K. S. Kim, W. A. Reed, K. W. Quoi, and R. H. Stolen, Measurement of the nonlinear index of silica-core and dispersion-shifted fibers, Optics Letters, vol.19, issue.4, pp.257-259, 1994.
DOI : 10.1364/OL.19.000257

A. B. Grudinin, E. M. Dianov, D. V. Korbkin, A. M. Prokhorov, and D. V. Khaidarov, Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons, JETP Lett, vol.47, issue.6, p.356, 1988.

Y. Tang, L. G. Wright, K. Charan, T. Wang, C. Xu et al., Generation of intense 100 fs solitons tunable from 2 to 4.3 ?m in fluoride fiber, p.948, 2016.

I. H. Malitson, Interspecimen Comparison of the Refractive Index of Fused Silica*,???, Journal of the Optical Society of America, vol.55, issue.10, pp.1205-1209, 1965.
DOI : 10.1364/JOSA.55.001205

H. Liu, Development Of Fiber Lasers That Generate Few-Cycle Optical Pulses, 2014.

N. G. Horton, In vivo three-photon microscopy of subcortical structures within an intact mouse brain, Nature Photonics, vol.6, issue.3, pp.205-209, 2013.
DOI : 10.1038/nphoton.2012.336

A. B. Grudinin and S. Gray, Passive harmonic mode locking in soliton fiber lasers, Journal of the Optical Society of America B, vol.14, issue.1, pp.144-154, 1997.
DOI : 10.1364/JOSAB.14.000144

A. Chong, J. Buckley, W. Renninger, and F. Wise, All-normal-dispersion femtosecond fiber laser, Optics Express, vol.14, issue.21, p.10095, 2006.
DOI : 10.1364/OE.14.010095

H. Wang, Dissipative Soliton Generation and Amplification in Erbium-Doped Fibers Operating at 1.55 μm, IEEE Journal of Selected Topics in Quantum Electronics, vol.20, issue.5, pp.283-289, 2014.
DOI : 10.1109/JSTQE.2014.2308394

Y. Tang, A. Chong, and F. W. Wise, Generation of 8??????nJ pulses from a normal-dispersion thulium fiber laser, Optics Letters, vol.40, issue.10, p.2361, 2015.
DOI : 10.1364/OL.40.002361

W. H. Renninger, A. Chong, and F. W. Wise, Self-similar pulse evolution in an all-normal-dispersion laser, Physical Review A, vol.82, issue.2, p.21805, 2010.
DOI : 10.1364/OE.18.008680

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135385

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers, Physical Review Letters, vol.23, issue.26, pp.6010-6013, 2000.
DOI : 10.1103/PhysRevLett.84.6010

Y. Zaouter, Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers, Optics Letters, vol.33, issue.2, p.107, 2008.
DOI : 10.1364/OL.33.000107

URL : https://hal.archives-ouvertes.fr/hal-00531815

A. Ruehl, H. Hundertmark, D. Wandt, C. Fallnich, and D. Kracht, 0.7 W all-fiber Erbium oscillator generating 64 fs wave breaking-free pulses, Optics Express, vol.13, issue.16, pp.6305-6309, 2005.
DOI : 10.1364/OPEX.13.006305

URL : https://hal.archives-ouvertes.fr/hal-01182373

J. Peng, All-fiber ultrashort similariton generation, amplification, and compression at telecommunication band, Journal of the Optical Society of America B, vol.29, issue.9, pp.2270-2274, 2012.
DOI : 10.1364/JOSAB.29.002270

D. S. Chernykh, Hybrid mode-locked erbium-doped all-fiber soliton laser with a distributed polarizer, Applied Optics, vol.53, issue.29, pp.6654-6662, 2014.
DOI : 10.1364/AO.53.006654

K. Chu, H. Jiang, and S. Yang, High-energy femtosecond amplifier-similariton Er-doped fiber oscillator, Optics Letters, vol.40, issue.22, pp.5319-5322, 2015.
DOI : 10.1364/OL.40.005319

D. Strickland and G. Mourou, Compression of amplified chirped optical pulses, Optics Communications, vol.55, issue.6, pp.447-449, 1985.
DOI : 10.1016/0030-4018(85)90151-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.673.148

T. Eidam, Fiber chirped-pulse amplification system emitting 38 GW peak power, Optics Express, vol.19, issue.1, pp.255-260, 2011.
DOI : 10.1364/OE.19.000255

F. Röser, Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system, Optics Letters, vol.32, issue.24, pp.3495-3497, 2007.
DOI : 10.1364/OL.32.003495

C. Gaida, M. Gebhardt, F. Stutzki, C. Jauregui, J. Limpert et al., Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power, Optics Letters, vol.41, issue.17, pp.4130-4133, 2016.
DOI : 10.1364/OL.41.004130

F. Röser, 90 W average power 100 ??J energy femtosecond fiber chirped-pulse amplification system, Optics Letters, vol.32, issue.15, pp.2230-2232, 2007.
DOI : 10.1364/OL.32.002230

D. Gaponov, L. Lavoute, S. Février, and A. , Hideur, and N. Ducros, '2µm all-fiber dissipative soliton master oscillator power amplifier, pp.2016-972834

F. Tan, H. Shi, R. Sun, P. Wang, and P. Wang, 1 ??J, sub-300 fs pulse generation from a compact thulium-doped chirped pulse amplifier seeded by Raman shifted erbium-doped fiber laser, Optics Express, vol.24, issue.20, pp.22461-22468, 2016.
DOI : 10.1364/OE.24.022461

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, Soliton???similariton fibre laser, Nature Photonics, vol.16, issue.5, pp.307-311, 2010.
DOI : 10.1038/nphoton.2010.33

URL : http://repository.bilkent.edu.tr/bitstream/11693/22341/1/bilkent-research-paper.pdf

C. D. Poole, J. M. Wiesenfeld, A. R. Mccormick, and K. T. Nelson, Broadband dispersion compensation by using the higher-order spatial mode in a two-mode fiber, Optics Letters, vol.17, issue.14, p.985, 1992.
DOI : 10.1364/OL.17.000985

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi et al., Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers, Laser & Photonics Review, vol.33, issue.6, pp.429-448, 2008.
DOI : 10.1002/lpor.200810016

X. Peng, Higher-order mode fiber enables high energy chirped-pulse amplification, Optics Express, vol.21, issue.26, pp.32411-32416, 2013.
DOI : 10.1364/OE.21.032411

S. Ramachandran, Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices, Journal of Lightwave Technology, vol.23, issue.11, p.3426, 2005.
DOI : 10.1109/JLT.2005.855874

A. E. Miller, R. L. Opila, and M. F. Yan, Ultranegative delta cladding for modified chemical vapor deposition, Optical Fiber Communications, OFC., pp.56-58, 1996.
DOI : 10.1109/OFC.1996.907638

G. Humbert and A. Malki, Electric-arc-induced gratings in non-hydrogenated fibres: fabrication and high-temperature characterizations, Journal of Optics A: Pure and Applied Optics, vol.4, issue.2, p.194, 2002.
DOI : 10.1088/1464-4258/4/2/313

K. Lai, S. G. Leon-saval, A. Witkowska, W. J. Wadsworth, and T. A. Birks, Wavelength-independent all-fiber mode converters, Optics Letters, vol.32, issue.4, pp.328-330, 2007.
DOI : 10.1364/OL.32.000328

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, Spatially and spectrally resolved imaging of modal content in large-mode-area fibers, Optics Express, vol.16, issue.10, pp.7233-7243, 2008.
DOI : 10.1364/OE.16.007233.m003

F. Morin, Conception d'une source à impulsions courtes à 1600 nm à fibres dopées erbium : application à la greffe de cornée, 2010.

S. G. Leon-saval, N. K. Fontaine, J. R. Salazar-gil, B. Ercan, R. Ryf et al., Mode-selective photonic lanterns for space-division multiplexing, Optics Express, vol.22, issue.1, pp.1036-1044, 2014.
DOI : 10.1364/OE.22.001036

T. A. Birks, I. Gris-sánchez, S. Yerolatsitis, S. G. Leon-saval, and R. R. Thomson, The photonic lantern, Advances in Optics and Photonics, vol.7, issue.2, p.107, 2015.
DOI : 10.1364/AOP.7.000107

A. M. Velazquez-benitez, Six mode selective fiber optic spatial multiplexer, Optics Letters, vol.40, issue.8, pp.1663-1666, 2015.
DOI : 10.1364/OL.40.001663

G. Lopez-galmiche, Few-mode erbium-doped fiber amplifier with photonic lantern for pump spatial mode control, Optics Letters, vol.41, issue.11, pp.2588-2591, 2016.
DOI : 10.1364/OL.41.002588

M. A. Khamis and K. Ennser, Theoretical Model of a Thulium-Doped Fiber Amplifier Pumped at 1570 nm and 793 nm in the Presence of Cross Relaxation, Journal of Lightwave Technology, vol.34, issue.24, pp.5675-5681, 2016.
DOI : 10.1109/JLT.2016.2631635

P. Peterka, I. Kasik, A. Dhar, B. Dussardier, and W. Blanc, Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced ^3H_4 level lifetime, Optics Express, vol.19, issue.3, p.2773, 2011.
DOI : 10.1364/OE.19.002773

URL : https://hal.archives-ouvertes.fr/hal-00561410

S. D. Agger and J. H. Povlsen, Emission and absorption cross section of thulium doped silica fibers, Optics Express, vol.14, issue.1, p.50, 2006.
DOI : 10.1364/OPEX.14.000050

URL : http://orbit.dtu.dk/files/10647255/4.pdf

S. D. Jackson and T. A. King, Theoretical modeling of Tm-doped silica fiber lasers, Journal of Lightwave Technology, vol.17, issue.5, pp.948-956, 1999.
DOI : 10.1109/50.762916

M. Devautour, Étude de fibres actives combinant large coeur et fort niveau de dopage pour l'émission unimodale ':, thesis

S. Wielandy, Implications of higher-order mode content in large mode area fibers with good beam quality, Optics Express, vol.15, issue.23, pp.15402-15409, 2007.
DOI : 10.1364/OE.15.015402.m001

D. B. Soh, J. Nilsson, S. Baek, C. Codemard, Y. Jeong et al., Modal power decomposition of beam intensity profiles into linearly polarized modes of multimode optical fibers, Journal of the Optical Society of America A, vol.21, issue.7, pp.1241-1250, 2004.
DOI : 10.1364/JOSAA.21.001241

M. Paurisse, L. Lévèque, M. Hanna, F. Druon, and P. Georges, Complete measurement of fiber modal content by wavefront analysis, Optics Express, vol.20, issue.4, pp.4074-4084, 2012.
DOI : 10.1364/OE.20.004074

URL : https://hal.archives-ouvertes.fr/hal-00702167

Y. Ma, Characterization of Higher Order Modes in Optical Fibers, Charakterisierung von Moden höherer Ordnung in optischen Fasern

Y. Z. Ma, Fiber-modes and fiber-anisotropy characterization using low-coherence interferometry, Applied Physics B, vol.8, issue.2-3, pp.3-345, 2009.
DOI : 10.1007/s00340-009-3517-9

D. N. Schimpf, R. A. Barankov, and S. Ramachandran, Cross-correlated (C^2) imaging of fiber and waveguide modes, Optics Express, vol.19, issue.14, pp.13008-13019, 2011.
DOI : 10.1364/OE.19.013008

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, Measuring the Modal Content of Large-Mode-Area Fibers, IEEE Journal of Selected Topics in Quantum Electronics, vol.15, issue.1, pp.61-70, 2009.
DOI : 10.1109/JSTQE.2008.2010239

D. R. Gray, Accurate calibration of S^2 and interferometry based multimode fiber characterization techniques, Optics Express, vol.23, issue.8, p.10540, 2015.
DOI : 10.1364/OE.23.010540

H. Otto, F. Jansen, F. Stutzki, C. Jauregui, J. Limpert et al., Improved Modal Reconstruction for Spatially and Spectrally Resolved Imaging <formula formulatype="inline"><tex Notation="TeX">$({\rm S}^{2})$</tex></formula>, Journal of Lightwave Technology, vol.31, issue.8, pp.1295-1299, 2013.
DOI : 10.1109/JLT.2013.2242430

B. Sévigny, Advanced S<inline-formula><tex-math notation="LaTeX">$^2$</tex-math></inline-formula> Imaging: Application of Multivariate Statistical Analysis to Spatially and Spectrally Resolved Datasets, Journal of Lightwave Technology, vol.32, issue.23, pp.4606-4612, 2014.
DOI : 10.1109/JLT.2014.2362960

I. Chapter and .. Context, 1 I.1. Nonlinearities in optical fibers. 2 I.1.2

.. Generalized-nonlinear-schrödinger-equation, 9 I.2.1. Modeling the propagation of short pulses in optical fibers. 9 I.2.2. Pulse in the anomalous dispersion regime11 I.2.2.1. Soliton theory.12 I.2.3. Pulse in the normal dispersion regime, p.14

.. Chapter-fiber, 23 II.2. Design criteria, Impact of the trench, p.32

.. Chapter, 34 III.1. Long period gratings with controlled bandwidth34 III.2. Modeling and realization of a dedicated mode converter40 III.3. Passive few mode fiber excited by the LP 02 mode converter45 III.3.1. S² measurement on the passive few mode fiber excited by the mode converter: pulsed seed source for similariton amplifier, p.51

A. Chapter-parabolic, 54 IV.2. Numerical procedure56 IV.2.1. Multimode amplification in continuous wave regime1. Dependence of the gain on the pump wavelength, 58 IV.2.1.2. Spatial evolution of the LP 02 weight along amplification, p.62

.. Nonlinear-modeling, 64 IV.2.2.1. Constant effective modal area and gain, ., p.68

E. Area and G. , 75 IV.3. Fabricated active few-mode fiber, p.77