Contributions à la biométrie : courbures, reconnaissance du visage sur résolutions transversales hétérologues et anti-spoofing

Abstract : Face is one of the best biometrics for person recognition related application, because identifying a person by face is human instinctive habit, and facial data acquisition is natural, non-intrusive, and socially well accepted. In contrast to traditional appearance-based 2D face recognition, shape-based 3D face recognition is theoretically more stable and robust to illumination variance, small head pose changes, and facial cosmetics. The curvatures are the most important geometric attributes to describe the shape of a smooth surface. They are beneficial to facial shape characterization which makes it possible to decrease the impact of environmental variances. However, exiting curvature measurements are only defined on smooth surface. It is required to generalize such notions to discrete meshed surface, e.g., 3D face scans, and to evaluate their performance in 3D face recognition. Furthermore, even though a number of 3D FR algorithms with high accuracy are available, they all require high-resolution 3D scans whose acquisition cost is too expensive to prevent them to be implemented in real-life applications. A major question is thus how to leverage the existing 3D FR algorithms and low-resolution 3D face scans which are readily available using an increasing number of depth-consumer cameras, e.g., Kinect. The last but not least problem is the security threat from spoofing attacks on 3D face recognition system. This thesis is dedicated to study the geometric attributes, principal curvature measures, suitable to triangle meshes, and the 3D face recognition schemes involving principal curvature measures. Meanwhile, based on these approaches, we propose a heterogeneous cross-resolution 3D FR scheme, evaluate the anti-spoofing performance of shape-analysis based 3D face recognition system, and design a supplementary hand-dorsa vein recognition system based on liveness detection with discriminative power. In 3D shape-based face recognition, we introduce the generalization of the conventional point-wise principal curvatures and principal directions for fitting triangle mesh case, and present the concepts of principal curvature measures and principal curvature vectors. Based on these generalized curvatures, we design two 3D face descriptions and recognition frameworks. With the first feature description, named as Local Principal Curvature Measures Pattern descriptor (LPCMP), we generate three curvature faces corresponding to three principal curvature measures, and encode the curvature faces following Local Binary Pattern method. It can comprehensively describe the local shape information of 3D facial surface by concatenating a set of histograms calculated from small patches in the encoded curvature faces. In the second registration-free feature description, named as Principal Curvature Measures based meshSIFT descriptor (PCM-meshSIFT), the principal curvature measures are firstly computed in the Gaussian scale space, and the extremum of Difference of Curvautre (DoC) is defined as keypoints. Then we employ three principal curvature measures and their corresponding principal curvature vectors to build three rotation-invariant local 3D shape descriptors for each keypoint, and adopt the sparse representation-based classifier for keypoint matching. The comprehensive experimental results based on FRGCv2 database and Bosphorus database demonstrate that our proposed 3D face recognition scheme are effective for face recognition and robust to poses and occlusions variations. Besides, the combination of the complementary shape-based information described by three principal curvature measures significantly improves the recognition ability of system. To deal with the problem towards heterogeneous cross-resolution 3D FR, we continuous to adopt the PCM-meshSIFT based feature descriptor to perform the related 3D face recognition. [...]
Document type :
Complete list of metadatas

Cited literature [106 references]  Display  Hide  Download
Contributor : Abes Star <>
Submitted on : Tuesday, June 6, 2017 - 2:45:08 PM
Last modification on : Wednesday, April 10, 2019 - 6:02:30 AM
Long-term archiving on : Thursday, September 7, 2017 - 1:03:00 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01533439, version 1


Yinhang Tang. Contributions à la biométrie : courbures, reconnaissance du visage sur résolutions transversales hétérologues et anti-spoofing. Other. Université de Lyon, 2016. English. ⟨NNT : 2016LYSEC060⟩. ⟨tel-01533439⟩



Record views


Files downloads