Contributions à la biométrie : courbures, reconnaissance du visage sur résolutions transversales hétérologues et anti-spoofing

Résumé : Visage est l’une des meilleures biométries pour la reconnaissance de l’identité de personnes, car l’identification d’une personne par le visage est l’habitude instinctive humaine, et l’acquisition de données faciales est naturelle, non intrusive et bien acceptée par le public. Contrairement à la reconnaissance de visage par l’image 2D sur l’apparence, la reconnaissance de visage en 3D sur la forme est théoriquement plus stable et plus robuste à la variance d’éclairage, aux petits changements de pose de la tête et aux cosmétiques pour le visage. Spécifiquement, les courbures sont les plus importants attributs géométriques pour décrire la forme géométrique d’une surface. Elles sont bénéfiques à la caractérisation de la forme du visage qui permet de diminuer l’impact des variances environnementales. Cependant, les courbures traditionnelles ne sont définies que sur des surfaces lisses. Il est donc nécessaire de généraliser telles notions sur des surfaces discrètes, par exemple des visages 3D représenté par maillage triangulaire, et d’évaluer leurs performances en reconnaissance de visage 3D. En outre, même si un certain nombre d’algorithmes 3D FR avec une grande précision sont disponibles, le coût d’acquisition de telles données de haute résolution est difficilement acceptable pour les applications pratiques. Une question majeure est donc d’exploiter les algorithmes existants pour la reconnaissance de modèles à faible résolution collecté avec l’aide d’un nombre croissant de caméras consommateur de profondeur (Kinect). Le dernier problème, mais non le moindre, est la menace sur sécurité des systèmes de reconnaissance de visage 3D par les attaques de masque fabriqué. Cette thèse est consacrée à l’étude des attributs géométriques, des mesures de courbure principale, adaptées aux maillages triangulaires, et des schémas de reconnaissance de visage 3D impliquant des telles mesures de courbure principale. En plus, nous proposons aussi un schéma de vérification sur la reconnaissance de visage 3D collecté en comparant des modèles de résolutions hétérogènes équipement aux deux résolutions, et nous évaluons la performance anti-spoofing du système de RF 3D. Finalement, nous proposons une biométrie système complémentaire de reconnaissance veineuse de main basé sur la détection de vivacité et évaluons sa performance. Dans la reconnaissance de visage 3D par la forme géométrique, nous introduisons la généralisation des courbures principales conventionnelles et des directions principales aux cas des surfaces discrètes à maillage triangulaire, et présentons les concepts des mesures de courbure principale correspondants et des vecteurs de courbure principale. Utilisant ces courbures généralisées, nous élaborons deux descriptions de visage 3D et deux schémas de reconnaissance correspondent. Avec le premier descripteur de caractéristiques, appelé Local Principal Curvature Measures Pattern (LPCMP), nous générons trois images spéciales, appelée curvature faces, correspondant à trois mesures de courbure principale et encodons les curvature faces suivant la méthode de Local Binary Pattern. Il peut décrire la surface faciale de façon exhaustive par l’information de forme locale en concaténant un ensemble d’histogrammes calculés à partir de petits patchs dans les visages de courbure. Dans le deuxième système de reconnaissance de visage 3D sans enregistrement, appelée Principal Curvature Measures based meshSIFT descriptor (PCM-meshSIFT), les mesures de courbure principales sont d’abord calculées dans l’espace de l’échelle Gaussienne, et les extrèmes de la Différence de Courbure (DoC) sont définis comme les points de caractéristique. Ensuite, nous utilisons trois mesures de courbure principales et leurs vecteurs de courbure principaux correspondants pour construire trois descripteurs locaux pour chaque point caractéristique, qui sont invariants en rotation. [...]
Type de document :
Thèse
Other. Université de Lyon, 2016. English. 〈NNT : 2016LYSEC060〉
Liste complète des métadonnées

Littérature citée [129 références]  Voir  Masquer  Télécharger

https://tel.archives-ouvertes.fr/tel-01533439
Contributeur : Abes Star <>
Soumis le : mardi 6 juin 2017 - 14:45:08
Dernière modification le : vendredi 10 novembre 2017 - 01:18:57
Document(s) archivé(s) le : jeudi 7 septembre 2017 - 13:03:00

Fichier

TH_T2554_ytang_optimise.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01533439, version 1

Collections

Citation

Yinhang Tang. Contributions à la biométrie : courbures, reconnaissance du visage sur résolutions transversales hétérologues et anti-spoofing. Other. Université de Lyon, 2016. English. 〈NNT : 2016LYSEC060〉. 〈tel-01533439〉

Partager

Métriques

Consultations de la notice

115

Téléchargements de fichiers

70