcn w̆cnp¨ ` xnq converges strongly in LppR3q for 2 ď p ă 6, by Proposition 2.37
which also gives that 1Kcn∇w̆cnp¨ ` xnq Ñ ∇u strongly in L2pR3q, and µR3,u the
Euler–Lagrange multiplier associated with this u by Theorem 2.3.

By Lemma 2.44 and the formula (2.38) giving an expression of µc, we then
obtain

´ cn
´2µcnλ “ ||∇w̆cn ||

2
2 ` cTF ||w̆cn ||

10{3
10{3 ´ ||w̆cn ||

8{3
8{3

` cn
´2

”

DKp|wcn |
2, |wcn |

2
q ´

@

GK, |wcn |
2
D

L2pKq

ı

Ñ ||∇u||2L2pR3q
` cTF ||u||

10{3

L10{3pR3q
´ ||u||

8{3

L8{3pR3q

since, as obtained during the proof of Lemma 2.44, we have
ˇ

ˇ

ˇ

ˇ

ż

K
GKwc

2

ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇDKpwc
2, wc

2
q
ˇ

ˇ “ opc2
q.

Therefore, by (2.26) which gives an expression of the Euler–Lagrange parameter
µR3,u associated with this u, we have

cn
´2µcn ÝÑcÑ8 µR3,u.

Since u depends on twcnu, we can of course rename µR3,twcnu
:“ µR3,u. The result

for JK,λpcq is proved the same way. �
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5.2. Location of the concentration points. In this section we consider
the union of N3 cubes K, each containing Nq charges — not necessarily with the
same charge values zi — forming together the cube KN :“ N ¨K. The energy of
the unit cell KN is then

EKN ,cpwq “ JKN ,cpwq `
1

2
DKN p|w|

2, |w|2q ´

ż

KN
G |w|2, (2.60)

where

G :“

Nq
ÿ

m“1

N3
ÿ

i“1

zmGKN p¨ ´Rm,iq (2.61)

and tRm,iu1ďmďNq ,1ďiďN3 denote the positions of the N3Nq charges in the N3

copies of K which one contains Nq charges. We recall that

DKN pf, gq “

ż

KN

ż

KN
fpxqGKN px´ yqgpyq dy dx.

In this section, we prove a localization type result (Proposition 2.47) — that
any minimizer concentrates around the position of a charge of the lattice — and
a lower bound on the number of distinct minimizers (Proposition 2.49). We first
state the following lemma, which is a consequence of Proposition 2.37.

Lemma 2.46 (L8-convergence). Let 1 ď N P N and twcucÑ`8 be a sequence
of minimizers to EKN ,N3λpcq and u be the minimizer to JR3pN3λq to which the
subsequence of rescaled functions 1KcnN w̆cnp¨ ` xnq converges. Then

||w̆cnp¨ ` xnq ´ u||H2pKcnN q
ÝÑ
nÑ`8

0

and, consequently,
ˇ

ˇ

ˇ

ˇ1KcnN w̆cnp¨ ` xnq ´ u
ˇ

ˇ

ˇ

ˇ

L8pKcnN q
ÝÑ
nÑ`8

0.

Similarly, let tvcucÑ`8 be a sequence of minimizers to JKN ,N3λpcq and u be the
minimizer to JR3pN3λq to which the subsequence of rescaled functions 1KcnN v̆cnp¨`

xnq converges. Then

||v̆cnp¨ ` xnq ´ u||H2pKcnN q
ÝÑ
nÑ`8

0

and, consequently,
ˇ

ˇ

ˇ

ˇ1KcnN v̆cnp¨ ` xnq ´ u
ˇ

ˇ

ˇ

ˇ

L8pR3q
ÝÑ
nÑ`8

0.

Proof of Lemma 2.46. For shortness, we will omit the spatial translations
txnu in the rest of this proof. By Proposition 2.37, the convergence 1cn¨KN w̆cn Ñ u

is strong in LppR3q, 2 ď p ă 6. For any c, we define uc “ ζcu where ζc is a smooth
function such that 0 ď ζc ď 1, ζc ” 0 on R3zKcN and ζc ” 1 on KcN´1. Since
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u P L2pR3q, it vanishes as |x| Ñ 8, thus ||ucn ´ u||L8pKcnN q ÝÑnÑ`8
0 and proving

the stated result is equivalent to prove that ||w̆cn ´ ucn ||L8pKcnN q ÝÑnÑ`8
0.

Applying Lemma 2.80 (in the Appendix) to ν “ c´1 ď 1 and using Lem-
ma 2.81, we obtain that there exists 0 ă C ă 1 such that, for any β large enough
and any c ě 1, we have

||w̆c ´ uc||L8pKcN q ď C
ˇ

ˇ

ˇ

ˇ

`

´∆per ´ c
´2G pc´1

¨q ` β
˘

pw̆c ´ ucq
ˇ

ˇ

ˇ

ˇ

L2pKcN q
.

Let us emphasize that the power in front of G is c´2 while the scaling inside it is
c´1. Moreover, by the Euler–Lagrange equations (2.12) and (2.37), we have for
any c ą 0

`

´∆´ c´2G pc´1
¨q
˘

pw̆c ´ ucq

“ cTF

´

ζc|u|
4
3u´ |w̆c|

4
3 w̆c

¯

`

´

|w̆c|
2
3 w̆c ´ ζc|u|

2
3u
¯

` µR3uc ´ c
´2µcw̆c

` c´2G pc´1
¨quc ´ c

´2
`

|wc|
2
‹GK

˘

pc´1
¨qw̆c ` 2∇ζc∇u` u∆ζc,

where µR3 is the Euler–Lagrange parameter associated with u. Therefore, the
fact that

‚ L8pKcNq norms of ζc and of it derivatives are finite,

‚ u P H2pR3q Ă L2pR3q X L8pR3q,

‚ ||∇u||L2pKcN zKcN´1q
` ||u||L2pKcN zKcN´1q

Ñ 0 (which is even an exponential
decay by Proposition 2.19),

‚ ||c´1G pc´1¨q||L5{2pKcN q “ c1{5 ||G ||L5{2pKN q,

‚ ||ζcn
αu´ w̆cn ||LppKcn q “ ||p1´ ζcn

α
qu||LppKcn q ` ||u´ w̆cn ||LppKcn q Ñ 0 for

any α ą 0 and 2 ď p ď 6,

leads, by Corollary 2.45 and both inequalities (2.100) and (2.101) detailed in
the Appendix, to ||w̆cn ´ ucn ||L8pKcnN q ÝÑnÑ`8

0 since

||w̆cn ´ ucn ||L8pKcnN q

ď CcTF

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ζcn

3
7u´ w̆cn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L4pKcnN q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ζcn

4
7 |u|

4
3 ` |w̆cn |

4
3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L4pKcnN q

` C
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ζcn

3
5u´ w̆cn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L4pKcnN q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ζcn

2
5 |u|

2
3 ` |w̆cn |

2
3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L4pKcnN q

` C|µR3 ´ cn
´2µc| ||w̆cn ||L2pKcnN q

` CpµR3 ` βq ||ζcnu´ w̆cn ||L2pKcnN q

` Ccn
´ 4

5 ||G ||
L

5
2 pKN q

||uc||L10pKcnN q
` Ccn

´2
ˇ

ˇ

ˇ

ˇ|uc|
2
‹GKN

ˇ

ˇ

ˇ

ˇ

L8pKN q
||w̆cn ||L2pKcnN q

` 2 ||∇ζcn ||L8pKcnN q ||∇u||L2pKNcnzKNcn´1q
` ||u||L2pKNcnzKNcn´1q

||∆ζcn ||L8pKcnN q .
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The proof for vc is similar, but does not need Lemma 2.80, writing that

||v̆c ´ uc||H2pKcnN q
“ ||p1´∆qpv̆c ´ ucq||L2pKcnN q

ď CcTF

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ζc

3
7u´ v̆c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L4pKcnN q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ζc

4
7 |u|

4
3 ` |v̆c|

4
3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L4pKcnN q

` C
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ζc

3
5u´ v̆c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L4pKcnN q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ζc

2
5 |u|

2
3 ` |v̆c|

2
3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L4pKcnN q

` C|µR3 ´ cn
´2µc| ||v̆c||L2pKcnN q

` CpµR3 ` 1q ||uc ´ v̆c||L2pKcnN q

` 2 ||∇ζc||L8pKcnN q ||∇u||L2pKNcnzKNcn´1q

` ||u||L2pKNcnzKNcn´1q
||∆ζc||L8pKcnN q

ÝÑ
nÑ`8

0.

This ends the proof of Lemma 2.46. �

Proposition 2.47 (Minimizers’ concentration point). Let tRm,iu
1ďiďN3

1ďmďN`
be

the positions of the N3N` largest charges inside KN . Then the sequence txnu Ă
cn ¨ KN of translations associated with the subsequence twcnu of minimizers to
EKN ,N3λpcnq such that the rescaled sequence 1Kcn w̆cnp¨ ` xnq converges to Q, a
minimizer to JR3,N3λ, verifies

xn “ cnRm,i ` op1q

as nÑ 8, for one pm, iq. Consequently, for 2 ď p ă `8,

||w̆cnp¨ ` cnRm,iq ´Q||LppKcn q ÝÑnÑ`8
0.

As the reader will notice, the proof of Proposition 2.47 only needs (in addition
to things proved up to now) a convergence result on the nuclei-electron interaction
term

ş

G|w|2 — which will be proved in Lemma 2.48 — but nothing new on the
electron-electron interaction term Dp|w|2, |w|2q, which will be needed to prove
the expansion of the energy (Proposition 2.53).

Proof of Proposition 2.47. Since the wcn ’s are minimizers, we have

EKN ,cnpwcnq ď EKN ,cn

´

wcn

´

¨ `
xn
cn
´Rm˚,i˚

¯¯

,

for any Rm˚,i˚ , which leads to

´

Nq
ÿ

m“1

N3
ÿ

i“1

zm

ż

KNcn
GKN

´ x

cn
`
xn
cn
´Rm,i

¯

ˇ

ˇ

ˇ

ˇ

w̆cn

´

x`
xn
cn

¯

ˇ

ˇ

ˇ

ˇ

2

dx

ď ´

Nq
ÿ

m“1

N3
ÿ

i“1

zm

ż

KNcn
GKN

´ x

cn
`Rm˚,i˚ ´Rm,i

¯ˇ

ˇ

ˇ
w̆cn

´

x`
xn
cn

¯ˇ

ˇ

ˇ

2

dx (2.62)
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since the four first terms of EKN ,c are invariant under spatial translations. Lem-
ma 2.48 below then gives, on one hand, that the right hand side of this inequality
is equal to

´ cn

ż

R3

Q2pxq

|x|
dx` opcnq (2.63)

because cn|Rm˚,i˚ ´ Rm,i| Ñ 8 for pm, iq ‰ pm˚, i˚q. On the other hand, Lem-
ma 2.48 also gives that |xn ´ cnRm,i| must be bounded for one pm, iq, that we
denote pm0, i0q, because otherwise the left hand side would be equal to opcnq.
Therefore, still by Lemma 2.48, the terms in the left hand side due to indices
pm, iq ‰ pm0, i0q are equal to opcnq while the term for pm0, i0q is equal to

´ cn

ż

R3

Q2pxq

|x´ η|
dx` opcnq (2.64)

for a given η P R3 (and up to a subsequence). Moreover, since Q is radial strictly
decreasing, for 0 ‰ η P R3 we have
ż

R3

Q2
p|x|q

ˆ

1

|x|
´

1

|x´ η|

˙

dx “
ż

R3

Q2
´

|
η

2
` x|

¯

ˆ

1

|
η
2
` x|

´
1

|
η
2
´ x|

˙

dx

“

ż

xx, η2yą0

´

Q2
´

|
η

2
´ x|

¯

´Q2
´

|
η

2
` x|

¯¯

ˆ

1

|
η
2
´ x|

´
1

|
η
2
` x|

˙

dx ą 0,

since Q2prq and r´1 have the same strict monotonicity. This last result together
with (2.62), (2.63) and (2.64) imply that η “ 0, which means by Lemma 2.48
that xn “ cnRm0,i0 ` op1q as nÑ 8.

The last result of Proposition 2.47 is a direct consequence of the convergence
of the LppKcnq-norms proved in Proposition 2.37 and Lemma 2.46 together with
the fact that xn ´ cnRm0,i0 “ op1q.

Lemma 2.48. Let tynun Ă K, tfcuc Ă L2
perpKcq and tgcuc Ă L2

perpKcq be
two sequences such that ||fc||H1

perpKcq
` ||gc||H1

perpKcq
is uniformly bounded. We

assume that there exist f and g in H1pR3q and a subsequence cn such that
||fcn ´ f ||L2pKcn q

Ñ
nÑ8

0 and 1Kcngcn á
nÑ8

g weakly in L2pR3q. Then,

i. if cn|yn| Ñ `8, then cn´1
ş

Kcn
GKpcn

´1 ¨ ´ynqfcngcn ÝÑnÑ8 0,

ii. if cn|yn| Ñ 0, then cn´1
ş

Kcn
GKpcn

´1 ¨ ´ynqfcngcn ÝÑnÑ8

ş

R3
fpxqgpxq
|x|

dx,

iii. otherwise, there exist η P R3zt0u and a subsequence nk such that

cnk
´1

ż

Kcnk

GKpcnk
´1
¨ ´ynkqfcnkgcnk ÝÑkÑ8

ż

R3

fpxqgpxq

|x´ η|
dx.
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Moreover, replacing ||fcn ´ f ||L2pKcn q
Ñ
nÑ8

0 by ||fcn ´ f ||H1pKcn q
Ñ
nÑ8

0, the uni-
form bound on ||gc||H1

perpKcq
by an uniform bound on ||gc||L2

perpKcq
and g P H1pR3q

by g P L2pR3q, then i. still holds true and, in the special case yn “ 0, ii. too.

Remark. We state the lemma in a more general setting than needed for
Proposition 2.47 in order for it to be also useful for the proof of Lemma 2.58.

Proof of Lemma 2.48. Using the same notation Kσ as in the proof of Lem-
ma 2.38, we notice that

K´ τ :“ tx P R3
|x´ τ P Ku Ă K2 “ KY

ď

p0,0,0q‰σPt0;˘1u3

Kσ,

for any τ P K. Therefore, by Lemma 2.20, there exists C ą 0 such that for any
ϕc P L

2pKcq, ψc P H1pKcq, y P K and c ą 0,

c´1

ˇ

ˇ

ˇ

ˇ

ż

Kc
GKpc

´1x´ yqϕcpxqψcpxq dx
ˇ

ˇ

ˇ

ˇ

“ c´1

ˇ

ˇ

ˇ

ˇ

ÿ

σPt´1;0;`1u3

ż

xPKc
c´1x´yPKσ

GKpc
´1x´ yqϕcpxqψcpxq dx

ˇ

ˇ

ˇ

ˇ

ď c´1C
ÿ

σPt´1;0;`1u3

ż

xPKc
c´1x´yPKσ

|ϕcpxqψcpxq|

|c´1x´ y ´ σ|
dx

ď C
ÿ

σPt´1;0;`1u3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ϕcψc
| ¨ ´cpy ` σq|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L1pKcq
.

Then, by the Hardy inequality on Kc, which is uniform on rc˚,8q for any c˚ ą 0,
there exists C 1 such that for any y P K and any c ě 1, we obtain

c´1

ˇ

ˇ

ˇ

ˇ

ż

Kc
GKpc

´1
¨ ´yqϕcψc

ˇ

ˇ

ˇ

ˇ

ď C 1
ÿ

σPt´1;0;`1u3

||ϕc||L2pKcq ||ψc||H1pKcq “ 27C 1 ||ϕc||L2pKcq ||ψc||H1pKcq .

Therefore, the weak convergence of gcn and the Hardy inequality to f on R3 give

cn
´1

ˇ

ˇ

ˇ

ˇ

ż

Kcn
GKpcn

´1
¨ ´ynqpfcngcn ´ fgq

ˇ

ˇ

ˇ

ˇ

ď 27
´

C 1 ||fcn ´ f ||L2pKcn q
||gcn ||H1pKcn q

` 2C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fpgcn ´ gq

| ¨ ´cpy ` σq|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L1pKcq

¯

Ñ
nÑ8

0.
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Replacing ||fcn ´ f ||L2pKcn q
||gcn ||H1pKcn q

by ||fcn ´ f ||H1pKcn q
||gcn ||L2pKcn q

gives this
same convergence to 0 under the second set of conditions.

We are therefore left with the study of cn´1
ş

Kcn
GKpcn

´1 ¨ ´ynqfg as n Ñ 8

and we start with the case cn|yn| Ñ `8. For c ą 0, y P K and σ P t´1; 0;`1u3,
we have

c´1

ż

Kc
1Kσpc

´1
¨ ´yqGKpc

´1
¨ ´yq|fg| ď C

ż

Kc

1Kσpc
´1 ¨ ´yq

| ¨ ´cpy ` σq|
|fg|

ď C

ż

R3

|fg|

| ¨ ´cpy ` σq|

and

ż

R3

|fg|

| ¨ ´cpy ` σq|
“

ż

R3

1Bp0, c
2
|y`σ|q

| ¨ ´cpy ` σq|
|fg| `

ż

R3

1Bpcpy`σq,Rq

| ¨ ´cpy ` σq|
|fg|

`

ż

ABp0, c
2
|y`σ|q

1ABpcpy`σq,Rq

| ¨ ´cpy ` σq|
|fg|,

hence

c´1

ż

Kc
1Kσpc

´1x´ yqGKpc
´1x´ yq|fpxqgpxq| dx

À
2

c|y ` σ|
||fg||L1pR3q

` ||f ||H1pR3q
||g||L2pBpcpy`σq,Rq `

1

R
||fg||L1pABp0, c

2
|y`σ|qq ,

for any R ą 0. Since f is in H1pR3q and g at least in L2pR3q, the last two
terms tends to 0 and ||fg||L1pR3q

is bounded hence, on one hand we obtain, for
σ “ p0, 0, 0q, the convergence to 0 (for the subsequence cn) from cn|yn| Ñ `8

and, on the other hand, there exists R1 ą 0 such that |y ` σ| ą R1 for any
t´1; 0;`1u3 Q σ ‰ p0, 0, 0q and any y P K, ending the proof that the above tends
to 0. We finally obtain that

1

cn

ż

Kcn
GKpcn

´1
¨ ´ynq|fg| “

ÿ

σPt0;˘1u3

1

cn

ż

Kcn
r1KσGKs pcn

´1
¨ ´ynq|fg| ÝÑ

nÑ8
0,

concluding the proof of i. under the two sets of hypothesis.
We now suppose that cn|yn| does not diverge hence it is bounded up to a

subsequence nk and, consequently, ynk Ñ 0. However, by Lemma 2.20, there
exists M 1 ą 0 such that || ¨ |´1 ´GK| ď M 1 on K, thus there exists M ą 0 such
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that

1K´τpxq

ˇ

ˇ

ˇ

ˇ

GKpxq ´
1

|x|

ˇ

ˇ

ˇ

ˇ

ď 1K´τpxq

˜

M 11Kpxq `
1AKpxq

|x|
` C

ÿ

σPt0;˘1u3

σ‰p0,0,0q

1Kσpxq

|x´ σ|

¸

ď 1K´τpxq

˜

M 1
`R´1

`
ÿ

p0,0,0q‰σPt0;˘1u3

C

|x` τ´ σ| ´ |τ|

¸

ď 1K´τpxq

˜

M 1
`R´1

`
ÿ

p0,0,0q‰σPt0;˘1u3

C

R ´ |τ|

¸

ď 1K´τpxq
`

M 1
`R´1

` 52CR´1
˘

ďM1K´τpxq.

for τ P Bp0, R{2q and where R :“ minxPBK |x| ą 0 therefore Bp0, Rq Ă K. Hence
ˇ

ˇ

ˇ

ˇ

ż

Kcnk

ˆ

1

cnk
GKp

¨

cnk
´ ynkq ´ | ¨ ´cnkycnk |

´1

˙

fg

ˇ

ˇ

ˇ

ˇ

ď
M

cnk
||fg||L1pR3q

“ Op
1

cnk
q.

Moreover,
ˇ

ˇ

ˇ

ˇ

ż

R3

p1´ 1Kcnk
pxqq

fpxqgpxq

|x´ cnkycnk |
dx

ˇ

ˇ

ˇ

ˇ

À ||f ||L2pAKcnk q
||g||H1pR3q

Ñ 0

and we are left with the study of
ˇ

ˇ

ˇ

ˇ

ż

R3

fpxqgpxq

|x´ cnkycnk |
´
fpxqgpxq

|x´ η|
dx

ˇ

ˇ

ˇ

ˇ

ď |η ´ cnkycnk |

ż

R3

|fpxqgpxq|

|x´ cnkycnk ||x´ η|
dx

ď 4|η ´ cnkycnk | ||f ||H1pR3q
||g||H1pR3q

which tends to 0 if we choose η as the limit (up to another subsequence) of the
bounded sequence cnkynk . Finally, if we have in fact cnyn Ñ 0 then η “ 0,
otherwise, we can find a subsequence such that cnkynk Ñ η ‰ 0.

Under the second set of conditions and if yn “ 0, we have
ˇ

ˇ

ˇ

ˇ

ż

Kcn
pcn

´1GKpcn
´1xq ´ |x|´1

qfpxqgpxq dx
ˇ

ˇ

ˇ

ˇ

ď
M 1

cn
||fg||L1pR3q

“ Opcn
´1
q.

This concludes the proof of Lemma 2.48. �

This concludes the proof of Proposition 2.47. �

We now prove that EKN ,N3λpcq admits at least N3 distinct minimizers.

Proposition 2.49. For cn large enough, there exist at least N3 nonnegative
minimizers to the minimization problem EKN ,N3λpcnq which are translations one
of each other by vectors of the lattice LK.
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Proof of Proposition 2.49. First, in Proposition 2.47, we have seen that
for any sequence twcucÑ`8 of minimizers of EKN ,N3λpcq must concentrate, up to
a subsequence, at the position of one nucleus of the unit cell. Namely, that the
sequence of translations txnu Ă c ¨ KN associated with twcnunÑ`8 verifies that
there exists pm0, j0q P r1;N3N`sˆ r1;N3s such that cn´1xn converges, as nÑ 8,
to Rm0,j0 , one of the positions of the N3N` charges z` in KN . Then, by Lem-
ma 2.50 below, we have for any 1 ď i ď N3 that wcp¨ ` Rm0,i ´ Rm0,j0q is also a
minimizer of EKN ,N3λpcq.

Lemma 2.50. For any m P r1, Nqs, any 1 ď j, k ď N3 and any KN -periodic
function w, we have EKN ,cpwp¨ `Rm,j ´Rm,kqq “ EKN ,cpwq.

Proof. The four first terms of EKN ,c being invariant under any translations,
to prove this lemma we have to prove the invariance of the term

Nq
ÿ

m“1

zm

N3
ÿ

i“1

ż

KN

GKN p¨ ´Rm,iq|w|
2

under those Rn,j ´ Rn,k translations. We recall that, by definition of the Rm,i’s,
for any m P r1, Nqs and any 1 ď j, k ď N3, the charge value at Rm,j and at Rm,k

are the same and the positions Rm,j and Rm,k are obtained one from each other
by applying translations of the lattice LK. Therefore the claimed invariance is
due to the fact that, for any m,

pRm,1 `Rm,j ´Rm,k, Rm,2 `Rm,j ´Rm,k, ¨ ¨ ¨ , Rm,N3 `Rm,j ´Rm,kq

is a permutation modulo KN of pRm,1, Rm,2, ¨ ¨ ¨ , Rm,N3q thus

N3
ÿ

i“1

ż

KN

GKN p¨ ´Rm,iq|w|
2
p¨ `Rm,j ´Rm,kq

“

N3
ÿ

i“1

ż

KN

GKN p¨ ´ pRm,i `Rm,j ´Rm,kqq|w|
2
“

N3
ÿ

i“1

ż

KN

GKN p¨ ´Rm,iq|w|
2. �

Since, the N3 sequences of minimizers twcnp¨ `Rm0,i ´Rm0,j0qui have distinct
limits as nÑ 8, there are at least N3 distinct minimizers for n large enough. �

5.3. Second order expansion of EK,λpcq. The goal of this subsection is to
prove the expansion (2.9). To do so, we improve the convergence rate of the first
order expansion of JK,λpcq proved in Proposition 2.37. Namely, we prove that
there exists β ą 0 such that

JK,λpcq “ c2JR3pλq ` ope´βcq. (2.65)
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We recall that we have proved in Lemma 2.40 that there exists β ą 0 such that

JK,λpcq ď c2JR3pλq ` ope´βcq

and we now turn to the proof of the converse inequality.

Lemma 2.51. There exists β ą 0 such that

JK,λpcq ě c2JR3,λ ` ope
´βc
q.

Our proof relies on the exponential decay with c of the minimizers to JKc,λp1q
close to the border of the cube Kc, proved in Lemma 2.52.

Proof of Lemma 2.51. As the problems JK,λpcq are invariant by spatial
translations, we can suppose that xn “ 0 in the convergences of the subsequence
of rescaled functions 1Kcn v̆cnp¨ ` xnq.

Lemma 2.52 (Exponential decrease of minimizers to JKc,λp1q). Let tvcuc be a
sequence of nonnegative minimizers to JK,λpcq such that a subsequence of rescaled
functions 1Kcn v̆cn converges weakly to a minimizer of JR3pλq. Then there exist
C, γ ą 0 such that for c large enough, we have 0 ď v̆cnpxq ă Ce´γc for x P
KczKc´1.

Proof of Lemma 2.52. We denote by u the minimizer of JR3pλq to which
1Kcn v̆cn converges strongly and by µR3 the Euler–Lagrange parameter (2.12) asso-
ciated with this specific u. The Euler–Lagrange equation associated with JKcn ,λp1q
— solved by v̆cn — gives

´

´∆`
µR3

4

¯

v̆cn “
´

´cTF |v̆cn |
4
3 ` |v̆cn |

2
3 `

µR3

4
´ cn

´2µcn

¯

v̆cn

ď

´

|v̆cn |
2
3 `

µR3

4
´ cn

´2µcn

¯

v̆cn .

We now define Ωcn “ p1` εqKcnzBp0, αq where α is such that |u|
2
3 ď mint1

2
,
µR3

4
u

on R3zBp0, αq. Such α exists by Proposition 2.19. Moreover, by Lemma 2.46, for
any cn large enough, we have

ˇ

ˇ

ˇ

ˇ|v̆cn ´ u|
2{3
ˇ

ˇ

ˇ

ˇ

L8pKcn q
ď min

"

1

2
,
µR3

4

*

and, consequently, we have

|v̆cn |
2{3
ď |v̆cn ´ u|

2{3
` |u|2{3 ď min

!

1,
µR3

2

)

on KcnzBp0, αq but also on Ωcn by periodicity of v̆cn and for any cn large enough
(depending on ε) in order to have

p1` εqKcn X
ď

kPLKzt0u

Bpcnk, αq “ H.
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Moreover by Corollary 2.45, for any cn large enough, we have

cn
´2µcn ě

3

4
µR3 .

Hence, for cn large enough, it holds on Ωcn that

|v̆cn |
2
3 `

µR3

4
´ cn

´2µcn ď
µR3

2
`
µR3

4
´

3

4
µR3 “ 0

what gives on Ωcn , for cn large enough, that
´

´∆`
µR3

4

¯

v̆cn ď 0 and |v̆cn | ď 1.

We now define on R3zBp0, νq, for any ν ą 0, the positive function

fνpxq “
ν

|x|
e

?
µR3
2

pν´|x|q

which solves
´∆fν `

µR3

4
fν “ 0

on R3zBp0, νq and verifies fν “ 1 on the boundary BBp0, νq. On each p1` εqKcn ,
with ej the vectors defining LK, we define the positive function

f0pxq “
3
ÿ

j“1

cosh

ˆ

?
µR3
2

B

x,
ej

||ej||

F˙

cosh

ˆ

?
µR3
2
p1` εqcn

||ej||
2

˙

which solves
´∆f0 `

µR3

4
f0 “ 0

on p1 ` εqKcn and verifies 1 ď f0 ď 3 on the boundary B pp1` εqKcq. Denoting
by g the function

g “ f0 ` fα,

we have for cn large enough that
´

´∆`
µR3

4

¯

pv̆cn ´ gq ď 0, on Ωcn

v̆cn ´ g ď 0, on BΩcn ,

hence the maximum principle implies that v̆cn ď g on Ωcn .
On one hand, since the function f0 is even along each direction ej and in-

creasing on each r0; p1 ` εq cn
2
qej , we have that for any x P Kcn , so in particular

on KcnzKcn´1, that

0 ă f0pxq ď f0

´cn
2
pe1, e2, e3q

¯

ď 2
3
ÿ

j“1

e´ε
?
µR3
2

||ej||
2

cn .
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On the other hand, |x| ě pcn ´ 1qm ą 0 for x P KcnzKcn´1, with m :“ min
BK
|x|,

thus

0 ă fαpxq ď
αe

?
µR3
2

pα`mq

mpcn ´ 1q
e´

?
µR3
2

mcn

on KcnzKcn´1. Hence there exist C ą 0 and

γ :“

?
µR3

2
min

"

m;
ε

2
min

1ďjď3
t||ej ||u

*

ą 0

such that for cn large enough and any x P KcnzKcn´1, we conclude that

0 ď v̆cnpxq ď gpxq ă Ce´γc. �

We now conclude the proof of Lemma 2.51. We define χc P C8c pR3q, 0 ď χc ď

1, χc ” 0 on R3zKc and χc ” 1 on Kc´1. By Lemma 2.52, for p P r2; 6s we have

0 ď ||v̆cn ||
p
LppKcn q

´ ||χcn v̆cn ||
p
LppR3q

“

ż

KcnzKcn´1

p1´ χcn
p
q|v̆cn |

p

ď Cpe´pγcn |KcnzKcn´1| .

Given that |KczKc´1| ď |Kc| “ c3|K| for any c ą 1, there exists 0 ă α ă γ such
that

||χcn v̆cn ||
p
LppR3q

“ ||v̆cn ||
p
LppKcn q

` o
`

e´pαcn
˘

for any p P r2; 6s and, in particular, that
λ

||χcn v̆cn ||
2
L2pR3q

“ 1` ope´2αcnq.

Moreover,
ż

R3

χcv̆c∇χc ¨∇v̆c “
1

2

ż

R3

χc∇χc ¨∇
`

|v̆c|
2
˘

“ ´
1

2

ż

R3

|v̆c|
2
`

χc∆χc ` |∇χc|2
˘

“ ´
1

2

ż

KczKc´1

|v̆c|
2
`

χc∆χc ` |∇χc|2
˘

thus
ˇ

ˇ

ˇ

ˇ

ż

R3

χcn v̆cn∇χcn ¨∇v̆cn
ˇ

ˇ

ˇ

ˇ

ď
1

2

ż

KcnzKcn´1

|v̆cn |
2
`

χcn |∆χcn | ` |∇χcn |2
˘

“ ope´2αcnq

and it leads to

||∇pχcn v̆cnq||
2
L2pR3q

“ ||χcn∇v̆cn ||
2
L2pKcn q

` ||v̆cn∇χcn ||
2
L2pKcnzKcn´1q

`

ż

R3

χcn v̆cn∇χcn ¨∇v̆cn

“ ||χcn∇v̆cn ||
2
L2pKcn q

` ope´2αcnq ď ||∇v̆cn ||
2
L2pKcn q

` ope´2αcnq.
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Consequently, there exists β ą 0 such that

JR3pλq ď JR3

˜ ?
λχcnu

||χcnu||L2pR3q

¸

ď
λ

||χcn v̆cn ||
2
L2pR3q

||∇pχcn v̆cnq||
2
L2pR3q

`
3

5

cTFλ
5{3

||χcn v̆cn ||
10{3
L2pR3q

||χcn v̆cn ||
10{3

L
10
3 pR3q

´
3

4

λ4{3

||χcnu||
8{3
L2pR3q

||χcn v̆cn ||
8{3

L
8
3 pR3q

ď JKcn pv̆cnq ` ope
´βcnq “ JKcn pλq ` ope

´βcnq.

This concludes the proof of Lemma 2.51. �

We can now turn to the proof of the second-order expansion of the energy.

Proposition 2.53 (Second order expansion of the energy). We have the ex-
pansion

EKN ,N3λpcq “ c2JR3,N3λ

` c inf
tu|JR3 puq“JR3,N3λ u

"

1

2
DR3p|u|2, |u|2q ´ z`

ż

R3

|upxq|2

|x|
dx

*

` opcq. (2.66)

The infimum is performed over all the minimizers of JR3,N3λ and we recall
that, as defined in Lemma 2.54,

DR3pf, gq :“

ż

R3

ż

R3

fpxqgpyq

|x´ y|
dy dx.

Proof of Proposition 2.53. In order to deal with the term DK, we first
prove a convergence result similar to what we did in Lemma 2.48 for term

ş

G|w|2.

Lemma 2.54. Let vc be such that the rescaled function v̆c “ c´3{2vcpc
´1xq

verifies

1Kc v̆c ÝÑcÑ8 v

strongly in L2pR3q X L
12
5 pR3q, then

c´1DKpvc
2, vc

2
q Ñ

ż

R3

ż

R3

v2pxqv2pyq

|x´ y|
dy dx “: DR3pv2, v2

q.
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Proof of Lemma 2.54. We have

DR3pv2, v2
q ´ c´1DKpv

2
c , v

2
c q

“ DR3pv2, v2
´ 1Kc v̆

2
c q `DR3pv2

´ 1Kc v̆
2
c ,1Kc v̆

2
c q

` c´1

ż

K

ż

K
v2
c pxq

`

|x´ y|´1
´GKpx´ yq

˘

v2
c pyq dy dx.

Moreover, by the Hardy–Littlewood–Sobolev inequality, it holds that
ˇ

ˇDR3pv2, v2
´ 1Kc v̆

2
c q
ˇ

ˇ ď C ||v||2L12{5pR3q

ˇ

ˇ

ˇ

ˇv2
´ 1Kc v̆

2
c

ˇ

ˇ

ˇ

ˇ

L6{5pR3q

and that
ˇ

ˇDR3pv2
´ 1Kc v̆

2
c ,1Kc v̆

2
c q
ˇ

ˇ ď C ||v̆c||
2
L12{5pKcq

ˇ

ˇ

ˇ

ˇv2
´ 1Kc v̆

2
c

ˇ

ˇ

ˇ

ˇ

L6{5pR3q

which both vanish by the strong convergence of 1Kc v̆c in L12{5pR3q. Thus we are
left with the proof of the vanishing of

c´1

ż

K

ż

K
v2
c pxq

`

|x´ y|´1
´GKpx´ yq

˘

v2
c pyq dy dx.

To prove that, we split the double integral over K ˆ K into several parts
depending on the location of x´ y.

We start by proving the convergence for x´ y P K. By Lemma 2.20,

c´1

ĳ

KˆK
x´yPK

v2
c pxq

ˇ

ˇ|x´ y|´1
´GKpx´ yq

ˇ

ˇ v2
c pyq dy dx

ď
M

c

ĳ

KˆK
x´yPK

v2
c pxqv

2
c pyq dx dy ď

M

c
||vc||

4
L2pKq “

M

c
||v̆c||

4
L2pKcq ÝÑcÑ8

0.

When x´ y R K, we treat first the term due to | ¨ |´1. We have

c´1

ĳ

KˆK
x´yP2KzK

v2
c pxqv

2
c pyq

|x´ y|
dy dx

ď
2

min
i
|ei|

c´1

ĳ

KˆK
x´yP2KzK

v2
c pxqv

2
c pyq dy dx ď

2

min
i
|ei|

c´1
||vc||

4
L2pKq ÝÑcÑ8

0,

with ej the vectors defining LK.
To deal with the remaining terms due to GK when x´ y R K, we will use the

same notation Kσ as in the proof of Lemma 2.38. By (2.35), we therefore have
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to prove, for σ P t´1, 0,`1u3zp0, 0, 0q, the vanishing of
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

c´1

ĳ

KˆK
x´yPKσ

v2
c pxqGKpx´ yqv

2
c pyq dy dx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À c´1

ĳ

KˆK
x´yPKσ

v2
c pxqv

2
c pyq

|x´ y ´ σ|
dy dx “

ĳ

KcˆKc
x´yPc¨Kσ

v̆2
c pxqv̆

2
c pyq

|x´ y ´ cσ|
dy dx.

Let 0 ă ν ă 1
4

min
i
|ei|. Given that σ ‰ p0, 0, 0q, we have

tpx, yq P Kc ˆKc | x´ y P c ¨Kσ u XBp0, cνq ˆBp0, cνq “ H.

Thus, for any integrand f positive, we have
ĳ

KcˆKc
x´yPc¨Kσ

fpx, yq dy dx “
ĳ

KcˆKczBp0,cνqˆBp0,cνq
x´yPc¨Kσ

fpx, yq dy dx

ď

ĳ

pKczBp0,cνqqˆKc
x´yPc¨Kσ

fpx, yq dy dx`
ĳ

KcˆpKczBp0,cνqq
x´yPc¨Kσ

fpx, yq dy dx

ď

ĳ

pKczBp0,cνqqˆKc

fpx, yq dy dx`
ĳ

KcˆpKczBp0,cνqq

fpx, yq dy dx.

Hence, using aditionnaly the Hardy–Littlewood–Sobolev inequality, we obtain

c´1

ĳ

KˆK
x´yPKσ

v2
c pxqGKpx´ yqv

2
c pyq dy dx À 2 ||v̆c||

2
L12{5pKczBp0,cνqq ||v̆c||

2
L12{5pKcq

and the right hand side vanishes when c Ñ 0 since ||v̆c||
2
L12{5pKczBp0,cνqq vanishes

and ||v̆c||
2
L12{5pKcq is bounded, both by the L12{5pR3q-convergence of 1Kc v̆c. This

concludes the proof of Lemma 2.54. �

Let wc be a sequence of minimizers to EKN ,N3λpcq. By Propositions 2.37 and
2.47, the convergence rate (2.65), and Lemmas 2.51 and 2.54, we obtain

EKN ,N3λpcq “ c2JR3,N3λ ` c

ˆ

1

2
DR3p|Q|2, |Q|2q ´ z`

ż

R3

|Qpxq|2

|x|
dx

˙

` opcq,

where Q is the minimizer of JR3,N3λ to which 1cn¨KN w̆cnp¨`xnq converges strongly.
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Let us now prove that Q must also minimize the term of order c. We suppose
that there exists a minimizer u of JR3,N3λ such that S puq ă S pQq, where

S pfq :“
1

2
DR3p|f |2, |f |2q ´ z`

ż

R3

|fpxq|2

|x|
dx.

Since |u| is positive by Theorem 2.3 and also a minimizer, and that S p|u|q “

S puq, we will suppose u ą 0 and that u is radial. Let K´N be defined as K´N “
p1 ´ ηqKN for a fixed small η P p0; 1q and χ P C80 pKNq be such that 0 ď χ ď 1,
χ|K´N

” 1, χ|R3zKN ” 0 and ||∇χ||L8pR3q
bounded. By the exponential decay of u

proved in Proposition 2.19, fixing R ą 0 such that the ball Bp0, Rq is included in
K´N , denoting ůc :“ c3{2upc¨q, we have

ˇ

ˇ

ˇ

ˇ

ż

KN
χůc∇χ ¨∇ůc

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

AK´N

χůc∇χ ¨∇ůc

ˇ

ˇ

ˇ

ˇ

ˇ

ď ||∇χ||
8
||̊uc||L2pAK´N q

||∇ůc||L2pAK´N q

ď ||∇χ||
8
||̊uc||L2pABp0,Rqq ||∇ůc||L2pABp0,Rqq

ď c2
||∇χ||

8
||u||L2pABp0,cRqq ||∇u||L2pABp0,cRqq “ ope´νcqcÑ8,

ż

KN
|∇χ|2 |̊uc|2 “

ż

AK´N

|∇χ|2 |̊uc|2 ď ||∇χ||28 ||u||L2pABp0,cRqq “ ope´νcqcÑ8,

0 ď

ż

R3

p1´ |χ|2q|∇ůc|2 ď ||∇ůc||2L2pAK´N q
ď c2

||∇u||2L2pABp0,cRqq “ ope´νcqcÑ8

and, for p ą 0,

0 ď

ż

R3

p1´ |χ|pq|̊uc|
p
ď ||̊uc||

p

LppAK´N q
ď c3p p

2
´1q
||u||pLppABp0,cRqq “ ope´νcqcÑ8,

for a given ν ą 0. This leads to
ż

KN
|χůc|

10
3 “

ż

R3

|̊uc|
10
3 ´

ż

R3

p1´ |χ|
10
3 q|̊uc|

10
3 “ c2

ż

R3

|u|
10
3 ` ope´νcqcÑ8,

ż

KN
|χůc|

8
3 “

ż

R3

|̊uc|
8
3 ´

ż

R3

p1´ |χ|
8
3 q|̊uc|

8
3 “ c

ż

R3

|u|
8
3 ` ope´νcqcÑ8,

N3λ

||χůc||
2
L2pKN q

“
||u||2L2pR3q

||χůc||
2
L2pKN q

“ 1` ope´νcqcÑ8
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and
ż

KN
|∇pχůcq|2 “

ż

KN
|χ|2|∇ůc|2 ` 2<

ˆ
ż

KN
χůc∇χ ¨∇ůc

˙

`

ż

KN
|∇χ|2 |̊uc|2

“

ż

R3

|∇ůc|2 ´
ż

R3

p1´ |χ|2q|∇ůc|2 ` ope´νcqcÑ8

“ c2

ż

R3

|∇u|2 ` ope´νcqcÑ8,

and consequently to

JKN ,c

˜

?
N3λ

upc¨qχ

||upc¨qχ||L2pKN q

¸

“ c2JR3,N3λ ` ope
´νc
qcÑ8.

On the other hand, since 1c¨KN

?
N3λ

||χůc||L2pKN q
χpc´1¨qu Ñ u strongly in L2pR3q X

L4pR3q, we can apply Lemmas 2.48 and 2.54 to fc :“
?
N3λ

||χůc||L2pKN q
rχůcsp¨ ´ Rn0,j0q,

with n0 such that zn0 “ z`, and obtain

1

2
DKN p|fc|

2, |fc|
2
q ´

ż

KN

G |fc|
2
“ cS puq ` opcq,

where we recall that G has been defined for shortness in (2.61). We therefore
have

EKN ,c

˜

?
N3λ

rupc¨qχsp¨ ´Rn0,j0q

||upc¨qχ||L2pKN q

¸

“ c2JR3,N3λ ` cS puq ` opcq

ă c2JR3,N3λ ` cS pQq ` opcq “ EKN ,N3λpcq,

leading to a contradiction which finally proves that we in fact have

S pQq “ min
tu|JR3 puq“JR3,N3λ u

S puq

and thus concludes the proof of Proposition 2.53. �

Theorem 2.2 is therefore proved combining the results of Proposition 2.37,
Proposition 2.47, Proposition 2.49 and Proposition 2.53.

5.4. Proof of Theorem 2.8 on the number of minimizers. The argu-
ments developed in this section do not rely on what we have done in Section 5.3.
We also recall that Theorem 2.8 only holds in the case of one unique charge per
unit cell K, i.e. Nq “ 1.
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We can expand the functional EK,c around a minimizer wc as

EK,cpwc ` fq “ EK,λpcq ` xL̊
`
c f1, f1yL2pKq ` xL̊

´
c f2, f2yL2pKq ´ 2µc xwc, f1yL2pKq

´ µc ||f ||
2
L2pKq ` 2DKp<pwcf̄q,<pwcf̄qq ` op||f ||2H1pKqq, (2.67)

for f P H1
perpK,Cq, with f1 :“ <pfq, f2 :“ =pfq and where

L̊´c :“ ´∆` cTF |wc|
4
3 ´ c|wc|

2
3 ` µc ´ G ` |wc|

2
‹GK (2.68)

and

L̊`c “ ´∆`
7

3
cTF |wc|

4
3 ´

5

3
c|wc|

2
3 ` µc ´ G ` |wc|

2
‹GK, (2.69)

where we recall that G is defined by

G :“

Nq
ÿ

n“1

N3
ÿ

i“1

znGKN p¨ ´Rn,iq. (2.61)

The only terms of the expansion that are not one line computations, and that
we therefore explicitly prove in Lemma 2.55, are those with the powers 8{3 and
10{3.

Lemma 2.55. If 2 ď p ă 4, for any complex-valued w, h P H1, we have
ż

|w ` h|p ´

ż

|w|p ´ p

ż

|w|p´2<pwh̄q

´
ppp´ 2q

2

ż

wp¨q‰0

|w|p´4
|<pwh̄q|2 ´ p

2

ż

|w|p´2
|h|2 “ o

`

||h||2H1

˘

.

Proof of Lemma 2.55. Since, |wpxq`hpxq| “ ||wpxq|` wpxq
|wpxq|

hpxq| if wpxq ‰
0, proving

Rwpfq :“

ż

|w ` f |p ´

ż

|w|p ´ p

ż

|w|p´2wf1

´
ppp´ 1q

2

ż

|w|p´2
|f1|

2
´
p

2

ż

|w|p´2
|f2|

2
“ o

`

||f ||2H1

˘

,

for w ě 0 and f P H1, is equivalent to prove Lemma 2.55.
If 3 ď p ă 4, for any px, yq P Rzt0u ˆ p0;`8q we have

ˇ

ˇ

ˇ
|y ` x|p ´

tpu´1
ÿ

k“0

ˆ q
2

k

˙

yp´kxk
ˇ

ˇ

ˇ
ă |x|p `

ˆ

p

3

˙

yp´3
|x|3 (2.70)



5. REGIME OF LARGE C: SYMMETRY BREAKING 135

hence |Rwpf1q| ď ||f ||
p
p `

`

p
3

˘

||w||p´3
2 ||f ||3 6

5´p
and

ż

ˇ

ˇ|w ` f1|
p´2

´ |w|p´2
ˇ

ˇ |f2|
2
ď
ˇ

ˇ

ˇ

ˇ|f1|
p´2
|f2|

2
ˇ

ˇ

ˇ

ˇ

1
` pp´ 2q

ˇ

ˇ

ˇ

ˇ|w|p´3
|f1||f2|

2
ˇ

ˇ

ˇ

ˇ

1

ď ||f ||pp ` pp´ 2q ||w||p´3
2 ||f ||3 6

5´p
,

while, if 2 ď p ă 3, for any px, yq P Rzt0u ˆ p0;`8q we have
ˇ

ˇ

ˇ
|y ` x|p ´

2
ÿ

k“0

ˆ q
2

k

˙

yp´kxk
ˇ

ˇ

ˇ
ă |x|p (2.71)

hence |Rwpf1q| ď ||f ||
p
p and

ż

ˇ

ˇ|w ` f1|
p´2

´ |w|p´2
ˇ

ˇ |f2|
2
ď
ˇ

ˇ

ˇ

ˇ|f1|
p´2
|f2|

2
ˇ

ˇ

ˇ

ˇ

1
ď ||f ||pp .

Moreover, for any pz, pq P Cz tRˆ t0u Y t0u ˆ Ru ˆ r0;`8q, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

|z|p ´

t
p
2

u
ÿ

k“0

ˆp
2

k

˙

|<pzq|p´2k
|=pzq|2k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă |=pzq|p (2.72)

and identically exchanging the roles of the real part < and the imaginary part =.
Thus, we have

ż

ˇ

ˇ

ˇ
|w ` f |p ´ |w ` f1|

p
´
p

2
|w ` f1|

p´2
|f2|

2
ˇ

ˇ

ˇ
ď ||f2||

p
p ď ||f ||

p
p .

We finally have that Rwpfq “ 0 for p “ 2, that

|Rwpfq| ď
p` 4

2
||f ||pp `

„ˆp
2

k

˙

`
p

2
pp´ 2q



||w||p´3
2 ||f ||3 6

5´p
“ O

`

||f ||3H1

˘

hence |Rwpfq| “ o
`

||f ||2H1

˘

if 3 ď p ă 4 and, if 2 ă p ă 3, that

|Rwpfq| ď
p` 4

2
||f ||pp “ O

`

||f ||pH1

˘

“ o
`

||f ||2H1

˘

.

Proofs of inequalities (2.70), (2.71) and (2.72) can be found in the Appendix. �

Let us suppose that Conjecture 2.6 holds and that there exist two sequences wc
and ωc of nonnegative minimizers to EKN ,N3λpcq concentrating around the same
nucleus at position R P K. Then, by Proposition 2.47, we have for 2 ď p ă `8

that
||w̆cnp¨ ` cnRq ´Q||LppKcn q ` ||ω̆cnp¨ ` cnRq ´Q||LppKcn q ÝÑnÑ`8

0

for a subsequence cn. We define the real-valued fn :“ wcn ´ ωcn , which verifies
that ||f̆n||H2

perpKcn q uniformly bounded and, for cn ą 0, the orthogonality properties

xwcn ` ωcn , fnyL2
perpKq “ xw̆cn ` ω̆cn , f̆nyL2

perpKcn q “ 0 (2.73)
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and
xG pcn

´1
¨q,∇ppw̆cn ` ω̆cnqf̆nqyL2

perpKcn q “ 0 (2.74)

Indeed, on one hand,

xwc ` ωc, fcyK “ 2= pxωc, wcyKq

which vanishes since ωc and wc are real-valued. On the other hand, the orthogo-
nality property stated in the following lemma leads to (2.74).

Lemma 2.56. If wc is a real-valued minimizer to EK,λpcq, then wc is orthogonal
to G∇wc.

Proof of Lemma 2.56. As mentioned in Proposition 2.49, the four first
terms of EK,c are invariant under any space translations thus we have

EK,cpwcp¨ ` τqq “ EK,cpwcq ´
@

G , |wcp¨ ` τq|2 ´ |wc|
2
D

L2pKq

“ EK,λpcq ´ 2τ ¨

ż

K
G<pwc∇w̄cq `Op|τ|2q.

Hence xG ,< pwc∇w̄cqyL2pKq “ 0 for any minimizer wc. Since G is real-valued,
then xwc,G∇wcyL2pKq “ 0 if wc is a real-valued minimizer. �

By property (2.74) together with DKph, hq ě 0 (Lemma 2.20) and

2xw̆n, f̆nyL2pKcn q ` ||f̆n||
2
L2pKcn q “ xw̆n ` ω̆n, f̆nyL2pKcn q “ 0,

we obtain from (2.67) that

EK,λpcnq “ EK,cnpωcnq ě EK,λpcnq ` cn
2
xL`n f̆n, f̆nyKcn ` op||fn||

2
H1pKqq

where the operator L`n is defined on L2pKcnq by

L`n “ ´∆`
7

3
cTF |w̆c|

4
3 ´

5

3
|w̆c|

2
3 `

µcn
cn2

` cn
´2
r´G ` |wcn |

2
‹GKspcn

´1
¨q. (2.75)

Therefore, by the ellipticity result xL`n f̆n, f̆nyL2pKcn q ě C||f̆n||
2
H1pKcn q

ě 0 of the
next proposition, which rely on Conjecture 2.6, we obtain (for cn large enough)
that

0 ě Ccn
2
||f̆n||

2
H1pKcn q ` op||fn||

2
H1pKqq “ Ccn

2
||f̆n||

2
H1pKcn q ` opcn

2
||f̆n||

2
H1pKcn qq

hence that fn ” 0 for c large enough, i.e. wcn ” ωcn . This means that if Con-
jecture 2.6 holds then there cannot be more than N3 nonnegative minimizers
for c large enough and, together with Proposition 2.49, this concludes the proof
of Theorem 2.8. We are thus left with the proof of the following non-degeneracy
result.
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Proposition 2.57. Let pwcqc be a sequence of minimizer to EK,λpcq and L`n
the associated operator as in (2.75). Then there exists C, c˚ ą 0 such that for any
c ą c˚ and any fn P H1pKc,Cq verifying the two orthogonality properties (2.73)
and (2.74), we have

@

L`n fn, fn
D

L2pKcn q
ě C ||fn||

2
H1pKcn q

. (2.76)

Proof of Proposition 2.57. Following ideas in [Wei85], we define

αn :“ inf
fPH1pKcq

xw̆n`ω̆n,fyL2pKcn q
“0

xG pcn´1¨q,∇ppw̆cn`ω̆cn qfqyL2pKcn q
“0

xL`n f, fyL2pKcn q

||f ||2H1pKcn q

and we will show that αn ą 0 for c large enough.

Lemma 2.58. Let pwcqc be a sequence of minimizer to EK,λpcq and Q the
positive minimizer of JR3,λ associated with the converging subsequence 1Kcn w̆cnp¨`

cnRq. Define as in (2.14) the operator L`µ associated with Q and, as in (2.75),
L`n associated with wcn. Let pfnqn be a uniformly bounded sequence of H1

perpKcnq

then
xL`µ f, fyL2pR3q ď lim inf

nÑ8
xL`n fn, fnyL2pKcn q,

with f such that 1Kcnfnp¨ ` cnRq á f weakly converges in L2pR3q.

Proof of Lemma 2.58. Up to the extraction of a subsequence (that we will
omit in the notation), there exists f such that 1Kcnfnp¨ ` cnRq á f weakly in
L2pR3q because fnp¨ ` cnRq is uniformly bounded in H1pKcnq. Thus, by Lem-
ma 2.43,

||∇fn||2L2pKcn q
“ ||∇f ||2L2pR3q

` ||∇pfn ´ fq||2L2pKcn q
` o

cÑ8
p1q

hence

lim inf
cÑ8

||∇fn||L2pKcn q
“ lim inf

cÑ8
||∇fnp¨ ` cnRq||L2pKcn q

ě ||∇f ||L2pR3q
.

Moreover, ||fn||H1pKcn q
is uniformly bounded by hypothesis thus

cn
´2
xG pcn

´1
¨qfn, fny ď cn

´ 1
2 ||G ||L2pKq ||fn||

2
L4pKcn q

ÝÑ
cÑ`8

0

and, by the same argument as the one to obtain (2.55), we have

cn
´2
x|wcn |

2
‹GKpcn

´1
¨qfn, fny À cn

´1
||w̆cn ||

2

L
12
5 pKcn q

||fn||
2

L
12
5 pKcn q

ÝÑ
cÑ`8

0.

Moreover, by Proposition 2.37, 1Kcn w̆np¨ ` cnRq strongly converges in LqpR3q for
2 ď q ă 6 hence for p “ 2

3
and p “ 4

3
we have

x|w̆cn |
p, |fn|

2
yL2pKcn q “ x|w̆cnp¨ ` cnRq|

p, |fnp¨ ` cnRq|
2
yL2pKcn q Ñ x|Q|p, |f |2yL2pR3q.
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Indeed, ||fn||LppKcn q is uniformly bounded for 2 ď p ă 6, since ||fn||H1pKcn q
is

uniformly bounded, hence |1Kcnfn|
2 á |f |2 converges weakly (up to an omitted

subsequence) in LppR3q for any 1 ď p ă 3. Consequently x|Q|pfn, fnyL2pKcn q Ñ

x|Q|pf, fyL2pR3q for p “ 2
3
and p “ 4

3
and we then obtain x|w̆cn |pfn, fnyL2pKcn q Ñ

x|Q|pf, fyL2pR3q for p “ 2
3
and p “ 4

3
by the strong convergence of 1Kcn w̆np¨`cnRq.

Finally, by Corollary 2.45 and weak convergence in L2pR3q of 1Kcnfnp¨`cnRq,

lim inf
nÑ8

µcn
cn2

||fn||
2
L2pKcn q

“ lim inf
nÑ8

µcn
cn2

||fnp¨ ` cnRq||
2
L2pKcn q

ě µ ||f ||2L2pR3q
.

This concludes the proof of Lemma 2.58. �

We now prove that αn cannot tend to zero. Let suppose it does, then there
exists a sequence of fn P H1pKcnq such that ||fn||H1pKcn q

“ 1,

xw̆cn ` ω̆cn , fnyL2
perpKcn q “ 0

and
xG pcn

´1
¨q,∇ppw̆cn ` ω̆cnqf̆nqyL2

perpKcn q “ 0,

with xL`n fn, fnyL2pKcn q
Ñ 0.

Thus, by the uniform boundedness of ||fn||H1pKcn q
, 1Kcnfn converges weakly in

L2pR3q X L6pR3q to a f which verifies xL`µ f, fyL2pR3q ď 0, by Lemma 2.58, and
||f ||H1pKcn q

ď 1. We claim that f also solves the orthogonality properties

xf,QyL2pR3q “ 0 and xf,Q∇| ¨ |´1
yL2pR3q “ 0.

Indeed, on one hand we deduce from the uniqueness of Q ě 0 (given by the
conjecture), that 1Kcn pw̆cnp¨ ` cnRq ` ω̆cnp¨ ` cnRqq Ñ 2Q in L2pR3q X L6´pR3q.
This, together with (2.73) and the weak convergence of the subsequence fn in
L2pR3q X L6pR3q leads to xf,QyL2pR3q “ 0. On another hand, the uniqueness of
Q gives also the L2pR3q strong convergence

1Kcn∇pw̆cnp¨ ` cnRq ` ω̆cnp¨ ` cnRqq Ñ 2∇Q P H1
pR3
q.

Thus, applying Lemma 2.48 on one hand to it and 1Kcnfnp¨ ` cnRq á f P

H1pR3q with the first set of conditions in Lemma 2.48 and, on the other hand, to
1Kcn pw̆cnp¨ ` cnRq ` ω̆cnp¨ ` cnRqq Ñ 2Q and 1Kcn∇fnp¨ ` cnRq á ∇f P L2pR3q

— which comes from Lemma 2.43 — with the second set of conditions, we obtain

xG pcn
´1
¨`Rq,∇rpw̆cnp¨`cnRq`ω̆cnp¨`cnRqqf̆np¨`cnRqsyL2

perpKcn q Ñ 2

ż

R3

∇pfQq
| ¨ |

.

Finally, (2.74) implies that xf,Q∇| ¨ |´1yL2pR3q “ ´x∇pfQq, | ¨ |´1yL2pR3q “ 0 and
our claim is proved.
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As we will prove in Proposition 2.59, if Conjecture 2.6 holds then these two
orthogonality properties imply that there exists α ą 0 such that

xL`µ f, fyL2pR3q ě α ||f ||2H1pR3q

hence f ” 0 due to xL`µ f, fyL2pR3q ď 0 obtained previously. Since the terms
involving a power of |wcn | converge and f ” 0, we have

op1q “
@

L`n fn, fn
D

L2pKcn q
“ ||∇fn||2L2pKcn q

` µ ||fn||
2
L2pKcn q

` op1q

hence both norms vanish, since µ ą 0, which means that ||fn||H1pKcn q
Ñ 0. This

contradicts ||fn||H1pKcn q
“ 1 and concludes the proof that αn cannot vanish, hence

that of Proposition 2.57. �

We are left with the proof of Proposition 2.59.

Proposition 2.59. If Conjecture 2.6 holds then there exists α ą 0 such that

xL`µ f, fyL2pR3q ě α ||f ||2H1pR3q
, (2.77)

for all f P H1pR3q such that xf,QyL2pR3q “ 0 and xf,Q∇| ¨ |´1yL2pR3q “ 0.

The proof of this proposition uses the celebrated method of Weinstein [Wei85]
and Grillakis–Shatah–Strauss [GSS87]. The idea is the following. Using a
Perron-Frobenius argument in each spherical harmonics sector as in [Wei85,
Len09, LRN15], one obtains that the linearized operator L`µ has only one neg-
ative eigenvalue with (unknown) eigenfunction ϕ0 in the sector of angular mo-
mentum ` “ 0, and has 0 as eigenvalue of multiplicity three with corresponding
eigenfunctions BxiQ. On the orthogonal of these four functions, L`µ is positive
definite. In our setting, we have to study L`µ on the orthogonal of Q and the
three functions xi|x|´3Qpxq which are different from the mentioned eigenfunc-
tions. Arguing as in [Wei85], we show below that the restriction of L`µ to the
angular momentum sector ` “ 1 is positive definite on the orthogonal of the
functions xi|x|´3Qpxq. The argument is general and actually works for functions
of the form Bxipηp|x|qqQpxq “ xi|x|

´1η1p|x|qQpxq where η is any non constant
monotonic function on R. On the other hand, the argument is more subtle for Q
in the angular momentum sector ` “ 0 and this is where we need Conjecture 2.6.

Proof of Proposition 2.59. First we note that it is obviously enough to
prove it for f real valued but also that it is enough to prove

xL`µ f, fyL2pR3q ě α ||f ||2L2pR3q
(2.78)
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with α ą 0. Indeed, if f verifies (2.78) then, for any ε ą 0, we have

xL`µ f, fyL2 ě pp1´ εqα ` εµq ||f ||2L2 ` ε ||∇f ||2L2 ` ε

ż

R3

ˆ

7

3
cTF |Q|

4
3 ´

5

3
|Q|

2
3

˙

|f |2

ě

ˆ

p1´ εqα ` ε

ˆ

µ´
7

3
cTF ||Q||

4
3
L8 ´

5

3
||Q||

2
3
L8

˙˙

||f ||2L2 ` ε ||∇f ||2L2 ,

hence f verifies (2.77) too (for a smaller α ą 0).
Since Q is a radial function, the operator L`µ commutes with rotations in

R3 and we will therefore decompose L2pR3q using spherical harmonics: for any
f P L2pR3q,

fpxq “
8
ÿ

`“0

ÿ̀

m“´`

fm` prqY
m
` pΩq,

where x “ rΩ with r “ |x| and Ω P S2. This yields the direct decomposition

L2
pR3
q “

8
à

`“0

Hp`q

and L`µ maps into itself each

Hp`q :“ L2
pR`, r2 drq b spantY m

` u
`
m“´`.

Using the well-known expression of ´∆ on Hp`q, we obtain that

L`µ “
8
à

`“0

L`µ,`

where the L`µ,`’s are operators acting on L2pR`, r2 drq given by

L`µ,` “ ´
d2

dr2
´

2

r

d
dr
`
`p`` 1q

r2
`

7

3
cTF |Qµ|

4
3 ´

5

3
|Qµ|

2
3 ` µ.

We thus prove inequality (2.78) by showing that there exists α ą 0 such that
for each ` the inequality holds for any f P Hp`qXH

1pR3q verifying xf,Qy “ 0 and
xf,Q∇| ¨ |´1yL2pR3q “ 0.

We first prove a Perron–Frobenius type result.

Lemma 2.60 (Perron–Frobenius property of the L`µ,`). For ` ě 1, L`µ,` is
essentially self-adjoint on C80 pR`q Ă L2pR`, r2 drq and bounded below.

Moreover, each L`µ,` has the Perron–Frobenius property: its lowest eigenvalue
eµ,` is simple and the corresponding eigenfunction ϕ`prq is positive.

Proof of Lemma 2.60. We follow the structure of the proof of [Len09,
Lemma 8].
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Self-adjointness. Since Qprq decays exponentially, |Q|
4
3 and |Q|

2
3 are bounded

multiplication operators on L2pR`, r2 drq. Moreover, the multiplication operator
µ is also bounded and

´∆p`q :“ ´
d2

dr2
´

2

r

d
dr
`
`p`` 1q

r2

is bounded below hence L`µ,` is bounded below for ` ě 0. On another hand, it is
known that´∆p`q is essentially self-adjoint on C80 pR`q provided that ` ě 1. Thus,
given that 7

3
cTF |Qµ|

4
3´ 5

3
|Qµ|

2
3`µ is bounded (so ´∆p`q-bounded of relative bound

zero), symmetric (moreover self-adjoint) and that its domain contains the domain
of ´∆p`q, we obtain by the Rellich–Kato theorem the essential self-adjointness of
L`µ,` on C80 pR`q.

Positivity improving. We know (see [Len09]) that p´∆p`q` βq
´1 is positivity

improving on L2pR`, r2 drq for all β ą 0. Moreover, denoting by Aβ the bounded
self-adjoint operator

Aβ :“
7

3
cTF |Qµ|

4
3 ´ pβ ´ µq ´

5

3
|Qµ|

2
3 ,

we have that ´Aβ is positivity preserving on L2pR`, r2 drq for all β ě µ `
7
3
cTF |Qp0q|

4
3 since Q is radial decreasing and, for β large enough, that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇAβp´∆p`q ` βq
´1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L2ÑL2 ă 1

since Aβ is bounded. Consequently, a Neumann expansion on

pL`µ,` ` βq
´1
“ p´∆p`q ` βq

´1
`

1` Aβp´∆p`q ` βq
´1
˘´1

,

which holds for β large enough, yields

pL`µ,` ` βq
´1
“ p´∆p`q ` βq

´1
8
ÿ

ν“0

`

´Aβp´∆p`q ` βq
´1
˘ν
.

Finally, p´∆p`q` βq
´1 and ´Aβ being respectively positivity improving and pre-

serving, we conclude that the resolvent pL`µ,` ` βq´1 is positivity improving for β
large enough.

Conclusion. We choose β " 1 such that pL`µ,``βq´1 is positivity improving and
bounded. Then, by [RS78, Thm XIII.43], the largest eigenvalue supσppL`µ,` `

βq´1q is simple and the associated eigenfunction ϕ` P L
2pR`, r2 drq is positive.

Since, for any ψ P L2pR`, r2 drq, having ψ being an eigenfunction of L`µ,` for the
eigenvalue λ is equivalent to having ψ being an eigenfunction of pL`µ,` ` βq´1 for
the eigenvalue pλ` βq´1, we have proved Lemma 2.60. �
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Proof for the sector ` “ 1. We start with the case ` “ 1 and prove that

α1 :“ inf
fPHp1qXH1pR3q

xf,Q∇|¨|´1yL2pR3q“0

xL`µ f, fyL2pR3q

||f ||2L2pR3q

ą 0. (2.79)

Since Q is radial, we have for i “ 1, 2, 3, that

BxiQpxq “ Q1prq
xi
r
P Hp1q.

Moreover, by the non-degeneracy result of Theorem 2.4, we know that BxiQ
is an eigenfunction of L`µ associated with the eigenvalue 0 hence Q1prq is an
eigenfunction of L`

p1q associated with the eigenvalue eµ,1 “ 0. Therefore, the fact
that Q1prq ă 0 (as proved in Theorem 2.3) implies, using the Perron-Frobenius
property verified by L`

p1q, that eµ,1 “ 0 is the lowest eigenvalue of L`
p1q and is

simple with ´Q1 ą 0 the associated eigenfunction. Consequently, we have for
any f P Hp1q that

xL`µ f, fyL2pR3q “

1
ÿ

m“´1

xL`
p1qf

m
prq, fmprqyL2pR`,r2 drq ě 0

and in particular that α1 ě 0.
We thus suppose that α1 “ 0 and prove it is impossible. Let fn be a mini-

mizing sequence to (2.79) with ||fn||L2pR3q
“ 1. One has

||∇fn||2L2pR3q
ď xL`µ fn, fnyL2pR3q `

5

3
||Q||

2
3

L8pR3q

and consequently the sequence fn is bounded in H1pR3q. We denote by f its
weak limit in H1pR3q, up to a extraction of a subsequence, which is in Hp1q. We
have

0 ď xL`µ f, fyL2pR3q ď lim infxL`µ fn, fnyL2pR3q “ α1 “ 0,

where the second inequality is due to

lim inf ||∇fn||2L2pR3q
ě ||∇f ||2L2pR3q

, lim inf ||fn||
2
L2pR3q

ě ||f ||2L2pR3q
,

µ ą 0 and to x|Q|pfn, fnyL2pR3q Ñ x|Q|pf, fyL2pR3q, for p “ 2
3
and p “ 4

3
, obtained

by a similar argument to the one in proof of Lemma 2.58. It implies that

xL`µ f, fyL2pR3q “ 0

hence, f “
ř3
i“1 ciBxiQ by the Perron-Frobenius property and since tx1

r
, x2
r
, x3
r
u is

an orthogonal basis of spantY ´1
1 , Y 0

1 , Y
1

1 u. However, for any i “ 1, 2, 3, we have
after passing to the weak limit that

ż

R3

xi
|x|3

fpxqQpxq dx “ 0.
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We then remark that, since Q is radial, we have
ż

R3

xi
|x|3

QpxqBxjQpxq dx “
ż

R3

xjxi
|x|4

QpxqQ1pxq dx “ 0, @i ‰ j.

This gives, for i “ 1, 2, 3, that

0 “

ż

R3

xi
|x|3

fpxqQpxq dx “ ci

ż

R3

xi
2

|x|4
QpxqQ1pxq dx

but Q ą 0 and Q1 ă 0, hence ci “ 0 thus f ” 0. We thus have obtained, if α1 “ 0,
that any minimizing sequence fn to (2.79) converges weakly to 0 in H1pR3q. This
gives x|Q|pfn, fnyL2pR3q Ñ 0 and

||∇fn||2L2pR3q
` µ ||fn||

2
L2pR3q

“ xL`µ fn, fnyL2pR3q ` op1q Ñ α1 “ 0

therefore fn Ñ 0 strongly in H1pR3q, because µ ą 0, which contradicts the fact
that ||fn||L2pR3q

“ 1. We have thus proved that α1 ą 0.

Proof for the sector ` ě 2. We now deal with the cases ` ě 2 and prove that
there exists α ą 0 such that

xL`µ,`ϕ, ϕyL2pR`,r2 drq ě α ||ϕ||2L2pR`,r2 drq (2.80)

for any ϕ P L2pR`, r2 drq. Since for such ϕ we have

xL`µ,`ϕ, ϕyL2pR`,r2 drq “ xL
`
p`´1qϕ, ϕyL2pR`,r2 drq ` 2p`´ 1q ||ϕ{r||2L2pR`,r2 drq , (2.81)

it is then sufficient to prove (2.80) in the case ` “ 2 in order to prove it for all
` ě 2.

For ` “ 2, we can assume that inf σpL`
p2qq is attained because, otherwise,

V :“
7

3
cTF |Qµ|

4
3 ´

5

3
|Qµ|

2
3

being bounded and vanishing as r Ñ 8, it is well-known (see e.g. [Tes09]) that
σesspL

`
p2qq “ rµ;`8q and (2.80) follows. We thus have, by (2.81) and L`

p1q ě 0,
that the eigenvalue eµ,2 “ inf σpL`

p2qq and its associated eigenfunction ϕ2 ı 0

verify that

eµ,2 “ inf σpL`
p2qq ě 2

||ϕ2{r||
2
L2pR`,r2 drq

||ϕ2||
2
L2pR`,r2 drq

ą 0

and (2.80) is therefore proved. It concludes the case ` ě 2.

Proof for the sector ` “ 0. We conclude with the case ` “ 0 and prove that
for any f P Hp0q, we have

α0 :“ inf
fPHp0qXH1pR3q

xf,QyL2pR3q“0

xL`µ f, fyL2pR3q

||f ||2L2pR3q

ą 0. (2.82)
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We already know that α0 ě 0 because Q is a minimizer. Indeed, for f P H1pR3q

such that xf,QyL2pR3q “ 0, through a computation similar to (2.67) and us-
ing (2.12), (2.26), Lemma 2.55 and that Q is a minimizer of JR3pλq, we obtain

JR3pQq ď JR3

ˆ

Q` εf

||Q` εf ||2
||Q||2

˙

“ JR3pQq ` ε2
pxL`µ<f,<fyL2pR3q ` xL

´
µ=f,=fyL2pR3qq ` opε

2
q

which implies in particular that xL`µ f, fyL2pR3q ě 0 for as soon as xf,QyL2pR3q “ 0.
We thus suppose α0 “ 0 and prove it is impossible. Let fn be a minimizing

sequence to (2.82) with ||fn||L2pR3q
“ 1. As in the proof of case ` “ 1 above, fn

is in fact bounded in H1pR3q and denoting by f P Hp0q its weak limit in H1pR3q,
up to a subsequence, we have xL`µ f, fyL2pR3q “ 0. This leads, to L`µ f “ βQ thus,
using that L`µ is inversible, to f “ βpL`µ q

´1Q. Indeed, for any η P Hp0q orthogonal
to Q and any τ, f ` τη verifies

0 “
xL`µ f, fyL2pR3q

||f ||2L2pR3q

ď
xL`µ pf ` τq, f ` τyL2pR3q

||f ` τ||
2
L2pR3q

“ 2τ
xL`µ f, ηyL2pR3q

||f ||2L2pR3q

` opτ2
q,

due to f minimizing (2.82) and to xL`µ f, fyL2pR3q “ 0, hence xL`µ f, ηyL2pR3q “ 0

for any η P spantQuK which implies that L`µ f is proportional to Q. Consequently,

0 “ xf,QyL2pR3q “ βxQ, pL`µ q
´1QyL2pR3q

hence β “ 0 since xQ, pL`µ q´1QyL2pR3q ă 0 by Conjecture 2.6. We have obtained
f ” 0 which is absurd as before. Indeed, we then have x|Q|pfn, fnyL2pR3q Ñ 0,
thus

op1q “ xL`µ fn, fnyL2pR3q “ ||∇fn||2L2pR3q
` µ ||fn||

2
L2pR3q

` op1q,

hence both norms would vanish (since µ ą 0), which would imply ||fn||H1pR3q
Ñ 0,

contradicting ||fn||L2pR3q
“ 1 and concluding the case ` “ 0. �

This concludes the proof of Theorem 2.8. �
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6. Appendix: Complementary proofs and results

6.1. Details of Step 9 of the proof of Theorem 2.3: Minimizing
sequences are precompact up to a translations. Let tQnun Ă H1pR3q be
a minimizing sequence of JR3,cpλq. We claim that there exist a subsequence and
translations txkuk Ă R3 such that Qnkp¨ ´ xkq á Qp1q ı 0 weakly in H1pR3q.
This result rely on the number

mptϕnuq “ sup

"
ż

R3

|ϕ|2
ˇ

ˇ Dtxnu Ă R3, ϕnkp¨ ´ xkq á ϕ weakly in H1
pR3
q

*

,

defined for any sequence tϕnu bounded in H1pR3q, and on Lemma 1.26 that we
recall here for clarity.

Lemma. For any sequence tϕnu bounded in H1pR3q, the following assertions
are equivalent:

i. mptϕnuq “ 0;

ii. lim
nÑ8

sup
zPZ3

ż

Cz

|ϕn|
2
“ 0;

iii. @R ą 0, lim
nÑ8

sup
xPR3

ş

Bpx,Rq
|ϕn|

2 “ 0;

iv. ϕn Ñ 0 strongly in LppR3q for all 2 ă p ă 6,

where the Cz “
3
ś

j“1
rzj, zj ` 1q, for any z “ pz1, z2, z3q P Z3, tile the whole space:

R3 “
Ť

zPZ3

Cz.

Remark. Our definition of m is slightly different from our previous one in
(1.45) as this new definition uses weak convergence on H1 while the previous used
weak convergence on L2. Nevertheless, Lemma 1.26 suppose that the function is
in H1 hence its proof stay the same.

If our claim that Qnkp¨ ´ xkq á Qp1q ı 0 were not true it would mean that
mptQnuq “ 0 and, since tQnu is bounded in H1pR3q due to Lemma 2.10, it would
imply by Lemma 1.26 that Qn Ñ 0 strongly in LppR3q for all 2 ă p ă 6 and
Qn á 0 weakly in H1pR3q. But this contradicts JR3pλq ă 0 proved in Lem-
ma 2.12, since it would give that

JR3,cpλq “ lim inf
nÑ8

JR3,cpQnq “ lim inf
nÑ8

ż

R3

|∇Qn|
2
ě 0,

and we have hence proved that Qnkp¨ ´ xkq á Qp1q ı 0.
Since Qnkp¨ ´ xkq á Qp1q weakly in H1pR3q, using Lemma 2.61, and its corol-

lary — that we both state and prove at the end of this Step 9, for the readability
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of the proof — we can write

Qnkp¨ ´ xkq “ ξk ` ψk ` εk

where ξk Ñ Qp1q weakly in H1pR3q and strongly in LppR3q for 2 ď p ă 6,
supppξkq Ă Bp0, kq, supppψkq Ă R3zBp0, 2kq, and εk Ñ 0 strongly in H1pR3q.

The disjoint supports property and the strong convergence of εk give that

JR3,cpQnkq “ JR3,cpQnkp¨ ´ xkqq “ JR3,cpξkq `JR3,cpψkq ` op1qkÑ8. (2.83)

On another hand, the strong and weak convergence of ξk give that

lim inf
kÑ8

JR3,cpξkq ě JR3,cpQ
p1q
q ě JR3,cpλ1q,

where λ1 “
ˇ

ˇ

ˇ

ˇQp1q
ˇ

ˇ

ˇ

ˇ

2

L2pR3q
, while the respectively strong and weak convergences to

Qp1q in L2pR3q of ξk and Qnk , together with the strong convergence to 0 of εk,
give ||ψk||

2
L2pR3q

“ λ´ λ1 ` op1qkÑ8, hence

JR3,cpψkq ě JR3,cp||ψk||
2
L2pR3q

q Ñ JR3,cpλ´ λ1q,

by the continuity of λ ÞÑ JR3,cpλq proved in Lemma 2.12. Passing to the limit
in (2.83), we obtain JR3,cpλq ě JR3,cpλ1q`JR3,cpλ´λ1q but the strict binding (2.13)
implies that either λ1 “ 0 or λ1 “ λ. However, we have proved that Qp1q ı 0

hence λ1 “ λ.
Now that we have proved that ||Qp1q||2L2pR3q “ λ, we obtain the strong con-

vergence Qnkp¨ ´ xkq Ñ Qp1q in L2pR3q, by the weak convergence in L2pR3q, and
this strong convergence holds in fact in LppR3q for 2 ď p ă 6, by the Sobolev
embedding, the fact that Qnkp¨´xkq is H1-bounded and interpolation. But those
strong convergences and the H1-weak convergence give

JR3,cpλq “ lim inf
nÑ8

JR3,cpQnkp¨ ´ xkqq ě JR3,cpQ
p1q
q ě JR3,cpλq

which proves that Qp1q is a minimizer but also that

||∇Qnk ||L2pR3q
“ ||∇Qnkp¨ ´ xkq||L2pR3q

Ñ
ˇ

ˇ

ˇ

ˇ∇Qp1q
ˇ

ˇ

ˇ

ˇ

L2pR3q
,

using that ||Qnk ||LppR3q
“ ||Qnkp¨ ´ xkq||LppR3q

and again the strong convergence of
Qnkp¨ ´ xkq in the Lp.

We have therefore proved that Qnkp¨ ´ xkq converges strongly in H1pR3q to
Qp1q which is a minimizer : Qn is precompact up to translations.

We conclude this Step 9 by the statements and proofs of Lemma 2.61 and
of Corollary 2.62. For both results, we will follow the proof in [Lew10] which
itself follows Lions [Lio82, Lio84a, Lio84b].
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Lemma 2.61 (Extracting the locally convergent part). Let tϕnu be a sequence
bounded in H1pR3q such that ϕn á ϕ weakly in H1pR3q and let 0 ď Rk ď R1k
such that Rk Ñ 8. Then there exists tϕnku such that, as k Ñ 8, it holds that

ż

|x|ďRk

|ϕnkpxq|
2 dxÑ

ż

R3

|ϕpxq|2 dx (2.84)

and
ż

Rkď|x|ďR
1
k

`

|ϕnkpxq|
2
` |∇ϕnkpxq|2

˘

dxÑ 0. (2.85)

In particular, it holds that 1Bp0,Rkqϕnk Ñ ϕ strongly in LppR3q for all 2 ď p ă 6.

Note that this lemma will also be needed in Lemma 2.41, our concentration-
compactness result for the effective model on the cube K.

Corollary 2.62. Let 0 ď Rk ď R1k be such that Rk Ñ 8 and tϕnu be a
sequence bounded in H1pR3q such that ϕn á

nÑ8
ϕ weakly in H1pR3q. Then there

exists a subsequence tϕnkukÑ8 such that

lim
kÑ8

||ϕnk ´ ξk ´ ψk||H1pR3q
“ 0

where tξkuk and tψkuk are sequences bounded in H1pR3q such that

(1) ξk Ñ ϕ weakly in H1pR3q and strongly in LppR3q for 2 ď p ă 6,

(2) supppξkq Ă Bp0, Rkq and supppψkq Ă R3zBp0, R1kq,

(3) mptψkuq ďmptϕnkuq ďmptϕnuq.

Proof of Lemma 2.61. We introduce the so-called Levy concentration func-
tions [Lev54]

MnpRq “

ż

Bp0,Rq

|ϕn|
2 and KnpRq “

ż

Bp0,Rq

|∇ϕn|2.

The functions Mn and Kn are continuous nondecreasing functions on r0,8q such
that

@n ě 1, @R ą 0,MnpRq `KnpRq ď

ż

R3

|ϕn|
2
` |∇ϕn|2 ď C

since tϕnu is bounded in H1pR3q. Thus, by the Rellich-Kondrachov Theorem, we
obtain that

MnpRq Ñ

ż

Bp0,Rq

|ϕ|2 “: MpRq

for all R ě 0. Moreover, up to extraction of a subsequence (we do not change
notation to simplify), there exists a nondecreasing function K such that, for all
R ě 0, KnpRq Ñ KpRq as n Ñ `8. We denote ` :“ limRÑ8KpRq which is
finite since KnpRq is bounded uniformly in n and R.
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Applying now the above limit result to our Rk and R1k, we deduce that, up to
another subsequence, we have that

|MnkpRkq ´MpRkq| ` |MnkpR
1
kq ´MpR

1
kq|

` |KnkpRkq ´KpRkq| ` |KnkpR
1
kq ´KpR

1
kq| ď

1

k
.

Consequently, we have that

ˇ

ˇ

ˇ

ˇ

ż

|x|ďRk

|ϕnk |
2
´

ż

R3

|ϕ|2
ˇ

ˇ

ˇ

ˇ

ď |MnkpRkq ´MpRkq| `

ż

|x|ěRk

|ϕ|2 ÝÑ
kÑ`8

0,

ż

Rkď|x|ďR
1
k

|ϕnk |
2
“MnkpR

1
kq ´MnkpRkq ď

1

k
`MpR1kq ´MpRkq ÝÑ

kÑ`8
0

and
ż

Rkď|x|ďR
1
k

|∇ϕnk |2 “ KnkpR
1
kq ´KnkpRkq ď

1

k
`KpR1kq ´KpRkq ÝÑ

kÑ`8
0,

where the last convergence uses the fact that KpR1kq ´KpRkq Ñ `´ ` “ 0.
Moreover, 1Bp0,Rkqϕnk á ϕ weakly in L2pR3q since ϕnk á ϕ. But this conver-

gence is in fact strong given the norm convergence just proved. By the Sobolev
embeddings, we obtain that ϕnk and, consequently, 1Bp0,Rkqϕnk are bounded in
LppR3q for 2 ď p ă 6 which leads, by interpolation to the strong convergence
of 1Bp0,Rkqϕnk Ñ ϕ in LppR3q for 2 ď p ă 6. This concludes the proof of Lem-
ma 2.61. �

Proof of Corollary 2.62. We can apply Lemma 2.61 to ϕn á ϕ with
Rk{2 and 4R1k and obtain a subsequence tϕnku such that
ż

|x|ďRk{2

|ϕnk |
2
Ñ

ż

R3

|ϕ|2 and
ż

Rk{2ď|x|ď4R1
k

`

|ϕnk |
2
` |∇ϕnk |2

˘

Ñ 0. (2.86)

Let χ : R` Ñ r0, 1s be a smooth function such that 0 ď χ1 ď 2, χ|r0,1s ” 1,
χ|r2,8q ” 0. We then denote χ̃kpxq :“ χp2|x|{Rkq and ζ̃kpxq :“ 1´ χp|x|{R1kq and
introduce ξk :“ χ̃kϕnk and ψk :“ ζ̃kϕnk . Since

ϕnk ´ ξk ´ ψk “ ϕnkpχp|x|{R
1
kq ´ χp2|x|{Rkqq,

we have supp pϕnk ´ ξk ´ψkq Ă tRk{2 ď |x| ď 2R1ku hence, using (2.86), we have

lim
kÑ8

||ϕnk ´ ξk ´ ψk||H1pR3q
“ 0.

Together with the disjoint support property, it implies in particular that

||ξk||H1pR3q
` ||ψk||H1pR3q

“ ||ξk ` ψk||H1pR3q
“ ||ϕnk ||H1pR3q

` op1q
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hence that ξk and ψk are bounded sequences in H1pR3q.
By construction, ξk á ϕ weakly in H1pR3q and

lim
kÑ8

ż

R3

|ξk|
2
“ lim

kÑ8

ż

Bp0,Rk{2q

|ξk|
2
“

ż

R3

|ϕ|2,

hence ξk strongly converges to ϕ in LppR3q for 2 ď p ă 6 by Sobolev embeddings
and because ||ϕn||H1pR3q

is uniformly bounded. In addition, it is easy to see that
1Bp0,4R1

k
qψk Ñ 0 strongly in L2pR3q.

We now prove that mptψkuq ďmptϕnkuq ďmptϕnuq. We suppose mptψkuq ą
0, otherwise there is nothing to prove. Thus, there exists kj’s, txju Ă R3 and
ψ ı 0 such that ψkjp¨ ´ xjq á ψ weakly in L2pR3q. We first prove that, for j
large enough, we have |xj| ě 3R1kj . Indeed, if for a subsequence (denoted the
same), we have |xj| ă 3R1kj then ψkjp¨ ´ xjq1Bp0,R1

k
q á 0 ” ψ weakly in L2pR3q

— since Bpxj, R1kq Ă Bp0, 4R1kq and 1Bp0,4R1
k
qψk Ñ 0 strongly in L2pR3q — a

contradiction. Consequently, we have that

ψkjp¨ ´ xjq1Bp0,R1kj q
“ ϕnkj p¨ ´ xjq1Bp0,R1kj q

á ψ

since ζ̃k ” 1 on Bpxj, R1kjq which implies that ϕnkj p¨ ´ xjq á ψ weakly in L2pR3q

hence that mptψkuq ďmptϕnkuq. �

6.2. Detailed proof of Theorem 2.4. This proof follows essentially line
by line the proof of [LRN15, Thm. 2]. We divide the proof into several steps
for clarity.

Step 1: Positivity of nonnegative H1pR3q-solutions. Let u ě 0 be a
non trivial H1pR3q-solution to the Euler–Lagrange equation (2.12). The equation
gives us the upper bound

||∆u||2L2pR3q
ď cTF ||u||

14
3

L
14
3 pR3q

` ||u||
10
3

L
10
3 pR3q

` µ ||u||2L2pR3q

which is bounded since u P H1pR3q. Hence, u P H2pR3q Ă C0
0pR3q and we obtain

thatQ ą 0 with the same end of the proof as in Step 6 of the proof of Theorem 2.3.
Step 2: Positive solution are radial decreasing, the moving plane

method. Contrarily to [LRN15] we cannot use [GNN81, Thm. 2] because our
function

Fµpyq “ ´cTFy
7
3 ` y

5
3 ´ µy (2.34)

is not C2 at y “ 0 (F 2µ is not even defined at 0). However, given that we are
interested in nonnegative solution and since one can prove similarly to Step 6 in
the proof of Theorem 2.3 that any non trivial nonnegative solution is positive,
we have in particular that their inverse are locally bounded. Hence, when we
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recursively differentiate the Euler–Lagrange equation, the negative powers that
will appear (due to powers 7{3 and 5{3 of E–L equation) will not create any difficulty
to obtain that such positive solutions are C8. Therefore, we can apply [Li91,
Thm. 1.1] that we recall for clarity in the following lemma.

Lemma (Positive solution are radial decreasing, [Li91]). Let f be a C1 func-
tion such that f 1p0q ă 0. Any C2 positive solution of

#

∆u` fpuq “ 0, in R3

upxq Ñ 0 as |x| Ñ 8

is radial decreasing about some point in R3.

Consequently, we know at this point that any nonnegative H2pR3q-solutions
to the Euler–Lagrange equation (2.12) is, up to a spatial translation, a positive
radial decreasing solution of

$

&

%

u2 `
2

r
u1 ` Fµpuq “ 0 on R`

u1p0q “ 0
(2.87)

with the condition
puprq, u1prqq Ñ

rÑ8
p0, 0q. (2.88)

We will show the uniqueness (for each admissible µ) of solutions to (2.87) that
fulfill that condition (2.88), that we will call solution of the problem (RPb-µ).

Step 3: Admissible µ’s. We first give some properties of Fµ together with
a first condition of admissibility for the µ’s.

Lemma 2.63. Let λ, cTF ą 0. Then an admissible µ verifies 4µcTF ă 1 and,
for such µ, the function Fµpxq :“ ´cTFx

7
3 ` x

5
3 ´ µx verifies that

(1) Fµ is positive on pβ, γq and negative on p0, βq Y pγ,8q;

(2) H : x ÞÑ xF 1µpxq{Fµpxq is strictly decreasing from 1 to ´8 on p0, βq,
from `8 to ´8 on pβ, γq and from `8 to 7{3 on pγ,`8q;

(3) for every λ ě 1, the function Ipxq :“ xF 1µpxq ´ λFµpxq has exactly one
root on p0, γq and this root x˚ verifies x˚ P pβ, γq and I 1px˚q ă 0.

Where

β “

ˆ

1´
?

1´ 4cTFµ

2cTF

˙3{2

and γ “

ˆ

1`
?

1´ 4cTFµ

2cTF

˙3{2

.

Proof of Lemma 2.63. By Theorem 2.3, a minimizer u of JR3,λp1q is in
H2pR3q, positive and verifies ∆u`Fµpuq “ 0 where Fµpuq “ ´cTFu

7
3`u

5
3´µu on

r0;8q. We first claim that there necessarily exist x P p0;8q such that Fµpxq ą 0.
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Indeed, if it were not the case, then we would have that ∆u ě 0 on R3 which
leads, since u ě 0, to ||∇u||L2pR3q

ď 0 and thus to u ” lim|x|Ñ8 upxq “ 0 hence a
contradiction to Theorem 2.3. The fact that Fµ is not nonpositive together with
rewriting

Fµpxq “
x

4cTF

ˆ

1´ 4cTFµ´
´

2cTFx
2
3 ´ 1

¯2
˙

, (2.89)

gives that necessarily 4µcTF ă 1. Moreover, (2.89) immediately gives (1).
For shortness in the end of this proof, we will denote Fµ simply by F . On

p0;`8qztβ; γu, denoting Gpxq “ 2cTFx
7
3 ´ x

5
3 , we have

Hpxq :“
xF 1pxq

F pxq
“ 1´

2

3

Gpxq

F pxq
,

thus the sign of the derivative H 1 is the same as the sign of F 1G ´ FG1 on
p0;`8qztβ; γu. Since 4µcTF ă 1, it holds on p0;`8q that

F 1pxqGpxq ´ F pxqG1pxq “ ´
2

3
cTFx

5
3

ˆ

px
2
3 ´ 2µq2 `

µ

cTF
p1´ 4µcTF q

˙

ă 0

and consequently H is strictly decreasing on each of the three intervals where it
is defined. The limit values are easy to check which concludes the proof of (2).

For every λ ě 1, we have on p0; βq that Hpxq “ xF 1pxq{F pxq ă 1 ď λ thus
it holds that I ą 0 on p0; βq since F ă 0 on this interval. Moreover, we deduce
from (2) that I has a unique zero on pβ; γq that we denote x˚. Finally, since
I 1 “ FH 1 ` F 1

F
I, F px˚q ą 0, H 1px˚q ă 0, F px˚q ‰ 0 and Ipx˚q “ 0, we obtain

I 1px˚q ă
F 1px˚q

F px˚q
Ipx˚q “ 0.

�

To conclude about the admissible µ’s (but also for the proof of uniqueness
and non-degeneracy proved in the next Step), we define for any u the local energy

Hαprq :“
pu1prqq2

2
`

uprq
ż

α

Fµpxq dx, (2.90)

for any α ě 0 (we omit the dependency with u in the subscript for shortness).
For any u solution to (2.87), we have that

Hα
1
prq “ pu2prq ` Fµpuprqqqu

1
prq “

$

&

%

´
2

r
pu1prqq2 ď 0 if r ą 0,

0 if r “ 0.
(2.91)
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Therefore, Hα is strictly decreasing on r0;8q, for any u solution to (2.87). The
decrease is strict otherwise we would have an interval on which u1 “ 0 and this
is impossible.

Lemma 2.64. The existence of a solution to (RPb-µ) is equivalent to 64
15
µcTF ă

1. Moreover, if u is solution, then necessarily ω ă up0q ă θ where

ω
2
3 “

5

8cTF

˜

1´

c

1´
64

15
µcTF

¸

and θ
2
3 “

5

8cTF

˜

1`

c

1´
64

15
µcTF

¸

which verify 0 ă β ă ω ă γ ă θ.

Proof of Lemma 2.64. A computation gives that
ż y

0

Fµpxq dx “ ´
3

10
cTFy

2

˜

ˆ

y
2
3 ´

5

8cTF

˙2

`

ˆ

5

8cTF

˙2 ˆ
64

15
µcTF ´ 1

˙

¸

.

On one hand, [BL83, Theorem 1] gives that if there exists y ą 0 such that
şy

0
Fµpxq dx ą 0 then a solution to (RPb-µ) exists. On the other hand, let us

suppose that there exists a solution u to (RPb-µ), then H0 is strictly decreasing
and limrÑ8H0prq “ 0, hence

0 ă H0p0q “

ż up0q

0

Fµpxq dx.

We thus have proved that the existence of a solution is equivalent to the existence
of y ą 0 such that

şy

0
Fµpxq dx ą 0. In terms of µ, it says that the existence of a

solution is equivalent to 64
15
µcTF ă 1. Then, under this condition on µ, a direct

computation gives the bounds ω and θ.
One can easily find that β ă ω by checking that β ă 4

5
ω. But we can find all

the ordering by defining, on r0; 15
64
s, the functions

Bpxq “
1

2
p1´

?
1´ 4xq, Ωpxq “

5

8
p1´

a

1´ 64x{15q,

Γpxq “
1

2
p1`

?
1´ 4xq, Θpxq “

5

8
p1`

a

1´ 64x{15q

and verifying that Θ1 ă Γ1 ă 0 ă B1 ă Ω1 on p0; 15{64q, that Bp0q “ Ωp0q and
that Θp15{64q “ Γp15{64q “ Ωp15{64q. �

Before proving the uniqueness and non-degeneracy, we give a result about the
exponential decay of the solutions, which will be useful in the next Step.

Lemma 2.65 (Exponential decrease). Let G be a continuous function on R`
with Gp0q “ 0, and µ ą 0. If u ě 0, such that uÑ 0 as r Ñ 8, is a solution to

u2 `
2

r
u1 “ pµ`Gpuqqu on R`,
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then for any 0 ă ε ă µ, there exists a constant C such that

0 ď u, |u1| ď
C

r
e´r

?
µ´ε.

Proof of Lemma 2.65. Since u Ñ 0 at infinity, we rewrite the equation
and for any 0 ă ε ă µ we have for r large enough

pruq2 “ pµ`Gpuqqru ě pµ´ εqru.

Then we define α “ µ´ ε and fprq :“ ´ruprqe´
?
αr, and obtain

f2 ď ´2
?
αf 1

for r large enough. Consequently, by Grönwall’s lemma, there exists R such that
for any r ě r0 ě R, it holds that

f 1prq ď f 1pr0qe
2
?
αr0e´2

?
αr. (2.92)

Since f Ñ 0 as r Ñ 8, integrating on pr;8q the above inequality for r ě r0 ě R,
we obtain

´fprq ď
f 1pr0q

2
?
α
e2
?
αr0e´2

?
αr

thus f 1pr0q ě 0 for any r0 ě R, since u ě 0, and

0 ď uprq ď
f 1pr0q

2
?
α
e2
?
αr0
e´
?
αr

r
:“ C

e´
?
αr

r
.

This concludes the proof for u. The fact that f 1prq ě 0, combined with (2.92)
and the definition of f , implies for r ě r0 that

ˆ

?
α ´

1

r

˙

u ě u1prq ě

ˆ

?
α ´

1

r

˙

u´ 2
?
αC

e´
?
αr

r
.

Thus, for r ě maxtr0;α´1{2u that

?
αC

e´
?
αr

r
ě u1prq ě ´2

?
αC

e´
?
αr

r
.

This concludes the proof of Lemma 2.65. �

Step 4: Uniqueness and non-degeneracy.

Proposition 2.66 (Uniqueness and non-degeneracy of radial solutions). Let
cTF ą 0, fix µ P

´

0; 15
64

1
cTF

¯

and define Fµ by (2.34). Then the problem (RPb-µ)
has a unique non-trivial radial solution u. Moreover, it verifies

0 ă ω ă ||u||L8pR3q
“ up0q ă γ,
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with ω and γ defined as in Lemma 2.64, and is non-degenerate: the unique solu-
tion v to

$

’

’

’

&

’

’

’

%

Lpvq “ v2 `
2

r
v1 ` F 1µpuqv “ 0

vp0q “ 1

v1p0q “ 0

diverges exponentially fast when r Ñ 8. More precisely, vprq Ñ ´8 and v1prq Ñ
´8 exponentially fast when r Ñ 8.

The pioneering works on uniqueness of solutions to the NLS nonlinearity
[Cof72, Kwo89] have been followed by many results introducing conditions on
F ensuring uniqueness of radial solutions to semi-linear equations of the type
p∆`F puqqu “ 0, see e.g. [PS83, MS87, KZ91, McL93, ST00, LRN15]. For
our particular function F as defined in (2.34), the uniqueness is given by [ST00,
Theorem 1’], by means of Lemma 2.63. The non-degeneracy result is not always
stated in those works although sometimes present in the middle of the proof.
Therefore, for clarity, we will give the detail of the proof of our Theorem, follow-
ing [LRN15] which is mainly based on the approach of McLeod in [McL93] and
its summary in [Tao06, App. B] and [Fra13].

Proof of Proposition 2.66. We start by proving that the solutions u
to (RPb-µ) verify

0 ă ω ă ||u||
8
“ up0q ă γ.

To do that, we state the following Lemma that we will need several times.

Lemma 2.67. Let u be solution of (RPb-µ). If r0 ě 0 is such that u1pr0q “ 0

and upr0q ą 0 then uprq ď upr0q for all r ą r0. In particular, ||u||
8
“ up0q.

Proof of Lemma 2.67. Let r0 ě 0 be such that u1pr0q “ 0 and upr0q ą 0

and suppose that uprq ď upr0q for all r ą r0 does not hold. The function u

being continuous and vanishing at infinity, there would exist r˚ ą r0 such that
upr˚q “ upr0q with u not constant over pr˚, r0q. Then, for H defined in (2.90),
we have Hupr0qpr0q “ 0 and Hupr0qpr˚q ě 0 but the computation of H 1 made
in (2.91) and the fact that u1 is not identical to zero on rr0, r˚s implies that
Hupr0qpr˚q ă Hupr0qpr0q giving a contradiction. �

By Lemma 2.64, we have up0q ą ω. We now prove that up0q ď γ. Indeed,
suppose that up0q ą γ then there exists r0 ą 0 such that u ą γ on r0; r0q and
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upr0q “ γ. Then, since Hγ is strictly decreasing, we have

0 ą Hγpr0q ´Hγp0q “
pu1pr0qq

2

2
´

up0q
ż

γ

Fµpxq dx

which is impossible since up0q ą γ and Fµ ă 0 on pγ;8q. Finally, r ÞÑ γ being a
stationary solution of (2.87), we cannot have up0q “ γ which concludes the proof
of ω ă up0q ă γ.

We now look at the unique solutions to (2.87) with up0q “ y, that we denote
by uy and we let y vary in p0, γq. As in [McL93], we introduce the sets

S` “
 

y P p0, γq|min
R`

uy ą 0
(

,

S0 “
 

y P p0, γq|uy ą 0 and lim
8
uy “ 0

(

,

S´ “
 

y P p0, γq|uypryq “ 0 for some (first) ry ą 0
(

which form a partition of p0; γq. We first remark that pr, yq ÞÑ uyprq is smooth
since real-analytic given that Fµ is analytic. Therefore, S´ is open. For conve-
nience, for y P S0, we denote ry :“ `8. Since H 1 decreases along a solution, as we
proved earlier, Lemma 2.64 gives p0;ωs Ă S` which implies that S0YS´ Ă pω; γq.
Moreover, the existence of positive radial minimizers proved in Theorem 2.3 im-
plies that S0 ‰ H. We state first two lemmas giving properties of elements of
S´, S0 and S`.

Lemma 2.68. Let y P S0 Y S´. Then u1y ă 0 on p0, ryq, that is, uy vanishes
before u1y. In particular, uy is strictly decreasing on p0, ryq.

Proof of Lemma 2.68. By means of S0 Y S´ Ă pω; γq Ă pβ; γq and (2.87),
it holds that 3u2yp0q “ ´Fµpuyp0qq ă 0, since u2prq „rÑ0

u1prq
r

. Hence u1yprq ă 0

for r ą 0 small enough. Moreover, by definition of ry together with the fact
that uy cannot have double zeroes since it is solution of (2.87), we know that
u1ypryq ă 0.

Let us assume that u1y changes sign before ry. Then uy has a local strict
minimum at r˚ P p0, ryq with uypr˚q ą 0. But since limrÑry “ 0, there must be
r‹ P pr˚; ryq such that uypr‹q “ uypr˚q. This leads to a contradiction since we
then have

pu1ypr‹qq
2

2
“ Hβpr‹q ´Hβpr˚q “

ż r‹

r˚

H 1
βpsq ds “ ´2

ż r‹

r˚

pu1upsqq
2

s
ds ă 0.

�

Lemma 2.69. Let y P S`. Then u1y vanishes at least once and, for the first
positive root r˚ of u1y, we have H0pr˚q ă 0. The set S` is open.
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Proof of Lemma 2.69. If y “ β then uy ” β and H0prq “
β
ş

0

Fµpxq dx ă 0

for all r ě 0. Let us now suppose y ‰ β.
We claim that u1y vanishes. Otherwise, since 3u2yp0q “ ´Fµpuyp0qq by means

of (2.87), either y ą β and uy is decreasing or y ă β and uy is increasing, and
in both cases uy has a limit at infinity u8 P p0, γq. Then the equation (2.87)
leads to Fµpu8q “ 0 hence that u8 “ β. Now, following [BLP81, Fra13], we
introduce V :“ rpu´ βq which solves

V 2 “ ´
F puq

u´ β
V. (2.93)

Recording that Fµpuq “ ´cTFupu
2
3 ´ β

2
3 qpu

2
3 ´ γ

2
3 q, we obtain

lim
rÑ8

Fµpuprqq

uprq ´ β
“ cTFβpγ

2
3 ´ β

2
3 q lim

uÑβ

u
2
3 ´ β

2
3

u´ β
“

2

3
cTFβ

2
3 pγ

2
3 ´ β

2
3 q ą 0.

Therefore V 2prq „rÑ8 ´2
3
cTFβ

2
3 pγ

2
3 ´ β

2
3 qV prq. On one hand, if y ą β then

V ą 0 on p0;8q thus V 1 is strictly decreasing for r large enough. Let suppose
that 0 ą limrÑ8 V

1prq ě ´8, then V prq Ñ ´8 when r Ñ 8 which is impossible
since V ą 0. If we now suppose that limrÑ8 V

1prq ě 0 then there exists r‹ ą 0

such that V 1prq ą 0 on pr‹;8q— since V 1 is strictly decreasing for r large enough
— which implies that V prq ě V pr‹q ą 0 for r ě r‹. Consequently, V 2 ă 0 on
rr‹;8q which contradicts our hypothesis limrÑ8 V

1prq ě 0. On the other hand,
the case y ă β leads to a contradiction following the same arguments. We have
proved that u1y vanishes and we denote by r˚ its first root.

We now prove that H0pr˚q ă 0. On one hand, if y ă β then

H0p0q “

y
ż

0

Fµpxq dx ă 0

and H0 being non-increasing, we conclude that H0pr˚q ă 0. On the other hand, if
y ą β then u1y ă 0 for small r ą 0 since 3u2yp0q “ ´Fµpuyp0qq by means of (2.87).
However u2ypr˚q ‰ 0, otherwise Fµpuypr˚qq “ 0 and then uy is constant, thus uy
attains a local minimum at r˚ which implies by (2.87) that Fµpuypr˚qq ă 0. Since
we have also uypr˚q ď uyp0q ă γ, we can conclude that uypr˚q ă β and finally
that H0pr˚q ă 0.

We conclude by the proof that S` is open. We know that p0;ωs Ă S` and we
recall that 0 ă β ă ω ă γ. Let y P S` X pβ; γq. For z in a neighborhood of y, by
the smoothness of pr, yq ÞÑ uyprq and since uy has a local minimum at r˚ ą 0, uz
has a local minimum at a point rz close to r˚. Moreover, the local energy Huz

0
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associated to uz verifies

Huz
0 przq “ H

uy
0 pr˚q `

uzprzq
ż

uypr˚q

Fµpxq dx

which is strictly negative for z close enough to y, since Huy
0 pr˚q ă 0 and by

the smoothness of pr, yq ÞÑ uyprq. Since uz is solution to (2.87), Huz
0 is strictly

decreasing on r0;8q hence, for any r ą rz, we have

3

10
cTF puzprqq

2
´

puzprqq
2
3 ´ ω

2
3

¯´

θ
2
3 ´ puzprqq

2
3

¯

ď Huz
0 prq ă Huz

0 przq ă 0.

Thus there exists ε ą 0 such that for any r ą rz, we have 0 ă ε ă uzprq ă ω ´ ε.
In particular uz does not vanish hence z P S`. We proved that S` is open. �

Those two lemmas stated, we consider vy, the unique solution to the ODE
$

’

’

’

&

’

’

’

%

Lpvq :“ v2 `
2

r
v1 ` F 1µpuyqv “ 0

vp0q “ 1

v1p0q “ 0.

This function is simply vy “ Byuy, the variation of uy with respect to the initial
condition uyp0q “ y. This implies the following Lemma.

Lemma 2.70. If y P S0 and vyprq, v1yprq Ñ ´8 when r Ñ 8, then there exists
ε ą 0 such that py ´ ε, yq Ă S` and py, y ` εq Ă S´.

Proof of Lemma 2.70. This lemma is [McL93, Lemma 3(b)] and we fol-
low its proof. Let α ą 0 be such that F 1µ ď ´

µ
2
on r0;αq. Then choose R such that

uy ď α on rR;`8q. Finally, choose R1 ě R such that vypR1q ă 0 and v1ypR1q ă 0.
Since vy “ Byuy and uypR1q ą 0 (because y P S0), then there exists ε ą 0 such
that for z P py; y`εq it holds that 0 ă uzpR1q ă uypR1q and u1zpR1q ă u1ypR1q ă 0.
The function w :“ uz ´ uy is negative at R1 with w1pR1q ă 0. Let suppose that
z P S0 Y S` then either w tend to 0 or becomes positive at some point, since
y P S0. Consequently, w must have a local minimum at some point R2 ą R1, and
with wpR2q ď wprq ď wpR1q ă 0 for all R1 ď r ď R2. Hence, (2.87) implies that

0 ď w2pR2q “ FµpuypR2qq ´ FµpuzpR2qq “ ´F
1
µpηqwpR2q

for some 0 ă uzpR2q ă η ă uypR2q ď α where the strict positivity comes from
the fact that z P S0 Y S`. But F 1µpηq ď ´

µ
2
ă 0 and wpR2q ă 0, leading to a

contradiction. The proof is the same for z ă y. �
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We now prove that for all y P S0, we have vy, v1y Ñ ´8. The argument will
be based on the Wronskian identity

pr2
pf 1vy ´ fv

1
yqq

1
“ r2vyLpfq, (2.94)

that holds for any f twice differentiable. We first compute the three functions
Lpuyq, Lpu1yq and Lpru1yq. First, we have

Lpuyq “ u2y `
2

r
u1y ` F

1
µpuyquy “ F 1µpuyquy ´ Fµpuyq. (2.95)

Moreover, F 1µpuyqu1y “ pFµpuyqq1 “ ´u3y `
2
r2
u1y ´

2
r
u2y, thus

Lpu1yq “ u3y `
2

r
u2y ` u

1
yF

1
µpuyq “

2

r2
u1y

and

Lpru1yq “ 4u2y ` ru
3
y `

2

r
u1y ` rF

1
µpuyqu

1
y,

“ ´Fµpuyq ` u
2
y ` r

ˆ

2

r
u2y ` u

3
y ` pFµpuyqq

1

˙

“ ´2Fµpuyq.

Lemma 2.71. For every y P S0, the function vy vanishes exactly once.

Proof of Lemma 2.71. We first prove that vy vanishes at least once. Sup-
pose on the contrary that vy does not vanishes, then vy ą 0 on R` since vyp0q “
1 ą 0. From (2.94), for f “ u1y, we deduce that

pr2
pu2yvy ´ u

1
yv
1
yqq

1
“ 2vyu

1
y ă 0

and, consequently, r2pu2yvy ´ u1yv
1
yq “ r2vy

2pu1y{vyq
1 is decreasing and vanishes at

r “ 0, thus there exists ε such that r2pu2yvy ´ u1yv
1
yq ď ´ε ă 0 for r ě 1 and

pu1y{vyq
1 ă 0. The latter leads (up to taking an even smaller ε) to u1y{vy ď ´ε ă 0

for r ě 1, since u1yp0q{vyp0q “ 0, and finally that 0 ă vy ď ´u1y{ε. However,
for r large enough, r2|vyprqu

2
yprq| ď

r2

ε
|u1yprq||u

2
yprq| decays exponentially fast.

Indeed, |u1y| decays exponentially fast by Lemma 2.65 and u2y too by (2.87) and
the exponential decay of all the other terms in said equation. Hence r2u1yv

1
y ě ε{2

for r large enough. Using again that u1y decays exponentially fast together with
u1y ă 0, we obtain that v1y diverges exponentially fast to ´8, which contradicts
vy ą 0.

We now prove that vy can only vanish once and our proof follows [Tao06, pp.
357–358]. First we note that for z “ β, at which the solution is stationary, the
function uy´uz “ uy´β vanishes exactly once since, by Lemma 2.68, uy strictly
decreases from y ą z “ β to 0. Using on one hand that, for any z, uy´uz cannot
have double zeroes (because uy and uz solve the same second order ODE) and,
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on another hand, that vy “ Byuy, we obtain by taking z Ñ y that vy vanishes at
most once. �

This Lemma 2.71 allows us to now prove that vy and v1y diverges to ´8.

Lemma 2.72. For y P S0, we have vyprq, v1yprq Ñ ´8 as r Ñ 8.

Proof of Lemma 2.72. By Lemma 2.71, let r˚ be the unique root of vy,
which verifies v1ypr˚q ă 0. We define

fprq :“ uyprq ´
ru1yprq

r˚u1ypr˚q
uypr˚q

which vanishes at r˚. We first note that c :“ ´uypr˚q{pr˚u
1
ypr˚qq ą 0, by means

of Lemma 2.68. Then, by (2.94), we have

pr2
pf 1vy ´ fv

1
yqq

1
“ r2vyLpuy ` cru

1
yq “ r2vy

`

F 1µpuyquy ´ p1` 2cqFµpuyq
˘

.

Moreover, r2pf 1vy ´ fv1yq vanishes at r “ 0 and r “ r˚ hence F 1µpuyquy ´ p1 `
2cqFµpuyq vanishes at least once in p0; r˚q. However, by means of Lemma 2.63,
x ÞÑ F 1µpxqx´p1` 2cqFµpxq vanishes exactly once on p0, γq with strictly negative
derivative at the vanishing point which, together with the fact that uy is strictly
decreasing from y to 0, gives that F 1µpuyquy ´ p1 ` 2cqFµpuyq ą 0 for any r

strictly larger than its vanishing point, in particular for any r ě r˚. Hence
pr2pf 1vy ´ fv1yqq

1 is negative for r ą r˚ since r2vyprq ă 0 for r ą r˚. Thus
r2pf 1vy´fv

1
yq is strictly decreasing after r˚ (where it vanishes) and, in particular,

there exists ε ą 0 such that r2pfv1y ´ f
1vyq ě ε ą 0 for r large enough. However,

by Lemma 2.65, f and f 1 decay exponentially fast to 0 at infinity. Assume vy
does not diverge exponentially fast (thus it either diverges at a slower rate or
is bounded), then ´r2f 1vy tends to 0 and r2fv1y ě ε{2 ą 0 for r large enough.
Hence v1y diverges exponentially fast which contradicts the fact that vy does not
diverge exponentially fast. So we proved that vy Ñ ´8 exponentially fast as
r Ñ 8.

We now use pr2v1yq
1 “ ´r2F 1µpuyqvy Ñ ´8 exponentially fast since F 1µpuq Ñ

´µ ă 0 at infinity and vy diverges to ´8 exponentially fast. Consequently, r2v1y
diverges exponentially fast to ´8 which implies the same for v1y. �

This proves that uy is non-degenerate for any y P S0.
We can now conclude the proof of Proposition 2.66. Indeed, S´ and S` are

open therefore they are separated by points in S0. However, by Lemma 2.72
together with Lemma 2.70, such points in S0 are isolated points that makes
transition between (part of) S` below and (part of) S´ above. This implies that
there can be only one element in S0 and finally the uniqueness of the solution to
our problem. �
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This concludes the proof of Theorem 2.4. �

6.3. Proofs of Remarks 2.11 and 2.35: a priori bounds on JR3,cpλq

and JK,cpλq, independent of cTF .

Lemma 2.73. For any a ă 1, any u P H1pR3q and v P H1pKq, we have

JR3,cpuq ě a ||∇u||2L2pR3q
´

9λ
5
3S3

2

64p1´ aq
c2,

and

JK,cpvq ě a ||∇v||2L2pKq ´
9λ

5
3SK

2

64p1´ aq
c2
´

3

4
SKλ

4
3 c,

where SK is the Sobolev constant ||v||L6pKq ď SK ||v||H1pKq and S3 the Sobolev con-
stant ||u||L6pR3q

ď S3 ||∇u||L2pR3q
. In particular, together with (2.23) and (2.48),

this gives for any λ ą 0 and c ą 0 that

JR3,cpλq ą ´
15

64
λc2 min

"

1

cTF
;
3

5

´

S3λ
1
3

¯2
*

,

and

JK,cpλq ą ´
15

64
λc2 min

"

1

cTF
;
3

5

´

SKλ
1
3

¯2

`
16

5
SKλ

1
3 c´1

*

.

Proof of Lemma 2.73. For Ω “ K ou R3, using the non-negativity of
||u||

L
10
3 pΩq

, Hölder’s inequality and Sobolev embeddings, we obtain

JΩ,cpuq ě ||∇u||2L2pΩq ´
3

4
||∇u||L2pΩqK1pΩqλ

5
6 c´

3

4
K2pΩqλ

4
3 c,

where K1pKq “ K2pKq “ SK, K1pR3q “ S3 and K2pR3q “ 0. But, for any ν ą 0

and pX,αq P R2, ´αX ě ´νX2´ α2

4ν
hence defining a :“ 1´ν ă 1, we obtain the

announced inequalities. Finally, taking a “ 0, we obtain the two final inequality
but with large inequalities while the strict inequalities are obtained from the
existence of minimizer and since

ş

u
10
3 ą 0 for a minimizer. �

6.4. Independency from cTF of the upper bound on ||∇v̆c||2L2pKcq in
Corollary 2.36. Using the lower bound independent of cTF in Lemma 2.73 and
the upper bound in (2.48), we obtain that there exists 0 ă c˚ ď

4
5
cTF

3
a

λ|K|´1

such that, for all c ě c˚ and any 0 ă a ă 1, we have

0 ě JK,λpcq ě a ||∇vc||2L2pKq ´
9

64

SK
2λ

5
3

1´ a
c2
´

3

4
SKλ

4
3 c,
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thus

||∇v̆c||2L2pKcq ď
9

64

SK
2λ

5
3

ap1´ aq
`

3

4

SKλ
4
3

a
c´1

“:
x

ap1´ aq
`
y

a

and one can check, for x, y positive, that the right hand side attains its minimum
(with respect to a P p0; 1q) at

a0 :“
x` y ´

a

xpx` yq

y
P p1{2; 1q

and this minimum is 2x` y ` 2
a

xpx` yq. This gives

0 ď ||∇v̆c||2L2pKcq ď
C2λ

32

˜

1`
8

Cc
`

c

1`
16

Cc

¸

,

for all c ě c˚ and where C “ CpK, λq “ 3SKλ
1
3 . The right hand side is a

decreasing function of c that tends to C2

16
λ as c goes to `8 hence, for c large

enough, we have

0 ď ||∇v̆c||2L2pKcq ď
9

8
SK

2λ
5
3 ,

a bound independent of cTF (and c).

6.5. Proof of the Hardy inequality on K.

Lemma 2.74. For any c˚ ą 0, there exists C such that for any c ě c˚ we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f

| ¨ ´cτ|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L2pKcq
ď C ||f ||H1

perpKcq
,

for any f P H1
perpKcq and any τ P R3.

Proof of Lemma 2.74. First we can suppose that τ is in the closure of K
otherwise, if m :“ dpτ,Kq ą 0, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f

| ¨ ´cτ|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L2pKcq
ď pcmq´1

||f ||L2pKcq .

Let χ and η be such that χ2`η2 is a smooth partition of the unity with supppχq Ă
Bp0, R1q and supppηq Ă ABp0, Rq where R1 ą R ą 0 is such that Bp0, 2R1q Ă
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Kc˚ Ă Kc. Thus, by the Hardy inequality on R3, we have
ż

Kc

f 2

| ¨ ´cτ|2
“

ż

´cτ`Kc

f 2p¨ ` cτq

| ¨ |2

“

ż

R3

pfp¨ ` cτqχq2

| ¨ |2
`

ż

p´cτ`KcqXABp0,Rq

pfp¨ ` cτqηq2

| ¨ |2

ď 4 ||∇pfp¨ ` cτqχq||2L2
perpR3q

`R´2
||f ||2L2pKcq

ď 8
´

||∇fp¨ ` cτqχ||2L2
perpKc˚ q

` ||fp¨ ` cτq∇χ||2L2pKc˚ q

¯

`
||f ||2L2pKcq

R2

ď 8
´

||∇fp¨ ` cτq||2L2
perpKcq

` ||∇χ||2
8
||fp¨ ` cτq||2L2pKcq

¯

`
||f ||2L2pKcq

R2

ď C2
||∇f ||2H1

perpKcq
,

where
C “ 2

?
2

b

maxt1, ||∇χ||2
8
`R´2u.

This concludes the proof of Lemma 2.74. �

6.6. Direct proof of symmetry breaking. As stated in Remark 2.39,
we can deduce directly from Lemma 2.38 the symmetry breaking EN ¨K,N3λpcq ă

N3EK,λpcq. Indeed, if there exists ε ą 0 and cJ ą 0 such that for all c ą cJ we
have

JN ¨K,N3λpcq

N3JK,λpcq
ą 1` ε, (2.96)

then, by Lemma 2.38, there exists c˚ ě cJ such that for all c ě c˚, we have

EN ¨K,N3λpcq

N3EK,λpcq
ą 1`

ε

2
.

We thus have to prove (2.96). For any u P H1
perpKq and η ą 0, we have

$

’

’

&

’

’

%

u
`

η´1
¨
˘

P H1
perpηKq,

ˇ

ˇ

ˇ

ˇupη´1
¨q
ˇ

ˇ

ˇ

ˇ

p

LppηKq “ η3
||u||pLppKq , @p P r2;8q

ˇ

ˇ

ˇ

ˇ∇upη´1
¨q
ˇ

ˇ

ˇ

ˇ

2

L2pηKq “ η ||∇u||2L2pKq .

Thus η3JK,cpuq “ pη
3 ´ ηq ||∇u||2L2pKq `JηK,c pupη

´1¨qq. Let v be a minimizer of
JK,λpcq which exists by Proposition 2.30 and η ą 1, then

η3JK,λpcq “ pη
3
´ ηq ||∇v||2L2pKq `JηK,c

`

vpη´1
¨q
˘

ě pη3
´ ηq ||∇v||2L2pKq ` JηK,η3λpcq.
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By Corollary 2.36, we know that there exists C ą 0 such that for any c large
enough, we have ||∇v||2L2pKq ě Cc2. Thus, for any 0 ă ε ă C p1´ η´2q 64

15
cTF
λ
, we

have by Lemma 2.33 that

η3JK,λpcq ě pη
3
´ ηqCc2

` JηK,η3λpcq.

ą ε
η3 ´ η

1´ η´2

15

64

λ

cTF
c2
` JηK,η3λpcq.

ě εη3
p´JK,λpcqq ` JηK,η3λpcq.

Consequently, for c large enough, we have

0 ą η3JK,λpcq ą η3
p1` εqJK,λpcq ą JηK,η3λpcq

and finally, for η “ N , that

1` ε ă
JN ¨K,N3λpcq

N3JK,λpcq
.

The proof of the symmetry breaking is thus complete.

6.7. Details of the proof of Lemma 2.41. We start by proving the fol-
lowing lemma which allows us to obtain (2.59).

Lemma 2.75. For any px, y, pq P Rzt0u ˆ p0;`8q ˆ r0;`8q, we have
ˇ

ˇ

ˇ

ˇ

ˇ

|y ` x|p ´

tpu
ÿ

k“0

ˆ

p

k

˙

yp´kxk

ˇ

ˇ

ˇ

ˇ

ˇ

ă |x|p if tpu is even,

ˇ

ˇ

ˇ

ˇ

ˇ

|y ` x|p ´

tpu´1
ÿ

k“0

ˆ

p

k

˙

yp´kxk

ˇ

ˇ

ˇ

ˇ

ˇ

ă |x|p `

ˆ

p

tpu

˙

yp´tpu
|x|tpu if tpu is odd.

Moreover, for any px, y, pq P p0;`8q2 ˆ r0;`8q, we have
ˇ

ˇ

ˇ

ˇ

ˇ

|y ` x|p ´

tpu
ÿ

k“0

ˆ

p

k

˙

yp´kxk

ˇ

ˇ

ˇ

ˇ

ˇ

ă |x|p

and, consequently, for any pz, pq P Cz tRˆ t0u Y t0u ˆ Ru ˆ r0;`8q, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

|z|p ´

t
p
2

u
ÿ

k“0

ˆp
2

k

˙

|<pzq|p´2k
|=pzq|2k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă |=pzq|p

and identiquely exchanging < — the real part — and = — the imaginary part.

Proof of Lemma 2.75. If p P N and p is even then

|y ` x|p ´

tpu
ÿ

k“0

ˆ

p

k

˙

yp´kxk “ 0
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hence the first strict inequality holds for x ‰ 0. If p P N and p is odd then, on
one hand we have

|y ` x|p ´

tpu´1
ÿ

k“0

ˆ

p

k

˙

yp´kxk “ xp

for x ě ´y, hence the second strict inequality holds for x ‰ 0. On the other
hand, for x ă ´y , we have

|y ` x|p ´

tpu´1
ÿ

k“0

ˆ

p

k

˙

yp´kxk “ 2py ` xqp ´ xp

and one can check that |2py ` xqp ´ xp| ă |x|p since y ą 0 and p is odd. Hence
the second strict inequality holds for x ă ´y too.

We now suppose that p R N, thus 0 ă p´ tpu ă 1, and tpu is even. We define
on R the functions

f˘y pxq “ |x|
p
¯ |y ` x|p ˘

tpu
ÿ

k“0

ˆ

p

k

˙

yp´kxk,

which is indefinitely differentiable on Rzt0,´yu with its j-th derivative being

f˘y
pjq
pxq “

p!

pp´ jq!

˜

psgnpxqqj|x|p´j ¯ psgnpy ` xqqj|y ` x|p´j

˘

tpu
ÿ

k“j

ˆ

p´ j

k ´ j

˙

yp´kxk´j

¸

,

for any integer j P r0; tpus. Those derivatives can be continuously extended at 0

and at ´y therefore, from now on, we will call f˘y
pjq the continuous extensions

too. For any integer j P r0; tpus, we have f˘y
pjq
p0q “ 0. Moreover,

f˘y
ptpu`1q

pxq “ p!
pp´ tpuq

pp´ tpuq!

ˆ

sgnpxq

|x|tpu`1´p
¯

sgnpy ` xq

|y ` x|tpu`1´p

˙

on Rzt´y, 0u. Thus f`y
ptpu`1q is positive on Rzr´y; 0s and negative on p´y; 0q

while f´y
ptpu`1q is positive on p´y;´y{2q Y p0;`8q and negative on p´8;´yq Y

p´y{2; 0q. Therefore the monotonicity properties on intervals combined with the
fact that f˘y

ptpuq
p0q “ f´y

ptpuq
p´yq “ 0 and

lim
´8

f`y
ptpuq

“
p!

pp´ tpuq!
yp´tpu

ą 0

imply that f˘y
ptpuq

ą 0 on Rzt´y, 0u. Finally, since f˘y
pjq
p0q “ 0 for any integer

j P r0; tpus, we conclude that f˘y
pjq
ă 0 on R´zt0u for j odd, f˘y

pjq
ą 0 on R`zt0u
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for j odd and f˘y
pjq
ą 0 on Rzt0u for j even. In particular, f˘y ą 0 on Rzt0u.

This concludes the proof of the first inequality.
We now suppose that p R N with tpu odd and define on R the functions

g˘y pxq “ |x|
p
`

ˆ

p

tpu

˙

yp´tpu
|x|tpu

¯ |y ` x|p ˘

tpu´1
ÿ

k“0

ˆ

p

k

˙

yp´kxk,

which is indefinitely differentiable on Rzt0,´yu with its j-th derivative being

g˘y
pjq
pxq “

p!

pp´ jq!
psgnpxqqj

ˆ

|x|p´j `

ˆ

p´ j

k ´ j

˙

yp´tpu
|x|tpu´j

˙

¯
p!

pp´ jq!

˜

psgnpy ` xqqj|y ` x|p´j ´

tpu´1
ÿ

k“j

ˆ

p´ j

k ´ j

˙

yp´kxk´j

¸

,

for any integer j P r0; tpu´1s. Those derivatives can be continuously extended at
0 and at ´y therefore, from now on, we will call g˘y

pjq the continuous extensions
too. For any integer j P r0; tpu´ 1s, we have g˘y

pjq
p0q “ 0. Moreover,

g˘y
ptpuq
pxq “

p!

pp´ tpuq!

`

psgnpxqqtpu
p|x|p´tpu

` yp´tpu
q ¯ psgnpy ` xqqtpu

|y ` x|p´tpu
˘

on Rzt0u, by continuous extension at ´y. One can check that both g´y
ptpuq and

g`y
ptpuq are positive on p0;8q and negative on p´8; 0q. Finally, since g˘y

pjq
p0q “ 0

for any integer j P r0; tpu ´ 1s and tpu is odd, we conclude that g˘y
pjq
ă 0 on

p´8; 0q and g˘y
pjq
ą 0 on p0;8q for j odd and g˘y

pjq
ą 0 on Rzt0u for j even. In

particular, g˘y ą 0 on Rzt0u. This concludes the proof of the first two inequalities.
If we now restrict the study to x P R` the study of f˘y for any p gives that
ˇ

ˇ

ˇ

ˇ

ˇ

|y ` x|p ´

tpu
ÿ

k“0

ˆ

p

k

˙

yp´kxk

ˇ

ˇ

ˇ

ˇ

ˇ

ă |x|p, @px, y, pq P p0;`8q2 ˆ r0;`8q.

Thus, for pt, zq P pRzt0uq2, applying the above to x “ z2 ą 0, y “ t2 ą 0 and
p “ q

2
leads to

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

|t` iz|q ´

t
q
2

u
ÿ

k“0

ˆ q
2

k

˙

|t|q´2k
|z|2k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă |z|q.

This concludes the proof of Lemma 2.75. �

We can now turn to the details of the proof of Lemma 2.41. Let pv̆cqcě1 be a
sequence of JKc,λp1q’s minimizers thus, in particular, v̆c P H1

perpKcq for each c. We
split the proof in several step for clarity. Note that our proof uses the number
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m (defined just below) but that it could be also proved without introducing it,
similarly to Lemma 2.42.

Step 1: non vanishing. We prove here that there exits a sequence of trans-
lations y :“ tycu Ă R3 such that v̆yc 1Kc á uy ı 0 weakly in L2pR3q, up to the
extraction of a subsequence, where v̆yc :“ v̆cp¨ ´ ycq. First, by Kc-periodicity, we
have that ||v̆yc 1Kc ||L2pR3q

does not depend on y and is equal to
?
λ. Thus such

L2pR3q-weak limits uy ě 0 exist. This step consists therefore in proving that
there exists uy ı 0.

Similarly to the proof of Theorem 2.3, we introduce, for any sequence tϕnu
bounded in L2

locpR3q, the number

mptϕnuq “ sup

"
ż

R3

|ϕ|2
ˇ

ˇ Dtxnu Ă R3, ϕnkp¨ ´ xkq á ϕ weakly in L2
pR3
q

*

.

We thus have to prove that mptv̆cuq ą 0.

Remark. @y :“ tynu Ă R3,mptϕy
nuq “mptϕnuq and mptϕnkuq ďmptϕnuq.

For any z P R3, K` z will denote the z-translation of K. Then, for any c ą 1,
we take a finite family tziuiPN Ă LK such that

Ť

tziu

pK ` ziq forms an tiling of

Krcs :“ rcs ¨ K. We thus have that zi ‰ zj and pK ` ziq X pK ` zjq “ H if i ‰ j

and that
ď

tziu

pK` ziq “ Krcs.

Consequently, we have

||v̆c||
10
3

L
10
3 pKcq

ď
ÿ

tziu

||v̆c||
10
3

L
10
3 pK`ziq

ď
ÿ

tziu

||v̆c||
4
3

L2pK`ziq ||v̆c||
2
L6pK`ziq

ď
ÿ

tziu

´

sup
i
||v̆c||L2pK`ziq

¯
4
3
CpKq ||v̆c||2H1pK`ziq

ď 8CpKq
´

8 sup
pK`zqĂKc

||v̆c||L2pK`zq

¯
4
3
||v̆c||

2
H1pKcq ,

where the factor 8 is a rough upper bound arising twice (respectively for L2 and
H1 norms) from the fact that the pK` ziq’s on the edges belong at worst (when
zi is near a corner of Kc) to 8 distinct replicas of Kc. Passing to the limit cÑ 8,
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we deduce that there exists C depending only on K (not on Kc) such that

lim sup
cÑ8

||v̆c||
10
3

L
10
3 pKcq

ď C

˜

lim sup
cÑ8

sup
pK`zqĂKc

ż

K`z
|v̆c|

2

¸2{3

lim sup
cÑ8

||v̆c||
2
H1pKcq .

Let now consider tycu Ă R3 such that pK` ycq Ă Kc and such that

lim
cÑ8

ż

K`yc
|v̆c|

2
“ lim sup

cÑ8
sup

pK`zqĂKc

ż

K`z
|v̆c|

2

and let χc P C80 pKcq be such that 0 ď χc ď 1, χc|Kc´1
” 1, χc|R3zKc ” 0 and

||∇χc||L8pR3q
bounded. The sequence pv̆yc χcqc being bounded in H1pR3q by Corol-

lary 2.36, there exists, up to extraction of a subsequence, uy P H1pR3q such that
v̆yckχck á uy weakly in H1pR3q (which is the same weak limit as v̆yc ’s weak limit)
and, by Rellich-Kondrachov Theorem, strongly in L2pKq. Thus

lim
cÑ8

ż

K`yc
|v̆c|

2
“ lim

cÑ8

ż

K
|v̆yc |

2
“ lim

cÑ8

ż

K
|v̆yc χc|

2
“

ż

K
|uy|

2
ďmptv̆cuq

and, consequently,

lim sup
cÑ8

||v̆c||
10{3

L10{3pKcq ď C pmptv̆cuqq
2{3 lim sup

cÑ8
||v̆c||

2
H1pKcq . (2.97)

This concludes this step since

lim sup
cÑ8

||v̆c||H1pKcq À 1 À lim sup
cÑ8

||v̆c||L10{3pKcq

by Corollary 2.36 thus mptv̆cuq ą 0.
Similarly to (2.97) but using ||v̆c||

8{3

L8{3pK`ziq
ď ||v̆c||

5{3
L2pK`ziq ||v̆c||L6pK`ziq in the

first upper bound of this Step, one obtains

lim sup
cÑ8

||v̆c||
8{3

L8{3pKcq ď C 1 pmptv̆cuqq
5{6 lim sup

cÑ8
||v̆c||H1pKcq . (2.98)

Step 2: bubbles’ extraction. We prove here that the minimizers split into a
sum of localized bubbles as c goes to 8. Using Lemmas 2.43 and 2.61, we start
by proving a H1-convergence result in the following lemma.

Lemma 2.76. Let K be the unit cube, 0 ď Rk ď R1k be such that Rk Ñ

8 and tϕcucě1 be a sequence of functions such that ϕc P H1
perpKcq for all c,

||ϕc||H1pKcq uniformly bounded and ϕc á
cÑ8

ϕ weakly in L2pR3q. Then there exists
a subsequence tϕckukÑ8 such that

lim
kÑ8

||ϕck ´ ξk ´ ψk||H1pKck q
“ 0

where Bp0, 4R1kq Ă Kck , tξkuk and tψkuk are in H1
perpKckq with their H1pKckq-

norms uniformly bounded such that
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(1) 1Kck ξk á ϕ weakly in H1pR3q and strongly in LppR3q for 2 ď p ă 6,

(2) suppp1Kck ξkq Ă Bp0, Rkq and suppp1Kckψkq Ă KckzBp0, R
1
kq,

(3) mptψkuq ďmptϕckuq ďmptϕcuq.

Proof of Lemma 2.76. The proof is similar to the one of Corollary 2.62
but adapting it to our specific case which is periodic and the sequences are not,
per se, in H1pR3q.

Since 1Kcϕc á
cÑ8

ϕ weakly in L2pR3q and ||ϕc||H1pKcq uniformly bounded we
have by Lemma 2.43 that ϕ P H1pR3q and ϕc á ϕ weakly in H1pR3q.

Let tηcu be smooth functions such that, for any c, ηc : R3 Ñ r0, 1s, ηc|Kc ” 1,
ηc|R3zKc`1

” 0 and ||∇ηc||L8pR3q
bounded. Since ηcϕc is H1pR3q-bounded and

converges weakly to ϕ in H1pR3q, we apply Lemma 2.61 to it together with
Rk{2 and 4R1k and obtain a subsequence tϕcku, that can be chosen to verify
Bp0, 4R1kq Ă Kck for all k, such that
ż

|x|ďRk{2

|ϕck |
2
Ñ

ż

R3

|ϕ|2 and
ż

Rk{2ď|x|ď4R1
k

`

|ϕck |
2
` |∇ϕck |2

˘

Ñ 0. (2.99)

Let χ : R` Ñ r0, 1s be a smooth function such that 0 ď χ1 ď 2, χ|r0,1s ” 1,
χ|r2,8q ” 0. We then denote χ̃kpxq :“ χp2|x|{Rkq and ζ̃kpxq :“ 1´ χp|x|{R1kq and
introduce ξk and ψk the two Kck-periodic functions such that ξk |Kck :“ χ̃kϕck and
ψk |Kck :“ ζ̃kϕck . It holds, on Kck , that

ϕck ´ ξk ´ ψk “ ϕckpχp|x|{R
1
kq ´ χp2|x|{Rkqq

which leads to Kck X supp pϕck ´ ξk ´ ψkq Ă tRk{2 ď |x| ď 2R1ku and finally,
using (2.99), to the fact that

lim
kÑ8

||ϕck ´ ξk ´ ψk||H1pKck q
“ 0.

Moreover, by construction, 1Kck ξk á ϕ weakly in H1pR3q and it also holds that

lim
kÑ8

ż

R3

ˇ

ˇ1Kck ξk
ˇ

ˇ

2
“ lim

kÑ8

ż

Bp0,Rk{2q

|ξk|
2
“

ż

R3

|ϕ|2,

hence 1Kck ξk also strongly converges to ϕ in LppR3q for 2 ď p ă 6 by Sobolev
embeddings and because ||ϕc||H1pKcq is uniformly bounded. In addition, it is easy
to see that 1Bp0,4R1

k
qψk Ñ 0 strongly in L2pR3q.

We now prove that mptψkuq ďmptϕckuq ďmptϕcuq. We suppose mptψkuq ą
0, otherwise there is nothing to prove. Thus, there exists kj’s, txju Ă R3 and
ψ ı 0 such that ψkjp¨ ´ xjq á ψ weakly in L2pR3q. We first prove that, for j
large enough, we have |xj| ě 3R1kj . Indeed, if for a subsequence (denoted the
same), we have |xj| ă 3R1kj then ψkjp¨ ´ xjq1Bp0,R1

k
q á 0 ” ψ weakly in L2pR3q
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— since Bpxj, R1kq Ă Bp0, 4R1kq and 1Bp0,4R1
k
qψk Ñ 0 strongly in L2pR3q — a

contradiction. Consequently, we have that

ψkjp¨ ´ xjq1Bp0,R1kj q
“ ϕckj p¨ ´ xjq1Bp0,R1kj q

á ψ

since ζ̃k ” 1 on Bpxj, R1kjq which implies that ϕckj p¨ ´ xjq á ψ weakly in L2pR3q

hence that mptψkuq ďmptϕckuq. �

This result allows us to obtain Lemma 2.77 which concludes this Step 2.

Lemma 2.77 (Splitting in localized bubbles). Let K be the unit cube, tϕcucě1

be a sequence of functions such that ϕc P H1
perpKcq for all c, ||ϕc||H1pKcq uni-

formly bounded and mptϕcuq ą 0. Then there exists a sequence of functions
tϕp1q, ϕp2q, ¨ ¨ ¨ u in H1pR3q such that the following holds: for any ε ą 0 and any
fixed sequence 0 ď Rk Ñ 8, there exist:

‚ J ě 1,

‚ a subsequence tϕcku,

‚ sequences tξp1qk u, ¨ ¨ ¨ , tξ
pJq
k u, tψku in H1

perpKckq ,

‚ sequences of space translations txp1qk u, ¨ ¨ ¨ , tx
pJq
k u in R3,

such that

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ϕck ´
J
ÿ

j“1

ξ
pjq
k p¨ ´ x

pjq
k q ´ ψk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

H1pKck q

“ 0

where

‚ tξ
p1q
k u, ¨ ¨ ¨ , tξ

pJq
k u, tψku have uniformly bounded H1pKckq-norms,

‚ 1Kck ξ
pjq
k á ϕpjq weakly in H1pR3q and strongly in LppR3q for 2 ď p ă 6,

‚ suppp1Kck ξ
pjq
k q Ă Bp0, Rkq for all j “ 1, ¨ ¨ ¨ , J and all k,

‚ suppp1Kckψkq Ă Kckz
J
Ť

j“1
Bpx

pjq
k , 2Rkq for all k,

‚ |x
piq
k ´ x

pjq
k | ě 5Rk for all i ‰ j and all k,

‚ mptψkuq ď ε.

Proof of Lemma 2.77. Let ε ą 0 and the sequence tRku be fixed.
Since mptϕcuq ą 0, there exist a subsequence cck , a sequence translation

tx
p1q
k u Ă R3 and a function 0 ı ϕp1q P L2pR3q such that ϕckp¨ ` x

p1q
k q á ϕp1q

weakly in L2pR3q. We apply Lemma 2.76 to ϕckp¨ ` x
p1q
k q, Rk and R1k “ 2Rk.
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Thus, up to a subsequence (we keep the same notation for simplicity), tϕckukÑ8
is such that

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ϕck ´ ξ

p1q
k p¨ ´ x

p1q
k q ´ ψ

p2q
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

H1pKck q
“ 0

where ξp1qk and ψp2qk are in H1
perpKckq for all k and ||ξp1qk ||H1pKck q and ||ψ

p2q
k ||H1pKck q

uniformly bounded. Moreover
(1) 1Kck ξ

p1q
k á ϕp1q weakly in H1pR3q and strongly in LppR3q for 2 ď p ă 6,

(2) suppp1Kck ξ
p1q
k q Ă Bp0, Rkq and suppp1Kckψ

p2q
k q Ă KckzBpx

p1q
k , 2Rkq,

(3) mptψ
p2q
k uq ďmptϕckuq ďmptϕcuq.

Remark. Unlike how things have been written in Lemma 2.76, from now on
ψ
p2q
k includes in its definition the translation sequence xp1qk .

If mptψp2qk uq “ 0, then we can stop here. Otherwise, we apply the same to the
sequence tψp2qk u which verifies the same three properties as tϕcu was verifying.
There exist a subsequence (same notation for simplicity), a sequence translation
tx
p2q
k u Ă R3 and a function 0 ı ϕp2q P L2pR3q such that ψp2qk p¨`x

p2q
k q á ϕp2q weakly

in L2pR3q. We claim that |xp2qk ´x
p1q
k | Ñ 8. Indeed, if it were not divergent, then

up to another subsequence, we would have |xp2qk ´ x
p1q
k | Ñ ν. Then the fact

that ϕck ´ ϕp1qp¨ ´ x
p1q
k q “ ψ

p2q
k ` εk, where ||εk||H1pKck q

Ñ 0 thus εk á 0 weakly

in L2pR3q, would lead to the fact that ϕckp¨ ` x
p1q
k q á ϕp1q ` ϕp2qp¨ ` νq which

contradicts the fact that ϕckp¨ ` x
p1q
k q á ϕp1q since `ϕp2q ı 0.

We now apply Lemma 2.76 to ψp2qk p¨ ` x
p2q
k q, Rk and R1k “ 2Rk. Thus, up to

a subsequence (same notation for simplicity), |xp2qk ´ x
p1q
k | ě 5Rk for all k and

tψ
p2q
k ukÑ8 is such that

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ψ
p2q
k ´ ξ

p2q
k p¨ ´ x

p2q
k q ´ ψ

p3q
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

H1pKck q
“ 0

where ξp2qk and ψp3qk are in H1
perpKckq for all k and ||ξp2qk ||H1pKck q and ||ψ

p3q
k ||H1pKck q

uniformly bounded. Moreover
(1) 1Kck ξ

p2q
k á ϕp2q weakly in H1pR3q and strongly in LppR3q for 2 ď p ă 6,

(2) suppp1Kck ξ
p2q
k q Ă Bp0, Rkq and suppp1Kckψ

p3q
k q Ă Kckz

2
Ť

j“1
Bpx

pjq
k , 2Rkq,

(3) mptψ
p3q
k uq ďmptψ

p2q
k uq.

Repeating this, we obtain that for any i ě 1 such that mptψ
piq
k uq ą 0, we have

thať
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ϕck ´
i
ÿ

j“1

ξ
pjq
k p¨ ´ x

pjq
k q ´ ψ

pi`1q
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

i
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ψ
pjq
k ´ ξ

pjq
k p¨ ´ x

pjq
k q ´ ψ

pj`1q
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Ñ 0,
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where the norm is the H1pKckq-norm and ψ
p1q
k :“ ϕck and with all the wanted

properties verified, except the upper bound by ε. This last one comes from the
fact that mptψpiqk uq ą 0 for all i and their infinite sum is bounded by λ thus the
sequence converges to 0. Hence, there exist J ě 1 such that mptψpJ`1q

k uq ď ε and
this concludes the proof of Lemma 2.77. �

Step 3: end of the proof. We apply Lemma 2.77 to the sequence of minimizers
tv̆cu which verifies the hypothesis of the proposition by Corollary 2.36 and does
not vanish (see Step 1). Thus

v̆ck “ νk ` εk `
J
ÿ

j“1

v̆
pjq
k p¨ ´ x

pjq
k q

where ||εk||H1pKck q
Ñ 0 and, for a given k, the supports of the v̆pjqk p¨ ´ x

pjq
k q’s

and νk are pairwise disjoint. Using the support properties of the functions, the
Minkowski inequality, Sobolev embeddings and the fact that suppp1Kck v̆

pjq
k q Ă

Bp0, Rkq Ă Kck , we then have that

JKck pλq “ JKck pv̆ckq “ JKck pνkq `
J
ÿ

j“1

JKck pv̆
pjq
k q ` op1qckÑ8

“ JKck pνkq `
J
ÿ

j“1

JKck p1Kck v̆
pjq
k q ` op1qckÑ8

“ JKck pνkq `
J
ÿ

j“1

JR3p1Kck v̆
pjq
k q ` op1qckÑ8.

Moreover, the strong convergence of 1Kck v̆
pjq
k in L2 and the continuity of λ ÞÑ

JR3,λ, proved in Lemma 2.12, imply, for all j “ 1, ¨ ¨ ¨ , J , that

JR3p1Kck v̆
pjq
k q ě JR3

´

||v̆
pjq
k ||

2
L2pKck q

¯

ÝÑ
kÑ8

JR3pλpjqq,

where, for any j, λpjq :“ ||v̆pjq||L2pR3q is the mass of the limit of 1Kck v̆
pjq
k . We also

have denoted JR3pλq :“ JR3,λ to simplify notations here. In addition, given that
the H1pKckq-norms of tνku are uniformly bounded, we can use (2.98) to obtain
that there exist C ą 0 such that

JKck pνkq ě ´
3

4

ż

Kck

|νk|
8{3
ě ´C pmptνkuqq

5{6
ě ´Cε5{6.
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Those inequalities together with the strict binding proved in Proposition 2.16
lead to

lim inf
kÑ8

JKck pλq ě
J
ÿ

j“1

JR3pλpjqq ´ Cε5{6

ą JR3

´
J
ÿ

j“1

λpjq
¯

´ Cε5{6
ą JR3pλq ´ JR3

´

λ´
J
ÿ

j“1

λpjq
¯

´ Cε5{6.

By the support properties, we have

0 ď ||νk||
2
L2pKck q

“ λ´
J
ÿ

j“1

λpjq ` op1q

thus λ´
J
ř

j“1
λpjq ě 0 and this implies that JR3

´

λ´
J
ř

j“1
λpjq

¯

ď 0 which leads to

lim inf
kÑ8

JKck pλq ą JR3pλq ´ Cε5{6.

This concludes the detailed proof of Lemma 2.41.

6.8. Two technical inequalities.

Lemma 2.78. There exists C ď 2
e lnp2q

such that, for all integers p ě k ě 1

and all nonnegative real numbers X and Y , we have
ˇ

ˇX2`1{p
´ Y 2`1{p

ˇ

ˇ ď |X ´ Y |pX ` Y q1`
1{p (2.100)

and
ˇ

ˇX1`k{p
´ Y 1`k{p

ˇ

ˇ ď C|X ´ Y |pX ` Y q
k{p. (2.101)

Proof of Lemma 2.78. It is enough to prove the two results for 0 ď Y ď

X. Moreover, the equality cases being obvious in the two inequalities, we in fact
suppose that 0 ă Y ă X.

We start with the proof of (2.100). Defining, on pY ;8q, the function

fY pXq “ pX ´ Y qpX ` Y q1`
1{p
´X2`1{p

` Y 2`1{p,

its derivative is

f 1Y pXq “ pX ` Y q
1
p

„

2X `
X ´ Y

p



´
2p` 1

p
X1` 1

p “: gXpY q,

where gX is defined on p0;Xq. Its own derivative is

g1XpY q “
1

p
pX ` Y q

1
p
´1

ˆ

1`
1

p

˙

pX ´ Y q ą 0,
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hence gX is strictly increasing. Since gXp0q “ 0, it implies that gX ą 0 on p0;Xq.
Finally, for any Y ą 0, fY is strictly increasing on its domain pY ;8q. It concludes
the proof of (2.100) since fY pY q “ 0.

We now prove (2.101). For p “ k, the result is obvious hence we suppose that
p ą k ě 1. Defining, on pY ;8q, the function

fY,CpXq “ CpX ´ Y qpX ` Y q
k{p
´X1`k{p

` Y 1`k{p,

its derivative is

f 1Y,CpXq “ CpX ` Y q
k
p
´1

„

X

ˆ

1`
k

p

˙

` Y

ˆ

1´
k

p

˙

´
p` k

p
X

k
p “: gX,CpY q,

where gX,C is defined on p0;Xq. Its own derivative is

g1X,CpY q “ ´C
k

p

ˆ

1´
k

p

˙

pX ` Y q
k
p
´2
pX ´ Y q ă 0.

Moreover, gX,CpXq “
´

C
2

2
p`k
p ´

p`k
p

¯

X
k
p , thus it is sufficient for ηCpzq “ C

2
2z´z

to be positive on p1; 2q to have fY,C increasing and then fY,CpXq ě fY,CpY q “ 0.
We have η1Cpzq “ ln 2C

2
2z´1. Thus, for C “ 2

e lnp2q
, we have η1Cpzq “ e´12z´1

thus η1Cp1q ă 0 and η1Cp2q ą 0. Moreover, since η2Cpzq “
C
2
pln 2q22z ą 0, z0 “

1
ln 2

is the unique value in p1; 2q such that η1Cpz0q “ 0 and we have

ηCpzq ą ηCpz0q “ 0, @z P p1; 2qztz0u.

This concludes the proof of Lemma 2.78. �

6.9. Detailed proof of boundedness property of p´∆per ´GK ` βq
´1.

Lemma 2.79. Then the L2
perpKq-operator ´∆per´GK is self-adjoint of domain

H2
perpKq and, for β large enough,

p´∆per ´GK ` βq
´1 : L2

pKq Ñ H2
pKq

is bounded uniformly in β.

Proof of Lemma 2.79. Let f , defined on R3, beK-periodic and inH2
perpKq.

We define K1 as the union of K with its twenty-six closest neighbors. Let χ P
C8c pR3q be such that 0 ď χ ď 1, χ|K ” 1 and χ|R3zK1 ” 0. By Sobolev inequalities,
we have

||χf ||L8pR3q
ď CR3 ||χf ||H2pR3q

ď CR3

´

||∆pχfq||L2pR3q
` ||χf ||L2pR3q

¯

“ CR3

´

||∆pχfq||L2pK1q ` ||χf ||L2pK1q

¯

.
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It leads to

||f ||L8pKq “ ||χf ||L8pR3q
ď CR3

´

||χ∆f ||L2pK1q ` 2 ||∇χ||
8
||∇f ||L2pK1q

` ||∆χ||
8
||f ||L2pK1q ` ||f ||L2pK1q

¯

ď CR3

´

27 ||∆f ||L2pKq

` 54 ||∇χ||
8
||∆f ||

1{2
L2pKq ||f ||

1{2
L2pKq

` 27p||∆χ||
8
` 1q ||f ||L2pKq

¯

ď 27CR3

´

p1` ||∇χ||
8
q ||∆f ||L2pKq

` p||∆χ||
8
` ||∇χ||

8
` 1q ||f ||L2pKq

¯

.

By the definition of K1 and thus of χ, ||∆χ||L8pR3q
and ||∇χ||L8pR3q

are bounded
thus we obtain that there exists C ą 0, depending only on K, such that

||f ||L8pKq ď C
´

||´∆f ||L2pKq ` ||f ||L2pKq

¯

. (2.102)

Consequently, for any R ą 0, it holds that

||GKf ||L2pKq ď
ˇ

ˇ

ˇ

ˇGK1|GK|ěR

ˇ

ˇ

ˇ

ˇ

L2pKq ||f ||L8pKq `R ||f ||L2pKq .

Since GK P L
2pKq, by Lemma 2.20, Lebesgue’s dominated convergence theorem

gives
ˇ

ˇ

ˇ

ˇGK1|GK|ěR

ˇ

ˇ

ˇ

ˇ

L2pKq Ñ 0

as RÑ 8 hence, for any ε ą 0, it finally holds that there exists Cε such that

||GKf ||L2pKq ď ε ||´∆f ||L2pKq ` Cε ||f ||L2pKq . (2.103)

In particular for 0 ă ε ă 1, the Rellich-Kato theorem (see e.g. [RS75, Theorem
X.12]) implies that the operator ´∆per´GK is self-adjoint of domain Dp´∆perq “

H2
perpKq and is bounded below.
For β ą 0, we then have

||f ||H2pKq “ ||p´∆` 1qf ||L2pKq ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´∆` 1

´∆` β

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

||p´∆` βqf ||L2pKq

ď maxt1, β´1
u ||p´∆` βqf ||L2pKq .

(2.104)

Indeed for any x P K, using the Fourier series on a lattice

fpxq “
ÿ

kPL ˚
K

f̂pkqe´2iπxk,xy,

with the Fourier transform on the lattice

f̂pkq :“ F rf spkq :“ |K|´1

ż

K
fpxqe2iπxk,xy dx,
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we have
||f ||2L2pKq “ |K|

ÿ

kPL ˚
K

|f̂pkq|2.

In the above, L ˚
K is the reciprocal lattice of LK and is generated, in the general

case, by the vectors

pb1, b2, b3q “
1

xe1 ^ e2, e3y
pe2 ^ e3, e3 ^ e1, e1 ^ e2q.

In the general case we have xei, bjy “ δji but, for or orthonormal lattice, this
simplifies to pb1, b2, b3q “ pe1, e2, e3q and thus L ˚

K “ LK. Inequality (2.104) is
then obtained by

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´∆` 1

´∆` β
f

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

L2pKq
“

1

|K|
ÿ

kPL ˚
K

ˇ

ˇ

ˇ

ˇ

ż

K
e2iπxk,xy

p´∆` 1qp´∆` βq´1fpxq dx
ˇ

ˇ

ˇ

ˇ

2

“ |K|´1
ÿ

kPL ˚
K

ˆ

1` 4π2|k|2

β ` 4π2|k|2

˙2 ˇ
ˇ

ˇ

ˇ

ż

K
e2iπxk,xyfpxq dx

ˇ

ˇ

ˇ

ˇ

2

ď maxt1, β´2
u|K|

ÿ

kPL ˚
K

|f̂pkq|2 “ maxt1, β´2
u ||f ||2L2pKq .

On the other hand

||GKf ||L2pKq ď ε ||´∆f ||L2pKq ` Cε ||f ||L2pKq

ď ε

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´∆

´∆` β

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

||p´∆` βqf ||L2pKq ` Cε

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

´∆` β

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

||p´∆` βqf ||L2pKq

ď
`

ε` Cεβ
´1
˘

||p´∆` βqf ||L2pKq ,

the last inequality being proved through Fourier series too. Consequently, since

p´∆` βqp´∆`GK ` βq
´1
“ 1`GKp´∆`GK ` βq

´1,

we obtain that for any 0 ă ε ă 1, there exist β0 ą 0 such that for any g P L2
perpKq

and any β ě β0, we have
ˇ

ˇ

ˇ

ˇp´∆`GK ` βq
´1g

ˇ

ˇ

ˇ

ˇ

H2pKq ď maxt1, β´1
u
ˇ

ˇ

ˇ

ˇp´∆` βqp´∆`GK ` βq
´1g

ˇ

ˇ

ˇ

ˇ

L2pKq

ď maxt1, β´1
u

ˆ

1´ ε´
Cε
β

˙´1

||g||L2pKq

ď maxt1, β0
´1
u

ˆ

1´ ε´
Cε
β0

˙´1

||g||L2pKq .

Thus, for β large enough, the operator

p´∆per ´GK ` βq
´1 : L2

perpKq Ñ H2
perpKq
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is bounded uniformly in β. �

Lemma 2.80. For any ν, c ą 0, the operator

´∆per ´
ν

c

N
ÿ

i“1

ziGKpc
´1
¨ ´Riq

is self-adjoint of domain H2
perpKcq and, for β’s large enough and ν ď 1,

´

´∆per ´
ν

c

N
ÿ

i“1

ziGKpc
´1
¨ ´Riq ` β

¯´1

: L2
pKcq Ñ H2

pKcq

are bounded uniformey in c, β and ν.

Proof of Lemma 2.80. Let f , defined on R3, be in H2
perpKcq. Let χ P

C8c pR3q be such that 0 ď χ ď 1, χ|Kc ” 1 and χ|R3zKc`1
” 0. Noticing that, by

the definition of χ, ||∆χ||L8pR3q
and ||∇χ||L8pR3q

are bounded independently of Kc

(it only depends on K) and using that by Lemma 2.20, there exist C1 such that
|GK| ď C1| ¨ |

´1, we can follow the same proof as for Lemma 2.79 to obtain for
any r ą 0 and with Z “

ř

i zi that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

c´1
N
ÿ

i“1

ziGKpc
´1
¨ ´Riqf

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L2pKcq

ď C1Z

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

| ¨ |
1|¨|ď 1

r

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L2pKcq
||f ||

8
` C1Zr ||f ||L2pKcq

ď C1CZ

c

4π

r
||´∆f ||L2pKcq

` C1Z

˜

C

c

4π

r
` r

¸

||f ||L2pKcq

where C and C1 are independent of c. Finally, for any ε ą 0, there exists

Cε :“ ε` 4π
C1

3Z3ν3C2

ε2

such that for any c and 0 ď ν ď 1 we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ν

c

N
ÿ

i“1

ziGKpc
´1
¨ ´Riqf

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L2pKcq

ď ε ||´∆f ||L2pKcq ` Cε ||f ||L2pKcq .

In particular for 0 ă ε ă 1, the Kato-Rellich theorem (see e.g. [RS75, Theorem
X.12]) implies that, for any c, the operator

´∆per ´
ν

c

N
ÿ

i“1

ziGKpc
´1
¨ ´Riq

is self-adjoint of domain Dp´∆perq “ H2
perpKcq and is bounded below.

The end of the proof is the same as for Lemma 2.79. �
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We now show an inequality similar to (2.102) but for Kc and with a constant
independent of c.

Lemma 2.81. For any c˚ ą 0, there exists C such that for any c P rc˚;8q and
f P H2pKcq, we have

||f ||L8pKcq ď C ||f ||H2pKcq .

Proof of Lemma 2.81. Using Fourier series, as in the proof of Lemma 2.79,
we have

|fpxq| ď
ÿ

kPL ˚
Kc

ˇ

ˇ

ˇ
f̂pkq

ˇ

ˇ

ˇ
ď

ˆ

|Kc|
´1

ÿ

kPL ˚
Kc

p1` 4π2
|k|2q´2

˙1{2

ˆ

ˆ

ˆ

|Kc|
ÿ

kPL ˚
Kc

p1` 4π2
|k|2q2

ˇ

ˇ

ˇ
f̂pkq

ˇ

ˇ

ˇ

2
˙1{2

,

for f P H2pKcq. Then, on one hand, we have

|Kc|
ÿ

kPL ˚
Kc

p1` 4π2
|k|2q2

ˇ

ˇ

ˇ
f̂pkq

ˇ

ˇ

ˇ

2

“ |Kc|
ÿ

kPL ˚
Kc

|F rp1´∆qf s pkq|2

“ ||p1´∆qf ||2L2pKcq “ ||f ||
2
H2pKcq

and, on the other hand, denoting by A the application sending Z3 onto LK hence
|K| “ detA and tA´1 sends Z3 onto L ˚

K . For ϕ P C8c pR3q, we have

|Kc|
´1

ÿ

kPL ˚
Kc

p1` 4π2
|k|2q´2

“
c´3

|K|
ÿ

kPZ3

´

1`
`

2πc´1
˘2
|
tA´1k|2

¯´2

ď

ˆ

||tA||

2π

˙4
c

|K|
ÿ

kPZ3

˜

ˆ

c ||tA||

2π

˙2

` |k|2

¸´2

.

Moreover, the summands depending only on |k|, the sum can be decomposed as
ÿ

kPZˆZˆZ
“ 8

ÿ

kPN˚ˆN˚ˆN˚

`12
ÿ

kPt0uˆN˚ˆN˚

`6
ÿ

kPt0uˆt0uˆN˚

`
ÿ

kPt0uˆt0uˆt0u

where N˚ “ Nzt0u and we have
ÿ

kPpN˚q3

`

α2
` |k|2

˘´2
ď

ż

pR`q3

dx dy dz
pα2 ` x2 ` y2 ` z2q

2 “
1

8

ż

R3

dX
pα2 ` |X|2q2

“
π

2

ż 8

0

r2 dr
pα2 ` r2q2

“
π2

8α
,

ÿ

kPpN˚q2

`

α2
` |k|2

˘´2
ď

ż

pR`q2

dx dy
pα2 ` x2 ` y2q

2 “
π

2

ż 8

0

r dr
pα2 ` r2q2

“
π

4α2
,



178 2. SYMMETRY BREAKING IN THE PERIODIC TFDW MODEL

and
ÿ

kPN˚

`

α2
` |k|2

˘´2
ď

ż

R`

dr
pα2 ` r2q

2 “
π

4α3
.

It finally leads to

|Kc|
´1

ÿ

kPL ˚
Kc

p1` 4π2
|k|2q´2

ď

ˆ

||tA||

2π

˙4
c

|K|
ÿ

kPZ3

˜

ˆ

c ||tA||

2π

˙2

` |k|2

¸´2

ď
||tA||

3

8π|K|

„

1`
6

||tA||
c´1

`
6π

||tA||2
c´2

`
8π

||tA||3
c´3



.

So |Kc|
´1

ř

kPL ˚
Kc

p1 ` 4π2|k|2q´2 is uniformely bounded w.r.t. c P rc˚;8q for any

c˚ ą 0 and this concludes the proof of Lemma 2.81. �
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