
HAL Id: tel-01534104
https://theses.hal.science/tel-01534104v2

Submitted on 16 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advanced dMRI signal modeling for tissue
microstructure characterization

Rutger Fick

To cite this version:
Rutger Fick. Advanced dMRI signal modeling for tissue microstructure characterization. Other. CO-
MUE Université Côte d’Azur (2015 - 2019), 2017. English. �NNT : 2017AZUR4006�. �tel-01534104v2�

https://theses.hal.science/tel-01534104v2
https://hal.archives-ouvertes.fr


PhD THESIS

prepared at

Inria Sophia Antipolis - Méditerranée

and presented at the
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École Doctorale STIC

(Sciences et Technologies de l’Information et de la Communication)

THÈSE
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Abstract (in english)

Understanding the structure and function of the brain is one of the great scien-

tific challenges mankind faces to this day. After many years of animal and ex-vivo

dissection studies, the advent of non-invasive imaging modalities finally enabled

in-vivo examination of the central nervous system. This thesis is dedicated to fur-

thering neuroscientific understanding using diffusion-sensitized Magnetic Resonance

Imaging (dMRI). Within dMRI, we focus on the estimation and interpretation of

microstructure-related markers. This subfield is often referred to as “Microstruc-

ture Imaging”. In Microstructure Imaging, the observed water diffusion restriction

is related to tissue structure using biophysical models, i.e., simplified representa-

tions of the nervous tissue. While this is conceptually straightforward, actually

designing an appropriate model that relates the observed diffusion measurements

to relevant tissue parameters has proven to be a task of Herculean proportions.

This thesis is divided into three parts. In part 1, we first introduce the basic

knowledge necessary to understand the biological and physical basis of the diffu-

sion MR signal, following by brief review on the estimation and interpretation of

diffusion anisotropy. We end this part with an extensive review of PGSE-based

microstructure imaging. In this review, we deconstruct every microstructure model

to its basic parts and clearly show how each model relates to others, emphasizing

model assumptions and limitations. This is followed by a validation of microstruc-

ture estimates using various microstructure models using spinal cord data with

registered diffusion and histology data. Finally, we address current claims of de-

generacy in multi-compartment imaging and propose a methodology to avoid this

degeneracy.

In part 2, we focus on our contributions in three-dimensional q-space imag-

ing, with special emphasis on functional basis approaches (FBA). We start with

our contribution to use analytic Laplacian regularization for the Mean Apparent

Propagator (MAP) functional basis (MAPL) to recover microstructure-related q-

space indices. We illustrate the effectiveness of MAPL on both a physical phantom

with gold standard data and data from the Human Connectome Project. Further-

more, we propose to use MAPL as a preprocessing for subsequent microstructure

estimation using multi-compartment models. We end this part with a biomarker

comparison study in Alzheimer rats.

In part 3, we focus on our contributions to time-dependent q-space imaging. We

propose a functional basis approach to simultaneously represent three-dimensional

q-space and diffusion time, that we call qτ -diffusion MRI (qτ -dMRI). This allows

us to estimate time-dependent q-space indices, that we call qτ -indices. For the

first time, qτ -dMRI allows for the non-parametric exploration of time dependent
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diffusion in nervous tissue.

The work for this thesis was partly done in collaboration with CENIR, Institut

du Cerveau et de la Moelle épinière (Paris, France), University of Southern Califor-

nia (CA, USA), University of Verona (Verona, Italy) and Université de Sherbrooke

(Québec, Canada).

This work was partly supported by ANR ”MOSIFAH” under ANR-13-MONU-

0009-01, the ERC under the European Union’s Horizon 2020 research and innova-

tion program (ERC Advanced Grant agreement No 694665:CoBCoM).

Keywords diffusion MRI; Microstructure Imaging; q-space imaging: Diffusion

time dependence; regularized reconstruction; Laplace regularization; signal

sparsity; histology validation.



Résumé (en français)

Comprendre la structure et la fonction du cerveau est un des plus grands défis

scientifiques à ce jour. Après plusieurs années d’études de dissection animale et

ex-vivo, l’avènement de modalités d’imagerie non invasive a finalement permis la

possibilité d’examiner in vivo le système nerveux central. Cette thèse est dédiée à

l’approfondissement de cette compréhension neuro-scientifique à l’aide d’imagerie

par résonance magnétique (IRMd) sensibilisée à la diffusion. Dans cette thèse,

nous nous concentrons sur la modélisation du signal de diffusion et l’estimation et

l’interprétation par IRMd des biomarqueurs liés à la microstructure. Dans ce sous-

champ, souvent appelé �Microstructure Imaging�, la restriction de la diffusion de

l’eau observée est liée à la structure tissulaire en utilisant des modèles biophysiques,

c’est-à-dire des représentations simplifiées du tissu observé. Bien que cela soit

conceptuellement simple, le développement d’un modèle reliant finement les mesures

de diffusion observées aux paramètres tissulaires pertinents se revèle être une tâche

extrêmement complexe.

Cette thèse est divisée en trois parties. Dans la partie 1, nous introduisons

d’abord la terminologie de base dMRI. Ceci est suivi d’un bref aperçu et d’une

comparaison des méthodes qui estiment l’anisotropie de diffusion. Nous terminons

cette partie par un examen approfondi de l’imagerie microstructurale à base de

PGSE. Dans cette revue, nous déconstruisons chaque modèle de microstructure de

ses parties fondamentales et montrons clairement comment chaque modèle se rap-

porte aux autres, en mettant l’accent sur les hypothèses et les limites du modèle.

Ceci est suivi par une validation des estimations de la microstructure en utilisant

différents modèles de microstructure utilisant l’histologie de la moelle épinière. En-

fin, nous abordons les revendications actuelles de la dégénérescence dans l’imagerie

multi-compartiments et proposons une méthodologie pour y rémédier.

Dans la deuxième partie, nous nous concentrons sur nos contributions en im-

agerie spatiale tridimensionnelle, en mettant l’accent sur les approches fonction-

nelles (FBA). Nous commençons par expliquer le rôle de la FBA dans �Microstruc-

ture Imaging� et nous proposons une revue des méthodologies FBA proposées à

ce jour. Nous continuons ensuite par une contribution à la régularisation et à

l’utilisation de la base fonctionnelle du Propagateur Apparent Moyen (MAP) pour

récupérer les indices d’espace-q liés à la microstructure. Nous terminons enfin cette

seconde partie par une étude de validation sur la moelle épinière du chat et une

étude de comparaison des biomarqueurs chez les rats Alzheimer.

Dans la partie 3, nous nous concentrons sur nos contributions à l’imagerie

spatio-temporelle. Nous proposons une approche à l’aide de base fonctionnelle pour

représenter simultanément l’espace q tridimensionnel et le temps de diffusion, que
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nous appelons qτ -diffusion MRI (qτ -dMRI). Cela nous permet d’estimer les indices

q-espace temps-dépendants, que nous appelons qτ -indices. On montre, pour la

première fois, que qτ -dMRI permet l’exploration non paramétrique de la diffusion

en fonction du temps dans le tissu nerveux.

Les travaux de cette thèse ont été partiellement réalisés en collaboration avec

le CENIR, l’Institut du Cerveau et de la Moelle épinière de Paris, l’Université de

Californie du Sud (CA, USA), l’Université de Vérone (Vérone, Italie) et l’Université

de Sherbrooke (Canada).

Keywords IRM de diffusion; Imagerie microstructure; imagerie q-espace; Dépendance

au temps de diffusion; reconstruction sous contrainte de régularité; régularisation

de Laplace; signal sparsity; Validation histologique.
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Context

This thesis is dedicated to the estimation and interpretation of tissue microstruc-

ture markers in the brain using non-invasive diffusion Magnetic Resonance Imaging

(dMRI) [Le Bihan and Breton, 1985, Merboldt et al., 1985, Taylor and Bushell,

1985]. Within the community this subfield is popularly referred to as “Microstruc-

ture Imaging”. In Microstructure Imaging, the diffusion-weighted signal is related

to the underlying tissue using combinations of biophysical models that describe the

diffusion process inside different tissue types (e.g. intra- or extra-axonal). While this

is conceptually straightforward, actually designing a parsimonious model that re-

lates the observed diffusion measurements to relevant tissue parameters has proven

extremely difficult. In this section, we give some context on the relevance of this

dissertation.

Over 22 years ago, Peter Basser’s seminal work on diffusion tensor imaging

(DTI) [Basser et al., 1994] can be seen as the first real precursor to Microstruc-

ture Imaging in diffusion MRI. It provided the analytic means to precisely describe

the three-dimensional nature of diffusion anisotropy in tissues [Beaulieu, 2002] by

encapsulating the bulk water diffusion properties per voxel into a 3× 3 covariance

matrix of a Gaussian distribution. Through DTI, the community has attributed

changes in diffusion anisotropy and mean diffusivity to both healthy and patho-

logical processes in the human brain [Mori and Zhang, 2006, Assaf and Pasternak,

2008]. However, the fact that DTI markers are sensitive to changes in all these

processes also marks its biggest limitation: it is not specific to any of them. The

need for scalar measures that are both sensitive and specific to tissue changes, in

combination with the increasing quality of data acquisition [Setsompop et al., 2013],

has led to the birth of Microstructure Imaging.

In Microstructure Imaging, the specificity of estimated model parameters to tis-

sue changes hinges on the appropriate choice of biophysical models. These include

representations of trapped water, intra- and extra-axonal diffusion and free diffu-

sion [see a taxonomy in Panagiotaki et al., 2012] as well as spherical distributions

for axon dispersion [Kaden et al., 2007]. A combination of biophysical models con-

stitutes a “microstructure model”. Ideally, fitting a microstructure model to the

diffusion signal in nervous tissue produces model parameters that accurately reflect

the underlying tissue microstructure. However, as recent studies point out with

current acquisition protocols [Jelescu et al., 2015], it appears impossible to reliably

estimate all model parameters from the data without inducing artifactual parame-

ter correlations. This observation illustrates the main challenges in Microstructure

Imaging: it emphasizes the importance of microstructure models that most parsi-

moniously describe tissue structure; the need for effective optimization strategies

to facilitate parameter estimation in those models; the need to go beyond cur-

rent acquisition protocols; as well as the importance of validation using histological
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measurements. In this dissertation, we make contributions to address all of these

challenges in some way.

Organization and Contributions of this Thesis

This dissertation is organized in three parts, composed of 7 chapters, from 3 to 9,

followed by a conclusion, each reflecting the different types of contributions in this

work:

• Part I focuses on finding clarity and understanding the current state-of-the-art

in Microstructure Imaging. In Chapter 3, We start with the basic of diffu-

sion MRI and a brief overview of the estimation and limitations of diffusion

anisotropy. In Chapter 4, we then meticulously review, analyze and compare

most state-of-the-art microstructure models in PGSE-based Microstructure

Imaging. In this Chapter, we deconstruct every microstructure model to its

biophysical “building blocks” and demonstrate how each model relates to

others, emphasizing model assumptions and limitations. This is followed by

a validation of microstructure estimates using various microstructure models

using spinal cord data with registered diffusion and histology data. Finally,

we address current claims of degeneracy in multi-compartment imaging and

propose a new methodology to avoid this degeneracy.

• Part II presents our methodological contributions to three-dimensional q-

space imaging and microstructure recovery. In Chapter 5, we propose closed-

form Laplacian regularization for the recent Mean Apparent Propagator

(MAP) functional basis, allowing us to robustly estimate microstructure-

related q-space indices. In Chapter 6, we apply this approach to high-quality

data of the Human Connectome Project, where we also use it as a prepro-

cessing for subsequent microstructure recovery with other models. Finally,

we compare biomarkers between microstructure models in a ex-vivo study of

Alzheimer rats at different ages in Chapter 7.

• Part III finally presents our contributions to spatio-temporal diffusion MRI –

varying over three-dimensional q-space and diffusion time. We first present an

initial approach that focusses on estimating axon diameter from the qτ -space

in Chapter 8. We end with our final approach in Chapter 9, that we call

qτ -dMRI, where we use a novel functional basis with combined Laplacian and

sparsity regularization to robustly represent the qτ -dMRI signal. For the first

time, qτ -dMRI allows for the three-dimensional estimation time-dependent

q-space indices. We illustrate the robustness of this approach on synthetic

data and two test-retest mouse acquisitions.
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Part I: Microstructure Imaging: From Diffusion Signal

to Tissue Microstructure

Chapter 3 is an introduction to the microstructure of the human brain. It also

introduces the principles of Magnetic Resonance Imaging, with particular emphasis

on diffusion MRI. This chapter provides the basic knowledge necessary to under-

stand the biological and physical basis of the diffusion MR signal. We then discuss

the estimation and interpretation of diffusion anisotropy. We illustrate the contrasts

of a wide variety of anistropy measures, estimated using different techniques. We

emphasize that diffusion anisotropy has many applications in diffusion MRI, but

falls short of being a true marker for tissue microstructure due to its non-specific

contrast.

Chapter 4 provides an extensive review, analysis and discussion on state-of-the-

art microstructure models. Every “microstructure” model uses a combination of

“biophysical” models that each represent a particular part of the underlying tissue

structure (e.g. intra- or extra-axonal). We deconstruct and classify microstructure

models by their components and the microstructural interpretation they lend to

their model parameters. In particular, we make a specific effort to expose the as-

sumptions and limitations that each model has. We follow this with a validation of

intra-axonal volume fraction and axon diameter estimation between different mod-

eling approaches using spinal cord data with registered diffusion MRI and ground

truth histology. We end this chapter by addressing current concerns about the de-

generacy of the solutions of multi-compartment models when the diffusivities are

not fixed, and propose a methodology that avoids this degeneracy.

Part II: A Laplacian-Regularized dMRI model in 3D q-

space Microstructure Imaging

Chapter 5 presents our methodological contributions to 3D q-space imaging. We

propose Laplacian regularization for the non-parametric Mean Apparent Propaga-

tor (MAP)-MRI functional basis. In doing so, we impose smoothness in the re-

constructed signal, allowing for robust estimation of microstructure-related q-space

indices. We compare our regularization with previously proposed approaches using

a phantom with gold standard data, and show that our regularization produces a

lower reconstruction error using fewer samples. However, we do find that MAP-MRI

ODF estimation in crossing tissues is consistently biased towards smaller crossing

angles. We also show the robustness of our approach on in-vivo data of the WU-

MINN human connectome project, where estimated q-space values appear robust
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to data subsampling. Finally, we provide newly derived analytic formulations for

several q-space indices in the MAP-MRI basis.

Chapter 6 focuses on microstructure estimation using high-quality data of the

Human Connectome Project. Using the MAP-MRI functional basis, we find that

estimated trends of apparent axon diameter in the corpus callosum are consistent

with axon diameter trends from histology. These trends appear robust to reductions

in gradient strength. We also propose to use MAP-MRI as a signal preprocessing

approach for subsequent microstructure estimation. We found that this preprocess-

ing reduces the variance of dispersion and axon diameter estimation using NODDI

and a simplified AxCaliber method.

Chapter 7 assesses the evolution of diffusion MRI (dMRI) derived markers from

different white matter models as progressive neurodegeneration occurs in transgenic

Alzheimer rats (TgF344-AD) at 10, 15 and 24 months. We compare biomarkers re-

constructed from Diffusion Tensor Imaging (DTI), Neurite Orientation Dispersion

and Density Imaging (NODDI) and Mean Apparent Propagator (MAP)-MRI in

the hippocampus, cingulate cortex and corpus callosum using multi-shell dMRI.

Using our approach, we are able to provide - for the first time - preliminary and

valuable insight on relevant biomarkers that may directly describe the underlying

pathophysiology in Alzheimer’s disease. This work was done in collaboration with

the University of Southern California.

Part III: Advanced Spatial and Temporal Diffusion Mod-

eling: qτ-dMRI

Chapter 8 presents our initial approach to simultaneously represent the diffusion-

weighted MRI (dMRI) signal over diffusion times, gradient strengths and gradient

directions. We use a functional basis to fit the 3D+t spatio-temporal dMRI signal,

similarly to the 3D-SHORE basis in three dimensional ’q-space’. We regularize

the signal fitting by minimizing the norm of the analytic Laplacian of the basis,

and validate our technique on synthetic data generated using the theoretical model

proposed by Callaghan [1995]. We show that our method is robust to noise and

can accurately describe the restricted spatio-temporal signal decay originating from

tissue models such as cylindrical pores. From the fitting we can then estimate the

axon radius distribution parameters along any direction using approaches similar

to AxCaliber. We also apply our method on real data from an ActiveAx acquisi-

tion [Alexander et al., 2010].
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Chapter 9 demonstrates our refined approach to effectively represent the four-

dimensional diffusion MRI signal – varying over three-dimensional q-space and dif-

fusion time τ . We propose a functional basis approach that is specifically designed

to represent the dMRI signal in this qτ -space, which we call qτ - (“cutie”) dMRI. We

regularize the fitting of qτ -dMRI by imposing both signal smoothness and sparsity.

This drastically reduces the number of diffusion-weighted images (DWIs) we need to

represent the qτ -space. As the main contribution, qτ -dMRI provides the framework

for estimating time-dependent q-space indices (qτ -indices), providing new means for

studying diffusion in nervous tissue. We validate our method on both in-silico gen-

erated data using Monte-Carlo simulations and an in-vivo test-retest study of two

C57Bl6 wild-type mice, where we found excellent reproducibility of estimated qτ -

index values and trends. In the hopes of opening up new τ -dependent venues of

studying nervous tissues, qτ -dMRI is the first of its kind in being specifically de-

signed to provide open interpretation of the qτ -diffusion signal. This work was done

in collaboration with CENIR, Institut du Cerveau et de la Moelle épinière, Paris,

France.

Software Contributions

Our methodological contributions to MAP-MRI have already been included in the

open-source diffusion in python (DiPy) framework. Our proposed qτ -dMRI func-

tional basis will also be included in Dipy.
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Cette thèse est dédiée à l’estimation et l’interprétation des biomarqueurs de

microstructure tissulaire dans le cerveau à l’aide de la diffusion non invasive Imagerie

par Résonance Magnétique (IRMd) [Le Bihan and Breton, 1985, Merboldt et al.,

1985, Taylor and Bushell, 1985]. Dans la communauté de la neuro-imagerie, ce

sous-champ est appelé �Microstructure Imaging�. Dans Microstructure Imaging, le

signal pondéré par diffusion est lié au tissu sous-jacent en utilisant des combinaisons

de modèles biophysiques qui décrivent le processus de diffusion à l’intérieur de

différents types de tissus (par exemple intra ou extra-axonal). Bien que cela soit

conceptuellement simple, la conception d’un modèle approprié reliant les mesures de

diffusion observées aux paramètres tissulaires pertinents s’est révélée extrêmement

difficile. Dans cette section, nous présentons et situons le contexte de nos travaux.

Au début des années 90, le travail séminal de Peter Basser sur l’imagerie du

tenseur de diffusion (DTI) [Basser et al., 1994] peut être vu comme le précurseur

réel de l’imagerie en IRM de diffusion. Cette contribution a fourni les moyens an-

alytiques pour décrire précisément la nature tridimensionnelle de l’anisotropie de

diffusion dans les tissus en encapsulant les propriétés de diffusion d’eau dans une

matrice de covariance 3× 3 d’une distribution gaussienne. Grâce à la DTI, la com-

munauté a pu caractériser analytiquement l’anisotropie de diffusion et la diffusivité

moyenne, ouvrant la voie à leur utilisation dans le domaine clinique lié aux patholo-

gies cérébrales. Cependant, le fait que les biomarqueurs DTI soient sensibles aux

changements dans tous ces processus marque également leur plus grande limitation:

ils ne sont spécifiques à aucun d’entre eux. La nécessité de mesures scalaires à la fois

sensibles et spécifiques aux changements tissulaires, associée à la qualité croissante

de l’acquisition des données, a conduit à la naissance de �Microstructure Imaging�

Dans �Microstructure Imaging�, la spécificité des paramètres du modèle es-

timés pour les changements tissulaires dépend du choix approprié des modèles bio-

physiques. Celles-ci comprennent des représentations de diffusion restreinte, de

diffusion intra- et extra-axonale et de diffusion libre [voir une taxonomie dans Pana-

giotaki et al., 2012] ainsi que des distributions sphériques pour la dispersion des ax-

ones [Kaden et al., 2007]. Une combinaison de modèles biophysiques constitue un

�modèle de microstructure�. Idéalement, l’ajustement d’un modèle de microstruc-

ture au signal de diffusion dans le tissu observé produit des paramètres de modèle

qui reflètent avec précision la microstructure de tissu sous-jacente. Cependant,

comme des études récentes l’indiquent avec les protocoles d’acquisition actuels [Je-

lescu et al., 2015], il semble impossible d’estimer de façon fiable tous les paramètres

du modèle à partir des données sans induire de corrélations de paramètres artéfactes,

Cette observation illustre les principaux défis de l’imagerie par IRM de diffusion: Il

souligne l’importance des modèles de microstructure qui décrivent lde façon appro-

priée la structure tissulaire; La nécessité de stratégies d’optimisation efficaces pour

faciliter l’estimation des paramètres dans ces modèles; La nécessité d’aller au-delà
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des protocoles d’acquisition actuels; Ainsi que l’importance de la validation à l’aide

de mesures histologiques. Dans cette thèse, nous apportons plusieurs contributions

à la résolution de ces problèmss.

Organisation et contributions de cette thèse

Cette thèse est organisée en trois parties, composées de 7 chapitres, de 3 à 9, suivis

d’une conclusion.

• La partie I est une introduction à la microstructure dans le cerveau humain

et à �Microstructure Imaging�. Nous commençons par la base de l’IRM de

diffusion et un bref aperçu de l’estimation et des limites de l’anisotropie de

diffusion dans le chapitre 3. Nous utilisons la terminologie de ce chapitre

pour ensuite examiner minutieusement, analyser et comparer la plupart des

modèles de microstructure à la pointe de la technologie PGSE au chapitre

4. Dans ce chapitre, nous déconstruisons chaque modèle de microstructure

sur ses �blocs de construction� biophysiques et montrons comment chaque

modèle se rapporte aux autres, en mettant l’accent sur les hypothèses et

les limites du modèle. Ceci est suivi par une validation des estimations de

la microstructure en utilisant différents modèles de microstructure utilisant

l’histologie de la moelle épinière. Enfin, nous abordons les revendications

actuelles de la dégénérescence dans l’imagerie multi-compartiments et pro-

posons une méthodologie pour y rémédier.

• La partie II présente nos contributions méthodologiques à l’imagerie spatiale

en trois dimensions et à la récupération de la microstructure. Dans le chapitre

5, nous proposons une régularisation laplacienne pour la base fonctionnelle

du Propagateur Apparent Moyen (MAP), ce qui nous permet d’estimer de

façon robuste les indices d’espace q liés à la microstructure. Dans le chapitre

6, nous appliquons cette approche aux données du projet Connectome hu-

main, où nous l’utilisons également comme prétraitement pour la récupération

ultérieure de la microstructure avec d’autres modèles. Enfin, nous comparons

les biomarqueurs entre les modèles de microstructure dans une étude ex-vivo

de rats Alzheimer à différents âges au chapitre 7.

• La partie III présente enfin nos contributions à l’IRM de diffusion spatio-

temporelle - variant sur l’espace q tridimensionnel et le temps de diffu-

sion. Nous présentons d’abord une approche initiale qui se concentre sur

l’estimation du diamètre de l’axone à partir de l’espace qτ du chapitre 8.

Nous terminons avec notre approche finale au chapitre 9, que nous ap-

pelons qτ -dMRI, où nous utilisons une nouvelle base fonctionnelle avec une

régularisation combinée du laplacien et de la sparsité pour représenter de façon



28 CHAPTER 2. INTRODUCTION (EN FRANÇAIS)

robuste le signal qτ -dMRI. Pour le premier, qτ -dMRI permet l’estimation

tridimensionnelle des indices q-espace temps-dépendants. Nous illustrons la

robustesse de cette approche sur les données synthétiques et deux acquisitions

de souris test-retest.

Partie I: �Microstructure Imaging�: Du signal de diffu-

sion à la microstructure tissulaire

Chapitre 3 est une introduction à la microstructure du cerveau humain. Il intro-

duit également les principes de l’imagerie par résonance magnétique, avec un accent

particulier sur l’IRM de diffusion. Ce chapitre fournit les connaissances de base

nécessaires pour comprendre la base biologique et physique du signal de diffusion

MR. Nous discutons ensuite l’estimation et l’interprétation de l’anisotropie de diffu-

sion. Nous illustrons les contrastes d’une grande variété de mesures anistropiques,

estimées à l’aide de différentes techniques. Nous soulignons que l’anisotropie de dif-

fusion a de nombreuses applications dans l’IRM de diffusion, mais est loin d’être un

véritable biomarqueur pour la microstructure des tissus en raison de son contraste

non spécifique.

Chapitre 4 fournit un examen approfondi, une analyse et une discussion sur les

modèles de microstructure de pointe. Chaque modèle de �microstructure� utilise

une combinaison de modèles �biophysiques� qui représentent chacun une partie

particulière de la structure tissulaire sous-jacente (par exemple intra ou extra-

axonale). Nous déconstruisons et classifions les modèles de microstructure par leurs

composantes et l’interprétation microstructurale qu’ils prêtent à leurs paramètres

de modèle. En particulier, nous nous efforçons d’exposer les hypothèses et les

limites de chaque modèle. Nous suivons ceci avec une validation de la fraction

volumique intra-axonale et l’estimation du diamètre axonal entre différentes ap-

proches de modélisation en utilisant des données de la moelle épinière avec l’IRM

de diffusion enregistrée et l’histologie. Nous terminons ce chapitre en abordant

les préoccupations actuelles concernant la dégénérescence des solutions de modèles

multi-compartiments lorsque les diffusivités ne sont pas fixées et proposons une

méthodologie pour y remédier.

Partie II: Un modèle dMRI régulé par laplacien en 3D

q-space Microstructure Imaging

Chapitre 5 présente nos contributions méthodologiques à l’imagerie spatiale 3D.

Nous proposons une régularisation laplacienne pour la base fonctionnelle non
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paramétrique du Propagateur Apparent Moyen (MAP)-MRI. Ce faisant, nous im-

posons la régularité du signal reconstruit, permettant une estimation robuste des in-

dices d’espace-q liés à la microstructure. Nous comparons notre régularisation avec

les approches proposées précédemment en utilisant un fantôme avec des données

standard, et montrons que notre régularisation produit une erreur de reconstruc-

tion inférieure en utilisant moins d’échantillons. Cependant, nous constatons que

l’estimation MAP-MRI ODF dans les tissus de croisement est systématiquement

biaisée vers des angles de croisement plus petits. Nous montrons également la

robustesse de notre approche sur les données in-vivo du projet WU-MINN hu-

main connectome, où les valeurs d’espace-q estimées paraissent robustes au sous-

échantillonnage des données. Enfin, nous fournissons des formulations analytiques

nouvellement dérivées pour plusieurs indices de q-espace dans la base MAP-IRM.

Chapitre 6 se concentre sur l’estimation de la microstructure en utilisant des

données de haute qualité du Projet Connectome Humain. En utilisant la base

fonctionnelle MAP-IRM, nous constatons que les tendances estimées du diamètre

apparent de l’axone dans le corps calleux sont cohérentes avec les tendances du

diamètre axonal de l’histologie. Ces tendances semblent robustes à la réduction

de la magnitude du gradient. Nous proposons également d’utiliser l’IRM MAP

comme approche de prétraitement du signal pour une estimation ultérieure de la

microstructure. Nous avons découvert que ce prétraitement réduit la variance de

dispersion et l’estimation du diamètre axonal en utilisant NODDI et une méthode

AxCaliber simplifiée.

Chapitre 7 L’étude de l’évolution de la diffusion de l’IRM (dMRI) dans les

différents modèles de la matière blanche montre que la neurodégénérescence progres-

sive se produit chez les rats Alzheimer transgéniques (TgF344-AD) à 10, 15 et 24

mois. Nous comparons les biomarqueurs reconstruits à partir de la Diffusion Tensor

Imaging (DTI), de l’imagerie de densité et de la densité d’imagerie de densité neu-

ronale (NODDI) et de l’amplificateur spectral moyen (MAP) dans l’hippocampe, le

cortex cingulaire et le corpus callosum. En utilisant notre approche, nous sommes

en mesure de fournir - pour la première fois – un aperçu préliminaire et précieux

sur des biomarqueurs pertinents qui peuvent décrire directement la pathophysiologie

sous-jacente dans la maladie d’Alzheimer. Ce travail a été réalisé en collaboration

avec l’Université de Californie du Sud.
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Partie III: Modélisation spatiale et temporelle avancée

de la diffusion: qτ-dMRI

Chapitre 8 présente notre approche pour représenter simultanément le signal

d’IRM pondéré par diffusion (dMRI) sur les temps de diffusion, les magnitudes

de gradient et les directions de gradient. Nous utilisons une base fonctionnelle

pour l’ajustement du signal dMRI spatio-temporel 3D+t, de la même façon que la

3D-SHORE dans le �q-espace� tridimensionnel. Nous régularisons l’adaptation du

signal en minimisant la norme du Laplacien analytique de la base, et validons notre

technique sur des données synthétiques générées à l’aide du modèle théorique pro-

posé par Callaghan [1995]. Nous montrons que notre méthode est robuste au bruit

et peut décrire avec précision la détérioration spatio-temporelle restreinte du signal

provenant de modèles tissulaires tels que les pores cylindriques. Nous pouvons en-

suite estimer les paramètres de distribution du rayon axonal le long de n’importe

quelle direction en utilisant des approches similaires à AxCaliber. Nous appliquons

également notre méthode sur des données réelles à partir d’une acquisition Ac-

tiveAx [Alexander et al., 2010].

Chapitre 9 présente et valide notre approche pour représenter efficacement le signal

d’IRM de diffusion en quatre dimensions - variant sur l’espace q tridimensionnel et

le temps de diffusion τ . Nous proposons une approche de base fonctionnelle qui est

spécifiquement conçue pour représenter le signal dMRI dans cet espace qτ . Nous

régularisons l’ajustement de qτ -dMRI en imposant à la fois la lisibilité du signal et

la sparsité. Cela réduit considérablement le nombre d’images pondérées en diffusion

(DWI) dont nous avons besoin pour représenter l’espace qτ . En tant que principale

contribution, qτ -dMRI fournit le cadre pour estimer les indices d’espace q (qτ -

indices), ce qui fournit de nouveaux moyens pour étudier la sous-diffusion dans le

tissu nerveux. Nous validons notre méthode sur les données générées par in-silico

en utilisant des simulations de Monte-Carlo et une étude test-retest in-vivo de deux

souris C57Bl6 de type sauvage, où nous avons trouvé une reproductibilité excellente

de qτ -indice valeurs et tendances. Dans l’espoir d’ouvrir de nouveaux lieux d’étude

des tissus nerveux, qτ -dMRI est le premier du genre à être spécifiquement conçu

pour fournir une interprétation ouverte du signal de diffusion q. Ce travail a été

réalisé en collaboration avec le CENIR, Institut du Cerveau et de la Moëlle Epinière,

Paris, France.

Contributions logicielles

Nos contributions méthodologiques à MAP-MRI ont déjà été inclus dans la diffusion

open-source en python (Dipy) cadre. Notre base fonctionnelle qτ -dMRI proposée
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sera également incluse dans Dipy.
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Overview

This chapter is meant as an introduction to this thesis on microstructure estima-

tion. It starts by introducing the overall structure of the brain and relevant tissue

features, followed by the relevant terminology of NMR and diffusion MRI. It ends

by detailing the estimation ambiguity of diffusion anisotropy which, as an overall

signal descriptor, can be seen as the precursor to microstructure imaging.

3.1 Introduction

In brain imaging, diffusion anisotropy is a manifestation of tissues restricting the

otherwise free diffusion of water molecules. Brain tissues with different struc-

tural make-ups, e.g. healthy or diseased, cause different types of diffusion restric-

tion [Beaulieu, 2002]. Relating the observed diffusion restriction with the underlying

tissue structure has been one of diffusion MRI’s (dMRI’s) main challenges. This

challenge can be seen as a variant of the work Can One Hear The Shape of a Drum?

by Kac [1966]. In biological tissue, Basser et al. [1994] were the first to determine

the voxel-wise orientational dependence of diffusion restriction by fitting a tensor

to the signals of non-collinearly oriented diffusion gradients [Tanner and Stejskal,

1968]. For the first time, this representation made it possible to describe both

the orientation and “coherence” of the underlying tissue by means of rotationally-

invariant indices such as Fractional Anisotropy (FA) [Basser, 1995]. Since then,

many dMRI models have been proposed to more accurately relate tissue properties

to the measured signal by imposing various assumptions on the tissue configuration

or [see e.g. Behrens et al., 2003, Tuch, 2004, Wedeen et al., 2005, Assaf et al., 2004,

2008, Alexander et al., 2010, Kaden et al., 2016]. While we will study these models

rigorously in Chapter 4, in this chapter we first introduce general microstructure

concepts in Section 3.2, dMRI terminology in Section 3.3, and a brief review on

diffusion anisotropy estimation in Section 3.4. As diffusion anisotropy is a conse-

quence of diffusion restriction, we will also illustrate its sensitivity to diffusion time

in Section 3.5. We finally discuss our findings in Section 3.6.

3.2 Diffusion Anisotropy: The Phenomenon

The characteristics of diffusion anisotropy in the brain depend on how the diffusion

process is restricted by the boundaries of the nervous tissue. To get an idea of this

relationship, we first discuss the general concept of individual spin movement and

the Ensemble Average Propagator (EAP) in the presence of restricting boundaries

in Section 3.2.1. We then discuss to a greater extent the variety and complexity of

the nervous tissue in Section 3.2.2.
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3.2.1 Diffusion and the Ensemble Average Propagator

In a fluid, water particles follow random paths according to Brownian motion [Ein-

stein, 1956]. When we consider an ensemble of these particles in a volume, we can

describe their average probability density P (R; τ) that a particle will travel a dis-

tance R ∈ R3 during diffusion time τ ∈ R+. This quantity is often referred to as the

diffusion propagator or the ensemble average propagator (EAP) [Kärger and Heink,

1983]. In a free solution, the EAP can be described by a Gaussian distribution as

P (R; τ) =
1

(4πDτ)3/2
e−
‖R‖2
4Dτ (3.1)

whereD is the diffusion coefficient. Eq. (3.1) shows that the likelihood that particles

travel further increases when either D or τ increases. While keeping D constant,

this concept can be made clear using isocontours such that P (R; τ) = c with c > 0.

Figure 3.1 shows the same isocontour for diffusion times τ1 < τ2 < τ3 in four

schematic representations of different tissue types. As can be seen by the growth of

the isocontours, using longer τ increases the likelihood that particles travel further.

The shape of the isocontour depends on the structure of the surrounding tissue.

From left to right, in free water, where Eq. (3.1) is a good approximation, particles

are unrestricted and travel furthest with isotropic, Gaussian probability. Next, at a

course diffusion scale, gray matter tissue can often be seen as generally unorganized

and hinders diffusion equally in all directions [Jones, 2010]. For this reason, these

tissues also produce isotropic contours, but smaller than those in free water. In axon

bundles, here illustrated as gray lines, axons are mostly aligned with the bundle

axis. Particle movement is restricted perpendicular to this direction and is relatively

free along it, causing anisotropic isocontours [Le Bihan and Breton, 1985, Taylor

and Bushell, 1985, Merboldt et al., 1985]. Finally, in areas where two bundles cross

there is a mix between the isocontours of each bundle.

Note that we intentionally drew the isocontours for τ1 more isotropic than those

of τ3 in the right two white matter tissues. For shorter τ , particles have not had

much time to interact with surrounding tissue, resulting in a similar probability that

a particle travels in any direction. The isocontours for very short τ will therefore

always be isotropic. For longer τ , particles have had more time to interact with the

tissue, either traveling far along a relatively unrestricted direction, or staying close

to its origin along a restricted direction, resulting in more anisotropic profiles [Tan-

ner, 1978]. When the tissue can be seen as axially symmetric (i.e. in a single

bundle), this means that the perpendicular diffusivity D⊥ becomes τ -dependent

and decreases as τ increases [Cohen and Assaf, 2002]. Different tissue types will

induce different τ -dependence of the EAP [Özarslan et al., 2006, 2012].
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Free Water Gray Matter Coherent Bundle Crossing Bundles

τ1
τ2

τ3

Figure 3.1: Schematic representations of different tissue types with their corre-

sponding P (R; τ) isocontours for different diffusion times τ1 < τ2 < τ3. Longer τ

increases the likelihood that particles travel further, indicated by the smaller blue

isocontour for τ1 to the largest red isocontour for τ3. The shape of the isocontour

depends on the structure of the surrounding tissue. Diffusion is considered free in

free water, hindered in gray matter and restricted in white matter bundles. Image

inspired by Alexander [2006].

Figure 3.2: left: Diagram showing principal systems of association fibers in the

cerebrum, connecting different cortical areas with a given hemisphere. right: the

hemispheres of the brain, the fornix and corpus callosum bundles connecting the

two. The white areas represent the white matter and the outer grey areas the Grey

Matter. From 20th U.S. edition of Gray’s Anatomy of the Human Body (public

domain).
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3.2.2 Microstructure in the Brain

Images such as those in Figure 3.1 are useful to illustrate general properties of

different brain tissues. However, it is important to realize that these are extreme

simplifications. While this thesis concerns itself mainly with the estimation of tissue

microstructure at the millimeter level (see Section 3.3), it is good to keep in mind

that all our contributions are part of a larger ensemble of higher-order functions.

To give an overview of the brain, Figure 3.2 shows schematic representations of

the principal systems of association fibers and a horizontal cross-section of the

brain, showing the two hemispheres. In broad terms, white matter (WM) is mainly

composed of axonal nerve fibers, covered by a myelin sheath giving its distinctive

color. It is found in the inner layer of the cortex, the optic nerves, the central

and lower areas of the brian and surrounding the central shaft of grey matter in

the spinal cord. Grey matter (GM) can be seen as mainly consisting of neurons

and their unmyelinated fibers. Though strictly speaking, the terms gray and white

matter are only valid in the context of gross anatomy. GM is only distinguished

from WM, in that GM contains numerous cell bodies and relatively few myelinated

axons. WM is composed chiefly of long-range myelinated axon tracts and contains

relatively very few cell bodies. The brain also contains glial cells of various kinds

who support the functioning of neurons. We illustrate the difference between gray

and white matter microstructure in Figure 3.3. Focusing on the electron micrograph

of the cross-section of the white matter bundles, it can be seen that while axons are

often near-tubular, their diameter, amount of myelination and the space between

them varies significantly.

Axon Diameter and Myelination

Axons are the structural and physiological conduit for signal transmission in the

brain and therefore are one of the fundamental elements of brain function. The con-

duction velocity of nerves is directly related to axon diameter in both myelinated and

unmyelinated axons [Hursh, 1939, Waxman, 1980, Hoffmeister et al., 1991]. Hursh

[1939] showed the conduction velocity to be proportional to the square root of the

diameter of unmyelinated axons and directly proportional to the inner membrane

diameter of myelinated axons. In the peripheral nervous system, axon diameters

range from 0.1 µm to about 20 µm, with unmyelinated axons being smaller than 2

µm and myelinated axons larger than 1 to 2 µm [Waxman and Kocsis, 1995]. In the

central nervous system, myelinated axons diameters as small as 0.2 µm have been

observed [Waxman, 1978], with axons below this size generally being unmyelinated.

In particular, histology studies have determined that axon diameter distributions in

the corpus callosum range between 0.2 and 2µm [Lamantia and Rakic, 1990, Aboitiz

et al., 1992]. Variations in axon diameter are thought to be closely tied to function,

with networks that demand fast response (such as motor networks) demonstrating
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White Matter Cross-SectionGrey Matter White Matter Grey Matter
Schematic Electron Micrograph
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Figure 3.3: The left image illustrates globally the different structure between gray

and white matter; gray matter consisting mostly of cell bodies, white matter con-

sisting mostly of fiber tracts, and both tissues containing many glial cells. On the

right, we show two electron micrograph images of gray matter (adapted from [Kay

et al., 2013]) and a cross-section of a white matter bundle (adapted from [Liewald

et al., 2014]). The gray matter appears unorganized with many differently shaped

cell bodies. The cross-section of the white matter bundles shows that while axons

are often tubular, their diameter, amount of myelination and the space between

them varies significantly.

larger axon diameters.

Axon Orientation Dispersion

Histology studies show that the orientations of individual axons are often dispersed

around the main bundle axis [Leergaard et al., 2010, Ronen et al., 2014]. While

axon diameter and myelination are intrinsic tissue properties (as in they are prop-

erties of one axon), axon dispersion is more of a secondary property that arises by

considering ensembles of axons. The presence of axon dispersion in coherent white

matter (e.g. the corpus callosum) has been proven in recent years [Leergaard et al.,

2010, Budde and Annese, 2013, Mollink et al., 2016], and is illustrated in results of

other works as shown in in Figure 4.3. In general, the term axon orientation dis-

persion is used to describe any metric that quantifies the amount of misalignment

of these axons within a finite measurement volume. In Microstructure Imaging,

the estimation of axon dispersion or fanning is usually an interpretation of one or

more concentration parameters of a spherical distribution of sticks or cylinders (See

Chapter 4). However, in the next section, we will first go into more detail on how

diffusion MRI can be used to measure a signal that is related to the tissue structure

and the EAP.
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From: Leergaard et al. PLOS ONE 2010 From: Mollink et al. ISMRM 2016

Figure 3.4: Histology, Polarized Light Imaging (PLI) and Diffusion MRI all confirm

the presence of axon orientation dispersion in the corpus callosum of rats and hu-

mans. The left image is from Leergaard et al. [2010], showing a close-up of dispersed

axon in the corpus collosum of a rat. The right image is from Mollink et al. [2016],

where PLI and diffusion MRI both confirm the presence of significant orientation

dispersion in the human corpus callosum.

3.3 Diffusion-Weighted Magnetic Resonance Imaging

In this section we explain the basic concepts needed to understand diffusion MRI.

In particular, we discuss nuclear magnetic resonsance in Section 3.3.1, the basic un-

derpinnings of diffusion MRI and the EAP in Section 3.3.2, the concept of diffusion

restriction Section 3.3.3 and finally different acquisition schemes in Section 3.3.4.

3.3.1 Basics of Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a medical imaging technique which is able

to non-invasively obtain detailed information of internal structures in the body. It

does this by exploiting the nuclear magnetic resonance (NMR) properties of 1H

nuclei, which are abundantly present in water and fatty tissues.

An MRI scanner works by exposing a sample (in our case the brain) to a powerful

magnetic field that is generated along the magnet bore. This magnetic field is called

the B0 field, formally described as B0 = B0 v with B0 the magnetic field strength in

Tesla (T) and v ∈ S2 the direction of the field. In the presence of the B0 field, the

magnetic spins of 1H nuclei will align with v and precess with Larmor frequency ω

(see Figure 3.5a). The Larmor frequency depends on the strength of B0 and the

gyromagnetic ratio of the proton γ such that

ω = B0γ (3.2)
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(a) Spin precession (b) Rotating frame of reference

Figure 3.5: Schematic illustrations of basic MRI principles. (a) shows an aligned

spin precessing with Larmor frequency ω. (b) shows the rotating frame of reference

in which magnetization of spins is described.

where γ = 42.58 MHz/T for 1H. When all spins have aligned with the B0 field, a

bulk magnetization M exists along v. To describe this magnetization, it is cumber-

some to describe every spin separately. It is more convenient to describe the aver-

age magnetization of groups of spins experiencing the same magnetic field strength.

These groups are called spin packets. In MRI, every voxel in the image represents

such a spin packet.

For every spin packet, M can be described in a rotating frame of reference

(see Figure 3.5b). In this setting, M is composed of a longitudinal component

Mz, which is aligned with B0 and a transversal component Mxy. When spins are

in equilibrium, the magnetization only has an Mz component, whose magnitude

depends on the number of protons in the spin packet and the strength of B0.

Using a receiver coil, the magnetization in the transversal plane can be mea-

sured. The scanner can then emit a radiofrequency (RF) pulse to tip M towards

the transversal plane. The RF pulse is designed to have the Larmor frequency to

tip the magnetization correctly and the duration of the pulse determines how far

the magnetization is tipped.

When the RF pulse is turned off, all the spins in a spin packet are in phase and

the bulk magnetization will start to realign with B0. This process is governed by two

relaxation processes called T1 spin-lattice relaxation and T2 spin-spin relaxation.

T1 spin-lattice relaxation describes the recovery of magnetization in Mz, while T2

spin-spin relaxation describes the decay of magnetization in Mxy. How fast these

relaxation processes occur is determined by relaxation times T1 and T2, where T2

is always shorter than T1. After application of the RF pulse, the longitudinal and

transversal relaxation of magnetization over time can be described by

Mz(t) = Mz,eq − (Mz,eq −Mz(0))e−t/T1) and Mxy(t) = Mxy(0)e−t/T2 (3.3)

where Mz(t) and Mxy(t) are the longitudinal and transversal magnetization in Mz

and Mxy at time t, Mz,eq is the longitudinal magnetization in equilibrium, Mz(0)
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(a) (b)

Figure 3.6: A filled k-space image (a) with its corresponding image after inverse

Fourier transform (b).

and Mxy(0) are the longitudinal and transversal magnetization immediately after

the RF pulse and T1 and T2 are given in seconds. At a given time t the measured

signal in the transversal plane can then be described by

S(t) =

∫
y∈R3

ρ(y) ·Mxy(y, t) · e−iωtdy (3.4)

where S(t) is the measured signal, ρ(y) is the proton density at position y ∈ R3,

Mxy(y, t) is the transversal magnetization and e−iωt describes the oscillation of

spins in the transversal plane with Larmor frequency ω.

However, this “global” signal does not contain information on individual spin

packets, i.e. it sees the whole sample as one voxel. To be able to receive a signal

related to local structure in the sample, a so-called gradient field K given in T/m

is used, where the gradient field consists of three orthogonal gradients such that

K(y, t) = [Kx(y, t),Ky(y, t),Kz(y, t)]. These gradient fields influence the Larmor

precession of spins position dependently such that

ω(y, t) = γ‖B0 + K(y, t)‖ (3.5)

where ω(y, t) is the Larmor frequency at position y and time t. Moreover, every

gradient has a specific function. Here Kz enables slice encoding, Kx is known as the

readout gradient and enables frequency encoding and Ky enables phase encoding.

Together these gradients enable the encoding of a Fourier representation of an image

known as k-space. When k-space has been filled with acquisition samples an inverse

Fourier transform can be used to obtain the real image of the selected slice. Figure

3.6 shows a k-space with its accompanying reconstructed image. This process can

be repeated for different slices to construct a 3D volume.
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Figure 3.7: Schematic illustration of the pulsed gradient spin echo sequence. The

sequence is represented as the time evolution, i.e. occurrence and duration, of radio-

frequency pulses (RF) in the first line, diffusion gradient pulses in the second line,

and measured signal in the third line. The illustration reports the 90◦ and 180◦ RF

pulses separated by half the echo-time TE, two diffusion gradient pulses of strength

G and duration δ separated by a time ∆, and the free induction decay (FID) and

echo of the measured signal.

3.3.2 Diffusion Weighted Imaging

The estimation of diffusion anisotropy can be thought of, in first approximation,

as the assessment of the amount of preference that the diffusion process has for a

specific spatial direction in terms of diffusivity. Therefore, this assessment requires

sensing the diffusion signal along multiple spatial directions, regardless of the rep-

resentation adopted to describe the signal itself. In MRI, this is typically done by

acquiring a collection of images of the target object, e.g. the brain. Each image is

acquired when the experimental conditions within the magnet’s bore determine a

specific diffusion-weighting along the selected spatial direction: this is a Diffusion-

Weighted Image (DWI). The diffusion-weighting is globally encoded by the b-value

[Le Bihan and Breton, 1985], measured in s/mm2, a quantity that is the reciprocal

of the diffusivity, D (mm2/s). The intensity of the diffusion-weighting, i.e. the

b-value, is determined by the acquisition setup.

The most common type of acquisition is the Pulsed Gradient Spin-Echo sequence

(PGSE) [Stejskal and Tanner, 1965], where a DWI is obtained by applying two

diffusion gradients with intensity G = ‖G‖ (T/m) and pulse length δ (s) to the

tissue, separated by the separation time ∆ (s). We illustrate this sequence in

Figure 3.7. The resulting signal is ‘weighted’, along the applied gradient direction,
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with b-value [Stejskal and Tanner, 1965]

b = γ2G2δ2

(
∆− δ

3

)
(3.6)

where γ (MHz/T) is again the nuclear gyromagnetic ratio of the water proton
1H. The measurement of the diffusion signal is directly related to the concept

of attenuation. Indeed, in the presence of diffusion, the signal intensities S(b) of

the voxels of a DWI are lower than the corresponding intensities when the image

is acquired without diffusion-weighting S0 = S(0). Along the selected gradient

direction, the quantity E(b) = S(b)/S0 expresses, for each voxel, the attenuation of

the diffusion-weighted signal. In the absence of restrictions to the diffusion process,

the attenuation is [Stejskal and Tanner, 1965]

E(b) =
S(b)

S0
= e−bD, (3.7)

which expresses an exponential attenuation profile, as is illustrated in Figure 3.8a.

In the case of the PGSE sequence, this attenuation phenomenon can be inter-

preted as the result of a differential mechanism. The sequence, shown in Figure 3.7,

starts with a 90◦ radio-frequency pulse after which it is possible to measure a signal,

namely Free Induction Decay (FID), that is related to the macroscopic spins’ net

magnetization. After a time TE/2, with TE the echo-time, a second 180◦ radio-

frequency pulse has the effect of generating an echo of the signal whose peak is at

time TE, corresponding to the end of the sequence [Hahn, 1950]. The first diffusion

gradient pulse is applied between the two radio-frequency pulses. Here, we assume

the narrow gradient pulse condition δ � ∆, which implies that spins are static dur-

ing the application of the gradient pulses [Tanner and Stejskal, 1968]. Under this

assumption, after the first gradient pulse, a spin located at position r1 is subject

to a phase accumulation φ1 = γδG · r1. After a time ∆ from the start of the first

gradient pulse, and after the 180◦ radio-frequency pulse, a second gradient pulse

of equal magnitude and duration to the first is applied. If the spin has moved to

a position r2 the phase accumulation during the second pulse is φ2 = γδG · r2.

However, the 180◦ radio-frequency pulse has the effect of changing the sign of the

second gradient pulse. Therefore, at the end of the sequence, i.e. at the echo-time

TE, the spin has acquired a net phase shift

φ = φ2 − φ1 = γδG · (r2 − r1) = γδG · r (3.8)

which is null in the case the spin remained static, i.e. r = r2 − r1 = 0. The

signal attenuation takes into account an ensemble of spins and can be related to

the ensemble average propagator (EAP), P (r, τ), via a Fourier relationship under

the q-space formalism [Tanner and Stejskal, 1968, Callaghan, 1991]

E(q, τ) =

∫
R3

P (r, τ)ej2πq · rdr (3.9)
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where q is the wave vector and τ is diffusion time, which for the PGSE sequence

are expressed as

q =
γδG

2π
and τ = ∆− δ/3. (3.10)

These quantities influence differently the diffusion-weighting, i.e. the b-value. In-

deed, the wave frequency q = ‖q‖ is expressed in mm−1 and is the reciprocal of the

spins displacement r = ‖r‖ expressed in mm. As such, q is a spatial frequency, and

by increasing its value it is possible to achieve a higher spatial resolution of P (r, τ)

in the displacement space described by r. In addition, the diffusion time τ expresses

the time interval during which spins are allowed to diffuse before measurement.

3.3.3 Diffusion Restriction

A longer diffusion time allows the spins to move a longer distance causing, in the

absence of restrictions to the diffusion process, a larger net phase shift, i.e. a

stronger attenuation of the signal. Therefore, expressing the diffusion-weighting in

terms of q and τ can provide useful insights on the signal nature. In the absence

of restrictions to the diffusion process, eq. (3.9) has a closed form. This is obtained

by substituting q and τ of eq. (3.10) into the formulation of the b-value expressed

in eq. (3.6), such that b = 4π2q2τ and eq. (3.7) becomes

E(q, τ) = e−4π2q2τD (3.11)

which expresses a Gaussian attenuation profile as function of q. However, Eqs. (3.7)

and (3.11) are valid when the diffusion process can be considered unrestricted, e.g.

when the movement of spins is not obstructed by the presence of a barrier. In

the case of restricted diffusion, for instance when the signal is measured along a

direction perpendicular to a barrier, these equations are no longer valid.

Unrestricted and restricted scenarios are depicted by the schematic representa-

tion in the left side of Figure 3.8, where the diffusion process occurs between two

parallel barriers, i.e. the restriction, and where two arrows represent the measure-

ment directions parallel and perpendicular to the restriction.

The figure also illustrates the signal attenuation in the case of parallel, unre-

stricted diffusion (a,b), and in the case of perpendicular, restricted diffusion (c,d).

The unrestricted attenuations are obtained with eqs. (3.7) and (3.11), whereas the

restricted ones are simulated as the diffusion signal attenuation generated within

an ensemble of cylinders along the direction perpendicular to the cylinders’ axes

[Callaghan, 1995]. Moreover, the curves in a and c are reported as function of the

b-value with diffusion time τ2, whereas the curves in b and d are functions of the

q-value and are reported for increasing diffusion times τ1 < τ2 < τ3. In the graphs,

points of each curve corresponding to b = 1000 s/mm2 are highlighted with a dot.

Along the unrestricted direction (a,b) the attenuation values, indicated by dots,

are lower than the corresponding ones along the restricted direction (c,d). Indeed,
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Figure 3.8: The effect of b-value, q-value and diffusion time on the signal atten-

uation when diffusion is unrestricted or restricted by the presence of a barrier.

The graphs report the signal attenuations along a direction parallel to the restric-

tion (a,b) – represented by two black barriers in the schematic image – and along

the perpendicular direction (c,d), where the diffusion process is restricted. The

attenuations are reported as function of the b-value (a,c) with diffusion time τ2,

and q-value (b,d) for increasing diffusion times τ1 < τ2 < τ3. Dots indicate the

attenuation measured at b = 1000 s/mm2.

when diffusion is restricted by the presence of the barrier, the spins are subject to

a smaller net displacement and the signal attenuates less.

The choice of q and τ to obtain a certain diffusion-weighting, i.e. a specific

b-value, assumes different relevance in terms of signal attenuation depending on

whether diffusion is restricted or not. In the absence of restrictions (a,b), an in-

crease of q-value or diffusion time always attenuates the signal, and points with

different q and τ , but with same b-value, render the same amount of attenuation

(b). However, when diffusion is restricted (c,d), an increase of the diffusion time τ

implies letting the spins diffuse a longer distance with the consequence of experienc-

ing more restriction. In this case, the Gaussian attenuation expressed by eq. (3.11)

is not longer valid.

Indeed, different combinations of q and τ render different non-Gaussian profiles

of signal attenuation, and points with same b-value – the dots of Figure 3.8d –

correspond to different attenuations.

3.3.4 Acquisition Schemes

The estimation of diffusion anisotropy, based on the diffusion signal attenuation

along different gradient directions, depends on the chosen experimental parame-
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Figure 3.9: Schematic for different types of acquisition schemes. DTI schemes

are typically acquired at a low gradient strength, typically b < 1000 s/mm2, for a

minimum of 6 gradient directions. HARDI typically uses higher gradient strengths,

typically b > 2000 s/mm2 with over 40 gradient directions. Multi-shell uses DTI and

HARDI shells for a given diffusion time, and finally qτ -acquisitions are multi-shell

acquisitions for a range of diffusion times.

ters, especially q and τ . Indeed, different sets of parameters lead to different signal

attenuations – depending on the underlying diffusion process – and consequently

to different measurements of anisotropy. Ideally, a complete characterization of

anisotropy would require the measurement of the diffusion signal attenuation for

many gradient directions, q-values, and diffusion times τ . However the optimal

sampling is still under debate. In practice, with reference to diffusion anisotropy,

the choice of how to sample the diffusion signal depends on the application and

on the chosen signal representation. For instance, in DTI it is common practice to

measure only one shell of gradient directions using a single b-value, as illustrated

in Figure 3.9. High Angular Resolution Diffusion Imaging (HARDI) schemes, still

measuring only one shell but at a higher b-value and more directions, are used to

gain a higher angular resolution of the diffusion signal with the purpose of resolving

crossing tissue configurations [Tuch et al., 2002]. Other signal representations re-

quire signal acquisition at different diffusion-weightings. A common choice, namely

multi-shell, consists in acquiring different q-shells while fixing the diffusion time.

Each shell represents a collection of samples in the three-dimensional space with

the same q-value. These samples can be imagined as lying on a sphere, as shown in

Figure 3.9, where an optimal spatial coverage is important to measure the diffusion

signal as efficiently as possible. This concept can be expanded over multiple shells
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FADTI PADTI PAMAPMRI μFASMT

Figure 3.10: Visualization of various normalized measures describing diffusion

anisotropy, where the corresponding model is given in the subscript. In the top

row, we show Fractional Anisotropy (FA) and Propagator Anisotropy (PA) of Dif-

fusion Tensor Imaging (DTI), PA by Mean Apparent Propagator (MAP)-MRI and

micro-FA by Spherical Mean Technique (SMT). In the bottom row, we show Gen-

eralized Fractional Anisotropy (GFA) by Q-ball Imaging and by MAP-MRI and

finally one minus the Orientation Dispersion Index (ODI) by Neurite Orientation

Dispersion and Density Imaging (NODDI). The complement of ODI is shown for

overall coherence, since high ODI normally indicates low anisotropy.

such that all of the acquired samples lie on different non-collinear directions [Caruyer

et al., 2013]. The multi-shell concept can be extended to τ -shells, called a qτ ac-

quisition [Fick et al., 2016c], since nowadays there exist signal representations that

exploit different value for both q and τ . In this case, a complete q-shell scheme

– with samples distributed along different gradient directions and with different

diffusion-weightings – is acquired for each desired diffusion time.

3.4 The Inter-Model Variability of Diffusion Anisotropy

As the subject of this thesis is microstructure imaging, it is appropriate that we

start with addressing the metric that is most commonly used as a marker for

changes in tissue microstructure: diffusion anisotropy. Simply meaning “devia-

tion from diffusion isotropy”, different interpretations of diffusion anisotropy have

been proposed using different acquisition requirements and mathematical underpin-

nings [Basser, 1995, Tuch, 2004, Özarslan et al., 2013b, Kaden et al., 2015]. Out of

these, the clinical applications of Fractional Anisotropy (FA) [Basser, 1995] of the

Diffusion Tensor Imaging (DTI) model [Basser et al., 1994] has been most widely
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explored. Changes in FA have been related to brain diseases such as ischemia, mul-

tiple sclerosis, trauma, brain tumors and many more [see e.g. reviews by Assaf and

Pasternak, 2008, Soares et al., 2013]. For this reason, FA is seen as a “potential

biomarker” for these disease patterns, where biomarker is a portmanteau of “bio-

logical marker” [Strimbu and Tavel, 2010]. However, the fact that FA is sensitive

to all these processes also means that it is specific to none of them.

Diffusion anisotropy measures, as a rule of thumb, always have the following

three properties:

• They are rotationally invariant, i.e., insensitive to rotations.

• They are normalized, with zero being the lowest measure for diffusion

anisotropy and one being the highest.

• They somehow describe “deviation from diffusion isotropy”.

The last point is intentionally left open to interpretation, which is exactly the

point we are making in this section. To illustrate this, we discuss five different

anisotropy measures; Fraction Anisotropy (FA) [Basser, 1995], Generalized Frac-

tion Anisotropy (GFA) [Tuch, 2004]; Propagator Anisotropy (PA) [Özarslan et al.,

2013b]; Orientation Dispersion Index (ODI) [Zhang et al., 2012]; and microscopic

Fractional Anisotropy (µFA) [Kaden et al., 2015].

While assessing the validity of the interpretation of diffusion anisotropy for

different disease patterns is beyond the scope of this work, we will address the

ambiguity of its estimation. This section is therefore meant as a simultaneous

overview of, and discussion on, current methods that estimate diffusion anisotropy

measures or anisotropy-related tissue properties. We start this section by first

detailing the data of the Human Connectome Project [Setsompop et al., 2013] that

we use to illustrate different diffusion anisotropy measures in Section 3.4.1. We then

describe the inter-model variability of the mathematical definition and estimation

of diffusion anisotropy in Sections 3.4.2 through 3.4.6. The anisotropy measures

of all presented techniques are qualitatively and quantitative compared in Figures

3.10, 3.11 and 3.12.

3.4.1 Data Set Description and Adopted Notation

We use the MGH Adult Diffusion Data of the Human Connectome Project to

illustrate different measures of diffusion anisotorpy [Greve and Fischl, 2009, An-

dersson et al., 2012, Keil et al., 2013, Setsompop et al., 2013]. This data set was

acquired at particularly high b-values {0, 1000, 3000, 5000, 10000} s/mm2 with {40,

64, 64, 128, 256} directions, respectively. The diffusion time and pulse separation

time in this data are δ/∆ = 12.9/21.8 ms with 1.5 × 1.5 × 1.5 mm resolution and

TE/TR = 57/8800 ms.
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Figure 3.11: Box-plots of estimated anisotropy measures in different regions of

interest, indicated as the different colors in the coronal brain slice in the right corner.

We illustrate anisotropy in free water (CSF), a single bundle (Corpus Callosum)

and a crossing area (Centrum Semiovale). It can be seen that the same metric

for different techniques, or different metrics for the same technique can result in

different estimates of anisotropy.

To briefly recap and clarify what notation we use, we denote that the signal-

based models in this section directly estimate the EAP P (R; τ) from the measured

signal attenuation E(q, τ), using the Fourier relationship in Eq. (3.9). Notice

that P (R; τ) is a conditional probability density for diffusion time τ , as the Fourier

transform is only over the q,R space. We will interchangeably use real displacement

vector R = ru with its distance and direction r ∈ R+,u ∈ S2 and q-space vector

q = qn with its q-space distance and gradient orientation q ∈ R+,n ∈ S2. The

following anisotropy measures are then defined as some difference or ratio between

the isotropic and anisotropic parts of P (R; τ).

3.4.2 Fractional Anisotropy

Starting with the oldest measures for diffusion anisotropy, FA [Basser, 1995] is

specific for the DTI model [Basser et al., 1994]. DTI solves the Fourier transform

by generalizing the Stejskal-Tanner equation for unbounded media [Tanner and

Stejskal, 1968] to three dimensions:

E(b,n) = exp(−bnTDn) or E(q, τ) = exp(−4π2q2τnTDn) (3.12)

with D a 3× 3 symmetric positive-definite diffusion tensor. Notice that Eq. (3.12)

is Gaussian over q and exponential over τ , which will be important in studying

time-dependence in Section 3.5. FA describes fraction of the “magnitude” of D
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that we can ascribe to anisotropic diffusion in terms of its eigenvalues {λ1, λ2, λ3}
as

FA =
std(λ)

rms(λ)
=

√
1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ2
1 + λ2

2 + λ2
3

. (3.13)

We illustrate FA in a cross-section of the HCP data in Figure 3.10. The inter-

pretation of FA has known limitations as DTI cannot represent crossing tissue

configurations, but finds some average, Gaussian approximation that best fits the

overall signal [Basser et al., 1994]. We illustrate this by estimating DTI’s Orienta-

tion Distribution Function ODF(u; τ), representing the probability density that a

diffusing particle will travel along direction u by marginalizing r as

ODF(u; τ) =

∫ ∞
0

P (ru; τ)r2dr (3.14)

where r2 is the Jacobian of the radial integration to ensure that the integral of the

ODF is unity [Tristán-Vega et al., 2009, Aganj et al., 2010]. Notice that Eq. (3.14)

is general, and can be used for any method that estimates P (ru; τ). For instance,

Eq. (3.14) can be given analytically for DTI as

ODFDTI(u) =
1

4π|D|
1
2 (uTD−1u)

3
2

. (3.15)

We show DTI’s ODFs in a crossing area in Figure 3.12, where it can be seen that

round profiles with low FA are found where other methods detect crossings.

3.4.3 Generalized Fractional Anisotropy

As a more general form of diffusion anisotorpy is Generalized Fractional Anisotropy

(GFA) [Tuch, 2004]. GFA was proposed for High Angular Resolution Diffusion

Imaging (HARDI) techniques [Tuch et al., 2002] that estimate ODFs capable of

representing crossing tissue configurations [Tuch et al., 2003]. It is noteworthy that

the only difference between DTI and HARDI is that in HARDI more gradients g

are measured at a higher b-values, see Figure 3.9. This means that still no radial

information is known of P (ru; τ), and Gaussian decay over r is assumed to estimate

the ODF in Eq. (3.14). For any ODF, the GFA is given as

GFA =
std(ODF)

rms(ODF)
=

√
n
∑n

i=1(ODF(ui)−ODF)2

(n− 1)
∑n

i=1 ODF(ui)2
(3.16)

where ODF (u) is the value of the ODF in direction u, n is the number of evaluated

ODF directions and ODF is the mean ODF intensity. We show Q-ball Imaging

ODFs [Tuch, 2004, Descoteaux et al., 2007a, Aganj et al., 2010] in the top-right

of Figure 3.12, where now crossing structures can be seen. Though, it must be

said that FRT has been applied to a variety of HARDI methodologies, a selection
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DTI ODFs with FA Background

ODFs / FODs in Crossing Area for Different Methods
Q-ball ODFs with GFA Background

SMT FODs with μFA BackgroundMAPMRI ODFs with PA Background

Watson ODFs with 1-ODI Background

Figure 3.12: Orientation Distribution Functions (ODFs) for DTI, Q-ball, MAPMRI,

the Watson distributions of NODDI and Fiber Orientation Distributions (FODs)

of SMT in an area where it is known there are crossing bundles. Each method has

its corresponding anisotropy measure as background texture. It can be seen that

DTI finds an average orientation, where Q-Ball, MAPMRI and SMT find crossing

structures. The FODs, being the result of a deconvolution, show sharper peaks, and

more consistent crossings than the ODF techniques. It is important to realize that

while NODDI separates the signal contributions of intra- and extra-axonal diffusion,

its dispersion index jointly describes the spread of both of these compartments, and

produces very similar ODFs as DTI.
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of which is summarized in Tristan-Vega et al. [2010]. Moreover, notice that GFA

intensities in the crossing and single bundles areas are more similar than seen with

DTI’s FA in the top-left, but the overall intensities of GFA and FA are different.

We illustrate this by comparing estimated anisotropy intensities in different ROIs,

for different measures and techniques in Figure 3.11. It can be seen that the same

metric for different techniques, or different metrics for the same technique can result

in different estimates of anisotropy.

3.4.4 Propagator Anisotropy

PA was proposed for the multi-shell, Mean Apparent Propagator (MAP)-MRI tech-

nique [Özarslan et al., 2013b]. MAP-MRI can be seen as a generalization of DTI,

and allows for the estimation of three-dimensional P (ru; τ), where now both re-

stricted (non-Gaussian) diffusion over r and crossing axons can be represented.

MAP-MRI is not unique in this respect, as a plethora of multi-shell techniques

have been proposed for this purpose [See e.g. Assemlal et al., 2009, Descoteaux

et al., 2011, Hosseinbor et al., 2013, Rathi et al., 2014], but MAP-MRI’s formula-

tion allows for easy estimation of a large variety of q-space properties using efficient

regularization [Fick et al., 2016d]. PA is defined as the a measure of dissimilarity be-

tween the reconstructed P (R; τ) and its closest isotropic approximation Piso(R; τ).

First, the inner product between two EAPs is defined as

〈P (R; τ)Piso(R; τ)〉 =

∫
R3

P (R; τ)Piso(R; τ)dR (3.17)

The similarity between two propagators is measured as an angular measure of co-

variance in analogy with the vector product [Avram et al., 2015]:

cos θPA =

√
〈P (R; τ)Piso(R; τ)〉

〈P (R; τ)P (R; τ)〉〈Piso(R; τ)Piso(R; τ)〉
(3.18)

PA is then defined using the angular dissimilarity measure sin θPA =
√

1− cos θ2
PA

and scaling function σ(t, ε) as

PA = σ(sin θPA, 0.4) with σ(t, ε) =
t3ε

1− 3tε + 3t2ε
. (3.19)

where we note that scaling parameter ε = 0.4 was chosen by Özarslan et al. [2013b]

to yield “the desired level of contrast in real images”. PA can be estimated for any

method that reconstructs P (R; τ). For instance, for DTI it is given as

cos θ2
PA-DTI =

8u3
0uxuyuz

(u2
x + u2

0)(u2
y + u2

0)(u2
z + u2

0)
(3.20)
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where the displacement is given as a function of DTI’s eigenvalues as{ux, uy, uz} =√
2τ{λ1, λ2, λ3} [Basser, 2002], and u0 is DTI’s nearest isotropic propagator [Özarslan

et al., 2013b]. We show PAMAPMRI and PADTI in Figures 3.10 and 3.11, where this

measure indeed seems to show good contrast between isotropic, crossing and single

bundle tissues.

3.4.5 Orientation Dispersion Index

As the only multi-compartment model that we consider in this chapter, the neurite
orientation dispersion and density imaging (NODDI) model [Zhang et al., 2012] pa-
rameterizes diffusion anisotropy as the dispersion of the diffusion signal of individual
axon segments around a central bundle axis. In NODDI, axons as are represented
as sticks – cylinders with zero radius and parallel diffusivity λ‖ – and are dispersed
according to a Watson distribution W (κ,µ), where κ is the concentration parame-
ter that is inversely related to axon dispersion, and µ ∈ S2 is the bundle direction.
NODDI also separates the signal contribution of the Cerebrospinal Fluid (CSF) as
an isotropic Gaussian with diffusivity Diso (i.e. a Ball) and the hindered hindered
extra-axonal compartment – the diffusion directly around the axons – as an axially
symmetric Tensor (i.e. a Zeppelin) with parallel and perpendicular diffusivity λext

‖
and λext

⊥ . The overall signal representation is then

ENODDI
Watson = fCSF

Ball︷ ︸︸ ︷
Eiso(DCSF)︸ ︷︷ ︸

CSF

+

Watson︷ ︸︸ ︷
W (κ,µ) ∗S2

 fh

Zeppelin︷ ︸︸ ︷
Eh(λext

⊥ , λext
‖ )︸ ︷︷ ︸

Hindered Extra-Axonal

+ fr

Stick︷ ︸︸ ︷
Er(λ‖)︸ ︷︷ ︸

Intra-Axonal

 (3.21)

where the volume fractions of the CSF, hindered and intra-axonal compartment

sum up to unity as fCSF + fh + fr = 1, and ∗S2 represents the spherical convolu-

tion that distributes the per-axon diffusion signal (both the stick and the hindered

compartment) according to the Watson distribution. In practice, NODDI fixes all

diffusivities of the different model components and focusses on the estimation of

κ,µ and the volume fractions. We leave a more detailed description and discussion

on NODDI for Chapter 4. NODDI reparameterizes the concentration parameter κ

into the normalized Orientation Dispersion Index (ODI)

ODI =
2

π
arctan(1/κ) (3.22)

where ODI = 0 now means no dispersion, i.e. parallel axons and therefore high

diffusion anisotropy, and ODI = 1 represents completely dispersed (isotropic) dif-

fusion. We fitted the NODDI model using the NODDI toolbox1 and illustrate the

complement of ODI in Figures 3.10 and 3.11. It can be seen that the contrast of pre-

viously discussed signal-based anisotropy measures and ODI is quite similar. Figure

3.12 also shows the ODFs of the estimated Watson distributed, which resemble the

DTI ODFs in many cases.

1http://www.nitrc.org/projects/noddi_toolbox

http://www.nitrc.org/projects/noddi_toolbox
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3.4.6 Microscopic Fractional Anisotropy

Similarly as NODDI, the Spherical Mean Technique (SMT) [Kaden et al., 2015] also

represents the diffusion signal as a distribution of individual axon segments with a

spherical Fiber Orientation Distribution FOD(n). However, unlike NODDI, SMT

does not do any separately model the hindered and CSF compartments, nor does

it assume any parameterization of the FOD, and only assumes that the FOD is a

probability density such that
∫
S2 FOD(n)dn = 1 and the individual axon segment

is represented by an axially symmetric tensor with perpendicular and parallel dif-

fusivity λ⊥ and λ‖. It then follows that, for a given b-value, the spherical integral ε

of the overall diffusion signal Eb(n) and that of the individual axon segment Kb(n)

must be equal such that

εE(b) =

∫
S2

Eb(n)dn =

∫
S2

(FOD ∗S2 Kb)(n)dn =

∫
S2

Kb(n)dn = εK(b, λ⊥, λ‖).

(3.23)

It is possible to solve this equation for λ⊥ and λ‖ using constrained least squares

such that 0 < λ⊥ < λ‖ < λfree with λfree the free water diffusivity. Once λ‖, λ⊥ are

known, the per-axon fractional anisotropy (µFA) is calculated as in Eq. (3.13), with

λ1 = λ‖ and λ2 = λ3 = λ⊥. As we show in Figures 3.10 and 3.11, the estimation

of µFA in the SMT framework is now independent of axon dispersion or crossing

tissue configurations, that are very noticeable in for instance FA and ODI. Also, the

per-voxel FOD can now be obtained using standard techniques such as Constrained

Spherical Deconvolution [Tournier et al., 2007], allowing for the recovery of very

sharp orientation profiles as shown in Figure 3.12.

3.5 Sensitivity of Anisotropy to Diffusion Time

Recent work has put focus on the diffusion time dependence of the diffusion coef-

ficient [Fieremans et al., 2016]. When this effect has an orientational dependence,

it also directly affects the estimation of diffusion anisotropy. To illustrate this, we

use Camino [Cook et al., 2006] to simulate the diffusion signal in two substrates

consisting of parallel axons – modelled as cylinders – with gamma distributed radii.

We show cross-sections of these substrates in Figure 3.13. We simulate a multi-shell

acquisition with two shells using b-values {1000, 3000} s/mm2 with 30 and 60 gra-

dient directions, respectively, and one b0 image without diffusion weighting. We set

pulse length δ = 1ms and vary pulse separation ∆ from 1ms to 40ms, while scaling

the gradient strength to keep the b-values constant. While here we set δ constant

to simplify the example, varying δ also influences the diffusion signal and its impact

should not be ignored in practice [Åslund and Topgaard, 2009].

We show the progress of FA, GFA and PA on the right of Figure 3.13 for both

distributions. It can be seen that all metrics describe the signal becoming more
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Figure 3.13: left: Cross-sections of Camino cylinder substrates with gamma-

distributed radii. Distribution 1 has smaller radii and less extra-cellular space than

distribution 2. right: Diffusion time dependence of anisotropy measures from the

two left distributions. The estimated anisotropy increases as longer diffusion times

are used, until a plateau is reached.

anisotropic as diffusion time increases, even though different metrics report different

levels of anisotropy. In all cases, distribution 1, having more densely packed, smaller

axons, produces a more anisotropic signal.

3.6 Discussion

In the first parts of this chapter, we have first covered the basic concepts of brain

microstructure and diffusion MRI. Critically, we illustrated diffusion is restricted by

tissue boundaries, leading to time-dependent non-Gaussian diffusion (Figure 3.8).

In tissues that restrict diffusion non-uniformly this leads to anisotropic diffusion

profiles. The diffusion signal can furthermore be sampled using various acquistion

schemes, ranging from single-shell DTI-schemes to multi-shell multi-diffusion time

qτ -schemes (Figure 3.9).

In second part of this chapter, we have discussed a range of diffusion anisotropy

related measures, coming from either signal-based dMRI models that estimate the

EAP from the signal as a whole, or models that use a multi-compartment approach

to estimate axon dispersion. While these anisotropy measures have slightly different

qualitative contrasts (Figure 3.10) and varying values in different tissue configura-

tions (Figure 3.11), an important takeaway is that none of these metrics are better

than any of the others from a methodological point of view. They all quantify

diffusion anisotropy in some way.

Arguably, an ideal measure for microstructure classification should be robust

to as many acquisition parameters as possible, while still showing sensitivity and

specificity to pathological changes [Vollmar et al., 2010]. As we illustrate in this

chapter, these criteria are hard to meet for diffusion anisotropy for several reasons:
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1. The definition of diffusion anisotropy changes for different dMRI models, as

illustrated in Section 3.4.

2. The reproducibility of anisotropy measures is influenced by a variety of ac-

quisition parameters, including, but not limited to, the number of gradient

directions, signal-to-noise ratio, b-value, and voxel size [Barrio-Arranz et al.,

2015], (Figure 3.13).

3. Different tissue configurations can produce the same level of estimated diffu-

sion anisotropy (Figure 3.11).

Nevertheless, diffusion anisotropy, and in particular fractional anisotropy (FA),

has been related to a variety of pathologies, see e.g. the review by Assaf and

Pasternak [2008]. However, only a few studies have shown the potential of using

GFA [Cohen-Adad et al., 2011] or PA [Fick et al., 2016b], while large-scale compar-

isons like those for FA are missing. This can perhaps be attributed to the higher

acquisition requirements that are required for HARDI and multi-shell techniques,

making them less suitable for current clinical applications.

Moreover, the typical criterium for being a biomarker is that the measure of

interest should provide a statistically significant difference between healthy and

diseased populations. However, care should be taken in prematurely calling a non-

specific marker such as diffusion anisotropy a biomarker. As an illustration, in

the particular case of Parkinson’s disease, after many studies had claimed that

FA could be used as a diagnostic biomarker, a systematic review of these studies

actually showed that on its own, it cannot [Hirata et al., 2016]. It is likely that the

non-specificity of diffusion anisotropy will continue to confound its interpretation

as a biomarker for pathology.

In an effort to improve specificity, NODDI’s multi-compartment approach using

ODI has been shown to be more discriminative than DTI in normal human brain

development and ageing [Chang et al., 2015], neurological disorders [Winston et al.,

2014], brain connectivity [Lemkaddem et al., 2014] and Alzheimer’s disease [Nir

et al., 2016, Colgan et al., 2016]. We will continue towards more advanced models

of tissue microstructure that go beyond diffusion anisotropy in the next Chapter 4.

3.7 Conclusion

In the first two parts of this chapter, we provided a brief overview of the relationship

between the ensemble average propagator (EAP) and the tissue microstructure. As

the subject of this thesis is microstructure imaging, everything in the following

chapters is based around this idea that the diffusion signal and the microstructure

are linked. In the second part of this chapter, we provided the basic concepts

in diffusion MRI to recover a diffusion weighted signal, ranging subjects between
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basis NMR theory until acquisition scheme design. In particular, we focused on the

Pulsed Gradient Spin Echo (PGSE) sequence, which is the main sequence we use

in this thesis.

In the last part of this Chapter, we have reviewed the inter-model variability

of diffusion anisotropy estimation, as well as illustrated its sensitivity to especially

short diffusion times. It is clear that there are many ways of defining diffusion

anisotropy, depending on the chosen signal representation and acquisition scheme.

It can be concluded that diffusion anisotropy is certainly a metric that, in combi-

nation with other indicators, can be used as a sign of neuropathology. However,

on its own, it lacks specificity, which disqualifies it as being a true marker of tissue

microstructure.
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Overview

In this Chapter we provide an extensive review, analysis and discussion on state-of-

the-art microstructure models. Every “microstructure” model uses a combination of

“biophysical” models that each represent a particular part of the underlying tissue

structure (e.g. intra- or extra-axonal). We deconstruct and classify microstructure

models by their components and the microstructural interpretation they lend to

their model parameters. In particular, we make a specific effort to expose the as-

sumptions and limitations that each model has. We follow this with a validation of

intra-axonal volume fraction and axon diameter estimation between different mod-

eling approaches using spinal cord data with registered diffusion MRI and ground

truth histology. We end this chapter by addressing current concerns about the de-

generacy of the solutions of multi-compartment models when the diffusivities are

not fixed, and propose a methodology that avoids this degeneracy.

4.1 Introduction

Can one sense the microstructure of the brain tissue using diffusion MRI?

This is diffusion MRI’s seminal question that continues to drive the Microstruc-

ture Imaging community forward. It can be seen as a variant of the previously

posed question Can One Hear The Shape of a Drum? by Bers and Kac [1966]. In

his work, Kac explores the question of whether the shape of a drum can be inferred

by the sound it makes, i.e., the frequencies it produces. Similarly, in diffusion MRI,

we “hear” the frequencies of the ensemble average propagator (EAP) of water parti-

cles, represented as the measured diffusion signal, whereas the drum is represented

by the surrounding tissue boundaries.

Kac’s question was finally answered negatively by Gordon et al. [1992], who

showed that two differently shaped drumheads could produce the same sound – as

long as they produce the same frequency Eigenvalues. In other words, one cannot

hear the shape of the drum completely, but still some information can be inferred.

The analogy between Kac’s question and ours does not end here, as Jelescu et al.

[2016] recently illustrated that ranges of estimated tissue configurations can produce

the same diffusion signal, i.e., make the same sound.

To understand the implications of Jelescu et al.’s work, this chapter is dedi-

cated to understanding how much information on the tissue microstructure we can

infer using diffusion MRI. Throughout this chapter, we will refer to the practice

of estimating microstructural tissue features using diffusion MRI as Microstructure

Imaging. In particular, we restrict ourselves to Microstructure Imaging based on

the Pulsed-Gradient Spin Echo (PGSE) sequence [Stejskal and Tanner, 1965] (see

Chapter 3.3.2), which is still the sequence used in most state-of-the-art microstruc-

ture models [see e.g. Scherrer et al., 2015, Kaden et al., 2016].
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In Microstructure Imaging, the observed diffusion signal is related to tissue

structure using biophysical models, i.e., simplified representations of the nervous

tissue. These include representations of trapped water, intra- and extra-axonal

diffusion and free diffusion [see a partial taxonomy in Panagiotaki et al., 2012] as well

as spherical distributions for axon dispersion [Kaden et al., 2007]. A combination

of biophysical models constitutes a “microstructure model”.

In microstructure models, the specificity of estimated model parameters to tis-

sue changes hinges on the appropriate choice of biophysical models. To understand

the differences between different biophysical models, we start this Chapter by pro-

viding the mathematical description of, and the relation between, most biophysical

models that are used in PGSE-based Microstructure Imaging in Section 4.2. These

representations can be seen as the building blocks of Microstructure Imaging. In

the next Section 4.3, we then use these blocks to describe all state-of-the-art mi-

crostructure models, emphasizing their similarities, applications and limitations.

Then, in Section 4.4, we validate and compare the estimation of intra-axonal vol-

ume fraction and axon diameter for different microstructure models using a spinal

cord data set with registered high-quality diffusion MRI data and ground truth

histology. Finally, we will discuss our findings and come back to the drum and the

work of Jelescu et al. [2016] in Section 4.5.

4.2 Biophysical models of Tissue Microstructure

Microstructure Imaging is based on representing the diffusion signal of different

tissue types with mathematical representations, known as biophysical models. We

show an extensive overview of these models in Figure 4.1. Above each model we use

a superscript as a reference when the component is used as part of a microstructure

model: I1 through I4 for intra-axonal models; DD1 for axon diameter distribution;

E1 through E5 for extra-axonal models; T1 for a tortuosity model; and finally

SD1 through SD4 for spherical distributions. In this section we will provide the

mathematical descriptions and assumptions of all these biophysical models, starting

with the Tensor model (E1).

Tensor: E1

The simplest representation of the diffusion signal of a single axon bundle is that of

Diffusion Tensor Imaging (DTI) [Basser et al., 1994]. In DTI, the diffusion signal

is represented as 3× 3 positive-definite anisotropic Gaussian distribution as

E(b,n) = exp(−bnTDn) or E(q, τ,n) = exp(−4π2q2nTDnτ) (4.1)
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Figure 4.1: A schematic of most biophysical models that are used in PGSE-based

Microstructure Imaging. Using different combinations of these “components”, any

microstructure model that is discussed can be assembled. The superscripts above

each component will be used as a reference throughout this Chapter, to be used

as “cheat sheet” when the component is used in a microstructure model. The

bottom-right matrix-variate illustration is adapted from [Scherrer et al., 2015].
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Where the DTI tensor D = RDdiagR
T with R a rotation matrix containing the

Tensor Eigenvectors and diagonal matrix

Ddiag =


λ1 0 0

0 λ2 0

0 0 λ3

 (4.2)

containing the DTI Eigenvalues with λ1 > λ2 > λ3 given in [mm2/s]. Both rep-

resentations in Eq. (4.1) are equivalent by rewriting the variables from “b-space”

to “q-space” using diffusion weighting b = 4π2q2τ [s/mm2] (see Chapter 3). In

short, the q-space wave vector is given as q = Gδγ/(2π) ∈ R3 with gradient vector

G = ‖G‖n ∈ R3, using gradient strength ‖G‖ [T/mm], gradient direction n ∈ S2,

gyromagnetic ratio γ [s−1T−1] and pulse length δ [s]. The q-value then given as

q = ‖q‖ [1/mm] and the diffusion time as τ = ∆−δ/3 [s] with pulse separation time

∆ [s].

DTI has lent itself to microstructural interpretation through scalar indices like

diffusion anisotropy (see Chapter 3). However, it is recognized that DTI is an

oversimplification of the complex interaction between restricted intra-axonal and

hindered extra-axonal diffusion [Behrens et al., 2003]. In this section, we provide an

overview of the most commonly used biophysical models for tissue microstructure.

We describe models for intra-axonal diffusion in section 4.2.1, models for extra-

axonal diffusion and tortuosity in Section 4.2.2 and spherical distributions in Section

4.2.3.

4.2.1 Models of Intra-Axonal Diffusion

In this section, we describe models of intra-axonal diffusion. In all cases, the intra-

axonal diffusion is represented using axially symmetric cylinder models with µ ∈ S2

the orientation parallel to the cylinder axis. The three-dimensional diffusion signal

in these models is given as the separable product of (free) parallel and restricted

perpendicular diffusion [Assaf et al., 2004]. This means that the three-dimensional

signal is given by

Eintra(q,∆, δ, R) = E‖(q‖,∆, δ, λ‖)× E⊥(q⊥,∆, δ, R) (4.3)

with parallel q-value q‖ = qTµ, perpendicular q-value q⊥ = (qTq − (qTµ)2))1/2,

parallel diffusivity λ‖ > 0 and cylinder radius R > 0[mm]. The parallel signal is

simply given by Gaussian diffusion as

E‖(q‖,∆, δ, λ‖) = exp(−4π2q2
‖λ‖(∆− δ/3)). (4.4)

The perpendicular signal E⊥ is described using various cylinder models. In the rest

of this section, we start with describing the simplest, having the strongest tissue

assumptions (I1), and more towards more general models (I4). We end with a

description how axon diameter distributions are modeled (DD1).
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Stick: I1

The simplest model for intra-axonal diffusion is the “Stick” – a cylinder with zero

radius [Behrens et al., 2003]. The Stick model assumes that, because axon diam-

eters are very small, the perpendicular diffusion attenuation inside these axons is

negligible compared to the overall signal attenuation. It therefore simply assumes

that the perpendicular diffusion coefficient can be approximated by zero, so the

perpendicular signal attenuation is always equal to one as E⊥ = 1. Inserting this

definition in Eq. (4.3) leads to the simple signal representation

EStick(b,n,µ, λ‖) = exp(−bλ‖(nTµ)2), (4.5)

which is the same as a DTI Tensor with λ‖ = λ1 and λ⊥ = λ2 = λ3 = 0. Despite its

simplicity, it turns out approximating axons as Sticks is quite reasonable at clinical

gradient strengths [Burcaw et al., 2015]. In fact, the Stick is used in the most state-

of-the-art microstructure models modeling axonal dispersion [Tariq et al., 2016,

Kaden et al., 2016], which we’ll get back to in Section 4.3.

Soderman Cylinder: I2

In reality, axons have a non-zero radius. To account for this, different cylinder

models for perpendicular diffusion have been proposed for different combinations of

PGSE acquisition parameters. The simplest is the “Soderman” model [Söderman

and Jönsson, 1995], which has the hardest assumptions on the PGSE protocol.

First, it assumes that pulse length δ is so short that no diffusion occurs during the

application of the gradient pulse (δ → 0). Second, it assumes that pulse separation

∆ is long enough for diffusion with intra-cylindrical diffusion coefficient D to be

restricted inside a cylinder of radius R (∆ � R2/D). Within these assumptions,

the perpendicular, intra-cylindrical signal attenuation is given as

E⊥(q,R|δ → 0,∆� R2/D) =

(
J1(2πqR)

πqR

)2

, (4.6)

where we use the “|” to separate function parameters from model assumptions, and

J1 is a Bessel function of the first kind. Taking limR→0 of Eq. (4.6) simplifies the

three-dimensional Soderman model to the Stick model as in Eq. (4.5).

Callaghan Cylinder: I3

The “Callaghan” model relaxes Soderman’s ∆ � R2/D assumption to allow for

unrestricted diffusion at shorter pulse separation ∆ [Callaghan, 1995]. In this case,
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the perpendicular signal attenuation is given as

E⊥(q,∆, R|δ → 0) =

∞∑
k

4 exp(−β2
0kD∆/R2)×

(
(2πqR)J

′
0(2πqR)

)2

(
(2πqR)2 − β2

0k

)2
+
∞∑
nk

8 exp(−β2
nkD∆/R2)×

β2
nk(

β2
nk − n2

) ×
(

(2πqR)J
′
n(2πqR)

)2

(
(2πqR)2 − β2

nk

)2
(4.7)

where J
′
n are the derivatives of the nth-order Bessel function and βnk are the ar-

guments that result in zero-crossings. Taking lim∆→∞ of Eq. (4.7) simplifies the

Callaghan model to the Soderman model as in Eq. (4.6). The Callaghan model

has been used to estimate the axon diameter distribution in the multi-compartment

AxCaliber approach [Assaf et al., 2008]. However, the authors also mention that

the perpendicular diffusion is likely already restricted for realistic axon diame-

ters (< 2µm) [Aboitiz et al., 1992] for the shortest possible ∆ in PGSE protocols

(∼10ms). This limits the added value of the Callaghan model over the Soderman

model in axon diameter estimation.

Van Gelderen Cylinder: I4

The last cylinder model generalization we discuss is the “Van Gelderen” model [Van-

gelderen et al., 1994], which relaxes the last δ → 0 assumption to allow for finite

pulse length δ. This model is based on the “Neuman” model [Neuman, 1974],

which assumes Gaussian diffusion during the gradient pulse. In this case, the signal

attenuation is given as

E⊥(q,∆, δ, R) = −8π2q2
∞∑
m=1

[
2Da2

mδ − 2 + 2e−Da
2
mδ + 2e−Da

2
m∆

− e−Da2
m(∆−δ) − e−Da2

m(∆−δ)

]
δ2D2a6

m(R2a2
m − 1)

(4.8)

where am are roots of the equation J
′
1(amR) = 0, with J

′
1 again the derivative

of the Bessel function of the first kind. According to Neuman [1974], taking the

double lim(δ,∆)→(0,∞) of Eq. (4.8) should simplify the Van Gelderen model to the

Soderman Model in Eq. (4.6), although he does not show this explicitly. For its

generality, the Van Gelderen model has been used in most recent studies regarding

in-vivo axon diameter estimation [Huang et al., 2015, Ferizi et al., 2015, De Santis

et al., 2016].

Axon Diameter Distribution: DD1

Histology studies show that axons do not have only one fixed diameter throughout

the brain, but follow an axon diameter distribution [Aboitiz et al., 1992]. In Mi-
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crostructure Imaging, the true axon diameter distribution is usually modeled as a

Gamma distribution Γ(R;α, β) with R the axon radius as half its diameter and α

and β its scale and rate parameters [Assaf et al., 2008]. The probability density of

a Gamma distribution is given as

Γ(R;α, β) =
βαRα−1e−Rβ

Γ(α)
(4.9)

with Γ(α) a Gamma function. However, we must take the cross-sectional area of

these cylinders into account to relate this Gamma distribution of cylinder radii to

the signal attenuation of this distribution of cylinders. The reason for this is that it

is not the cylinders themselves, but the (simulated) particles diffusing inside these

cylinders that are contributing to the signal attenuation. The final perpendicular,

intra-cylindrical signal attenuation for a Gamma-distributed cylinder ensemble, us-

ing any of the previously describe cylinder representations, is then given as

EΓ
⊥(q,∆, δ;α, β) =

∫
R+

Gamma Distribution︷ ︸︸ ︷
Γ(R;α, β) ×

Cylinder Signal Attenuation︷ ︸︸ ︷
E⊥(q,∆, δ, R) ×

Surface Correction︷︸︸︷
πR2 dR∫

R+

Γ(R;α, β)× πR2dR︸ ︷︷ ︸
Normalization

(4.10)

4.2.2 Models of Extra-Axonal Diffusion and Tortuosity

In this section, we detail models for extra-axonal diffusion, starting with the simplest

as trapped water (E2) and ending with more complicated descriptions of time-

dependent extra-axonal diffusion (E5).

Dot: E2

The Dot model represents a non-diffusing component, which could represent

trapped water in glial cells [Stanisz et al., 1997], or axons with a different ori-

entation to the main bundle [Panagiotaki et al., 2009]. Notably, Alexander et al.

[2010] mentions that the contribution of the Dot model is negligible in in-vivo acqui-

sitions. The signal of a Dot is simply a Tensor as in Eq. (4.1) with all diffusivities

set to zero, which simpifies to a constant as

Edot = 1. (4.11)
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Ball: E3

the “Ball” model [Behrens et al., 2003] models the totallity of all extra-axonal

diffusion as a Tensor with isotropic diffusivity λiso as

Eiso(b, λiso) = exp(−bλiso). (4.12)

In current models, the Ball is usually only used to describe the CSF and/or grey

matter compartment of the tissue, where the isotropic diffusion assumption is rea-

sonably valid [Alexander et al., 2010, Jeurissen et al., 2014, Tariq et al., 2016].

Zeppelin: E4

Hindered extra-axonal diffusion, i.e. diffusion of particles in-between axons, is of-

ten modeled as an anisotropic, axially symmetric Gaussian, also known as a “Zep-

pelin” [Panagiotaki et al., 2012]. Using the same DTI notation as in Eq. (4.1,4.2),

a Zeppelin with λ‖ = λ1, λ⊥ = λ2 = λ3 and λ‖ > λ⊥ is given as

Eh(b,n, λ‖, λ⊥) = exp(−bnT (RDh
diagR

T )n) with Dh
diag =


λ‖ 0 0

0 λ⊥ 0

0 0 λ⊥

 .

(4.13)

Restricted Zeppelin: E5

In DTI, the signal attenuation decays like a Gaussian over q-value and like an

expontial over diffusion time τ , see Eq. (4.1). However, recent works argue that

hindered diffusion is actually slower-than-exponential over τ due to how the external

axon boundaries still restrict diffusing particles [Novikov et al., 2014]. To account

for this, Burcaw et al. [2015] proposed a modification to the Zeppelin as

Dr
diag =


λ‖ 0 0

0 λr
⊥ 0

0 0 λr
⊥

 with λr
⊥ = D∞ +

A ln(∆/δ) + 3/2

∆− δ/3
(4.14)

where perpendicular diffusivity λr
⊥ is now time-dependent with D∞ the bulk dif-

fusion constant and A is a characteristic coefficient for extra-axonal restriction.

Notice that when A = 0 then Eq. (4.14) simplifies to Eq. (4.13).

Tortuosity: T1

Finally, the overall signal representation of a single axon bundle is represented as a

sum of the intra- and extra-axonal signal contributions

E(q) = fEintra(q) + (1− f)Eextra(q) (4.15)
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where f is the intra-axonal volume fraction. To relate f with the perpendicular

diffusivity of the extra-axonal compartment, several models use a first-order tortu-

osity approach to modulate the diffusivities in Eq. (4.13) [Bruggeman, 1935, Sen

et al., 1981, Szafer et al., 1995]. In plain words, if more volume is taken up by

axons, then the extra-axonal, perpendicular diffusivity should be more hindered.

This is modeled as

λ⊥ = (1− f)λ‖. (4.16)

When the intra-axonal volume fraction f = 0, then there are no axons in the tissue,

so λ⊥ = λ‖. When f = 1 the tissue (hypothetically) only consists of intra-axonal

space, so λ⊥ = 0.

4.2.3 Models of Axon Distribution

Histology studies show that axons within one white matter bundle are not organized

parallel to each other, but rather that their orientations are dispersed around the

central bundle direction [Leergaard et al., 2010]. The diffusion signal originating

from tissue with dispersed axons can be modeled as the spherical convolution of a

spherical distribution F : S2 → [0,∞] with a convolution kernel K(n) with n ∈ S2,

where the kernel describes the diffusion signal of a single axon micro-environment.

Formally, this convolution can be written as

E(n) =

∫
S2

F(n− g)K(g)dg = (F ∗S2 K)(n) (4.17)

where g ∈ S2 is an integration variable, and we will use the second shorthand for

spherical convolution in the rest of this chapter. Given an axon bundle along n‖,

then the “sharpness” of F along n‖ describes the “spread”, i.e. the dispersion of

single axon micro-environments around n‖. As we will discuss in Section 4.3, the

chosen shape of K(n) varies between microstructure models and can be Sticks,

Cylinders, Zeppelins or combinations thereof. But once K(n) is known, F can

be recovered by spherical deconvolution of the signal with the kernel as F(n) =

(E ∗−1
S2 K)(n) with ∗−1

S2 the deconvolution operator. In this section, we provide a

brief summary of commonly used spherical distribution for F.

Spherical Harmonics: SD1

The most general way to describe F is using the spherical harmonics (SH) functional

basis [Tournier et al., 2004, Descoteaux et al., 2007b]. In this case, F is called the

fiber Orientation Distribution Function (fODF) or Fiber Orientation Distribution

(FOD), where we will use the latter. Using SH, any spherical function can be repre-

sented in terms of a truncated basis expansion using basis functions Y l
m(n) with even

order l = [0, 2, . . . , lmax] and angular moment m = [−l, l]. In this representation,
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the approximation of the signal Ẽ and kernel K̃ is given as

Ẽ(n) =

lmax∑
l=0

l∑
−l

αlmY
l
m(n) and K̃(n) =

lmax∑
l=0

l∑
−l

βlmY
l
m(n) (4.18)

where α and β are the estimated SH coefficients of the signal and kernel. As SH is a

spherical Fourier basis, the spherical deconvolution to recover F̃ may be performed

as a division of SH coefficients1 as

F̃(n) =

lmax∑
l=0

l∑
−l

αlm
βl0

Y l
m(n). (4.19)

In practice, however, additional regularization or constraints are required to ensure

positive recovery of F [Tournier et al., 2007]. Once F is known, the estimated axon

bundle orientations may be freely extracted. However, quantifying the “sharpness”

of the FOD along these bundle directions in a meaningful way is not straightforward

– but may be done using a specific form of kernel [Kaden et al., 2016], as we will

elaborate in Section 4.3.1.

Bingham and Watson Distributions: SD2, SD3

To provide a more straightforward, but less general way to quantify axon disper-

sion, parameteric representations for F such as the Bingham and Watson distribu-

tion have been proposed [Kaden et al., 2007]. We show schematic representations

of both distributions in Figure 4.2. The Bingham distribution B(n|µ, κ1, κ2) is an

antipodally symmetric distribution, centered around direction µ, describing a pos-

sibly anisotropic density with concentration parameters κ1 and κ2 [Bingham, 1974].

More formally, its probability density along normalized unit vector n is given as

B(n|µ, κ1, κ2) =
exp(nTBn)

4π 1F1(1/2; 3/2; B)
with B = RTBdiagR (4.20)

with 1F1 the confluent hypergeometric function, R a rotation matrix that aligns

the distribution with µ and Bdiag = Diag(κ1, κ2, 0). Note that concentration pa-

rameters κ1, κ2 are inversely related to dispersion. The parameters of B can only be

obtained by non-linear estimation from Eq. (4.17), but by giving up the ease of esti-

mation using SH and ability to describe multiple bundles, we now directly estimate

parameters that are related to axon dispersion. The Watson distribution W (n|µ, κ)

is a special case of Bingham when κ = κ1 = κ2, meaning W (n|µ, κ) = B(n|µ, κ, κ).

1As extra conditions, the kernel also needs to be axially symmetric, aligned with the z-axis and

its SH coefficients must also be divided by those of a Dirac δ function [Tournier et al., 2007].
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Figure 4.2: Schematic representations of Watson and Bingham distributions of

Sticks. Watson models isotropic dispersion and is a particular case of Bingham

when concentration parameters κ1 = κ2. Note here that concentration is inversely

proportional to dispersion – a larger κ means sticks are more concentrated, i.e. less

dispersed. In the presented Bingham distribution therefore κ1 > κ2.

Matrix-Variate Distribution: SD4

Scherrer et al. [2015] proposed to use a peak-shaped matrix-variate distribution

P (D), where D is a symmetric positive definite (SPD) matrix, to describe the

spread of micro-environments around µ. For a given gradient direction n with

b-value bi the signal is respresented as

E(b,n) =

∫
D∈Sym+(3)

P (D) exp(−bnTDn)dD. (4.21)

where Sym+(3) is the set of 3 × 3 SPD matrices, i.e. biophysical component E1.

A natural peak-shaped distribution for SPD matrices is the multi-variate-Γ (mv-Γ)

distribution. A p×p SPD random matrix D ∈ Sym+(p) follows a mv-Γ distribution

with shape (concentration) parameter κ > (p − 1)/2 and scale parameter Σ ∈
Sym+(p) if it has density [Gupta and Nagar, 1999]:

Pκ,Σ(D) =
|D|κ−(p+1)/2

|Σ|κΓp(κ)
exp(−trace(Σ−1D)), (4.22)

where | · | is the matrix determinant and Γp is the multi-variate Gamma function:

Γp(κ) = πp(p−1)/4
p∏
j=1

Γ[κ− (j − 1)/2]. (4.23)
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Its central axis µ, i.e. matrix expectation D0 = κΣ and its mode is M0 =

D0(κ − 1)/κ). As in the Bingham and Watson distributions, the shape param-

eter κ determines the concentration: for constant D0 the density becomes more

concentrated as κ increases.

4.3 A Review on Microstructure Models

Different combinations of the biophysical models presented in Section 4.2 have been

proposed to estimate tissue microstructure features from the measured diffusion sig-

nal. We present an extensive, but probably still not an exhaustive list of proposed

microstructure models in Table 4.1. For each method, we checkmark which of five

primary diffusion-based brain tissue properties it explicitly estimates – and which

it ignores or fixes. In particular, we consider the estimation of tissue composition,

varying tissue diffusivity, axonal dispersion, axon diameter and crossing tissue con-

figuration. Our inclusion criterium for being a “microstructure model” is that the

approach must in some way separate the signal contribution of different tissue com-

partments. For this reason, DTI on its own is not included in our microstructure

summary – although it is part of several models we consider. This also means that

we don’t consider models that only characterize non-Gaussian diffusion, meaning

models like Diffusion Kurtosis Imaging [Jensen et al., 2005, Jensen and Helpern,

2010] and in 3D q-space imaging approaches [Wedeen et al., 2005, Assemlal et al.,

2009, Özarslan et al., 2013b] are excluded. In each of the following microstruc-

ture model descriptions, we explicitly name their biophysical model components by

their superscripts in Figure 4.1, which are subsequently all described in the previous

Section 4.2. Furthermore, we recognize that model-branding in terms of the given

model acronym is sometimes uninformative in understanding what the model does.

For this reason, we provide a list of component-based model names in Table 4.2.

In this section, we first illustrate our methodology for microstructure model

description on the simpler Multi-Tensor and Ball and Sticks models. We then

discuss models that extend or modify the Ball And Sticks model to estimate axon

dispersion in Section 4.3.1. Then, we move on and discuss models that estimate

axon diameter using cylinder models in Section 4.3.2. Finally, in Section 4.3.3,

we discuss the “apparent” microstructural interpretation of several signal-based

contrasts.

Multi-Tensor: N×E1

The earliest model that separates the signal contributions of different axon bundle

populations is the “Multi-Tensor” [Tuch et al., 2002]. As the name implies, the

Multi-Tensor uses a mixture of diffusion tensors to model the signal contributions
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of axon bundles in crossing tissue as

EMulti-Tensor =
N∑
i=1

fi

Tensor︷ ︸︸ ︷
E(Di)︸ ︷︷ ︸

Axon Bundle

(4.24)

with N the number of bundles, D a DTI tensor as in Eq. (4.1) and the volume

fractions of each axon bundle sum up to one as
∑N

i=1 fi = 1. As Eq. (4.24) shows,

we forego mathematical details in this section, and instead describe microstructure

models in terms of their components and microstructural interpretation, which we

annotate on top and below, respectively. This allows us to clarify the similarities

and differences between different approaches, without being distracted by the details

of their implementation. Instead, the mathematical details of each component can

be found in Section 4.2.

Ball and Sticks: E3+N×I1

While the Multi-Tensor allows for the characterization of crossing tissues, but still

models the signal contribution of each axon bundle as a tensor. As we discussed in

Section 4.2, this is an oversimplication of the more complex intra- and extra-axonal

signal contributions. The “Ball And Sticks” model [Behrens et al., 2003] extends

the Multi-Tensor to model the intra- and extra-axonal components separately as

EBall and
Sticks = fh

Ball︷ ︸︸ ︷
Eiso(λiso)︸ ︷︷ ︸

Extra-Axonal

+

N∑
i=1

fi,r

Stick︷ ︸︸ ︷
Er(µi|λ‖)︸ ︷︷ ︸

Intra-Axonal

(4.25)

where µi ∈ S2 is the estimated orientation of the ith Stick. The straight line “|”
separates the to-be-estimated parameters (λiso, fh, fi,r,n‖) from the fixed parame-

ters (λ‖). In this way, we clarify the assumptions that every modeling approach

makes. While Ball and Sticks provides a more microstructural interpretation to

estimated model parameters, it still ignores the presence of tissue properties such

as axon dispersion and axon diameter. In the rest of this section, we will discuss

microstructure models more-or-less from top-to-bottom in Table 4.1, starting with

those focussing on estimating axon dispersion.
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Table 4.1: Overview of proposed models of tissue microstructure. For every model we check which tissue properties it takes into account and

which it ignores, as well as the estimated model parameters. No model estimates all tissue properties simultaneously. In the bottom table we

write out the model acronyms, capitalizing which letters were used in the acronym, and provide their references.

Method Modeled Tissue Properties Estimated Parameters

Tissue Composition Varying Diffusivity Axon Dispersion Axon Diameter Crossings

Multi-Tensor X X × × X N ×D

WMTI X X × × × {f,D,K}
Ball and Sticks X X × × X {σ, S0, d} + N × {f,µ}
Ball and Rackets X X X × X {S0, d} + N × {f,µ, ψ, κ1, κ2}
NODDI X × X × × {S0, κ, fic, fiso,µ}
Bingham-NODDI X × X × × {S0, κ1, κ2, κ3, fic, fiso,µ

DIAMOND X X X × X {f1, f2, κfree, κiso} + N × {D, f, κ}
MC-SMT X X × × X {f, λ}
MT-CSD X × × × X {f1, f2} + 45 SH coefficients

CHARMED X X × × X {σ, S0, d‖, d⊥} + N × {f,µ}
MMWMD X × × X × {S0, 4f, 〈D〉, d‖, dI ,µ}
AxCaliber X X × X × {f, dextra, α, β}
“Axon Packing” X X × × × {f,Dh,∞, A}

Method Acronym Written Out Name References

Multi-Tensor Multiple Diffusion Tensor [Tuch et al., 2002]

WMTI White Matter Tract Integrity [Fieremans et al., 2011]

Ball and Sticks Ball and Sticks [Behrens et al., 2003]

Ball and Rackets Ball and Rackets [Sotiropoulos et al., 2012]

NODDI Neurite Orientation Dispersion and Density Imaging [Zhang et al., 2012]

Bingham-NODDI Bingham-Distributed Neurite Orientation Dispersion and Density Imaging [Tariq et al., 2016]

DIAMOND DIstribution of Anisotropic MicrOstructural eNvironments in Diffusion-compartment imaging [Scherrer et al., 2015]

MC-SMT Multiple Compartment Spherical Mean Technique [Kaden et al., 2016]

MT-CSD Multiple Tissue Constrained Spherical Deconvolution [Jeurissen et al., 2014]

CHARMED Composite Hindered And Restricted ModEl of Diffusion [Assaf et al., 2004]

MMWMD Minimal Model of White Matter Diffusion [Alexander et al., 2010]

AxCaliber Axon-Caliber [Assaf et al., 2008]

“Axon Packing” “Mesoscopic time-dependence of extra-axonal diffusion due to axon packing” [Novikov et al., 2014, Burcaw et al., 2015]
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Table 4.2: Despite the impressive nomenclature of the different models presented in

Table 4.1, it turns out that most of these models can be concisely described in terms

of their components. In the interest of clarifying what the real differences between

modeling approaches are, we provide component-based names for each model.

Model Acronym Component-Based Description

Ball and Rackets BallE3 and N Bingham-DispersedSD2 SticksI1

NODDI BallE3 and Watson-DispersedSD3 ZeppelinE4 and SticksI1

Bingham-NODDI BallE3 and Bingham-DispersedSD2 ZeppelinE4 and SticksI1

DIAMOND Two BallsE3 and N Matrix-Variate DistributedSD4 TensorsE1

MC-SMT Fiber DistributionSD1 of ZeppelinE4 and StickI1

MT-CSD Two BallsE3 and Fiber DistributionSD1 of ZeppelinsE4

CHARMED TensorE1 and N DistributionsDD1 of CylindersI4

MMWMD BallE3, ZeppelinE4, DotE2 and CylinderI4

AxCaliber BallE3 and Gamma-DistributionDD1 of CylindersI4

“Axon Packing” Time-Dependent BallE5 and CylindersI2

4.3.1 On Axon Dispersion Estimation

As we introduced in Section 4.2.3, axon orientation dispersion is used to describe

intra-voxel axon misalignment and diffusion restriction inside neurites. The pres-

ence of axon dispersion in coherent white matter (e.g. the corpus callosum) has been

proven in recent years [Leergaard et al., 2010, Budde and Annese, 2013, Mollink

et al., 2016], and is illustrated in Figure 4.3. In Microstructure Imaging, the es-

timation of axon dispersion or fanning is usually an interpretation of one or more

concentration parameters of a spherical distribution of sticks or cylinders. Jespersen

et al. [2007] were the first to address axon dispersion by separately modeling neu-

rites and axons as a distribution of cylinders and the extra-axonal component as a

Ball. Using spherical harmonics to model dispersion, they showed that their esti-

mated model parameters correlated better to the underlying histology than did DTI

metrics [Jespersen et al., 2010]. This finding spurred several more sophisticated ap-

proaches to estimate axon dispersion – using different distributions, compartment

combinations and model assumptions – that we will set apart in this section. We

try to emphasize the similarity between modeling approaches by formulating their

signal representation in terms of the component-based nomenclature in Table 4.2.
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From: Leergaard et al. PLOS ONE 2010 From: Mollink et al. ISMRM 2016

Figure 4.3: Histology, Polarized Light Imaging (PLI) and Diffusion MRI all confirm

the presence of axon orientation dispersion in the corpus callosum of rats and hu-

mans. The left image is from Leergaard et al. [2010], showing a close-up of dispersed

axon in the corpus collosum of a rat. The right image is from Mollink et al. [2016],

where PLI and diffusion MRI both confirm the presence of significant orientation

dispersion in the human corpus callosum.

Ball and Rackets: E3+N×SD2*I1

Instead of using a Ball and spherical harmonics to describe a distribution of cylin-
ders [Jespersen et al., 2007], Sotiropoulos et al. [2012] proposes to use a Ball and N
Bingham distributions of Sticks to describe axon dispersion in tissues with N ≥ 1
axon bundle populations. As we described in Section 4.2.3, a Bingham distribution
B(κ1, κ2,µ), oriented along orientation µ ∈ S2, quantifies the dispersion of Sticks
around µ. When κ1 6= κ2 the Bingham model describes “fanning” or “bending”
axon populations [Kaden et al., 2007]. The existence of such configurations has
been confirmed with histology in the cortex [Kleinnijenhuis et al., 2013], corpus cal-
losum [Budde and Annese, 2013] and corticospinal tracts [Türe et al., 2000]. Aptly,
this model is called Ball and Rackets2 (BAR), and describes the diffusion signal as

EBall and
Rackets = fiso

Ball︷ ︸︸ ︷
Eiso(Diso)︸ ︷︷ ︸

Extra-Axonal

+

N∑
i=1

f ir

Bingham︷ ︸︸ ︷
B(κ1, κ2,µ) ∗S2

Stick︷ ︸︸ ︷
Er( · |λ‖)︸ ︷︷ ︸

Intra-Axonal

(4.26)

where ∗S2 denotes the spherical convolution of the Bingham distribution with the

convolution kernel, i.e. the Stick. A such, BAR was the first model designed to

estimate axon dispersion and fanning separately per axon bundle. However, as

extra-axonal diffusion in between axons is hindered and anisotropic [Assaf et al.,

2004], lumping it all together in one isotropic compartment will likely bias esti-

2The “Racket” presumably comes from the fanning of strings on a tennis racket.
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mated model parameters. The bias of fixing the parallel Stick diffusivity is likely

minimal, as its value appears to vary little in white matter [Kaden et al., 2016].

Moreover, they found that estimating dispersion in crossing tissue configurations

in the presence of noise is highly unstable, effectly limiting its application to voxels

with one axon bundle when N = 1.

NODDI-Watson: E3+SD3*(T1+E4+I1)

Just months later, Zhang et al. [2012] proposed a similar model to estimate axon
dispersion for a single axon bundle using a Watson distribution W (κ,µ), that is a
particular case of Bingham when κ = κ1 = κ2. As such, it is incapable of modeling
axon bending or fanning, but improves upon BAR by separately modeling CSF
and hindered extra-axonal diffusion compartments. The authors claim that this
combination of biophysical models can estimate the dispersion of neurites (i.e. both
axons and neuron dendrites), and call their model Neurite Orientation Dispersion
and Density Imaging (NODDI). NODDI models the signal as

ENODDI
Watson = fCSF

Ball︷ ︸︸ ︷
Eiso( · |DCSF)︸ ︷︷ ︸

CSF

+

Watson︷ ︸︸ ︷
W (κ,µ) ∗S2

fh
Zeppelin︷ ︸︸ ︷

Eh( · |λtort
⊥ , λtort

‖ )︸ ︷︷ ︸
Hindered Extra-Axonal

+ fr

Stick︷ ︸︸ ︷
Er( · |λ‖)︸ ︷︷ ︸

Intra-Axonal

 . (4.27)

To improve the stability of estimated model parameters, NODDI presets the diffu-

sivities of all models components to typical values found in white matter [Alexander

et al., 2010]. A tortuosity model is used to link the intra-axonal volume fraction fr
and dispersion parameter κ to the extra-axonal parallel and perpendicular diffusiv-

ities λtort
‖ and λtort

⊥ . The public availability of the NODDI toolbox3 has fascilitated

the widespread adoption of NODDI in clinical neuroimaging. A range of studies

report the clinical relevance of NODDI parameters in normal human brain develop-

ment and ageing [Chang et al., 2015], neurological disorders [Winston et al., 2014],

brain connectivity [Lemkaddem et al., 2014] and animal studies [Colgan et al., 2016].

The specificity of estimated model parameters has also been validated using spinal

cord histology [Grussu, 2016].

Despite its success, NODDI has also received critique for overextending the

microstructural interpretation of its estimated model parameters. As an example,

in its title, NODDI already coins the estimated Watson concentration parameter κ

and intra-axonal volume fraction fr as “neurite orientation dispersion and density”.

However, there are several caveats before such interpretation is appropriate.

The most straightforward limitation is the loss of microstructural interpretation

in the presence of crossing bundles. NODDI interprets a crossing of two non-

dispersed axon bundles as one big dispersed bundle, meaning the estimated κ has a

similar interpretation in these areas as DTI’s Fractional Anisotropy. This limitation

appears insurmountable, as adding more restricted compartments to NODDI would

3http://www.nitrc.org/projects/noddi_toolbox

http://www.nitrc.org/projects/noddi_toolbox


4.3. A REVIEW ON MICROSTRUCTURE MODELS 79

cause similar problems as in BAR [Sotiropoulos et al., 2012], where the estimation

of dispersion per bundle becomes unstable.

Secondly, fixing the diffusivities of the hindered and intra-axonal compartment

biases parameter estimation in areas where these diffusivities do not reflect their ac-

tual values. In an effort to quantify and reduce this bias, Jelescu et al. [2015] studied

the possibility of also fitting the normally fixed diffusivities in NODDI. They coined

this modified model “NODDIDA”, where they also removed the CSF compartment

for simplicity. However, they found that using currently limited diffusion acquisi-

tions, NODDIDA’s model parameters cannot be reliably untangled. Attempting to

do so anyway comes at the cost of degraded precision and artifactual parameter

correlations. Moreover, Jelescu et al. [2016] found that NODDIDA’s parameter

estimation is inherently multi-modal, meaning there are multiple solutions in the

parameter space that fit the signal equally well, but each representing different, yet

biologically feasible tissue configurations. We will get back to this in Section 4.5,

as this argument appears to generalize to all multiple compartment models that fix

diffusivity.

Lastly, as Kaden et al. [2016] pointed out, NODDI makes an unusual choice

in assuming fast exchange in the hindered extra-axonal compartment, where slow

exchange may be more appropriate. In short, the difference between the two for-

mulations for a given b-value and axially symmetric Tensor D may be given as

Fast-Exchange: Eh = exp(−bW (κ,µ) ∗S2 D) (4.28)

Slow-Exchange: Eh = W (κ,µ) ∗S2 exp(−bD). (4.29)

The fast exchange hypothesis means that all diffusing particles in a voxel are as-

sumed to have sensed all tissues in that voxel. The Watson distribution is therefore

directly convolved with D, and not with the signal. In slow exchange, particles

have only sensed their local micro-environment. The Watson distribution is there-

fore convolved with the signal contributions of every micro-environment in that

voxel. Given that particles move in the µm range and clinical voxel sizes are in the

mm range, it seems more appropriate to assume slow-exchange in practice.

NODDI-Bingham: E3+SD2*(I1+T1+E4)

The recently proposed NODDI-Bingham model [Tariq et al., 2016] extends NODDI
to using a Bingham distribution instead of a Watson and describes the signal as

ENODDI
Bingham = fCSF

Ball︷ ︸︸ ︷
Eiso( · |DCSF)︸ ︷︷ ︸

CSF

+

Bingham︷ ︸︸ ︷
B(κ1, κ2,µi) ∗S2

fh
Zeppelin︷ ︸︸ ︷

Eh( · |λtort
⊥ , λtort

‖ )︸ ︷︷ ︸
Hindered Extra-Axonal

+ fr

Stick︷ ︸︸ ︷
Er( · |λ‖)︸ ︷︷ ︸

Intra-Axonal

 .
(4.30)

The added value of the Bingham distribution in NODDI has been shown in an

ex-vivo study on bending cortical fibers [Tariq et al., 2015]. However, it does not
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address any of the other limitations of NODDI. It is also interesting to see that this

model is equivalent to the BAR model if we set N = 1 and add a tortuous Zeppelin

to Eq. (4.26).

DIAMOND: 2×E3+N×SD4*E1

The DIstribution of Anisotropic MicrOstructural eNvironments in Diffusion com-
partment imaging (DIAMOND) model [Scherrer et al., 2015] allows for the esti-
mation of up to 3 main peaks per voxel using a multi-variate (mv)-distributions of
Tensors per bundle. DIAMOND also models two isotropic compartments, one for
free diffusion (CSF) and another for isotropic restricted diffusion inside glial cells.
The mv-distributions allow for the sharp representation of each bundle orientation,
as well as characterizing the dispersion and structural integrity for each bundle. It
signal representation is

EI
DIAMOND = fCSF

Ball︷ ︸︸ ︷
Eiso( · |DCSF)︸ ︷︷ ︸

CSF

+ fiso

Ball︷ ︸︸ ︷
Eiso(DGlial)︸ ︷︷ ︸
Glial Cells

+

N∑
i=1

f ir

Matrix-Variate︷ ︸︸ ︷
Pi(D) ∗S2

Tensor︷ ︸︸ ︷
E(D)︸ ︷︷ ︸

Axon Bundle

(4.31)

although there is also a second implementation that separates the axon bundle rep-

resentation into an intra- and extra-axonal part. Like the BAR model, DIAMOND

is able to represent axon dispersion in crossing bundles, but Scherrer et al. [2015]

shows no quantitative results on the accuracy in this situation.

MT-CSD: 2×E3+SD1*E4

Unlike the previous models, Multi-Tissue Constrained Spherical Deconvolution
(MT-CSD) [Jeurissen et al., 2014] does not separate intra- from extra-axonal dif-
fusion. Instead, it only estimates the signal contributions of CSF, grey matter
and white matter tissues, as well as the angular features of the diffusion process.
MT-CSD describes the signal as

EMT-CSD = fCSF

Ball︷ ︸︸ ︷
Eiso( · |DCSF)︸ ︷︷ ︸

CSF

+ fGM

Ball︷ ︸︸ ︷
Eiso( · |DGM)︸ ︷︷ ︸

Grey Matter

+ fr

Fiber Distribution︷ ︸︸ ︷
FOD(SH |lmax) ∗S2

Zeppelin︷ ︸︸ ︷
Eh(λK⊥ , λ

K
‖ )


︸ ︷︷ ︸

White Matter

(4.32)

where the the diffusivities of the Balls representing CSF and grey matter are fixed

such that DCSF > DGM. The FOD for a given maximum spherical harmonic order

lmax is recovered using spherical deconvolution (see Section 4.2.3) using a Zeppelin-

shaped convolution kernel, representing the diffusion profile of a single axon bundle

population. The kernel Eigenvalues λK⊥ , λ
K
‖ can be estimated from the data by

averaging the DTI eigenvalues of voxels above a certain FA threshold [Tournier

et al., 2004] or recursively [Tax et al., 2014]. But, once found, they are not varied

per voxel. The only free parameters in MT-CSD are therefore the volume fractions
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and the SH coefficients. This means that when the kernel eigenvalues do not match

the eigenvalues of the axon bundles in tissue (due to e.g. varying axon dispersion

or intra-axonal volume fractions) the estimation of the FOD is biased as towards

these tissue differences. In fact, this is exactly what metrics like “Apparent Fiber

Density” are counting on [Raffelt et al., 2012, Dell’Acqua et al., 2013], but we will

get back to that in Section 4.3.3.

MC-SMT: SD1*(I1+T1+E4)

The recently proposed Multi-Compartment Spherical Mean Technique (MC-SMT)
model [Kaden et al., 2016] is a spherical deconvolution-based technique, but sepa-
rates intra- from extra-axonal diffusion inside the convolution kernel as

EMC-SMT =

Fiber Distribution︷ ︸︸ ︷
FOD(SH |lmax) ∗S2

 fr Stick︷ ︸︸ ︷
Er(λ‖)︸ ︷︷ ︸

Intra-Axonal

+ (1− fr)

Zeppelin︷ ︸︸ ︷
Eh( · |λtort

⊥ )︸ ︷︷ ︸
Hindered Extra-Axonal

 . (4.33)

The formulation of MC-SMT finds similarities in both MT-CSD, using spherical

harmonics, and NODDI, where the intra- and extra-axonal diffusion signal are both

convolved with a spherical distribution. However, the innovation in MC-SMT comes

from the voxel-wise estimation of the convolution kernel using the Spherical Mean

Technique (SMT) [Kaden et al., 2015].

SMT observes that if the FOD is a probability density (i.e. integrated to unity)

then spherical mean of the signal and the convolution kernel must be the same

εE(b) =

∫
S2

E(g)dg =

∫
S2

(FOD ∗S2 K)(g)dg =

∫
S2

K(g)dgεK(b, λ⊥, λ‖). (4.34)

The estimation of the multi-compartment kernel using SMT enables the charac-

terization of per-axon micro-environments, as the effects of axon dispersion and

crossings are only contained in the FOD. Using the kernel definition in Eq. (4.33),

the spherical mean of kernel εK(fr, λ‖) depends only on the estimated volume frac-

tion fr and parallel diffusivity λ‖. These two parameters can be estimated per voxel

of for acquisition schemes with at least two b-values. Once the kernel is known, the

FOD can then be estimated using proven techniques such as CSD [Tournier et al.,

2007].

A caveat of MC-SMT is that it the microstructural interpretation of its esti-

mated parameters becomes complicated in the presence of non-white matter tissues,

or crossing tissue configurations where the per-axon diffusion characteristics differ

between the crossing bundles. For instance, CSF and grey matter are not explicitly

modeled, and their (partial) presence would complicate the interpretation of fr as

intra-axonal volume fraction.
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4.3.2 On Axon Diameter Estimation

In this section, we discuss microstructure models that focus on axon diameter esti-

mation. Axons are the structural and physiological conduit for signal transmission

in the brain and therefore are one of the fundamental elements of brain function.

The conduction velocity of nerves is directly proportional to axon diameter in both

myelinated and unmyelinated axons [Hursh, 1939, Waxman, 1980, Hoffmeister et al.,

1991]. Hursh [1939] showed the conduction velocity to be proportional to the square

root of the diameter of unmyelinated axons and directly proportional to the inner

membrane diameter of myelinated axons. In the peripheral nervous system, axon di-

ameters range from 0.1 µm to about 20 µm, with unmyelinated axons being smaller

than 2 µm and myelinated axons larger than 1 to 2 µm [Waxman and Kocsis, 1995].

In the central nervous system, myelinated axons as small as 0.2 µm have been ob-

served [Waxman, 1978], with axons below this size generally being unmyelinated.

In particular, histology studies have determined that axon diameter distributions in

the corpus callosum range between 0.2 and 2µm [Lamantia and Rakic, 1990, Aboitiz

et al., 1992]. Variations in axon diameter are thought to be closely tied to function,

with networks that demand fast response (such as motor networks) demonstrating

larger axon diameters. Therefore, a non-invasive method of mapping axon diame-

ters would provide new insight into brain function and connectivity.

CHARMED: E1+N×(DD1*I4)

In diffusion MRI, the first approach to include finite axon diameters in its mi-

crostructure model was the composite hindered and restricted model of diffusion

(CHARMED) [Assaf et al., 2004, Assaf and Basser, 2005]. In CHARMED, axons

are modeled as impermeable, parallel cylinders with fixed diameter distribution.

The signal representation in CHARMED is given as

ECHARMED = fh

Tensor︷ ︸︸ ︷
E(D)︸ ︷︷ ︸

Extra-Axonal

+

N∑
i=1

f ir

Diameter Distribution︷ ︸︸ ︷
P ( · ) ∗R

Cylinder︷ ︸︸ ︷
Er(µi, D‖|D⊥)︸ ︷︷ ︸

Intra-Axonal

(4.35)

where N is the number of restricted compartments, the volume fractions fh +∑N
i=1 f

i
r = 1 and ∗R here indicates the convolution of the axon diameter distribution

with the cylinder model. Since the axon diameter distribution is fixed, only the

volume fractions, D and the cylinder axes and parallel diffusivities are calculated.

Fixing D⊥ of the cylinder likely has no effect on estimated parameters as the intra-

axonal signal is probably already restricted for the shortest diffusion times [Assaf

et al., 2008].

It can be seen that CHARMED is the generalization of the Ball and Sticks model

in Eq. (4.25) towards axon diameter distributions, instead of BAR’s generalization
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towards axon dispersion in Eq. (4.26). In addition, The Ball has been generalized

to a Tensor to describe all extra-axonal diffusion and dispersion effects that are not

captured by the Cylinder. This means the interpretation of fr is biased by changes

in axon dispersion.

AxCaliber: E3+DD1*I4

To estimate the axon diameter distribution itself, CHARMED was adapted to a

method called AxCaliber [Assaf et al., 2008]. In AxCaliber, the diffusion signal

must be measured exactly perpendicular to the axon direction for different gradient

strengths and diffusion times. The signal representation in AxCaliber is given as

EAxCaliber = (1− fr)
Ball︷ ︸︸ ︷

Eh(λh)︸ ︷︷ ︸
Extra-Axonal

+ fr

Gamma Distribution︷ ︸︸ ︷
Γ(α, β) ∗R

Cylinder︷ ︸︸ ︷
Er( · |D⊥)︸ ︷︷ ︸

Intra-Axonal

(4.36)

where the cylinder was initially represented using the Callaghan model, but was

later replaced with the more general Van Gelderen model [Huang et al., 2015,

De Santis et al., 2016]. Given the acquisition protocol assumptions, Axcaliber

can only be used in areas where the orientation of the tissue is known a-priori,

like the corpus callosum. Three-dimensional implementations of AxCaliber were

proposed [Barazany et al., 2011, Fick et al., 2015b, Ben Amitay et al., 2016], but it

turns out that robustly estimating the α, β parameters of the Gamma distribution

is difficult – different combinations of α, β can generate similar distributions. Also,

axon dispersion is not accounted for.

MMWMD: E2+E3+E4+T1+I4

The Minimal Model of White Matter Diffusion (MMWMD) foregoes axon diame-

ter distribution estimation, focussing only on estimating the mean axon diameter

〈D〉 [Alexander et al., 2010]. The MMWMD signal representation is given as

EMMWMD = fCSF

Ball︷ ︸︸ ︷
Eiso( · |Diso)︸ ︷︷ ︸

CSF

+ ftrap ×
Dot︷︸︸︷
1︸ ︷︷ ︸

Trapped Water

+ fh

Zeppelin︷ ︸︸ ︷
Eh(µ|λ‖, λtort

⊥ )︸ ︷︷ ︸
Hindered Extra-Axonal

+ fr

Cylinder︷ ︸︸ ︷
Er(µ〈D〉|λ‖, λ⊥)︸ ︷︷ ︸

Intra-Axonal

,

(4.37)

where the cylinder is represented using the Van Gelderen model, ftrap represents

non-attenuating trapped water and fr + fh + fCSF + ftrap = 1. As this model has

only one restricted compartment, it can only be used in tissues with a single axon

bundle.

Time-Dependence of Extra-Axonal Diffusion: E5+DD1*I3

The previously presented models that focus on axon diameter estimation assume
that only intra-axonal diffusion is subject to diffusion restriction. However, recent
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Figure 4.4: The perpendicular intra- and extra-axonal signal attenuation for cylin-

ders with Gamma distributed diameters according to histology [Aboitiz et al., 1992,

Alexander et al., 2010]. We show the signal for different diffusion times from 1ms

(blue) to 35ms (red). The intra-axonal signal only shows sensitivity to diffusion

time between 1ms and 5ms, meaning diffusion is restricted after 5ms. The hindered

extra-axonal signal always shows sensitivity to diffusion time

evidence suggests that diffusion time-dependence actually originates from the extra-
axonal space as a function of axon packing [Novikov et al., 2014, Burcaw et al., 2015].
The argument is that intra-axonal diffusion is already restricted for the shortest
possible diffusion times in PGSE protocols (∼10ms). We illustrate this in Figure 4.4,
where we show that for a realistic axon diameter distribution the simulated intra-
axonal signal is already restricted before 5ms. Any change in perpendicular diffusion
coefficient over time must, therefore, be caused by restriction in the extra-axonal
space. To describe extra-axonal time-dependence, Burcaw et al. [2015] developed a
model for “restricted” extra-axonal diffusion that describes the signal as

EAxon
Packing = (1− fr)

Time-Dependent Ball︷ ︸︸ ︷
Eiso(D∞,A)︸ ︷︷ ︸

Hindered Extra-Axonal

+ fr

Cylinder︷ ︸︸ ︷
Er( · |α, β, λ⊥)︸ ︷︷ ︸
Intra-Axonal

(4.38)

where the time-dependent Ball is given by Eq. (4.14) and all axon diameter distri-

bution parameters are fixed. Using the time-dependent Ball has also been used to

improve AxCaliber (replacing the standard Gaussian Ball), leading to lower in-vivo

estimates of axon diameter [De Santis et al., 2016].

Regarding extra-axonal time-dependence, further evidence of structural disorder

was recently found in-vivo by investigating stimulated echo diffusion tensor imaging

for diffusion times up to 600ms [Fieremans et al., 2016]. Remarkably, both parallel

and perpendicular directions show non-Gaussian diffusion for diffusion times be-

tween 45− 600ms. This result comes after a long time of disagreement on whether

or not there was time-dependence present in the nervous tissue. This finding is

likely to cast new insights on the interpretation of DTI studies using clinical dif-

fusion times. With this in mind, it is highly likely that new scalar indices will

be proposed to describe the amount of structural disorder as a new type of tissue

biomarker (which we do in Section 9).
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Raffert et al. NeuroImage 2012

Figure 4.5: Overview of Apparent Fibre Density taken from [Raffelt et al., 2012].

They model axons as an ensemble of parallel sticks (A, B). In the case when high

b-values (> 3000s/mm2) are used, the magnitude of the radial diffusion-weighted

signal is approximately proportional to the intra-cylindrical volume fraction. The

amplitude of the FOD along the cylinder axis (D) is then proportional to the mag-

nidude of the perpendicular signal (C), and therefore to the intra-cylindrical volume

fraction.

4.3.3 On “Apparent” Microstructure Measures

In this section, we discuss models do not explicitly separate signal contributions

of the intra- or extra-axonal space, but still attribute “apparent” microstructural

interpretation to estimated model parameters. Raffelt et al. [2012] interprets the

peak of the Fiber Orientation Distribution (FOD) as the apparent fiber density

(AFD), i.e. the intra-axonal volume fraction. Dell’Acqua et al. [2013] later coined

the same term Hindrance Modulated Orientational Anisotropy (HMOA). Further-

more, Özarslan et al. [2013b] interprets the Return-To-Axis Probability (RTAP) of

the signal attenuation as the Apparent Axon Diameter (AAD). In this section, we

discuss the assumptions and biases of both these interpretations.

Apparent Fibre Density: I1

In this section, we derive the accuracy of AFD within its modeling assumptions.

The AFD is a single-shell High Angular Resolution Diffusion Imaging (HARDI)

technique based on Constrained Spherical Deconvolution (CSD) [Tournier et al.,

2007]. In HARDI, the angular signal for a given b-value is given as E(n) with

n ∈ S2. As illustrated in Section 4.2.3, CSD represents the angular signal as the

convolution of a kernel K(n) representing a single axon bundle population, and a

Fiber Orientation Distribution FOD(n) that describes the orientation of the kernel

(i.e. the tissue):

E(n) =

∫
S2

K(n− g) FOD(g)dg. (4.39)

The FOD is estimated by means of deconvolution of E(n) by K(n). In prac-

tice, the kernel K(n) is learned from the signal profile of high FA voxels either
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directly [Tournier et al., 2007] or iteratively [Tax et al., 2014]. In AFD, the peak

of the estimated FOD is interpreted as proportional to the intra-axonal volume

fraction. An overview of this model is given in Figure 4.5. In AFD, the signal is

compartmentalized as

E(n) = fEintra(n) + (1− f)Eh(n) (4.40)

where f is the intra-axonal volume fraction, Eintra is a stick as in Eq. (4.5) and

Eh is the extra-axonal signal – that is considered negligble at high b-values (>

3000s/mm2). The argument to ignore Eh at high b-values is quite reasonable:

assuming a hindered diffusivity of D = 2×10−3 mm2/s and a b-value of 3000 s/mm2,

then the Gaussian signal attenuation would be E(b) = exp(−bD) = 0.002, i.e. 0.2%

of the E(0) value.

We now quantify the accuracy of AFD’s model assumptions, i.e. that the peak

amplitude of the FOD is proportional to the intra-axonal volume fraction. Follow-

ing Figure 4.5, when the intra-axonal volume fraction increases, the perpendicular

diffusion becomes more restricted, resulting in lower estimated diffusion coefficient

(and vice versa) while the parallel diffusion is unaffected. Then, when considering

a set of parallel sticks oriented along n‖, we observe that the FOD is a discrete

Dirac delta function on the sphere along that direction, multiplied by the AFD to

account for volume fraction changes. Using this information, we rewrite Eq. (4.39)

as

E(n) =

∫
S2

K(n,g)
(
AFD δ(n‖,g)

)
dg

= AFD

∫
S2

K(n,g)δ(n‖,g)dg.

(4.41)

Then, we omit the convolution over g by assuming the kernel and the signal are

already aligned such that

E(n) = AFDK(n). (4.42)

We can now see that the AFD represents a scaling of the kernel with respect to the

signal. This means both the parallel and perpendicular signal is scaled, while the

model suggests that only the perpendicular diffusivity changes. Despite this bias, in

practice AFD does show plausible contrast for intra-axonal volume fraction [Raffelt

et al., 2012, Dell’Acqua et al., 2013] and we compare its performance with other

techniques in Section 4.4.

Apparent Fibre Density Using Return-To-Axis Probability: I1

The bias in AFD can actually be avoided by framing its value in terms of the

Return-to-Axis Probability (RTAP) [Özarslan et al., 2013b]. RTAP is a measure

for perpendicular diffusion restriction in the case that axons are modeled as an
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ensemble of cylinders oriented along n‖. For a given diffusion time τ , it describes

the probability density that particles have traveled a path along n‖ and can be

rewritten in terms of the signal as

RTAP =

∫
R
P (Rn‖)dR =

∫
R2

E(q⊥)dq⊥, (4.43)

where R is the real displacement distance in millimeter (see Chapter 3). RTAP has

a closed form for DTI tensors in terms of its Eigenvalues and τ . Starting from Eq.

(4.42), the RTAPs for the signal and kernel are given as

RTAP[E(n)] =
1

4Xπλ2τ
RTAP[K(n)] =

1

4πλ2τ
(4.44)

where it can be seen that RTAP per definition does not consider the axial λ1. In

other words, AFDRTAP provides a less biased representation of the AFD, and can

be simply computed as

AFDRTAP =
RTAP[E(n)]

RTAP[K(n)]
. (4.45)

Furthermore, the estimation of AFDRTAP can be generalized for any estimation

method. The Fourier central section theorem [Tristan-Vega et al., 2010] shows that

RTAP is a function of Tuch’s ODF amplitude along bundle direction n‖ [Fick et al.,

2014]:

RTAP =

∫
R
P (Rn‖)dR = ODF(n‖)/2. (4.46)

By inserting Eq. (4.46) in Eq. (4.45) we can more generally estimate AFDRTAP by

dividing the ODF peak amplitudes of the signal and kernel. We validate AFDRTAP

estimation in Section 4.4 and actually find that it outperforms regular AFD in

terms of Pearson correlation with histological intra-axonal volume fraction. Note

that the interpretation of AFDRTAP is only valid under the assumption that the

signal originates from one bundle of parallel cylinders. In the presence of bundle

crossings or axonal dispersion, its microstructural interpretation becomes biased.

Apparent Axon Diameter: I2 + T1

As we discussed in Section 4.3.2, axon diameter estimation is a sought-after appli-

cation of Microstructure Imaging. To this end, Özarslan et al. [2013b] proposed

that RTAP can be interpreted in terms of Apparent Axon Diameter (AAD). As

we showed in Eq. (4.43), RTAP is estimated only considering the perpendicular

diffusion signal. In AAD, the perpendicular signal is first approximated from a

multi-shell acquisition scheme [Wu and Alexander, 2007] using a functional basis

approach (e.g. MAP-MRI [Özarslan et al., 2013b]). The AAD is then directly

estimated from RTAP as

AAD =
2√

πRTAP
. (4.47)
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Figure 4.6: From left to right: Histology values of mean axon diameter, intra-axonal

volume fraction, and myelination. The final image shows the masked tissue segmen-

tation based on axon diameter we use in our axon diameter estimation experiment.

However, this ease of computation comes at the cost of oversimplifying the tissue:

it is modeled as an ensemble of parallel Soderman cylinders (see Eq. (4.6)) and

the diffusion signal originates only from inside these cylinders. This can be seen

as a tortuosity model with intra-axonal volume fraction f fixed to one. Despite

these caveats, we still found that in-vivo AAD trends in the corpus callosum were

consistent with ex-vivo axon diameter trends found in histology [Fick et al., 2016d].

However, it turns out that these results were misleading. As we will show in Section

4.4, when validating AAD with histological measurements of axon diameter in the

spinal cord, we found that there is no correlation between AAD and axon diameter

(r=0.01, p=0.77). Indeed, this illustrates the danger of prematurely coining model

parameters by their “apparent” microstructural interpretation. In the next section,

we do a validation study using both diffusion MRI and tissue histology of cat spinal

cord to compare the performance of the proposed microstructure models.

4.4 Histology Validation of Microstructure Estimation

Validating microstructure model estimates using white matter histology is an essen-

tial part of Microstructure Imaging [Duval et al., 2016a]. To this end, we test the

performance of several models in Section 4.3 using a public data set of a cat spinal

cord, where both multi-shell and AxCaliber diffusion protocols are registered with

underlying histology of axon diameter, intra-axonal volume fraction and myelin vol-

ume fraction [Duval et al., 2016b]. We compare the accuracy of axon diameter and

intra-axonal volume fraction estimation using both in-house and publically avail-

able implementations of several microstructure models shown in Table 4.1. This

data set is ideal for microstructure validation because axons are close-to-parallel in

the spinal cord, which is an assumption that many models make in their interpre-

tation. We first provide the details of the data in Section 4.4.1. We then analyze

the estimation of intra-axonal volume fraction in Section 4.4.2 and axon diameter

in Section 4.4.3.
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Histology Estimated Intra-Axonal Volume Fraction

Pearson r = 0.56 Pearson r = 0.38

Pearson r = 0.43

Pearson r = 0.20

Pearson r = 0.27

Figure 4.7: Left: Ground truth histology values of intra-axonal volume fraction.

Right: Estimated intra-axonal volume fraction using different models. In the corner

of each image we show the pearson correlation with the ground truth. We ordered

the methods from left to right by decreasing pearson correlation. Note that Appar-

ent Fiber Density (AFD) is both estimated using the original CSD implementation

and the RTAP approach in Section 4.3.3.

4.4.1 Spinal Cord Data With Ground Truth Histology

We base our experiments on a recent dataset where both AxCaliber and multi-

shell diffusion MRI acquisitions have been registered to one axial slice of cat spinal

cord [Duval et al., 2016b]. The data is 64× 64 voxels with resolution 0.16× 0.16×
0.16 mm3.

Histology: For every voxel, the mean axon diameter, restricted volume frac-

tion, and myelin volume fraction is known, see top Figure 4.6. When estimating

axon diameter, we segment the data into 4 ROIs with diameters [1−2; 2−3; 3−4;>

4]µm, see top-right Figure 4.6.

Diffusion MRI: The data was scanned on a Agilent 7T animal scanner

equipped with 600 mT/m gradients. A single shot EPI sequence was used:

BW=250kHz, TR=2s. One AxCaliber acquisition was acquired (perpendicular

to the axon axis) with parameters δ=3/8/8/8 ms, ∆ = 7/12/25/40 ms, G =

[0, . . . , 849] mT/m (199 increments) and TE minimized (36 - 62ms). The data

was TE-normalized by dividing the data for every TE by its G=0 signal. The

multi-shell acquisition was acquired with parameters δ=3ms, ∆=30ms, 4 shells

with b-values={40, 189, 1680, 6720} s/mm2, TE=47ms, with a total of 796 diffusion

weighted images.

4.4.2 Validation of Intra-Axonal Volume Fraction

The intra-axonal volume fraction is an important feature in observing and diagnos-

ing neurodegenerative diseases. As Table 4.1 shows, many models dedicate them-
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Table 4.3: A comparison on the estimation accuracy of intra-axonal volume fraction

with different microstructure models. For every model we provide pearson correla-

tion (ρ) and p-value between the estimated and histological volume fraction. In the

top box we show models that explicitly estimate parameters that are interpreted

as intra-axonal volume fraction. We sorted these models from strongest to weakest

pearson correlation. In the bottom box we show Fractional Anisotropy (FA) and

Mean Diffusivity (MD) as a reference.

Intra-Axonal Volume Fraction Correlation

Acquisition Scheme Model Pearson-ρ p-value

1D+t AxCaliber 0.56 3e-70

Multi-Shell Multi-Comp. SMT 0.38 1e-29

NODDI-Watson 0.27 7e-15

Single-Shell AFD-RTAP 0.43 1e-38

AFD-CSD 0.20 7e-9

DTI-FA 0.59 4e-78

DTI-MD -0.33 9e-23

selves to its estimation using a variety of approaches. However, it is unclear which

one performs best, i.e. the “volume fraction parameter” of which model correlates

best with the underlying histological value. In an effort to make such a ranking, we

estimate intra-axonal volume fraction using AxCaliber (in-house implementation),

Multi-Comp SMT (implementation at https://github.com/ekaden/smt), NODDI

(using NODDI Matlab Toolbox), and Apparent Fibre Density estimated using CSD

and RTAP (see Section 4.3.3) using open source DiPy [Garyfallidis et al., 2014].

We show the estimated intra-axonal volume fraction in Figure 4.7 and the corre-

sponding Pearson correlations and p-values in Table 4.3. Out of the microstructure

models, AxCaliber produces the closest-to-linear relationship between the ground

truth and the estimated model parameter, but also uses the most data. Second is

our proposed RTAP-estimated Apparent Fiber Density (AFD), followed by Multi-

Comp. SMT, NODDI and finally the original AFD-CSD. Interestingly, the Pearson

correlation of DTI’s Fraction Anisotropy is higher than any of the microstructure

models, though it does not have the same microstructural interpretation.
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Estimated Axon DiameterHistology

Pearson r = 0.26 Pearson r = -0.04 Pearson r = 0.01

Figure 4.8: Left: Ground truth histology values of axon diameter. Right: Estimated

axon diameter using different models. In the corner of each image we show the

pearson correlation with the ground truth. Note that only estimates by AxCaliber

correlate significantly with the ground truth.

4.4.3 Validation of Axon Diameter

Axon diameter estimation has been a focus of the diffusion MRI community for

the past decade. The main argument has been that while diffusion models always

overestimate the true axon diameter, their estimation still correlates with changes

in true value. Until now, this remains more as a discussion point. Our aim is to

verify whether histological variations in mean axon diameter correlate with esti-

mates produced by various state-of-the-art diffusion MRI models. We evaluate the

AxCaliber multi-compartment model [Assaf et al., 2008], as well as “apparent axon

diameter” estimates by signal models such as Mean Apparent Propagator (MAP)-

MRI Özarslan et al. [2013b] and 1D-Simple Harmonic Oscillator Reconstruction

and Estimation (1D-SHORE) [Özarslan et al., 2011]. We don’t use MMWMD as it

requires a multi-shell acquisition scheme with multiple diffusion times. We produce

these correlations for both the dataset as a whole and for separate segmentation of

the data based on different axon diameter ranges. In this way, we can evaluate for

which axon diameter ranges these methods are actually sensitive.

We show the predicted axon diameters of AxCaliber, the AAD of 1D-SHORE

and MAP-MRI in Fig. 4.8. As expected, all approaches significantly overestimate

the axon diameter compared to their actual values on the left. Of the modeling

approaches, the AxCaliber result appears to be most similar to histology, showing

the same general pattern. On the other hand, AAD estimates from both signal-

based models appear quite flat compared to histology.

Taking a closer look at the quantitative results in Table 4.4, we show the mean

and standard deviation of the axon diameter estimates within the axon diameter-

based tissue segmentation in Figure 4.6, right. We also produce the Pearson cor-

relation (ρ) and the p-value of the diameter estimates versus the histology values.

Our aim is to verify if changes in estimated diameter also correlate (ρ > 0) with

histological diameter changes in these ranges. When this is so and the results are

significant (p-value < 0.05) we boldfaced the results.

First, considering all ROIs at the same time, we see that only estimates by
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AxCaliber consistently correlate with axon diameter. Both signal models have a

Pearson correlation close to 0, indicating no linear correlation. However, looking at

the diameter-segmented results, we notice that none of the models produce axon

diameters that correlate positively with histology when axons are smaller than 3µm.

Though, it can be seen that AxCaliber correlates positively for axons larger than

3µm, and even signal model estimates correlate well with axon larger than 4µm.
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Table 4.4: Table of the mean (µ) and standard deviation σ of the estimated axon diameters in the tissue segmentation indicated in Figure

4.6, right. We also provide the pearson correlation with the histology diameters (ρ) and the two-tailed p-value (p). When a method’s estimate

correlates positively (ρ > 0) and significantly (p < 0.05) with histology the numbers are bold-faced.

ROI All 1µm− 2µm 2µm− 3µm 3µm− 4µm > 4µm

Method ρ, p µ± σ, ρ, p µ± σ, ρ, p µ± σ, ρ, p µ± σ, ρ, p

1D-SHORE -0.04,3.3e-1 5.7±0.5, 0.58, 1.2e-1 5.5±0.5, -0.60, 1.8e-3 4.7±0.4, -0.08, 2.5e-1 4.8±0.3, 0.40, 1.9e-16

AxCaliber 0.26,7.4e-11 5.5±0.2,-0.04,9.2e-1 5.3±0.3,-0.79,3.5e-6 5.2±0.2,0.38,6.1e-8 5.2±0.2,0.55, 2.5e-32

MAPMRI 0.01,7.7e-1 10.6±1.6,0.28,4.9e-1 11.7±1.5,-0.05,8.1e-1 10.0±1.1,-0.25,6e-4 10.4±0.9, 0.23, 5.1e-6
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4.5 Discussion

In this Chapter, we provided an extensive review of PGSE-based Microstructure

Imaging. First, we provided an extensive review of available biophysical models in

Section 4.2, where we clarified their mathematical representations and illustrated

how they were related to each other. We then assembled these biophysical “building

blocks” into state-of-the-art microstructure estimation approaches in Section 4.3.

We made a specific effort to clarify similarities and limitations in microstructure

models in terms of their modeled tissue parameters in Table 4.1, and by describ-

ing them in terms of their biophysical model components in Table 4.2. Using this

“building block”-wise description of each model, we showed that most models are

very similar methodologically, and only differ in their chosen combination of bio-

physical model components. Finally, in Section 4.4 we validated estimation of axon

diameter and intra-axonal volume fraction using a spinal cord data with registered

diffusion data and ground truth histology.

We structure the discussion as follows: First, based on Sections 4.2 and 4.3,

we focus on discussing general trends and still unsolved challenges in Microstruc-

ture Imaging in Section 4.5.1. We then discuss the histology-based microstructure

validation results in Section 4.5.2. Finally, we go full circle and return to our ini-

tial question, “Can one sense the microstructure of the brain tissue using diffusion

MRI?” in Section 4.5.3.

4.5.1 Observed Trends and Challenges in Microstructure Imaging

By going in detail on formulation of biophysical models in Section 4.2, and com-

bining them in different microstructure models in Section 4.3, we can make some

general observations on state-of-the-art of Microstructure Imaging:

• Accurate separation of the signal contributions of different tissue compart-

ments is essential in Microstructure Imaging. However, there is heterogeneity

in which tissue compartments different models choose to include, depending on

their application. For example, most models represent intra- and extra-axonal

diffusion separately (Ball and Rackets, NODDI, MC-SMT, DIAMOND), but

for example MT-CSD just represents them as together as one Gaussian pro-

file. Similarly, MT-CSD and DIAMOND explicitly model grey matter as an

isotropic Gaussian, yet NODDI and MC-SMT do not explicitly model them.

• Different combination of biophysical models are used to represent the same tis-

sue feature, which is already illustrated in Figure 4.1. For example, axon dis-

persion is respresented using Watson [Zhang et al., 2012], Bingham [Sotiropou-

los et al., 2012, Tariq et al., 2016] and matrix-variate [Scherrer et al., 2015]

distributions.
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• Simultaneous axon dispersion and axon diameter estimation appears mutually

exclusive in Microstructure Imaging. To the best of our knowledge, only the

“pre-NODDI” model by Zhang et al. [2011] attempts to do so, where the intra-

axonal compartment was still modeled by cylinders (I4) instead of Sticks (I1).

As Zhang et al. [2012] later shows, there is no sensitivity to axon diameter for

clinically feasible acquisition schemes, which we will come back to below.

The Feasibility of Axon Dispersion Estimation

Models like BAR [Sotiropoulos et al., 2012], NODDI [Zhang et al., 2012], NODDI-

Bingham [Tariq et al., 2016] and DIAMOND [Scherrer et al., 2015] all facilitate on

the estimation of axon dispersion. While these models differ in combinations and

numbers of tissue compartments, in single bundle areas where the assumptions of

these models are roughly met, estimated Bingham/Watson concentration param-

eters appear to correlate with actual axon dispersion[Tariq et al., 2015, Grussu,

2016]. However, the BAR and NODDI models also agree that estimating axon dis-

persion in crossing tissues is unreliable (DIAMOND makes no claims on it). Their

argument is that while acquisition noise leaves the maxima of diffusion profiles rel-

ative unaffected (representing the macroscoping bundle direction), it does affect

the general “shape” of the signal. As axon dispersion is precisely a feature of the

sharpness of the diffusion profile around the bundle direction (see Section 4.2.3),

more noise will induce more uncertainty in the dispersion estimate. In the presence

of crossing bundles, where bundles with small crossing angles may even be confused

with single dispersed bundles, this phenomenon is reported to make the dispersion

estimation unreliable at best [Sotiropoulos et al., 2012, Tariq et al., 2016].

The Feasibility of Axon Diameter Estimation

A main focus of the community has been to assess the feasibility of in-vivo axon di-

ameter estimation. The main models to do so are AxCaliber [Assaf et al., 2008] and

MMWMD [Alexander et al., 2010]. A consensus is that extremely strong diffusion

gradients are required to estimate axon diameters in the biological range (< 2µm).

Recent advanced in scanner hardware, particularly the 300 mT/m MAGNETOM

CONNECTOM scanner [Setsompop et al., 2013], have therefore sparked further

interest in axon diameter estimation [McNab et al., 2013]. In particular, Huang

et al. [2015] studied the impact of gradient strength on axon diameter estimation,

but remarked that gradients of 300 mT/m may still be insensitive to axon diam-

eters smaller than 3-4µm. This was verified in a recent simulation study, where

the lower sensitivity limit using 300 mT/m gradients was shown to be around 2-

3µm [Drobnjak et al., 2016]. In other words, still stronger gradients are required. In

response, Sepehrband et al. [2016] used ultra-high gradient strengths of 1350 mT/m

to study the feasibility of axon diameter estimation in the mouse corpus callosum.
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These higher gradient strengths allowed them to further reduce axon diameter esti-

mates to ∼1.8µm, but this remained an overestimation compared to their electron

microscopy measurements of ∼1.2µm. They noted three probable reasons for this

overestimation: the presence of axonal dispersion in the corpus callosum (see Sec-

tion 4.3.1); time-dependent diffusion in extra-axonal water; and limitations of the

PGSE pulse sequence related to low SNR at high gradient strengths. The presence

of dispersion we already discussed above, where it appears that simultaneous axon

diameter and dispersion estimation is prohibitively complicated in the proposed

models. The time-dependence of the extra-axonal diffusion was recently taken into

account by De Santis et al. [2016], who showed that indeed lower axon diameters

could be estimated by replacing the standard Zeppelin (E4) by the “Restricted Zep-

pelin” (E5) in the AxCaliber model. With respect to PGSE noise limitations at

high gradient strengths, aside from explicit noise modeling (which Sepehrband et al.

[2016] already does) the solution to this may just be time, as hardware advances in

scanners will inevitably improve the SNR.

The results of the simulation study by Drobnjak et al. [2016] cast doubts on the

feasibility of axon diameter estimation using CONNECTOM strength 300 mT/m

gradients. They showed that in the best-case scenario – where axons are represented

as parallel cylinders and at a realistic noise level of SNR=20 – that axon diameters

below ∼2.7µm cannot be distinguished from zero. At the same time, histology stud-

ies show that axon diameters in the corpus callosum are typically < 2µm [Aboitiz

et al., 1992]. Combining these findings suggests that CONNECTOM strength gra-

dients do not provide sensitivity to axon diameters variations in ranges that are

found in the corpus callosum. Yet, many works on corpus callosum axon diameter

estimation have still reported the characteristic“low-high-low” trends from genu to

midbody to splenium, albeit that the absolute axon diameter are always overesti-

mated [Alexander et al., 2010, McNab et al., 2013, Huang et al., 2015, De Santis

et al., 2016]. Is it possible that observed changes in diffusion restriction are not due

to changes in axon diameter, but due to changed in other tissue properties such

as axon dispersion or intra-axonal volume fraction? Given the evidence, it seems

likely, but there no way to prove it for the moment.

4.5.2 On Histology Validation of Microstructure Estimation

We validated and compared microstructure models with respect to axon diameter

and intra-axonal volume fraction estimation in Section 4.4. To this end, we used a

public cat spinal cord data set with registered multi-shell and AxCaliber acquisitions

and ground truth histology [Duval et al., 2016b]. Assuming that the registration and

histological measures were done properly, this data set allows us to fairly compare

microstructure models.

With respect to volume fraction estimation, we included estimates using AxCal-
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iber [Assaf et al., 2008], MC-SMT [Kaden et al., 2016] and NODDI-Watson [Zhang

et al., 2012], and apparent fiber density (AFD) using both Raffelt et al. [2012]’s

CSD and our RTAP implementation (Section 4.3.3). We illustrate these estimates

in Figure 4.7 and provide their Pearson correlation with the ground truth histology

and p-values in Table 4.3. Of these models, we found that Axcaliber’s estimates

have the closest-to-linear relationship to the histological values (p = 0.56), which is

not surprising since it uses the largest acquisition scheme. Using multi-shell data,

we found that MC-SMT’s estimates correlate more linearly than NODDI (p = 0.38

versus p = 0.27). NODDI’s estimates may be improved by tweaking the fixed diffu-

sivities, but this finding illustrates that MC-SMT seems to be a more parsimonious

approach to estimating intra-axonal volume fraction that NODDI. Lastly, using the

single-shell data, our RTAP-based AFD has a closer-than-linear correlation than the

original CSD-based one (p = 0.43 versus p = 0.20). This provides evidence that for

parallel axons it is better to only use the perpendicular DTI eigenvalues to estimate

AFD. However, when axons are no longer parallel or when crossings are present,

CSD-based AFD should be much more reliable as it separates axon populations,

whereas AFD-RTAP is an overall signal property that will be biased. Interestingly,

still single-shell FA has the closest-to-linear relation to intra-axonal volume fraction

(p = 0.59), though it arguably only provides microstructural interpretation along

the lines of AFD, and is biased in the presence of dispersion and crossings. Overall,

given a multi-shell data set, it appears that MC-SMT is the most parsimonious

and effective approach to estimate intra-axonal volume fraction, being unaffected

by dispersion effects and leaving its diffusivities unfixed (aside from a tortuosity

model).

With respect to axon diameter estimation, we included estimates using AxCal-

iber and Apparent Axon Diameter (AAD) using multi-shell MAP-MRI [Özarslan

et al., 2013b] and AxCaliber-compatible 1D-SHORE [Özarslan et al., 2011] (see

Section 4.3.3). We show their estimates in Figure 4.8 and correlations and p-values

in Table 4.4. We provide both overall and segmented correlations, where we ver-

ify whether model estimates correlate with the histology for axon diameter between

1−2µm, 2−3µm, 3−4µm and > 4µm. We found that only AxCaliber estimates cor-

relate overall with the underlying histology (p = 0.26), while both ADD estimates

have no linear relation with histology (p = −0.04 and p = 0.01) with non-significant

p-values (p-values 0.33 and 0.77). However, even AxCaliber does not have sensi-

tivity to axon diameters below 3µm in the given data set, as can be seen in the

segmented results, and even AAD correlates positively for axon diameter > 4µm.

Overall, this shows the danger of prematurely coining a model parameter like AAD

by its “apparent” microstructural interpretation, but that using AxCaliber it is

possible to estimate axon diameters given strong enough gradient strengths.

Finally, our correlations for NODDI, AxCaliber, and DTI metrics appear some-
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what different than those published in [Duval et al., 2016b]. This is likely caused by

the fact that we made our own mask for voxels to include in the correlation, which

is likely different from theirs. Furthermore, it is important to realize that the data

set only comprises one slice, so obtained correlation values were only estimated in

this limited setting.

4.5.3 Towards a Minimal Model of White Matter Diffusion

The ultimate promise of Microstructure Imaging models is specificity to neuronal

microstructure. As we showed in Section 4.3, the main approach is to use multi-

compartment models, using different combinations of biophysical models, to sepa-

rately describe diffusion in different parts of the tissue. However, Jelescu et al. [2016]

recently claimed that there is “inherent” multi-modality in parameter estimation

in multi-compartment models when the diffusivities aren’t fixed. In other words,

coming back to this Chapter’s title and Kac’s question, their claim is that differ-

ent estimated tissue configuration can produce the same diffusion signal (multiple

drums can make the same sound). To demonstrate, they used a modified NODDI

model where they unfix the diffusivities of the hindered and intra-axonal space, and

removed the CSF compartment. They call this model Neurite Orientation Disper-

sion and Density Imaging with Diffusivities Assessment (NODDIDA) [Jelescu et al.,

2015]. Using the same notation we used for NODDI in Eq. (4.27), NODDIDA rep-

resents the signal as

ENODDIDA =

Watson︷ ︸︸ ︷
W (κ,µ) ∗S2

(1− fr)

Zeppelin︷ ︸︸ ︷
Eh(λextra

⊥ , λextra
‖ )︸ ︷︷ ︸

Hindered Extra-Axonal

+ fr

Stick︷ ︸︸ ︷
Er(λ

intra
‖ )︸ ︷︷ ︸

Intra-Axonal

 . (4.48)

where κ and µ are again the concentration and direction of the Watson distri-

bution, fr is the intra-axonal volume fraction and λextra
⊥ , λextra

‖ and λintra
‖ are now

the estimated diffusivities4. They showed that, even in noiseless data, there exist

“pipes” in the parameter space where different combinations of κ, λintra
‖ and fr will

all fit the signal approximately equally well. For instance, a decrease in fr could

be compensated for by a simultaneous decrease in λintra
‖ and increase in κ, without

affecting the fitting error significantly.

Jelescu et al. [2016]’s argument that this degeneracy generalizes to all multi-

compartment models rests on their claim that NODDIDA is a “minimal model” –

a model complex enough to account for the main features of neural tissue, yet with

4We remark that allowing λextra
‖ and λintra

‖ to be fitted separately is perhaps an overparam-

eterization. While it is true that it is unproven whether the intra- and extra-axonal diffusivity

are equal, the measured diffusion signal has no sensitivity towards this fact as it just represents

the ensemble average diffusion. Therefore, estimated differences in λextra
‖ and λintra

‖ cannot reflect

actual differences in the tissue, and must only be a consequence of the model optimization.
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Model Parameter Estimation in MC-SMT

Figure 4.9: Parameter estimation in MC-SMT. Top: We take the same ROI in

the spinal cord data for each shell. Middle: For each shell, there is a parameter

isoline in the solution space that satisfies the spherical mean. Bottom: The final

solutions for f and λ‖ are found as the minimum fitting error between the parameter

isolines. The black dots represent the actual solutions that the MC-SMT algorithm

estimated, which correspond with what we expect given the parameter isolines.

a minimal number of parameters5. However, when we look back at Table 4.1 and

the models we discussed in Section 4.3, it becomes clear that Multi-Compartment

Spherical Mean Technique (MC-SMT) [Kaden et al., 2016] is actually more minimal

than NODDIDA. To recap, MC-SMT uses the spherical mean per acquisition shell

to estimate only the intra-axonal volume fraction fr and the parallel diffusivity

of the stick λ‖, while setting the perpendicular, extra-axonal diffusivity λtort
⊥ with

a tortuosity model. By only using the spherical mean, MC-SMT is insensitive to

any changes in dispersion, and therefore the influence of κ in NODDIDA has been

removed.

To illustrate the parameter estimation in MC-SMT, we take a small ROI of

the spinal cord data we used in the previous Section 4.4, and show the parameter

estimation for MC-SMT in Figure 4.9. Since MC-SMT only has two parameters,

for every b-shell in the acquisition the parameter space of MC-SMT will have one

parameter isoline. The model parameters are found by estimating the minimum

fitting error between the four different isolines, as seen on the bottom.

5Though, NODDIDA is not the first to claim it is a minimal model, see e.g. MMWMD [Alexan-

der et al., 2010].
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True Minimum

Tortuosity Minimum

Non-Degeneracy of MC-SMT-DA Parameter Estimation

Figure 4.10: Illustration of the non-degeneracy in the MC-SMT-DA parameter

space. We show the fitting error isolines for parameter estimation in shades of

transparent orange. The blue and green dots represents the analytic solution for

MC-SMT-DA and MC-SMT, respectively. Notice that there is no multi-modality

in the solution space and the dots are close together.

However, MC-SMT still uses a tortuosity model to fix one of its diffusivities.
To make a truly minimal model for microstructure estimation, we will also release
the perpendicular diffusivity, and in the spirit of NODDIDA we call this model
“MC-SMT with Diffusivities Assessment” (MC-SMT-DA). In this model the signal
is represented as

EMC-SMT-DA =

Fiber Distribution︷ ︸︸ ︷
FOD(SH |lmax) ∗S2

 fr Stick︷ ︸︸ ︷
Er(λ‖)︸ ︷︷ ︸

Intra-Axonal

+ (1− fr)
Zeppelin︷ ︸︸ ︷

Eh(λ‖, λ⊥)︸ ︷︷ ︸
Hindered Extra-Axonal

 . (4.49)

where now three parameters are estimated: f , λ‖ and λ⊥. Notice we did not

chose to release the intra- and extra-axonal parallel diffusivities λextra
‖ and λintra

‖ as

in NODDIDA, as we believe differences between them cannot be reliably inferred

from the diffusion weighted signal.

We show that MT-SMT-DA does not suffer from degenerate solutions. Using

the same ROI as in Figure 4.9, we can find the analytical minimum, as well as the

isolines of the fitting error of MC-SMT-DA, to the spherical means of the data. We

show these fitting error isolines in orange for the three-dimensional parameter space

{f, λ‖, λ⊥} in Figure 4.10. We indicate the true minimum in MC-SMT-DA as the

blue dot at the center of the isolines, and the tortuosity minimum of MC-SMT as

the green dot. Two observations are important: First, the closeness of the green and

blue dots, indicating the analytic MC-SMT-DA and MD-SMT solutions, indicates

that the tortuosity model does not bias the estimation much. Secondly and more

importantly, notice that there the isolines do not form a “pipe” as in NODDIDA,

but rather a flat surface, indicating that there should not be any multi-modality in

the parameter space.
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A Preview to a Complete Model for Single-Bundle White Matter

Taking all the information in this Chapter together, we can start to suggest a

truly minimal model for single-bundle white matter that estimates volume frac-

tions, axon dispersion and axon diameter without fixing any parameters. Using the

nomenclature of Figure 4.1, it is comprised of the sequential estimation of MC-SMT-

DA (SD1+I1+E4)6, NODDIDA with λextra
‖ = λintra

‖ and a Bingham distribution

(SD2+I1+E1), and finally dispersed AxCaliber with time-dependent extra-axonal

diffusion (SD2+I4+E5). The sequence requires both multi-shell and AxCaliber ac-

quisitions. It can be seen as an algorithmic approach that takes advantage of the

insensitivity of one tissue feature towards others in different theoretical frameworks:

First, we use MC-SMT-DA to estimate f , λ‖ and λ⊥ while being insensitive to
axon dispersion and axon diameter:

EMC-SMT-DA =

Fiber Distribution︷ ︸︸ ︷
FOD(SH |lmax) ∗S2

 fr Stick︷ ︸︸ ︷
Er(λ‖)︸ ︷︷ ︸

Intra-Axonal

+ (1− fr)
Zeppelin︷ ︸︸ ︷

Eh(λ‖, λ⊥)︸ ︷︷ ︸
Hindered Extra-Axonal

 . (4.50)

Then, we insert MC-SMT-DA’s f , λ‖ and λ⊥ in NODDIDA-Bingham, so the axon
dispersion parameters κ1, κ2 and µ can be uniquely estimated:

ENODDIDA
Bingham =

Bingham︷ ︸︸ ︷
W (κ1, κ2,µ) ∗S2

(1− fr)
Zeppelin︷ ︸︸ ︷

Eh(λ⊥, λ‖)︸ ︷︷ ︸
Hindered Extra-Axonal

+ fr

Stick︷ ︸︸ ︷
Er(λ‖)︸ ︷︷ ︸

Intra-Axonal

 . (4.51)

Finally, combining the axon diameter estimation approaches of De Santis et al.
[2016] and Zhang et al. [2011], we insert the estimated κ1, κ2 and µ of NODDIDA-
Bingham into the dispersed AxCaliber model to uniquely estimate f , mean axon
diameter 〈D〉, bulk extra-axonal diffusivity D∞ and axon packing characteristic A:

EDispersed
AxCaliber =

Bingham︷ ︸︸ ︷
W (κ1, κ2,µ) ∗S2

(1− fr)
Time-Dependent Ball︷ ︸︸ ︷
Eiso(D∞,A)︸ ︷︷ ︸

Restricted Extra-Axonal

+ fr

Gamma Distribution︷ ︸︸ ︷
Γ(〈D〉|α, β) ∗R

Cylinder︷ ︸︸ ︷
Er( · |D⊥)︸ ︷︷ ︸

Intra-Axonal


(4.52)

where, to improve the estimate of mean diameter 〈D〉, shape and scale parame-

ters of the Gamma distribution α and β can be preset to the average distribution

parameters found in histology [Aboitiz et al., 1992].

While validation of this proposed method is beyond the scope of this Chapter,

in future work we will explore the accuracy of this proposed complete white matter

model. We also plan to extend the validation section to also include synthetic

data, and to promote reproducible science also freely provide the Python code of

all discussed microstructure models in terms of their building blocks.

6Although SD1 is never calculated or used.
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4.6 Conclusion

In this Chapter, we extensively reviewed, analyzed and compared most PGSE-

based microstructure models. We first broke all models down to their biophysical

“building blocks” and emphasized similarities and limitations of state-of-the-art

Microstructure Imaging. We validated and compared a selection of the presented

models using spinal cord data with known ground truth histology. Regarding intra-

axonal volume fraction estimation using multi-shell sequences, the results suggest

that MC-SMT provides the most parsimonious and effective approach. Regarding

axon diameter estimation, only AxCaliber was able to estimate model parameters

that correlate with the true histology axon diameter. We finally addressed claims

of degeneracy in multi-compartment modeling, and illustrated that MC-SMT with

released diffusivities does not suffer from this degeneracy. Finally, though we did

not explore it further, we suggested an algorithmic approach that should uniquely

estimate all relevant white matter parameters in single axon bundles – intra-axonal

volume fraction, axon dispersion and diameter – while making the least amount of

tissue assumptions. If this approach proves to be effective in future work, we should

be able to answer the title of this Chapter with “Yes, one can – at least in single

axon bundles”.
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Overview

The recovery of microstructure-related features of the brain’s white matter is a cur-

rent challenge in diffusion MRI. To robustly estimate these important features from

multi-shell diffusion MRI data, we propose to analytically regularize the coefficient

estimation of the Mean Apparent Propagator (MAP)-MRI method using the norm

of the Laplacian of the reconstructed signal. We first compare our approach, which

we call MAPL, with competing, state-of-the-art functional basis approaches. We

show that it outperforms the original MAP-MRI implementation and the recently

proposed modified Spherical Polar Fourier (mSPF) basis with respect to signal

fitting and reconstruction of the Ensemble Average Propagator (EAP) and Orien-

tation Distribution Function (ODF) in noisy, sparsely sampled data of a physical

phantom with reference gold standard data. Overall, we find that using MAPL it

is possible to accurately recover important signal-based q-space indices related to

the tissue microstructure with much fewer acquisitions.

Context of this chapter: This chapter represents the first part of our [Fick

et al., 2016d] contribution regarding Laplacian regularized MAP-MRI, focussing

on methodology and signal reconstruction. We address the second part of our

contribution regarding applications of this approach to microstructure imaging in

the next Chapter 6.

5.1 Introduction

The recovery of microstructure-related features of the brain’s white matter is cur-

rently a hot topic in diffusion MRI [Le Bihan and Breton, 1985, Taylor and Bushell,

1985, Merboldt et al., 1985]. In many cases, the accurate estimation of these fea-

tures requires the acquisition of data at large b-values. However, in practice the

maximum b-value is limited and noise begins to dominate the signal at higher b-

values. To robustly estimate these important features from noisy, sparsely sampled

data we propose to analytically regularize the coefficient estimation of Mean Ap-

parent Propagator (MAP)-MRI method [Özarslan et al., 2013b] using the norm of

the Laplacian of the reconstructed signal. We call this approach MAPL.

MAPL falls into the category of functional basis approaches in diffusion MRI,

which in general assume the narrow pulse approximation. This allows them to con-

veniently interpret the signal as the EAP through a Fourier transform [Tanner and

Stejskal, 1968, Callaghan, 1991]. This Fourier relation lies at the heart of techniques

such as q-space imaging [Callaghan, 1991], q-ball imaging [Tuch, 2004] and diffusion

spectrum MRI [Wedeen et al., 2005]. However, the numerical implementations of

these techniques require dense acquisition schemes to reconstruct the EAP. This

makes them impractical for clinical applications, where scanning time is limited.
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We show that Laplacian-Regularized MAP-MRI (MAPL) can 
estimate these features from noisy, sparsely sampled data:

Orientation Distribution 
Functions (ODF)

Through Tissue-Model Preprocessing:
Axon Diameter and Dispersion

Multi-shell dMRI samples the 3D diffusion spectrum 
along different gradient directions and b-values

High b-values are needed to estimate microstructural brain tissue features.

However, this estimation is hindered by low SNR and limited samples.
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Figure 5.1: Visual abstract. On the left, we illustrate multi-shell dMRI, where

diffusion-weighted images (DWIs) are measured along different gradient directions

and b-values. DWIs at higher b-values (using strong gradients) provide informa-

tion on smaller details in the tissue geometry, but also have lower SNR. We show

that using Laplacian-Regularized MAP-MRI (MAPL) we can accurately estimate

valuable microstructure features from noisy, subsampled data (bottom row).

The introduction of functional bases to efficiently represent the dMRI signal

partly overcame this restriction [Descoteaux et al., 2007a, Özarslan et al., 2013a,

Assemlal et al., 2009, Descoteaux et al., 2011, Caruyer and Deriche, 2012, Özarslan

et al., 2013b, Hosseinbor et al., 2013, Rathi et al., 2014]. That is, the fitting of

these representations can be regularized using properties such as the smoothness

and positivity of the EAP. This allows for more accurate EAP and tissue property

recovery using fewer samples, resulting in faster acquisition schemes.

A number of microstructure-related scalar indices have been proposed based on

functional basis approaches. They are typically expressed as integral operators of

the diffusion signal and EAP, which are in turn expressed in terms of fitted func-

tional basis coefficients [Descoteaux et al., 2011, Özarslan et al., 2013a, Hosseinbor

et al., 2013, Rathi et al., 2014]. Examples are the Return-To-Origin Probability

(RTOP), Mean Squared Displacement (MSD) and Q-space Inverse Variance (QIV).

However, the estimation of directional q-space indices, whose direction depends

on the white matter orientation, have only been proposed for the MAP-MRI ba-

sis [Özarslan et al., 2013b]. Throughout this work, we will refer to our Laplacian-

regularized MAP-MRI as MAPL.

We compare MAPL with the initially proposed positivity constraint on the EAP

[Özarslan et al., 2013b], which we refer to simply as “MAP”, and the recently pro-

posed modified Spherical Polar Fourier (mSPF) basis [Caruyer and Deriche, 2012].

We also include comparisons between MAP-MRI’s Cartesian and spherical imple-

mentations, where the latter is equivalent to the previously proposed 3D-SHORE

basis [Merlet and Deriche, 2013]. In terms of signal fitting, our comparison will
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carefully disentangle the effects of using different basis orders (i.e. using different

numbers of coefficients) and different regularization techniques and basis implemen-

tations. In addition, we also study the effect of estimating higher “radial moments”

of the ODF in fiber crossing estimation. We perform these experiments on data from

a physical phantom with known fiber configurations and gold standard data [Ning

et al., 2015, Moussavi-Biugui et al., 2011].

We then study the effect of data subsampling on the estimation of the scalar

indices MSD, QIV, RTOP, RTAP, and RTPP using Cartesian MAPL. For this we

use the WU-Minn Human Connectome Project data [Van Essen et al., 2013] as

it has been acquired using an incremental sampling scheme [Caruyer et al., 2013].

All contributions of this work are illustrated in Figure 5.1, except for the final

application of tissue-model preprocessing, which is presented in Chapter 6. For

reference, we write out all relevant acronyms used in this chapter in the Appendix

in Table 5.1, including in which section we explain their meaning.

The chapter is organized as follows: We first provide the theory of the MAP-MRI

basis, our Laplacian regularization (MAPL), estimated scalar indices and compet-

itive methods in Section 5.2. In Section 5.3 we explain the implementation of our

method and the data we use in our experiments. Then in Section 5.4 we present

our results on both the physical phantom and the HCP data. We then discuss our

results in Section 5.5 and finally provide our conclusions in Section 5.6.

5.2 Theory

In this section, we first provide a brief explanation on the relationship between the

measured dMRI signal and the ensemble average propagator (EAP) in Section 5.2.1.

We then introduce the MAP-MRI basis, our proposed Laplacian regularization and

regularization weight optimization in Section 5.2.2. In Section 5.2.3 we then describe

how we estimate the radial moments of the EAP and recover microstructure related

scalar indices. Finally, we give an overview of methods we compare against in

Section 5.2.4.

5.2.1 The Relation between the diffusion signal and the EAP

In dMRI, the EAP is reconstructed by first obtaining diffusion-weighted images

(DWIs). In a pulsed gradient spin echo (PGSE) sequence, a DWI is obtained by

applying two sensitizing diffusion gradients of length δ to the tissue, separated by

pulse separation time ∆. The effective diffusion time is then given by τ = ∆− δ/3.

When the narrow pulse approximation is met, i.e., when the diffusion gradients are

considered infinitely small (δ ≈ 0), the relation between the measured signal S(q, τ)

and the EAP P (R, τ) is given by an inverse Fourier transform (IFT) [Tanner and
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Stejskal, 1968, Callaghan, 1995]:

P (R, τ) =

∫
R3

E(q, τ)ei2πq ·Rdq with q =
γδG

2π
(5.1)

where E(q, τ) = S(q, τ)/S0 is the normalized signal attenuation measured at wave

vector q and S0 is the baseline image acquired without any diffusion sensitization

(q = 0). The wave vector q on the right side of Eq. (5.1) is related to the nuclear

gyromagnetic ratio γ and the applied diffusion gradient vector G. We denote q =

qu and R = Rr, with u, r ∈ S2 and q, R ∈ R+. The b-value is related to q

and the effective diffusion time as b = 4π2q2τ . As a consequence of the Fourier

relationship in Eq. (5.1), measuring E(q, τ) at larger q makes one sensitive to

smaller movements in P (R, τ). Using a longer diffusion time τ gives the diffusing

particles more time to interact with the tissue boundaries, making the EAP more

specific to the tissue structure [Callaghan, 1995, Cory, 1990]. In the rest of this

work we assume the diffusion time is constant throughout dMRI acquisitions and

will omit the τ dependence in our notation. In the next section we explain our

method for reconstructing the EAP from the signal.

5.2.2 MAPL: Laplacian-Regularized MAP-MRI

We improve EAP and q-space index estimation by regularizing the coefficient esti-

mation of the MAP-MRI functional basis [Özarslan et al., 2013b] with the Laplacian

of the reconstructed signal. We call our Laplacian-regularized MAP-MRI approach

MAPL for brevity. In dMRI, this type of regularization has successfully been ap-

plied to several other techniques [Descoteaux et al., 2007a, Caruyer and Deriche,

2012]. We provide a brief summary of the MAP-MRI basis in Section 5.2.2, present

our proposed Laplacian regularization in Section 5.2.2, and explain the generalized

cross-validation (GCV) method to find optimal regularization weights in Section

5.2.2.

MAP-MRI Functional Basis Description

MAP-MRI is a functional basis that reconstructs the EAP from the dMRI signal. It
has the convenient property that its basis functions are eigenvectors of the Fourier
transform [Walter, 1977]. For this reason, it can describe both the signal and the
EAP with the same coefficients as

E(q) =

Nmax∑
N=0

∑
{n1,n2,n3}

cn1n2n3
Φn1n2n3

(q) and P (R) =

Nmax∑
N=0

∑
{n1,n2,n3}

cn1n2n3
Ψn1n2n3

(R)

(5.2)

where Ψ = IFT(Φ), {cn1n2n3} are the basis coefficients, and the second summation

is taken over all possibilities of non-negative indices ni (i = 0, 1, 2), satisfying the

condition n1 +n2 +n3 = N . The basis functions for the signal attenuation and the
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EAP (left and right side of Eq. (5.2)) are given as products of three orthogonal one-

dimensional basis functions, which are known as Simple Harmonic Oscillator based

Reconstruction and Estimation (SHORE) functions [Özarslan et al., 2013a,b]. For

the signal attenuation they are given as

Φn1n2n3(A,q) = φn1(ux, qx)φn2(uy, qy)φn3(uz, qz)

with φn(u, q) =
i−n√
2nn!

e−2π2q2u2
Hn(2πuq).

(5.3)

and for the EAP as

Ψn1n2n3(A,R) = ψn1(ux, Rx)ψn2(uy, Ry)ψn3(uz, Rz)

with ψn(u,R) =
1√

2n+1πn!u
e−R

2/(2u2)Hn(R/u)
(5.4)

where H is a Hermite polynomial of order n and ψ = IFT(φ). The fitting of

the MAP-MRI signal basis is then not performed in the regular “image space” –

that does not change from voxel to voxel – but in voxel-dependent “anatomical

space” [Özarslan et al., 2013b]. In this anatomical space the q-space vectors of the

data (and therefore the data itself) has been rotated such that the main eigenvectors

of an estimated DTI tensor [Basser et al., 1994] coincide with the axes of the

Cartesian coordinate system {x, y, z}. The eigenvalues of the DTI tensor are then

used to set the stiffness of the oscillator in each direction (i.e. {ux, uy, uz}). In this

way the anisotropy of MAP-MRI’s basis functions depends on the anisotropy of the

data as estimated by a DTI tensor.

From this point on we define image space variables with an added accent (′) and

their corresponding anatomical space variables without it. To fit the MAP-MRI

basis we first obtain the anatomical space DTI tensor D from the image space DTI

tensor D′ as D = VD′VT where V is the orthonormal rotation matrix. We recover

the image space q-space vectors as q = Vq′. We then estimate the covariance

matrix of displacements as A = 2Dτ with τ the diffusion time [Basser, 2002], and

obtain the scaling factors as A = Diag(u2
x, u

2
y, u

2
z).

The basis series is then fitted up to a maximum radial order Nmax. For a real,

symmetric propagator (as is the case in dMRI), Nmax is even-valued and the total

number of basis coefficients is Ncoef = 1
6(F + 1)(F + 2)(4F + 3) with F = Nmax/2.

Using Nmax = 0 reduces the MAP-MRI basis to a DTI fit of the data, while using

higher Nmax ‘corrects’ the initial DTI approximation to the true shape of the data.

The data-dependent anisotropic scaling from A lies at the heart of MAP-MRI.

However, if the scaling is chosen isotropic (ux = uy = uz) the MAP-MRI basis cor-

responds to the 3D-SHORE basis [Merlet and Deriche, 2013][Özarslan et al., 2013b,

Appendix]. The 3D-SHORE basis is thus a particular case of MAP-MRI where the

bases in Eqs. (5.3) and (5.4) have been rewritten as a product of a radial oscillator

and angular spherical harmonics. In the experiments of this work we will compare
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the Cartesian (anisotropic) and spherical (isotropic) implementations of MAP-MRI,

but in the theory here we will only consider the ‘regular’ Cartesian implementation.

We provide the derivations of scalar measures and Laplacian regularization for the

spherical implementation in 5.C.

Closed-Form Laplacian Regularization

In this section, we provide the formulation of our proposed Laplacian-regularized

MAP-MRI. We call this approach MAPL for brevity. In MAPL, we fit MAP-

MRI’s basis functions to noisy data by first casting the coefficients into an Ncoef -

dimensional vector c and the signal values in an Ndata-dimensional vector y. Design

matrix Q ∈ RNdata×Ncoef then has elements Qij = ΦNi(A,qj). The coefficients c

(recall Eq. (5.2)) are found by minimizing the quantity c = argminc‖y −Qc‖2 +

λ∆ U(c) where λ∆ weights our Laplacian regularization functional

U(c) =

∫
R3

‖∆Ec(q)‖2dq (5.5)

with ∆Ec(q) =
∑

i ci∆ΦNi(q) the Laplacian of the reconstructed signal. We then

express U(c) as a summation of MAP-MRI basis functions

U(c) =

∫
R3

(∑
i

ci∆ΦNi(q)

)2

dq =
∑
i

∑
k

cick

∫
R3

∆ΦNi(q) ·∆ΦNk(q) dq (5.6)

where the subscripts i and k indicate the basis order of the i-th or k-th basis

function ΦNi(q) = Φn1n2n3(i)(q). We write the summations in quadratic form such

that U(c) = cTUc where regularization matrix U has elements

Uik =

∫
R3

∆ΦNi(q) ·∆ΦNk(q)dq. (5.7)

It follows that the Laplacian of ΦNi(q) with respect to q corresponds to the Lapla-

cian of its orthogonal components φn(q, u) along qx, qy and qz. The equation for the

elements of U can therefore be solved using the general differential equation whose

solutions form the functional basis functions φn of the MAP-MRI basis [Özarslan

et al., 2012, Eq. (17)](
− 1

(2πu)2

∂2

∂q2
+ (2πuq)2

)
φn(q, u) = λnφn(q, u) (5.8)

with λn = 2n+ 1. Inverting this equation we show that

∆φn(q, u) = (2πu)2
(
(2πuq2)− λn

)
φn(q, u). (5.9)

We solve Eq. (5.7) by inserting Eq. (5.9) and using the orthogonality of Hn with

respect to the weighting function e−x
2

on [−∞,∞]. This allows us to describe
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every entry in U as a function of the anisotropic scaling factors (ux, uy, uz) and

basis orders (xi, yi, zi) = (nx(i), ny(i), nz(i)) as

Uik =
u3
x

uyuz
Sxkxi Uyk

yi Uzk
zi +2

uxuy
uz

Txk
xi Tyk

yi Uzk
zi

+
u3
y

uzux
Sykyi Uzk

zi Uxk
xi +2

uyuz
ux

Tyk
yi Tzk

zi Uxk
xi (5.10)

+
u3
z

uxuy
Szkzi Uxk

xi Uyk
yi +2

uxuz
uy

Txk
xi Tzk

zi Uyk
yi

with functions Smn , Tm
n and Um

n given as

Smn = 2(−1)nπ7/2

(
δmn 3(2n2 + 2n+ 1)

+ δmn+2 (6 + 4n)
√
m!/n! + δmn+4

√
m!/n!

+ δm+2
n (6 + 4m)

√
n!/m! + δm+4

n

√
n!/m!

)
(5.11)

Tm
n = (−1)n+1π3/2

(
δmn (1 + 2n)

+ δm+2
n

√
n(n− 1) + δmn+2

√
m(m− 1)

)
(5.12)

Um
n = δmn (−1)n/(2π1/2) (5.13)

with δmn the Kronecker delta. Note that regularization matrix U is symmetric,

mostly sparse and its elements depend only on the data-dependent scale factors

{ux, uy, uz} and basis orders. Also note that Smn , Tm
n and Um

n do not depend on

the scale factors and can be precomputed for a given Nmax. Using this formulation

we obtain the regularized MAP-MRI coefficients using penalized least squares with

unique minimum

c = (QTQ + λ∆U)−1QTy. (5.14)

Optimal Weighting Parameter Choice

To find optimal regularization weights λ∆ in Eq (5.14) we use the Generalized Cross

Validation (GCV) algorithm [Craven and Wahba, 1978, Koay et al., 2009]. GCV

is based on an Ndata-fold cross validation. Fortunately, the estimation of λ can be

calculated as the minimum argument of the GCV function

GCV (λ,y) =
‖y− ŷλ‖

Ndata − Tr(Sλ)
(5.15)

where Sλ = Q(QTQ + λU)−1QT is the smoother matrix and ŷλ = Sλy.
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Figure 5.2: The effect of increasing the radial moment s on a 90 degree and 35

degree fiber crossing. Here s = −2 represents Tuch’s ODF and s = 0 the marginal

ODF. As s increases further both profiles become sharper, where it can be seen

that the 35 degree crossing can only be resolved at higher radial moments.

5.2.3 Estimation of EAP-based Microstructure Parameters

We can estimate EAP-based features of the tissue structure directly from the fitted

MAP-MRI coefficients [Özarslan et al., 2013b]. To estimate the orientation of the

white matter tissue we resume the formulation of the radial moments of the EAP

in Section 5.2.3. To relate the EAP to microstructure properties such as the ap-

parent axon diameter, we also provide the formulation for the estimation of several

boundary cases of the EAP in Section 5.2.3.

Radial Moments of the EAP

The orientation of the underlying tissue can be estimated by marginalizing the EAP

P (Rr) with respect to its radius R. Any maxima in the resulting angular profile are

likely to coincide with the orientation of the underlying axon bundles. The general

equation to marginalize the EAP is given as

ODFs(r) =

∫
R2+sP (R r)dR. (5.16)

This marginalization can be expressed in MAP-MRI coefficients in closed form by

inserting the right side of Eq. (5.2) into Eq. (5.16) and evaluating the integral. Here

s denotes the sth radial moment of the propagator. Setting s = −2 gives Tuch’s

Orientation Distribution Function (ODF) [Tuch, 2004] while setting s = 0 gives

the marginal ODF [Aganj et al., 2010] where the integral over the sphere is unity.

Increasing s induces a “sharpening” effect on the ODF along the fiber directions,

as can be seen in Figure 5.2. As we will illustrate in Section 5.4.1, using higher

radial moments can be used to more precisely recover the directionality of the white

matter tissue.
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Boundary Cases of the EAP

The EAP can be related to the mean tissue sizes, e.g. mean volume, mean cross-

sectional area and mean length, by modeling the tissue as pores [Callaghan, 1995].

Examples of these are parallel cylinders for aligned axon bundles and spherical

pores for cell bodies and astrocytes. Given the diffusion time is long enough for

spins to travel the longest end-to-end space of the tissue, the relation between the

EAP and these mean tissue sizes is given through so-called boundary cases of the

EAP [Özarslan et al., 2011, 2013b].

Here we consider three particular cases: (1) The Return-To-Origin probabil-

ity (RTOP), which is related to the mean pore volume as RTOP = 〈V 〉−1, (2)

the Return-To-Axis probability (RTAP), which is related to the mean pore cross-

sectional area as RTAP = 〈A〉−1 and (3) the Return-To-Plane probability (RTPP),

which is related to the mean pore length as RTPP = 〈L〉−1 [Özarslan et al., 2013b].

Though, as the modeled cylinders are not capped, the long diffusion time condition

is hard to fulfill in the case of RTPP, meaning its value should be close to that of

unrestricted diffusion. These three boundary cases are defined on the EAP as

RTOP , P (0) (5.17)

RTAP ,
∫
R
P (R r‖|r⊥ = 0)dR (5.18)

RTPP ,
∫
R2

P (R r⊥|r‖ = 0)dR. (5.19)

Unlike RTOP, the RTAP and RTPP are directional scalar indices that assume

the white matter tissue is modeled by parallel cylinders, with r‖ parallel and r⊥
perpendicular to the cylinder axis. Because of this assumption, their values are only

related to the mean tissue sizes when the assumed cylinder axis coincides with the

orientation of the underlying axon bundle. In this work, this orientation is estimated

using the principal eigenvector of the diffusion tensor [Basser et al., 1994], but can

also be estimated using any other method that estimates this feature. The closed-

form expressions for RTOP, RTAP, RTPP can be found in [Özarslan et al., 2013b],

but we newly provide the Mean Squared Displacement (MSD) [Cheng, 2014] and q-

space Inverse Variance (QIV) [Wu et al., 2008, Hosseinbor et al., 2013] in Appendix

5.D.

5.2.4 Comparison with State-of-the-Art

We compare MAPL with competing techniques. In Section 5.2.4 we describe the

previously proposed positivity constraint for MAP-MRI. in Section 5.2.4 we describe

a competing functional basis approach to reconstruct the EAP.
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Positivity Constrained MAP-MRI

We compare our regularization method with an approach that enforces positive-

definiteness of the EAP [Özarslan et al., 2013b]. Here the signal fitting is cast in

a quadratic programming framework which imposes a positivity constraint on the

EAP on a discrete set of points while constraining the discrete integral of the EAP

to unity. This approach is elegant as positivity and unity of the EAP are intrinsic

properties of the EAP, but as the constraints require repetitive dense sampling of

the EAP it is computationally expensive.

Laplacian-Regularized mSPF

As a functional basis approach that has a similar regularization technique, we

compare our approach with the recently proposed Laplacian-regularized modified

Spherical Polar Fourier (mSPF) basis [Caruyer and Deriche, 2012]. The mSPF ba-

sis, unlike MAP-MRI, uses decoupled radial and angular basis functions. This

means the maximum radial order Nmax and angular order Amax can be cho-

sen independently, and the total number of estimated coefficients is given by

Ncoef = (Nmax − 1)(Amax + 1)(Amax + 2)/2. It also regularizes the fitting of its

coefficients using the Laplacian of the reconstructed signal. We use GCV to find

optimal weighting parameters for the mSPF Laplacian functional.

5.3 Materials and Methods

5.3.1 Implementation

Our numerical implementations of MAPL, MAP, and multi-compartment tissue

models are written to be entirely compatible with the open source DiPy frame-

work [Garyfallidis et al., 2014]. All results were generated on an Intel(r) Core(TM)

i7-3840QM CPU 2.80GHz computer with 32GB RAM. For brevity here we describe

the algorithmic fitting procedure for both MAPL and the compartmental models

in 5.B.

5.3.2 Data Set Descriptions

SPARC Phantom Data

In our first experiment, we compare our MAPL approach to the other methods

with respect to signal reconstruction and crossing angle recovery. We use the data

of the sparse reconstruction challenge hosted at the 2014 CDMRI workshop on

computational diffusion MRI [Ning et al., 2015]. This data was acquired from a

physical phantom with known fiber configurations providing a gold standard ref-

erence data. The phantom is made of polyfil fibers of 15µm diameter and was
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developed along the same lines as in [Moussavi-Biugui et al., 2011]. It consists of

two fiber bundles crossing at a 45 degree angle with isotropic diffusion outside of

the fiber bundles. The gold standard of the diffusion signal was obtained by acquir-

ing 81 different gradient directions at b-values {1000,2000,3000,4000,5000} s/mm2

averaged over 10 repetitions. The challenge data we use has 30 gradients directions

per b-shell at b-values {1000,2000,3000} s/mm2, resulting in only 90 samples plus

one b0, with an average SNR of 9.5 over all directions and voxels. The in-plane res-

olution was 2 × 2 mm2 with slice thickness of 7 mm. Other acquisition parameters

were TE/TR = 141/3400 ms and δ ≈ ∆ = 62 ms.

WU-Minn Human Connectome Project Data

In our second experiment we investigate the effects of subsampling the data on

the estimation of the microstructure-related scalar indices described in Section

5.2.3. We use the WU-Minn Human Connectome Project data [Moeller et al.,

2010, Feinberg et al., 2010, Setsompop et al., 2012, Xu et al., 2012, Van Essen

et al., 2013, Glasser et al., 2013]. In this dataset the diffusion directions were ob-

tained such that every subset of the first M directions is still isotropic [HCPManual,

2014, p.46][Caruyer et al., 2013]. The data was sampled on 3 shells with b-values

{0,1000,2000,3000} s/mm2, with {14, 90, 90, 90} directions, respectively. Follow-

ing the sampling scheme, we subsample this data by truncating last N diffusion

weighted images from the data, producing data sets with either 180, 90 or 60 gra-

dient directions. The diffusion time and pulse separation time in this data are

δ/∆ = 10.6/43.1 ms with 2× 2× 2 mm resolution and TE/TR = 89.5/5520 ms.

5.4 Experiments and Results

In this section, we present experiments and results on the physical phantom data

in Section 5.4.1 and on the Human Connectome Project data in Section 5.4.2.

5.4.1 Signal Fitting and ODF Reconstruction on Physical Phan-

tom Data

We compare our MAPL approach with MAP on the SPARC phantom data in two

ways: (1) to reconstruct the normalized signal values at the gold standard q-space

positions and (2) to accurately recover the known 45 degree crossing angles using

the ODF. An illustration of the ODFs of the gold standard data is given in Figure

5.7. For completeness, we also compare the MAPL and MAP implementations with

both the ‘regular’ anisotropic scaling factors and with isotropic scaling factors.

Figure 5.3 shows scalar maps of the Fractional Anisotropy (FA), Mean Diffusiv-

ity (MD) and optimal Laplacian regularization weight λ∆. The MD shows clearly
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Figure 5.3: The estimated Mean Diffusivity (MD), Fractional Anisotropy (FA) and

optimal regularization weight for the physical phantom. It can be seen that white

MD differs for different fiber configurations, the FA is consistent in fibrous areas.

The optimal regularization weight using GCV also shows similar values in fibrous

areas, but much higher in the empty areas.

different diffusivities in crossing fiber areas (blue-green), single fiber areas (red)

and empty areas (dark blue). In fibrous areas (single and crossing) the FA shows

very similar FA (0.86 ± 0.03) and lower in empty areas (0.6 ± 0.19). Finally, for

a radial order of 8, we find fairly consistent Laplacian weights λ∆ in fibrous areas

(0.04± 0.02) and much higher in the empty areas (0.45± 0.11).

Effect of Regularization and Radial Order on Signal Reconstruction

We compare signal reconstruction quality between the different methods over differ-

ent radial orders of the MAP-MRI basis. In Figure 5.4 we show the mean squared

error (MSE) of the signal recovery for single, crossing and isotropic voxels, along

with the computation time for every technique. The dashed lines indicate the use of

isotropic scaling, the solid lines indicate anisotropic scaling and the gray dotted line

is the unregularized reference. We use the acronyms MAPL and MAP to indicate

the use of either Laplacian Regularization or Positivity Constraint, respectively.

Figures 5.4a and 5.4b show that the MSE values in single and crossing voxels are

similar. For radial orders lower than 8 the anisotropic scaling (purple and magenta)

results in lower MSE values than isotropic scaling (green and blue). For higher

radial orders both approaches have similar MSE. In terms of regularization, MAPL

has significantly lower MSE than MAP for isotropic scaling, especially in crossing

voxels, while this difference is more subtle for anisotropic scaling. However, we

will show in the next section that ODF reconstruction differs significantly between

MAPL and MAP, despite the similarity in MSE. We also study the fitting error

of the interpolated points on b ={0, 1000, 2000, 3000} s/mm2 compared to the

extrapolated points on b ={4000, 5000} s/mm2 in the fibrous areas of the phantom.

We do this by separately estimating the MSE for either the inter- or extrapolated
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points. Without showing the graphs, we find for any method and any radial order

that the MSE on the extrapolated points is generally between 2-3 times higher than

the MSE on the interpolated points, which corresponds to similar ratios found in

the original challenge [Ning et al., 2015].

Figure 5.4c shows that in empty areas the differences in MSE depend only on

the choice of using either MAPL or MAP, where the latter has lower MSE values for

higher radial orders. Although, none of the combinations give a lower MSE than a

simple DTI fit (radial order 0) as diffusion is expected to be isotropic and Gaussian

here.

Figure 5.4d shows the computation time of each method. We show that our

MAPL is 3 to 4 times faster than MAP because of the iterative nature of the

positivity constraint. We also show that the isotropic implementations are faster

than the anisotropic ones as no rotation of the q-space vectors is required.

As a functional basis approach that has a similar regularization approach as ours,

we compare MAPL with the recent Laplacian-regularized modified Spherical Polar

Fourier (mSPF) basis [Caruyer and Deriche, 2012], which we outlined in Section

5.2.4. We now consider both the single and crossing fiber voxels together. Figure 5.5

shows the MSE and number of estimated coefficient for different maximum radial

and angular orders of the mSPF basis (in shades of red) and our best MAPL result

(in green), which was using MAPL at radial order 8. It can be seen that for no

matter how many basis functions mSPF uses, it cannot approximate the signal as

well as MAPL.

Effect of Radial Order, Radial Moment and Regularization on ODF Re-

construction

In this section, we compare the recovery of the phantom’s 45 degree crossing over

both radial order of the basis Nmax and radial moment s of the EAP. Recalling

Eq. (5.16) and Figure 5.2, increasing the radial moments of the EAP yields sharper

angular profiles from which to recover fiber bundle orientations. As in the original

challenge [Ning et al., 2015], we compute the crossing angle by first finding the three

largest peaks in the angular profile of the radial moment and compute the angles

between them. The crossing angle closest to 45 degrees is registered as the detected

crossing angle. When no crossing is found the voxel is ignored. We only include

voxels where we know there is a crossing in the comparison. With respect to these

metrics, an optimal regularization technique should have a good estimation of both

the angle and the number of peaks.

Figure 5.6 shows intensity plots indicating the average estimated crossing angle

(top row) and average found number of peaks (bottom row). Starting with the

anisotropic methods (left two columns), we see that the crossings start to be re-

covered from a Nmax of 4, but the crossing angle is significantly underestimated.
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Figure 5.4: The mean squared error of the reconstructed signal with respect to the

ground truth signal. A separation is made for voxels containing one fiber (a), two

crossing fibers (b) or isotropic diffusion (c). In (d) the computation time in seconds

for every regularization method is given.

Increasing Nmax reduces this bias for our MAPL, but barely improves or even wors-

ens using MAP for Nmax higher than 6. On the other hand, MAP does regulate

the number of peaks better than MAPL for higher Nmax. In both cases increas-

ing the radial moment improves the number of peaks, but typically worsens the

underestimation of the angle.

For the isotropic methods (right two columns) the crossings start to be recov-

ered after an Nmax = 6 for MAPL, and after Nmax = 8 for MAP. Here we do

not find a consistent angle underestimation compared to the anisotropic methods.

Increasing the radial moment for MAPL improves the peak estimation, but going

over 2 increases the number of spurious peaks. For MAP, we find a similar trend,

but a higher radial order must be chosen to accurately estimate the crossing angle

with the correct number of peaks.

We visualize the radial moments of the EAP in Figure 5.7. We choose the

optimal radial order and radial moment for every method based on Figure 5.6 and

report the averages and standard deviation of the estimated angle and number



120 CHAPTER 5. MAPL: LAPLACIAN REGULARIZED MAP-MRI

æ

æ

æ

æ

æ

à

à

à

à

à

ì

ì

ì

ì

ì

ò

ò

ò

ò

ò

ô

ô

ô

ô

ô

æ mSPF Amax=2

à mSPF Amax=4

ì mSPF Amax=6

ò mSPF Amax=8

ô mSPF Amax=10

MAPL Nmax=8

2 3 4 5 6

0.00

0.01

0.02

0.03

0.04

Radial Order

M
e
a
n

S
q

u
a
r
e
d

E
r
r
o

r
H1

0
-

3
L

(a) Signal Reconstruction Error

æ
æ

æ
æ

æ

à

à

à

à

à

ì

ì

ì

ì

ì

ò

ò

ò

ò

ò

ô

ô

ô

ô

ô

æ mSPF Amax=2

à mSPF Amax=4

ì mSPF Amax=6

ò mSPF Amax=8

ô mSPF Amax=10

MAPL Nmax=8

2 3 4 5 6

0

100

200

300

400

Radial Order

N
u

m
b

e
r

o
f

C
o

e
f
f
ic

ie
n

ts

(b) Number of Coefficients

Figure 5.5: (a) MSE Comparison between our best MAPL result (in green) and

mSPF (in red). The mSPF results are given for different radial orders Nmax and

angular orders Amax. (b) The number of coefficients in mSPF and our best MAPL

(radial order 8). It can be seen that MAPL always has lower errors.

of peaks in the top-right corners. On the top row, we show the reconstructed

golden standard data using anisotropic scaling (left) or isotropic scaling (right).

In these reconstructions we still needed to slightly regularize the ODF estimation

(Laplacian weight 0.02) to eliminate some spurious peaks. Comparing the fibrous

areas between these two high-quality reconstructions (green arrow A) it can be

seen that anisotropic scaling yields sharper ODFs than isotropic scaling. But, for

anisotropic scaling, we find an underestimation of over 13 degrees in the crossing

angle while isotropic scaling nearly exactly finds the 45 degree crossing. Both

methods find the correct number of peaks.

In the middle two rows of Figure 5.7 we compare MAPL and MAP in the chal-

lenge data, whose details we describe in Section 5.3.2. We see for anisotropic scaling

(left column, blue arrow B) that using MAPL results in a lower underestimation

of the crossing angle compared to MAP (37◦ versus 29.4◦), but has slightly higher

standard deviations. For isotropic scaling (right column, red arrow C) we find a

similar trend, where the Laplacian finds the peak angle almost exactly (45.9◦) and

the positivity constraint finds a slightly lower angle (42.3◦), but with a slightly lower

standard deviation. The shapes of the ODFs using MAP also seem to be ‘pushed

together’ causing some of the crossing profiles to appear like a single population. In

the bottom row, we show an unregularized least squares estimation for reference.

In both implementations we used a radial order of 6. Using higher radial order than

that resulted in extremely noisy profiles. This is also accompanied by the steep rise

in MSE as shown in Figure 5.4. Still, in both implementations, the standard devia-

tion of the estimated angle and number of peaks is much higher than in MAP and

MAPL. Furthermore, in the anisotropic implementation the crossings are mostly

pushed together to appear as one population and in the isotropic implementation
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Figure 5.6: Intensity plots of the average estimated crossing angle (top row) and

number of peaks (bottom row) of the recovered crossings both anisotropic and

isotropic scaling, using either Laplacian Regularization (MAPL) or the Positivity

Constraint (MAP). We use different color tables for each row: For the crossing

angle, green indicates a correct average recovery of the 45 degree angle, while white

indicates the correct average recovery of 2 peaks. The color in each intensity plot

is a function of both radial order of the MAP-MRI basis and radial moment of the

ODF reconstruction, where higher moments yield sharper ODFs.

many spurious peaks are estimated.

In Figure 5.7, we show the radial moments on human data of the WU-MINN

HCP data, described previously in Section 5.3.2. This data has a maximum b-value

of 3, 000 s/mm2 with 3 shells and a total of 288 samples. We selected a small re-

gion of interest where projection, association and commissural tracts intersect each

other. Comparing reconstructions of this crossing area between our laplacian reg-

ularization and the positivity constraint using anisotropic scaling (left column, red

arrow D) shows that the positivity constraint produces sharper profiles, but slightly

smaller secondary peaks. Comparing the isotropic scaling implementations (right

column, green arrow E) similarly shows that the positivity constraint produces

slightly sharper profiles. Finally, comparing anisotropic and isotropic implementa-

tions (bottom row, blue arrow F) shows an area where the isotropic implementation

consistently finds a small crossing, but the anisotropic one only finds a single fiber

population. This is possibly a result of the ‘pushing together’ effect also found in



122 CHAPTER 5. MAPL: LAPLACIAN REGULARIZED MAP-MRI

Isotropic ScalingAnisotropic Scaling
G

o
ld

e
n

 S
ta

n
d

a
rd

 D
a
ta

4
0
6
 s

a
m

p
le

s
 -

 b
m

a
x
 =

 5
0
0
0
 s

/m
m

2

MAP-MRI ODF Reconstruction of 45 Degree Physical Phantom

C
h

a
ll
e
n

g
e
 D

a
ta

9
1
 s

a
m

p
le

s
 -

 b
m

a
x
 =

 3
0
0
0
 s

/m
m

2

A

B C Radial Order / Moment: 10 / 2

Average angle: 42.30 ∓ 6.10 

Average peaks: 1.8 ∓ 0.5

Radial Order / Moment: 6 / 2

Average angle: 29.40 ∓ 4.20

Average peaks: 1.9 ∓ 0.3

Radial Order / Moment: 8 / 2

Average angle: 45.90 ∓ 7.00

Average peaks: 1.9 ∓ 0.5 

Radial Order / Moment: 8 / 2

Average angle: 45.8 ∓ 2.2

Average peaks: 1.9 ∓ 0.2

Radial Order / Moment: 6 / 2

Average angle: 31.40 ∓ 2.50

Average peaks: 2.0 ∓ 0.3

Radial Order / Moment: 6 / 2

Average angle: 37.00 ∓ 7.10 

Average peaks: 2.3 ∓ 0.6

U
n

re
g

u
la

ri
z
e
d

P
o
s
it

iv
it

y
 C

o
n

s
tr

a
in

t
L
a
p

la
c
ia

n
 R

e
g

u
la

ri
z
a
ti

o
n

Radial Order / Moment: 6 / 0

Average angle: 52.90 ∓ 51.60

Average peaks: 2.4 ∓ 2.3

Radial Order / Moment: 6 / 0

Average angle: 29.60 ∓ 53.7 0

Average peaks: 1.3 ∓ 2.4

Figure 5.7: The radial moments of the EAP on the phantom data for anisotropic

scaling (left column) and isotropic scaling (right column). The top row is the recon-

struction on the close-to-noiseless golden standard data, and the bottom three rows

show the noisy challenge data. In the second row we use Laplacian regularization

(MAPL), in the third the positivity constraint (MAP) and in the last unregularized

least squares. In every image we report in the top-right the radial order, radial mo-

ment, average and standard deviation of the estimated angle and number of peaks.

The rectangles indicate a crossing area in the phantom. The arrows are meant to

facilitate the explanation of the results.
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Figure 5.8: The radial moments of the EAP on a section of the WU-MINN HCP

data for anisotropic scaling (left column) and isotropic scaling (right column). The

region of interest is taken near the centrum semiovale, as indicated in the lop-left

image. In the top row Laplacian regularization (MAPL) is used and in the bottom

row the positivity constraint (MAP). In every image we report in the top-right

corner the radial order and radial moment. The arrows are again meant to help the

explanation of the results.

Figure 5.7.

The phantom data results in Figures 5.6 and 5.7 show that the laplacian-

regularized isotropic implementation performs better for recovering crossing angles.

However, on human data, it is debatable which of the compared techniques per-

forms better. Nonetheless, for the signal fitting itself the results in Figure 5.4 show

that the anisotropic implementation with laplacian regularization is more efficient.

For this reason, we will omit comparisons of between regularization techniques on

our next experiments on human data and always use anisotropic MAPL with the

radial order set to 8.
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Figure 5.9: Regularized (top row) and unregularized (bottom row) reconstruction

of RTOP, RTAP, RTPP, MSD and QIV with only 60 samples on a coronal slice. It

can be seen that the regularized reconstructions produce smooth scalar maps, while

the unregularized ones are very noisy and contain negative values.

5.4.2 Effect of Subsampling on Scalar Index Estimation

In this section, we investigate how robustly MAPL estimates the scalar indices

RTOP, RTAP, RTPP, MSD, and QIV (recall Section 5.2.3) when we reduce the ac-

quisition protocol with respect to the number of samples. The estimation of these

indices is of interest as they, under certain assumptions, are related to microstruc-

tural features of the brain tissue. For this experiment, we use again the WU-Minn

HCP data (description in Section 5.3.2), whose samples are distributed in such a

way that a subset of the first M samples of the acquisition scheme is still uniformly

distributed on the sphere [Caruyer et al., 2013]. To give an idea of how important

regularization is on real data we show in Figure 5.9 on the top row the regularized

and on the bottom row the unregularized reconstruction of RTOP, RTAP, RTPP,

MSD and QIV on a subsampled 60 sample data set. It can be seen that the regu-

larized versions produce very smooth and detailed scalar maps for all indices. On

the other hand, without regularization the directional RTAP and RTPP and QIV

indices only produce noise, while in the RTOP and MSD images the brain structure

can be seen, though the images are very noisy.

In Figure 5.10 we show the MAPL estimations of RTOP, MSD, and QIV, to-

gether with a visualization of the optimal Laplacian weighting parameter obtained

using GCV. On the left, we show a coronal slice of these indices using the full data.

In the middle, we show reconstructions of the same indices in a section near the

Corpus Callosum and centrum semiovale (indicated by the red box) using 270, 180,

90 or only 60 samples. On the right, we present histograms of the reconstructed

values in the chosen subsection for the different numbers of samples. Both the im-

ages and histograms show that the reconstructed values remain very similar even

though we only use 60 samples instead of 270. The only thing that does change is
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Figure 5.10: Effect of subsampling on RTOP, MSD, QIV and optimal regulariza-

tion weight as found by GCV. Left: a coronal visualization of these indices. Middle:

Visualizations of a subset of the coronal slice (in red) as we progressively remove

samples from the whole 270 samples to only 60 samples. Right: Histogram repre-

sentations of these quantities for the different amounts of samples. It can be seen

that the values of RTOP, MSD and QIV change very little even when only 60 sam-

ples are used. Only the GCV regularization weight changes: as fewer samples are

used we find lower optimal regularization weights.

the optimal regularization weights – we find that lower regularization weights are

required when less data is used. The optimal regularization weight also appears

to be tissue specific, finding lower values in anisotropic white matter and CSF and

higher in gray matter.

In Figure 5.11 we show a similar experiment on the scalar indices RTAP and
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Figure 5.11: Effect of subsampling on RTAP and RTPP estimation. As these in-

dices are defined directionally, we construct the histograms only using manually

segmented voxels in the Corpus Callosum (in green), where the white matter is

highly coherent. Again we find that there is little difference between the recon-

structed values between using 270 samples and 60 samples.

RTPP. However, as we explained in Section 5.2.3, these values are directional and

only valid in highly coherent white matter. For this reason, we show the recon-

structions of RTAP and RTPP on a coronal and sagittal slice for the whole brain

but construct the histograms only using values recovered from a manually drawn

region of interest (ROI) in the Corpus Callosum. The segmented area can be seen

in green in both slices. The histograms again show that the reconstructed values

remain very stable even when using 60 samples. Using MAPL all estimated indices

in Figures 5.10 and 5.11 were found to be almost exclusively positive, with negative

values only occurring at the edge of the skull.

5.5 Discussion

In this section, we discuss the results of our experiments using laplacian-regularized

MAP-MRI (MAPL) in Section 5.4.

MAPL is an Efficient Way to Reconstruct the Ensemble Average

Propagator

We pose MAPL’s fitting process as a regularized least squares problem using gener-

alized cross-validation (GCV) [Craven and Wahba, 1978, Koay et al., 2009] to find

its optimal regularization weight. The GCV procedure was found to be well-suited

for our approach, finding consistent values in different white matter tissues (Figure

5.10). In practice, we can preset the regularization weight to an appropriate value
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for white matter and omit the GCV without significantly impacting the results,

making the estimation as fast as ordinary least squares.

On human data of the human connectome project (HCP), we find that MAPL

estimates the boundary cases of the EAP contextually smooth and with positive

values in almost all cases (Figures 5.10 and 5.11). Though, the Laplacian does not

explicitly guarantee positive-definiteness of the EAP.

MAPL Improves Signal Reconstruction and Reduces ODF Estima-

tion Bias

A key feature of MAP-MRI is its use of anisotropic basis functions. We show in

Figure 5.4 that this feature indeed reduces the fitting error for lower radial orders

compared to the isotropic version of MAP-MRI (also known as 3D-SHORE) and

outperforms the mSPF basis [Caruyer and Deriche, 2012] (Figure 5.5). MAPL also

has a great speed advantage over positivity constrained MAP-MRI (MAP), espe-

cially when presetting the regularization weight (Figure 5.4(d)). Isotropic MAPL

is still over 4 times faster than the anisotropic implementation due to the omission

of basis rotations.

Interestingly, Figures 5.6 and 5.7 show that the anisotropic scaling also causes

an underestimation of fiber crossing angles, which we do not see for the isotropic

implementation. We previously showed that that this underestimation is directly

related to the anisotropy of the basis functions [Fick et al., 2015a], but MAPL in

Figure 5.6 (top-left) shows that this bias lessens as the radial order increases. This

indicates that the higher order basis functions correct the shape of the first basis

function, representing a DTI tensor, which is aligned with the ‘average’ direction

of the crossing.

When comparing the influence of regularization technique on ODF reconstruc-

tion, we find that MAPL has a lower underestimation of the 45 degree crossing

than MAP (Figure 5.7, blue arrow B). The values of the estimated coefficients re-

veal that the positivity constraint [Özarslan et al., 2013b] suppresses the higher

order coefficients more than MAPL does, reducing the ability of the corresponding

basis functions to correct the initial bias. In Figure 5.7 (right-bottom) we also see

this effect in the isotropic implementation, where within the crossing area some

voxels are reconstructed to look like a single fiber. The same experiment on ODF

reconstruction in human data of the WU-MINN HCP dataset (Figure 5.8) produces

results in which it is harder to choose the optimal estimation approach. We find

that both the anisotropic and isotropic implementations of MAP produce slightly

sharper angular profiles than those of MAPL. We also find that both anisotropic

implementations seem to reduce the crossing angle between crossing fibers, or even

merge secondary peaks completely, but this effect appears slightly less for MAPL.

Together, these results indicate that when the accurate recovery of ODF peaks is

important (e.g. for tractography applications) we must use either isotropic MAP
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or MAPL, where we find that a radial order of 8 with a radial moment of 2 works

better. When only signal fitting is important the ‘regular’ anisotropic MAPL is

more efficient.

Microstructure-Related Scalar Indices Estimated With Less Samples

Using MAPL

We show on human data of the WU-MINN Human Connectome Project (HCP) that

MAPL can estimate the boundary cases of the EAP with the same quality despite

subsampling the data from 270 samples to only 60 samples (Figures 5.10 and 5.11).

Note that we keep the same maximum b-value in this experiment, and subsample

data points using an incremental scheme [Caruyer et al., 2013] that guarantees

an ‘as isotropic as possible’ sampling on the sphere. We find that presetting the

regularization weight to 0.2 regularizes the reconstruction over the entire brain well,

meaning it is possible to omit the GCV optimization without significantly changing

the results.

We also find that the optimal regularization weight that GCV finds has tissue-

specific contrast, finding lower values in white matter and CSF and higher values

in gray matter (Figure 5.10). The lower values in white matter show that the

Laplacian should not impose too much ‘smoothness’ into the reconstruction, or the

reconstruction will become too smooth to represent the anisotropic nature of the

data. In this sense, the diffusion profiles in both gray matter and CSF can be seen

as isotropic, but the signal decays more quickly in CSF (free water) and more slowly

in gray matter (hindered diffusion). This explains the higher regularization weights

in gray matter and lower ones in CSF areas.

5.6 Conclusion

We proposed a fast, analytic and robust Laplacian regularization of the MAP-MRI

basis, which we call MAPL, that allows us to robustly estimate microstructural

contrast with fewer samples and at lower b-values. We showed on phantom data

with reference golden standard data that MAPL outperforms previously proposed

methods with respect to signal fitting and EAP reconstruction in noisy, sparsely

sampled data. We also demonstrated the robustness of our method with respect

to subsampling on the WU-Minn HCP data set. Using MAPL we find an almost

identical reconstruction of microstructure-related scalar indices between the full

270 sample data and subsampled 60 sample data. Overall, we find that using

MAPL it is possible to accurately recover important parameters related to the

tissue microstructure with much fewer acquisitions.



5.6. CONCLUSION 129

Acknowledgments

Data were provided [in part] by the Human Connectome Project, WU-Minn Consor-

tium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657)

funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for

Neuroscience Research; and by the McDonnell Center for Systems Neuroscience

at Washington University. This work was partly supported by the French ANR

”MOSIFAH” under ANR-13-MONU-0009-01. We would also like to thank Marco

Pizzolato and Mauro Zucchelli for their constructive input.



130 CHAPTER 5. MAPL: LAPLACIAN REGULARIZED MAP-MRI

5.A Acronym Glossary

Table 5.1: Glossary of relevant acronyms used in this work with the section where

they are explained.

Acronym Full Name Reference

AAD Apparent Axon Diameter 5.2.3

DWI Diffusion Weighted Image 5.2.1

EAP Ensemble Average Propagator 5.2.1

GCV Generalized Cross Validation 5.2.2

MAP Mean Apparent Propagator(-MRI) 5.2.2

MAPL MAP with Laplacian regularization 5.2.2

MSD Mean Squared Displacement 5.2.3

mSPF modified Spherical Polar Fourier 5.2.4

ODF Orientation Distribution Function 5.2.3

QIV Q-space Inverse Variance 5.2.3

RTAP Return-To-Axis Probability 5.2.3

RTOP Return-To-Origin Probability 5.2.3

RTPP Return-To-Plane Probability 5.2.3

5.B Implementation of MAPL

In this section, we provide in detail the algorithmic steps involved in fitting the

basis coefficients in MAPL and the multi-compartment models.

5.B.1 MAPL

Our implementation of Laplacian-regularized MAP-MRI consists of the following

steps:

1. For every voxel, we first estimate the scale factors {ux, uy, uz}, which we find

by fitting a diffusion tensor to the data [Basser et al., 1994]. In our experi-

ments, we did not impose any positivity constraints on the DTI estimation.

2. Using {ux, uy, uz} and the rotated q positions of the data points, we compute

the design matrix Q and Laplacian regularization matrix U as outlined in

Section 5.2.2.
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3. We find the optimal regularization weight λ∆ (recall Eq. (5.14)) using the

generalized cross-validation (GCV) approach outlined in section 5.2.2. The

minimum of the GCV cost function is found from a preset number of regular-

ization weights, which we adjusted for different datasets.

4. Using Q, U and λ∆ we estimate the unknown coefficients using the regularized

least-squares equation in Eq. (5.14).

5. The estimated coefficients were fed to Eq. (5.16) to estimate the radial mo-

ments of the EAP and to Eqs. (5.17), (5.34) and (5.35) to estimate the

boundary cases of the EAP, mean squared displacement and q-space inverse

variance. The maxima of the radial moments were found by projecting the

angular profiles on a tessellation of 2172 spherical points and finding the maxi-

mum amplitudes with a minimum crossing angle of 10 degrees and a minimum

peak amplitude of 30% of the largest peak amplitude.

The positivity approach for MAP [Özarslan et al., 2013b] was implemented by

casting the coefficient estimation in the cvxopt convex optimization software (http:

//cvxopt.org/). This approach imposes positivity of the EAP by sampling the

EAP P (Rr) in 21×21×11 grid, resulting in 4851 points, with a maximum sampling

distance Rmax of 20µm. Here the last dimension is only sampled on its positive

axis as the EAP is antipodally symmetric. Lastly, when we use MAP-MRI with

isotropic scaling we use the implementation using spherical harmonics (5.C), which

does not require rotation of the q positions.

5.C Isotropic MAPL

The isotropic implementation of MAP-MRI [Özarslan et al., 2013b, Appendix A],

which is equivalent to 3D-SHORE [Merlet and Deriche, 2013], describes the signal

and EAP as

E(q) =
∑
i

ciΞi(q) and P (R) =
∑
i

ciΥi(R) (5.20)

where Υ = IFT(Ξ) and ci are the basis coefficients. These basis functions are given

as

Ξjlm(q, u0) =
√

4πi−l(2π2u2
0q

2)l/2e−2π2u2
0q

2
L
l+1/2
j−1 (4π2u2

0q
2)Y m

l (u) (5.21)

Υjlm(R, u0) =
(−1)j−1

√
2πu3

0

(
R2

2u2
0

)l/2
e−R

2/2u2
0L

l+1/2
j−1

(
R2

u2
0

)
Y m
l (r) (5.22)

where j = (n + 2 − l)/2 is related to the radial order n and angular order l of

the basis where j ≥ 1, l ≥ 0. The scale factor u0 is related to the diffusivity of

the measured data as u0 =
√

2Dτ with D the mean diffusivity and τ the effective

http://cvxopt.org/
http://cvxopt.org/
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diffusion time. The real spherical harmonic basis Y m
l [Descoteaux et al., 2007a]

has angular order l and phase factor m such that −l ≤ m ≤ l, and L
l+1/2
j−1 is the

generalized Laguerre polynomial.

5.C.1 Laplacian Regularization for Isotropic MAPL

Exactly the same as for the anisotropic MAP-MRI basis in Eq. (5.7), the values of

the Laplacian regularization matrix are given as

Uik =

∫
R3

∆Ξi(q) ·∆Ξk(q)dq. (5.23)

The equation for the elements of U can again be solved using the general differential

equation whose solutions form the functional basis functions Ξjlm of the isotropic

MAP-MRI basis [Özarslan et al., 2013b, Eq. (56)](
− ∆

(2πu0)2
+ (2πu0)2q2

)
Ξjlm(q) = ΛjlmΞjlm(q) (5.24)

with Λjlm = 2l + 4j − 1. Inverting this equation we show that

∆Ξjlm(q) = 4π2u2
0(4π2q2u2

0 − Λjlm)Ξjlm(q). (5.25)

Inserting Eq. (5.25) into Eq. (5.23), using the fact that Y m
l is an orthonormal basis

with respect to the dot product on S2 and Lαn(x) is orthonormal with respect to

the weighting function xαe−x on [0,∞), we find the general equation for U as

Uik(u0) = u0δ
l(k)
l(i) δ

m(k)
m(i)



δ
j(k)+2
j(i) × 22−lπ2Γ( 5

2
+j(k)+l)

Γ(j(k))

δ
j(k)+1
j(i) × 22−lπ2(−3+4j(i)+2l)Γ( 3

2
+j(k)+l)

Γ(j(k))

δ
j(k)
j(i) × 2−lπ2(3+24j(i)2+4(−2+l)l+12j(i)(−1+2l))Γ( 1

2
+j(i)+l)

Γ(j(i))

δ
j(k)−1
j(i) × 22−lπ2(−3+4j(k)+2l)Γ( 3

2
+j(i)+l)

Γ(j(i))

δ
j(k)−2
j(i) × 22−lπ2Γ( 5

2
+j(i)+l)

Γ(j(i))

(5.26)

with δ the Dirac delta function. Note that regularization matrix U is symmetric,

mostly sparse and its elements depend only on the ordering of the basis functions

and their radial and angular indices j, l and m. Also note that U(u0) = u0U(1),

meaning that the regularization matrix can be entirely precomputed and later mul-

tiplied by the data-dependent scale factor u0.

5.C.2 Radial Moment Computation

The fitted isotropic MAP-MRI coefficients analytically describe the EAP in Eq.

(5.20). They therefore also describe the ODF at an arbitrary radial moment in Eq.
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(5.16). Inserting the right side of Eq. (5.20) into Eq. (5.16) and evaluating the

integral gives

ODFs(u0,v) =

Nmax∑
N=0

∑
{j,l,m}

c{j,l,m}Ω
jlm
s (u0,v) (5.27)

with v an orientation on the unit sphere and

Ωjlm
s (u0,v) =

us0
π

(−1)j−12−l/2κ(j, l, s)Y l
m(v) (5.28)

the ODF basis function with

κ(j, l, s) =

j−1∑
k=0

(−1)k

k!

(
j + l − 1/2

j − k − 1

)
Γ((l + s+ 3)/2 + k)

2−((l+s)/2+k)
. (5.29)

The scaling factor u0 is just a multiplication or division of Ωjlm
s , depending

on the radial moment. Given a set of orientations v the ODF can be com-

puted as ODFs(u0,v) = us0cI with design matrix I ∈ RNcoef×Norientations with

Iik = Ω
jlm(i)
s (1,vk), allowing for the precomputation of I for the whole data set

after the radial moment has been chosen.

5.C.3 Scalar Indices for q-space imaging

In this work we computed the boundary cases of the EAP – the RTOP, RTAP

and RTPP [Özarslan et al., 2013b] – and also the Mean Squared Displacement

(MSD) and q-space Inverse Variance (QIV) [Wu et al., 2008]. Here we provide these

quantities in terms of isotropic MAP-MRI coefficients, which were not previously

given:

RTOP = P (0) =
1

(2π)3/2u3
0

Nmax∑
N=0

∑
{j,l,m}

c{j,l,m}(−1)j−1L
1/2
j−1(0)δ(l,0)

(5.30)

RTAP =

∫
R
P (Rr‖)dR =

1

(2π)u2
0

Nmax∑
N=0

∑
{j,l,m}

c{j,l,m}(−1)j−12−l/2κ(j, l)

RTPP =

∫
R2

P (Rr⊥)dR =
1

(2π)1/2u0

Nmax∑
N=0

∑
{j,l,m}

c{j,l,m}(−1)j−12−l/2κ(j, l)

with δ(l,0) is nonzero when l = 0, c{j,l,m} are the isotropic MAP-MRI coefficients

and

κ(j, l) = Y m
l (ufiber)

j−1∑
k=0

(−1)k

k!

(
j + l − 1/2

j − k − 1

)
Γ((l + 1)/2 + k)

2−(l/2+k)
(5.31)
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with ufiber the estimated direction of the underlying fiber. The MSD has a

Fourier relation to the diffusion signal and is given as MSD =
∫
R3 P (R)R2dR =

− 1
4π2 ∆E(q)|q=0 [Cheng, 2014]. Evaluating this equation finally gives

MSD = u2
0

Nmax∑
N=0

∑
{j,l,m}

c{j,l,m}(4j − 1)L
1/2
j−1(0)δ(l,0). (5.32)

The QIV is similarly given as QIV −1 =
∫
R3 E(q)q2dq = 1

−4π2 ∆P (R)|R=0 [Hossein-

bor et al., 2013, Eqs. (21, 22)], which gives

QIV = u5
0

Nmax∑
N=0

∑
{j,l,m}

c{j,l,m}
8(−1)1−j√2π7/2

(4j − 1)L
1/2
j−1(0)

δ(l,0). (5.33)

5.D MSD and QIV for Anisotropic MAP-MRI

We also newly provide the equations for MSD and QIV in terms of anisotropic

MAP-MRI coefficients (recall Section 5.2.2):

MSD = π3/2
Nmax∑
N=0

∑
{n1,n2,n3}

(−1)(−n1−n2−n3)/2
(
(1 + 2n1)u2

x + (1 + 2n2)u2
y + (1 + 2n3)u2

z

)
√

2−n1−n2−n3n1!n2!n3! Γ(1−n1
2 ) Γ(1−n2

2 ) Γ(1−n3
2 )

(5.34)

QIV =

Nmax∑
N=0

∑
{n1,n2,n3}

8π2u3
xu

3
yu

3
z

√
n1!n2!n3! Γ(1−n1

2 ) Γ(1−n2
2 ) Γ(1−n3

2 )
√

2n1+n2+n3−1
(
(1 + 2n1)u2

yu
2
z + u2

x

(
(1 + 2n3)u2

y + (1 + 2n2)u2
z

))
(5.35)

For both these quantities only the contributions of terms where n1, n2 and n3 are

even are nonzero.
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Overview

The recovery of microstructure-related features of the brain’s white matter is a

current challenge in diffusion MRI. In this chapter, we use the previously pro-

posed MAPL functional basis approach to facilitate microstructure estimation in

high quality data of six different subjects in the MGH Human Connectome Project

(HCP). We first illustrate estimates of apparent axon diameter (AAD) in the corpus

callosum of all subjects, showing we can differentiate between different parts of the

corpus callosum based on the AAD. The, to reduce the variance of parameter esti-

mation using multi-compartment tissue models, we propose to use MAPL’s signal

fitting and extrapolation as a preprocessing step. We study the effect of MAPL

on the estimation of axon diameter using a simplified Axcaliber model and axonal

dispersion using the Neurite Orientation Dispersion and Density Imaging (NODDI)

model. We show the positive effect of using it as a preprocessing step in estimating

and reducing the variances of these parameters in the Corpus Callosum of six dif-

ferent subjects of the MGH Human Connectome Project. Finally, we correlate the

estimated axon diameter, dispersion and restricted volume fractions with Fractional

Anisotropy (FA) and clearly show that changes in FA significantly correlate with

changes with all estimated parameters. Overall, we illustrate the potential of using

a well-regularized functional basis together with multi-compartment approaches to

recover important microstructure tissue parameters with much less variability, thus

contributing to the challenge of better understanding microstructure-related fea-

tures of the brain’s white matter.

Context of this chapter: This chapter represents the second part of our [Fick

et al., 2016d] contribution on Laplacian regularized MAP-MRI, addressing applica-

tions of this approach to microstructure estimation on Human Connectome Project

data.

6.1 Introduction

The recovery of microstructure-related features of the brain’s white matter is cur-

rently a hot topic in diffusion MRI [Le Bihan and Breton, 1985, Taylor and Bushell,

1985, Merboldt et al., 1985]. In many cases, the accurate estimation of these fea-

tures requires the acquisition of data at large b-values. However, in practice the

maximum b-value is limited and noise begins to dominate the signal at higher b-

values. To robustly estimate these important features from noisy, sparsely sampled

data, we explore applications of our proposed Laplacian-regularization MAP-MRI

(MAPL) functional basis approach (see Chapter 5). We explore MAPL’s potential

both as a microstructure model itself and as a preprocessing technique for multi-

compartment models.
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The first application makes use of MAP-MRI’s ability to estimate microstructure-

related q-space indices [Özarslan et al., 2013b]. Under the hypothesis that coherent

white matter can be modeled as parallel cylindrical pores, the directional Return-

To-Axis Probability (RTAP) can be used to recover moments of the axon diameter

distribution [Özarslan et al., 2013b]. This was verified using parallel, water-filled

microcapillaries in 1D-NMR experiments [Özarslan et al., 2011, 2013a]. Though,

histology studies have shown that axonal dispersion is present even in coherent

white matter, and one must be careful when assuming parallel axons [Leergaard

et al., 2010, Ronen et al., 2014]

Still, For the EAP to be sensitive to particle movements as small as axon di-

ameters – between 0.2µm and 2µm [Aboitiz et al., 1992, Liewald et al., 2014] –

large diffusion gradients with q-values of over 200 mm−1 are needed. Using a typical

diffusion time and pulse length of 30 ms and 10 ms, this corresponds to a b-value of

over 40, 000 s/mm2. Yet, even the most recent data sets of the MGH Human Con-

nectome Project have a significantly lower maximum b-value of 10, 000 s/mm2 [Set-

sompop et al., 2013]. The accurate estimation of microstructure-related parameters

in MAP-MRI therefore strongly depends on the smooth extrapolation of the dif-

fusion signal beyond the largest measured b-value, where the SNR is lowest. To

impose this smoothness, we propose to analytically regularize MAP-MRI’s coeffi-

cient estimation using the norm of the Laplacian of the reconstructed signal.

We also illustrate an application of MAPL where we use RTAP to estimate

the apparent axon diameter in the Splenium, Midbody, and Genu of the Corpus

Callosum in six subjects of the MGH Human Connectome Project data [Setsompop

et al., 2013]. Here “apparent” indicates that the axon diameter estimated through

RTAP is only valid when the signal originates only from inside a set of parallel

axons. In fact, contrary to RTAP’s hypotheses, we know that the signal does not

only originate from inside the axons and, in most parts of the white matter, axons

are not parallel, but dispersed [Leergaard et al., 2010, Ronen et al., 2014].

As an alternative, tissue models separate the signal contributions of different

tissue types using biophysical models. This allows for the estimation of microstruc-

tural parameters such as tissue composition, axonal diameter [Assaf et al., 2008,

Alexander, 2008, Alexander et al., 2010] and axonal dispersion [Zhang et al., 2012].

However, the variance of the estimated parameters in these models still depends on

the noise and maximum gradient strength in the data. To reduce the variance of the

parameter estimation, we propose to use MAPL’s signal fitting and extrapolation

as a preprocessing step before fitting a tissue model. This preprocessing consists

of 1) fitting the signal using MAPL; 2) extrapolating signal from the fitted rep-

resentation beyond the original maximum b-value; and 3) fitting the tissue model

on the extrapolated signal. We study its effect on the estimation of axon diameter

using a simplified Axcaliber model [Assaf et al., 2008] and axonal dispersion using
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the Neurite Orientation Dispersion and Density Imaging (NODDI) model [Zhang

et al., 2012]. We will show the effect of this preprocessing on the estimation vari-

ance by estimating these parameters with and without preprocessing in the Corpus

Callosum of six different subjects of the MGH Human Connectome Project. Fi-

nally, we correlate the estimated axon diameter, dispersion and restricted volume

fractions with Fractional Anisotropy (FA). We show that changes in FA correlate

significantly with changes with all estimated parameters.

6.2 Theory

In this section we provide the underlying theory to use MAPL for microstructure

estimation. First, for an overview of q-space and the Ensemble Average Propagator

(EAP) we refer the reader to Section 5.2.1. Here, we first provide a brief overview

of our Laplacian-Regularized MAP-MRI approach in Section 6.2.1. When then

explain the link between the estimated Return-To-Axis Prabability (RTAP) and

the Apparent Axon Diameter (AAD) in Section 6.2.2. Finally, we’ll detail how we

use MAPL as a preprocessing for multi-compartment modeling in Section 6.2.3.

6.2.1 Laplacian Regularized MAP-MRI (MAPL)

The MAP-MRI approach [Özarslan et al., 2013b] uses a functional basis to represent

the 3D diffusion signal with as little assumptions as possible. It then analytically

reconstructs the 3D diffusion propagator by only assuming the short gradient pulse

approximation (δ → 0). In this way, it accurately estimates the diffusion propagator

in the presence of both non-Gaussian diffusion and crossing tissue configurations.

MAP-MRI represents the discretely measured signal attenuation E(q) using a

set of continuous orthogonal basis functions representing the space Ê(q; c), where

the signal is now represented in terms of basis coefficients c and the q-space wave

vector q = |q|n with n ∈ S2 the gradient direction. The q-space wave vector is re-

lated to the b-value as |q| =
√
b/(∆− δ/3)/2π. Without going into the formulation

of MAP-MRI’s basis functions, we detail the estimation of basis coefficients c in Eq.

(6.1). In short, we regularize the fitting of c such that Ê(q; c) smoothly interpo-

lates between the measured q-space points by using Laplacian regularization [Fick

et al., 2016d], where regularization weight λ is set using voxel-wise generalized

cross-validation. This approach is called MAPL.

argminc

Data Fidelity︷ ︸︸ ︷∫
R3

[
E(q)− Ê(q; c)

]2
dq +

Smoothness︷ ︸︸ ︷
λ

∫
R3

[
∇2Ê(q; c)

]2
dq . (6.1)

Once c is known, the MAP-MRI basis simultaneously represents the 3D dMRI

signal and 3D diffusion propagator. This allows us to analytically estimate q-space

indices, as we’ll describe in the next section.
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6.2.2 Estimation of Apparent Axon Diameter

The MAP-MRI basis allows for the analytic estimation of microstructure-related

q-space indices. Of these scalar indices, the RTAP is especially interesting as its

related tissue size, the mean cross-sectional area 〈A〉. RTAP is given as

RTAP ,
∫
R
P (R r‖|r⊥ = 0)dR (6.2)

where r‖ is the direction parallel to the estimated axon bundle. From RTAP, the

apparent axon diameter can be estimated as

AAD =
2

RTAP π
. (6.3)

However, The validity of the relation between RTAP and AAD depends on several

important assumptions [Özarslan et al., 2013b, Callaghan, 1995]:

1. The tissue can be modeled as an ensemble of parallel cylinders.

2. The diffusion signal originates only from the intra-axonal compartment.

3. The applied gradient pulse length is infinitesimally small (δ ≈ 0).

4. The diffusion time τ is long enough for diffusing particles to traverse the

longest end-to-end space (τ � R2/D) with D the diffusivity.

Though, we know that the first two tissue-based assumptions are not met: The in-

vivo diffusion signal originates from both the intra- and extra-axonal space [Novikov

et al., 2014, Burcaw et al., 2015] and even in the Corpus Callosum we must account

for axonal dispersion [Leergaard et al., 2010, Ronen et al., 2014]. We are therefore

careful to call the estimated value from RTAP the “apparent axon diameter” (AAD).

Furthermore, when (3) and (4) are not exactly met an underestimation of the AAD

can be expected [Bar-Shir et al., 2008]. Despite these practical limitations, we

demonstrate an application of this approach by estimating the AAD in the Corpus

Callosum in Section 6.4.1, where we do find AAD values characteristic of trends

also found in histology [Aboitiz et al., 1992, Liewald et al., 2014]. We interpret our

findings using AAD in the discussion.

6.2.3 Signal Extrapolation as Preprocessing for Multi-Compartment

Models

To estimate properties of the white matter tissue – such as the axon diameter or dis-

persion – it is necessary to separate the signal contributions that originate from the

intra- or extra-axonal parts of the tissue. To this end, multi-compartment models

have had a profound impact on microstructure imaging in diffusion MRI, starting
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from a simple ball-and-stick model [Behrens et al., 2003] to more complex mod-

els such as Neurite Orientation Dispersion and Density Imaging (NODDI) [Zhang

et al., 2012], AxCaliber [Assaf et al., 2008] and many others [Panagiotaki et al.,

2012].

In this work we propose to use MAPL as preprocessing to improve microstruc-

ture estimation using multi-compartment models. The preprocessing consists of

(1) fitting the signal using MAPL, (2) extrapolating signal from fitted representa-

tion beyond the original maximum b-value and (3) fitting the tissue model on the

extrapolated signal. Similarly as the smoother matrix in Section 5.2.2, we gener-

ate an ‘extrapolation’ matrix as Sextra = Qextra(QTQ + λU)−1QT and recover the

extrapolated signal as ŷextra = Sextray.

We study the effect of our preprocessing on two different compartmental models

that estimate either the mean axon diameter or axonal dispersion. To estimate

the mean axon diameter we use a simplified Axcaliber model [Assaf et al., 2008],

adapted for data that was acquired with one diffusion time (See 6.A). To estimate

axonal dispersion in terms of the Orientation Dispersion Index (ODI) we use the

Neurite Orientation Dispersion and Density Imaging (NODDI) model [Zhang et al.,

2012]. In both models we fit an intra-axonal signal Eic(q), extra-axonal signal

Eec(q) and isotropic signal Eiso(q) with volume fractions νiso + νic + νec = 1. Also

in both cases Eiso(q) is an isotropic Gaussian with free water diffusivity and Eec(q)

is an axially symmetric, anisotropic Gaussian that in the case of NODDI is also

dispersed. Following the same formulation as in Zhang et al. [2012], we describe

the tissue using three components as

E(q) = (1− νiso)(νicEic(q) + (1− νic)Eec(q)) + νisoEiso(q) (6.4)

6.3 Materials and Methods

6.3.1 Multi-Compartment Tissue Models

For the NODDI model we used the open-source NODDI toolbox for MATLAB

(http://mig.cs.ucl.ac.uk/). In our simplified Axcaliber implementation we use

free water diffusivity D = 3µm2/ms for the isotropic compartment and a hindered

and restricted diffusivity of D = 1.7µm2/ms [Huang et al., 2015]. Our stepwise

implementation is as follows:

1. For every voxel in the region of interest we fit a tensor and use its principal

eigenvector as the axon direction, and rotate the q-space vectors into the

anatomical frame of reference.

2. we use a brute force algorithm to find an initial set of parameters between

〈D〉 = [1, 16]µm, νiso = [0, 1], νic = [0, 1].

http://mig.cs.ucl.ac.uk/
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3. We then finetune the found parameters using a quasi-Newton algorithm to

solve the non-linear optimization problem [Byrd et al., 1995] with bounds

〈D〉 = [0, 20]µm, νiso = [0, 1], νic = [0, 1]. The finetuned parameters are then

reported.

6.3.2 MGH Adult Diffusion Human Connectome Project Data

In our final experiments we test the robustness of our methods when estimating the

AAD, axon diameter and axonal dispersion in different parts of the Corpus Callosum

for different maximum b-values. We use the MGH Adult Diffusion Data of the

Human Connectome Project [Greve and Fischl, 2009, Andersson et al., 2012, Keil

et al., 2013, Setsompop et al., 2013]. This data set was acquired at particularly high

b-values {0, 1000, 3000, 5000, 10000} s/mm2 with {40, 64, 64, 128, 256} directions,

respectively. We use 6 different subjects of this data, having the HCP database

numbering {1007, 1010, 1016, 1018, 1019, 1030}, which we from now on call subjects

1 through 6. The diffusion time and pulse separation time in this data are δ/∆ =

12.9/21.8 ms with 1.5× 1.5× 1.5 mm resolution and TE/TR = 57/8800 ms.

6.4 Experiments and Results

In this section we present the experiments and results of two applications of MAPL

to estimate tissue-structure related measures. In Section 6.4.1 we present results

on the Apparent Axon Diameter. Then, in Section 6.4.2 we present our results on

using MAPL as a preprocessing for multi-compartment models. Finally, we present

correlations between DTI metrics and microstructure metrics in Section 6.4.3

6.4.1 Effect of Maximum b-value on Apparent Axon Diameter Es-

timation

The reconstruction of scalar indices depends not only on the number of samples,

but also on the number of shells and the b- or q-values (relation given in Section

5.2.1) at which they were acquired. Given that the diffusion time is not changed,

using higher b-values makes the acquisition more sensitive to smaller particle mo-

tions. This is important when estimating microstructural features such as the axon

diameter. In this section, we study how using different numbers of shells and b-

values influences the estimation of the apparent axon diameter (AAD) estimated

using RTAP (recall Section (5.2.3)). We estimate RTAP using MAPL with preset

regularization weight to 0.2, which was found to be appropriate in white matter

in Section 5.4.2. We use 6 subjects of the MGH-HCP data (description in Section

6.3.2), which has 4 shells with a maximum b-value of 10, 000 s/mm2. As Figure 6.1

shows, we manually segmented and estimated the AAD in the Genu (Red), Mid-
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Figure 6.1: Estimation of apparent axon diameter (AAD) in the Corpus Callosum

for 6 subjects of the MGH-HCP database. In every subject we segmented the whole

Corpus Callosum and separately the splenium (red), midbody (green) and genu

(blue). Using MAPL we then estimated the AAD in these sections while removing

the outer shells of the data set from the full 4-shell data (bmax = 10, 000 s/mm2) to

2-shell data (bmax = 3, 000 s/mm2). The bar chart shows the mean and standard

deviation of the recovered AAD in each section, while the heat maps show the

recovered AAD in the whole Corpus Callosum. We estimate larger diameters in the

midbody than in the genu and splenium in all subjects. Then, as we remove the

outer shells we estimate larger diameters, but as the heat maps and bars show, the

relative differences in diameters between the different sections remain quite similar.
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body (Green) and Splenium (Blue), as well as the whole Corpus Callosum for each

subject. We performed the estimation while we incrementally removed the outer b-

shells such that the maximum b-value changes from bmax = 10, 000 s/mm2 (4 shells,

552 samples) to bmax = 5, 000 s/mm2 (3 shells, 296 samples) to bmax = 3, 000 s/mm2

(2 shells, 168 samples). The bar charts in Figure 6.1 show that, in accordance with

literature [Aboitiz et al., 1992, Liewald et al., 2014], we find higher AAD in the

midbody than in the genu and splenium for all subjects. However, we do estimate

significantly larger axon diameters (> 4µm) compared to what is found in histology

(< 1.5µm). As we reduce bmax we estimate larger diameters, but the relative differ-

ences between the different parts of the Corpus Callosum remain similar as shown

in the heat maps next to every bar chart.

The decrease in AAD at higher bmax is a result of an increase in RTAP, which is

the integral of the (interpolated and extrapolated) signal attenuation perpendicular

to the bundle orientation. As bmax increases, assuming only the gradient strength

changes, data points measuring higher q-values along the perpendicular direction

are included. Along this direction the signal decays more slowly, i.e., the diffusion

becomes more restricted as the separation between the walls restricting the diffusion

becomes smaller. To estimate the amount of diffusion restriction, i.e., the deviation

of the measured signal from a DTI approximation (assuming mono-exponential

decay), we can use the normalized non-Gaussianity (NG) metric [Özarslan et al.,

2013b, p.22], defined as

NG =

√
1−

∫
R3 EDTI(q)2dq∫

R3 EMAPL(q)2dq
where EMAPL(q) = EDTI(q) + EMAPL\DTI(q).

(6.5)

As is shown on the left side of Eq. (6.5), the NG is estimated through the ratio of

the DTI approximation of the data and the entire MAPL approximation. The right

side of Eq. (6.5) emphasizes that the MAPL approximation already conveniently

includes the DTI approximation as its first basis function, and the non-Gaussian

elements of the signal in all the others, as indicated by EMAPL\DTI. It can be seen

that NG ranges from zero when the signal is completely Gaussian – which means

EMAPL(q) = EDTI(q) – to one when the signal is completely non-Gaussian.

By assuming that the underlying tissue is axially symmetric, we can treat the

signal as separable along the perpendicular and parallel axes [Assaf et al., 2004]. As

a consequence, we can study the perpendicular and parallel NG separately (NG⊥
and NG‖) by taking advantage of the orthogonality of the MAP-MRI basis [Özarslan

et al., 2013b, p.22]. In Figure 6.2 we show the entire (3D) NG, NG⊥, and NG‖
estimated in voxels coming from the same corpus callosum ROI we used in subject

2 shown in Figure 6.1, where we can reasonably assume axial symmetry of the tissue.

We study the NG at different bmax. We see that as bmax increases, the mean of each

metric for that bmax also increases, but much more in NG and NG⊥ than in NG‖.
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Figure 6.2: The difference between a DTI and MAPL signal approximation at

different bmax, here given as the Non-Gaussianity (NG). The data comes from the

same Corpus Callosum ROIs of subject 2 shown in Figure 6.1, where it is reasonable

to assume the tissue is axially symmetric. The left graph shows the NG of the entire

3D signal and the middle and right graphs show the NG along the perpendicular

(restricted) and parallel (free) direction (NG⊥ and NG‖). As bmax increases NG

and especially NG⊥ also increase, but NG‖ remains fairly similar, indicating that

Non-Gaussian behavior is more dominant primarily in the restricted perpendicular

direction.

This shows that indeed most of the non-Gaussian (restricted) signal comes from the

perpendicular signal component. This result supports the hypothesis as to why the

higher-order basis functions in MAPL are useful to estimate these microstructure-

related indices that depend on an accurate approximation of the restricted diffusion

signal at high b-values. That being said, the AAD values still do not take into

account the different tissue compartments, which is required to actually estimate

microstructural tissue parameters. In the next section, we therefore propose a

novel approach where we combine MAPL and multi-compartment tissue models to

estimate the axon diameter and axonal dispersion.

6.4.2 Using MAPL as a Preprocessing For Multi-Compartment

Tissue Models

In this section, we propose a novel approach where we combine MAPL with the

multi-compartment tissue models described in Section 6.2.3. We consider two mod-

els that either estimate axon diameter or axonal dispersion. We estimate the axon

diameter using a simplified version of Axcaliber [Assaf et al., 2008] that uses the

Callaghan model [Callaghan, 1995] to simulate the intra-axonal diffusion. We will

refer to this model simply as “Callaghan”. To estimate axonal dispersion we use

the NODDI model [Zhang et al., 2012].

The idea of our combined approach is to use MAPL as a preprocessing tech-

nique to improve the compartment estimation. The idea is to reduce the noise and

to include higher b-value data to Callaghan fitting than was originally available

by extrapolation the MAPL representation, improving the reliability of the estima-
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Figure 6.3: The estimated axon diameters using either only Callaghan (magenta)

or our MAPL + Callaghan method (orange) on subject 6 of the MGH-HCP data.

The estimation is done for different maximum b-values and sections of the Corpus

Callosum. The black dotted line is the reference reconstruction using the full data

with bmax = 10, 000 s/mm2. Our combined approach typically has lower standard

deviations than the regular Callaghan approach.

tion at lower b-values. As MAPL is a functional basis approach, the extrapolation

should, to some extent, be guided by the shape of the data itself. We illustrate our

approach using the same 6 subjects from the MGH data sets as in the previous sec-

tion with the same segmentations. In our hybrid approach, we fit the truncated data

with either bmax = 5, 000 s/mm2 or bmax = 3, 000 s/mm2 using MAPL and always

resample the data on the same signal points as the original bmax = 10, 000 s/mm2

data set.

Estimating Axon Diameter using MAPL + Callaghan

In Figure 6.3 we show the mean axon diameter distributions of subject 2 for different

parts of the Corpus Callosum using either Callaghan or our MAPL + Callaghan

hybrid. The black dashed curve represents the ‘gold standard’ where we fitted

Callaghan directly to the bmax = 10, 000 s/mm2 data. It can be seen that directly

fitting Callaghan to the lower bmax data results in distributions with higher means

and standard deviations. Our combined approach, however, results in a mean and

standard deviation much closer to that of the gold standard, though the mean shifts

slightly towards higher diameters as bmax decreases.

Table 6.1 shows the mean and standard deviation of all 6 subjects for all com-

binations of the two methods, maximum b-value (bmax) and Corpus Callosum sec-

tions. For every subject, the first column shows which method is used, the second
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Figure 6.4: The estimated axonal dispersion using either only NODDI (red) or

our MAPL + NODDI method (green) on subject 6 of the MGH-HCP data. The

estimation of done for different maximum b-values and sections of the Corpus Cal-

losum. The black dotted line is the reference reconstruction using the full data

with bmax = 10, 000 s/mm2. Our combined approach always has a lower standard

deviation than the regular NODDI approach.

column shows which bmax was in the original data, and the third through the fifth

column show the means and standard deviations of the estimated axon diameter.

In this case the bmax = 10, 000 s/mm2 result for the MAPL + Callaghan means

that the data was fitted and resampled at exactly the same points. As expected,

when bmax decreases the standard deviation increases when using Callaghan. The

dagger symbols indicate instances where our MAPL + Callaghan approach results

in a lower standard deviation of the results compared to the regular Callaghan ap-

proach. As can be seen, this is nearly always the case. Though, when just refitting

the bmax = 10, 000 s/mm2 data we recover slightly higher axon diameters than just

using Callaghan. For the rest, in almost all cases MAPL + Callaghan results in

axon diameters that are closer to the is bmax = 10, 000 s/mm2 result than Callaghan.

Estimating Axon Dispersion using MAPL + NODDI

In Figure 6.4 we show the estimated orientation dispersion index (ODI) using the

same setup as Figure 6.3. Here ODI is dimensionless between 0 (completely parallel)

and 1 (completely dispersed). When just using NODDI we find that the ODI

increases as bmax increases. Similarly as before, MAPL + NODDI has smaller

standard deviations than NODDI, but for all bmax finds a mean ODI that is close

to the bmax = 5, 000 s/mm2 NODDI result.

Table 6.2 shows the mean and standard deviation of the estimated orientation
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dispersion index (ODI). The layout of the results is the same as in Table 6.1. When

only using NODDI, for all subjects, increasing bmax results in an increase in the

estimated ODI. On the other hand, The estimated ODI using MAPL + NODDI

remains stable over bmax, and is in all cases similar to the bmax = 5, 000 s/mm2 ODI

of using only NODDI. Furthermore, in contrast to the results on axon diameter,

the ODI standard deviations for NODDI remain approximately the same over all

bmax, but MAPL + NODDI still has lower standard deviations in all cases.
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Table 6.1: Tables of estimated axon diameter values for 6 subjects of the MGH-HCP data set. Estimates are made on the same segmentations of

the Corpus Callosum as Figure 11, using either the regular Callaghan method or our MAPL + Callaghan hybrid. The daggers (†) symbols after

the MAPL + Callaghan standard deviations indicate instances where our hybrid approach reduces the variance of the estimated axon diameters

compared to regular Callaghan in the same section and maximum b-value (bmax). It can be seen that this is the case in nearly all instances.

Subject 1 Section

Genu Midbody Splenium

Method bmax(s/mm2) diameter (µm) diameter (µm) diameter (µm)

3,000 5.95±0.92 6.83±0.62 5.43±0.69

Callaghan 5,000 5.21±0.60 6.08±0.40 4.93±0.46

10,000 4.22±0.27 4.76±0.30 3.99±0.36

3,000 5.55±0.47† 6.04±0.42† 5.22±0.54†

MAPL + Callaghan 5,000 4.48±0.45† 5.14±0.41 4.12±0.57

10,000 4.23±0.20† 4.61±0.29† 3.90±0.14†

Subject 4 Section

Genu Midbody Splenium

Method bmax(s/mm2) diameter (µm) diameter (µm) diameter (µm)

3,000 5.83±0.99 6.51±0.77 5.07±0.92

Callaghan 5,000 4.94±0.57 5.55±0.45 4.79±0.50

10,000 3.91±0.35 4.39±0.33 4.06±0.30

3,000 5.61±0.53† 5.81±0.46† 4.97±0.45†

MAPL + Callaghan 5,000 4.43±0.42† 4.78±0.49 4.16±0.52

10,000 4.31±0.28† 4.71±0.31† 4.24±0.28†

Subject 2 Section

Genu Midbody Splenium

Method bmax(s/mm2) diameter (µm) diameter (µm) diameter (µm)

3,000 5.13±0.99 6.58±0.81 4.28±0.93

Callaghan 5,000 4.96±0.57 5.81±0.55 4.22±0.60

10,000 4.09±0.31 4.57±0.40 3.76±0.34

3,000 4.95±0.42† 5.64±0.53† 4.71±0.34†

MAPL + Callaghan 5,000 4.48±0.45† 5.15±0.56 3.93±0.44†

10,000 4.35±0.30† 4.90±0.35† 3.97±0.32†

Subject 5 Section

Genu Midbody Splenium

Method bmax(s/mm2) diameter (µm) diameter (µm) diameter (µm)

3,000 5.58±1.09 5.51±1.35 5.47±0.87

Callaghan 5,000 5.06±0.54 5.16±0.95 4.75±0.59

10,000 4.51±0.24 4.46±0.62 3.90±0.39

3,000 5.63±0.40† 5.67±0.47† 5.06±0.41†

MAPL + Callaghan 5,000 4.58±0.37† 4.76±0.65† 4.01±0.50†

10,000 4.70±0.25 4.62±0.60† 4.22±0.32†

Subject 3 Section

Genu Midbody Splenium

Method bmax(s/mm2) diameter (µm) diameter (µm) diameter (µm)

3,000 4.35±1.47 5.24±1.16 4.68±1.12

Callaghan 5,000 4.50±0.92 5.07±0.74 4.53±0.74

10,000 4.10±0.45 4.35±0.53 3.96±0.44

3,000 5.11±0.40† 5.32±0.42† 4.98±0.51†

MAPL + Callaghan 5,000 4.50±0.40† 4.63±0.55† 4.11±0.58†

10,000 4.23±0.39† 4.52±0.48† 4.09±0.43†

Subject 6 Section

Genu Midbody Splenium

Method bmax(s/mm2) diameter (µm) diameter (µm) diameter (µm)

3,000 4.37±1.53 5.71±1.05 3.59±1.46

Callaghan 5,000 4.24±1.00 5.22±0.65 3.73±0.86

10,000 3.99±0.43 4.25±0.49 3.39±0.47

3,000 5.25±0.42† 5.51±0.45† 4.84±0.44†

MAPL + Callaghan 5,000 4.21±0.48† 4.59±0.51† 3.84±0.44†

10,000 4.15±0.40† 4.46±0.48† 3.54±0.45†
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Table 6.2: Tables of estimated axonal dispersion values for 6 subjects of the MGH-HCP data set. Estimates are made on the same segmentations

of the Corpus Callosum as Figure 11, using either NODDI or our MAPL + NODDI hybrid.

Subject 1 Section

Genu Midbody Genu

Method bmax(s/mm2) ODI ODI ODI

3,000 0.074±0.030 0.129±0.033 0.101±0.028

NODDI 5,000 0.107±0.031 0.156±0.032 0.143±0.024

10,000 0.152±0.028 0.189±0.034 0.184±0.024

3,000 0.109±0.017 0.146±0.024 0.124±0.019

MAPL + NODDI 5,000 0.106±0.020 0.148±0.027 0.129±0.021

10,000 0.110±0.023 0.156±0.032 0.133±0.024

Subject 4 Section

Genu Midbody Genu

Method bmax(s/mm2) ODI ODI ODI

3,000 0.040±0.019 0.085±0.033 0.096±0.021

NODDI 5,000 0.069±0.029 0.114±0.033 0.136±0.015

10,000 0.122±0.036 0.152±0.033 0.176±0.015

3,000 0.091±0.015 0.115±0.020 0.117±0.013

MAPL + NODDI 5,000 0.081±0.017 0.112±0.023 0.125±0.014

10,000 0.074±0.023 0.111±0.027 0.129±0.015

Subject 2 Section

Genu Midbody Genu

Method bmax(s/mm2) ODI ODI ODI

3,000 0.059±0.025 0.116±0.042 0.039±0.021

NODDI 5,000 0.094±0.029 0.142±0.041 0.061±0.027

10,000 0.136±0.029 0.172±0.040 0.090±0.029

3,000 0.095±0.013 0.132±0.029 0.081±0.013

MAPL + NODDI 5,000 0.100±0.017 0.135±0.032 0.076±0.018

10,000 0.095±0.021 0.132±0.038 0.071±0.019

Subject 5 Section

Genu Midbody Genu

Method bmax(s/mm2) ODI ODI ODI

3,000 0.058±0.026 0.067±0.044 0.057±0.024

NODDI 5,000 0.090±0.027 0.081±0.054 0.077±0.031

10,000 0.147±0.022 0.103±0.061 0.105±0.035

3,000 0.103±0.015 0.102±0.032 0.093±0.014

MAPL + NODDI 5,000 0.097±0.016 0.094±0.040 0.087±0.019

10,000 0.104±0.021 0.091±0.047 0.081±0.025

Subject 3 Section

Genu Midbody Genu

Method bmax(s/mm2) ODI ODI ODI

3,000 0.053±0.021 0.085±0.039 0.086±0.033

NODDI 5,000 0.084±0.023 0.103±0.043 0.119±0.033

10,000 0.120±0.022 0.127±0.046 0.155±0.032

3,000 0.096±0.013 0.112±0.026 0.114±0.020

MAPL + NODDI 5,000 0.097±0.015 0.109±0.031 0.116±0.024

10,000 0.095±0.018 0.110±0.038 0.119±0.027

Subject 6 Section

Genu Midbody Genu

Method bmax(s/mm2) ODI ODI ODI

3,000 0.055±0.023 0.079±0.040 0.043±0.025

NODDI 5,000 0.084±0.027 0.106±0.039 0.069±0.034

10,000 0.130±0.025 0.139±0.039 0.105±0.039

3,000 0.100±0.015 0.113±0.024 0.088±0.018

MAPL + NODDI 5,000 0.095±0.018 0.109±0.028 0.081±0.021

10,000 0.097±0.018 0.109±0.034 0.078±0.026



150CHAPTER 6. MAPL APPLICATIONS FOR MICROSTRUCTURE RECOVERY ON HCP DATA

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Fractional Anisotropy

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

A
x
o
n
 D

ia
m

e
te

r 
(µ

m
)

pearsonr = -0.6; p = 3.1e-42

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Fractional Anisotropy

0.00

0.05

0.10

0.15

0.20

0.25

0.30

O
ri

e
n
ta

ti
o
n
 D

is
p
e
rs

io
n
 I
n
d
e
x

pearsonr = -0.59; p = 4.9e-40

(b)

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Fractional Anisotropy

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

R
e
st

ri
ct

e
d
 V

o
lu

m
e
 F

ra
ct

io
n

pearsonr = 0.76; p = 8.2e-79

(c)

Figure 6.5: Correlations between FA and axon diameter (left), axon dispersion

(middle) and restricted volume fraction (right). It can be seen that they are all

significantly correlated, meaning that a change in FA can mean either a change in

diameter, dispersion or volume fraction, but it is impossible to know one from the

other.

6.4.3 Do Microstructure-Related Quantities Add to Known DTI

Measures?

Current diffusion MRI research applications still rely heavily on the interpretation

of DTI measures such as Fractional Anisotropy (FA) [Yeatman et al., 2012, Jolles

et al., 2015]. To investigate whether microstructure-related indices can be used to

better interpret white matter changes, we correlate FA with the estimated axon

diameter, dispersion and restricted volume fraction vr estimated using Callaghan.

Figure 6.5 shows the correlation of all three values with FA for subject 1. It can be

seen that FA correlates significantly with all values – negatively with axon diameter

and dispersion and positively with restricted volume fraction. This means that an

increase in FA could mean either (or at the same time) a decrease in axon diameter

or dispersion or an increase in restricted volume fraction. There is no way to know

which one, if not all, from just from looking at FA. We correlate these values in

the Corpus Callosum for all 6 subjects of the bmax = 10, 000 s/mm2 MGH-HCP

data, where we used the same segmentations as in Sections 6.4.1 and 6.4.2. The

results for all 6 subjects are given in Table 6.3, which all confirm this finding. This

last result underlines the importance of looking for more specific biomarkers that

describe specific changes in the white matter microstructure.
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Table 6.3: Tables showing the correlations between Fractional Anisotropy (FA) and the estimated axon diameter, dispersion and restricted

volume fraction on the full data of all 6 subjects of the MGH-HCP data. In this case the voxels for the segmentations of the Corpus Callosum

were joined together. It can be seen that FA always correlates negatively with axon diameter and dispersion and positivity with restricted

volume fraction.

Subject 1 Pearson r p-value N

Diameter -0.60 3.1e-42 417

Dispersion Index -0.59 4.9e-40 417

Restricted Volume Fraction 0.76 8.2e-79 417

Subject 4 Pearson r p-value N

Diameter -0.43 4.4e-19 402

Dispersion Index -0.36 5.2e-14 402

Restricted Volume Fraction 0.79 1.4e-88 402

Subject 2 Pearson r p-value N

Diameter -0.69 1.7e-61 422

Dispersion Index -0.86 3.5e-59 422

Restricted Volume Fraction 0.89 2.7e-94 422

Subject 5 Pearson r p-value N

Diameter -0.38 9.5e-14 354

Dispersion Index -0.59 1.4e-34 354

Restricted Volume Fraction 0.81 5.1e-85 354

Subject 3 Pearson r p-value N

Diameter -0.52 1.9e-30 427

Dispersion Index -0.47 5.3e-25 427

Restricted Volume Fraction 0.76 1.6e-81 427

Subject 6 Pearson r p-value N

Diameter -0.69 9.7e-69 476

Dispersion Index -0.64 5.2e-57 476

Restricted Volume Fraction 0.85 1e-132 476
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6.5 Discussion

MAPL Can Distinguish Axon Populations at Lower b-values Using The

Apparent Axon Diameter

A current focus in diffusion MRI is the estimation of the mean axon diameter [Assaf

et al., 2008, Alexander et al., 2010, Huang et al., 2015]. The Apparent Axon Di-

ameter (AAD) (see Section 6.2.2) [Özarslan et al., 2013b] estimates a value that is

related to the axon diameter, but is called “apparent” because it does not separate

the effects of tissue composition or axonal dispersion on the signal.

In the experiment described in Section 6.4.1, we used 6 subjects of the MGH-

HCP data set to study the effect of using a different number of shells and maximum

b-value on the estimation of the AAD. We investigated if we could distinguish

AAD populations in the Genu, Midbody, and Splenium of the Corpus Callosum of

each subject. For most subjects in Figure 6.1 we indeed observe the characteristic

‘small-big-small’ trend that is found in literature [Aboitiz et al., 1992, Liewald

et al., 2014], which is mostly preserved even though we truncate the data from a

maximum b-value of bmax = 10, 000 s/mm2 to bmax = 3, 000 s/mm2. This shows

that the signal extrapolation, on which the estimation of the AAD is based, is well

preserved with MAPL at lower b-values. Although, we do see that the mean AAD

and its standard deviation increase as b-value decreases, which corresponds to what

was found in Huang et al. [2015]. The increase in AAD (i.e. decrease in RTAP)

at lower b-values is accompanied by a decrease in the non-Gaussianity (NG) of the

signal (Figure 6.2), which shows the difference between a Gaussian approximation

of the data and the estimation using MAPL [Özarslan et al., 2013b]. Note that for

NG to be physically meaningful, MAP-MRI’s scaling parameters must reflect the

mean-squared displacements of tissue water spins undergoing Gaussian diffusion.

For this reason, only in this part of our study, we estimated the scaling matrix by

fitting a DTI model only to the lowest b = 1000 s/mm2 shell of the data [Avram

et al., 2015]. As expected, we find that the lower b-value data is better explained by

mono-exponential, Gaussian signal decay, but as higher b-value data is included the

signal becomes increasingly non-Gaussian (restricted). Indeed, this result indicates

that the higher-order basis functions in MAPL improve the estimation of all q-space

indices whose estimation depends on the extrapolation of the signal at high q-values.

This does not necessarily benefit the MSD as it is estimated as the Laplacian of

the signal at the origin q = 0, see 5.C.3, but certainly proves the added value of

using MAPL when estimating RTOP, RTAP, RTPP, and QIV. It should be noted

that both DTI measures and q-space indices characterize properties of the entire

signal and EAP. Therefore, we do not expect one to have higher specificity to tissue

changes than the other. However, it is likely that q-space indices will provide an

increased sensitivity to microstructural changes that affect tissue boundaries, i.e.,

tissue properties that affect the amount of diffusion restriction. In recent work,
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we found evidence that supports this hypothesis by comparing the sensitivity of

both DTI and q-space indices to changes in axonal diameter, dispersion and tissue

composition in simulated data [Fick et al., 2016a].

Nonetheless, as histological values of axon diameters are in the range of 0.5-

2µm [Aboitiz et al., 1992, Liewald et al., 2014], we significantly overestimate the true

axon diameter for any b-value. This is the opposite of what we would expect when

the short gradient pulse and long diffusion time assumptions are violated [Bar-Shir

et al., 2008]. Instead, we find an overestimation that is mainly caused by two things:

(1) the lack of separation between intra- and extra-axonal compartments [Novikov

et al., 2014, Burcaw et al., 2015] and (2) the use of low gradient strengths, which

results in a resolution limit for small axon sizes [Lätt et al., 2007]. Moreover, we

find that AAD values typically correlate with FA values. This makes sense because

both values globally describe the diffusion signal – the AAD perpendicularly and

the FA as a ratio between parallel and perpendicular DTI eigenvalues. Nonetheless,

the AAD is a straightforward marker that characterizes the non-Gaussian behavior

in the diffusion signal, and its clinical value should be explored further.

Reducing The Variance in Multi-Compartment Tissue Model Esti-

mation Using MAPL

To estimate microstructural tissue properties such as the axon diameter or axonal

dispersion, the signal contributions from different tissue compartments must be

considered [Assaf et al., 2008, Alexander et al., 2010, Zhang et al., 2012, Huang

et al., 2015]. In this work, we used MAPL’s signal extrapolation as a preprocess-

ing to estimate either axonal diameter using a simplified AxCaliber model [Assaf

et al., 2008] or axonal dispersion and the NODDI model. It is noteworthy that these

parameters cannot be estimated at the same time as we would need at least two dif-

fusion times to disentangle the effects of dispersion and restricted diffusion [Nilsson

et al., 2013]. Furthermore, for axonal diameter estimation, we could also have used

the Van Gelderen model [Vangelderen et al., 1994] which was used by Huang et al.

[2015] and Alexander et al. [2010], but chose Callaghan because it also reconstructs

the diffusion propagator just as MAPL.

With respect to axonal diameter, it can be seen from Figure 6.3 that our com-

bined approach significantly reduces the variance of the mean axon diameter es-

timation of the Callaghan model. The preprocessing also reduces the increase in

estimated mean axon diameter as b-value decreases, with notable exception the

bmax = 3, 000 s/mm2 graph of the splenium (right bottom). In this case, the aver-

age axon diameter is closer to the gold standard reference for the Callaghan model

than for MAPL + Callaghan. Though, this is because Callaghan’s axon diameter

distribution flattens out between axon diameters of 2 µm and 7 µm, while MAPL

+ Callaghan maintains a smaller standard deviation.

The fact that the MAPL preprocessing actually results in the smaller estimated
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axon diameters shows that the restricted nature of the data is still represented

to some extent in the signal extrapolation. If this was not the case, and the ex-

trapolated signal quickly decays after the maximum b-value, we would expect the

estimated axon diameter to increase as a fast signal decay indicates larger axon

diameters.

Table 6.1 further underlines the results in Figure 6.3, where the result for all

6 subjects of the MGH-HCP data is given. The dagger sign ‘†’ indicates instances

where our combined approach has lower variance than the regular Callaghan ap-

proach. This is the case for 48 out of 54 instances, where for the remaining 6 the

standard deviations are very similar. Interestingly, just fitting and resampling the

bmax = 10, 000 s/mm2 data using MAPL also reduces the variance in the result, but

consistently slightly increases the estimated axon diameter.

Our results on the estimation of axonal dispersion (ODI) using NODDI and

MAPL + NODDI are given in Figure 6.4 and Table 6.2. We observe that increas-

ing the maximum b-value increases the average ODI estimation (by about 1–1.5

standard deviations per jump in b-value) while leaving its standard deviation rela-

tively stable. At the same time in restricted volume fraction also increases (result

not shown). When we repeat the same experiment using synthetic data with known

ground truth ODI and restricted volume fraction we find the same effect with in-

creasing b-value, but that the results at bmax = 3, 000 s/mm2 are closest to the

ground truth (result not shown). It is possible that the combination of lower SNR

at higher b-values or the sampling scheme cause this effect, but from the results

here we cannot point to the exact cause.

When we enhance the estimation using MAPL + NODDI the results change

in two ways: (1) The ODI estimation stabilizes over b-value around bmax =

5, 000 s/mm2 result for NODDI and (2) the standard deviation decreases between

25% to 50%. The mean ODI between different sections often comes closer together,

but this is in proportion to the decrease in standard deviation. We also find a

slightly decreased estimation of the restricted volume fraction compared to NODDI

(result not shown).

Overall, these results are meant as an initial exploration into the use of func-

tional basis approaches such as MAPL as a complementary technique to multi-

compartment tissue models, rather than a competing technique. Reducing the

variability of tissue parameter estimation in this way could possibly increase the

statistical power of population tests and the clinical applicability of this approach

should be investigated in further studies. It should be noted here that MAPL cannot

be used as a preprocessing of the original version of Axcaliber as the MAP-MRI

basis is not compatible with data with multiple diffusion times [Özarslan et al.,

2013b]. Furthermore, Burcaw et al. [2015] showed that when estimating the axon

diameter using multiple diffusion times it is necessary to take into account the time-
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dependence of the extra-axonal diffusion signal, which biases the estimation even

at the long diffusion time limit. Mesoscopic effects, i.e. effects of spatial arrange-

ment, as well as correlations and structural disorder in axon packing should also be

considered. To overcome the limitation of MAP-MRI with respect to fitting mul-

tiple diffusion times, we have recently proposed an extension of MAP-MRI that is

able to simultaneously represent the diffusion signal over both q-space and diffusion

time [Fick et al., 2015b].

Compartment Models Better Characterize Tissue Changes Than

Fractional Anisotropy In Section 6.4.3 we investigated whether the microstructure-

related indices we estimate add information in terms of describing white matter

changes compared to Fractional Anisotropy (FA) [Basser et al., 1994]. We cor-

related FA the estimated mean axon diameter, dispersion and restricted volume

fraction. Figure 6.5 proves that FA correlates significantly for all metrics – neg-

atively with axon diameter and dispersion and positively with restricted volume

fraction. This means that a change in FA can mean a change in all parameters, but

without further information there is no way of knowing which one. The Pearson

correlations and p-values in Table 6.3 underline that this result is consistent for

all 6 subjects. Interestingly, axon diameter and axonal dispersion only correlate

significantly with each other when bmax = 10, 000 s/mm2 data is used. For lower

bmax we do not find significant correlations between the estimated parameters of

the different models.

This last result underlines the importance of looking for more specific biomarkers

that can add more insight to the information that DTI measures already provide.

6.6 Conclusion

We showed that we can use the apparent axon diameter to differentiate between

the axon diameter populations of different parts Corpus Callosum. We retain this

ability even when we remove the outer shells of the MGH-HCP data from a max-

imum b-value of 10, 000 s/mm2 to only 3, 000 s/mm2. However, we do find that

the value of the apparent axon diameter correlates with FA, meaning that its clin-

ical value should be more carefully studied in the future. We also proposed a new

combined approach to estimate the axon diameter and axonal dispersion, where we

use MAPL as a preprocessing for multi-compartment models. We showed that this

hybrid approach consistently reduces the variability of the estimated metrics.

6.A Callaghan Model

In Section 6.4.2 we use the Callaghan model [Callaghan, 1995] to estimate the axon

diameter in the Corpus Callosum. The Callaghan model describes the intra-axonal
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diffusion signal as

Er(q, τ) =
∑
k

4 exp(−β2
0kDτ/a

2)×

(
(2πqa)J

′
0(2πqa)

)2

(
(2πqa)2 − β2

0k

)2
+
∑
nk

8 exp(−β2
nkDτ/a

2)×
β2
nk(

β2
nk − n2

) ×
(

(2πqa)J
′
n(2πqa)

)2

(
(2πqa)2 − β2

nk

)2 (6.6)

where J
′
n are the derivatives of the nth-order Bessel function, βnk are the arguments

that result in zero-crossings and the cylinders are of radius a. This model describes

the signal in parallel cylinders for any diffusion time, but keeps the short gradient

pulse assumption. As in [Assaf et al., 2004], we model the three-dimensional intra-

axonal signal as a product of the restricted perpendicular and free parallel diffusion,

i.e. Eic(q, 〈D〉) = Erestricted(q⊥, 〈D〉)Efree(q‖).

6.B Overview of Functional Basis Approaches

To give some context on how the MAP-MRI basis relates to others, we provide

an overview of a large selection of proposed functional basis approaches in Table

6.4. For each basis, we first checkmark if it has an analytic Fourier Transform to

estimate the EAP. We then checkmark what EAP features have been proposed for

the basis. As can be seen, the MAP-MRI basis provides the most freedom in EAP

feature estimation.
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Table 6.4: Overview of the properties of proposed functional basis approaches. For every basis, we first check if they facilitate analytic EAP

estimation. Next, we check which EAP features have been derived for each basis. Note that if a basis as an analytic EAP, then most likely there

would be some way of calculating most EAP features. The fact that most of them have not is likely because expressing the feature in terms of

the basis was not straightforward. Also note that while HSH and ADMM don’t have an analytic EAP, they could still calculate RTOP as it is

expressable as the integral of the 3D q-space [Özarslan et al., 2013b]. MAP-MRI provides the most freedom in EAP feature estimation. In the

bottom table we write out the acronym of each method for clarity.

Functional Basis Available EAP Features

Analytic EAP Marginal ODF ODF Sharpening RTOP RTAP RTPP MSD QIV NG NG⊥ NG‖ PA

SPF X X × X × × X × × × × ×
mSPF X X × X × × X × × × × ×
Tensorial SPF X X × X × × X × × × × ×
ms-DPI X X × X × × × × × × × ×
BFOR X × × X × × X X × × × ×
HSH × × × X × × × X × × × ×
ADMM × × × X × × × × × × × ×
3D-SHORE X X X X X X X X × × × X

MAP-MRI X X X X X X X X X X X X

Basis Acronym Written Out Name References

SPF Spherical Polar Fourier [Assemlal et al., 2009, Cheng et al., 2010b]

mSPF modified Spherical Polar Fourier [Caruyer and Deriche, 2012]

Tensorial SPF Tensorial Spherical Polar Fourier [Cheng et al., 2015b]

ms-DPI multiple q-shell Diffusion Propagator Imaging [Descoteaux et al., 2011]

BFOR Bessel Fourier Orientation Reconstruction [Hosseinbor et al., 2013]

HSH HyperSpherical Harmonics [Hosseinbor et al., 2015]

ADMM Alternating Directions method of Multipliers [Rathi et al., 2014]

3D-SHORE Three-Dimensional Simple Harmonic Oscillator based Reconstruction and Estimation [Cheng et al., 2010a, Özarslan et al., 2013b]

MAP-MRI Mean Apparent Propagator Magnetic Resonance Imaging [Özarslan et al., 2013b, Fick et al., 2016d]
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Overview

In this chapter, we assessed the evolution of diffusion MRI (dMRI) derived mark-

ers from different white matter models as progressive neurodegeneration occurs in

transgenic Alzheimer rats (TgF344-AD) at 10, 15 and 24 months. We compared

biomarkers reconstructed from Diffusion Tensor Imaging (DTI), Neurite Orientation

Dispersion and Density Imaging (NODDI) and Mean Apparent Propagator (MAP)-

MRI in the hippocampus, cingulate cortex and corpus callosum using multi-shell

dMRI. We found that NODDI’s dispersion and MAP-MRI’s anisotropy markers

consistently changed over time, possibly indicating that these measures are sensi-

tive to age-dependent neuronal demise due to amyloid accumulation. Conversely,

we found that DTI’s mean diffusivity, NODDI’s isotropic volume fraction and MAP-

MRI’s restriction-related metrics all followed a two-step progression from 10 to 15

months, and from 15 to 24 months. This two-step pattern might be linked with a

neuroinflammatory response that may be occuring prior to, or during microstruc-

tural breakdown. Using our approach, we are able to provide preliminary and

valuable insight on relevant biomarkers that may directly describe the underlying

pathophysiology in Alzheimer’s disease.

7.1 Introduction

Diffusion MRI (dMRI) allows us to non-invasively study microstructural changes

caused by neuropathology. Among these pathologies, gaining understanding of

Alzheimer’s disease (AD) is of particular importance, affecting over one in nine

people age 65 and above in the U.S. alone [Association, 2016]. Traditionally, dMRI

studies have used Diffusion Tensor Imaging (DTI) [Basser et al., 1994] to model

the grey and white matter structure abnormalities in AD patients. Only recently,

more complex white matter models like Neurite Orientation Dispersion and Den-

sity Imaging (NODDI) [Zhang et al., 2012] have been explored to classify AD, and

have shown greater discriminative power than DTI [Nir et al., 2016]. This rein-

forces the importance of exploring white matter models that provide more detailed

microstructural information than DTI.

In human studies, it is hard to relate dMRI derived metrics to corresponding

microstructural changes for lack of histological validation. As a solution, animal

models provide a way to gain understanding on the underlying pathophysiology

of AD by allowing dMRI in addition to histological measurements. Mouse mod-

els of human tauopathy (rTg4510) have been previously studied at various time

points using DTI [Sahara et al., 2014, Wells et al., 2015], and at a single time point

comparing DTI with NODDI metrics [Colgan et al., 2016]. In this latter study,

NODDI derived metrics once again appeared more discriminative than those de-

rived from DTI. Further efforts focusing on multi-shell dMRI analysis of transgenic
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Alzheimer rats (TgF344-AD) have shown that dMRI measurements at higher gra-

dient strengths aid the classication of AD-like pathology [Daianu et al., 2015]. How-

ever, only anisotropy measures of DTI and hybrid diffusion imaging (HYDI) [Wu

and Alexander, 2007] were explored.

In this study, we compare the evolution of dMRI-derived markers from dif-

ferent white matter models as progressive neurodegeneration occurs in transgenic

Alzheimer rats (TgF344-AD). In particular, we study the patterns of alteration

across three time points in the hippocampus, cingulate cortex and corpus callosum

- areas known to be affected in AD. The two grey matter areas were previously

shown to manifest age-dependent cerebral amyloidosis that precedes tauopathy,

gliosis and apoptotic loss of neurons [Cohen et al., 2013], making these cortical

regions extremely relevant for understanding the underlying mechanisms in AD.

We compare biomarkers derived from DTI, NODDI and Mean Apparent Propa-

gator (MAP)-MRI [Özarslan et al., 2013b] using multi-shell data. To the best of

our knowledge, this is the first study that investigates multi-shell biomarkers at

different time points in AD animal models.

The Chapter is structured as follows: we first describe the diffusion MRI data

and the metrics we derive in Section 7.2. We provide the results in section 7.3 and

discuss them in section 7.4. We finally provide our conclusions in section 7.5.

7.2 Materials and Methods

In this section, we first detail the diffusion MRI data acquisition, preprocessing and

region of interest selection of the AD rats. We then give a brief overview of the

methods we use and their metrics of interest. We detail the fractional anisotropy

(FA) and mean diffusivity (MD) of classical DTI, the orientation dispersion index

(ODI), neurite density index (NDI) and isotropic volume fraction (IsoVF) of the

multi-compartment NODDI model, and finally the formulation of several q-space

indices of the MAP-MRI functional basis. We estimated the DTI and MAP-MRI

metrics using the diffusion imaging in python (dipy) open source software [Garyfal-

lidis et al., 2014] and the NODDI metrics using the NODDI toolbox [Zhang et al.,

2012].

7.2.1 Processing of Transgenic Alzheimer Rat Data Sets

We use multi-shell dMRI data of three ex-vivo transgenic Alzheimer rats (line

TgF344-AD) [Cohen et al., 2013], also previously analyzed by Daianu et al. [Da-

ianu et al., 2015]. The rats were euthanized at 10, 15 and 24 months, fixed

brains were prepared as described in [Daianu et al., 2015], and scanned using a

7 Tesla Bruker Biospin MRI scanner at California Institute of Technology. A high-

resolution fast low angle magnetic shot (FLASH) anatomical image with a mix of
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Figure 7.1: Regions of interest for biomarker estimation on the registered FA map

of rat 1. We mark the cingulate cortex (green), corpus callosum (blue) and hip-

pocampus (red).

T1 and T2 weighting (375× 224× 160 matrix; voxel size: 0.08× 0.08× 0.08 mm3)

was used. The diffusion MRI data were sampled on 5 shells with b-values

{1000,3000,4000,8000,12000} s/mm2, all with the same 60 directions and 5 b0 mea-

surements. Other parameters were δ/∆ = 11/16 ms and TE/TR = 34/500 ms. The

voxel dimensions were 0.15× 0.15× 0.25 mm3.

During preprocessing, extra-cerebral tissue was removed using the “skull-

stripping” Brain Extraction Tool from BrainSuite (http://brainsuite.org/), for

both the anatomical images and the DWIs. We corrected for eddy current distor-

tions using the “eddy correct FSL” tool (www.fmrib.ox.ac.uk/fsl) for which a

gradient table was calculated to account for the distortions. As an image process-

ing step, DWIs were up-sampled to the resolution of the anatomical images (with

isotropic voxels) using FSL’s flirt function with 9 degrees of freedom; the gradient

direction tables were rotated accordingly after each linear registration. For our

study, we draw regions of interest (ROIs) in the cingulate cortex, hippocampus and

corpus callosum as shown in Figure 7.1.

7.2.2 DTI Metrics

The classical DTI model [Basser et al., 1994] assumes that the measured diffusion

signal belongs to the set of Gaussian distributions. While DTI has well-known limi-

tations with respect to the modeling of crossing tissue configurations and restricted

diffusion, its derived metrics FA and MD have been found useful to classify AD pa-

tients [Nir et al., 2016]. Using signal attenuation E(b) = S(b)/S(0), the DTI model

describes the diffusion signal as E(b) = exp(−bgTDg) with D a 3 × 3 symmetric

positive-definite matrix and g the gradient direction. Estimating the eigenvalues of

D as {λ1, λ2, λ3} the FA and MD are given as

FA =

√
1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ2
1 + λ2

2 + λ2
3

MD =
λ1 + λ2 + λ3

3
(7.1)

In accordance with DTI’s Gaussian diffusion assumption, we only use the b0 and

b = 1000 s/mm2 data when fitting DTI. The FA and MD in our slice of interest are

http://brainsuite.org/
www.fmrib.ox.ac.uk/fsl


7.2. MATERIALS AND METHODS 163

shown in Figure 7.2.

7.2.3 NODDI Metrics

The more advanced multi-compartment NODDI model [Zhang et al., 2012] sepa-

rates the signal contribution of different tissues by fitting a combination of intra-

cellular, extra-cellular and free-water models.

E = (1− νiso)(νicEic(ODI) + (1− νic) ∗ Eec) + νisoEiso (7.2)

The intra-cellular signal Eic is modeled as a set of dispersed sticks, i.e., cylinders

of zero radius, to capture the highly restricted nature of diffusion perpendicular to

neurites and unhindered diffusion along them. The amount of dispersion is given

by the orientation dispersion index (ODI), which is defined by a Watson distribu-

tion. The extra-cellular signal Eec is described as a dispersed mixture of Gaussian

anisotropic diffusion, and an isotropic Gaussian compartment Eiso represents free

diffusion. Similarly as in [Colgan et al., 2016], we study the ODI, the neurite density

index NDI = (1− νiso)νic and the isotropic volume fraction IsoV F = νiso.

In accordance with NODDI’s recommended acquisition scheme [Zhang et al.,

2012], we fit NODDI only using the b0 and b = {1000, 3000} s/mm2 data. Further-

more, as water diffusivity changes in ex-vivo tissue, we set the intra-cellular and

isotropic diffusivity to 0.6×10−9m2s−1 and 2.0×10−9m2s−1 [Alexander et al., 2010].

An illustration of the ODI, NDI and IsoVF can be seen in Figure 7.2.

7.2.4 MAP-MRI Metrics

The MAP-MRI approach [Özarslan et al., 2013b] uses a functional basis to represent

the 3D diffusion signal with as little assumptions as possible. It then analytically

reconstructs the 3D diffusion propagator by only assuming the short gradient pulse

approximation (δ ≈ 0). In this way, it accurately estimates the diffusion propagator

in the presence of both non-Gaussian diffusion and crossing tissue configurations.

MAP-MRI represents the discretely measured signal attenuation E(q) using a

set of continuous orthogonal basis functions representing the space Ê(q; c), where

the signal is now represented in terms of basis coefficients c and the q-space

wave vector q = |q|g with g the gradient direction is related to the b-value as

|q| =
√
b/(∆− δ/3)/2π. Without going into the formulation of MAP-MRI’s basis

functions, we detail the estimation of basis coefficients c in Eq. (7.3). In short, we

regularize the fitting of c such that Ê(q; c) smoothly interpolates between the mea-

sured q-space points by using Laplacian regularization [Fick et al., 2016d], where

regularization weight λ is set using voxel-wise generalized cross-validation. We also

constrain the estimated diffusion Propagator P̂ (R; c) to be positive using quadratic
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Figure 7.2: Illustrations of a DTI and NODDI metrics in the same coronal slice for

the three time points.

programming [Özarslan et al., 2013b].

argminc

Data Fidelity︷ ︸︸ ︷∫
R3

[
E(q)− Ê(q; c)

]2
dq +

Smoothness︷ ︸︸ ︷
λ

∫
R3

[
∇2Ê(q; c)

]2
dq

subject to P̂ (R; c) > 0 with P̂ (R; c) = IFT
(
Ê(q; c)

) (7.3)

Once c is known, the MAP-MRI basis simultaneously represents the 3D dMRI

signal and 3D diffusion propagator. We estimate the q-space indices Return-

To-Origin, Return-To-Axis and Return-To-Plane Probability (RTOP, RTAP and

RTPP), which in theory are related to the volume, surface and length of a cylin-

drical pore [Özarslan et al., 2013b]. We also estimate the non-Gaussianity (NG),

which describes the ratio between the Gaussian and non-Gaussian volume of the



7.3. RESULTS 165

R
T
O

P
1

/3
R
TA

P
1

/2
R
T
P
P

N
G

PA

10 Months 15 Months 24 Months
M

A
P
-M

R
I 
M

e
tr

ic
s

Figure 7.3: Illustrations of MAP-MRI’s q-space indices in the same coronal slice

for the three time points. To visualize RTOP, RTAP and RTPP in the same unit

(mm−1) we show the cubed root of RTOP and squared root of RTAP.

signal. Finally we estimate the propagator anisotropy (PA), which is a normalized

metric that describes the anisotropy of the 3D diffusion propagator. As MAP-MRI

is designed to represent the entire 3D diffusion signal, we estimate all metrics using

the entire 5 shell data up to a b-value of 12000 s/mm2, using a radial order of 6,

resulting in 50 estimated coefficients. We illustrate these metrics in Figure 7.3.

7.3 Results

In Figure 7.4 we show the evolution of the mean with 0.5 standard deviation of all

dMRI-derived metrics in the ROIs shown in Figure 7.1. We use the same colors for

the hippocampus (red), corpus callosum (blue) and cingulate cortex (green). The
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Figure 7.4: DTI, NODDI and MAP-MRI metrics for the same time points in the

hippocampus (red), corpus callosum (blue) and cingulate cortex (green).

only metric that consistently increases over time is NODDI’s ODI and consistently

decreases is MAP-MRI’s PA, with the exception of the cortex. It is also apparent

that FA, NDI, RTOP, RTAP and RTPP follow a different, 2-step pattern, first

decreasing and then slightly increasing. Inversely, for MD, IsoVF and NG we first

find an increase and then a decrease. We provide the raw data values in Table 7.1.

We also produce correlation plots for dispersion and anisotropy measures in Figure

7.5 and for the 2-step metrics in Figure 7.6. It can be seen that ODI is negatively

correlated with FA and PA, and that IsoVF is positively correlated with MD and

negatively with RTOP.

7.4 Discussion

In this work, we have shown that different metrics of DTI, NODDI and MAP-MRI

appear to be sensitive to different processes as age-dependent cerebral amyloidosis

manifests in both grey and white matter in the Alzheimer rats.

DTI findings: We find a significant drop in FA in all ROIs from 10 to 15

months and a small increase from 15 to 24 months. This corresponds with previous

findings in the hippocampus using data up to b = 1000 s/mm2 [Daianu et al., 2015].

While a comparison of using different b-values in the DTI estimation was outside

of the scope of this study, it was shown that when higher b-values are included,

the FA trend consistently decreases over time [Daianu et al., 2015]. Nonetheless, it

has been argued that compared to FA, MD lends itself better to the assessment of
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Figure 7.5: Scatter plots of FA, ODI and PA for the rats of ages 10 months (blue),

15 months (green) and 24 months (red) in the hippocampus. It can be seen that

ODI is negatively correlated with both FA and PA.

cortical and subcortical grey matter, where net diffusion may not be expected to

conform to any one specific direction [Chiapponi et al., 2013]. When we assess MD,

we consistently find an increase from 10 to 15 months and a decrease from 15 to

24 months. This may suggest that FA and MD are sensitive to different processes

taking place in AD.

NODDI findings: Several studies have suggested that NODDI metrics, in

particular ODI, have better AD classifying potential due to NODDI’s ability to

delineate signal contributions from different tissue compartments [Nir et al., 2016,

Colgan et al., 2016]. While we cannot do a classification study using our data,

we find that ODI consistently increases in areas where tau pathology increases in

our rat model [Cohen et al., 2013]; the hippocampus, cingulate cortex and corpus

callosum. We also find that IsoVF shows an increase from 10 to 15 months and a
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(blue), 15 months (green) and 24 months (red) in the hippocampus. It can be seen

that IsoVF is positively correlated with MD and negatively with RTOP.

decrease from 15 to 24 months in all areas, following the same trend as DTI’s MD.

Though, it should be mentioned that fitting NODDI requires presetting the intra-

cellular and isotropic diffusivity, which influences obtained metric values. Fitting

NODDI on the selected bmax = 3000s/mm2 or the full data does not significantly

impact our findings.

MAP-MRI findings: To the best of our knowledge, this is the first study

that estimates MAP-MRI metrics on data from an AD model. We find that all

metrics except PA follow a two-stage progression pattern similar to DTI’s MD. The

decrease-increase of return-to-origin, return-to-axis and return-to-plane probability

(RTOP, RTAP and RTPP) makes sense with the increase-decrease of MD, as an

increased diffusivity means that spins are able to move away farther, reducing the

chance they return to their origin, axis or plane. Interestingly, this does not make
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the signal more Gaussian, as the Non-Gaussianity follows an increase-decrease pat-

tern in all ROIs. The exception to this trend is the RTPP in the corpus callosum,

which increases monotonically, indicating a steady increase in restriction parallel

to the axon direction. Finally, PA consistently decreases in all areas except the

cortex, where a small increase is found, followed by a larger decrease. This decreas-

ing trend in anisotropy measures when using higher gradients strengths was also

reported with DTI’s FA or HYDI’s NQA [Daianu et al., 2015]. We note that while

we fitted MAP-MRI to the full data with 300 DWIs, it was shown that its metrics

are stable under subsampling to less than 100 DWIs [Fick et al., 2016d] or could

even be fitted directly on a NODDI acquisition scheme.

Biological explanation for biomarker trends: The trends of all derived

metrics can be divided into two groups: those that consistently decrease or increase

and those that show a ‘decrease-increase’ or ‘increase-decrease’ pattern.

The first group could point towards the accelerating cerebral amyloidosis as age

increases in these rats [Cohen et al., 2013]. Over time, this “amyloid burden” results

in age-dependent neuronal demise that is likely owed to oligomeric Aβ accumulation.

In turn, this neuronal demise could result in a more dispersed, less anisotropic

diffusion signal. This corresponds with the observed correlations between dispersion

and anisotropy measures in Figure 7.5.

The second group may indicate an inflammatory response to amyloid accumula-

tion, occurring prior to (or coincident with and obscuring) the onset of microstruc-

tural breakdown and macrostructural atrophy [Weston et al., 2015]. At 15 months

TgF344-AD rats have heavy plaque burden and strong neuroinflammation, whereas

by 24 months most of the inflammatory reaction to the plaques has passed. This cor-

responds to what we see when MD and IsoVF increase-decrease and RTOP, RTAP

and RTPP decrease-increase (except RTPP at corpus callosum). The correlations

between MD, IsoVF and RTOP in Figure 7.6 therefore makes sense. Though, the

increase-decrease in NG indicates that while the inflammatory response increases

diffusivity, it also increases the non-Gaussian portion of the signal at higher b-values.

Difficulties of comparing our findings with previous animal studies:

There have been several previous dMRI studies using Alzheimer animal models.

However, different species and disease expressions make comparisons of dMRI met-

rics difficult. For instance, our TgF344-AD rat model was made to drive cerebral

amyloid and downstream tauopathy and neuronal loss, also known as the “amyloid

cascade hypothesis” of John Hardy [Hardy and Higgins, 1992]. In contrast, the

Tg4510 mouse model used by Colgan et al. [Colgan et al., 2016] was developed to

only assess tauopathy; and not the amyloid cascade hypothesis. For this reason, it

is hard to make claims about differences in biomarker trends found between this

study and theirs.

Limitations of the study: As we did not have healthy rats to statistically test
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Table 7.1: Mean and standard deviation of DTI, NODDI and MAP-MRI metrics

for the three time points in each region of interest.

DTI Metrics Age

Metric ROI 10 months 15 months 24 months

FA Hippocampus 0.29±0.08 0.19±0.05 0.20±0.06

C. Callosum 0.51±0.15 0.27±0.08 0.30±0.09

C. Cortex 0.28±0.08 0.20±0.05 0.22±0.08

MD (×103) Hippocampus 0.32±0.02 0.39±0.03 0.29±0.02

C. Callosum 0.19±0.05 0.30±0.05 0.21±0.02

C. Cortex 0.31±0.04 0.49±0.06 0.23±0.04

NODDI Metrics Age

Metric ROI 10 months 15 months 24 months

ODI Hippocampus 0.39±0.11 0.48±0.10 0.55±0.11

C. Callosum 0.39±0.08 0.48±0.09 0.53±0.09

C. Cortex 0.44±0.11 0.47±0.10 0.63±0.10

NDI Hippocampus 0.46±0.03 0.45±0.04 0.54±0.05

C. Callosum 0.93±0.09 0.86±0.07 0.93±0.08

C. Cortex 0.58±0.04 0.60±0.10 0.74±0.10

IsoVF Hippocampus 0.03±0.02 0.11±0.03 0.03±0.01

C. Callosum 0.02±0.03 0.11±0.05 0.02±0.02

C. Cortex 0.08±0.05 0.28±0.06 0.02±0.03

MAP-MRI Metrics Age

Metric ROI 10 months 15 months 24 months

RTOP (×107) Hippocampus 0.68±0.08 0.45±0.10 0.76±0.14

C. Callosum 1.03±0.12 0.85±0.10 0.94±0.10

C. Cortex 1.04±0.27 0.90±0.27 1.58±0.56

RTAP (×105) Hippocampus 0.38±0.03 0.31±0.04 0.41±0.05

C. Callosum 0.93±0.09 0.86±0.07 0.93±0.08

C. Cortex 0.51±0.08 0.45±0.08 0.65±0.12

RTPP (×103) Hippocampus 0.16±0.01 0.15±0.01 0.17±0.01

C. Callosum 0.21±0.02 0.22±0.02 0.23±0.02

C. Cortex 0.18±0.01 0.17±0.01 0.21±0.02

NG Hippocampus 0.43±0.03 0.49±0.02 0.45±0.02

C. Callosum 0.51±0.02 0.55±0.01 0.52±0.01

C. Cortex 0.51±0.03 0.57±0.02 0.49±0.02

PA Hippocampus 0.27±0.09 0.2±0.07 0.15±0.06

C. Callosum 0.78±0.11 0.64±0.11 0.53±0.13

C. Cortex 0.30±0.12 0.33±0.16 0.17±0.10
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for changes with disease progression – which means there is room for improvement

– we used the youngest rat (10 months old) as a control subject to compare against

suggestive changes at later time points. Another limitation is the low number of

experimental subjects that also prevents us from statistically differentiating between

the disease stages of the transgenic Alzheimer rat model.

7.5 Conclusion

We presented a unique study on transgenic Alzheimer rats at 10, 15 and 24 months,

comparing DTI, NODDI and MAP-MRI-derived metrics, in grey and white mat-

ter areas known to manifest age-dependent cerebral amyloidosis that precedes neu-

rofibrillary tangles and apoptotic loss of neurons. We found that NODDI’s ODI and

MAP-MRI’s PA metrics uniformly changed over time, likely indicating that they are

sensitive to age-dependent neuronal demise due to amyloid accumulation. It is rel-

evant to note that both of these metrics require b-values higher than 1000 s/mm2.

Conversely, we found that DTI’s MD, NODDI’s IsoVF and MAPMRI’s RTOP,

RTAP, RTPP and NG all follow a two-step progression from 10 to 15 to 24 months

– either an increase-decrease or a decrease-increase – likely indicating sensitivity

to the neuroinflammatory response at 15 months and potentially, atrophy of the

microstructure at 24 months. While this study does not have enough subjects

to statistically differentiate between the different disease stages, it does provide

valuable insight on which biomarkers and models come closest to explaining the

biological changes in the cerebral tissue.
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Overview

We propose a novel framework to simultaneously represent the diffusion-weighted

MRI (dMRI) signal over diffusion times, gradient strengths and gradient directions.

Current frameworks such as the 3D Simple Harmonic Oscillator Reconstruction and

Estimation basis (3D-SHORE) only represent the signal over the spatial domain,

leaving the temporal dependency as a fixed parameter. However, microstructure-

focused techniques such as Axcaliber and ActiveAx provide evidence of the im-

portance of sampling the dMRI space over diffusion time. Up to now there exists

no generalized framework that simultaneously models the dependence of the dMRI

signal in space and time. We use a functional basis to fit the 3D+t spatio-temporal

dMRI signal, similarly to the 3D-SHORE basis in three dimensional ’q-space’. The

lowest order term in this expansion contains an isotropic diffusion tensor that char-

acterizes the Gaussian displacement distribution, multiplied by a negative expo-

nential. We regularize the signal fitting by minimizing the norm of the analytic

Laplacian of the basis, and validate our technique on synthetic data generated us-

ing the theoretical model proposed by Callaghan et al. We show that our method

is robust to noise and can accurately describe the restricted spatio-temporal signal

decay originating from tissue models such as cylindrical pores. From the fitting

we can then estimate the axon radius distribution parameters along any direction

using approaches similar to AxCaliber. We also apply our method on real data

from an ActiveAx acquisition. Overall, our approach allows one to represent the

complete 3D+t dMRI signal, which should prove helpful in understanding normal

and pathologic nervous tissue.

8.1 Introduction

One of the unsolved quests of diffusion-weighted imaging (DW-MRI) is the re-

construction of the complete four-dimensional ensemble average propagator (EAP)

describing the diffusion process of water molecules over three-dimensional space

and diffusion time (3D+t) in biological tissues. To the best of our knowledge, most

recent imaging techniques focus on reconstructing the three-dimensional (3D) EAP

using a fixed diffusion time. However, methods like Axcaliber [Assaf et al., 2008]

show the added value of incorporating different diffusion times when estimating

the axon diameter in white matter tissue. Thus, a 3D+t representation of the

EAP may provide means to infer diffusion contrasts sensitive to axon diameters

and other tissue characteristics. To our knowledge, no such representation has been

proposed. We therefore propose an analytic model that enables the reconstruction

of the complete 3D+t EAP.

To relate the observed diffusion signal to the underlying tissue microstructure,

we need to understand how the diffusion signal is influenced by the tissue geometry
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and properties. Starting from the concept of a single particle moving by Brownian

motion, the movements of this particle over time are obstructed by surrounding

tissue structures such as cell walls. Then considering a large group (ensemble) of

particles, the average propagation of these particles will, depending on the length of

the diffusion time, be more or less restricted by surrounding tissues. This ensemble

average propagator (EAP) is denoted as P (R, τ) with R the real displacement

vector and τ the diffusion time.

In DW-MRI the EAP is estimated by obtaining diffusion-weighted images

(DWIs). A DWI is obtained by applying two sensitizing diffusion gradients of

pulse length δ to the tissue, separated by separation time ∆. The resulting signal

is ’weighted’ by the average particle movements in the direction of the applied gra-

dient. When these gradients are considered infinitely short (δ → 0), the relation

between the measured signal S(q, τ) and the EAP P (r, τ) is given by an inverse

Fourier transform (IFT) [Stejskal and Tanner, 1965] as

P (R, τ) =

∫
R3

E(q, τ)e−2πiq · rdq with q =
γδG

2π
(8.1)

where E(q, τ) = S(q, τ)/S0 is the normalized signal attenuation measured at posi-

tion q, and S0 is the baseline image acquired without diffusion sensitization (q = 0).

We denote τ = (∆− δ/3), q = |q|, q = qu and R = Rr, where u and r are 3D unit

vectors and q, R ∈ R+. The wave vector q on the right side of Eq. (8.1) is related

to pulse length δ, nuclear gyromagnetic ratio γ and the applied diffusion gradient

vector G. Furthermore, the clinically used b-value is related to q as b = 4π2q2τ .

In accordance with the Fourier theory, measuring E(q, τ) at higher q makes one

sensitive to more precise details in P (R, τ), while measuring at longer τ makes the

recovered EAP more specific to the white matter structure.

The relation between the EAP and white matter tissue is often modeled by

representing different compartments as pores [Callaghan, 1995]. Examples of these

are parallel cylinders for aligned axon bundles and spherical pores for cell bodies

and astrocytes. Several techniques exist to infer the properties of these pores such

as their orientation or radius. Of these techniques many sample the 3D diffusion

signal exclusively in q-space with one preset diffusion time [Basser et al., 1994, Mer-

let and Deriche, 2013, Özarslan et al., 2013b]. Among the most used methods is

diffusion tensor imaging (DTI) [Basser et al., 1994]. However, DTI is limited by its

assumption that the signal decay is purely Gaussian over q and purely exponential

over τ . These assumptions cannot account for in-vivo observed phenomena such

as restriction, heterogeneity or anomalous diffusion. Approaches that overcome the

Gaussian decay assumption over q include the use of functional bases to repre-

sent the 3D EAP [Merlet and Deriche, 2013, Özarslan et al., 2013b]. These bases

reconstruct the radial and angular properties of the EAP by fitting the signal to

a linear combination of orthogonal basis functions E(q) =
∑

i ciΞi(q) with c the
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fitted coefficients. In the case of [Özarslan et al., 2013b], these basis functions are

eigenfunctions of the Fourier transform, allowing for the directly reconstruction of

the EAP as P (R) =
∑

i ciΨ(R), where Ψ = IFT(Ξ). However, these approaches are

not designed to include multiple diffusion times, and therefore cannot accurately

model the complete 3D+t signal.

The 3D EAP can be related to the mean pore (axon) sizes, e.g. mean volume,

diameter and cross-sectional area, by assuming the q-space signal was acquired at a

long diffusion time. In this case the diffusing particles have fully explored the tissue

structure and thus the shape of the EAP is indicative of the shape of the tissue.

This concept was proven in 1D-NMR [Bar-Shir et al., 2008, Özarslan et al., 2011,

Sanguinetti and Deriche, 2014] and extended to 3D with the 3D Simple Harmonic

Oscillator Reconstruction and Estimation (3D-SHORE) and Mean Apparent Prop-

agator (MAP)-MRI [Özarslan et al., 2013b] basis. However, this long diffusion time

requirement is hard to fulfill in practice as the scanner noise begins to dominate

the signal at higher diffusion times.

In contrast, in 1D+t space, Axcaliber [Assaf et al., 2008] samples both over q and

τ to estimate axon radius distribution. This allows it to overcome the long diffusion

time constraint. However, though a 3D-Axcaliber was briefly proposed [Barazany

et al., 2011], it is essentially a 1D technique that needs to fit a parametric model

to a signal that is sampled exactly perpendicular to the axon direction. While

this limits its applicability in clinical settings, this method thickly underlines the

importance of including τ in the estimation of axon diameter properties.

Our main contribution in this chapter is the generalization of the 3D-SHORE

model to include diffusion times. Our new model allows us to obtain analytic repre-

sentations of the complete 3D+t diffusion space from sparse samples of the diffusion

signal attenuation E(q, τ). In other words, our representation simultaneously repre-

sents the 3D+t signal and EAP for any interpolated diffusion time. This allows the

time-dependent computation of the orientation distribution function (ODF) pre-

viously proposed scalar measures such as the return-to-origin probability (RTOP)

and return-to-axis probability (RTAP) [Özarslan et al., 2013b].

While our new 3D+t framework opens the door to many new ideas, in this work

we consider an initial application of this framework by implementing the Axcaliber

model to be used in 3D. In our procedure we first fit our model to a sparsely sampled

synthetic 3D+t data set consisting of cylinders with Gamma distributed radii. We

then sample an Axcaliber data set from the 3D+t representation perpendicular to

the cylinder direction and fit Axcaliber to the resampled data. We compare this

method with a previously proposed version of 3D-Axcaliber [Barazany et al., 2011]

that uses the composite and hindered restricted model of diffusion (CHARMED)

model to interpolate the data points in 3D+t space.

All contributions from this chapter are publicly available on the Diffusion Imag-
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ing in Python (DiPy) toolkit [Garyfallidis et al., 2014]. http://nipy.org/dipy/.

8.2 Theory

We propose an appropriate basis with respect to the dMRI signal by studying its

theoretical shape over diffusion time τ . The effect of diffusion time on the dMRI

signal for different pore shapes has been extensively studies by Callaghan [1995].

In general, the equations for restricted signals in planar, cylindrical and spherical

compartments can be formulated as:

E(q, τ) =
∑
k

βke
−αkτ · fk(q) (8.2)

where αk and βk depend on the order of the expansion. Here fk(q) is a function

that depends on the expansion order and value of q. The exact formulations can

be found in equations (9), (13) and (17) in [Callaghan, 1995]. As Eq. (8.2) shows,

every expansion order is given as a product of two functions: A negative exponential

on τ with some order dependent scaling and a function fk(q) depending only on q.

Therefore, an appropriate basis to fit the signal described in Eq. (8.2) should be a

similar product of an exponential basis over τ and another spatial basis over q. We

provide the formulation of our basis in the next section.

8.2.1 Specific Formulation of the 3D+t Basis

In accordance with the theoretical model presented in Section 8.2 we fit the 3D+t

space with a functional basis that is both separable and orthogonal over both q

and τ . For the temporal aspect of the signal we choose to use an exponential

modulated by a Laguerre polynomial, which together form an orthogonal basis over

τ . Then, following the separability of the signal, we are free to choose any previously

proposed spatial basis to complete our 3D+t functional basis. We choose to use the

well-known 3D-SHORE basis [Özarslan et al., 2013b] as it robustly recovers both

the radial and angular features from sparse measurements [Ning et al., 2015]. Our

combined basis finally describes the 3D+t diffusion signal as

E(q, τ) =

Nmax∑
{jlm}

Omax∑
o=0

cjlmo Sjlm(q)To(τ) (8.3)

where To(τ) is our temporal basis with basis order o and Sjlm(q) is the 3D-SHORE

basis with basis orders jlm. Here Nmax and Omax are the maximum spatial and

temporal order of the bases, which can be chosen independently. We formulate the

bases themselves as

Sjlm(q, us) =
√

4πi−l(2π2u2
sq

2)l/2e−2π2u2
sq

2
L
l+1/2
j−1 (4π2u2

sq
2)Y m

l (u) (8.4)

To(τ, ut) = exp(−utτ/2)Lo(utτ)

http://nipy.org/dipy/
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where us and ut are the spatial and temporal scaling factors. Here q = qu, L
(α)
n

is a generalized Laguerre polynomial and Y m
l is the real spherical harmonics basis

[Descoteaux et al., 2007a]. Here j, l and m are the radial order, angular order and

angular moment of the 3D-SHORE basis which are related as 2j + l = N + 2 with

N ∈ {0, 2, 4 . . . Nmax} [Özarslan et al., 2013b].

Furthermore, we require data-dependent scaling factors us and ut to efficiently fit

the data. We calculate us by fitting a tensor e−2π2q2u2
s to the signal values E(q, · )

for all measured q. Similarly, we compute ut by fitting an exponential e−utτ to

E( · , τ) for all measured τ . Lastly, for a symmetric propagator in our 3D+t basis

(as is the case in dMRI) we give the total number of estimated coefficients Ncoef as

Ncoef = (Omax + 1)(Nmax/2 + 1)(Nmax/2 + 2)(4Nmax/2 + 3). (8.5)

For notation convenience, we use a linearized indexing of the basis functions in

the rest of this chapter. We denote Ξi(q, τ, us, ut) = Sjlm(i)(q, us)To(i)(τ, ut) with

i ∈ {1 . . . Ncoef}.

8.2.2 Signal Fitting and Regularization

As the measured signal always contains noise we need to regularize the coefficient

estimation. Therefore, as our second contribution in this work, we provide the

analytic form of the Laplacian regularization of our basis.

Following Eq. (8.3), we fit our basis using regularized least squares by first

constructing a design matrix Q ∈ RNdata×Ncoef with Qik = Ξk(qi, τi, us, ut). We

then fit the signal as

c = argminc‖y−Qc‖2 + λU(c) (8.6)

where y is the measured signal, c are the fitted coefficients and λ is the weight for

our Laplacian regularization U(c). We define U(c) as

U(c) =

∫
R
‖∇2Ec(q, τ)‖2dqdτ (8.7)

with ∇2Ec(q, τ) =
∑

i ci∇2Ξi(q, τ, us, ut) the Laplacian of the reconstructed signal.

U(c) can be rewritten in quadratic form as

Uik =

∫
R
∇2Ξi(q, τ, us, ut) · ∇2Ξk(q, τ, us, ut)dqdτ (8.8)

where the subscript ik indicates the ikth position in the regularization matrix. We

use the orthogonality of the basis functions to compute the values of the regu-

larization matrix to a closed form depending only on the basis orders and scale
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factors. For brevity here we give the formulation of U in the Appendix A. We

finally estimate the coefficients using regularized least squares

c = (QTQ + λU)−1QTy. (8.9)

We find the weight λ through generalized cross-validation (GCV) [Craven and

Wahba, 1978]. We fit our model on both synthetic data generated using the theo-

retical signal model and real data. We describe the theoretical signal model in more

detail in the next section.

8.2.3 Synthetic Data Generation and Axcaliber Model

To validate our method we generate synthetic data using the Callaghan model

[Callaghan, 1995]. In the case of a cylindrical (axonal) compartment this model

simulates the restricted component perpendicular to the cylinder walls as:

Er(q, τ) =
∑
k

4 exp(−β2
0kDτ/a

2)×

(
(2πqa)J

′
0(2πqa)

)2

(
(2πqa)2 − β2

0k

)2
+
∑
nk

8 exp(−β2
nkDτ/a

2)×
β2
nk(

β2
nk − n2

) ×
(

(2πqa)J
′
n(2πqa)

)2

(
(2πqa)2 − β2

nk

)2
(8.10)

where J
′
n are the derivatives of the nth-order Bessel function, βnk are the arguments

that result in zero-crossings and the cylinders are of radius a. As Eq. (8.10) models

diffusion for a single fiber population, this expression is extended as in Axcaliber to

include contributions from a Gamma distribution of fiber diameters [Assaf et al.,

2008]. In fact, Eq. (8.10) is exactly the model that is fitted to the 1D+t signal in

Axcaliber. Following Eq. (3) in [Assaf et al., 2004] we complete the model for a

cylindrical compartment by adding a free diffusion component as

E(q, τ) = Er(q⊥, τ) ·Efree(q‖, τ). (8.11)

where q‖ = 〈q, f 〉 with 〈 · 〉 the inner product and f the orientation of the cylinder.

Using the free water diffusivity D = 3 · 10−9m/s2, the parallel compartment is given

as

Efree(q‖, τ) = e−4π2q2Dτ . (8.12)

8.3 Experiments

In this section we first validate our method using synthetic data generated using

the theoretical Callaghan model [Callaghan, 1995]. We then apply our method on

real data acquired for ActiveAx [Alexander et al., 2010].
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(a) Gamma Distributions (b) Signal Optic Nerve (c) Signal Sciatic Nerve

Figure 8.1: Signals generated using the Callaghan model.

8.3.1 Synthetic Data Experiments

Using the theoretical model outlined in Section 8.2.3 we generate two axon popula-

tions with Gamma distributed radii. We choose the shape and scale parameters of

the Gamma distribution similar to the optic nerve and sciatic nerve distributions

presented in the Axcaliber paper [Assaf et al., 2008]. We show the shapes of the

Gamma distributions and corresponding restricted signal attenuations in Figure

8.1.

We sample Eq. (8.11) in q-points distributed according to [Caruyer et al.,

2013]. For every diffusion time τ we sample different q-space shells at q =

{0, 2, 5, 10, 30, 50, 70}mm−1. Each shell is sampled with {3, 10, 10, 10, 20, 20, 20}
samples, respectively. This acquisition is repeated for every diffusion time τ =

{10, 20, 40, 60}ms, leading to a total of 372 samples. We compute this data for

both Gamma distributions for the signal fitting and Axcaliber experiments in the

next sections.

8.3.2 Signal fitting and Effect of Regularization

In our first experiment we test how many spatial or temporal basis functions we

need to fit a 3D+t diffusion signal. We choose to study in the case of restricted

diffusion in a cylindrical compartment, since this is a good model for white matter

tissue in highly organized areas. We generate the noiseless signal as described in

Section 8.2.3 with the sampling scheme we described in Section 8.3.1. We then

fit the signal with increasing maximum order for the spatial and temporal basis.

We then compute the mean squared error (MSE) of the fitted signal compared to

the ground truth. We show a heat map of the results in Figure 8.2a where we see

that the signal fitting in this specific signal model only improves very little after a

spatial order of 6 and a temporal order of 5. Using Eq. (8.5) this means we fit 300

coefficients to accurately represent the 3D+t signal.

Using these settings for the maximum radial and temporal order we then study

the effectiveness of our proposed Laplacian regularization when we (1) remove sam-
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(a) Different Basis Orders (b) Reducing Samples (c) Increasing Noise

Figure 8.2: (a) A heat map representing the mean squared error (MSE) of the basis

fitting for different maximum radial and temporal orders. (b) The effect of reducing

the number of samples on the MSE. (c) The effect of increasing the noise in the

data on the MSE.

ples or (2) add noise to the data. In (1) we add a typical amount of noise to the

data such that SNR=20 and remove samples from the data in steps of 12 samples.

We then compare the MSE of the fitted signal with the noiseless whole signal of

372 samples. We present the results in Figure 8.2b, where you can see that the

regularized 3D+t basis (in red) has significantly lower MSE than the unregularized

basis. You can also see that the MSE error starts to increase when the number

of samples is reduced below 300. In (2) we set the number of samples to 300 and

increase the noise from SNR=5 to SNR=50. In Figure 8.2c you can again see that

our regularized basis has lower MSE values.

8.3.3 Three Dimensional Axcaliber from 3D+t

With this experiment we explore an application of our 3D+t basis by including

Axcaliber [Assaf et al., 2008]. Axcaliber is a method that can estimate the parame-

ters of the Gamma distribution of the fiber radii by fitting the Gamma distributed

version of Eq. (8.10) to the signal over both q and τ . However, it requires that

the data is sampled exactly perpendicular to the axon population, which makes it

impractical for clinical use.

An advantage of our model is that we can apply Axcaliber in any direction

by first fitting the entire 3D+t signal with Eq. (8.9) and then sampling the data

again perpendicular to the observed fiber direction. We compare our approach

with a similar proposal [Barazany et al., 2011] previously made using the composite

and hindered restricted model of diffusion (CHARMED) model [Assaf and Basser,

2005]. In contrast to our method, which assumes no a-priori shape on the EAP, the

CHARMED model fits specific hindered and restricted compartments to the signal

[Assaf et al., 2004].

In this experiment we simulate 300 signal samples at SNR=20 using Eq. (8.11)

for both Gamma distributions presented in Figure 8.1. In this experiment we,
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(a) α optic nerve (b) β optic nerve (c) 〈R〉 optic nerve (µm)

(d) α sciatic nerve (e) β sciatic nerve (f) 〈R〉 sciatic nerve (µm)

Figure 8.3: The recovered shape α, scale β and average axon radius 〈R〉 for the

optic nerve (top row) and sciatic nerve (bottom row) data sets. The green line is

the ground truth.

without loss of generality, fix the axon direction along the z-axis and only consider

the intra-axonal signal (i.e. no hindered compartment). We then fit our model with

a radial order of 6 and temporal order of 5. We fit CHARMED using 3 restricted

compartments. Then, as the signal in a cylindrical compartment should be axially

symmetric, we sample 10 different directions on the plane perpendicular to z and

average the signals to reduce the effects of noise. The Axcaliber data set consists

of q = {0, 10, 20, 30, 40, 50, 60, 70} at τ = {10, 20, 30, 40, 50, 60}, resulting in 42

samples. We repeat the experiment 100 times.

Figure 8.3 shows box plots of the recovered shape and scale parameters α

and β from the optic and sciatic nerve data sets for both our 3D+t method and

CHARMED. The blue box contains values that are within the first and third quar-

tile of the obtained values, while the horizontal line in the middle is the median

value. On the right we also show the estimated mean radius, which can be directly

estimated from the gamma distribution as 〈R〉 = αβ. The green line represents

the ground truth. It can be seen that the ground truth is always within the first

and third quartile for our method, while CHARMED typically overestimates β and

underestimates α.

8.3.4 Axon Diameter from Monkey Data

As a real data experiment we apply our model to an ActiveAx data set [Alexan-

der et al., 2010, Dyrby et al., 2011] of an ex-vivo monkey brain. The data
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set consists of four shells with 93 samples each, and uses gradient strengths

G = {.14, .14, .14, .13}T/m, separation times ∆ = {35.78, 16.7, 16.7, 45.9}ms and

pulse lengths δ = {17.74, 10.15, 10.17, 7.17}ms, respectively. As you can see the

pulse lengths δ are comparable to ∆ and differ between acquisition shells, which

makes it not ideal for our method. However, it is the only data set publicly available

that has different measurements in ∆.

We use the provided mask of the corpus callosum [Alexander et al., 2010] and

fit Eq. (8.9) to the data using a radial order of 6 and a temporal order of 3. We

then use the approach in Section 8.3.3 and compute the mean axon radii. We

present these results in Figure 8.4. We can see that, while the results are somewhat

noisy, we find smaller radii near the splenium and genu (around 2-3 µm) and bigger

near the midbody (around 3-4 µm). This trend roughly follows what was found in

[Alexander et al., 2010], showing that our method obtains reasonable results even

in this data.

8.4 Discussion and Conclusions

Our main contribution in this work is a novel framework to simultaneously represent

the diffusion-weighted MRI (dMRI) signal over diffusion times, gradient strengths

and gradient directions. Our framework is based on the theoretical model of re-

stricted diffusion by Callaghan et al. [Callaghan, 1995] and uses an orthogonal

functional basis to fit the spatio-temporal diffusion signal over q-space and diffu-

sion times, which together we call 3D+t space. To the best of our knowledge, we

are the first to propose a method to represent the 3D+t space using a functional

basis. In accordance with the separability of our functional basis, we can choose

our spatial and temporal basis independently. We proposed to fit the temporal

signal using a basis of negative exponentials modulated by Laguerre polynomials,

while we chose to fit the spatial signal using the 3D-SHORE basis. One theoret-

ical limitation of this choice of basis is that it does not directly model free water

diffusion. However, the free water diffusion signal with the parameters found in

WM dMRI is well-represented by our basis, hence the theoretical limitation does

Figure 8.4: A fractional anisotropy (FA) map of the ex-vivo monkey brain (left)

and the estimated axon radii in the corpus callosum (right).
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not seem to represent a major issue in our dMRI applications. More importantly,

this formulation retains all properties of the 3D-SHORE basis, but with the added

information over diffusion time. These benefits include a time-dependent analytic

representation of the dMRI signal and diffusion propagator.

Our formulation also allows for the efficient regularization of the basis in the

form of the minimization of the Laplacian. We provide the analytic solution of

this Laplacian regularization depending only on the basis order and scaling factors,

allowing for instant computation of the regularization matrix for any combination

of basis order. We show on synthetic data that it effectively regularizes the basis

fitting.

Furthermore, we explored a possible application of our 3D+t framework by

including Axcaliber [Assaf et al., 2008]. We showed on synthetic data that by

first fitting our basis to a sparse 3D+t sampling, we can accurately interpolate an

Axcaliber data set along any direction. This allowed us to estimate the axon radius

distribution parameters despite not sampling directly perpendicular to the axon

orientation. We compared this approach with a similar proposal using CHARMED

[Assaf and Basser, 2005] and we showed that our approach is more appropriate to

fit the 3D+t signal.

In its current form our framework effectively represents the 3D+t diffusion signal

and allows us to freely interchange the spatial basis to any other basis that more

readily fits anisotropic data. For instance, the MAP-MRI basis [Özarslan et al.,

2013b] could be used, which can also be extended to include the analytic Laplacian

regularization. Therefore, the framework presented in this work is meant as an

original and important step towards complete 3D+t imaging in diffusion MRI, and

provides great potential to better understand the diffusion signal in normal and

pathologic nervous tissue.

Appendix A: Analytic Laplacian Regularization

Here we compute the analytic form of the Laplacian regularization matrix in Eq.

(8.8). As our basis is separable in q and τ , we can separate the Laplacian over our

basis function Ξi in a the spatial and temporal Laplacian as

∇2Ξi(q, τ, us, ut) =
(
∇2

qSi(q, us)
)
Ti(τ, ut) + Si(q, us)

(
∇2
τTi(τ, ut)

)
(8.13)
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with ∇2
q and ∇2

τ the Laplacian to either q or τ . We then rewrite Eq. (8.8) as

Uik =

UI
ik︷ ︸︸ ︷∫

R
(∇2

qSi)(∇2
qSk)dq

∫
R
TiTkdτ +

UIIa
ik︷ ︸︸ ︷∫

R
(∇2

qSi)Skdq

∫
R
Ti(∇2

τTk)dτ

+

∫
R
Si(∇2

qSk)dq

∫
R

(∇2
τTi)Tkdτ︸ ︷︷ ︸

UIIb
ik

+

∫
R
SiSkdq

∫
R

(∇2
τTi)(∇2

τTk)dτ︸ ︷︷ ︸
UIII
ik

where UIIa
ik = UIIb

ki . In all cases the integrals over q and τ can be calculated to

a closed form using the orthogonality of the spherical harmonics, and Laguerre

polynomials with respect to weighting function e−x. The closed form of UI is

UI
ik =

us
ut
δ
o(i)
o(k)δ

l(i)
l(k)δ

m(i)
m(k)



δ(j(i),j(k)+2)
22−lπ2Γ( 5

2
+j(k)+l)

Γ(j(k))

δ(j(i),j(k)+1)
22−lπ2(−3+4j(i)+2l)Γ( 3

2
+j(k)+l)

Γ(j(k))

δ(j(i),j(k))
2−lπ2(3+24j(i)2+4(−2+l)l+12j(i)(−1+2l))Γ( 1

2
+j(i)+l)

Γ(j(i))

δ(j(i),j(k)−1)
22−lπ2(−3+4j(k)+2l)Γ( 3

2
+j(i)+l)

Γ(j(i))

δ(j(i),j(k)−2)
22−lπ2Γ( 5

2
+j(i)+l)

Γ(j(i))

where δ is the Kronecker delta. Similarly computing UII
ik = UIIa

ik + UIIb
ki gives

UII
ik =

ut
us
δ
l(i)
l(k)δ

m(i)
m(k)


δ(j(i),j(k)+1)

2−lΓ( 3
2

+j(k)+l)

Γ(j(k))

δ(j(i),j(k))
2−(l+1)(1−4j(i)−2l)Γ( 1

2
+j(i)+l)

Γ(j(i))

δ(j(i),j(k)−1)
2−lΓ( 3

2
+j(i)+l)

Γ(j(i))

×
(

1

2
δ
o(k)
o(i) + (1− δo(k)

o(i) ) · |o(i)− o(k)|
)

where | · | is the absolute sign. We now denote the operator Mx2
x1

= min(x1, x2) for

the minimal value of x1, x2 and Hx the Heaviside step function with Hx = 1 iffx ≥ 0.

The last term UIII
ik evaluates to

UIII
ik =

u3
t

u3
s

δ
j(i)
j(k)δ

l(i)
l(k)δ

m(i)
m(k)

2−(l+2)Γ(j(i) + l + 1/2)

π2Γ(j)
×

(
1

4
|o(i)− o(k)|+ 1

16
δ
o(k)
o(i) +M

o(k)
o(i)

+
∑M

o(k)
o(i)

+1

p=1 (o(i)− p)(o(k)− p)H
M
o(k)
o(i)
−p +Ho(i)−1Ho(k)−1

(
o(i) + o(k)− 2

+
∑M

o(k)−2
o(i)−1

p=0 p+
∑M

o(k)−1
o(i)−2

p=0 p+M
o(k)−1
o(i)−1 (|o(i)− o(k)| − 1)H(|o(i)−o(k)|−1)

))
We finally compute the complete 3D+t Laplacian regularization matrix as

U = UI + UII + UIII (8.14)
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Overview

Effective representation of the four-dimensional diffusion MRI signal – varying over

three-dimensional q-space and diffusion time τ – is a sought-after and still unsolved

challenge in diffusion MRI (dMRI). We propose a functional basis approach that

is specifically designed to represent the dMRI signal in this qτ -space, that we call

qτ -dMRI. qτ -dMRI can be seen as a time-dependent realization of q-space imaging

by Paul Callaghan and colleagues. We regularize the fitting of qτ -dMRI by im-

posing both signal smoothness and sparsity. This drastically reduces the number

of diffusion-weighted images (DWIs) we need to represent the qτ -space. As the

main contribution, qτ -dMRI provides the framework for estimating time-dependent

q-space indices (qτ -indices), providing new means for studying diffusion in nervous

tissue. We validate our method on both in-silico generated data using Monte-Carlo

simulations and an in-vivo test-retest study of two C57Bl6 wild-type mice, where

we found excellent reproducibility of estimated qτ -index values and trends. In the

hopes of opening up new τ -dependent venues of studying nervous tissues, qτ -dMRI

is the first of its kind in being specifically designed to provide open interpretation

of the qτ -diffusion signal.

9.1 Introduction

Probing brain tissue structure with time-dependent properties of the diffusion MRI

(dMRI) signal is gaining momentum in the dMRI community [see e.g. Novikov et al.,

2014, De Santis et al., 2016, Ning et al., 2016, Fieremans et al., 2016]. Yet, effectively

representing the four-dimensional dMRI signal – varying over three-dimensional q-

space and diffusion time – is still a sought-after and unsolved challenge. To specif-

ically represent this qτ -space, which has been coined by Novikov et al. [2016], we

propose a functional basis approach that we call qτ -dMRI. As the main contri-

bution, qτ -dMRI provides the framework for estimating time-dependent q-space

indices (qτ -indices), providing a new means for studying diffusion in nervous tissue.

Diffusion time dependence (τ -dependence) in brain MRI was initially studied to

find proof of diffusion restriction in tissue [Moonen et al., 1991, Le Bihan, 1995, As-

saf et al., 1998]. In these studies, the existence of restricting tissue boundaries would

be proved by a change in apparent diffusion coefficient over time1. While the concept

of diffusion restriction inside nervous tissue is now established [Beaulieu, 2002], the

interpretation and significance of τ -dependence is still under debate. Earlier works

use τ -dependent models of perpendicular, intra-axonal diffusion to separate intra-

from extra-axonal signal contributions [Assaf et al., 2004, 2008]. Though, these

studies note that the intra-axonal diffusion signal is probably already restricted for

1Interestingly, the first study actually found no evidence of diffusion restriction.
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the shortest possible diffusion times for Pulsed-Gradient Spin-Echo (PGSE) proto-

cols (10-20ms) inside realistically sized axons (< 2µm) [Aboitiz et al., 1992]. If this

is true, models for intra-axonal τ -dependence cannot account for the observed τ -

dependence at longer diffusion times [Fieremans et al., 2016]. Recent studies argue

that perpendicular τ -dependence originates from the extra-axonal space, where dif-

fusion is restricted due to axon packing [Novikov et al., 2014, Burcaw et al., 2015].

So far, these works only studied these features at clinical gradient strengths us-

ing τ -dependent diffusion coefficients. To study the τ -dependence of non-Gaussian

diffusion at higher gradient strengths, a framework beyond the diffusion tensor is

required.

To characterize the diffusion signal at higher gradient strengths for a fixed dif-

fusion time, q-space techniques can reconstruct the Ensemble Average Propagator

(EAP) by assuming the narrow pulse approximation (δ → 0). In doing so, these

methods are able to conveniently interpret the signal as the EAP through a Fourier

transform [Tanner and Stejskal, 1968, Callaghan, 1991]. The EAP describes the

probability density P (R; τ) that a particle experiences a displacement R for a

given τ . As τ increases, the likelihood that particles travel further increases in

unrestricted neuronal tissues [Cohen and Assaf, 2002]. In 1D-NMR, q-space in-

dices such as the Return-to-Origin Probability (RTOP) [Hürlimann et al., 1995]

have a microstructural interpretation quantifying the dynamic connectivity of pore

spaces [Mitra et al., 1995]. Furthermore, the τ -dependence of RTOP and the Mean

Squared Displacement (MSD) has been marked as a possible feature for microscopic

tissue alterations [Özarslan et al., 2006, 2012].

The estimation of q-space indices has been generalized to two- and three-

dimensional q-space in q-ball imaging [Tuch, 2004], diffusion spectrum MRI [Wedeen

et al., 2005] and multi-shell hybrid diffusion imaging [Wu et al., 2008]. However, nu-

merical implementations of these techniques to reconstruct the EAP require dense

acquisition schemes, making them impractical when scanning time is limited. The

introduction of functional bases to efficiently represent the dMRI signal partly

overcame this restriction [see e.g. Descoteaux et al., 2007a, Assemlal et al., 2009,

Özarslan et al., 2013b]. That is, the fitting of these representations can be regu-

larized using properties such as smoothness, sparsity, and positivity of the EAP.

This allows for more accurate EAP and tissue property recovery using fewer sam-

ples, resulting in faster acquisition schemes. Despite these advances, the influence

of τ -dependence in EAP recovery and q-space index estimation is overlooked. To

include τ -dependence, we propose a method that generalizes EAP reconstruction

over varying diffusion times, that we call qτ -dMRI.

qτ -dMRI is a functional basis approach that represents the 4D qτ -space using

the cross-product of two separable functional bases – one over 3D q-space and an-

other over 1D diffusion time. This formulation allows us to stand on the shoulders
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of giants; allowing us to freely incorporate any previously proposed functional basis

approach and regularization technique within our own framework. As our q-space

basis, we choose the Mean Apparent Propagator (MAP) Fourier basis for its effi-

cient signal representation [Ning et al., 2015] and wide range of closed-form q-space

indices [Özarslan et al., 2013b, Fick et al., 2016d]. Our temporal basis is novel and

is designed to effectively represent both free and restricted diffusion over τ .

When representing the qτ -space, it is important to be robust to acquisition noise

and do so efficiently using few measurements. As a solution, we regularize the fitting

of qτ -dMRI by imposing both signal smoothness and signal sparsity. Our arguments

for including each of these regularization strategies in our framework are the fol-

lowing: First, imposing signal smoothness using the Laplacian of the reconstructed

signal has shown to be effective in dMRI reconstruction [Descoteaux et al., 2007a,

Caruyer and Deriche, 2012, Fick et al., 2016d]. Its benefits within our framework

are threefold: it reducing oscillations, it provides smooth inter- and extrapolation

between measured {q, τ} points; it promotes positive EAP reconstruction, though

not explicitly; and estimation of the Laplacian of the reconstructed signal in qτ -

dMRI is analytic. Secondly, imposing signal sparsity in the parameter space of a

functional basis has been previously introduced as continuous compressed sensing

(CS) in dMRI reconstruction [e.g. Michailovich and Rathi, 2008, Merlet and De-

riche, 2013, Rathi et al., 2014, Paquette et al., 2015]. A continuous CS framework

is advantageous because it is not acquisition dependent and enables data inter- and

extrapolation. In particular, Merlet and Deriche [2013] point out the efficiency of

using the isotropic equivalent of our spatial MAP basis in continuous CS, which

enabled them to accurately reconstruct the 3D-EAP with as little as 32 samples.

Our double regularization strategy can be seen as modified Elastic-Net regulariza-

tion [Zou and Hastie, 2005] along the same lines as GraphNet [Grosenick et al.,

2013], where the standard `2-norm penalty term has been replaced with the norm

of the Laplacian of the reconstructed signal. As they show in their work, this modi-

fication explicitly imposes structure on the estimated model parameters, while also

enforcing a sparse representation.

Once the qτ -dMRI coefficients are estimated, our approach simultaneously rep-

resents the qτ -space signal attenuation and EAP. This allows for the time-dependent

estimation of any previously proposed q-space indices, which we call qτ -indices for

brevity. Contrary to previous studies that could only explore qτ -indices in one pre-

determined direction [Özarslan et al., 2006, 2012], qτ -dMRI allows for the estimation

of qτ -indices along any direction, greatly enhancing their practical applicability.

We validate our method on both in-silico generated data using Monte-Carlo

simulations in Camino [Cook et al., 2006] and an in-vivo test-retest study of two

C57Bl6 wild-type mice. On the Camino data, we illustrate the robustness of qτ -

dMRI in representing the qτ -signal attenuation in the presence of noise and severely
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Figure 9.1: Graphical Abstract. On the left we show a schematic representation

of a four-dimensional qτ -acquisition, varying over gradient strength, directions and

diffusion time. Our qτ -dMRI approach represents the qτ -diffusion signal using a

functional Fourier basis. This allows for the analytic reconstruction of the time

dependent Ensemble Average Propagator (EAP). From the EAP, we can then es-

timate time-dependent q-space indices, that we call qτ -indices. We do an in-vivo

test-retest study in the corpus callosum of two mice, showing excellent reproducibil-

ity of estimated qτ -indices.

subsampled data. On the in-vivo data, we demonstrate the reproducibility of qτ -

indices in the corpus callosum, where we show that time-dependence of qτ -indices

corresponds with expected biological properties. We present the graphical abstract

of our work in Figure 9.1.

9.2 Theory

In this section, we first provide the biological relevance of studying diffusion time

in biological tissues in Section 9.2.1. We then explain the relation between the

measured qτ -diffusion signal and the four-dimensional EAP in Section 9.2.2. We

then describe the properties and implementation of our qτ -dMRI methodology in

Section 9.2.3.

9.2.1 Biological Relevance of Diffusion Time

2In a fluid, water particles follow random paths according to Brownian motion [Ein-

stein, 1956]. When we consider an ensemble of these particles in a volume, we can

describe their average probability density P (R, τ) that a particle will experience a

displacement R ∈ R3 during diffusion time τ ∈ R+. This quantity is often referred

2Notice that this subsection is very similar to that in Section 3.2.1, but we chose to have it here

as well to keep this Chapter self-contained.
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Free Water Gray Matter Coherent Bundle Crossing Bundles

τ1
τ2

τ3

Figure 9.2: Schematic representations of different tissue types with their corre-

sponding P (R, τ) isocontours for different diffusion times τ1 < τ2 < τ3. Longer τ

increases the likelihood that particles travel further, indicated by the smaller blue

isocontour for τ1 to the largest red isocontour for τ3. The shape of the isocontour

depends on the structure of the surrounding tissue. Diffusion is considered free in

free water, hindered in gray matter and restricted in white matter bundles. Image

inspired by Alexander [2006].

to as the ensemble average propagator (EAP) [Kärger and Heink, 1983]. In a free

solution, the EAP can be described by a Gaussian distribution as

P (R; τ) =
1

(4πDτ)3/2
e−
‖R‖2
4Dτ (9.1)

whereD is the diffusion coefficient. Eq. (9.1) shows that the likelihood that particles

travel further increases when either D or τ increases. While keeping D constant,

this concept can be made clear using isocontours such that P (R, τ) = c with c > 0.

Figure 9.2 shows the same isocontour for diffusion times τ1 < τ2 < τ3 in four

schematic representations of different tissue types. As can be seen by the growth of

the isocontours, using longer τ increases the likelihood that particles travel further.

The shape of the isocontour depends on the structure of the surrounding tissue.

From left to right, in free water, where Eq. (9.1) is a good approximation, particles

are unrestricted and travel furthest with isotropic, Gaussian probability. Next, at a

course diffusion scale, gray matter tissue can often be seen as generally unorganized

and hinders diffusion equally in all directions [Jones, 2010]. For this reason, these

tissues also produce isotropic contours, but smaller than those in free water. In axon

bundles, here illustrated as gray lines, axons are mostly aligned with the bundle

axis. Particle movement is restricted perpendicular to this direction and is relatively

free along it, causing anisotropic isocontours [Le Bihan and Breton, 1985, Taylor

and Bushell, 1985, Merboldt et al., 1985]. Finally, in areas where two bundles cross

there is a mix between the isocontours of each bundle.

Note that we intentionally drew the isocontours for τ1 more isotropic than those

of τ3 in the right two white matter tissues. For shorter τ , particles have not had

much time to interact with surrounding tissue, resulting in a similar probability
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that a particle travels in any direction. The isocontours for very short τ will there-

fore always be isotropic. For longer τ , particles have had more time to interact

with the tissue, either traveling far along a relatively unrestricted direction or stay-

ing close to its origin along a restricted direction, resulting in more anisotropic

profiles [Tanner, 1978]. Describing this tissue with a 3D diffusion tensor D, this

means that the perpendicular diffusivity D⊥ becomes τ -dependent and decreases

as τ increases [Cohen and Assaf, 2002]. Different tissue types will induce different

τ -dependence of the EAP [Özarslan et al., 2006, 2012]. In the next sections, we will

show how we can use qτ -dMRI to estimate P (R; τ) and explore the τ -dependence

of the four-dimensional EAP.

9.2.2 The Four-Dimensional Ensemble Average Propagator

In dMRI, the EAP is estimated from a set of diffusion-weighted images (DWIs). A

DWI is obtained by applying two sensitizing diffusion gradients of pulse length δ to

the tissue, separated by separation time ∆. The resulting signal is ‘weighted’ by the

average particle movements along the applied gradient direction. Using the narrow

pulse approximation, i.e., assuming that no diffusion takes place during the gradient

pulse (δ → 0), the relation between the measured signal attenuation E(q, τ) and

the EAP P (r; τ) is given by a Fourier transform [Stejskal, 1965]:

E(q, τ) =

∫
R3

P (R; τ)e−2πiq ·RdR with q =
γδG

2π
and τ = ∆− δ/3, (9.2)

where E(q, τ) = S(q, τ)/S0 with S(q, τ) the measured signal at diffusion encoding

position q and diffusion time τ and S0 is the baseline image acquired without

diffusion sensitization (q = 0). We denote q = |q|, q = qu and R = Rr, where u

and r are 3D unit vectors and q, R ∈ R+. The wave vector q on the right side of

Eq. (9.2) is related to pulse length δ, nuclear gyromagnetic ratio γ and the applied

diffusion gradient vector G. From these parameters the b-value can be written as

b = G2δ2γ2(∆ − δ/3) s/mm2 [Le Bihan et al., 1986]. Note that we write P (R; τ)

with a colon “;” as it describes a probability density over R given τ .

The four-dimensional EAP has boundary conditions with respect to {q, τ}:

• {q ∈ R3, τ = 0}: When τ = 0 the spins have no time to diffuse and the EAP

is a spike function at the origin, i.e, P (R; τ = 0) = δ(R) with δ only here

the Dirac delta function. Following Eq. (9.2), the signal attenuation will not

attenuate for any value of q, i.e., E(q, τ = 0) = 1.

• {q ∈ R3, τ → ∞}: In the limit of infinite diffusion time only signal contri-

butions from restricted compartments remain [Callaghan, 1995, Price, 1997].

In this case, given infinite gradient strength and some assumptions on tissue

composition, q-space indices such as the Return-To-Axis Probability (RTAP)
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are related to the mean apparent axon diameter [Özarslan et al., 2013b, Fick

et al., 2016d].

• {q = 0, τ ∈ R+}: When there is no diffusion sensitization then E(q = 0, τ) =

1. With the Fourier relationship in Eq. (9.2), this point also corresponds to

the zeroth harmonic of the EAP, which as a probability density integrates to

one.

• {q→∞, τ ∈ R+}: In the limit of infinitely strong gradients even an infinites-

imally small spin movement will attenuate the signal completely. This means

that only trapped, non-moving water particles still contribute to the signal at-

tenuation. In ex-vivo tissues, a significant signal contribution of trapped water

has been found [Alexander et al., 2010], meaning limq→∞E(q, τ) = ftrapped

with ftrapped the trapped water volume fraction. In in-vivo tissues, this con-

tribution has been found to be negligible [Veraart et al., 2016], meaning

limq→∞E(q, τ) = 0.

9.2.3 qτ-Signal Representation

In dMRI, functional basis approaches have been used to efficiently represent the

diffusion signal with little assumptions on its shape. Following this methodology,

we represent the measured qτ -signal attenuation E(q, τ) in terms of a continuous

functional basis Ê(q, τ ; c), where the signal is now represented in terms of coef-

ficients c ∈ RNc with Nc the number of coefficients. An effective representation

Ê(q, τ ; c) should be able to

1. closely approximate the measured qτ -signal attenuation,

2. smoothly interpolate between and outside the measured {q, τ} points,

3. have a sparse representation in c,

4. and be able to reconstruct the EAP from the fitted signal.

Requirements 1–3 are described in Eq. (9.3) such that

argminc

(1) Data Fidelity︷ ︸︸ ︷∫∫ [
E(q, τ)− Ê(q, τ ; c)

]2
dqdτ +

(2) Smoothness︷ ︸︸ ︷
λ

∫∫ [
∇2Ê(q, τ ; c)

]2
dqdτ +

(3) Sparsity︷ ︸︸ ︷
α‖c‖1

subject to E(0, τ ; c) = 1, E(q, 0; c) = 1 (9.3)

with λ and α regularization weights. Note that the integrals over q have limits

[−∞,∞ ] and those over τ have limits [0,∞]. As stated in Section 9.2.2, the bound-

ary constraints are important to respect the Fourier relationship between the fitted

signal attenuation and the EAP.
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The Fourier relationship, shown above as the fourth condition, follows from our

choice of a functional basis that is also a Fourier basis. More formally, by choosing

a Fourier basis, the following condition is met:

P̂ (R; τ, c) = IFTq

[
Ê(q, τ ; c)

]
. (9.4)

This means that once the coefficients c are fitted we immediately also obtain the

EAP representation.

Functional Basis Signal Representation

We represent the qτ -signal using an orthogonal basis that allows for the implemen-

tation of all our previously stated requirements. As we assume the narrow pulse

approximation (δ → 0), we follow Callaghan et al.’s description of time-dependent

diffusion in pores and assume separability in the dependence of the dMRI signal to

q and τ [Callaghan, 1995]. Following this hypothesis, we can independently choose

any representation for these two spaces. We represent the combined space Ê(q, τ ; c)

using the cross-product between the spatial basis Φ(q) and temporal basis T (τ) as

Ê(q, τ ; c) =

Nq∑
i

Nτ∑
k

cik Φi(q)Tk(τ), (9.5)

where Nq and Nτ are the maximum expansion orders of each basis and cik weights

the contribution of the ikth basis function to Ê(q, τ ; c).

A plethora of functional bases to represent q have been proposed, [e.g. Merlet

and Deriche, 2013, Rathi et al., 2014, Özarslan et al., 2013b, Hosseinbor et al.,

2013]. Of these bases, we use the Mean Apparent Propagator (MAP) basis [Özarslan

et al., 2013b] as it neatly fulfills all four previously stated requirements; (1) being an

orthogonal basis, it can accurately represent any signal over q using few coefficients;

(2) it allows to impose smoothness using analytic Laplacian regularization [Fick

et al., 2016d]; (3) the isotropic MAP implementation was previously used to obtain

sparse signal representation [Merlet and Deriche, 2013] and (4) MAP is a Fourier

basis.

MAP’s signal basis is a product of three orthogonal Simple Harmonic Oscillator-

based Reconstruction and Estimation (SHORE) functions φn(u) [Özarslan et al.,

2011]:

ΦN(i)(q,A) = φn1(qx, ux)φn2(qy, uy)φn3(qz, uz)

with φn(q, u) =
i−n√
2nn!

e−2π2q2u2
Hn(2πuq)

(9.6)

with its Fourier transform, the EAP basis as

ΨN(i)(R,A) = ψn1(Rx, ux)ψn2(Ry, uy)ψn3(Rz, uz)

with ψn(R, u) =
1√

2n+1πn!u
e−R

2/(2u2)Hn(R/u)
(9.7)
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Figure 9.3: Illustration of the spatial basis functions (left) and temporal basis func-

tions (right). In both cases only the zeroth basis function don’t oscillate, when the

φ0(q) is purely Gaussian and T0(τ) is a pure negative exponential. Higher order

basis functions oscillate faster and faster. Truncating the basis at a particular order

therefore puts a limit on the maximum frequency that can be captured by the basis.

where H is a physicist’s Hermite polynomial of order n, u is a data-dependent scale

factor, Φ = FT (Ψ) and φ = FT (ψ). As in MAP [Özarslan et al., 2013b], before

fitting, the data is rotated such that the DTI eigenvectors are aligned with the coor-

dinate axis and we can use the data-dependent scaling matrix A = Diag(u2
x, u

2
y, u

2
z)

to scale the MAP basis functions according to the anisotropy of the data. As we

show on the left of Figure 9.3, the zeroth order is a purely Gaussian function while

higher orders use the oscillating Hermite polynomials to represent non-Gaussian

aspects of the signal. For a given radial order Nrad the number of coefficients is

Nq = (Nrad + 2)(Nrad + 4)(2Nrad + 3)/24.

As limiting cases, the τ -dependence of the diffusion signal is exponential for pure

Gaussian diffusion and constant for diffusion in restricted geometries [Callaghan,

1995]. To represent τ we therefore choose a product of the negative exponential

and a Laguerre polynomial Lp, which together form an orthogonal basis over τ

Tp(τ, ut) = exp(−utτ/2)Lp(utτ) (9.8)

with basis order p and temporal scaling factor ut. As we show in the right of

Figure 9.3, the zeroth order is a pure exponential function and higher orders use

the oscillating Laguerre polynomials to represent non-exponential aspects of the

signal.

For the rest of this work we will linearize the ordering of our qτ -basis such that

we use one basis index i with notation

Ê(q, τ ; c) =

Nc∑
i

ci Ξi(q, τ,A, ut) =

Nc∑
i

ci ΦN(i)(q,A)Tp(i)(τ, ut) (9.9)

where the total number of fitted coefficients is Nc = (Nτ + 1)(Nrad + 2)(Nrad +

4)(2Nrad + 3)/24.



9.2. THEORY 199

The qτ -EAP can be reconstructed using MAP’s Fourier properties [Özarslan

et al., 2013b]. The Fourier transform only concerns the q-space, so the EAP is

found simply by switching Φ(q,A) in Eq. (9.9) by its Fourier transform Ψ(R,A)

in Eq. (9.7).

Analytic Laplacian Regularization

We impose smoothness in the qτ -signal reconstruction by using the squared norm

of the Laplacian of the reconstructed signal. We define the Smoothness term in Eq.

(9.3) as Laplacian functional U(c) as

U(c) =

∫∫ [
∇2Ê(q, τ ; c)

]2
dqdτ (9.10)

where, due to our choice of basis, the Laplacian of the reconstructed signal can

be estimated as ∇2Ê(q, τ ; c) =
∑

i ci∇2Ξi(q, τ,A, ut). Eq. (9.10) can be further

rewritted in quadratic form as U(c) = cTUc with elements

Uik =

∫∫
∇2Ξi(q, τ,A, ut) · ∇2Ξk(q, τ,A, ut)dq dτ (9.11)

where the subscript ik indicates the ikth position in the regularization matrix. We

use the orthogonality of the basis functions (standard inner product on [0,∞]) to

compute the values of the regularization matrix to a closed form depending only on

the basis orders and scale factors. For brevity here, we provide the formulation of

U in 9.B.

Coefficient Estimation from qτ-Signal

We represent the qτ -signal E(q, τ) in terms of a sparse coefficient vector c as y =

Qc + ε where y ∈ RNy are the signal values with Ny the number of samples,

Q ∈ RNy×Nc the observation matrix with elements Qij = Ξj(qi, τi,A, ut) and

ε ∈ RNy the acquisition noise. We frame the numerical implementation of our

approach in the same way as we did continuously in Eq. (9.3):

argminc

(1) Data Fidelity︷ ︸︸ ︷
||y−Qc||22 +

(2) Smoothness︷ ︸︸ ︷
λ||cTUc||22 +

(3) Sparsity︷ ︸︸ ︷
α||c||1

subject to Q{q=0,τ∈R+}c = 1

(9.12)

where we described the Smoothness term in Section 9.2.3. The Sparsity term and

constraints are imposed by framing our problem as a convex optimization using

the open-source package CVXPY [Diamond and Boyd, 2016]. Note that we only

impose the first E(q = 0, τ ; c) constraint as this is the only one that influences qτ -

index estimation. The second E(q, τ = 0; c) constraint is irrelevant as no diffusion
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takes place when τ = 0. We find optimal values for regularization weights α and λ

using cross-validation and implemented the surrounding code infrastructure inside

the DiPy framework [Garyfallidis et al., 2014]. We provide the detailed fitting

procedure in 9.A.

9.2.4 Estimation of qτ-Indices

Once coefficients c are known, our basis allows us to freely explore, for any

diffusion time, all previously proposed scalar metrics for the three-dimensional

EAP [Özarslan et al., 2013b, Fick et al., 2016d], also known as q-space indices.

We can do this because our basis reduces to the MAP basis when the temporal

basis is evaluated for a particular diffusion time. In this work, we illustrate this

using the τ -dependent Return-To-Origin Probability (RTOP) [Hürlimann et al.,

1995], Return-To-Axis Probability (RTAP), Return-To-Plane Probability (RTPP)

and Mean Squared Displacement (MSD). We will refer to these time-dependent

q-space indices as qτ -indices.

As the name implies, the MSD describes the average squared distance that

particles travel given τ , and can be estimated from the EAP as

MSD(τ) ,
∫
R

∫
S2

P (Rr; τ)R2drdR. (9.13)

The RTOP describes the probability density that a particles starts and ends

at the position after τ . While MSD and RTOP are rotationally invariant features,

RTAP and RTPP are directional scalar indices that assume the white matter tis-

sue is modeled by parallel cylinders, with r‖ parallel and r⊥ perpendicular to the

cylinder axis. They are formulated as

RTOP(τ) , P (0; τ),

RTAP(τ) ,
∫
R
P (R r‖; τ)dR,

RTPP(τ) ,
∫
R

∫
{r∈S2:r · r‖=0}

P (R r⊥; τ)dr⊥ dR.

(9.14)

We note that the estimation of qτ -indices is dependent on the included diffusion

times τ and strongest diffusion sensitization qmax of the acquisition scheme. An

acquisition scheme should not have different qmax for different τ , as is illustrated in

Figure 9.4. If not, estimated qτ -indices describe changes in the acquisition scheme

instead of the tissue.
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Figure 9.4: Acquisition scheme for qτ -acquisition. Every dot represents a shell

with 21 DWIs and one b0 image. The contours represent b-value isolines, given as

b = G2δ2γ2(∆− δ/3), whose values are given in the colorbar.

9.3 Data Set Specification

9.3.1 Acquistion Scheme

An illustration of our acquisition scheme is given in Figure 9.4. We acquire 35

different “shells” with 21 uniformly spread DWIs and one b0 each using pulse

duration δ = 5ms, resulting in 770 DWIs in the simulated data. Over these shells,

we measure five equispaced “τ -shells” ∆ = {10.8, 13.1, 15.4, 17.7, 20}ms and seven

approximately equispaced “gradient shells” between {50−490}mT/m. To uniformly

spread DWIs in this four-dimensional acquisition scheme, we used the approach

of Caruyer et al. [2013] to find an optimal sampling for one diffusion time and

copied this scheme for every ∆. For the well-being of the in-vivo subjects, we

subsampled this scheme to a total of 580 DWIs also using the approach of Caruyer

et al. [2013]. The minimum b-value is bmin = 48s/mm2 and maximum b-value is

bmax = 7814s/mm2.
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Table 9.1: Simulated axon Gamma distributions, sorted by mean axonal diameter

〈D〉. The left column shows the reference paper for the distribution. The α and

β parameters describe the shape and scale of the Gamma distribution with mean

diameter 〈D〉 = αβ.

Reference shape (α) scale (β) [m] 〈D〉 [µm]

Aboitiz et al. [1992] 3.2734 2.4563e-07 1.60

Aboitiz et al. [1992] 2.8771 2.4932e-07 1.43

Aboitiz et al. [1992] 4.8184 1.3008e-07 1.25

Aboitiz et al. [1992] 3.5027 1.6331e-07 1.14

Aboitiz et al. [1992] 5.3316 1.0242e-07 1.09

Lamantia and Rakic [1990] 5.2051 1.0227e-07 1.06

Lamantia and Rakic [1990] 5.2357 9.3946e-08 0.98

Lamantia and Rakic [1990] 10.1960 3.6983e-08 0.75

Lamantia and Rakic [1990] 8.5358 3.7369e-08 0.64

Lamantia and Rakic [1990] 5.9242 5.3249e-08 0.63

Lamantia and Rakic [1990] 16.2750 1.4282e-08 0.46

9.3.2 In Silico Data Sets with Camino

We use Camino [Cook et al., 2006] to reproduce diffusion signals originating from

tissues containing realistic axon diameter distributions and packings. As we illus-

trate in Table 9.1, we use 5 gamma distributions from Aboitiz et al. [1992] and

6 from Lamantia and Rakic [1990]. Like Alexander et al. [2010], we simulate the

overall diffusion signal from these 11 distributions from the same distributions with

doubled axonal diameters and two different packing densities, resulting in a total

of 44 distributions. As simulations parameters, we used 100,000 walkers with 1000

time steps using a diffusivity of 1.7× 10−9s2/m.

9.3.3 Mouse acquisition data

A test-retest spin echo sequence was acquired from three C57Bl6 wild-type mice on

an 11.7 Tesla Bruker scanner. The test and retest acquisition were taken 48 hours

from each other. The data consists of 96×160×12 voxels of size 110×110×500µm.

Unfortunately, we had to discard the data of one of subjects due to artifacts in the

test acquisition. We manually created a brain mask and corrected the data from

eddy currents and motion artifacts using FSL’s eddy [Andersson and Sotiropoulos,

2016]. We then drew a region of interest in the middle slice in the corpus callosum,
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see Figure 9.8, where the tissue is reasonably coherent.

9.4 Experiments and Results

9.4.1 Basis Order Selection and Method Comparison

qτ -dMRI uses a separate basis expansion over q and τ , so it is important to deter-

mine the optimal (minimum) spatial and temporal basis order we need to accurately

represent the qτ -signal. To do this we generate both Gaussian phantom data using

realistic eigenvalues and Camino-generated data from Section 9.3.2 using the qτ -

acquisition scheme in Figure 9.4. We fit both data sets with increasing radial and

temporal order and determine the mean squared error (MSE) of the fitted points

themselves. We show the results in Figure 9.5a, where the color illustrates the

mean MSE and the green dots illustrate order combinations where the mean abso-

lute error is less than 1% of the b0-intensity. The Gaussian data can be accurately

represented using only 21 coefficients using a radial and temporal order of 2. Rep-

resenting the more realistic Camino data, which exhibits diffusion restriction over

both q and τ , takes at least 150 coefficients using a radial order of 6 and temporal

order of 2. We will use this basis order combination in the rest of our experiments

as this is the minimum number of coefficients to fit any qτ -signal.

We also compare the noiseless fitting error of our approach with that of

DTI [Basser et al., 1994] and our previously proposed technique using 3D-SHORE

as a spatial basis [Fick et al., 2015b] in Figure 9.5b. We fit the Camino data while

truncating at different maximum b-values and compute the MSE. We can see that

already at lower b-values DTI has a higher MSE compared to both other techniques.

As higher b-values are included in the fitting, our qτ -dMRI manages to keep an al-

most stable MSE, while the approach by [Fick et al., 2015b] cannot deal with the

restricted signal at these b-values as well.

9.4.2 Effectiveness of qτ-dMRI Regularization

To reduce the number of required measurements to represent the qτ -space, we

regularize the fitting of qτ -dMRI using a combination of imposing signal smoothness

and sparsity in the basis coefficients. To study its effectiveness of this approach, we

first add Rician noise to the Camino data such that the signal-to-noise (SNR)-ratio

is 10, 20 and 30. We then randomly subsample the data such that we only fit

between 490 and 40 DWIs. We estimate the fitting error by predicting the missing

data points from the fitted representation and comparing them to the noiseless data.

The experiment, for every chosen number of samples, is repeated 50 times for all

44 voxels with each a different noise instance. We show the results in Figure 9.6.

Overall, the lower the SNR the higher the MSE for every technique. In all cases
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Figure 9.5: (a) Mean Squared Error (MSE) of noise-free fitting of data generated

using an anisotropic Gaussian Tensor (left) and the Camino data from Table 9.1

(right) using different radial and time orders using our qτ -dMRI. The color intensity

shows the MSE and the green dots indicate orders for which the mean absolute error

of the reconstruction is smaller than 1% of the b0 value. For Gaussian data this

is achieved at radial / temporal order 2/2 using 21 coefficients, while for Camino

data this is 6/2 using 150 coefficients. (b) Comparison of the fitting error between

DTI, the previous approach of Fick et al. [2015b] and our qτ -dMRI over maximum

b-value. Our approach performs better especially when higher b-values are included

in the data.

using least squares (red) results in by far the highest MSE. Using only Laplacian

(green) already stabilizes the MSE much better. Using both Laplacian and `1
(yellow) produces the best results with the lowest MSE, especially at a lower number

of samples.

9.4.3 Effect of Subsampling on the Estimation of qτ-Indices

Now that we have shown that our regularization allows us to use fewer measure-

ments while keeping the fitting error low, we study the effect of subsampling on the

estimation of qτ -indices. In Figure, 9.7 we show the estimated MSD, RTOP, RTAP

and RTPP using between 600 DWIs (green) and 100 (blue) DWIs. Notice that,

as expected, MSD increases and the return probabilities decrease as diffusion time

increases. Also notice that RTAP1/2 > RTOP1/3 > RTPP as the diffusion signal

is more restricted perpendicular to the axon axis than parallel to it, and that the

slopes of all indices become flatter as time increases. We used the square and cube

root of RTAP and RTOP to put them in the same unit as RTPP. The estimation of

the MSD appears stable to subsampling down to 200 DWIs, after which the slope

flattens. On the other hand, the estimation of the return probabilities appears

sensitive to subsampling and their value decreases as fewer DWIs are used in the

fitting, with the exception of RTPP. We discuss this phenomenon in section 9.5.
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Figure 9.6: Comparison of fitting error between regularization techniques using

random subsampling at SNR={30,20,10}. Overall, the lower the SNR the higher

the MSE for every technique. In all cases using only least squares (red) results in by

far the highest MSE. Using only Laplacian (green) already stabilizes the MSE much

better. Using both Laplacian and `1 (yellow) produces the lowest result, especially

at lower number of samples.
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Figure 9.7: The effect of random subsampling from 600 DWIs (green) to 100 DWIs

(blue) on the estimation of qτ -indices. We show RTAP1/2 and RTOP1/3 to put

them in the same unit as RTPP. Notice that RTAP1/2 > RTOP1/3 > RTPP. MSD

and RTPP are relatively unaffected by subsampling until the slope flattens out at

100 DWIs. RTAP, sensing the perpendicular diffusion direction, decreases as less

data is used. RTOP, sensing the overall signal, behaves in between RTAP and

RTPP.
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Figure 9.8: left: qτ -diffusion acquisition using a spin echo sequence. Every group

of point represents a shell with uniformly spread DWIs on the sphere. The slight

spread is due to field inhomogeneities. right: FA illustrations of the test-retest mice

with in red the region of interest (ROI) voxels in the corpus callosum.

9.4.4 Reproducibility on in-vivo Mouse Test-Retest Acquisition

Finally, we study the reproducibility of our method on in-vivo test-retest diffusion

spin echo acquisitions of two C57Bl6 wild-type mice. We show a sagittal cross-

section of the fractional anisotropy (FA) map of the four data sets and the acqui-

sition scheme in Figure 9.8. We drew a region of interest in the corpus callosum of

each data set for our experiments.

As in the synthetic experiments, we first study the fitting error while randomly

subsampling the data. We show the MSE per subject for both test and retest

acquisitions in Figure 9.9. As before, we find that using our combined Laplacian

and `1 regularization reduces the MSE significantly. Notice that we broke the y-axis

in half because we had to use log-scale to accurately depict the least squared MSE,

which can indeed go up to 1010. Also notice that the MSE between the test-retest

and between subjects is very similar.

Using the full data, we then estimate the qτ -indices for the test-retest (red-green)

of all subjects and show the results in Figure 9.10. In agreement with the synthetic

experiments, we again find that MSD increases and the return probabilities decrease

over diffusion time and RTAP1/2 > RTOP1/3 > RTPP. Subject 1 shows that, for

all indices, the mean retest indices fall within 0.2 standard deviations of the test

indices with similar dispersion. Subject 2 shows similar overlap for the q-space

indices, but the retest MSD is slightly off.

The gray isolines in the background represent the index values for free diffusion

with a range of diffusion coefficients, as shown in the color bar. For every index,

we annotated the isolines in between which the values of that index ranges. In

this way, it becomes easier to see that all indices describe a sub-diffusive diffusion

process, i.e., that the diffusion is slower than Gaussian. For example, in the top-
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Figure 9.9: Regularized fitting error of our model while randomly subsampling the

data from 400 to 100 fitted DWIs. We broke the y-axis into two parts. The top

part uses log-scaling to show the much higher fitting error of unregularized qτ -

dMRI. The bottom part uses regular scaling and shows our much lower regularized

fitting error. For the regularized result, we see that the fitting error is robust to

subsampling for all data sets.

left graph, the estimated MSD starts at the shortest diffusion time around free

diffusion coefficient D = 12× 10−4mm/s2 and ends at the longest diffusion time at

D = 10×104mm/s2; an observed reduction of D = 2×10−4mm/s2. This trend holds

for most indices, but the corresponding values for the diffusion coefficient varies per

index. For example, the observed diffusion coefficient for RTPP is much higher

than that of RTAP, because they describe diffusion parallel and perpendicular to

the bundle axis, respectively. By extension, RTOP, a rotation invariant feature

describing the overall diffusion process, lies in between RTAP and RTPP.

To illustrate the deviation from non-Gaussian decay, we visualize the mean

MSD and return probabilities of both Test subjects in a log-log plot in Figure 9.11.

Power-laws of the form y = axk show as straight lines in log-log plots, meaning

Gaussian diffusion will always have the same slope no matter the diffusivity. On

the top, we see that the MSD starts close-to-Gaussian, but becomes more restricted

as time increases. On the bottom, we see that RTPP, describing parallel diffusion,

is almost completely Gaussian over diffusion time – as expected in such coherent

white matter. On the other hand, RTAP is non-Gaussian from the start, and

RTOP again lies in between RTAP and RTPP. It should be noted that the time-

dependence of qτ -indices should become flat as a result of the diffusion becoming

normal asymptotic in the long diffusion time regime [Novikov et al., 2016].
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Figure 9.10: Mean and 0.75×Standard deviation of the MSD (top) and RTOP,

RTAP and RTPP (bottom) in the corpus callosum for the test and retest data

(red and green) of both subjects. We used a 0.75 multiplier to better separate

index groups. For comparison, the gray tones show MSD isolines for different free

diffusion coefficients. In subject 1 the test-retest indices overlap closely for every

metric, indicating excellent reproducibility. Subject 2 shows similar overlap for

q-space indices, but the MSD is slightly off.
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Figure 9.11: Log-log plots of mean MSD (top) and mean return probabilities (bot-

tom) of both Test Subjects. The dashed lines are the index values for free Gaussian

diffusion with diffusivities chosen such that the estimated and Gaussian index val-

ues of Subject 1 start at the same place. Power-laws of the form y = axk show as

straight lines in log-log plots. In Subject 1, notice that the estimated MSD starts

close to Gaussian and then slowly diverges at longer τ . Similarly the RTPP, describ-

ing parallel diffusion, is almost completely Gaussian over diffusion time. RTAP1/2

has a non-Gaussian slope from the start, and RTOP has non-Gaussianity between

RTAP1/2 and RTPP. The trends between subjects are very similar, but differ slightly

in MSD and RTPP.
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9.5 Discussion

In the early days of diffusion MRI, diffusion time dependence was initially ex-

plored to probe diffusion restriction in brain tissues [Moonen et al., 1991, Le Bihan

et al., 1993, Le Bihan, 1995, Assaf et al., 1998]. Though, once the the concept of

diffusion restriction was established [Beaulieu, 2002], the focus of the community

shifted towards estimation of the angular features of the diffusion process [Tuch,

2004, Tournier et al., 2007, Descoteaux et al., 2007a, Aganj et al., 2010]. Only

recently has the community refocused on the exploration of the τ -dependence of

the dMRI signal [Assaf et al., 2004, 2008, Pyatigorskaya et al., 2014, Novikov et al.,

2014, Burcaw et al., 2015, De Santis et al., 2016, Fieremans et al., 2016, Ning

et al., 2016, Ferizi et al., 2016, Palombo et al., 2016]. To allow non-parametric ex-

ploration of diffusion τ -dependence, we proposed a functional basis approach that

we call qτ -dMRI. Our approach facilitates the estimation of τ -dependent q-space

indices (qτ -indices), which potentially provide microstructural interpretation of τ -

dependence. In this section, we discuss the results of our experiments in Section

9.5.1, considerations about the formulation of qτ -dMRI in Section 9.5.2 and future

perspectives in Section 9.5.3.

9.5.1 Discussion of the results and interpretation of qτ-indices

In this section, we focus on the interpretation of the results we presented in Section

9.4.

qτ-dMRI effectively describes the τ-dependence of the diffusion sig-

nal: We studied how many coefficients qτ -dMRI needs to accurately represent both

restricted and free qτ -signals. In Figure 9.5a, we showed that to represent the dif-

fusion signal in anisotropic white matter we needed at least 150 coefficients, using

a radial order of 6 and a temporal order of 2. While our basis does not include a

Gaussian compartment, we can represent any Gaussian signal using only 21 coef-

ficients. In Figure 9.5b, we also showed that qτ -dMRI’s fitting error is lower than

our previously proposed 3D+t approach [Fick et al., 2015b] and DTI [Basser et al.,

1994]. The main methodological advances of qτ -dMRI over 3D+t are its q-space

representation, where we use the MAP basis instead of 3D-SHORE, the sparsity

term, and the explicit boundary constraints at Ẽ(q = 0, τ ; c) = 1. The added

value of these advances becomes more apparent at higher b-values, where the dif-

fusion signal is most characterizing of the underlying tissue. We remark that DTI

is inherently limited to describe temporal diffusion restriction. This is illustrated

by the observed non-Gaussian behavior in Figure 9.11. With respect to alternative

multi-compartment qτ -approaches, in Fick et al. [2015b], we compared our previous

3D+t model with CHARMED [Assaf et al., 2004] and found that our functional

basis approach reconstructed a less biased representation of the qτ -space. Hence,
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as the approach in this work improves upon 3D+t, the same is true for qτ -dMRI.

qτ-dMRI facilitates estimation of qτ-indices: In previous studies, qτ -

indices were studied in an ex-vivo setting using voxel-wise “AxCaliber”-style ac-

quisitions, varying only over q and τ in one preset direction [Özarslan et al., 2006,

2012]. However, the practical application of this approach is limited when the

tissue orientation is not known beforehand. Our work transcends this limitation

in allowing the estimation of qτ -indices in a four-dimensional setting (3D q-space

and diffusion time). For any evaluated diffusion time qτ -dMRI reduces to MAP.

This allows us to calculate any previously proposed EAP feature such as MSD or

RTOP [Özarslan et al., 2013b, Fick et al., 2016d].

Physiological interpretation of qτ-indices: qτ -indices are signal-based

properties, making no distinction between intra- or extra-axonal signal contribu-

tions. For realistic axon diameters (< 2µm) [Aboitiz et al., 1992], the diffusion

perpendicular to the axon axis is likely already restricted before τmin of the acqui-

sition [Assaf et al., 2008]. If this is true, then the changes we observe in qτ -indices

over τ , in particular RTAP, must originate from the extra-axonal space exclusively.

The slope of RTAP over τ could, therefore, describe packing properties of the ax-

ons. This is also the focus of recent studies on the extra-axonal space [Novikov

et al., 2014, Burcaw et al., 2015]. However, exchange between the intra-axonal and

extra-axonal space could also influence the slopes of these indices [Fieremans et al.,

2010], although no agreement has been reached on the true permeability of axonal

membranes [See e.g. Lätt et al., 2009, Quirk et al., 2003], and whether or not it

can be neglected at high diffusion times. qτ -indices also still depend on the narrow

pulse approximation (δ → 0), so its actual choice should be kept in mind in study-

ing qτ -indices as they do influence their values [Bar-Shir et al., 2008]. Finally, the

often non-Gaussian nature of the acquisition noise biases the estimation of q-space

indices [Avram et al., 2015]. This bias could be reduced through multi-shell signal

denoising [Manjón et al., 2013, St-Jean et al., 2016] or phase correction [Pizzolato

et al., 2016] strategies.

Combined Laplacian and `1 regularization provides robustness to

noise and subsampling: We compared the fitting error of our combined reg-

ularization strategy with that of other regularization approaches. In Figure 9.7, we

showed that imposing both signal smoothness through Laplacian regularization and

signal sparsity using the `1-norm produces the lowest fitting error for any number

of samples. Using only Laplacian regularization as in Fick et al. [2015b] produces

higher fitting errors when fewer than 200 samples are fitted, but performs similarly

otherwise. Our combined regularization scheme can be seen as a modification to

Elastic-Net regularization [Zou and Hastie, 2005] along the same lines as Graph-

Net [Grosenick et al., 2013]. Similar to their approach, we modify `2-norm penalty

term in the Elastic-Net to use the norm of the Laplacian of the measured signal.
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Our approach differs from theirs in that the coefficients in qτ -dMRI represent the

Eigenfunctions of the signal and EAP, while those of GraphNet are discrete mea-

surements of graph connectivity. This allows for the closed-form estimation of the

Laplacian in the qτ -space, as we illustrate in 9.B.

Estimated qτ-index trends are consistent and robust to subsampling:

In Figure 9.7, we show that we obtain the expected index trends over diffusion

time, where on simulated data the MSD increases and the return probabilities

decrease as diffusion time increases. Regarding MSD, we found that its estimation

is relatively unaffected by subsampling. This is expected as MSD is a function of

the bulk motion of the EAP (see Eq. (9.13) and is estimated using the Laplacian

of the signal attenuation at E(q = 0, τ) [Cheng, 2014]. Removing measurements

at large q therefore has little effect on its estimation. Figure 9.7 also shows that

the estimation of return probabilities is sensitive to subsampling, but still produces

consistently decreasing index slopes. This is a result of their dependency on q-space

integrals until infinity [Özarslan et al., 2013b], meaning their values depends on

signal extrapolation beyond the largest measured q-value. This induces specific

behavior in qτ -index trends. When samples are removed along or close to the

“restricted” perpendicular signal direction, the signal inter- and extrapolation will

perceive a less restricted signal, leading to an underestimation of RTAP. Conversely,

removing samples along the parallel direction will not influence RTPP as much as

the perceived signal was already free. Finally, RTOP includes both RTAP and

RTPP and therefore experiences a subsampling sensitivity between that of RTAP

and RTPP. In agreement with Avram et al. [2015], this reasoning also explains why

we consistently find that RTAP1/2 > RTOP1/3 > RTPP (see Figures 9.7, 9.10 and

9.11); return probabilities increase as diffusion becomes more restricted. Overall,

using the chosen basis orders, a lower bound of reliable index estimation seems to

be around 200 samples using random subsampling, as all profiles flatten out at this

point.

Estimated of qτ-indices are reproducible in-vivo: We tested the repro-

ducibility of qτ -index estimation on two test-retest diffusion Spin Echo acquisitions

of C57B16 wild-type mice. We selected an ROI in the corpus callosum (Figure

9.8) to limit our study to anisotropic white matter with minimal axonal disper-

sion effects [Leergaard et al., 2010, Ronen et al., 2014]. We acquired anisotropic

voxels to improve the SNR at high gradient strengths and diffusion times. Fitting

qτ -dMRI to the in-vivo data produced results that are in agreement with the syn-

thetic experiments; both the fitting error and qτ -index trends are similar (Figures

9.9 and 9.10). Of particular interest is Figure 9.10, where we plot the test-retest

values of MSD, RTAP, RTOP and RTPP over diffusion time. The isolines in the

background, representing the q-space index value for free diffusion with varying

diffusivity, shows that qτ -dMRI q-space trends are actually picking up on diffusion
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restriction over diffusion time. For different indices we find different levels of re-

striction over time. This is particularly clear in the log-log plots in Figure 9.11.

In log-log plots, power-laws of the form Index(τ) ∝ τk show as straight lines with

slope k. Gaussian diffusion will therefore always have the same slope regardless of

the diffusivity. We can clearly see that the slope of RTPP the steepest and is nearly

parallel to that of Gaussian diffusion, while the slope of RTAP is the shallowest,

showing the most restriction.

9.5.2 On the formulation and implementation of qτ-dMRI

On Choice of Functional Basis and Finite Diffusion Time: Our separa-

ble basis formulation allows us to independently choose any previously proposed

functional basis to represent 3D q-space and diffusion time. Out of the numerous

q-space representations that have been proposed [Descoteaux et al., 2007a, 2011,

Assemlal et al., 2009, Caruyer and Deriche, 2012, Özarslan et al., 2013a,b, Hossein-

bor et al., 2013, 2015, Rathi et al., 2014, Cheng et al., 2015b] we chose the MAP

basis [Özarslan et al., 2013b] for its convenient EAP reconstruction, wide range of

q-space indices and closed-form Laplacian regularization [Fick et al., 2016d]. To rep-

resent diffusion time for finite τ , based on studies by Callaghan [1995], we proposed

a novel functional basis based on negative exponential decay. Our basis formulation

allows for effective representation of the qτ -space at finite q and τ – without making

biophysical assumptions. This means that the technique we introduce in this work

can be used as a signal preprocessing step for subsequent parametric modeling of

the qτ -space, as previously done with the 3D q-space [Fick et al., 2016d]. Recent

work by Veraart et al. [2016] suggests that at high qτ -values, oscillating basis func-

tions are suboptimal representations. However, our results, shown in Section 9.4,

show that at the qτ -values used in this study, much higher than those available in

human scenarios, our approach is a useful tool to synthesize the qτ -dMRI signal.

On Sparsity: When imposing sparsity in coefficients it is customary to ensure

that the inner product of each basis function in the representation is unity such

that
∫∫

Ξi(q, τ)Ξi(q, τ)dqdτ = 1 [Candès et al., 2006]. However, in practice it is

sufficient that the inner product is constant for all basis functions. Since the inner

product of our spatial MAP basis and our temporal basis only depends on the voxel-

wise scale factors, we can effectively omit the basis normalization without affecting

the sparsity constraint. However, to impose sparsity when the spatial representa-

tion is e.g. the 3D-SHORE basis [Fick et al., 2015b] we need to use appropriate

basis function normalization. For completeness, we provide the derivation of the

normalized basis functions and normalized Laplacian regularization in 9.D.

On Smoothness: To impose smoothness using the four-dimensional Laplacian

of the reconstructed signal, it is important that the scales of the 3D q-space and 1D

diffusion time are in the same order. If not, the Laplacian will disproportionately
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regularize one space over the other. For this reason, the algorithm internally uses

a scaled diffusion time τ∗ = τ × (ut/ũs) and scale factor u∗t = ũs with ũs the mean

spatial scale factor. This rescaling does not affect any of the observation matrices

that fit the signal, but only the relative weighting inside the Laplacian regularization

functional in Eq. (9.10).

On Echo Time: Our basis describes the qτ -diffusion attenuation E(q, τ) =

S(q, τ)/S0, where the division by the S0 intensity normalizes for the Echo Time

(TE) of the acquisition. However, to optimize an acquisition for SNR it is often

customary to reduce the TE as much as possible for a given diffusion time. While

we avoided doing so in our work, it is possible to fit our qτ -dMRI approach to data

that uses multiple TE by normalizing the different TE segments separately and

concatenating the normalized data afterward. Another approach is to normalize

the different TE segments together using T2 estimation, but it should be noted that

T2 estimation is not trivial [Milford et al., 2015].

On Signal Extrapolation: While our choice of spatial and temporal choice of

bases is efficient in fitting the qτ -signal and allows for convenient closed-form regu-

larization, there are some inherent limitations to our choice as well. It is well-known

that the diffusion signal over τ within restricted media, assuming no significant ex-

change is present, does not attenuate to zero as limτ→∞ but finds some plateau

value [Price, 1997]. Since our basis consists of decaying oscillating functions our

representation will always smoothly attenuate to zero after the last fitted data

point such that limq→∞ Ê(q, τ) ≡ limτ→∞ Ê(q, τ) ≡ 0. It is possible to overcome

this limitation by adding an infinite time component in our basis fitting, but this

would be at the cost of having closed-form Laplacian regularization of the qτ -signal.

On Boundary Conditions: As our basis consists of oscillating functions, con-

straints must be put in place to adhere to the boundary cases of the qτ -signal at

Ê(q = 0, τ) = 1. We constrain this value at τmin and τmax for a given acquisi-

tion scheme, which produces a close-to-straight line along this boundary between

these points. Outside of the constrained points Ê(q = 0, τ) will deviate from the

boundary condition and eventually also attenuate to zero, limiting the accuracy of

qτ -index estimation when extrapolating beyond τmax. We do not constrain the sec-

ond boundary case at Ê(q, τ = 0) = 1 as it is of no consequence to the estimation

of qτ -indices.

On EAP Positivity: The EAP, being a probability density, should be positive

definite. With this in mind, we experimented with adding additional positivity

constraints at a range of position in the EAP as was done for the spatial MAP-

MRI basis [Özarslan et al., 2013b]. However, we found that the number of points

that needs to be constrained in four-dimensional qτ -space causes excessively long

computation times, making this approach unfeasible. Fortunately, we find that our

Laplacian regularization often produces a positive EAP in practice. The reasoning
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behind this is that EAP negativity is predominantly caused by oscillatory behavior

due to spurious signal extrapolation beyond qmax. Laplacian regularization imposes

signal smoothness also beyond qmax, resulting in a similarly smooth and very often

positive EAP. This result corresponds with previous findings in using Laplacian

regularization for MAP-MRI [Fick et al., 2016d].

9.5.3 Future Applications of qτ-dMRI

In this last section, we discuss some possible applications of qτ -dMRI and how it

may be used to explore tissue microstructure.

Time-dependent orientation distribution functions: Orientation distri-

bution functions (ODFs) have long been a tool for dMRI techniques to estimate

the angular features of the diffusion process [Tristán-Vega et al., 2009, Aganj et al.,

2010] However, a recent study suggests that current diffusion-based tractography

algorithms based on only the angular features of diffusion are fundamentally ill-

posed; consistently finding false-positive connections [Maier-Hein et al., 2016]. The

authors of this study point out that integrating diffusion microstructure models

inside tractography algorithms, i.e., microstructure-informed tractography [Girard

et al., 2015, Daducci et al., 2016], may be a viable solution in overcoming this

challenge. While we did not explore it in this work, qτ -dMRI allows for the estima-

tion of time-dependent ODFs. In quantifying time-dependent features of different

axon bundles, qτ -dMRI has the potential of providing such microstructure-informed

tractography algorithms with time-dependent features. These features could aid in

discriminating axon bundles, either from the approach itself or as a preprocessing

for other methods as in Fick et al. [2016d].

7D sparse diffusion MRI: To reduce the number of required samples we

impose sparsity in the coefficients of qτ -dMRI, which describe the four-dimensional

qτ -space. In other works, compressed sensing approaches have been used to reduce

the number of required samples in the combined six-dimensional kq-space [Sun

et al., 2015, Cheng et al., 2015a, Mani et al., 2015]. In particular, Cheng et al.

[2015a] first use dictionary learning with the SPFI functional basis to learn atoms

of 3D q-space, to then do the 6D compressed sensing reconstruction in kq-space.

Replacing the SPFI basis with our qτ -dMRI basis we could extend this approach

towards 7D kqτ -space compressed sensing.

Acquisition design in qτ-dMRI: Fully sampling the four-dimensional qτ -

space requires many measurements and is an energy- and time-consuming process.

In this work, we used methods for optimal q-space acquisition design [Caruyer et al.,

2013] to find a scheme for one diffusion time and then copied it for each measured

diffusion time. To further optimize qτ -dMRI acquisition schemes over diffusion

time, we could potentially use a Monte-Carlo incoherent sampling approach along

the lines of Lustig et al. [2007]. In their approach, they suggest to take samples
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according to a probability density function. However, to apply this method to

qτ -acquisition design, we need to define an appropriate sampling density over the

combined 3D q-space and diffusion time space, which is not straightforward.

9.6 Conclusion

We proposed a novel functional basis approach, that we call qτ -diffusion MRI

(qτ -dMRI), to simultaneously represent the diffusion signal and Ensemble Aver-

age Propagator (EAP) over both three-dimensional q-space and diffusion time τ .

To the best of our knowledge, our approach is the first to represent this qτ -space

using a non-parametric approach. Using effective regularization, imposing both sig-

nal smoothness and sparsity, we are able to accurately fit qτ -dMRI using as little

as 200 DWIs using 150 basis coefficients.

Once qτ -dMRI is fitted, we can interpolate any diffusion time from the recon-

structed qτ -EAP and estimate any previously proposed q-space indices. We refer

to these time-dependent q-space indices as qτ -indices. Using qτ -dMRI to estimate

directional qτ -indices like the Return-To-Axis and Plane Probability (RTAP and

RTPP), we can probe these properties directionally, allowing us to study parallel

and perpendicular diffusion separately.

In an in-vivo test-retest study of two C57B16 wild-type mice, we also find excel-

lent reproducibility of estimated of qτ -indices. We find close-to-Gaussian diffusion

parallel and restricted diffusion perpendicular to the estimated axon axis, corre-

sponding to what we expect in anisotropic white matter. qτ -dMRI is the first of

its kind in being specifically designed to provide open interpretation of the qτ -

diffusion signal in the hopes of opening up new τ -dependent venues of studying

nervous tissues.
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9.A qτ-dMRI Implementation

We implemented qτ -dMRI within the Diffusion Imaging In Python (dipy) open-

source framework [Garyfallidis et al., 2014]. Our implementation consists of the

following steps:
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1. Scale Factor Estimation: For every voxel, we first estimate the spatial scale

factors us = {ux, uy, uz}, temporal scale factor ut and rotation matrix of the

data R. We estimate us and R by fitting a diffusion tensor [Basser et al.,

1994] to the q-space data E(q, · ) regardless of diffusion time. We estimate ut
by fitting the first temporal basis function – a negative exponential – to the

E( · , τ). We used ordinary least squares in this step.

2. Rotate q-space: To adhere to the requirements of our spatial MAP-MRI

basis, we then rotate q-space points to orthogonalize the data into the Carte-

sian coordinate system as q∗ = Rq. In this way ux will describe the spring

stiffness of the data along the x-axis, and the same for the other directions.

3. Diffusion Time Rescaling: To appropriately weight the spatial and tem-

poral parts of the Laplacian matrix we internally rescale τ∗ = τ(ut/ũs) and

scale factor u∗t = ũs with ũs the mean spatial scale factor.

4. Observation and Laplacian Matrix Computation: Using {ux, uy, uz},
the rotated q∗ positions, u∗t , and the scale τ∗ we compute the design matrix

Q and Laplacian regularization matrix U as outlined in Section 9.2.3.

5. Optimal Regularization Weight Estimation: To avoid a very time-

consuming two-dimensional grid search for optimal Laplacian weighting pa-

rameter λ and `1 weighting parameter α in Eq. (9.12), we first find optimal

λ using generalized cross-validation [Craven and Wahba, 1978, Koay et al.,

2009] and then use five-fold cross-validation to find optimal α given optimal

λ.

6. Constraint Matrix Estimation: We impose the boundary constraint

E(0, τ) = 1 only on points {q, τ} = {0, τmin} and {0, τmax} of the mea-

sured data. We do this by generating two design matrices Qτ
min and Qτ

max

that map the estimated coefficients c to the constrained points such that

Ẽ(0, τmin) = Qτ
minc and Ẽ(0, τmax) = Qτ

maxc.

7. Coefficient Estimation: We feed Q, U and optimal λ and α and constraint

matrices Qτ
max and Qτ

max into a convex optimization framework CVXPY [Di-

amond and Boyd, 2016] and as in Eq. (9.12) and estimate the qτ -basis coef-

ficients for the data in this voxel.

8. Estimation of qτ-EAP Properties To estimate qτ -indices we take advan-

tage of the modular build of our basis. For a given diffusion time τ we first

evaluate the temporal part of our basis to produce MAP-MRI coeffients such

that cMAP
i = ciTi(τ, ut). This eliminates the temporal order of our basis so we

can heap together the coefficients with the same radial order, leaving us with
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a standard MAP-MRI representation [Özarslan et al., 2013b]. From this rep-

resentation we can estimate any previously proposed quantity such as q-space

indices or ODFs in closed form [Özarslan et al., 2013b, Fick et al., 2016d].

9.B Analytic Laplacian Regularization

We provide the analytic form of the Laplacian regularization matrix in Eq. (9.11).

As our basis is separable in q and τ , the Laplacian of our basis function Ξi is

∇2Ξi(q, τ, us, ut) =
(
∇2

qΦi(q, us)
)
Ti(τ, ut) + Φi(q, us)

(
∇2
τTi(τ, ut)

)
(9.15)

with ∇2
q and ∇2

τ the Laplacian to either q or τ . We then rewrite Eq. (9.11) as

Uik =

∫
R

(∇2
qΦi)(∇2

qΦk)dq

∫
R
TiTkdτ +

∫
R

ΦiΦkdq

∫
R

(∇2
τTi)(∇2

τTk)dτ

+

∫
R

(∇2
qΦi)Φkdq

(∫
R
Ti(∇2

τTk)dτ +

∫
R

(∇2
τTi)Tkdτ

) (9.16)

Eq. (9.16) can be calculated to a closed form using the orthogonality of physicists’

Hermite polynomials with respect to weighting function e−x
2

on [−∞,∞]. Let
us first consider the integrals with respect to q, which are parts of the Laplacian
regularization functional of the MAP basis [Fick et al., 2016d]. Writing the second
order derivative as a double apostrophe ′′, the Laplacian of the spatial basis is
given in terms of the 1D-SHORE functions as ∇2

qΦi = φ
′′
nxφnyφnz + φnxφ

′′
nyφnz +

φnxφnyφ
′′
nz . The integral of the product of two Laplacians therefore becomes a sum

of 9 terms, but can be described using the following three equations:

Um
n (u) =

∫
R
φ
′′

nφ
′′

mdq = u32(−1)nπ7/2

(
δmn 3(2n2 + 2n+ 1) + δm+4

n

√
n!/m!

+ δmn+2 (6 + 4n)
√
m!/n! + δmn+4

√
m!/n! + δm+2

n (6 + 4m)
√
n!/m!

)

Vm
n (u) =

∫
R
φ
′′

nφmdq = u(−1)n+1π3/2

(
δmn (1 + 2n) +δm+2

n

√
n(n− 1) + δmn+2

√
m(m− 1)

)
(9.17)

Wm
n (u) =

∫
R
φnφmdq = u−1δmn (−1)n/(2π1/2)
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Using the functions in Eq. (9.17) we define the q-dependent parts of Eq. (9.16)
as [Fick et al., 2016c]:∫

R
(∇2

qΦi)(∇2
qΦk)dq =

u3
x

uyuz
Uxk
xi

Wyk
yi Wzk

zi +2
uxuy
uz

Vxk
xi

Vyk
yi Wzk

zi +
u3
y

uzux
Uyk
yi Wzk

zi Wxk
xi

+ 2
uyuz
ux

Vyk
yi Vzk

zi Wxk
xi

+
u3
z

uxuy
Uzk
zi Wxk

xi
Wyk
yi +2

uxuz
uy

Vxk
xi

Vzk
zi Wyk

yi∫
R

(∇2
qΦi)(Φk)dq =

ux
uyuz

Vxk
xi

Wyk
yi Wzk

zi +
uy
uxuz

Vxk
xi

Wyk
yi Wzk

zi +
uz
uxuy

Vxk
xi

Wyk
yi Wzk

zi∫
R

ΦiΦkdq =
1

uxuyuz
Wxk
xi

Wyk
yi Wzk

zi

For terms with τ , we denote the operator Mx2
x1

= min(x1, x2) for the minimal
value of x1, x2 and Hx the Heaviside step function with Hx = 1 iffx ≥ 0.∫

R
(∇2

τTi)(∇2
τTk)dτ =
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1
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δ
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o(i) ) · |o(i)− o(k)|
)

∫
R
TiTkdτ = 1/utδ

o(i)
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9.C Isotropic Analytic Laplacian Regularization

The isotropic implementation of MAP-MRI [Özarslan et al., 2013b, Appendix A],

which is equivalent to 3D-SHORE [Merlet and Deriche, 2013], describes the signal

and EAP as

Ê(q, τ ; c) =

Nq∑
i

Nτ∑
k

cikΦ
SHO
i (q)Tk(τ)Tk(τ) (9.18)

3D-SHORE’s signal and EAP basis functions are given as

ΦSHO
jlm (q, u0) =

√
4πi−l(2π2u2

0q
2)l/2e−2π2u2

0q
2
L
l+1/2
j−1 (4π2u2

0q
2)Y m

l (u) (9.19)

ΨSHO
jlm (R, u0) =

(−1)j−1

√
2πu3

0

(
R2

2u2
0

)l/2
e−R

2/2u2
0L

l+1/2
j−1

(
R2

u2
0

)
Y m
l (r) (9.20)

where Φ = IFT(Ψ) and j = (n + 2 − l)/2 is related to the radial order n and

angular order l of the basis where j ≥ 1, l ≥ 0. The real spherical harmonic basis
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Y m
l [Descoteaux et al., 2007a] has angular order l and phase factor m such that

−l ≤ m ≤ l, and L
l+1/2
j−1 is the generalized Laguerre polynomial. Following Özarslan

et al. [2013b] and formulating the isotropic scaling factor as U = u2
0 and anisotropic

scaling factors as X2 = u2
x, Y 2 = u2

y and Z2 = u2
z, we find u0 as the only positive,

real root of the cubic polynomial

3XY Z + (XY +XZ + Y Z)U − (X + Y + Z)U2 − 3U3 = 0. (9.21)

Following the same formulation of the qτ -Laplacian as in Eq. (9.16), the closed-form
Laplacian for the isotropic basis is given as [Fick et al., 2015b]:

∫
R

(∇2
qΦSHO

i )(ΦSHO
k )dq = u0δ
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l(i) δ
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
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9.D Laplacian Regularization Using Basis Normaliza-

tion

While it was not necessary in practice to normalize our basis when imposing sparsity,

we did derive the necessary adaptation to the Laplacian regularizer when the basis

is normalized. This is essential when using the isotropic MAP-MRI implementation.

To normalize the basis, we first derive the inner product C of each part of the basis:

1

CMAP
=

∫
R3

ΦNi(q, us)ΦNi(q, us)dq =
1

8uxuyuzπ2/3
(9.22)

1

CSHO
jl

=

∫
R3

ΦSHO
i (q, u0)ΦSHO

i (q, u0)dq =
1

22+lπ2u3
0

Γ(l + j + 1/2)

(j − 1)!
(9.23)

1

Cτ
=

∫
R3

Ti(τ, ut)Ti(τ, ut)dτ =
1

ut
(9.24)

where only the isotropic MAP implementation has a basis order-dependent inner

product. A normalized four-dimensional basis function Ξ∗i is obtained by multiply-
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ing the original function Ξi as Ξ∗i =
√
CiΞi with

√
CMAP =

√
8uxuyuzπ

3/4,
√
CSHO
jl =

√
22+lπ2u3

0(j − 1)!

Γ(j + l + 1/2)
,
√
Cτ =

√
ut (9.25)

where the normalization
√
Ci =

√
CMAPCτ or

√
Ci =

√
CSHO
i Cτ depending on

the choice of spatial basis. Following Eq. (9.11) and omitting the scale factor

dependence for brevity, every position in the normalized regularization matrix U∗

is given as

U∗ik =

∫∫
∇2Ξ∗i (q, τ) · ∇2Ξ∗k(q, τ)dq dτ (9.26)

=
√
CiCk

∫∫
∇2Ξi(q, τ) · ∇2Ξk(q, τ)dq dτ (9.27)

= CikUik (9.28)

where it becomes clear that normalized regularization matrix U∗ can be easily

computed as the entry-wise product of the original matrix U in Eq. (9.16) and

normalization matrix C with elements Cik =
√
CiCk.
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In this thesis, we set out to non-invasively study the microstructure of ner-

vous tissue using diffusion MRI. In particular, we studied, proposed and improved

upon models that facilitate the estimation of parameters that are both sensitive

and specific to underlying microstructural tissue changes. We called this endeavor

Microstructure Imaging. In part I of this thesis, we first introduced basic diffusion

MRI terminology in Chapter 3, which we used to then extensively review, analyze

and compare state-of-the-art Microstructure Imaging approaches in Chapter 4. In

Part II we focused on improving methodology and exploring applications of non-

parametric diffusion signal representations in Microstructure Imaging. We proposed

effective analytic Laplacian regularization for the MAP-MRI functional basis that

we called MAPL in Chapter 5; explored the application of MAPL on Human Con-

nectome Data in Chapter 6; and finally in Chapter 7 we compared microstructure-

related q-space indices with other microstructural estimates in Alzheimer rats at

different ages. Finally, in Part III we explored the non-parametric representation of

the four-dimensional, spatiotemporal diffusion signal over three-dimensional q-space

and diffusion time τ . In Chapter 8 we presented our first attempt to represent this

qτ -space, focusing on applications of three-dimensional axon diameter distribution

estimation. Finally, in Chapter 9 we presented our full-fledged qτ -dMRI functional

basis approach to effectively represent the qτ -space and estimate time-dependent

q-space indices, that we call qτ -indices. More concretely, our main contributions in

this thesis are the following:

• We meticulously reviewed and assessed the current state-of-the-art in PGSE-

based Microstructure Imaging. By breaking down each model to its basic

biophysical “building blocks”, we were able to easily identify similarities and

differences between different microstructure models. Using spinal cord data

with registered diffusion and histology data we validated different microstruc-

ture models with respect to the estimation of intra-axonal volume fraction

and axon diameter. Finally, we proposed ways to estimate microstructural

features as parsimoniously as possible, avoiding claimed degeneracy in multi-

compartment modeling.

• To effectively represent the diffusion signal in three-dimensional q-space, we

proposed analytic Laplacian regularization of the Mean Apparent Propagator

(MAP) functional basis, that we called MAPL. Using MAPL, we were able to

significantly reduce the number of samples we need to represent this space and

facilitate the robust estimation of microstructure-related q-space indices. In

particular, we could outperform previously proposed regularization schemes

using positivity constraints on the EAP, and competing functional basis ap-

proaches like mSPF.

• We also explored the application of MAPL for Microstructure Imaging in
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Human Connectome Project (HCP) data. We illustrated estimates of the

apparent axon diameter in six subjects of the MGH-HCP data, where we

could find contrasts between different parts of the corpus callosum – even

when removing the higher gradient strength shells of the acquisition. We also

explored MAPL as a preprocessing for subsequent microstructure estimation

using multi-compartment modeling using NODDI and simplified AxCaliber.

We found that this preprocessing reduces the variance of estimated axon di-

ameter and dispersion estimates.

• Our final contribution is our proposed qτ -dMRI functional basis, which non-

parametrically represents the four-dimensional diffusion signal over three-

dimensional q-space and diffusion time τ . It can be seen as an extension

of the MAP-MRI basis, modulated by a separable, temporal functional basis

based on exponential decay. It is regularized along the lines of GraphNet,

where the signal fitting is regularized by imposing both an `1-norm and the

squared `2-norm of the Laplacian of the fitted signal. For the first time, we

are able to facilitate the estimation of time-dependent three-dimensional q-

space indices, that we refer to as qτ -indices. We illustrated the robustness of

qτ -dMRI using both synthetic data and two test-retest mouse acquisitions.

Although the contributions in this thesis can still undoubtedly be improved,

and rarely an answer is found that does not bring with it several new questions,

we believe that the contributions in this thesis can be applied to a wide range of

clinical and neuroscience applications. We hope that the presented review on Mi-

crostructure Imaging inspires clarity in a field that can sometimes seem overwhelm-

ing through the sheer diversity of proposed microstructure models. Our MAPL ap-

proach facilitates effective non-parametric representation of the three-dimensional

diffusion signal using fewer samples, which can be used to regularize any subsequent

parametric microstructure modeling approach. The same arguments apply for our

final non-parametric qτ -dMRI approach, which can be used to facilitate potential

spatiotemporal parametric microstructure estimation.

Finally, this thesis has focused on advancing diffusion MRI signal modeling

with the purpose of tissue microstructure characterization. However, the effort

put into this work can only shine if the people who need to use it – researchers

focusing on the practical, clinical application of Microstructure Imaging – have

easy access to implementations of these methods. For this reason, we have already

finished sharing our implementation of MAPL in the open-source Diffusion Imaging

in Python (Dipy) framework1 [Garyfallidis et al., 2014], and intend to share the rest

of our implementations as well.

1http://nipy.org/dipy/

http://nipy.org/dipy/
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229



230 CHAPTER 11. CONCLUSION (EN FRANÇAIS)

Conclusion

Dans cette thèse, nous avons entrepris une étude de la microstructure du tissu

nerveux par IRM de diffusion. En particulier, nous avons étudié, proposé et amélioré

des modèles qui facilitent l’estimation de paramètres qui sont à la fois sensibles et

spécifiques aux changements sous-jacents des tissus microstructuraux. Nous avons

appelé cet effort �Microstructure Imaging�. Dans la partie I de cette thèse, nous

commençons par introduire la terminologie d’IRM de diffusion dans le chapitre 3,

que nous avons utilisée pour examiner, analyser et comparer les approches état

de l’art en �Microstructure Imaging� au chapitre 4. Dans la partie II, nous nous

sommes concentrés pour améliorer la méthodologie et l’exploration des applications

des représentations de signaux de diffusion non paramétriques dans �Microstructure

Imaging�. Nous avons proposé une régularisation laplacienne analytique efficace

pour la base fonctionnelle MAP-MRI que nous avons appelée MAPL au chapitre

5; nous avons exploré l’application de MAPL sur les données de Connectome Hu-

main au chapitre 6; et enfin dans le chapitre 7, nous avons comparé des indices

d’espace q liés à la microstructure avec d’autres estimations microstructurales chez

les rats Alzheimer à différents âges. Enfin, dans la partie III, nous avons exploré

la représentation non paramétrique du signal de diffusion spatio-temporelle en qua-

tre dimensions sur l’espace q tridimensionnel et le temps de diffusion τ . Dans

le chapitre 8, nous avons présenté notre première tentative pour représenter cet

qτ -espace, en se concentrant sur les applications de l’estimation de distribution

de diamètre d’axone en trois dimensions. Enfin, au chapitre 9, nous présentons

notre approche de base fonctionnelle q τ -dMRI final pour représenter efficacement

l’espace qτ et estimer les indices q-espace-temps dépendants, que nous appelons

qτ -indices. Plus concrètement, nos principales contributions dans cette thèse sont:

• Nous avons examiné et évalué méticuleusement l’état actuel de l’art en im-

agerie de diffusion à base de PGSE. En décomposant chaque modèle en ses

�blocs ou modules� biophysiques de base, nous avons pu facilement identifier

les similitudes et les différences entre les différents modèles de microstructure.

En utilisant des données de la moelle épinière avec des données de diffusion et

d’histologie enregistrées, nous avons validé différents modèles de microstruc-

ture en ce qui concerne l’estimation de la fraction volumique intra-axonale et

du diamètre de l’axone. Enfin, nous avons proposé des moyens d’estimer les

caractéristiques microstructurales de manière aussi appropriée que possible

en évitant l’effet de dégénérescence dans la modélisation à plusieurs compar-

timents.

• Pour représenter efficacement le signal de diffusion dans l’espace q tridimen-

sionnel, nous avons proposé une régularisation laplacienne analytique de la

base fonctionnelle du Mean Apparent Propagator (MAP), que nous avons ap-
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pelée MAPL. Grâce à MAPL, nous avons pu réduire de façon significative

le nombre d’échantillons dont nous avons besoin pour représenter cet espace

et faciliter l’estimation robuste des indices d’espaces q liés à la microstruc-

ture. En particulier, nous pourrions dépasser en performance les schémas de

régularisation proposés à ce jour en utilisant des contraintes de positivité sur

le EAP et des approches de base fonctionnelle concurrente comme le mSPF.

• Nous avons également exploré l’application de MAPL pour l’imagerie de mi-

crostructure dans les données du projet Connectome humain (HCP). Nous

avons illustré des estimations du diamètre apparent de l’axone chez six

sujets des données MGH-HCP, où nous pouvions trouver des contrastes

entre les différentes parties du corps calleux - même en supprimant les

niveaux de grande magnitude de gradient dans l’étape d’acquisition. Nous

avons également exploré MAPL comme un prétraitement pour l’estimation

ultérieure de la microstructure via la modélisation multi-compartiments

en utilisant NODDI et AxCaliber simplifié. Nous avons constaté que ce

prétraitement réduit la variance des estimations du diamètre axonal et des

estimations de dispersion.

• Notre contribution finale est notre base fonctionnelle qτ -dMRI , qui représente

non paramétriquement le signal de diffusion en quatre dimensions sur l’espace

q tridimensionnel et le temps de diffusion τ . Elle peut être considérée comme

une extension de la base MAP-IRM, modulée par une base fonctionnelle tem-

porelle séparable basée sur la décroissance exponentielle. Cette base est est

régularisée sur la ligne de GraphNet, où le signal est régularisé en imposant

à la fois un `1-norme et le carré `2-norme du laplacien du signal ajusté. Pour

la première fois, nous sommes en mesure de faciliter l’estimation des indices q

spatio-temporels dépendant du temps, que l’on appelle qτ -indices. Nous avons

illustré la robustesse de qτ -dMRI à l’aide à la fois de données synthétiques et

de deux acquisitions de souris test-retest.

Bien que les contributions de cette thèse puissent sans aucun doute encore être

améliorées, une réponse ouvre souvent la voie à plusieurs nouvelles questions, nous

pensons que les contributions de cette thèse peuvent être appliquées à un large

éventail d’applications cliniques et de neurosciences. Nous espérons que l’analyse

effectuée et les contributions apportées par cette thèse en �Microstructure Imag-

ing� vont effectivement permettre d’avancer l’état de l’art des connaissances dans

ce domaine encore peu étudié et surtout plus que complexe. Notre approche MAPL

facilite la représentation non paramétrique efficace du signal de diffusion tridimen-

sionnel en utilisant moins d’échantillons, ce qui peut être utilisé pour régulariser

toute approche de modélisation de la microstructure paramétrique. Les mêmes

arguments s’appliquent à notre approche non paramétrique finale qτ -dMRI, qui
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peut être utilisée pour faciliter l’estimation potentielle spatio-temporelle de la mi-

crostructure paramétrique.

Enfin, cette thèse a porté sur l’avancement de la modélisation des signaux d’IRM

de diffusion dans le but de caractériser la microstructure tissulaire. Cependant,

l’effort mis dans ce travail ne peut impacter que si les personnes qui ont besoin

de l’utiliser - les chercheurs se concentrant sur l’application clinique pratique de

Microstructure Imaging - ont un accès facile à la mise en œuvre de ces méthodes.

Pour cette raison, nous avons déjà fini de partager notre implémentation de MAPL

dans le framework open source Diffusion Imaging en Python (Dipy)1 [Garyfallidis

et al., 2014], et exprimons ici notre souhait d’opérer de même pour le reste de nos

contributions.

1http://nipy.org/dipy/

http://nipy.org/dipy/
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Floor Removal via Phase Correction of Complex Diffusion-Weighted Images:

Influence on DTI and q-space Metrics. MICCAI Workshop on Computational

Diffusion MRI, October 2016, Athens, Greece.

Rutger H.J. Fick, Madelaine Daianu, Marco Pizzolato, Demian Wassermann,

Russel E. Jacobs, Paul M. Thompson, Terrence Town, Rachid Deriche. Com-

parison of Biomarkers in Transgenic Alzheimer Rats Using Multi-shell Dif-

fusion MRI. MICCAI Workshop on Computational Diffusion MRI, October

2016, Athens, Greece.

Rutger H.J. Fick, Alexandra Petiet, Mathieu Santin, Anne-Charlotte Philippe,

Stephane Lehericy, Rachid Deriche, Demian Wassermann. Multi-Spherical

Diffusion MRI: Exploring Diffusion Time Using Signal Sparsity. MICCAI

Workshop on Computational Diffusion MRI, October 2016, Athens, Greece.

Rutger H.J. Fick, Alexandra Petiet, Mathieu Santin, Anne-Charlotte Philippe,

Stephane Lehericy, Rachid Deriche, Demian Wassermann. Multi-Spherical

MRI: Breaking the Boundaries of Diffusion Time. ISMRM Workshop on:

Breaking the Barriers of Diffusion MRI, September 2016, Lisbon, Portugal.



236 APPENDIX A. PUBLICATIONS OF THE AUTHOR

Marco Pizzolato, Rutger H.J. Fick, Timothé Boutelier, Rachid Deriche. Im-
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