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Abstract

2D Arrangements for Public Space Mapping and Trans-
portation

This thesis addresses easy and effective development of mapping and transportation appli-
cations which especially focuses on the generation of pedestrian networks for applications
like navigation, itinerary calculation, accessibility analysis and urban planning. In order
to achieve this goal, we proposed a two layered data model which encodes the public
space into a hierarchy of semantic geospatial objects. At the lower level, the 2D geometry
of the geospatial objects are captured using a planar partition which is represented as
a topological 2D arrangement. This representation of a planar partition allows efficient
and effective geometry processing and easy maintenance and validation throughout the
editions when the geometry or topology of an object is modified. At the upper layer,
the semantic and thematic aspects of geospatial objects are modelled and managed. The
hierarchy between these objects is maintained using a directed acyclic graph (DAG) in
which the leaf nodes correspond to the geometric primitives of the 2D arrangement and
the higher level nodes represent the aggregated semantic geospatial objects at different
levels. We integrated the proposed data model into our GIS framework called StreetMaker
together with a set of generic algorithms and basic GIS capabilities. This framework is
then rich enough to generate pedestrian network graphs automatically. In fact, within
an accessibility analysis project, the full proposed pipeline was successfully used on two
sites to produce pedestrian network graphs from various types of input data: existing GIS
vector maps, semi-automatically created vector data and vector objects extracted from
Mobile Mapping lidar point clouds.

While modelling 2D ground surfaces may be sufficient for 2D GIS applications, 3D GIS
applications require 3D models of the environment. 3D modelling is a very broad topic
but as a first step to such 3D models, we focused on the semi-automatic modelling of
geospatial objects (such as poles, lampposts, tree trunks, etc.) which can be modelled or
approximated by generalized cylinders from single images. The developed methods and
techniques are presented and discussed.

Keywords : 2D Arrangements, Alpha shapes, Centreline generation, Computational
geometry, Delaunay triangulations, Directed Acyclic Graphs (DAG), Geographic Informa-
tion Systems (GIS), Medial axis, Hierarchical GIS modelling, Pedestrian network graphs,
Planar partition, Robust exact geometric computation, Straight skeleton, StreetMaker, 3D
generalized cylinder modelling
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Résumé

Arrangements 2D pour la Cartographie de l’Espace
Public et des Transports

Cette thèse porte sur le développement facilité d’applications de cartographie et de trans-
port, plus particulièrement sur la génération de réseaux piétonniers pour des applications
telles que la navigation, le calcul d’itinéraires, l’analyse d’accessibilité et l’urbanisme. Afin
d’atteindre ce but, nous proposons un modèle de données à deux couches qui cartogra-
phie l’espace public dans une hiérarchie d’objets géospatiaux sémantisés. A bas niveau, la
géométrie 2D des objets géospatiaux est représentée par une partition planaire, modélisée
par une structure topologique d’arrangement 2D. Cette représentation permet des trai-
tements géométriques efficaces et efficients, ainsi qu’une maintenance et une validation
aisée au fur et à mesure des éditions lorsque la géométrie ou la topologie d’un objet sont
modifiées. A haut niveau, les aspects sémantiques et thématiques des objets géospatiaux
sont modélisés et gérés. La hiérarchie entre ces objets est maintenue à travers un graphe
dirigé acyclique dans lequel les feuilles correspondent à des primitives géométriques de
l’arrangement 2D et les noeuds de plus haut niveau représentent les objets géospatiaux
sémantiques plus ou moins aggrégés. Nous avons intégré le modèle de données proposé
dans un framework SIG nommé StreetMaker en complément d’un ensemble d’algorithmes
génériques et de capacités SIG basiques. Ce framework est alors assez riche pour générer
automatiquement des graphes de réseau piétonnier. En effet, dans le cadre d’un projet
d’analyse d’accessibilité, le flux de traitement proposé a permis de produire avec succès
sur deux sites un graphe de réseau piétonnier à partir de données en entrées variées : des
cartes vectorielles existantes, des données vectorielles créées semi-automatiquement et des
objets vectoriels extraits d’un nuage de points lidar issu d’une acquisition de cartographie
mobile.

Alors que la modélisation 2D de la surface du sol est suffisante pour les applications
SIG 2D, les applications SIG 3D nécessitent des modèles 3D de l’environnement. La
modélisation 3D est un sujet très large mais, dans un premier pas vers cette modélisation
3D, nous nous sommes concentrés sur la modélisation semi-automatique d’objets de type
cylindre généralisé (tels que les poteaux, les lampadaires, les troncs d’arbre, etc) à partir
d’une seule image. Les méthodes et techniques développées sont présentées et discutées.

Mots Clés : Arrangements 2D, Génération de la ligne centrale, Géométrie algorith-
mique, Triangulation de Delaunay, Graphes dirigés acycliques, Systèmes d’information
géographique (SIG), Sciences de l’Information Géographique, axe médian, Modélisation
hiérarchique SIG, Graphe de navigation piétionne, partition planaire, calcul géométrique
exact et robuste, Squelette droit, StreetMaker, Modélisation de cylindres 3D généralisés
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1. Introduction

Chapter 1

Introduction

1.1 Context

Geographic Information Science (GIScience) is a combination of many different fields such
as cartography, geodesy, geography, computer science, computer vision, computational
geometry, statistics and social sciences. Mark [2003] quoted the definition of GIScience
from UCGIS1 as “The development and use of theories, methods, technology and data for
understanding geographic processes, relationships and patterns. The transformation of
geographic data into useful information is central to GIScience.” Furthermore, Goodchild
[1990, 1992] gave a list of GIScience related research topics (Table 1.1).

No Topic
1. Spatial analysis and spatial statistics
2. Spatial relationships and database structures
3. Artificial intelligence and expert systems
4. Visualization of spatial data
5. Social, economic and institutional issues
6. Data capture, collection and measurement
7. Data modelling and theories of spatial data
8. Data structures, algorithms and processes

Table 1.1: A list of research topics in GIScience [Goodchild, 1990, 1992].

Huisman and De By [2009] defined Geographic Information System (GIS) as a computer-
based system that provides four basic capabilities (Table 1.2) to handle geographic data.
Although, sometimes the terms GIS and GIS application are often used in the same
meaning without causing any ambiguity, the meanings of the two are different. In fact,
a GIS is a tool which can be used to develop different GIS applications. For instance,
Geographic Resources Analysis Support System (GRASS) GIS is a free open source GIS
which can be used to develop many different applications in various fields.2 In addition,
the interested reader may refer to Pierce and Clay [2007] for a set of GIS applications in
agriculture using different GISs.

1University Consortium for Geographic Information Science, www.ucgis.org
2GRASS GIS applications: https://grass.osgeo.org/documentation/applications/
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Chapter 1. Introduction

Num. Capabilities
1. Data capture and preparation
2. Data management, including storage and maintenance
3. Data manipulation and analysis
4. Data presentation

Table 1.2: GIS capabilities [Huisman and De By, 2009].

The context of this thesis is related to developing GIS applications especially related to
mapping and transportation with one specific application in mind: generating realistic
pedestrian network graphs which avoid static obstacles on the walkways. Such an appli-
cation involves many research topics (Table 1.1) and GIS capabilities (Table 1.2). In the
following sections, we will discuss the topic and aims of the thesis and how it is related
to the context outlined here.

We will see that 2D models of the ground surfaces are required for the generation of the
desired pedestrian networks. That is, 2D outlines (footprints) of the geospatial objects
are required for 2D GIS applications. Similarly, we will conclude that 3D models of the
objects are required for 3D GIS applications. As a first step into 3D modelling for 3D
GIS applications, a research work has also been carried out. However, 3D modelling is a
very broad topic by itself, therefore we restrict our research on the 3D modelling of the
generalized cylinders from single-view.

1.2 Topic and Aims

In this thesis, we aimed for a pedestrian network generation process which produces geo-
referenced, geometrically true and static obstacle avoiding graphs. That is, the desired
graph nodes are geo-referenced and the graph edges represent the true centrelines of the
walkways. In addition, we wanted to analyse such a GIS application development process
and if possible design a framework for developing similar mapping and transportation
applications. The requirements of such a GIS framework is discussed along the pedestrian
network generation process which are more or less applicable to similar applications with
minor modifications.

A typical GIS application has a very basic structure at the very highest level. Geospatial
data are processed with a set of algorithms in order to provide the desired outputs. Such
a basic structure / schema of a GIS application is given in Figure 1.1. In this schema, the
data model is a bridge between the algorithms and the data. Algorithms operate on the
data through the data model, therefore the design of the data model is strictly related to
the type of the data (Chapter 2 briefly introduces the data types in GIScience).

The surfaces on which the pedestrians can freely move are called walkways. Walkways are
composed of geospatial urban objects such as sidewalks, parks, public squares, pedestrian
crossings, etc. The rest of the urban objects (e.g. buildings, city furnitures, motorways,
etc.) are considered as barriers for the movement of pedestrians. The footprints of all
these objects define a partition on the surface of the cities. Therefore, when the earth
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Input: Data Data Model

Algorithms Output

GIS FrameworkGIS Application

Figure 1.1: A typical GIS application schema.

surface is modelled in 2D, planar partitions3 are the natural choice for describing different
regions (i.e. outlines of the geospatial objects) on the surface.

Planar partitions can either be created from scratch or existing (previously created) vector
datasets can be leveraged. In both cases, the GIS capabilities given in Table 1.2 are
required for fixing the geometric and topological errors and/or completing the missing
data. Furthermore, upon creation of planar partitions they have to be validated. The
theory of valid planar partitions are discussed in Chapter 2 but in short, a valid planar
partition has to comply with the following three rules: (i) all polygons must be valid, (ii)
no gaps between the polygons are allowed and (iii) polygons must not overlap.

In a dynamic system managing planar partitions, the geometry and the topology of the
primitives4 describing the partitions might change occasionally. Then, in order to achieve
a dynamic system, planar partitions are able to be modified by adding new geometry or
deleting the existing ones. After applying the updates, it is also crucial to keep the planar
partitions valid for the integrity of the data model (Figure 1.2). The “Maintain” block in
Figure 1.2 relates to the finding of the intersections between the line segments (between the
existing and the newly inserted ones), splitting the existing lines and polygons, removing
polygons, etc. for keeping the modified planar partitions valid.

Besides the geometry, we also want to capture the thematic and semantic information
related to geospatial urban objects (Chapter 3). An object oriented approach fits very
well for grouping the related information over a planar partition. We create abstract
software objects called semantic objects that integrate the aforementioned geometric and
semantic information. The data model should also count for the natural hierarchy between
the geospatial objects. That is, objects sharing the same physical surface have to be
considered. For instance, in a street scene, a top level object can be the street itself
composed of the sidewalks, roads and buildings.

Traditionally, planar partitions are represented by a set of polygons which are used to
model only areal objects. On the other hand, geospatial objects can also be linear and
punctual. Therefore, in order to represent all types of objects within a single framework,
the data model based on the planar partitions should be extended.

Maintenance of the underlying geometry and topology (i.e. planar partitions) is only
the first part of a bigger maintenance step. As the geometry and the topology change,

3A planar partition is the tessellation of the plane into non-overlapping polygons.
4Geometric primitives composing planar partitions: points, line segments and polygons.
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Figure 1.2: Maintenance of the planar partitions. The numbers in the figure indicate the order
of operations in a conceptual GIS for keeping managed planar partition valid, i.e. keeping the
data model consistent.

already constructed objects also need to be maintained (Section 3.4). For this reason,
each semantic object keeps a list of geometric primitives that it was constructed on. Then,
the maintenance of the semantic objects is achieved by keeping these geometry lists up-
to-date. The rule here is that once an object has been created, it’s initial geometry must
not shrink, enlarge, etc. For instance, a newly added line segment can split an existing
polygon which had been previously linked to a semantic object. Therefore, the other half
of the split polygon has to be added to the geometry list of the corresponding semantic
object in order to keep the initial geometry of the object effectively-unchanged5.

Having the explicit topological relationships between the geometric primitives (e.g. which
edges are connected to a given point, which edges circulate around a given polygon, which
polygons are neighbours to each other, etc.) is important for efficient and effective geomet-
ric processing (Section 2.2). For instance, the maintenance issues introduced previously
can benefit a lot from a data model which stores explicit topological information.

Computational geometry and scientific computing algorithms need to be robust (Section
5.5). Storing real numbers with fixed-length bits within computers using the floating
point format defined by ANSI/IEEE Standard 754 [1985] may cause the programs to
crash or produce erroneous outputs. Therefore, GIS applications performing geometric
computations need to have robust data models and algorithms in order to prevent these
errors.

Tables 1.3 and 1.4 summarize the requirements of a data model and a GIS framework
that can be used to accomplish the desired pedestrian network generation application.
According to the identified requirements, we proposed to represent planar partitions with
2D arrangements of line segments which subdivide the plane into 0-dim points (vertices),
1-dim line segments (edges) and 2-dim polygons (faces). Besides planar partitions, 2D
arrangements can also support isolated points6 and individual line segments7 on which
punctual and linear semantic objects can be constructed respectively. In fact, we will

5The geometry of the object changes but the union of the primitives constructing the object geometry
does not change.

6Not connected to any line segment.
7Not on the boundary of a polygon.
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see that 2D arrangements are nothing but generalized planar graphs from which planar
partitions can easily be extracted (Section 2.4). The benefit of 2D arrangements is that,
when they are implemented with a topological data structure, it is very efficient to main-
tain and validate the underlying planar partitions especially in dynamic environments.
In addition, our data model captures the hierarchy between the objects using a Directed
Acyclic Graph (DAG) structure (Section 3.3). The leaf nodes in this hierarchy do not
correspond to objects but geometric primitives. Semantic objects constructed on these
primitives correspond to higher level nodes in the hierarchy graph. We will see that such
a DAG is also very useful for rendering/displaying the semantic objects on the computer
screen (Section 3.5). Note that in an object hierarchy sharing the same set of primitives,
all objects may not be rendered simultaneously due to the possible shared surfaces and
occlusions. The DAG hierarchy is used to find out and resolve occlusions and ambiguity
conditions related to object rendering.

No Data Model Requirements
R1 It should be able to represent planar partitions.
R2 It should be able to validate planar partitions.
R3 It should be able to maintain the validity of the planar partitions upon

adding/deleting geometry.
R4 It should be able to construct software objects that model the geospatial objects

possibly with semantic information.
R5 It should be able to represent areal, linear and punctual objects.
R6 It should be able to construct the hierarchy of the objects.
R7 It should be able to keep the already created software objects consistent when

the underlying geometry is changed.
R8 It should keep explicit topological information in order to provide efficient and

effective geometric computing.

Table 1.3: Data model requirements for supporting mapping and transportation applications.

No GIS Framework Requirements

R1 It should have a data model that complies with the requirements given in Table
1.3

R2 It should allow creation of planar partitions from scratch.
R3 It should be able to leverage existing datasets for generating planar partitions.
R4 It should have the basic GIS capabilities for handling requirements R2 and R3.
R5 It should have a set of robust algorithms for geometric computing.

Table 1.4: The GIS framework requirements for supporting mapping and transportation appli-
cations.

Figure 1.3 displays the overall proposed data model for a synthetic street scene. In the
figure, the main components of the data model are displayed in two separate layers.
The data model establishes a basis for the GIS applications by capturing the geometry
and semantics of the region of interest via planar partitions and semantic objects. Once
the data model is up and ready, the application specific algorithms can operate on it.
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Chapter 1. Introduction

The proposed data model is encapsulated into our GIS framework called StreetMaker
(Figure 1.4, refer to Chapter 5 for the details). StreetMaker has also a set of basic GIS
capabilities for inserting, deleting, selecting, editing and displaying the geometry and
creating the semantic objects together with the associated hierarchy. In addition, a few
generic algorithms ready to operate on the data model are integrated into StreetMaker.
These algorithms can be utilized by any GIS application based on StreetMaker as our
pedestrian network generation application. The list of the integrated algorithms and
their possible usages are summarized in the Table 1.5. The theory and applications of
these algorithms are discussed in Chapter 4.
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Figure 1.3: A street scene is modelled with the proposed data model. At the lowest level,
geometric primitives (points, line segments and polygons) constituting the 2D arrangements are
used to model the planar partitions. Then, the semantic objects are created on the underlying
arrangement cells. The hierarchy between the semantic objects and the geometric primitives are
constructed using a DAG.

The proposed pedestrian network generation algorithm is composed of a number of build-
ing blocks as displayed in Figure 1.5. The algorithm starts with the extraction of the
walkways on which the pedestrians can walk (1). Then, the geometric centrelines of the
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Figure 1.4: StreetMaker: a GIS framework for developing GIS applications. In the figure,
semantic objects constructed on the underlying planar partitions are displayed in the main
window of StreetMaker. Planar partition and the semantic objects are overlaid on an ortho-
photo.

Algorithm Possible Usages
Delaunay triangulation Triangulated Irregular Networks (TIN), 2D α-shapes, Seg-

ment Voronoi Diagrams (SVD) from Segment Delaunay
Graphs (SDG).

Voronoi diagram Nearest neighbour, medial axis from SVD, centrelines from
medial axis.

2D α-shapes Estimating 2D shapes form 2D point clouds.
Straight skeleton Centrelines, polygon offsets, plausible roof structures, terrain

generation.
Connectivity graph Thematic graphs for itinerary calculations.

Table 1.5: Integrated algorithms into StreetMaker and their possible usages in GIS applications

walkways are computed using the medial axis transform (2). These centrelines correspond
to the pure pedestrian network graphs (initial graph) which are augmented by inserting
additional nodes and structured by identifying groups of connected edges called trajectory
arcs (Figure 1.6) (3). The additional nodes are computed by intersecting the borderlines
(line segments constituting the borders between different objects) and the existing cen-
trelines in the initial graph. Therefore, there will be a node in the final graph for each
borderline separating two objects. In addition, some of the graph nodes are marked as
special depending on their properties (will be detailed in Section 6.2). These special
nodes indicate the start and end points of trajectory arcs which represent the parts of the
network graph on which an entity can travel without making any further decisions on the
path selection. Furthermore, the total length of a trajectory arc and the minimum width
between each trajectory arc and the surrounding object borders are calculated. In the
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Chapter 1. Introduction

following step, the selected punctual semantic objects are projected onto the computed
pedestrian graphs (4). The punctual objects generally represent building doors, bus stops,
metro stations, etc. and their projections on the graphs correspond to the junctions from
which pedestrians can enter or exit the graphs. At this stage of the algorithm, the basic
pedestrian network graph is ready. However, since our data model might possess many
useful semantic and thematic information (such as the names of the streets, avenues and
regions) related to the surrounding geospatial objects, this information can also be uti-
lized within the graphs (5). The more information embedded into the graphs, the more
sophisticated algorithms can run on them and the more they become useful for the enti-
ties utilizing these graphs for itinerary calculations and navigation. The final step of the
process is the exportation of the graph into an EXtensible Markup Language (XML) file
so that it might be used by the third parties (6).

Data Model Extract Walkways Compute
Centrelines

Identify Graph
Structures

Project
Punctual Objects

Enrich with
the Semantic
Information

Export Graph

1 2

3

4

5

6

Pedestrian Network Generation

GIS Framework

Figure 1.5: Building blocks of the pedestrian network generation algorithm. The numbers in
the figure indicate the order of execution for the blocks.

More samples of the computed graphs are presented in Chapter 6 but in this chapter
Figure 1.6 is given just for the first glimpse of the computed pedestrian network graphs.
The meanings of different symbols used in this figure will be clarified within Chapter 6.

The aforementioned term “walkway” is used conceptually within the context of pedestrian
network graphs. It could be “roadway” if the graphs were generated for the motorized ve-
hicles. In fact, the same pipeline can be used to generate the network graphs for any other
types of travelling entities. It all comes down to the created semantic planar partitions
and the filtered semantic objects for graph generation. For instance, sidewalks, pedes-
trian crossings, city squares, etc., are considered as walkways for the pedestrian network
generation and the remaining semantic objects such as buildings, roads and static objects
(e.g. city furnitures, poles on the pavements, traffic lamps, etc.) are filtered out since
they are classified as barriers to the movement of the pedestrians. On the contrary, for the
motorized vehicle network graphs, roads and parking areas can be considered as roadways
whereas the rest of the surfaces can be excluded (filtered out) as barriers. In addition, the
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1.2. Topic and Aims

Figure 1.6: A part of an example pedestrian network graph at the intersection of a sidewalk
and two pedestrian crossings. Colours: walkways (yellow), obstacles (white), centrelines or graph
edges (green), graph nodes (blue and white-green), borderlines and border nodes (red).

semantic information captured by the objects can also be used for filtering. An example
would be the filtering out of some surfaces (the corresponding semantic objects) which
are too steep when generating the graphs for the wheelchair users. As a result, the level
of details of the objects as well as the amount of semantic information captured increase
the versatility of the proposed algorithm. The more finer the semantic objects and the
more semantic information embedded into them, the higher the intelligence for filtering
surfaces when generating different types of network graphs.

The proposed pedestrian network generation algorithm is generic meaning that it can
be applied to any semantic planar partition. However, creating the semantic planar
partitions, i.e. constructing the data model might be different for different applications.
In this thesis work, we present two different pipelines for creating two different semantic
planar partitions for two different applications. The steps of these pipelines were mostly
determined according to the properties of the initial data at hand.

The first application is related to the Saint Sulpice region of Paris. The pipeline used
for this application is given in the Figure 1.7. In this section, only the brief summary of
the pipeline steps is described without going into details. For the detailed descriptions
please refer to Section 6.4. We utilized the OpenData Paris dataset8 for generating the
base planar partition and Institut National de l’Information Geographique et Forestière
(IGN)’s BD Adresse R©9 for the punctual objects corresponding to the building doors. The
utilized vector data were converted to the 2D arrangements representation (1 in the Figure
1.7). Then, the existing geometric and topological data were first corrected by threshold
based automatic error correction tools (2 in the Figure 1.7). Note that the threshold
values are data dependent and in this application they were decided according to the

8http://opendata.paris.fr/page/home/
9http://professionnels.ign.fr/bdadresse

9



Chapter 1. Introduction

characteristics of the input data by doing simple preliminary trial and error tests. The
remaining errors were fixed manually in addition to the manual completion of the missing
data by overlaying the 2D arrangement on the background geo-referenced orthophotos
(3 in the Figure 1.7). Once the planar partition was obtained, semantic objects were
manually created by grouping the planar partition primitives (4 in the Figure 1.7). As
the semantic objects were being created, the DAG-structured object hierarchy was also
constructed (5 in the Figure 1.7). The final step is the running of the pedestrian network
generation algorithm on the constructed data model (6 in the Figure 1.7).

OpenData Paris,
IGN BD Adresse

2D Arrangements

Threshold-based
Auto Corrections

Manual Edit

Aerial Images

Semantic Objects

Object Hierarchy
(DAG)

Pedestrian Network
Generation

1

2

3

3

4

5

6

Application-1

Figure 1.7: The pipeline for the first application: Pedestrian network generation for Paris
Saint-Sulpice region. The numbers in the figure indicate the order of execution for the blocks.

The region of interest for the second application was the urban conurbation of Saint-
Quentin-en-Yvelines (CASQY). The main steps of this pipeline is displayed in the Figure
1.8 which are detailed in Section 6.5.

For the second application, we followed a different approach in creating the initial semantic
planar partition (planar partition + semantic objects). That is, externally created vector
data are automatically imported into StreetMaker as semantic objects. Therefore, no
manual intervention was required for creating the semantic objects. This kind of approach
is possible when the input vector data are well-structured, i.e. they are close to planar
partitions if they are not already (Section 5.4.3).

Four different data sources were used for creating the semantic planar partition for the
second application: CASQY dataset10 (i), manually created pedestrian crossings (ii),
obstacles obtained from a 2D point cloud (iii) and IGN’s BD Adresse R© (iv). Before
importing any semantic objects into StreetMaker, we applied three mini-pipelines {(1,2,3),
(4,5,6) and (7,8,9)} (Figure 1.8) in order to prepare the data to be imported.

The main input dataset was the CASQY dataset describing the basic land use of the
CASQY region. Although it is not a common practice11 in GIScience, this dataset is close
to a valid planar partition except for a few errors which were fixed with a preprocessing

10Supplied from Saint-Quentin-en-Yvelines city hall for the CASQY region
11In GIScience, vector data are generally created/edited with non-topological GIS which deviates vector

data from being planar partitions.
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Figure 1.8: The pipeline for the second application: Pedestrian network generation for Saint-
Quentin-en-Yvelines urban conurbation (CASQY). The numbers in the figure indicate the order
of execution for the blocks. In the figure MLS stands for Mobile Laser Scanning and Ped. is the
short form of Pedestrian.

step (1 and 2 in the Figure 1.8). The CASQY dataset is not a finely detailed land use
dataset, it lacks the pedestrian crossings and static obstacles which are crucial for our
pedestrian network generation application. Outlines of the pedestrian crossings in the
region of interest were captured manually on top of a background Mobile Laser Scanning
(MLS) orthophoto (4 and 5 in the Figure 1.8) [Vallet and Papelard, 2015; Brédif et al.,
2015]. Similarly, outlines of the static obstacles on the surface of the walkways were
generated using the α-shapes algorithm on a 2D point cloud (7 and 8 in the Figure 1.8).
The point clouds used for generating both the MLS orthophoto and the 2D point cloud
were collected using the IGN’s 3D Mobile Mapping System (MMS) called STEREOPOLIS
[Paparoditis et al., 2012]. The 2D point cloud was obtained by vertically projecting the
3D points which were classified as parts of static obstacles [Serna and Marcotegui, 2014].

After running the three mini-pipelines and importing the resulted polygonal soups (Sec-
tion 2.2) into StreetMaker together with the address points, the input vector data were
converted into a semantic planar partition (3, 6, 9 and 10 in the Figure 1.8) on which the
pedestrian network generation algorithm was run (11 in the Figure 1.8).
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The main focus of this thesis work was devoted to the development of a generic data model
that can be used to generate static obstacle avoiding pedestrian networks. Once this goal
was achieved, an additional research has been done on the development of the 3D GIS
applications. As we have already discussed, the 2D models of the environment are needed
for the generation of pedestrian networks. Similarly, for many 3D GIS applications, the
environments should be modelled in 3D.

A 3D environment is composed of a 2D ground surface embedded in 3D and the 3D
objects are positioned on the ground surface. Generating realistic 3D models of the
environment (e.g. 3D virtual city models) is a very broad and challenging task which
involves many research fields such as computer vision, computer graphics, remote sensing,
etc. Considering the large number of different object types (e.g. ground surface, buildings,
trees, city furnitures, traffic lamps and signs etc.) to be modelled and the diverse research
topics, we narrowed down our interest to the single-view 3D modelling of the objects that
are of type generalized cylinder.

A generalized cylinder is defined by set of planar curves that are positioned around an
axis curve (see Section 7.2.1 for a more formal definition and taxonomy of the generalized
cylinders). Objects of type lampposts, poles, tree trunks, signposts, etc. are all in the
form of a generalized cylinder. These objects are among the most frequently encoun-
tered objects on the surface of the walkways. Recall that for the static obstacle avoiding
pedestrian network generation, we need to construct the outlines of the obstacles on the
walkways. In fact, once the objects are modelled, the footprints of these objects (a 3D
circle on the ground surface for this case) can be utilized in the pedestrian network gen-
eration application as obstacles. This was also another motivation of ours while choosing
the research direction among many others. However, objects can only be reconstructed
upto a scale from a single-view and the resultant models cannot be localised (and scaled)
precisely due to lack of depth information. For correctly scaled geo-referenced models, at
least two-view of the objects are needed (assuming the camera parameters are known).
On the other hand, once the shapes of the objects are reconstructed (modelling objects
upto a scale factor), geo-referencing and scaling can be done afterwards which is left as a
future work.

We tried to develop an interactive system similar to the work of Chen et al. [2013].
Our modelling system and theirs are compared at various places along the Chapter 7.
The main idea is the combination of human perception with the computational power
of the computers which leads to a semi-automatic modelling system. In this system,
users initiate the modelling by drawing the initial 2D profile (ellipse on the image) of
a generalized cylinder on the input image. Then, they are asked to approximate the
axis of the generalized cylinder by sweeping the initial profile along the image of the
generalized cylinder. The major axis of the initial 2D profile is fit to the image outlines
as the user drags the profile. This generates the input data for the 3D reconstruction of
the generalized cylinder (Figure 1.9).

Using the input data, Chen et al. [2013] first generated a set of 3D circles with the
assumption of a ratio preserving camera projection and a planar axis whose supporting
plane is parallel to the image plane, then optimize the location, orientation and shape (i.e.
a 3D circle can be warped into a 3D ellipse) of the initially constructed 3D circles. This
optimization tries to compensate for the initially made false assumptions by minimizing a
set of geo-semantic (geometric and semantic) constraints between the separately modelled
parts. A part in their system is either a generalized cylinder, cuboid or a sphere. Our
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Figure 1.9: Input data for 3D generalized cylinder reconstruction: initial 2D elliptic profile
(yellow) is generated by drawing two line segments (green), the axis of the generalized cylinder
is approximated (red) from the user sweep and the major axis of the initial elliptic profile is fit
to the outline of the generalized cylinder in the image at the sampled axis points (blue).

modelling system only supports modelling of generalized cylinders and upgrading it to
a part-based modelling system that merges separately modelled parts is left as a future
work. On the other hand, our system reconstructs the 3D circles using the perspective
projection with a pin-hole camera model. Reconstruction of a 3D circle from its projection
is explained in detail including the special and degenerate cases in Section 7.2.4.

Notice in Figure 1.9 that, only the projection of the first and last 3D circles can be fully
captured. For the 3D circles in between, only the major axis of their projections can be
estimated. We derived a parametric closed form solution for the position of the 3D circles
when the normal (orientation) and the partial projection (only the major axis of the
projected ellipse) of the circles are known. Based on this solution, generalized cylinders
are modelled using three different prior constraints: constant depth (3D circle centres are
assumed to lie on the same plane which is parallel to the image plane), planar axis (3D
circle centres are assumed to lie on the same plane) and linear axis (3D circle centres lie
on a 3D line).

Figure 1.10 displays a generalized cylinder modelled in our system. In Chpater 7, more
examples are presented along with more detailed discussions.

Figure 1.10: A modelled tree trunk: input image and the reconstructed model projected on
the image space.
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1.3 Contributions

The contributions of this thesis are three fold.

First, a data model is proposed for representing planar partitions and a hierarchy of
geospatial objects. Planar partitions are represented by 2D arrangements and the object
hierarchy is captured using a DAG structure. The underlying data structure of the 2D
arrangements is a topological data structure which allows efficient and effective geometric
computing at the topological level. 2D arrangements representation has the advantage
of easy validation and maintenance, especially in dynamic environments in which the
data are occasionally updated. Furthermore, we demonstrated that rendering an object
hierarchy on the computer screen might be problematic when the parent objects share the
same surface through their children. This rendering problem is solved utilizing the DAG
hierarchy and to the author’s knowledge, this kind of approach is used for the first time.
The proposed data model is encapsulated within a GIS framework which also includes
a few algorithms integrated for easy GIS application development. This framework is
compact, small and well-suited for desktop GIS applications especially for mapping and
transportation applications.

Second, a full pipeline for generating static obstacle avoiding pedestrian network graphs
is presented with two sample applications. The algorithm takes an input of object hier-
archy constructed on top of a planar partition and generates a pedestrian network graph
which is geometrically exact. That is, the centrelines of the walkways are geometrically
true. The generated graphs are further structured into sub-graphs such that once a
sub-graph is entered by a travelling entity it can move freely without giving any further
navigational decisions. In addition, for each sub-graph geometrically true lengths and the
minimum width to the surrounding objects are computed. With these given properties,
the computed graphs are the first examples of such graphs in the literature. The graphs
are computed from a set of semantized surfacic objects which also allows embedding the
related semantic information directly into the graphs.

Third, computation of 3D circles from their perspective and orthogonal projections are
explained in detail including the degenerate and special cases. Furthermore, a parametric
closed form solution for the centre of a 3D circle is derived under perspective projection
when the normal and the partial projection (only the major axis of the projected ellipse) of
the 3D circle are known. Then, this closed formula is used in a novel system for modelling
3D objects of type generalized cylinders by using three different prior constraints.

1.4 Structure and Content of the Thesis

The content of the chapters are summarized below.

Chapter 1 gives an overview of the content, topic, aims and the claimed contributions
of the thesis.

Chapter 2 starts with a brief introduction to fundamental data types used in GIS.
The chapter continues with the discussion of different vector data representations and it
emphasizes the importance of topological data structures for geometric computing. Planar
partitions are introduced as a special type of vector data and their theory is discussed
using the planar graphs. Furthermore, the issues related to validity and maintenance
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of planar partitions are raised. Then, as a solution to these issues, representing planar
partitions with 2D arrangements is proposed along with detailed discussions.

Chapter 3 is related to the object oriented modelling of the geospatial objects on top of
the planar partitions. First, the chapter introduces the semantic objects and the natural
hierarchy among them. Then, encoding this hierarchy into a DAG is discussed which is
later used to solve problems related to semantic object maintenance and rendering.

Chapter 4 aims to provide theoretical background and use cases on the integrated generic
algorithms that are thought to be useful in many GIS applications.

Chapter 5 introduces our GIS framework called StreetMaker for developing GIS appli-
cations. The integration of the proposed data model into StreetMaker is explained with
the discussion of how semantic planar partitions are created within StreetMaker. Fur-
thermore, our approach to well-known robustness issues in computational geometry is
detailed and the chapter is concluded with the example outputs of the integrated generic
algorithms that can operate on the created semantic planar partitions.

Chapter 6 begins with the state-of-the-art literature for generating pedestrian networks.
Then, our pedestrian networks are compared with the previously created ones. Finally,
two different application pipelines are introduced which utilize the proposed pedestrian
network generation algorithm.

Chapter 7 is related to the preliminary work that has been done for 3D GIS application
development. The developed system, methods and formulas for modelling 3D generalized
cylinders from single images are explained with the necessary discussions.

Chapter 8 concludes the manuscript with an overall assessment, future perspectives and
some extra ideas on the big picture.

Appendix A lists pseudo codes for some of the geometric data structures. This appendix
is complementary to the Section 2.2.

Appendix B is devoted to 2D Delaunay triangulations. The first part of the appendix
demonstrates a proof for legal and illegal edges of a triangulation. The second part
demonstrates the steps of an algorithm that is used to merge two separate Delaunay
triangulations into a single one. This appendix is complementary to the Section 4.1.
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2. Planar Partions

Chapter 2

Planar Partions

2.1 Introduction

GIScience is a very broad term which includes all the human efforts to capture, visualize,
analyse and interpret geospatial data to understand the relationships, find out patterns
and trends. As a consequence, a GIS might be very complex involving many technologies,
methods and processes in which the data occupies the central role. There has been myriad
of data formats used in GISs, however one can classify them under two main groups: raster
data and vector data. Very basic introductory paragraphs are given below for both data
types; the interested reader can refer to many sources on the internet as well as Lloyd
[2010] for more complete definitions and discussions.

Raster data is represented by a grid structure which stores the information within the
entries of the grid, called cells. Cells can be considered as pixels of an image. In fact,
aerial images are the most commonly used raster data in GISs. A raster can represent
both discrete/thematic data (e.g. land use) and continuous data (e.g. temperature and
elevation). However, due to its discrete nature, information is lost when continuous data
has to be sampled (Figure 2.1). The accuracy of the data depends on the resolution of
the sampling grid. On the other hand, since it is space oriented, it provides direct access
to information about a given location and its regular structure helps organizing spatial
information.

Figure 2.1: Raster representation of an elevation data.
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A vector in GIScience describes a coordinate-based data model that represents geographic
features using geometric primitives: points, lines, and polygons. In 2D, each point is
represented by a coordinate pair and other geometric features (e.g. lines and polygons) are
represented as ordered lists of points. The main advantage over the raster representation
is that vectors can store continuous geospatial data without loss of information. For
example, vectors can be magnified without loss of quality when rendered on the computer
screen, while the rasters cannot. On the other hand, vector data requires more complex
data structures for processing and indexing.

A planar partition is a type of vector data that defines a map on a planar surface by
subdividing it into non-overlapping polygonal regions. Therefore, planar partitions are
very suitable for representing 2D surfaces on which polygonal regions need to be classi-
fied/categorized. Recall from Chapter 1 that we needed to model the footprints of the
geospatial objects on the ground surfaces of the cities. Consequently, planar partitions fit
very well to our requirements with the prospect of mapping a set of subdivided polygonal
regions to the footprints of a geospatial object.

This chapter is devoted to the analysis of planar partitions. First, an overview of the
existing geometric data structures for vector data representation is presented (Section
2.2). Second, the theory of the planar partitions are explained using the graph theory. In
addition, the issues for maintaining valid planar partitions in a dynamic environment are
discussed along with the data structure requirements (Section 2.3). Third, we propose the
2D arrangements data structure to model the planar partitions which solves the identified
problems related to the maintenance and validity of the planar partitions (Section 2.4).
Finally, the chapter is concluded with the overall assessment of the proposed data structure
(Section 2.5).

2.2 Representation of Vector Data

A geospatial object described by vector data is composed of three entity: geometry, topol-
ogy and semantic information. At the lowest level geometry describes the point locations
and topology refers to the relationships between the points and higher dimensional geo-
metric primitives such as lines and polygons. Finally, the semantic information is related
to any other information that is neither geometric nor topological. Classical data struc-
tures like arrays, linked lists and trees can represent the geometric aspects of the geospatial
objects but they are not sufficient by themselves for modelling the topological relations
explicitly. Specialized and sophisticated data structures might be required depending
on the needs. For instance, if data at hand is static, explicit topological information is
generally not needed and simpler data structures will do the job. On the contrary, for
a dynamic system in which the geometry and topology are constantly changing, explicit
topological relations are required for efficient processing and in such cases more elaborate
data structures (geometric data structures) have to be employed.

Geometric data structures are not only used in GIS but also in computational geometry
and computer graphics. Especially, they are heavily used to represent 2D/3D polygonal
mesh models in computer graphics. Different surfaces have different properties and not
all data structures are capable of representing all types of surfaces. Three of the most
important properties of surface mesh models are described below.
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Manifold surfaces: A surface is 2-manifold if each point of the surface is locally home-
omorphic (topologically equivalent) to a disk or a half-disk (at the boundaries). This can
be interpreted for the case of triangular meshes as: a triangular mesh is 2-manifold if it
does not contain a non-manifold edge or a non-manifold vertex nor self-intersecting. A
non-manifold edge is incident to more than two faces and a non-manifold vertex is shared
by a number of unconnected sets of triangles (Figure 2.2).

Figure 2.2: A non-manifold edge (left) and a non-manifold vertex (right).

Orientable manifolds: A connected 2-manifold mesh is orientable if it is two-sided,
meaning that inner and outer sides of the mesh can be distinguishable; otherwise it is
non-orientable (one sided). For instance, spherical and cylindrical meshes are orientable
whereas Möbius band (Figure 2.3) and Klein bottle are non-orientable.

Figure 2.3: Möbius band: an example of a non-orientable (single sided) surface.

Mesh structure: The structure of a mesh can be regular, semi-regular or irregular.
For instance, in a triangular mesh, a vertex is called regular if it has six neighbouring
vertices for the interior vertices and four for the boundary vertices (except for the corners
on the boundary). These numbers are four and three respectively for a regular vertex
in a quadrangular mesh. A regular mesh is composed of only regular vertices which can
be modelled easily (like raster data) with very simple data structures. In addition, the
topology of a regular mesh is implicit which can be computed from the regular structure
of the vertices. Semi-regular meshes are composed of both regular and irregular vertices
and they are generally created by regular subdivision of coarse initial meshes. Irregular
meshes, on the other hand, do not show any kind of regularity (Figure 2.4).

The knowledge of topological relationships in vector data enables the geometric data
structures to traverse fast and efficiently around the local neighbourhood of the geometric
primitives [Theobald, 2001]. Topological data structures compute and keep the explicit
topological information related to the represented vector data. Therefore, with a topolog-
ical data structure, topological queries (see Table 2.1) can be answered in constant time
in average.
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Figure 2.4: Surface patches represented with regular (left) and irregular (right) meshes

Topological Queries
- which edges / polygons use this vertex?
- which faces (polygons) are adjacent to this face?
- which edges border this face?
- which vertices belong to this face?
- what are the successor (next) and predecessor (before) edges to this edge?
- in which face does this vertex lie?

Table 2.1: Examples of topological queries on vector data

In the absence of explicit topological information, topological queries are difficult to an-
swer and at best take linear time depending on the total number of the geometric prim-
itives. Therefore, before selecting a data structure for processing vector data, one has
to ask some questions about the structure of the vector data and the algorithmic re-
quirements of the intended application. Is vector manifold or non-manifold, orientable or
non-orientable, regular or irregular? Do mesh geometry and topology have to be modified
or not? Data structures should be selected based on the answers of these questions.

Different geometric data structures have different approaches to capture the topological
relationships. The simplest but more generic geometric data structure called polygonal
soup (in computer graphics) or spaghetti (in GIScience) does not store any explicit topo-
logical information, therefore it is not suitable for geometric computation. Furthermore,
geometric primitives are stored separately without paying attention to shared vertices
between the edges or faces. As a result, it is not space efficient but generic (can represent
any vector data) and easy to implement. An example definition of polygon soup data
structure is given in Appendix A.1.

An improvement to the polygon soup data structure is the shared vertex data structure.
This data structure does not replicate the vertices, instead it gives references to them
from higher-order geometric primitives and reduce the memory requirements. However,
topological relationships are still implicit and topological queries take non-constant time
with relatively high processing cost. On the other hand, when compared to polygon soup
data structure, shared vertex configuration reduces the processing cost when the geometry
of the vertices are updated. One possible definition of the shared vertex data structure is
given in Appendix A.2.

In vector data, vertices are connected to each other by edges; therefore in order to store
explicit topological relationships edge-based data structures are needed. Baumgart [1975]

20



2.2. Representation of Vector Data

developed the first edge-based data structure called winged-edge. In the winged-edge data
structure, all edges are directed and the face borders are traversed in clockwise order when
looking from outside of the mesh. Moreover, each edge is associated with eight references:
two vertices (start and end), two faces (left and right) and four edges (left predecessor
and successor, right predecessor and successor) (Figure 2.5). Left and right successor
and predecessor edges are used for traversing the left and right faces respectively. The
name of the data structure comes from these four edges surrounding an edge like a wing.
Observe that, edge orientations are not globally consistent. That is, an edge is traversed in
opposite directions when its left and right faces are traversed. As a result, the orientation
of an edge with respect to the traversed face has to be calculated. Since all connectivity
information is kept in edges, for vertices and faces it is enough to store a reference to
one of their incident edges. Finally, due to the required orientation information and fixed
number of referenced edges, winged-edge data structure can not represent non-manifold
and non-orientable meshes. An example definition of the winged-edge data structure is
given in Appendix A.3.

left face

right face

Vstart Vend
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Figure 2.5: Winged-edge data structure: An edge is surrounded by four edges (left and right
successors and predecessors) forming the winged edge. Faces are traversed in clockwise directions.
Edges are oriented but the orientation of an edge changes with respect to the traversed faces.

After the winged-edge data structure, many other edge-based data structures have been
developed. The interested reader may refer to Muller and Preparata [1978] for Doubly
Connected Edge List (DCEL) data structure, Guibas and Stolfi [1985] for quad-edge
data structure, Mäntylä [1988] for half-edge data structure, Weiler [1988] for radial-edges,
Campagna et al. [1998] for directed-edges and Kettner [1999] and Botsch et al. [2007]
for a review of mesh data structures. Table 2.2 summarizes the properties of these data
structures.

Among all of these topological geometric data structures, half-edge data structure is
quite popular and it has been used a lot both in computer graphics and computational
geometry [Botsch et al., 2002]. The half-edge data structure [Weiler, 1985; Mäntylä, 1988]
is designed to overcome the orientation problem in the winged-edge data structure. Recall
that, calculation of an edge’s orientation with respect to the traversed face is necessary
for the winged-edge data structure which is inefficient. In the half-edge data structure,
each edge is split into two oppositely oriented half-edges called opposite or twin half-
edges. Half-edges circulate around the borders of the faces and holes in counter-clockwise
and clockwise orientations respectively. For each half-edge, four references are kept: twin

21



Chapter 2. Planar Partions

Data structure Manifoldness Orientation Topological
polygonal soup both both no
shared vertex both both no
winged-edge manifold orientable yes
half-edge manifold orientable yes
quad-edge manifold both yes
directed-edge manifold* orientable yes
radial-edge both orientable yes

Table 2.2: A comparison of some geometric data structures for surface (mesh) representation.
*Directed-edge data structure can be extended to support non-manifold meshes.

(opposite) half-edge, next (successor) half-edge, incident face (face on the left) and the
end-vertex (target vertex). Moreover, for each vertex a reference is kept for an incident
half-edge (one of the out-going half-edges) and similarly for each face a reference for an
incident half-edge (one of the half-edges circulating around the face in counter-clockwise
direction) is stored (Figure 2.6).

f0

f1

f2

Figure 2.6: Half-edge data structure: faces and holes are circulated by half-edges in counter-
clockwise and clockwise order respectively. Observe that the union of f1 and f2 is a hole in
the unbounded face f0. Moreover, blue half-edges are incident to the blue vertex and two red
half-edges are twin representing the same edge. Faces store a reference to one of the circulating
half-edges and an half-edge stores references to target vertex, the face on its left, twin half-edge
and next half-edge.

The half-edge data structure is also known with different names in the literature. Weiler
[1985] used FE-structure, Mäntylä [1988] used the half-edge as in this dissertation and
de Berg et al. [1997] used DCEL although it is a different data structure in the original
paper defining the DCEL [Muller and Preparata, 1978]. An example definition of the
half-edge data structure is given in Appendix A.4.

In computer graphics, Stereolithography (STL) file format ([STL, 1989]) utilizes the poly-
gon soup data structure for storing mesh models. Moreover, Object File Format (OFF),
Wavefront obj and Virtual Reality Modelling Language (VRML) file formats use the
shared vertex data structure. On the other hand, each topological geometric data struc-
ture should have its own format for storing and loading mesh models. In GIScience, many
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GIS formats follow the Open GIS Consortium (OGC) simple features standard [OGC Sim-
ple Features, 2011] and utilize the polygonal soup or spaghetti data structure. The most
famous of these formats is the Environmental Systems Research Institute (ESRI) shape-
file [ESRI Shapefile, 1998]. Topological data structures have also been used in GIS, most
notable examples are GRASS GIS1 and PostGIS Topology2.

GRASS GIS has a native format called vector maps for representing 2D and 3D3 topolog-
ical vector data. A vector map is composed of low level primitives: point, line, boundary,
centroid, face and kernel. These primitives are used to construct higher level topologi-
cal structures called area, isle, volume and hole. In addition, there exist some internal
rules that apply to vector data such as boundaries should not cross each other (lines can
cross each other), lines and boundaries can only share endpoints, areas must be explicitly
closed, common area boundaries should appear only once, etc. In GRASS GIS, the afore-
mentioned primitives and the higher level constructions on them are encapsulated within
a series of class hierarchy together with the rules to manage them. In addition, there exist
modules for processing the vector data for computing the topology of a non-topological
vector data, topological editing, automatically fixing topological errors (to some extend),
etc.

PostGIS Topology package was started with version 2.0 (released in April 2012) and it
provides a topological database allowing its users to construct a topology schema out
of three fundamental topological primitives: faces, edges and nodes. It also includes
accessory functions4 for creating, editing and validating the topological vector data.

2.3 Planar Partitions and Planar Graphs

Planar partitions and planar graphs are strongly related to each other. In fact, every
planar partition defines a planar graph. Graph theory has been studied since 18th century
and it is a well established domain in mathematics and computer science. In GIScience,
researchers are well-aware of this fact and use planar graphs to analyse planar partitions
[Plümer and Gröger, 1997]. Before discussing planar partitions in detail, it is useful to
remember the basic definitions for graphs and planar graphs.

2.3.1 Planar Graphs

Graphs are mathematical notions used to model pairwise relations between objects from
a certain set. A graph G = (V,E) consists of two sets, V and E such that the elements
of V and E are called vertices (singular: vertex) or nodes and edges, respectively. Each
edge represents a connection between a pair of vertices (Figure 2.7).

There are many different types of graphs. For example, if the vertex pairs forming the
edges are ordered, the graph is a directed graph (digraph); if the cardinality of the vertex

1https://grass.osgeo.org/
2http://postgis.net/docs/manual-dev/Topology.html
3The topological support for 3D vector data is partial and not fully functional at the time of writing

for GRASS GIS version 7.1.
4PostGIS Topology package partially relies on the GEOS library (https://trac.osgeo.org/geos/) to

provide the related data structures and various topological accessory functions.
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Figure 2.7: An example graph: G = (V,E), V = {a, b, c, d, e, f, g} and E =
{{a, c}, {a, d}, {a, e}, {b, d}, {b, e}, {b, g}, {e, g}, {e, f}}.

set is infinite, then the graph is infinite; if multiple edges are allowed between two vertices,
then the graph is multi-graph, etc. [Gross et al., 2014; Harris et al., 2008]. In addition,
a graph embedding is a particular drawing of a graph on a surface (planar, spherical,
hyperbolic, etc.). A graph may have exponential number of embeddings on a given surface
[Battista et al., 1998]. The most commonly encountered graph embeddings are generally
straight line drawings, in which all graph edges are drawn as straight line segments. A
Graph G = (V,E) is said to be planar if it can be drawn on a plane in such a way that
pairs of edges intersect only at the vertices of the graph, if at all. If G has no such
embedding, then G is non-planar. The graph given in Figure 2.7 is a planar graph but it
is not drawn with planar embedding. The same graph can also be drawn as in Figure 2.8
which is a planar embedding.

a
b

c

d e f

g

Figure 2.8: Redrawn of the planar graph in Figure 2.7 with a planar embedding

A planar embedding of a planar graph partitions the supporting plane into regions called
faces and the unbounded region is called the outer face. Leonhard Euler discovered a
beautiful formula which describes the relations between the number of vertices (|V |),
edges (|E|) and faces (|F |) of connected planar graphs. Euler’s formula is:

|V | − |E|+ |F | = 2 (1)

Observe that, for the planar graph in Figure 2.8, |V | = 7, E = 9, F = 4 and Euler’s
formula holds (7− 9 + 4 = 2). Another useful formula derived from Euler’s formula is:

|E| ≤ 3|V | − 6, |V | ≥ 3 (2)
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The K5 graph given in Figure 2.9 is an example of a non-planar graph. Notice that, no
matter how hard one can try, it cannot be untangled and embedded into a plane. Notice
also that, K5 has 5 vertices and 10 edges which conflicts with the equation (2). However,
equation (2) cannot be used for all graphs to test planarity; there exist some graphs which
are not planar but satisfy the equation (2). Such a graph is given in Figure 2.10. Thus,
proving planarity may be tricky if a quick planar embedding cannot be found and the size
of the graph is relatively high. There are a number of methods to prove whether a given
graph is planar or not, please refer to Boyer [2004] for one of them.

a b

c

d

e

Figure 2.9: An example of a non-planar graph (K5)

a b c

d e f

Figure 2.10: An example of a non-planar graph (K3,3)

2.3.2 Planar Partitions

A planar partition is the tessellation of a planar surface with a set of non-overlapping
polygons (Figure 2.11). Planar partitions are frequently used in GIS to represent thematic
and geometric spatial information such as land use, vegetation cover, cadastral parcels and
administrative boundaries [Penninga et al., 2005; Ohori, 2010; Ledoux and Meijers, 2010].
An example dataset can be Coordination of Information on the Environment (CORINE)
land cover provided by European Environmental Agency (EEA) for mapping land use in
Europe.

In GIScience, planar partitions are often represented and stored as a set of individual
polygons following the simple features specification [OGC Simple Features, 2011]. Al-
though such a representation is very simple and requires no complex data structures, it
is vulnerable to errors that can be introduced when the planar partitions are built or
modified. In fact, topological and geometric errors are common in planar partitions such
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Figure 2.11: An example planar partition that models a street scene. The surface of the street
is partitioned based on the footprints of the urban objects: buildings, sidewalks, pedestrian
crossings, road lanes and an intersection. Notice that, this planar partition is also a planar
graph embedded in a plane. That is, all the graph vertices lie on the same plane and the edges
of the graph do not intersect other than vertices.

as overlapping polygons, gaps between polygons and erroneous polygons. The source of
these errors can be: usage of inexact arithmetic, limited machine precision, and human
operator errors if data is modified manually [Ohori, 2010; Ledoux and Meijers, 2010].

A workflow of managing planar partitions is generally composed of three steps: creation,
validation and maintenance. For some applications only the first two steps can be suf-
ficient if the data is static. On the other hand, for dynamic systems in which the data
is continuously changing, the underlying planar partitions have to be maintained valid
(Figure 2.12). In this, section we will have a look at these work flow steps, and discuss
how they can be achieved using GISs and in the following section (Section 2.4), the same
pipeline will be analysed when 2D arrangements are used to represent planar partitions.

Planar partitions can either be created from scratch by using a GIS or previously created
datasets can be utilized. However, the datasets obtained by combining multiple existing
datasets rarely constitute a planar partition due to the geometrical and topological errors
mentioned in the previous paragraph and mismatches also known as conflation problems
[Lynch and Saalfeld, 1985; Yuan and Tao, 1999]. Refer to Section 6.4.1 for a planar
partition creation experience from OpenData Paris5 dataset.

By definition, a valid planar partition has to comply with the following constraints given
5http://opendata.paris.fr/page/home/

26



2.3. Planar Partitions and Planar Graphs

planar partition

create validate maintain

geometry change
request

topology change
request

Figure 2.12: A typical workflow for applications managing planar partitions

in the Table 2.3.

No Constraints
1. All polygons should be valid.
2. Polygon interiors should not intersect.
3. There should be no gaps between the polygons.

Table 2.3: Constraints for a valid planar partition

In OGC Simple Features [2011], a polygon is defined as follows: a polygon is a planar
surface defined by one (1) exterior boundary (exterior ring) and zero (0) or more inner
boundaries (interior rings). Each interior boundary defines a hole in the polygon. Exterior
rings traverse the boundary in a counter-clockwise direction and interior rings have the
opposite orientation. Furthermore, a set of constraints on the validity of polygons were
defined as shown in Table 2.4 and Figure 2.13 displays some examples of invalid polygons
violating the constraints.

No Constraints
1. Polygons are topologically closed.
2. The boundary of a polygon consists of a set of linear rings that make up its

exterior and interior boundaries.
3. No two rings in the boundary cross and the rings in the boundary of a polygon

may intersect at a point but only as tangent.
4. A polygon may not have cut lines, spikes or punctures.
5. The interior of every polygon is a connected point set.
6. The exterior of a polygon with one (1) or more holes is not connected. Each hole

defines a connected component of the exterior.

Table 2.4: Constraints for a valid polygon according to OGC Simple Features [2011].

GISs such as ArcGIS6, Java Topology Suite (JTS)7, GRASS GIS, QGIS8 (topology checker
plugin) and PostGIS Topology have tools for validating and fixing individual polygons by
checking a list of constraints similar to given in Table 2.4 if not the same. Assuming that
all the polygons in a planar partition are valid, there may exist two types of invalid con-
figurations within the planar partition: gaps between the polygons and polygon overlaps.

6http://www.esri.com/software/arcgis
7http://tsusiatsoftware.net/jts/main.html
8http://www.qgis.org/en/site/
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p1 p2 p3

p4 p5 p6

p7 p8 p9

p10 p11 p12

exterior boundary interior boundary

Figure 2.13: Examples of invalid polygons (taken from [Ledoux et al., 2012]) according to OGC
Simple Features [2011] polygon definition and its constraints given in Table 2.4: p1 violates the
polygon definition by having more than one exterior ring, p2 has an interior ring outside the
exterior ring, p3, p7, and p8 have crossing rings (constraint 3), p4 partitions the interior of the
polygon into non-connected sets (constraint-5), p5 and p6 violates the constraint 4, p9 has two
interior rings one inside another, p10, p11 and p12 violate constraints 3, 1 and 5 respectively.
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Unlike checking the validity of individual polygons, these last two conditions require the
knowledge of topology around the polygons. Without topological information, checking
these conditions would be computationally very expensive (checking any pair of polygons
are disjoint or not and finding the gaps within the union of the polygons that are distinct
from the holes). In fact, for fixing and validating planar partitions, ArcGIS allows users
to define a set of topological rules applying to the processed datasets such that overlaps
and gaps between the polygons can be detected [ESRI, 2003]. Similarly, GRASS GIS and
PostGIS Topology also possess topological information which can be used to check the
related validity conditions. For instance, PostGIS Topology has a method called “Val-
idateTopology” in which the overlapping polygons are detected. There isn’t any direct
function in PostGIS Topology for detecting gaps but in a topological database this can be
achieved by using a sequence of other topological operations. In addition, GRASS GIS
has also a similar function called “v.clean” performing topological fixes. In fact, many
GISs have snapping functions which automatically connects vertices to vertices, vertices
to edges and edges to edges based on threshold values. These tools can also be used to
validate or fix errors in the planar partitions.

Apart from commercial or well-known open source GISs, Ohori et al. [2012] presented
two tools for fixing polygons (prepair) and planar partitions (pprepair) depending on con-
strained triangulations. Moreover, Plümer and Gröger [1997] considered planar partitions
as planar graphs and they defined seven axioms (Table 2.5) for validating planar parti-
tions. That is, planar graphs satisfying the provided axioms are valid planar partitions
(interested readers may refer to the corresponding article for the proofs). The axioms
are mathematical and hence relatively easier to check with computers which provides an-
other tool for validating the planar partitions apart from employing the planar partition
definition. Matijevic et al. [2008] utilized these axioms to maintain the validity of planar
partitions in an online database environment.

No Axioms
1. For each vertex in the topology relation there is exactly one vertex in the geometry

relation (referential integrity). No two different vertices have the same coordinates
(uniqueness).

2. Each vertex has at least two incident edges (vertex degree ≥ 2).
3. For every edge there are exactly two distinct vertices as end vertices.
4. Edges correspond geometrically to straight line segments. No two such segments

share any point except at their ends (non-intersecting edges).
5. Each edge has exactly two incident faces.
6. Each face has exactly one simple cycle as window.
7. No midpoint of an edge lies in the interior of a face.

Table 2.5: Axioms for testing the validity of planar partitions [Plümer and Gröger, 1997].
Axioms are related to the vertices (1, 2), the edges (2, 3, 4) and the faces (6, 7) of the planar
graphs. Axiom 1 and 4 imply the planarity of the graph, axiom 2 implies connectivity of the
graph and prevents dangling edges, axiom 3 prevents zero-length edges, axiom 5 avoids gaps,
axiom 6 requires simple polygons (non self-intersecting) corresponding to the faces and axiom 7
prevents overlaps between the polygons.

The validation process within the workflow given in Figure 2.12 has to be re-run after
each modification to planar partitions. Therefore, in a dynamic system managing planar
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Chapter 2. Planar Partions

partitions, the efficiency of the validation or the maintenance step mostly defines the
overall performance of a GIS.

2.4 2D Arrangements as Planar Partitions

Let a set of curves C = {c1, c2, ..., cn} embedded on a surface S is given. The elements of
C divide S into a finite number of cells of dimension 0 (vertices), 1 (edges) and (2) faces.
This subdivision is the arrangement (denoted by A(C)) induced by C on S [Agarwal and
Sharir, 1998]. Therefore, depending on the type of S (e.g., plane, cylinder, sphere, para-
metric surface, etc.) and the types of curves in C (e.g., lines, conic sections, polynomial
curves, rational curves, etc.) the characteristics of the arrangement changes. Furthermore,
the curves can be either bounded or unbounded. In this dissertation, we are interested
in the arrangements of 2D line segments9 on the plane for representing planar partitions.
We also utilized arrangements of linear and quadratic Bézier curves for modelling the
centrelines of walkways which are discussed in Chapter 6. Interested reader may refer to
Berberich et al. [2010b,a] for arrangements on parametric surfaces and Fogel et al. [2008]
for arrangments of geodesic arcs. In addition, Agarwal and Sharir [1998] provided a broad
survey of applications, algorithms and representations for arrangements. Finally, apply to
Edelsbrunner et al. [1986] for an algorithm to generate arrangements of lines on a plane.

Figure 2.14: An example of a 2D arrangement induced by 5 line segments: the arrangement
is composed of 5 faces one of which is the unbounded face, 18 vertices (8 of them are generated
from segment intersections and 10 of them are segment end-points), and 21 edges. Observe that
the arrangement is also a planar graph satisfying equation 1 (Euler’s formula) (18 - 21 + 5 = 2).

Observe that, a 2D arrangement on the plane is a straight line embedding of a planar
graph according to the planar graph definition given in Section 2.3.1, i.e. each vertex of
the arrangement is on the plane and edges do not intersect other than vertices (Figure
2.14). As a result, 2D arrangements can be tested with respect to the planar partition
axioms defined in Table 2.5. The definition of the 2D arrangements automatically satisfies

9In this dissertation, a 2D arrangement refers to an arrangement of 2D line segments unless otherwise
is stated.
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2.4. 2D Arrangements as Planar Partitions

six of the seven axioms other than the axiom-2. Therefore, in order to determine whether
a given 2D arrangement is a valid planar partition or not, testing the arangement with the
axiom-2 is sufficient. That is, a 2D arrangement without isolated vertices and dangling
edges10 is a valid planar partition. Similarly, the constraints for valid polygons given in
Table 2.4 are also automatically satisfied by definition except the constraint-4 which is
directly related to the axiom-2 in Table 2.5. In addition, no gap or overlap is allowed
within a 2D arrangement by definition. Consequently, the constraints given in Table 2.3
are also reduced to the same single constraint (constraint-4 in Table 2.4 or axiom-2 in
Table 2.5).

The workflow of a GIS that manages dynamic planar partitions has already been shown
in Figure 2.12. Representing planar partitions with 2D arrangements does not affect the
first step of the workflow. Planar partitions still have to be created either from scratch or
leveraging the existing vector datasets using a GIS. However, the second (validation) and
third (maintenance) steps in the work flow are more easier to manage with 2D arrange-
ments representation. Only the 2D arrangement data structure has to be maintained
upon adding or deleting geometry. That is, arrangement cells (vertices, edges and faces)
have to be created, deleted and split as the arrangement geometry is being modified and
the topological relationships among the cells have to be updated accordingly. When the
planar partitions or individual polygons are needed, they can easily be extracted from 2D
arrangements by applying the axiom-2 of Table 2.5 (Figure 2.15).

Figure 2.15: Extracting a planar partition from an arrangement of line segments: for this
example (also see Figure 2.14), eliminating antenna like structures by removing the vertices with
degree < 2 and the connected edges to them, is enough to get a planar partition.

Arrangements require the calculation of curve intersections that are embedded on a sur-
face. These intersection points together with the curve endpoints constitute the vertices
of an arrangement. Furthermore, isolated vertices can also be allowed to be inserted in
an arrangement for representing punctual features on a surface. The edges of an arrange-
ment are composed of the curve segments in-between two vertices and the faces are regions

10The number of incident edges to a vertex defines its degree. Isolated vertices are of degree 0 and
dangling edges are incident to vertices of degree 1.
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bounded by edges. Arrangements described by these cells (vertices, edges, faces) need a
data structure to manage the cells. Although, it can be any data structure, a topological
data structure allows an efficient and effective geometric computing (e.g. traversal of the
cells, queries on the arrangement such as point locations) as discussed in Section 2.2.

2.4.1 Implementation Details

We utilized the 2D Arrangement package [Wein et al., 2015; Fogel et al., 2012] of The Com-
putational Geometry Algorithms Library (CGAL)11 for implementing the 2D arrangement
represented planar partitions. In this package, 2D arrangements are represented with the
half-edge data structure (Figure 2.16). We further attached a Universally Unique Iden-
tifier (UUID) [ITU-T X.667, 2012] to each vertex, edge and face at the time of creation.
These identifiers are used to create permanent links (serializable identifiers which are sta-
ble upon editing, load and save) between the semantic objects (see Chapter 3) and the
cells of the arrangements.

f0

f1

f2
f3

vi

e

Figure 2.16: A 2D arrangement and its representation with the half-edge data structure: each
edge is represented by oppositely oriented half-edges (twin half-edges). Half-edges circulate
around faces and holes in counter-clockwise (red) and clockwise (blue) directions respectively.
Each half-edge is incident to the face on its left and to the vertex to which it is directed. f0 is
the unbounded face containing f1 as a hole. f1 has two holes (union of f2 and f3, edge e) and an
isolated vertex (vi). Faces keep track of holes via one of the circulating half-edges around each
hole. In addition each face stores a list of isolated vertices that lie in the face and equally each
isolated vertex has a link to its containing face.

Moreover, CGAL’s 2D Arrangement package also has a nice feature which allows point
location queries within the arrangement. The return from the query is a reference to a
vertex, an edge or a face on which the query point lies. In addition, the package also has
a vertical ray shooting feature in which a ray is shot vertically (up or down) from a point
and the first arrangement cell hit by the shoot is returned. These features are used in the
user interface for snapping/selecting to arrangement cells (by querying the mouse pointer
within the arrangement) and semantic objects constructed upon them.

11http://www.cgal.org/index.html
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2.5 Conclusion

In this chapter, we have discussed different representations of vector data with different
data structures for storing and processing them in computers. We mentioned that al-
though some simple data structures are good enough for specific purposes, topological
data structures are required for efficient and effective geometry and topology processing.
Being a type of vector data and used in many GISs as well as in ours, the rest of the
chapter is devoted to the analysis of planar partitions and their representations in GISs.

We proposed to represent planar partitions with topological arrangements of 2D line
segments which are in fact modelling planar graphs (not necessarily the connected ones).
We have seen that the definition of 2D arrangements satisfies all of the mathematical
axioms except one which were developed by Plümer and Gröger [1997] (Table 2.5) for
checking the validity of the planar partitions. The remaining axiom is related to the
isolated vertices and dangling edges which might also be useful for some applications (e.g.
we used isolated vertices to create punctual objects corresponding to the building doors
in our pedestrian network generation application). In addition, this last axiom can be
applied to 2D arrangements in order to filter out these additional primitives to obtain
pure valid planar partitions whenever they are needed.

It has already been stated in the chapter that creation, validation and maintenance re-
lated tasks of planar partitions can also be performed using different desktop or database
GISs. Each GIS has its own data model and implementation that suit to the reasons
of its existence. It would be a difficult task to compare of all these GISs according to
their performance (possibly with different perspectives) in managing planar partitions.
After stating this, the author would like to comment conceptually on the performance of
the proposed planar partition representation. 2D arrangements (borrowed from compu-
tational geometry) implemented with a dedicated topological data structure provides a
compact and efficient way of encoding the aforementioned mathematical axioms for check-
ing the validity of planar partitions. Besides, the axioms are encapsulated within the core
data structure which hides many issues from the application level services. In addition,
applying the exact computation paradigm for robust and exact geometric computation
(see Section 5.5) is relatively easier with such a compact system which is not possible to
obtain in many GISs.

2D line segment arrangements are limited to 2D planar surfaces. Therefore, it is not
possible to model outlines of geospatial objects that are overlaid on top of each other
without sharing the same physical surface (e.g. 3D roads passing on top of each other
and bridges over rivers). In order to support such cases, 2D arrangements can be lifted to
2.5D by storing an additional height value into the arrangement cells. This height value
should not be considered as a real third coordinate that lifts up the cells into 3D. It can
rather be thought as a variable which indicates the existence of multiple arrangement cells
whose vertical projection coincide (Figure 2.17).

For real 3D arrangements, 3D (topological) data structures are required. An example to a
such data structure can be the combinatorial / generalized maps [Lienhardt, 1991; Françon
and Bertrand, 2000; Damiand and Lienhardt, 2015] which can represent n-dimensional
subdivided objects with a topological boundary representation. However, algorithmically
and computationally difficult part of 3D arrangements is the calculation of boolean set
operations (intersection, union and difference) on the 3D geometric primitives (arbitrary
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f1

h = 0

f2

h = 0, 1

f3

h = 0

f4

h = 1

f5

h = 1

Figure 2.17: 2.5D arrangements can be used to solve the bridge problem. Observe that the
face in the middle (f2) has two associated height values indicating that there exist two faces on
top of each other at different height values. In this example, the height information is stored to
the arrangement faces. The height information stored to any arrangement cell can be inherited
by the incident lower dimensional cells.

3-polytopes, 3D line segments, 3D surface patches, etc.).
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Chapter 3

Object-based GIS Modelling

3.1 Introduction

The data used in GIScience (geo-data) contain both thematic and geometric (spatial)
information which need to be merged for many GIS applications. Mainly, there exist two
approaches for linking thematic and geometric aspects of geo-data: field approach and
object oriented approach [Molenaar, 1998] (Figure 3.1). In the first approach, thematic
data are linked to geometry (points or finite cells) using attributes. In this structure,
attribute values are position dependent and they have to be calculated for each point or
cell. The second approach organizes data in an object oriented model by defining objects,
each of which has a location, a shape and several non-geometric characteristics.

position

Attributes:
attribute1

...
attributen

object

thematic data

geometric data

Figure 3.1: Two approaches for linking thematic and geometric information: field model (on
the left) stores thematic information as attributes to geometric positions or cells whereas object
oriented model (on the right) structures the data into objects. This figure is re-composed from
Molenaar [1998].

Human-beings tend to think thematically, therefore thematic aspects of data are often
of prime importance. This means that the data querying and processing will be organ-
ised and formulated primarily from a thematic perspective. Hence, the structuring and
formation of the geometric data depend on the thematic aspects of the data [Huxhold,
1991]. According to this, object oriented approach might be more desirable than the
field approach since object’s are classified and grouped thematically. In addition, object
oriented approach utilizes all the concepts of object oriented modelling and programming
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Chapter 3. Object-based GIS Modelling

such as encapsulation, inheritance, data abstraction, etc. Object oriented approach has
been used in numerous works such as Egenhofer and Frank [1992]; Günter and Lamberts
[1994]; Gong and Li [1996]; Gonorov and Khorev [1996]; Tryfona et al. [1997], etc.

In Chapter 2 planar partitions has been discussed for modelling the space occupancy of
urban objects in public scenes. Recall that we utilized 2D arrangements for managing
the geometric aspects of the spatial data. In this chapter our focus is on the thematic /
semantic aspects of the data with an object oriented approach.

3.2 Semantic Objects and Semantic Planar Partitions

In computer science, an object is a buffer of memory whose address is referenced by an
identifier (a name, reference or pointer). Software objects are used to model the state
and behaviour of real-world objects in computing environments. In GIScience, software
objects are generally used to model geospatial objects such as buildings, streets, roads,
walkways, parks, city furnitures, lampposts, etc. In our system, we call such objects as
semantic objects1 referring to both the geometry and the semantic information stored in
an object.

Semantic objects are constructed on top of the geometry stored in 2D arrangements
such that every semantic object is linked to a set of arrangement cells (Figure 3.2).
Generally, the cells with highest dimension are used for this mapping. For instance, to
link a polygonal region to an object, only the corresponding face of the arrangement is
used. The edges and vertices composing the boundary of the face are not directly linked
to the object2. In reality, there is no restriction on these mappings. Moreover, semantic
objects can also be created on top of each other which forms an object hierarchy. In an
object hierarchy, parent objects may also be directly linked to the underlying geometry.
Indeed, semantic objects can be classified according to how they are matched to the
underlying 2D arrangement cells and other objects (Table 3.1).

Object Type Description
areal objects constructed only from the arrangement faces.
linear objects constructed only from the arrangement edges.

punctual objects constructed only from the arrangement vertices.
mixed objects constructed from different types of arrangement cells.
level-0 objects that are directly and only liked to arrangement cells.
parent objects composed of other objects.

composite objects composed of other objects and arrangement cells.
disjoint when the object geometry is disjoint.

connected when the object geometry is connected.

Table 3.1: Semantic object types according to geometry properties of the objects, i.e. how they
are connected to the cells of the 2D arrangement and other objects.

1From now on, the word “object” should refer to “semantic object” although it is not explicitly men-
tioned.

2Incidence relationships can be used to access the lower dimensional geometric primitives of an object
through the higher dimensional primitives.
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In our system, as soon as semantic objects are created on top of the planar partitions,
we call them semantic planar partitions. Figure 3.2 displays an example of a semantic
planar partition.

3.3 Object Hierarchy

The hierarchy between the semantic objects is constructed using a Directed Acyclic Graph
(DAG). DAGs are directed graphs that are free of cycles. DAGs arise naturally when the
graph nodes often have a natural ordering e.g. when the nodes represent events ordered
in time or objects ordered by hierarchy [Gross et al., 2014].

The leaf nodes (sink nodes3) of the hierarchy graph do not represent the semantic objects
but the geometric primitives (cells of the corresponding arrangement) that are used to
construct the semantic objects. The lowest level objects (level-0 objects) are in fact
represented in the hierarchy with the level-1 graph nodes. The source nodes4 of the
hierarchy graph correspond to the top level objects in the object hierarchy which are in
general, objects referring to logical constructions in cities such as avenues, streets, regions
or even the cities themselves.

Figure 3.3 displays the hierarchy of the objects constructed for the semantic planar parti-
tion represented in Figure 3.2. A sub-graph of the hierarchy graph is also given in Figure
3.4 for a higher resolution zoomed view.

3.4 Maintenance of Semantic Planar Partitions

In Section 2.3.2, we have discussed the maintenance of the planar partitions for keeping
them valid upon geometric or topological updates. Similarly, semantic objects also need to
be maintained. Adding geometry to the underlying arrangements and deleting geometry
from them require different actions to be taken.

When level-0 semantic objects are created, links from the objects to the related arrange-
ment cells are constructed. After an insertion of new geometry into the arrangements,
some of the arrangement cells will be modified. Some faces and edges might be split and
as a result new cells are created. If an arrangement cell that has been linked to a semantic
object is updated (i.e., split), the corresponding semantic object has to be notified. Upon
notification, the links to the arrangement cells from the notified object has to updated
such that the object’s initial geometry does not change. Figure 3.5 displays an example for
the maintenance of the semantic objects when a line segment is added to the underlying
arrangement. Note that in the object hierarchy, only the level-0 and composite objects
need to be maintained after new geometry addition/insertion.

On the contrary to the addition of geometry, deletion of geometry is constrained to a
set of rules. The non-linked arrangement cells5 and the cells that are not incident to a
linked cell can be freely deleted from the arrangements. On the other hand, the remaining
arrangement cells (i.e. the linked cells and the cells that are incident to them) cannot

3Sink node: a graph node with out-degree equal to 0.
4Source node: a graph node with in-degree equal to 0.
5Non-linked cell: An arrangement cell that is not linked to a semantic object.
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Figure 3.2: An example of a semantic planar partition: semantic objects are created on top of
a planar partition modelling a street scene. In the figure, arrangement faces are numbered from
1 to 41. Here is the list of the level-0 areal objects within the figure: four buildings { 1, 2, 3, 4
}, eight sidewalks { 5, 6, 7, 8, 9, 10, 11, 12 }, four pedestrian crossings { (16, 17, 18), (22, 23,
24), (28, 29, 30), (34, 35, 36) }, twelve lanes { (13, 16), (14, 17), (15, 18), (19, 22), (20, 23), (21,
24), (25, 28), (26, 29), (27, 30), (31, 34), (32, 35), (33, 36) } and an intersection { (37, 38, 39,
40, 41) }. Note that, not all objects can be displayed at the same time due to shared surfaces;
parent objects constructed on these level-0 objects can be seen in Figures 3.3 and 3.4.
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3.5. Displaying Object Hierarchy on the Computer Screen

A B

(a)

A B

(b)

A B

(c)

Figure 3.5: An example for the maintenance of semantic objects: (a) initial configuration of
two objects; (b) a segment is inserted into the arrangement which splits two faces and the two
corresponding objects become invalid, i.e., their initial geometry is shrunk; (c) the objects are
notified for the split of the faces and the other half of the split faces are linked to the semantic
objects. Therefore, the geometry of the already constructed objects are kept unchanged.

be deleted without violating the validity of a semantic object. In order to remove a
linked cell, first the associated objects have to be deleted from the data model. Similarly,
deletion of child objects are also constrained such that only the semantic objects that
correspond to source nodes in the object hierarchy can be deleted from the data model.
After a deletion of a source node in the hierarchy, the children of the source node might
become source nodes as well if they do not have other parent objects. In short, only the
objects which do not have any parent objects can be deleted from the object model.

3.5 Displaying Object Hierarchy on the Computer Screen

Visible semantic objects are rendered on the computer screen with the corresponding
predefined style (color, line width, fill pattern, etc.) for each object class. Notice that,
the object hierarchy is constructed on the same set of geometric primitives (arrangement
cells). Therefore, the rendering system needs to manage the display of the parent-child
objects. However, ambiguity conditions may arise when rendering the parent objects
sharing the same child objects. That is, shared objects can be the source of ambiguities
and the parent objects sharing the same children can be affected from these ambiguities.

An immediate solution to the mentioned rendering problem could be using color blending
or transparency. This would be a nice solution for a restricted hierarchy of objects in
which an object might have a limited number of parents. However, in our system, there is
no such limit and an object can be shared by many other objects in different hierarchical
levels. Therefore, using color transparency or blending might be too cumbersome in our
system to identify which surface belongs to which object. As a result, a solid rendering
problem arises.

Figure 3.6 displays an hierarchy of five objects constructed on top of an arrangement
composed of 3 faces, 10 edges and 8 vertices. In the figure, objects obj1, obj2 and obj3
are level-0 objects and they are directly linked to the underlying arrangement cells. On
the other hand, obj4 and obj5 are level-1 objects and they are constructed on top of the
the level-0 objects. Figure 3.6 displays four possible rendering configurations a, b, c, d of
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the given object hierarchy. In each of these configurations, some of the objects are visible
whereas some are not. Observe that, there exists an ambiguity condition for the rendering
given in Figure 3.6(d). In this sub-figure, both parent objects (obj4, obj5) are wanted to
be displayed at the same time which is technically impossible since the arrangement face
(f2) linked to the shared object (obj2) cannot be rendered with two different settings at
the same time.

f1 f2 f3

obj1
√

obj2
√

obj3
√

obj4 × obj5 ×

(a) rendered objects: obj1, obj2, obj3

f1 f2 f3

obj1 × obj2 × obj3
√

obj4
√

obj5 ×

(b) rendered objects: obj3, obj4

f1 f2 f3

obj1
√

obj2 × obj3 ×

obj4 × obj5
√

(c) rendered objects: obj1, obj5

f1 f2 f3

obj1 × obj2 × obj3 ×

obj4
√

obj5
√

(d) rendered objects: obj4, obj5

Figure 3.6: All possible renderings (a, b, c, d) of a simple object hierarchy: three level-
0 objects (obj1, obj2, obj3) and two level-1 objects (obj4, obj5) are constructed on top of an
arrangement (faces of the arrangement → f1, f2, f3). Visible (rendered) and non-visible (non-
rendered) objects are marked with

√
and ×, respectively. The rendering configuration (d) is

problematic since the arrangement face f2 cannot be rendered with the settings of obj4 and obj5
at the same time. Ambiguity conditions arise when parent objects sharing child objects are
wanted to be rendered at the same time.

In StreetMaker, users are allowed to change the visibility (rendering) of the individual
objects which effectively changes the rendering configuration of the object hierarchies.
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That is, the transitions between different rendering configurations are done via changing
the visibility of individual objects. Furthermore, StreetMaker has a feature called am-
biguity solver which automatically adjusts the visibility of the objects and prevents the
ambiguity conditions. For our simple example given in Figure 3.6, Figure 3.7 shows the
transition graphs between different rendering configurations when the ambiguity solver
feature is enabled and disabled. An edge in the rendering transition graph corresponds
to a change in the visibility of a single object made by the user. In effect, the visibility
of many objects are adjusted to make this happen. When the user changes the visibil-
ity of an object the ambiguity solver kicks in and searches the object hierarchy graph
for the ambiguity conditions. For each detected ambiguity condition, ambiguity involved
objects (ambiguity source and ambiguity affected) are identified. Then, by adjusting the
visibilities of these objects, the ambiguity conditions are automatically resolved. More
information on the resolving of the ambiguity conditions are given in the implementation
details (Section 3.6).

a

b c

d

a

b c

d

Figure 3.7: Rendering transitions for the object hierarchy given in Figure 3.6 when the am-
biguity solver is disabled (on the left) and enabled (on the right). The graph nodes represent
different rendering configurations (a, b, c, d) and each graph edge corresponds to a change in
the visibility of a single object initiated by the user. For instance, when the current rendering
configuration is (a), making obj4 or obj5 visible transposes the rendering configuration to (b)
and (c) respectively. Moreover, if the ambiguity solver is disabled, transitions to configuration
(d) is possible from (b) by making obj5 visible or from (c) by making obj4 visible. On the con-
trary, when the ambiguity solver is enabled, ambiguity conditions are avoided by automatically
transforming configuration (b) to (c) or vice versa.

3.6 Implementation Details

Semantic objects are stored in a hash table within StreetMaker. Object ids (UUID) [ITU-
T X.667, 2012] are used as keys to locate the objects within the hash table. Moreover,
the nodes of the object hierarchy graph only store the object ids and by using these ids
any object can be retrieved from the hash table.

There exists two methods for creating semantic objects. The first method is fully manual
in which the objects are created on the selected arrangement cells. On the other hand,
the second method is fully automatic in which the geometry of the semantic objects are
imported from an external data source. In addition, possibly existing semantic data in
the input data source can be extracted and stored with the created semantic objects. In
order to use automatic object importing feature, the user has to define an XML file which
maps the related elements in the input data source to automatically created semantic
objects. Creating semantic objects are further discussed in Section 5.4.
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In a rendering cycle, arrangement cells are iterated one by one and rendered with inherited
settings from one of the parent objects. Recall that level-0 (leaf) nodes in the hierarchy
graph correspond to arrangement cells and the objects that are linked to arrangement cells
are of type level-0 (level-1 nodes in the hierarchy graph) and composite. The algorithm
behind the ambiguity solver depends on the DAG structure and a local variable called
display level that is defined for each object directly linked to the arrangement cells, i.e.,
for level-0 and composite objects. The display level of an object is used to conclude on the
rendering settings of the corresponding arrangement cells. For instance, the arrangement
cells associated to an object whose display level equals to 0, are rendered with the object’s
own rendering settings. On the other hand, for an object with a display level different
than 0, the corresponding arrangement cells (the cells that are linked to the object) are
rendered with the settings of a parent object whose level6 is equal to the display level of the
object. Table 3.2 displays the display levels of the objects and the rendering configurations
for the simple example analysed in the previous section (Figure 3.6).

Rendering Object Display Level Face Rendering
Configuration (obj1, obj2, obj3) (f1, f2, f3)

(a) (0, 0, 0) (obj1, obj2, obj3)
(b) (1, 1, 0) (obj4, obj4, obj3)
(c) (0, 1, 1) (obj1, obj5, obj5)
(d) (1, 1, 1) (obj4,×, obj5)

Table 3.2: Rendering arrangement cells: the rendering of arrangement cells and the display
levels of the objects given in Figure 3.6. The character × (in the rightmost column of the last
row) indicates the ambiguity in the rendering of the face f2.

When the user makes an object visible, generally the rendering of a set of objects are
affected. For instance, observe in Table 3.2 that from rendering configuration (a) to (b)
the display levels of obj2 and obj3 are change to 1, which in effect makes the obj4 visible,
obj1 and obj2 invisible. For this transition from (a) to (b), the user only changes the
visibility of obj4 (by simply right clicking on the object in the object hierarchy window,
see Section 5.3). Upon user’s request for making the obj4 visible, the level-0 children of
obj4 are found within the DAG and their display levels are set to the level of obj4 which is
1. From rendering configuration (b) to (a), the user has to make a request to make either
obj1 or obj2 visible. Let’s assume that obj1 is selected to be made visible for this case.
obj1 is already a level-0 object and it has no children, therefore its display level is set to
its level (0) which makes it visible. At this point, obj2’s display level remains as 1 which
breaks the integrity of the rendering since f2 is continued to be rendered with the settings
of obj4 which should not be visible. Therefore, special care has to be taken when a child
object is made visible while one of its parent objects has been visible. The integrity of
the rendering is maintained by decreasing the display levels of the non-updated children
under the parent object. The amount of the decrease is set to 1 which also makes the
other children of the parent object visible. That is, decreasing the display level of obj2 by
1 (display level = 1− 1 = 0) fixes the problem and makes it also visible.

Ambiguity conditions are searched through the shared level-0 objects. For instance, when
the current rendering configuration is (b) and the user makes the obj5 visible, then the

6The level of an object is one less than its level in the hierarchy graph.
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display levels of obj2 and obj3 are set to 1 (the level of obj5). Observe that the display level
of obj1 is also 1, i.e., obj4 is also visible and the ambiguity condition arises. When the
shared object (obj2) is analysed, it is found out that it has two parents visible at the same
time (obj4 and obj5). Ambiguity solver finds out that obj5 is made visible more recently
than obj4 and changes the display levels of obj4’s level-0 children without interfering with
the visibility of the obj5. That is, only the display level of obj1 is changed and it is
decremented by one. As a result, the ambiguity condition is automatically solved and
obj1 and obj5 become visible, i.e. a transition from rendering configuration (b) to (c) is
attained.

Ambiguity conditions can also be solved by manually changing the visibility of the objects
one by one. However, it becomes tricky and takes more time when the number of the ob-
jects increases. Furthermore, ambiguity solver can be disabled if needed. In this case, the
ambiguity affected cells of the underlying arrangement are rendered with a distinctive set
of settings (e.g. with a special pattern chosen by the user) which indicates the ambiguity
conditions visually to the users.

3.7 Conclusion

To sum up, we presented a DAG-structured object hierarchy constructed on top of a planar
partition represented by a 2D arrangement. In this hierarchy, the graph nodes represent
either the semantic objects or the underlying geometric primitives / arrangement cells.
The nodes that correspond to arrangement cells are level-0 (leaf nodes) and the rest of the
nodes correspond to semantic objects at different levels. An edge between two semantic
object nodes indicates a thematic parent-child relationship between the objects. On the
other hand, an edge between a level-0 node and a non-level-0 node represents a link
between the geometry (an arrangement cell) and the corresponding semantic object.

The ambiguity conditions related to the rendering of semantic objects and our solution
to this problem has been discussed. In order to manage the rendering of the objects
we utilized the DAG-structured hierarchy together with a set of local variables (display
levels) attached to level-0 and composite objects. To the author’s knowledge, this kind of
approach is used for the first time for solving such a rendering problem.

Maintenance of planar partitions are discussed in Chapter 2 and in this chapter we fur-
ther raised the maintenance issues to semantic object level. Object hierarchies similar to
ours can be constructed using the PostGIS Topology package7 (Topogeometry objects in
PostGIS). However, to the author’s knowledge, the maintenance is not performed auto-
matically in PostGIS Topology on the contrary to ours.

Bertin [1967] published his foundational work (originally in French) in the design and
cartography which has been affecting the information visualization theory. As a future
work, the rendering of the semantic objects might be reconsidered along the graphical
techniques (shape, orientation, color, texture, volume and size) as described by Bertin.

7http://postgis.net/docs/manual-dev/Topology.html
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Chapter 4

Generic Algorithms

GISs use variety of algorithms that were developed within the fields of computational
geometry, graph theory and computer science. In this chapter, a set of these algorithms
and their theory is presented upto a limit. These algorithms are quite generic meaning
that they can be used within the context of many GISs. Therefore, having a set of these
algorithms that are ready to run on a given dataset would be very beneficial. In fact, we
will see in Chapter 5 that the algorithms discussed here were implemented as a part of
our GIS framework.

4.1 Delaunay Triangulations and Voronoi Diagrams

4.1.1 Introduction and Definitions

Triangles are very suitable building blocks for space partitioning since a triangle is the
simplest planar structure to represent a patch of surface in 2D/3D space. In general, a
triangulation can be described as the subdivision of a plane into triangular regions except
the unbounded region. The 3D counterpart of a triangulation is the tetrahedralization
which should not be confused with a triangular mesh. A triangular mesh represents a 2-
manifold surface embedded in 3D but it is neither a triangulation nor a tetrahedralization.
For instance, a Digital Elevation Model (DEM) is generally represented by a triangular
mesh (Triangulated Irregular Network (TIN)) which is constructed by first triangulating
a set of planar points and then lifting the points to 3D by imposing height information
on the points [van Kreveld, 1997].

Triangulation of a plane is a very broad subject on its own. Below, some definitions are
given in order to provide a more formal definition of triangulations and alpha shapes
which is explained in Section 4.2. Please refer to Hjelle and Dæhlen [2006]; de Loera
et al. [2010]; Devadoss and O’Rourke [2011] for more aspects of triangulations that are
not discussed within the scope of this dissertation.

Let S be a finite set in d-dimensional Euclidean space (Rd) with k + 1 elements: S =
{p0, p1, ..., pk}. Unless otherwise is stated, S is assumed to be this set in the following
definitions.

affine combination and affine hull: An affine combination of the points pi ∈ S is
a point x =

∑
αipi with

∑
αi = 1 and the affine hull of S is defined as the set of all
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affine combinations of pi ∈ S. Geometrically, the affine hull of S is the intersection of
the all hyperplanes that contain S. For instance, affine hull of a single point is the point
itself, affine hull of two points is the line passing through the two points and affine hull of
three points is the plane defined by the three points. Furthermore, the points pi ∈ S are
affinely independent if none is the affine combination of the others. Consequently, k + 1
points are affinely independent if and only if the k vectors vi = pi − p0, for 1 ≤ i ≤ k,
are linearly independent. One can find at most d linearly independent vectors in Rd, and
therefore at most d+ 1 affinely independent points.

convex set: S is a convex set if any line segment joining two points in S lies entirely in
S (Figure 4.1).

Figure 4.1: A convex (left) and a non-convex set (right)

convex combination and convex hull: A convex combination is an affine combination
with non-negative coefficients. That is, a convex combination of the points pi ∈ S is a
point x =

∑
αipi with

∑
αi = 1 and αi > 0. Then, the convex hull of S (conv(S)) is

defined as the set of all convex combinations of pi ∈ S. Note that, convex hull of S is
equivalent to the smallest convex set containing S (Figure 4.2).

Figure 4.2: Convex hull of a point set

k-simplex: A k-simplex, denoted by σ, is the convex hull of k + 1 affinely independent
points, σ = conv(S = {p0, p1, ..., pk}). k represents the simplex dimension. Remember
that one can find at most d+1 affinely independent points in Rd. As a result, there exists
four simplices in R2 and five simplices in R3 including the empty set which is denoted by
(−1)-simplex. Figure 4.3 displays all possible simplices in R3 other than the (−1)-simplex.

Any subset of an affinely independent set is also affinely independent and therefore also
defines a simplex. A face τ of σ is the convex hull of a subset of S, i.e., τ = conv(T )
where T ⊆ S. τ is called a proper face if T 6= ∅ and S − T 6= ∅, otherwise it is called an
improper face, i.e., τ is improper if T = ∅ or T = S.

simplicial complex: A simplicial complex K is a finite collection of simplices such that

i. if τ is a face of σ ∈ K, then τ ∈ K.

48



4.1. Delaunay Triangulations and Voronoi Diagrams

Figure 4.3: Left to right: 0-simplex (vertex), 1-simplex (edge), 2-simplex (triangle) and 3-
simplex (tetrahedron)

ii. if σ1, σ2 ∈ K, then σ1 ∩ σ2 is a face of both σ1 and σ2.

Figure 4.4 displays three finite collections of simplices which do not form a simplicial
complex. The dimension ofK is the largest dimension of any simplex inK, i.e., dim(K) =
max{ dim(σ) | σ ∈ K }. A simplicial complex with dimension k is called a k-complex and
it is pure if every simplex is a face of a k-simplex. In addition any subset K ′ of K is a
subcomplex of K if K ′ is also a simplicial complex.

(a) (b) (c)

Figure 4.4: Examples of simplex collections which do not form simplicial complexes: (a) missing
two vertices and an edge hence violating the first requirement; (b), (c) intersection of two triangles
is not a face of the triangles hence violating the second requirement.

triangulation: A triangulation T of a point set P ∈ R2 is a 2-complex K, such that all
0-simplices (vertices) of K are points in P and the union of all simplices in K is equal to
the convex hull of P (conv(P )).

In a triangulation if an internal edge is a diagonal of a convex quadrilateral spanned by
the two adjacent triangles, it can be changed with the other possible diagonal within the
quadrilateral which results in a different triangulation (Figure 4.5). As a result, a new
triangulation of the same set is obtained different than the previous one. This observation
emerges two questions: how many different triangulations are there for a given arbitrary
point set and is it possible to convert a given triangulation to any other triangulation of
the same point set by just flipping edges? The first question has not been fully answered
yet. Although, there exist formulas for some special cases, a formula for a general case
has not been found. For instance, a convex polygon with n-vertices (n ≥ 3) is one of
the special cases. In this case, the number of possible triangulations Tn is given by the
following formula [de Loera et al., 2010]:

Tn =
1

n− 1

(
2n− 4

n− 2

)
(1)

Observe that the number of triangulations increase exponentially as the number of points
on the convex polygon increase (1, 2, 5, 21, 42, 131, ..., ). There is no formula for the general
case, but there is an algorithm to find the number of different triangulations for an arbi-
trary point set given by Avis and Fukuda [1996]. In addition, Aichholzer et al. [2004] and
Sharir and Welzl [2006] discovered a lower and an upper asymptotic bound respectively.
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lower bound: O(2.33n) upper bound: O(
59v7b(
v+b+6

6

))

where b and v are the numbers of boundary and interior vertices respectively and n is the
total number of vertices (n = b+ v).

Figure 4.5: Edge flip operation: flipping the diagonal of a quadrangle formed by two adjacent
triangles

The second question is related to the connectivity of the flip graph of a point set. The
nodes of the flip graph are composed of all possible triangulations of the point set and
the ones that can be convertible to each other by a single edge flip are connected. Lawson
[1972, 1977] proved that flip graph of any point set is connected. That is, any two different
triangulations of a point set can be connected to one another through a finite sequence of
flips. Another conclusion that can be drawn from this theorem is, the number of triangles
for every triangulation of a point set is same since an edge flip, does not change the number
of triangles. Observe Figures 4.6 and 4.7 for all possible triangulations of a simple point
set and its flip graph.

(a) (b) (c)

(d) (e)

Figure 4.6: Five possible triangulations of a convex polygon composed of five points. Each
consequential triangulation is obtained via flipping the red edge in the previous triangulation.

We have seen that triangulation of point sets are not unique; however, among them some
of the triangulations are preferable to others for practical reasons. In many applications,
triangulations which have skinny triangles are not generally favoured. On the contrary,

50



4.1. Delaunay Triangulations and Voronoi Diagrams

a

b

c d

e

Figure 4.7: Flip graph of the simple polygon displayed in Figure 4.6. Node labels correspond
to figure labels in Figure 4.6

triangles close to equilateral triangles are preferred. Delaunay triangulations are optimal
triangulations in terms of triangle shapes. There are myriad of applications of Delaunay
triangulations and their dual Voronoi diagrams, such that there is a conference series called
International Symposium on Voronoi Diagrams in Science and Engineering (ISVD) which
only focuses on these structures and their applications, e.g. in pattern recognition, robot
motion planning, cartography and crystallography to name a few. Moreover, in GIScience,
Voroni diagrams are among the traditional spatial data models and similarly, Delaunay
triangulations are mainly used for terrain modelling especially in the TIN construction.

4.1.2 Delaunay Triangulations and Voronoi Diagrams

The ‘shape’ of a triangle can be measured by the triangle’s minimum interior angle. For
an equilateral triangle each interior angle is 60◦ and for an arbitrary triangle, the more the
minimum interior angle deviates from 60◦, the more the triangle becomes skinny. Conse-
quently, the minimum interior angle of a triangle can be used to measure its ‘distance’ to
an equilateral triangle. This observation can be used to compare different triangulations
of a point set in terms of the triangle shapes. Assume for a finite point set P , there
exist k different triangulations each composed of n triangles. One can construct a non-
decreasing vectors of minimum angles V (Ti) for every triangulation such that each entry
in the vectors corresponds to the minimum angle of a triangle in Ti. In mathematical
notation:

V (Ti) = {α1, α2, α3, ..., αn} for 1 ≤ i ≤ k, and αs ≤ αt for s < t, and s, t ≤ n

A lexicographic order of vectors V (Ti) gives the order of triangulations in terms of opti-
mality defined above. Among these triangulations the one with the largest lexicographic
order is called Delaunay triangulation which is named after a Russian mathematician
Boris Nikolaevich Delone who first defined the notion [Delaunay, 1934].

Observe that one can construct a Delaunay triangulation from an arbitrary given trian-
gulation by continuously performing edge flip operations until a triangulation with the
largest lexicographical order is reached. Note that, an edge flip changes the values of
six angles within a triangulation, hence the lexicographical order of the triangulation’s
minimum angle vector also changes. Edges whose flip increase the order are called illegal
while the ones whose flip decrease the order are called legal edges. When all illegal edges
are flipped iteratively, a Delaunay triangulation is obtained.

Delaunay triangulations are unique if all the points are in general position; that is, no
three points are collinear and no four or more points are co-circular. For instance, in
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Figure 4.8: A triangulation of a point set in R2

Figure 4.9: Delaunay triangulation of the same point set displayed in Figure 4.8

the case of four co-circular points that form a quadrangle, there exist two possible tri-
angulations depending on which diagonal of the quadrangle is chosen as an edge in the
triangulation. Both triangulations may be optimum in terms of maximum of the min-
imum angles criterion. For instance, the triangulations of a rectangle yield exactly the
same angles. Please refer to Hansford [1990] for a detailed analysis of Delaunay triangu-
lations in the existence of four or more co-circular points. From now on, unless otherwise
is stated, the given points are assumed to be in general position.

The definitions of legal and illegal edges given above can be reformulated using well
known theorems on triangles and circles since ancient Greeks. Let ♦ABCD be a convex
quadrangle triangulated by the triangles 4ABC and 4ACD. The edge AC is a legal
edge if the vertex D is outside the circumcircle of 4ABC and it is illegal if it is inside
the circumcircle (Figure 4.10). Please see Appendix-B.1 for a proof. As a result of this
reformulation, we can give another equivalent definition for Delaunay triangulations:

Let T be a triangulation of a point set S in general position. T is a Delaunay triangulation
if and only if no point from S is in the interior of any circumcircle of a triangle of T . In
other words, all the edges of a Delaunay triangulation are valid.

A Delaunay triangulation is dual to a Voronoi diagram which is another geometric struc-
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(a) (b)

(c) (d)

Figure 4.10: Legal and illegal edges: AC is legal in (b) and illegal in (a); BD is legal in (c) and
illegal in (d). Observe that (c) is generated from (a) and (d) is generated from (b) by flipping
the edge AC. A flip of a legal / an illegal edge results in an illegal / a legal edge.

ture based on the Euclidean distance, named after Georges Voronoï [Voronoï, 1907, 1908],
also known as Thiessen polygons and Dirichlet tessellations [Aurenhammer and Klein,
2000]. The formal definition of Voronoi diagrams is as follows:

Let S = {p1, p2, ..., pN} be a set of distinct points in R2 and let d(i, j) denotes the Eu-
clidean distance between pi and pj. The elements of S are called sites within the context
of Voronoi diagrams. A region, called Voronoi region, is associated to each site in the
plane, denoted by vor(pi), such that

vor(pi) = {x : d(x, pi) ≤ d(x, pj)}, x ∈ R2, j = 1, 2, 3, ..., N

That is, vor(pi) is composed of all points within the plane that are at least as close to pi
as to any other site in S. The points that lie on the boundary between regions do not
have a unique nearest site. The Voronoi diagram of S, denoted by V or(S), is defined by
the union of all the boundary points between the regions (Figure 4.11).

If S is composed of only two sites, then V or(S) is the perpendicular bisector of the line
segment p1p2. This bisector cuts the plane into two half planes, in which the two sites lie.
Thus, for this case vor(p1) and vor(p2) are half planes denoted by H(p1, p2) and H(p2, p1)
respectively. When S has more than two sites, we can continue to draw perpendicular
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Figure 4.11: Voronoi diagram of a point set in R2

bisectors of segments joining two different sites, each of which cuts the plane into two half
planes. As a result, we can define the Voronoi region of a site pi as the intersection of
all half planes H(pi, pj) where pj is any other site in S. Then, the vertices of a Voronoi
diagram, called Voronoi vertices, are a subset of the intersection of the perpendicular
bisectors and similarly, the edges of a Voronoi diagram, called Voronoi edges, are a subset
of the perpendicular bisector segments and rays. Furthermore, half planes are convex
sets and intersections of convex sets are also convex; hence all Voronoi regions are convex
(Figure 4.12).

p

Figure 4.12: Voronoi region of a site p is defined by the intersection of half planes: black solid
lines display the segments joining the sites; blue dashed lines are the perpendicular bisectors to
the segments; the shaded region is vor(p) whose boundary is defined by the intersections of the
bisectors.

For a Voronoi diagram of at least three non-collinear sites, all Voronoi vertices are degree
three; i.e., they are on the border of three Voronoi regions or equivalently they are con-
nected to three Voronoi segments or rays. This statement is valid when no four or more
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points are co-circular, i.e., when all points are in general positions. For instance, in the
case of four co-circular points, a Voronoi vertex of degree 4 is generated (Figure 4.13).
A theorem from these observations can be constructed which states that: A point v is a
Voronoi vertex of V or(S) if and only if there exists a circle centred at v with three or
more sites on its boundary and none in its interior [Devadoss and O’Rourke, 2011]. This
theorem leads to the duality principle between Voronoi diagrams and Delaunay triangu-
lations.

Figure 4.13: Voronoi diagram of four co-circular points

Duality principle indicates a bijective mapping (when all points are in general position)
from Voronoi diagrams to Delaunay triangulations such that each of the two can be
constructed from the other. In this bijection, a Voronoi vertex corresponds to a Delaunay
triangle, a Voronoi edge corresponds to a Delaunay edge and a Voronoi region (or a site
in Voronoi diagram) corresponds to a Delaunay vertex (Figure 4.14). Interested reader
may refer to Aurenhammer and Klein [2000] and Devadoss and O’Rourke [2011] for the
theorems and their proofs of the duality principle.

Figure 4.14: Duality of Voronoi diagrams and Delaunay triangulations

The concept of Voronoi diagram and Delaunay triangulation described above can be gener-
alized or specialized. For instance, they can be defined for other geometric constructions
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other than points. A Voronoi diagram whose sites are composed of line segments and
points is called Segment Voronoi Diagram (SVD) and its dual is called Segment Delau-
nay Graph (SDG) [Karavelas, 2004; Alt et al., 2005] (Figure 4.15). Another example of
a specialization is the constrained Delaunay triangulation in which a set of predefined
edges are forced to be part of the triangulation [Joe and Wang, 1993]. And as a final ex-
ample, weighted Voronoi diagrams can be constructed by using a non-Euclidean distance
function.

Figure 4.15: Segment Voronoi diagram

There exists several algorithms for constructing both Delaunay triangulations and Voronoi
diagrams. One can construct these structures using their definitions. According to this
direct approach, the Delaunay triangulation of a point set can be obtained by first con-
structing a random triangulation of the point set and then flipping all the illegal edges
repeatedly. Similarly, the Voronoi diagram of the point set can be constructed by in-
tersecting the half planes generated by the perpendicular bisectors between the sites.
However, these direct approaches do not lead to optimal algorithms. Moreover, thanks to
the duality of these structures, one of them can obtained from the other.

The algorithms for computation of Delaunay triangulations and Voronoi diagrams can be
grouped into categories according to their approaches. In this dissertation only two of
these groups are mentioned. Please refer to Su and Drysdale [1997] and Liu and Snoeyink
[2005] for a comparative survey and classification of the existing algorithms in 2D and
3D respectively. The first group of algorithms are called incremental algorithms [Lee
and Schachter, 1980; Watson, 1981; Guibas and Stolfi, 1985]. Incremental algorithms
start with an initial triangulation which can be a single triangle. Then the remaining
points of the set are inserted to the initial triangulation one by one. After each insertion,
the triangulation is updated to be a Delaunay. The worst case runtime of incremental
algorithms are quadratic (O(n2)). The fastest algorithms are grouped into divide and
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conquer category which are O(nlogn). The basic idea is to recursively subdivide the input
point set into two data sets of approximately equal size until each data set contains only a
small number of points. Delaunay triangulations that are constructed at the lowest levels
merged recursively to obtain the Delaunay triangulation for the all set. Lee and Schachter
[1980] proposed the first divide and conquer algorithm which was based on adjacency list
data structure. Later, Guibas and Stolfi [1985] invented the edge algebra and improved the
algorithm a bit further by using the quad-edge data structure, and finally Dwyer [1987]
improved the initial subdivision step of the algorithm. For the interested reader, here
are some other notable papers which follow different approaches than already mentioned
algorithms: McLain [1976]; Mirante and Weingarten [1982]; Fortune [1987].

The implementation of Delaunay triangulations and Voronoi diagrams within the context
of this work are explained in Section 5.6. In addition, the following two topics alpha
shapes (Section 4.2) and medial axes (Section 4.3.1) are directly related to Delaunay
triangulations and Voronoi diagrams.

4.2 Alpha Shapes

The notion of alpha shapes was first introduced by Edelsbrunner et al. [1983] in order
to define the geometric shape of a point set in R2 and later Edelsbrunner and Mücke
[1994] established the alpha shapes theory for the point sets in R3 which can further be
generalized to Rd. Note that the shape of a point set is a vague notion and α-shape
representation is just one of the many possible interpretations. In the context of this
dissertation we are only interested in 2D α-shapes, therefore the concepts discussed here
are confined to 2D, although they can be easily generalized to 3D.

Assume that S is a finite set of points pi ∈ R2 in general position. General position
of points implies that no three points in S are collinear and no four points in S are co-
circular. These assumptions avoid the complications of the definitions given below. Please
refer to Edelsbrunner and Mücke [1994] for dealing with the degenerate cases, i.e., when
the points are not in general position. Moreover, in Figures 4.16, 4.17, 4.18, 4.19, 4.20,
4.21, and 4.22 the same point set is used and the value of α is fixed.

α-circle : A circle with radius α.

α-disk : An open disk bounded by an α-circle, for 0 < α < ∞. An α-disk d is empty if
d ∩ S = ∅.
α-exposed k-simplex : Let T ⊆ S with |T | = k + 1 and 0 ≤ k ≤ 2. Also assume that
σT is the k-simplex representing the conv(T ). σT is called α-exposed if there exists an
empty α-disk d such that T = ∂d ∩ S, where ∂d is α-circle. Note that for |T | = 3, σT
is a triangle and a triangle can be α-exposed if and only if α is equal to the radius of
the triangle’s circumcircle and the corresponding α-disk is empty. On the other hand, for
|T | = 2, σT is an edge and two circles can be drawn passing through these points for any
value of α. That is, σT is α-exposed if at least one of the disks bounded by these circles
is empty. Finally, for |T | = 1, σT is a vertex and it is possible to draw infinitely many
α-disks passing through the vertex some of which might be empty (Figure 4.16).

α-shape : Let’s define two sets for a fixed α: the set of α-exposed 0-simplices (vertices)
denoted by F0,α and the set of α-exposed 1-simplices (edges) denoted by F1,α. Then, the α-

57



Chapter 4. Generic Algorithms

e2e1

v1

v2
α

Figure 4.16: α-exposed k-simplices for a fixed α: v1 is α-exposed since infinitely many empty
α-disks can be drawn passing through v1 (only one of them is displayed). Note that centres of
the all α-circles passing through v1 is on the α-circle centred at v1. On the other hand, v2 is not
α-exposed because none of the (infinitely many) α-disks passing through v2 is empty. e1 is also
not α-exposed since corresponding two α-disks are not empty. On the contrary, e2 is α-exposed.
Although only one empty α-disk is enough to be α-exposed, both α-disks are empty for e2.

shape of S, denoted by Sα, is the polytope whose boundary (∂Sα) consists of edges in F1,α

and the vertices in F0,α. In algebraic topology, a polytope is defined as the underlying
space of a simplicial complex. This simplicial complex is called α-complex within the
context of α-shapes. A more detailed definition of α-complex will be given shortly. The
interior of Sα is bounded by the edges of Sα that are α-exposed only from one direction,
i.e., only one of the two corresponding α-disks is empty (Figure 4.17).

Figure 4.17: α-shape of the point set: the dotted α-circles are certificates for the membership
of the solid edges to the α-shape. All vertices are also in the α-shape and the interior of the
α-shape is shaded in the figure.

Observe that for a sufficiently small α, the set F1,α will be empty and this results in
Sα = S. In addition for a sufficiently large α, F1,α will contain only the edges from

58



4.2. Alpha Shapes

conv(S). That is,

limα→0 Sα = S

limα→∞ Sα = conv(S)
(2)

Let’s denote the Delaunay triangulation of S by DT (S). Recall from Section 4.1 that
DT (S) is a simplicial complex such that the circumcircle of each 2-simplex (triangle) in
DT (S) does not contain any other point of S. Thus, we can conclude that any 2-simplex
in DT(S) with circumcircle radius ρ is α-exposed for α = ρ. Furthermore, one can find an
appropriate α value for each proper face of a 2-simplex in DT (S) that makes it α-exposed.
This implies the following statement: For each simplex σ ∈ DT (S), there exist values of
α > 0 so that σ becomes α-exposed. Conversely, every face of Sα is a simplex of DT (S)
(Figure 4.18).

Figure 4.18: α-shape of a point set is superimposed on its Delaunay triangulation. Notice that,
all vertices and edges of the α-shape are also simplices of the Delaunay triangulation.

α-hull: The α-hull of S, denoted by Hα, is defined as the complement of the union of all
empty α-disks (Figure 4.19).

Figure 4.19: α-hull of the point set: the solid lines represent the border of the α-shape and the
dotted circular arcs indicate the empty α-disks that intersect with the alpha-shape. Note that,
all of the vertices are also included in the α-hull.

α-diagram: The union of all α-disks centred at the points p ∈ S is called the α-diagram
of S and it is denoted by Uα (Figure 4.20). Observe that a point x ∈ R2 belongs to Uα if
and only if the α-disk dx centred at x is not empty. This observation leads to the following
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close relationship between Uα and Hα (Figure 4.21).

x ∈ Uα ⇔ dx ∩Hα 6= ∅

x ∈ Hα ⇔ dx ⊆ Uα
(3)

The boundary of Uα, denoted by ∂Uα, consists of circular arcs that meet at corner points.
Assume that T = {p1, p2} with T ⊆ S and σT is α-exposed due to an α-disk d. Then,
observe the fact that the centre of d has to be on one of the intersection points of the two
α-circles centred at p1 and p2. This shows a correspondence between the α-exposed edges
of Sα and the corners of ∂Uα. Note that, this correspondence is not a bijection unless
we take the multiplicities of edges of Sα that are α-exposed from two different directions.
Similarly, there exists a correspondence between the vertices of Sα and the circular arcs
of ∂Uα. Observe that the degree measure of an arc of ∂Uα is equal to the outward angle
around the corresponding vertex of Sα (Figure 4.20).

Figure 4.20: α-diagram of the point set: the dashed lines indicate the mapping between the
vertices and edges of the α-shape and arcs and corners of the α-diagram, respectively. Notice
that this mapping is not a bijection without taking the multiplicities of edges that are α-exposed
from two different directions, such an edge is displayed on the right side of the figure which is
mapped to two corner points.

Figure 4.21: α-hull of the point set is superimposed on its α-diagram.
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Voronoi decomposition: Recall that the set of vertices and edges of an α-shape is a
subset of Delaunay triangulation. In fact, we will see that this statement can be general-
ized for α-complexes. That is, an α-shape is the underlying space of a simplicial complex
which is a subcomplex of DT(S). Recall also that Delaunay triangulations are dual to
Voronoi diagrams such that each Delaunay vertex, edge and triangle, corresponds to a
Voronoi region, edge, and vertex respectively. Therefore, there exists a Voronoi region,
edge or vertex for every simplex of an α-complex.

Let dp be the α-disk centred at point p and vor(p) be the Voronoi region of p. Observe in
the Figure 4.22 that vor(p)∩α-diagram = dp ∩α-diagram. This observation leads to the
following alternative construction of the α-complexes and hence α-shapes: the α-complex
of a point set for a fixed α can be constructed by taking the union of all Delaunay triangles,
edges and vertices whose dual Voronoi cells have a non-empty intersection with the α-
diagram. Moreover, alpha-diagram is decomposed into convex regions by the Voronoi
diagram (Figure 4.23).

Figure 4.22: Voronoi diagram, Delaunay triangulation, α-complex and α-diagram: α-complex
can be constructed by taking the boundary of the union of all Delaunay triangles, edges and
vertices whose dual Voronoi cells have a non-empty intersection with the α-diagram.

α-complex: Assume that σT is the k-simplex of a point set T ⊆ S with |T | = k + 1 and
k ∈ {1, 2}. For each σT we can define an open disk dT bounded by the smallest circle ∂dT
that contains all points of T . Let ρT be the radius of dT . For k = 2, ∂dT is the circumcircle
of σT and for k = 1, the two points in T are antipodal on ∂dT . Let’s define two sets Gk,α

of k-simplices σ ∈ DT (S) for which dT is empty and ρT < α (0 < α < ∞). In addition,
we define G0,α = S. Notice that, the union of Gk,α may not be a simplicial complex since
not all edges of a triangle in G2,α are necessarily in G1,α. The α-complex of S, denoted by
Cα, is defined as a simplicial complex whose k-simplices are either in Gk,α or they bound
(k+1)-simplices of Cα. In fact, the second rule states that a k-simplex belongs to Cα if it
is a face of a simplex in Cα. By definition, for any α, Cα is a subcomplex of DT (S). In
addition, Cα1 is a subcomplex of Cα2 if α1 ≤ α2 and limα→∞Cα = DT (S) (Figure 4.24).

Based on Cα, another definition of Sα can be given. The union of all simplices of Cα
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Figure 4.23: Voronoi decomposition of the α-diagram.

defines a polytope which is equal to Sα. This definition is more useful than the one that
is based on the α-exposed k-simplices since it leads to an easier implementation. In the
former definition, it is not clear how to implement the inspection of a point whether
it is α-exposed or not; since there exist infinitely many α-disks touching a 0-simplex.
Conversely, the α-complex definition provides an algorithmic approach.

Edelsbrunner and Mücke [1994] associated an interval for each simplex of DT (S) indicat-
ing for which values of α the simplex belongs to Cα. For instance, let σT ∈ DT (S) be a
k-simplex and IT = (t,∞) be the associated interval. Then σT ∈ Cα if and only if α ∈ IT .
Furthermore, Edelsbrunner and Mücke [1994] also partitions IT into three subintervals for
which σT is called an interior, singular or regular simplex. Please refer to the paper for
computation of the intervals and for a detailed explanation of the algorithm. Table 4.1
summaries the outline of the algorithm.

Step Description
1. Compute DT (S).
2. Compute an interval for each simplex in DT (S).
3. For a given α, compute Cα.
4. All 2-simplices in Cα constitute the interior of Sα.
5. All k-simplices with k ∈ {0, 1}, which are on the boundary of Cα form the

boundary of Sα (∂Sα)

Table 4.1: Outline of the α-shapes algorithm given in Edelsbrunner and Mücke [1994].

The advantage of this algorithm is that, step 1 and step 2 are independent from the value
of α and it allows to compute the α-shape of a point set with different α values efficiently.
In fact, one of the main limitations of the α-shape representation is related to finding
the relatively best value of α for a given point set and a given application. In practice,
this is mostly done by changing α iteratively and observing the output. Therefore, once
the steps 1 and 2 are computed, only the rest of the algorithm is executed for varying
α values. In addition, for some point sets, it might not be possible to find a “satisfying”
value for the α. Most of the time, such cases occur if the points are not uniformly sampled
[Teichmann and Capps, 1998].
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Figure 4.24: α-complexes of a point set for different values of α: (a) α → 0, (i) α →∞, (b) -
(h) in between values in increasing order.

α-shapes have been used in many research fields such as computer vision and GIScience.
Interested reader may refer to some articles in which shapes of objects are computed using
α-shapes: Park et al. [2005], Höfle et al. [2007], Carette et al. [2008] and Shen et al. [2011].
Moreover, there exist a section in Edelsbrunner and Mücke [1994] on the applications of
α-shapes.
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The implementation of α-shapes within the context of this work is discussed in Section
5.6.

4.3 Skeleton Operators

A skeleton operator decomposes a polygon P into subregions with a tree structure inside
P . There are two fundamental skeleton operators: medial axis (Figure 4.25) and straight
skeleton (Figure 4.30). Medial axis is based on the Euclidean distance function such that
it is composed of all interior points of P whose closest point on the boundary of P is
not unique. Straight skeleton on the other hand, defined by an edge shrinking process in
which the edges are moving inwards at a constant rate. Both operators have been used
in numerous applications such as [Tagliasacchi, 2013; Gold and Dakowicz, 2005; Stefan,
2011; Siddiqi and M. Pizer, 2008].

4.3.1 Medial Axis

The idea of medial axis was first developed by Blum [1967] as a transformation of a general
closed 2D shape into 1D curves. The medial axis of a 2D shape can be extracted by fitting
maximally inscribed disks within the shape (Figure 4.26). The locus of all centres of these
disks and their radii provides the Medial Axis Transformation (MAT) which is unique and
invertible. That is, the original shape can be reconstructed from the centres and the radii
of the maximally inscribed disks.

Figure 4.25: Medial axis of a polygon: linear segments and parabolic segments are displayed
in different colors.

Medial axis can also be defined by an analogy to a grass fire. Imagine a uniformly
grass-covered region bounded by a planar closed curve is set on fire at the same time
everywhere along the boundary. As the fire propagates isotropically towards the interior,
i.e. the fire grows at constant speed in every direction along the normals of the curve,
some of the flames extinguish where the fire meets itself. These quench points will always
be equidistant from the boundary. In other words, medial axis is composed of a point set
in which the points have at least two closest points on the bounding curve. The analogy
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Figure 4.26: A subset of maximally inscribed disks in a polygon. The centres of all maximally
inscribed disks constitute the medial axis of a shape. Observe that the degree of a medial axis
vertex indicates how many times the maximally inscribed disk located on that vertex touches to
the boundary of the polygon.

of grass fire reveals a close relationship between the medial axis and the Voronoi diagrams
[Aurenhammer and Klein, 2000]. In fact, constructing a medial axis can be reformulated
as a Voronoi diagram problem due to the fact that each Voronoi edge is the locus of points
that have two closest neighbours within a given set of sites and each Voronoi vertex is the
locus of points that has at least three closest neighbours within the sites.

Constructing medial axis of a shape bounded by a general plane curve may require solving
systems of higher degree algebraic equations. Although it is possible to compute medial
axis of these shapes exactly, in practice it is not convenient and approximate solutions
are preferred. Furthermore, in many cases object shapes are not known exactly and they
have to be approximated. Nevertheless, there exists some work on the exact computation
of medial axis. For instance, Tzoumas [2011] presented a method for calculating the
medial axis of a shape bounded by quadratic Non-Uniform Rational Basis Spline (NURBS)
curves.

To approximate the medial axis of a general shape, the boundary of the shape has to be
sampled either by points or linear segments. If only the points are used in the sampling,
then the Voronoi diagram will be composed of lines and line segments (Figure 4.27). On
the other hand, sampling with linear segments, i.e., approximating the boundary of the
shape with a polygon, may produce parabolas, parabola segments, lines and line segments
in the Voronoi diagram. Figure 4.25 displays the medial axis of a polygon extracted from
the SVD of the polygon by filtering out the Voronoi vertices and edges outside the polygon.
In a SVD, parabola segments are generated due to the reflex vertices1 of a polygon. Note
that, this is due to the fact that the locus of equidistant points from a fixed line (directrix)
and a fixed point (focus) is a parabola (Figure 4.28) (Reflex vertices are likely to be the
closest points to the edges on the opposite side of the polygon).

Many algorithms have been proposed for medial axis construction, most of which depend
on the Voronoi diagrams. Please refer to Siddiqi and M. Pizer [2008] and Tagliasac-
chi [2013] for a broad survey. Here only two of them are mentioned. Chin et al. [1999]

1The internal angle of a reflex vertex is greater than π.
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Figure 4.27: Approximating the medial axis of a smooth curve via Voronoi diagram.

∗∗ ∗

∗∗ ∗

Figure 4.28: The locus of points equidistant to a given line (directrix) and a point (focus)
constructs a parabola.

presented the first linear time algorithm for simple polygons2 and Karavelas [2004] demon-
strated an algorithm to construct SDGs which also allows intersecting sites. SVD is dual
to SDG and medial axis can be extracted from SVD.

The concept of medial axis can be generalized to higher dimensions. Culver et al. [2004]
presented methods for exactly computing the medial axis of polyhedrons in 3D and Musu-
vathy et al. [2011] introduced the medial axis of 3D shapes bounded by C(4)-smooth
parametric B-spline surfaces.

Medial axis has been used in many diverse application fields such as body animation in
computer graphics, motion planning in robotics, domain decomposition in mesh genera-

2A simple polygon’s edges only intersect at the vertices of the polygon.
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tion, feature extraction in geometric design, tool-path creation in computer-aided man-
ufacturing, medical shape analysis, shape correspondence and image analysis for shape
recognition in computer vision [Siddiqi and M. Pizer, 2008; Tagliasacchi, 2013]. In addi-
tion, Gold and Dakowicz [2005] published a survey on the applications of medial axes in
GIScience. They give the following application categories: text recognition and topology
from scanned maps, object separation, skeleton retraction, terrain modelling and flow
modelling and hydrography.

In Chapter 6 we proposed a method for generating exact pedestrian networks which
depends on the creation of walkway centrelines using the medial axis. We first used the
Karavelas [2004] algorithm for generating the SDG of a polygon with holes which models
the surface of a walkway. Then, we extracted the centrelines from the SVD (dual to SDG)
by simply filtering out the Voronoi edges that are outside the polygon with holes and the
ones touching the boundary of the polygon with holes (Figure 4.29).

Figure 4.29: Centreline extraction with medial axis for an arbitrary polygon with holes.

4.3.2 Straight Skeleton

The notion of the straight skeleton of a polygon is introduced by Aichholzer et al. [1996]
by an edge-parallel shrinking process. In this process, the edges are moving inwards at a
constant rate while the vertices are kept on the angle bisector of the incident edges. This
process continues until a topological change happens on the boundary of the polygon.
There are two types of possible changes:

Split event: When a reflex vertex (concave vertex) interferes with an edge, the edge splits
into two which also results in the split of the whole polygon into two. New adjacencies
occur between the split edge and each of the edges incident to the reflex vertex (Figure
4.31).

Edge event: An edge collapses to length zero, making its neighbouring edges adjacent.
If the lengths of the neighbouring edges also diminish at the same time, then all of the
edges collapse into a single vertex. For instance, a triangle collapses into the center of the
triangle’s in-circle3 (Figures 4.31 and 4.32).

3The in-circle center of a triangle is the intersection of the angle bisectors.
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Figure 4.30: Straight skeleton of a polygon. Straight skeleton partitions the polygon into
smaller polygonal regions such that for each polygon edge, there exists a polygonal region in the
partition, called edge face.

1

2 3

Figure 4.31: Events that happened during the straight skeleton edge shrinking process are
marked in the order of happening. The first event is the split event in which a reflex vertex
runs into a polygon edge and splits it. The second and third events are edge events in which the
triangles are collapsed to a single vertex. Since the edges are moving at constant speed and the
vertices are translating on the angle bisectors, the edges of a triangle collapse at the same time
at the center of the triangle’s in-circle.

An edge event either collapses the entire polygon into a point or it yields a new polygon
which has one edge less than the previous one. Similarly, a split event results in two
polygons. The edge-shrinking process is applied to all polygons in parallel until all of the
polygons diminish and collapse into points. During this process, a hierarchy of nested
polygons are generated (Figure 4.33). Furthermore, skeleton vertices or nodes are gen-
erated at every event position (where the events occur). Then, the straight skeleton is
constructed from the union of the pieces of angular bisectors traced out from the polygon
vertices to skeleton vertices. That is, the edges of a straight skeleton are constructed
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1
2

Figure 4.32: Events that happened during the straight skeleton edge shrinking process are
marked in the order of happening. Both events are edge events. In the first event, the edge on
the left diminishes and in the second event the triangle collapses into its in-circle center.

between the skeleton vertices which lie on the intersections of the angle bisectors4 of
the polygons. In addition, straight skeleton partitions the input polygon such that each
polygon edge sweeps out a certain area called the face of the edge (Figure 4.30).

Figure 4.33: Straight skeleton and sample offset polygons generated during the edge shrinking
process.

The definition of straight skeleton leads the implementation efforts. The first algorithm
given by Aichholzer et al. [1996] is quadratic in run time complexity which simulates
the shrinking process discretely. Later, Eppstein and Erickson [1999] developed a sub-
quadratic algorithm by partitioning the problem into two sub-problems. The first and
difficult problem is related to the interaction of reflex vertices. They solved this first
sub-problem by generating graphs called motorcycle graphs and the second sub-problem

4The number of intersecting bisectors is 3 when a triangle collapses and it can be more than 3 when
a regular n-polygon collapses (n > 3).
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is related to the construction of straight skeletons from the motorcycle graphs. Recently,
Cheng et al. [2014] improved this two step algorithm which was claimed to be the best
algorithm in terms run time complexity. Interested readers should refer to Cheng and
Vigneron [2007], Stefan [2011] and Cheng et al. [2014] for a detailed description of the
general algorithm steps and a survey of the existing algorithms.

(a) coastline and river map (b) reconstructed terrain from the map

Figure 4.34: Terrain reconstruction from a coastline and river map using straight skeleton.
The image is taken from Aichholzer and Aurenhammer [1996].

Aichholzer and Aurenhammer [1996] extended the definition of straight skeletons and in-
troduced the straight skeleton for general planar graphs in the plane. They showed that
such an extension is very useful for terrain reconstruction from a coastline and river map
(Figure 4.34). Furthermore, it is also well known that straight skeletons are very useful in
computer graphics and GISs for generating plausible roof structures over the footprints of
buildings [Eppstein and Erickson, 1999; Laycock and Day, 2003] (Figure 4.35). Finally,
straight skeletons have found some other applications such as in mathematical origami
they are used to find solutions to fold and cut problem [Demaine et al., 2000]; in solid mod-
elling and Computer Aided Design (CAD), offset polygons are generated using straight
skeletons [Sang and Yun, 2003] and in computer vision straight skeletons are used for 2D
shape description and matching [Aichholzer et al., 2004].

Although medial axis algorithms are known to generate geometrically true centrelines for
a road network, straight skeleton can also be used for this purpose [Haunert and Sester,
2008]. Figure 4.36 displays extracted centrelines for an arbitrary polygon with holes by
filtering out the skeleton edges that are touching the boundary of the polygon.

4.3.3 Medial Axis and Straight Skeleton Comparison

Straight skeleton of a polygon is defined by the inward movements of the polygon edges
at a constant speed along the normals of the edge segments. Similarly, medial axis can
also be defined by the inward movements of points on the boundary of the polygon along
point normals (remember the grass fire analogy mentioned in Section 4.3.1). Notice that
the two definitions are quite similar. In fact, the straight skeleton and the medial axis of
a convex polygon are completely equivalent since the edge bisectors are equidistant from
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Figure 4.35: A roof structure constructed upon straight skeleton

Figure 4.36: Centreline extraction with straight skeleton for an arbitrary polygon with holes

the edges and no split event occurs in the straight skeleton edge shrinking process for a
convex polygon.

The two structures on the other hand differentiate for the concave polygons due to reflex
vertices. Reflex vertices result in parabolic arcs in medial axis and split events in straight
skeleton. A split event deviates the skeleton structure from a Voronoi diagram. However
it avoids the parabolic arcs and keeps the structure linear (Figures 4.37 and 4.38).

Both medial axis and straight skeleton have the same limitation. They are scale insen-
sitive such that the addition of an arbitrarily small geometric feature on the boundary
of a polygon results in a large change on the structure. This stability problem may be
significant in practical problems when there exist geometric variations on the boundary
of the shapes due to noise. Please refer to Attali et al. [2009] for a review of the stability
problem for medial axis and some possible solutions.
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Figure 4.37: Medial axis (dark cyan) versus straight skeleton (red): reflex vertices cause the
deviation between straight skeleton and medial axis.

Figure 4.38: Centrelines generated with medial axis (dark cyan) and straight skeleton (red)

4.4 Connectivity Graph for Itinerary Calculations

We developed the idea of connectivity graphs to benefit as much as possible from the
created semantic planar partitions (semantic objects + planar partition). The idea is to
have additional thematic graphs that can be used besides the navigational network graphs
to assist for the itinerary calculations.

We compute the connectivity graphs form the semantic planar partitions. A graph node
is created for each traversable / crossable borderline between two semantic objects. The
crossable property of a borderline is application specific that might depend on several
conditions such as the type of the travelling entity, the types of semantic objects on both
sides of the borderlines and some application specific rules. For instance, a borderline
between a sidewalk and a pedestrian crossing is traversable by a pedestrian (type of the
entity) if the green light is on for the pedestrian network (application specific rule). In this
example, the application specific rule is a dynamic one which disables the corresponding
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node from the connectivity graph when the application rule is not satisfied. The edges of
the connectivity graph encodes the connectivity information between semantic objects5.
That is, an edge between two borderlines indicates a navigable region on the surface
map which can be used by a travelling entity. Thus, a connectivity graph as a whole
represents a subset of connected semantic objects which form a continuous navigable
surface. Connectivity graphs can either be directed or undirected. If borderlines are
crossable in both ways, then the graphs are undirected, otherwise directed edges are
needed which indicate the direction of allowed crossings.

More than one connectivity graphs can be generated on the same semantic planar parti-
tion. For instance, creating a separate connectivity graph for each type of entity might
ease the application specific rules (there will be no rules depending on the type of the
travelling entity). Figure 4.39 displays two connectivity graphs on the same semantic pla-
nar partition, one for walkways (e.g. for pedestrians) and one for roads (e.g for motorized
vehicles).

4.5 Conclusion

In this chapter, a set of generic algorithms from the literature that can be utilized in
many different GIS applications are discussed with theoretical and practical perspectives.
In addition, we introduced the connectivity graphs computed on top of the semantic
planar partitions which can be used beside the navigational network graphs for rule based
itinerary calculations.

The discussed algorithms are integrated into our GIS framework called StreetMaker
(Chapter 5). Having these algorithms ready at hand can significantly reduce the ap-
plication development time. In fact, in Chapter 6 we utilized some of these algorithms for
constructing a static obstacle avoiding pedestrian network: medial axis transform is used
to compute the centrelines of the walkways and the shapes of the obstacles on the walk-
ways are estimated using α-shapes (which also depends on the Delaunay triangulations).

As the number of StreetMaker applications increases, there will be more and more generic
algorithms integrated. For instance, generic graph search algorithms can be (e.g. A*,
shortest path) integrated for itinerary calculations. Furthermore, 3D algorithms such as
3D Delaunay triangulation, 3D alpha shapes, 3D mesh/surface generation, etc. can also
be integrated for developing 3D GIS applications.

5The edges do not correspond to actual geometric routes between the semantic objects. They just
describe the topology between the nodes.
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Figure 4.39: Connectivity graphs on a semantic planar partition: two connectivity graphs are
displayed on a semantic partition composed of buildings (brown), sidewalks (teal), pedestrian
crossings (white) and lanes (gray). The first graph (yellow) is related to the walkways, indicating
the connections between sidewalks and pedestrian crossings. The second graph (magenta) is
related to road networks, indicating the connections of the lanes. Observe that the second graph
is directed, implying that object borders can only be crossable along the direction of the graph
edges.
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Chapter 5

StreetMaker - A Generic GIS
Framework

5.1 Introduction

StreetMaker is a GIS framework designed for easy GIS application development. It is
composed of three main components: (i) Graphical User Interface (GUI) and basic GIS
capabilities (Section 5.2), (ii) the data model (Section 5.3) and (iii) generic algorithms
(Section 5.6). Applications can be built upon StreetMaker which can utilize all of the
three main StreetMaker components.

The key component of StreetMaker is its data model which is well-suited for modelling
the geospatial objects using planar partitions with an object oriented approach. In this
data model, planar partitions are encoded into topological 2D arrangements. Thanks to
the underlying topological data structure (half-edge data structure) efficient and effective
geometric computing is possible. This is achieved by explicitly storing the connectivity
(topological) information between the geometric primitives of the planar partitions. Ad-
ditionally, the exact computation paradigm (Section 5.5) is used for the implementation
of the 2D arrangements for robust geometric computing.

Semantic objects representing the real life geospatial objects in computers are constructed
either by grouping the planar partition elements (geometric primitives) or previously
created objects. These objects capture semantic, thematic and geometric information
related to the geospatial objects and the hierarchy among them are managed via DAG.

The GUI (Figure 5.1) and the basic GIS capabilities of StreetMaker is used for cre-
ating and editing planar partitions and constructing semantic objects on them. The
generic functions integrated into StreetMaker can be utilized by any application built
upon StreetMaker. Applications built on StreetMaker either create their own semantic
planar partitions (planar partition and semantic objects) or utilize the existing semantic
planar partitions that were created by other applications. If a semantic planar partition
models the geospatial objects with fine details (fine object resolution at the lowest level
and fine hierarchy), the possibility of re-usability increases.
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5.2 StreetMaker GUI and Basic GIS Capabilities

Figure 5.1: StreetMaker GUI displaying an orthophoto in the main window: aerial images that
are overlaid at the background provide visual guides to human operators in processing the vector
data.

StreetMaker enables human operators1 to navigate within the multiple layers of raster
and vector data. In a StreetMaker session, layers can be created, loaded, processed and
saved back to disk. Below a list of possible operations that can be performed are given.

• Browsing the geometry and object hierarchy: Basic navigation tools (panning, zoom-
ing, etc.) allow operators to navigate within the data. Furthermore, not all objects
might be visible in the main window due to the occlusion of the higher level objects.
A separate list of objects and their hierarchy is supplied to the user in order to visu-
alize the occluded objects (Figure 5.4). The same list can also be used for selecting
objects and analysing and modifying the object hierarchy. Another list available to
operators is the list of layers, on which the layers can be activated / deactivated
and their order of rendering can be altered.

• Snapping: When inserting, deleting and selecting vector data, the mouse pointer is
snapped to geometry (points and lines) at various zoom levels, so that typical GIS
errors such as over-shoot and under-shoot are avoided.

• Selecting: Geometry (points, lines, polygons) and objects can be selected in vari-
ous ways, by clicking on the geometric features / objects, by unique ids that are
attached to each geometric feature / object and according to properties of the geo-
metric features / objects, e.g., automatic selection of all holes inside selected poly-
gons, selecting all isolated points, selecting objects according to their types, etc.
The selected geometry and objects are ready to be processed with other means of
operations such as deletion, copying, creating objects from them, etc.

1From now on, the words "operator" and "human operator" will be used interchangeably which in
fact mean any user of the StreetMaker.
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• Simplification and error correction tools: Some automatic and semi automatic tools
are added to StreetMaker in order to ease the work of operators for fixing the
geometric and topological errors within the vector data (Section 5.4.4).

• Merging, converting, importing and exporting vector layers: There exist two fun-
damental types of vector layer representing planar and semantic planar partitions.
These layers are called Planar Partition Vector Layer (PPVL) (Figure 5.2) and
Semantic Planar Partition Vector Layer (SPPVL) (Figure 5.3). External vector
data can be loaded and imported into PPVLs and SPPVLs (Sections 5.4.2 and
5.4.3 respectively). Furthermore, two or more PPVLs can be merged into a sin-
gle PPVL layer. That is, all the intersection points between the corresponding 2D
arrangements are computed and merged into a new 2D arrangement. Finally, the
geometry and the semantic information stored in SPPVLs via semantic objects can
be exported to ESRI shapefile and XML file formats.

• Offsetting layers: Any vector layer can be offset and moved in the coordinate system.
This feature is helpful when dealing with very big coordinate numbers. Especially
when the calculations are done in exact computation (Section 5.5), small coordinate
numbers avoid possible errors and increase the computing performance. Coordinates
can be restored to original values by applying the same offset in the reverse order
after the geometric processing is finished.

• Algorithms: Algorithms are executed on the activated layers or only on the selected
geometry / semantic objects within the activated layers depending on the operator’s
choice (Section 5.6).

5.3 Data Model

In StreetMaker, data models are encapsulated in layers. There exists one raster layer and
two vector layers. The raster layer is used to display images (generally aerial images)
which give visual guidelines to the operators when manually processing the vector data
(Figure 5.1). The data model described in Chapters 2 and 3 are employed as vector layers.
PPVL encapsulates the 2D arrangement data structure, therefore representing the planar
partitions2 without any semantic data (Figure 5.2). SPPVL is derived from PPVL and
it is the semantized version of PPVL. The semantization is done by creating semantic
objects on top of the underlying arrangement cells. SPPVLs are capable of managing
these semantic objects with their hierarchy (using DAGs) and performing object related
functionalities such as creating, deleting, modifying etc., (Figure 5.3).

5.4 Creating Semantic Planar Partitions

In StreetMaker, PPVLs can be created by two different ways and so SPPVLs since any
PPVL can be converted to a SPPVL by semantization. Additionally, depending on the
data at hand, SPPVLs can also be created directly. That is, the geometry and the

2In fact, 2D arrangements represent planar graphs from which planar partitions can be extracted
easily as described in Chapter 2.
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Figure 5.2: A PPVL in StreetMaker: the underlying data structure for planar partitions is 2D
arrangements.

Figure 5.3: A SPPVL in StreetMaker: SPPVLs are derived from PPVLs by semantization, i.e.
by creating semantic objects on the arrangement cells. Different types of semantic objects are
rendered in different settings which can be altered. In addition, a fixed set of settings has to be
assigned for special cases. In the figure for instance, a selected object is highlighted in yellow
according to the current fixed settings for the object selection.

semantic information related to semantic objects can be captured at the same time from
an external data source into a SPPVL. The following three subsections discuss the three
different methods mentioned here.
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Figure 5.4: An object hierarchy list in StreetMaker: visible objects are displayed with an eye
icon. The yellow eye icon (Object 2 in the figure) indicates that the corresponding object is
selected. In the figure, Object 11 is parent to objects 12 and 14 which are also parent to objects
3, 4, 5 and 6, 7 respectively. Notice that parent and child objects cannot be visible at the same
time. The visibility of objects can be modified (by a right click) on the object hierarchy list.

5.4.1 Semantic Planar Partitions from Scratch

If there is no data for the area of interest other than aerial photographs, PPVLs have to
be created from scratch. Here is the procedure:

• The operator creates an empty PPVL and loads at least one aerial image (possibly
an orthophoto) as a raster layer. The coordinate system used in aerial images are
automatically used for the PPVL. Therefore, if the images are geo-referenced, then
the geometry drawn on top of them will be also geo-referenced.

• The operator draws the outlines/footprints of the interested geospatial objects one
by one on the raster layer. The geometry described by the user drawn polylines are
continuously inserted into the corresponding PPVL and the underlying partitioned
plane is automatically calculated by the 2D arrangements data structure associated
to each PPVL.

• After the drawing step is finished (i.e. creation of PPVL is completed), the operator
can start to create objects on the planar partition by selecting the arrangement cells.
Although it is possible to create objects with any combination of arrangement cells,
in general a couple of faces, edges and vertices are selected for areal objects, linear
objects and punctual objects respectively. Furthermore, already created objects can
be used to form the parent objects which builds up the object hierarchy. As a result,
the PPVL is converted into a SPPVL.
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5.4.2 Semantic Partitions from Unstructured Vector Data

Previously created existing vector data can be leveraged to create planar partitions. How-
ever, very few data can be used directly without pre-processing3. In many cases, the data
in hand need to be fixed or completed due to topological and geometric errors as well as
missing data. The procedure is described below.

• Vector data coming from different sources are imported into the system as PPVL(s).
Two approaches are possible.

1. All data are imported into a single PPVL.
2. Different data coming from different sources are imported into separate PPVLs.

The first approach is generally easier and preferable to the second one since all data
are managed within a single vector layer. On the other hand, the second approach
yields more structured initial sets of input vector data. Conceptually related data
can be grouped into the same PPVLs and then the resulting PPVLs can be merged
into a single one. Besides, if there are too many data sources, manually fixing the
errors and completing the missing data might be difficult (too many unstructured
data may be visually cumbersome) within a single PPVL.

• Geometric and topological errors existing in the PPVLs are fixed by the operator
using the automatic and semi-automatic tools (Section 5.4.4) beside the manual
corrections and completions (possibly utilizing an areal image overlaid at the back-
ground) of the missing data.

• Semantic objects are created. This step depends on the selected approach in the
first step.

1. The PPVL is converted to a SPPVL by creating semantic objects on the se-
lected arrangement cells (see the final step of the procedure explained in Section
5.4.1).

2. First, an empty SPPVL is created. Then, for each semantic object creation,
the selected geometry from different PPVLs are copied into the initially created
SPPVL. The intersections are automatically detected and handled at the ge-
ometry and object levels. The parent objects can be created within the SPPVL
from the other semantic objects as discussed before.

5.4.3 Semantic Planar Partitions from Structured Vector Data

The simplest method for generating semantic planar partitions is using structured vec-
tor datasets when they are available. A structured vector dataset does not need to be
modified and it already describes the outlines of geospatial objects without or with mini-
mum amount of errors. Therefore, objects are automatically created (imported) without
requiring any human interaction. The mapping between the geometric features and the
automatically created semantic objects is configured according to any semantic informa-
tion that exists in the input vector data. If there is no semantics, then all created objects
will be of the same user defined type.

3A vector data that needs to be processed for fixing errors are called unstructured.
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In this method, the quality of the obtained partitions depend on the quality of the in-
put dataset. For instance, if two polygons representing two neighbour objects have tiny
overlapping regions, these intersections result in tiny polygons that are attached to both
objects in the corresponding SPPVL. If such cases are not acceptable, then the method
described in Section 5.4.2 can be followed.

5.4.4 Handling Basic Geometric and Topological Errors

StreetMaker has a few standard automatic error fixing features4. Some of these features
depend on a user defined threshold. Thresholds are not generic, they have to be adjusted
according to data at hand.

5.4.4.1 Redundant Geometry Removal

If the minimum angle (α) between two consecutive edges is smaller than a predefined
threshold (ε), then the edges are merged by removing the in between shared vertex (Figure
5.5). Note that, the degree of the shared vertex has to be two (2).

αα ≤ ε

Figure 5.5: Redundant geometry removal based on an angle threshold (α ≤ ε): the middle
vertex is removed which results in a straight line segment.

5.4.4.2 Auto Connecting Lines

Very close lines are common in many vector datasets because of under-shoot errors or
coordinate mismatches. Depending on a distance threshold one of the two lines is extended
to meet the other one (Figure 5.6).

4Similar auto-correcting tools exist almost in every GIS. Interested reader may refer to GRASS
GIS (https://grass.osgeo.org/documentation/) and PostGIS Topology (http://postgis.net/docs/manual-
dev/Topology.html) for examples of similar other tools.
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ε

Figure 5.6: Auto connecting lines based on a distance threshold.

5.4.4.3 Merging Vertices within a Neighbourhood

Vertices within the same neighbourhood defined by a relatively small disk are merged into
their mean vertex. Notice that, in Figure 5.7, the merged vertices were not connected by
an edge. In fact, this property can be configured by the operator to prevent merging of
unconnected vertices.

ε

Figure 5.7: Merging vertices within a neighbourhood based on a distance threshold.

5.4.4.4 Antenna Removal

Recall that for a valid planar partition, valid polygons are required (Section 2.3.2, Table
2.3). Therefore, before creating polygonal (areal) semantic objects, one needs to make
sure that the used polygons are valid. The constraints of valid polygons have already been
discussed in Section 2.3.2 (Table 2.4 and Figure 2.13). Figure 5.8 displays an example for
converting an invalid polygon into a valid one by removing the antenna like structures,
isolated vertices and dangling edges. In this figure, the triangular polygon on the top right
corner touches the exterior ring of the polygon which is allowed by definition if the touching
polygon is an inner boundary (i.e. hole). Therefore, depending on the interpretation (or
design decision) internal polygons touching the exterior boundaries can be kept or deleted.
In StreetMaker, these touching inner polygons are excluded from the exterior rings when
creating semantic objects. In fact, if one wants to interpret these touching polygons as
inner holes (i.e. as exterior regions to the polygons), creating a separate object (might
be a dummy object which can deleted afterwards) from the touching polygon will do the
job.
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Figure 5.8: Removing antenna like structures: cleaning internal structures from the polygonal
features to extract valid polygons.

5.5 Robustness in StreetMaker: Exact Computation
Paradigm

Mathematicians classify the numbers as integers, rational numbers, irrational numbers,
real numbers, complex numbers and so on. In computers these numbers are stored in
binary format. Integers and rational numbers can be represented exactly without loss of
data if there is no restriction on the memory. On the other hand, the definition of irrational
numbers are problematic even in modern mathematics and hence in computing theory.
These numbers cannot be expressible exactly and the best we can do is to approximate
them with an infinite series of numbers. In many fields of engineering, approximate
solutions are acceptable. Therefore, approximating real numbers with fixed length of bits
is not a problem. However, due to the plenty of different representations it was likely that
the same software could produce different output in different hardware. The community
went for a standardization to overcome this problem with ANSI/IEEE Standard 754 [1985]
[Overton, 2001]. On the other hand, in scientific computing and computational geometry
for many applications the standard approximation to real numbers is not enough. Fixed-
size floating points cause these programs to crash or at best result in errors in the outputs
[Kettner et al., 2008].

Geometric constructions5 and predicates6 may require exactness. For instance, a point
and a line can be in two different configurations with respect to each other: either the point
is on the line or not. Finding an exact answer to this simple predicate may be very tricky
if the point lies on the line or is very close to it. If the resolution of the point coordinates
are not enough (e.g. when IEEE 754 floating point format is used), the answer that is
calculated for this predicate may not be correct. Furthermore, not all decimal numbers
are expressible exactly in binary format. For example, a very simple decimal number 0.1
cannot be represented exactly but is approximated: (0.1)10 = (0.1001100110011001...)2.
As a result of these observations, the fixed floating point representations are not sufficient
to implement geometric algorithms which are generally designed with the assumption of
exact geometric constructions.

A solution to mentioned robustness problems is using the variable size integers in rational
number arithmetic and avoiding floating point numbers at all. However, this approach
does not work for non-linear geometric problems in which the irrational numbers take

5Points, lines, circles, etc.
6Geometric queries related to configurations of geometric constructions with respect to each other,

e.g. is a line tangent to a circle, does a point lie on/in/outside of a circle, etc.
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part. For dealing with irrational numbers, the length of the fixed floating points are
generally extended to create multiple precision floats to replace the standard single or
double precision floats [Fousse et al., 2005]. This approach increases the accuracy of
the approximations to arbitrary precision (generally user defined and memory bounded),
however the difficulty is the determination of the precision that is needed. Moreover, one
cannot be sure whether two numbers are exactly equal. The equality of two numbers can
only be determined upto the limit of the user defined precision.

Numbers can also be classified into two groups: algebraic and transcendental numbers.
Algebraic numbers can be expressible by the roots of a polynomial with rational coef-
ficients. It is not difficult to see that all integers and rational numbers are algebraic.
Besides, some of the irrational numbers are also algebraic. For instance,

√
2 is the root

of the polynomial x2− 2 = 0 and hence algebraic. On the other hand, it had been proved
that π (by Ferdinand von Lindemann in 1882) and e (by Charles Hermite in 1873) are not
algebraic, hence transcendental. In fact, although it is very difficult to prove that a given
number is transcendental, it was proven that (by Georg Cantor in 1874) most of the real
numbers are transcendental. Irrational algebraic numbers cannot be represented exactly
but, it was shown that the predicates involving them can be answered exactly [Yap and
Dubé, 1995; Mehlhorn and Näher, 1995; Ouchi, 1997; Karamcheti et al., 1999; Mehlhorn
and Schirra, 2001].

In StreetMaker, CGAL is heavily utilized for geometric computing. For 2D segment ar-
rangements and other generic algorithm implementations we used the exact constructions
with exact predicates kernel which is based on the GNU Multiple Precision Arithmetic
Library (GMP)7. For the pedestrian network generation (Chapter 6), Bézier arrangements
were used with the CORE library [Yu et al., 2010] which supports exact predicates for
algebraic numbers8.

Finally, interested reader may refer to Schirra [1997] and Li et al. [2005] which are very
good survey papers on the topic.

5.6 Generic Algorithms

A set of generic algorithms are implemented within the core functionality of StreetMaker.
Any application developed using StreetMaker can utilize these algorithms. The integrated
algorithms and sample outputs are displayed in the following sections.

5.6.1 Delaunay Triangulation and Alpha Shapes

The theory of Delaunay triangulations and α-shapes are discussed in Sections 4.1 and
4.2 respectively. Delaunay triangulations of point sets are implemented using a hybrid
approach. First the input point set is divided into separate groups and then triangulated
using the incremental construction algorithm shipped with CGAL triangulation package.
Then, separately obtained triangulations are merged with the algorithm introduced by

7https://gmplib.org/
8In fact, we used quadratic Bézier curves which are represented by parametric quadratic polynomials.

The roots of these polynomials might be irrational but they are algebraic. Therefore to support exactness,
we needed a library which supports exact predicates for algebraic numbers.
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Lee and Schachter [1980]. The steps of this merging algorithm is described in details with
an example in Appendix B.2. Furthermore, if it is required (generally for big datasets),
each subset of the input point set can be processed in parallel.

Recall that α-shape of a point set is obtained by first calculating the Delaunay triangu-
lation and then eliminating some of the simplices of the triangulation depending on the
value of the α. For computing the α shapes CGAL’s 2D Alpha Shapes package is utilized.
The computed Delaunay triangulations are supplied to this package with a selected α
value to obtain the resultant α-complex.

Figure 5.9 displays a synthetic point cloud in which three objects can be recognizable.
Figure 5.10 displays the computed Delaunay triangulation for this point set from which
the α-complex is computed. Then, the connected sets of α-edges that form polygonal
regions are found. These polygons can either be imported into a PPVL (Figure 5.11) or
SPPVL (Figure 5.12).

Figure 5.9: A 2D point cloud in which three objects are recognizable.

Figure 5.10: Delaunay triangulation computed for the point set displayed in Figure 5.9.
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Figure 5.11: α-shape computed for the point set displayed in Figure 5.9 and converted into a
PPVL.

Figure 5.12: α-shape computed for the point set displayed in Figure 5.9 and converted into a
SPPVL.

5.6.2 Medial Axis

Theoretical background for medial axis is discussed in Section 4.3.1. In StreetMaker,
Segment Delaunay Graph (SDG) and polygon packages from CGAL [Karavelas, 2004] are
used to compute the medial axis for polygons and polygon with holes. The procedure for
computing the medial axis is as follows:

• The operator selects the objects for which the medial axis is going to be computed.
At least one object must be selected in an activated SPPVL.

• The selected object geometries are merged together to obtain a set of polygon with
holes (Spwh) in which each polygon with hole represents a topologically connected
component of the merge.

• SDG algorithm is run on the elements of Spwh one by one and Segment Voronoi
Diagram (SVD) is obtained from SDG. Note that SVD is the dual of the SDG.
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• The edges of SVD that lie outside the polygon with holes are eliminated. The
remaining structure is the medial axis of the corresponding polygon with holes.

• The computed medial axis can be stored separately or distributed to semantic ob-
jects. That is, the intersections between the medial axis and the individual objects
are computed and each object stores the part of the medial axis that lies on it.

Figures 5.13, 5.14 and 5.15 display examples of medial axes generated by StreetMaker.

Figure 5.13: SVD of four semantic objects generated by StreetMaker (only the finite edges are
displayed). Medial axis is a subset of the SVD.

Figure 5.14: Extracted centrelines from SVD are distributed to the semantic objects.

5.6.3 Straight Skeleton

The theory of straight skeletons is discussed in Section 4.3.2. In StreetMaker, CGAL
Polygon package is used to calculate the straight skeleton for polygons and polygon with
holes. The procedure of computing straight skeletons is very similar to the one described
for medial axis in Section 5.6.2. Only the SDG algorithm is replaced with the CGAL’s
straight skeleton algorithm.
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Figure 5.15: Medial axis centrelines for a real physical surface with obstacles (objects rendered
in black are obstacles).

Figure 5.16 displays an example straight skeleton on the main window of StreetMaker.
The non-skeleton edges (the edges that are incident to a vertex on the boundary of the
input polygon) can be eliminated to obtain skeleton centrelines (Figure 5.17).

Figure 5.16: Straight skeleton generated by StreetMaker. See also Figures 5.13 and 5.14 for
the SVD and medial axis of the same polygon.

5.6.4 Connectivity Graph

Connectivity graphs are discussed in Section 4.4. Figure 5.18 displays a connectivity
graph for a road network. Each border edge of a semantic object is represented with
a graph node and if the border between two semantic object is allowed to be crossed
by an entity navigating on the surface of the objects, then the corresponding nodes are
connected in the connectivity graph.
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Figure 5.17: Straight skeleton centrelines for a real physical surface with obstacles (objects
rendered in black are obstacles).

Figure 5.18: A connectivity graph for a road network generated by StreetMaker.

5.7 Implementation Details

StreetMaker has been implemented in C++ programming language with the utilization
of various cross platform software libraries (C++ standard library for algorithms and
containers; boost for smart pointers, unordered maps, object serialisation and graphs;
wxWidgets and Gilviewer for GUI; CGAL for 2D arrangements and geometric comput-
ing; Geospatial Data Abstraction Library (GDAL) for processing vector data; Proj4 for
coordinate transformations and pugixml for XML processing). The core StreetMaker is
composed of about 30000 lines of code. And an application of pedestrian network gener-
ation (Chapter 6) that is built upon the core functionality is about 2800 lines of code.

Applications are developed on top of the core StreetMaker functionality by simply deriving
a couple of classes. These classes are then used to specialize the GUI interface, object
creation (generally new types of objects are defined for each application) and algorithms.
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5.8 Conclusion

In this chapter, a framework called StreetMaker has been introduced. StreetMaker is
designed for easy GIS application development especially for applications that require
geometric computing. In fact, StreetMaker is a GIS by itself with its core functionalities
without any further development. On the other hand, this core functionality can be used
to built up specific applications that utilize the StreetMaker’s data model and generic
algorithms.

Thanks to the 2D arrangements data structure, as soon as data is inserted into a vector
layer, the intersections are automatically computed and the underlying space is parti-
tioned. Furthermore, by keeping the explicit topological relationships between the geo-
metric primitives, geometric computation with StreetMaker is efficient and effective. And
with the applied exact computation paradigm, calculations are exact and the algorithms
are robust.

The three components of the core StreetMaker can further be improved as a future work.
Firstly, more smart plotting tools can be developed for the basic GIS capabilities. For
instance, edges can be detected in the images with sub-pixel precision and operator drawn
lines can be snapped to previously detected edges. Secondly, the current data model can
represent only 2D data which can be upgraded to 2.5D by adding the height information to
each vertex of the 2D arrangements. Finally, new generic algorithms can be integrated into
the framework. As the number of integrated generic algorithms increases, the application
development process will get more and more easier. Therefore, when developing specific
applications, a good strategy will be the isolation of the generic parts from the application
specific algorithms and integrating them into the core generic functions of the framework.
As a result, generic functions will be accumulated as the framework is used for different
applications.

Developing a GIS from scratch is not an easy task for a limited number of developers
with a limited amount of time. A good alternative would be using an open source GIS
(e.g. QGIS or GRASS GIS) which would have a learning curve but on the other hand
it could save the implementation time that had been spent for the GUI and the basic
GIS capabilities development. One should have enough experience on both paths before
deciding on the better approach. To be honest, it was not considered deeply whether
it is better to start with an open source GIS or not. Our primary focus was on the
development of the data model and the pedestrian network generation algorithm, and
for practical reasons (e.g. having a nice GUI library, starting to implement as early as
possible, license issues - not sure at the time of starting whether it will be an proprietary
tool or open source), we chose to develop StreetMaker.
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Chapter 6

Pedestrian Network Generation

6.1 Introduction and State of the Art

Starting from the 90s, personnel mobile computing devices such as smart phones and
tablets have been changing our lives. These devices are capable of accessing wireless
internet and satellite-based positioning systems, utilize a variety of location based services
such as navigation, social networks, real time traffic information, emergency services,
entertainment, advertising, etc. [Steiniger et al., 2006]. Especially, car navigation systems
are very successful and may be the most common location based service which provide
vehicle’s current location as well as routes to the selected destinations.

Digital map databases are at the heart of a navigation system. Great amount of data have
been collected throughout the years and road network databases are now well developed
and widely available for many countries. After the success of car navigation systems,
pedestrian navigation systems also have been getting interest. Especially, disabled indi-
viduals would benefit a lot from a pedestrian assisting navigation system. However, the
data for pedestrian routes is far from being sufficient to generate digital map databases.
The lack of data problem has been tried to be solved by using the vehicle map databases
for also serving the pedestrians. For instance, Google Maps delivers walking routes based
on road networks with the disclaimer: “the route may be missing sidewalks or pedestrian
paths.”

Despite the efforts of utilizing vehicle networks as a basis of pedestrian navigation systems,
it has been demonstrated that this approach is restricted and it has little benefit. Chin
et al. [2008] compared the vehicle networks and pedestrian networks qualitatively based
on a walk-ability index and concluded that the nature of pedestrian and vehicle routes
are quite different. Unlike motorized vehicles, pedestrian movement takes place along
pedestrian paths (sidewalks, parks, pedestrian crossings, pedestrian bridges, etc.), not
along the street lanes and are not constrained by the boundaries of the road. Pedestrians
face different challenges such as movement with a higher degree of freedom [Holone et al.,
2007; Stark et al., 2007; Gaisbauer and Frank, 2008]. As a result, pedestrian networks
and the vehicle networks are considerably different and new approaches are required for
generating pedestrian networks.

In general, pedestrian networks usually require much finer resolution than the road net-
works due to the unrestricted pedestrian movements. However, generating very detailed
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pedestrian networks might be very costly. As a result, pedestrian networks are generally
generated at different levels of details depending on the needs of the applications. For
instance, in urban planning and unaided pedestrian navigations systems, relatively rough
networks are acceptable [Walter et al., 2006; Elias, 2007; Ballester et al., 2011]. On the
other hand, more detailed networks are necessary for mobility impaired pedestrian and
autonomous vehicle navigations [Helal et al., 2001; Beale et al., 2006; Mayerhofer et al.,
2008; Kasemsuppakorn and Karimi, 2009].

Ballester et al. [2011] generated a rough pedestrian network using road networks and
building footprints. Their method is based on a buffering approach with the following
assumptions: there exists a sidewalk between every building and road and there exists a
pedestrian crossing at every intersection. They ignored the pedestrian walkways that are
not adjacent to road networks such as parks or other types of pedestrian zones. Besides,
the assumptions might not be valid at all places. Walter et al. [2006] first created binary
raster maps by marking the walkable surfaces manually on raster data, then running a
morphological operator to find out the skeleton of the walkable surfaces. After smoothing
the obtained skeleton a rough pedestrian network is generated. Elias [2007] discussed the
methods and difficulties of generating a tailored geodatabase for pedestrian routing. She
used the ground floor plans of public or industrial buildings (e.g. train station) to generate
the indoor routes by using an approximated medial axis. In addition, outdoor pedestrian
routes are estimated from the digital cadastral maps and a topographic database. All
these different data sources were merged together and compatibility issues were solved
via commercial GIS. Furthermore, interest points such as building doors were connected
to the generated network without considering the geometry and topology of the network,
therefore sometimes resulted in routes passing through the buildings.

In urban planning, a common objective is to make cities more pedestrian-friendly help-
ing to increase the physical activity of its inhabitants and at the same time decrease
traffic congestion and pollution. Researches need pedestrian networks in order to au-
dit pedestrian environment and evaluate pedestrian network connectivity [Southworth,
2005; Clifton et al., 2007; Chin et al., 2008]. Hence, the priority in urban planning is the
topological correctness of the pedestrians networks and geometrically rough networks are
acceptable.

Helal et al. [2001] presented a wireless navigation system called Drishti for visually and
mobility impaired pedestrians. They integrated several technologies including wearable
computers, voice recognition and synthesis, wireless networks, GIS and Global Positioning
System (GPS). Drishti constantly guides the blind user to navigate based on static and
dynamic data. The static data is formed by centrelines of the walkways which was created
manually for the study of area (the University of Florida (UF) campus) and the dynamic
data comes from the integrated sensors.

Beale et al. [2006] constructed a spatial database containing the pedestrian route network
and barriers that blockade the navigation. The research was undertaken in the town
centre of Northampton, UK (approx. 2km2). They performed a questionnaire among
the wheelchair users to identify urban barriers with their weighted effect to navigation.
Guided by the results of this questionnaire, they generated a very detailed barrier map
via field surveys. Moreover, they also integrated attributes such as the name of the streets
and metrics such as slope information (automatically extracted from DEM), surface type,
and surface quality into the database. The pavement centrelines manually digitized with
the assistance of aerial photos as backdrops. Finally, a GIS application running the model,

92



6.1. Introduction and State of the Art

calculated the routes through the pedestrian route network that take account of barriers
to accessibility.

Mayerhofer et al. [2008]; Kasemsuppakorn and Karimi [2009] also developed comparable
systems for visually impaired and wheelchair users respectively similar to Helal et al.
[2001] and Beale et al. [2006]. In all of these works, the walkway centrelines are gener-
ated manually using a GIS. Moreover, Mayerhofer et al. [2008] expressed the need for a
semi-automatic or automatic tool for generating and maintaining the created pedestrian
networks. The author would like to quote mentioned sentences: “The level of detail has
to meet the requirements for an exact description of the environment. Another demand is
the up-to-datedness of the digital map. This is a challenging task because of the required
manpower. Therefore, a future goal is to develop software for semi-automatic or even au-
tomatic generation of navigable maps out of cadastral surveying or any similar available
data.” Furthermore, Beale et al. [2006] also commented on the automatic generation of
pedestrian routes: “Due to the large range of features that may define the pavement edge
(e.g. building outlines, walls, road edges), development of a rigorous automated method
for route identification would have been extremely difficult. Instead, the pavement cen-
trelines were manually digitized using the Ordnance Survey Land-line data as a backdrop
and incorporating local knowledge of favoured pedestrian routes (e.g. passages between
buildings or through shopping arcades). Large-scale aerial photography and ground-truth
surveys were also used to validate the routes.” Finally, Kasemsuppakorn [2011] remarked:
“Currently, researchers requiring pedestrian networks for studies generate their own data.
One major problem with this approach is that the produced data is very specific and
only useful for a particular scenario and chosen area. This and other observations indi-
cate that there is an absolute need for developing new methodologies and techniques for
acquiring and maintaining pedestrian networks; this is an important area of study for
further advancements in pedestrian-centric location based applications.”

We propose a pedestrian network generation process based on our framework which is
described in Chapter 5 and whose theoretical background is defined in Chapters 2, 3 and
4 [Yirci et al., 2013]. Our claim is that the offered model might be a good candidate for
the researcher needs mentioned in the previous paragraph. The output of our process is
a static obstacle avoiding pedestrian network graph which is guaranteed to be geometri-
cally exact. Furthermore, the generated network graph not only includes the centrelines
but also it can store areal information inherited from an hierarchical object model which
capture the space occupancy of the urban objects on the area of study. The advantages,
limitations, usages and prospects of our network generation process has been discussed
within enlightenment of the state of the art pictured in this Section (6.1). Before describ-
ing our model, the author would like to mention two more aspects of the problem related
to information models and evaluating the quality of the pedestrian networks.

The content of a map and techniques to realize a map are two different but closely related
topics in which the former guides the latter. Beale et al. [2006], and Kasemsuppakorn
and Karimi [2009] performed field studies and questionnaires to find out the needs of
pedestrians with wheelchair. Moreover, Laakso et al. [2013] presented a study focusing on
the information content of the geospatial databases used to guide pedestrians. Recently
Neis and Zielstra [2014] provided a brief survey on the information content of pedestrian
networks. Besides these works, Stark et al. [2007] discussed the different possible repre-
sentations of pedestrian networks to the users of a navigation system. Our work is neither
related to the representation nor information model of a pedestrian network but creation
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and maintenance of such a constrained data model.

Wiedemann [2003] proposed a method for evaluating the quality of automatically ex-
tracted road networks through image processing. Karimi and Kasemsuppakorn [2013]
adapted this method to evaluate the pedestrian networks. The evaluation method con-
sists of two steps: (i) comparing the ground-truth with the generated pedestrian network
through a matching process, (ii) calculating the quality measures of four evaluation criteria
(geometric completeness, geometric correctness, topological completeness and topological
correctness). Karimi and Kasemsuppakorn [2013] compared three different pedestrian
networks with respect to a pedestrian network baseline as a ground-truth. However, their
ground-truth was also an approximation to the actual pedestrian network. On the other
hand, our method computes geometrically and topologically exact pedestrian networks
which can be used as a ground-truth.

Apart from pedestrian network graphs produced in GISs, similar graphs have been pro-
duced in computer graphics (for applications such as virtual reality, video games, crowd
animation, etc.) and robotics for path planning and environment representation. Lamarche
[2009] outlined two main approaches used in these fields: roadmap and cell decomposi-
tion methods. Roadmaps are graph-based networks and different approaches have been
used to compute them. There exist visibility graph methods [Lozano-Pérez and Wesley,
1979; Arikan et al., 2001], Voronoi-based methods [Hoff et al., 1999; Bhattacharya and
Gavrilova, 2008; Geraerts, 2010] and Probabilistic Roadmap Methods (PRMs) [Kavraki
et al., 1996; Svestka and Overmars, 1998; Nieuwenhuisen et al., 2007]. Cell decomposi-
tion methods subdivide the space into convex cells and represent the resulting navigable
environment with maps called navigation meshes. Then, path planning is performed with
a graph search algorithm running on the mesh structure. Navigation meshes initially
designed for path planning in 2D planar surfaces (embedded in 3D) [Snook, 2000], later
versions for multi-layered and non-planar environments have also been developed to ad-
dress 3D scenes [Lamarche, 2009; Jorgensen and Lamarche, 2011; Saupin et al., 2013].
Refer to Kallmann and Kapadia [2014] for a survey of the existing methods for navigation
meshes.

According to the techniques (roadmaps and cell-decomposition) introduced in the previous
paragraph our work can be classified as a Voronoi-based roadmap approach. When com-
pared to the roadmap approaches, our pedestrian network graphs are generated relatively
for large-scale regions, geo-referenced and further enriched: structured with additional
nodes - border nodes, parsed into sub-graphs - trajectory arcs with optimum path clear-
ance to obstacles (exact minimum distance to obstacles for each trajectory arc) and exact
total length, point projections onto the graphs (entry points to the graphs) and additional
semantic information captured from the source semantic planar partitions. Moreover, we
do not address path planning but static graph generation for supporting path/motion
planning applications. On the other hand, computer graphics and robotics applications
generally aim to generate collision-free dynamic graphs (environments with mobile ob-
stacles, e.g. other moving entities) for multiple navigating agents. Furthermore, the
computed paths that directly follow our graphs will not be optimal in terms of shortest
paths which is sometimes among the goals of robotics applications.

Our network graphs depend on semantic planar partitions. Instead of computing the
Voronoi-based roadmaps, cell-decomposition approach can also be applied. In this case,
the semantic planar partition can be triangulated and the resulting structure will be
a semantic navigation mesh. Then, the techniques already developed for path finding

94



6.2. Pedestrian Network Graph

in navigation meshes can be applied [Kallmann, 2010] with possible improvements via
utilizing the captured semantic information from the ground surfaces.

6.2 Pedestrian Network Graph

A pedestrian network graph can be formally defined by a planar graph G = (V,E) em-
bedded either on a plane in 2D or on the surface of an ellipsoid in 3D which represents
Earth. Any vertex vi ∈ V is associated with a coordinate pair or triple defining a point
location on Earth in a projected or geodetic coordinate system. The edges ei ∈ E are
representing the centrelines of the walkways. In theory, the centreline of a walkway is
the medial axis of the shape defined by the walkway and it can be any plane curve in 2D
or space curve in 3D. In practice, calculating such a general curve might be extremely
difficult. Moreover, such a calculation requires the mathematical definition of the shapes
which is almost impossible to get for real life objects, hence an approximation is needed.
In fact, in GIScience, the shapes of the areal objects are approximated by polygons pos-
sibly with holes. In this work, the centrelines of the walkways are computed exactly from
the polygon with holes using the medial axis transformation (Section 4.3.1 and Section
5.6.2) with the exact computation paradigm (Section 5.5). As a result, the generated
pedestrian networks are exact and only limited by the approximation of the shapes.

The input to the pedestrian network generation process is a hierarchical semantic planar
partition which might be composed of areal and punctual objects. The areal objects
represent the walkways and the punctual objects may represent some other interest points
such as doors of the buildings, metro stations, bus stops, etc. The output of the process
is a 2D planar graph G = (V,E). The edges and vertices/nodes of G are classified and
grouped in order to structure the obtained pedestrian network. The edges of G (denoted
by G(E)) are grouped under the formations called trajectory arcs and the nodes of G
(denoted by G(V )) are classified into two main groups as trajectory nodes and ordinary
nodes.

Trajectory arcs: A trajectory arc is a connected sub-graph of G which represents an
homogeneous part of G. That is, the character of the walkway does not change along a
trajectory arc.

Trajectory nodes: The graph nodes that determine the start and end points of the
trajectory arcs are called trajectory nodes. Trajectory nodes further classified into three
sub-groups: start/end nodes, junction nodes and border nodes. The degree of a node is
defined by the number of incident edges to the node. Degree-one nodes represent the start
and end points of the graph. Similarly, the nodes with degree greater than two are the
junction points of multiple paths on the graph. Finally, border nodes identify intersection
points between the centrelines (i.e. edges of the graph) and borderlines. Borderlines
represent the boundaries between the areal objects.

Ordinary nodes: The graph nodes other than the trajectory nodes are named as ordi-
nary nodes and all of these nodes are of degree two.

Note that, trajectory arcs can be either open or closed. An open trajectory arc has two
distinct trajectory nodes whereas a closed trajectory arc possesses only one trajectory
node which is both the start and end point of it. Notice also that junction and border
trajectory nodes are shared between different trajectory arcs.
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Since the centrelines of pedestrian networks are generated using medial axis of polygon
with holes, the edges of the graph are either line or parabola segments. Moreover, the
straight skeleton operator (Sections 4.3.2 and 5.6.3) can also be used for centreline con-
struction which only generates line segments but remember that on the contrary to the
medial axis, the points on a straight skeleton are not equidistant to the boundary of the
polygons when they are not convex.

One of the primary usages of pedestrian networks are the itinerary calculations for nav-
igation. In a navigational query the total length of a possible route is one of the main
concerns. To support this feature, the total length of each trajectory arc is calculated.
Furthermore, the minimum width of the walkways may be crucial for pedestrians using
wheelchairs or other means of devices as well as autonomous vehicles that may navigate
on the network. Therefore, a minimum width is calculated for each trajectory arc. The
minimum width is the maximum radius of a disk translating along the trajectory arc that
is fully enclosed within the walkway.

Any valuable data that has been stored in the input planar partitions can also be em-
bedded into the graphs. That is, any semantic information attached to an object can be
reachable from a graph node. The semantic information of an object that is not directly
linked to geometry can also be utilized through the object hierarchy. For instance, if
there exists a parent object representing the whole street, the graph nodes lying on the
surface of the street can notify a pedestrian navigating on the street as soon as she/he
enters/exists the street. Furthermore, a visually impaired pedestrian can be informed
when she/he is approaching an obstacle or barrier based on the input planar partition.
Besides the semantic information, the captured 2D geometry of the areal objects can also
be embedded into the graphs which may provide a more degree of freedom in making
decisions for some smart applications.

6.3 Pedestrian Network Generation Process

As already mentioned in the previous Section (6.2), the input to the pedestrian network
generation process is a hierarchical semantic partition composed of areal and punctual
objects. Figure 6.1 displays a very simple semantic partition composed of two areal and
four punctual objects. The rest of this section will be discussed along with this sample
semantic partition.

The process starts with merging the polygon with holes that describe the boundary of
the walkway objects. Therefore, the centrelines for the merged surfaces can be calculated.
After the merging step, although it is logical to end up with a big single polygon with
holes, it is not mandatory. That is, disconnected areal objects are allowed in which case
the union off all object surfaces is a set of disconnected polygon with holes (Spwh). Figure
6.2 displays the union of the two areal object surfaces.

In the second step, centrelines of the walkways are generated. That is, the medial axis
(or straight skeleton) of each polygon with holes in Spwh is computed. Note that, if the
cardinality of Spwh is greater than one, then the generated pedestrian network graph will
be disconnected. Figure 6.3 displays the computed medial axis for our example.

After generating the medial axis the basic pedestrian network graph is obtained. The
nodes of this basic graph is inspected and the ones with degree-one and degree greater

96



6.3. Pedestrian Network Generation Process

Figure 6.1: A simple semantic planar partition for pedestrian network generation which is
composed of two areal and four punctual objects.

Figure 6.2: The surfaces of the areal objects are merged into a polygon with holes.

Figure 6.3: Centrelines of a polygon with holes generated with the medial axis transform.

than two are classified as trajectory nodes. However, the boundary trajectory nodes
have not been classified yet. To accomplish this final sub-step, all borderlines within the
semantic partition are detected using the topological relationships between the objects
and their intersection points with the medial axis are computed. Then, these points are
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also added to the graph as boundary trajectory nodes (Figure 6.4).

Tn1 Tn2

Tn3

Tn4

Figure 6.4: Trajectory nodes: Tn1 is an entry/exit node, Tn2 is a junction for multiple trajec-
tory arcs, Tn3 and Tn4 are boundary trajectory nodes which are computed by intersecting the
borderlines with the centrelines.

The fourth step is related to the computation of trajectory arcs. Trajectory arcs are
recursively searched within the graph and as soon as one of them is detected, its exact
total length (Figure 6.5) and minimum width (minimum distance to the borders of the
bounding objects when translating on the edges of the trajectory arc) is computed (Figure
6.6).

Tarc1 Tarc2

Tarc3

Tarc4

Figure 6.5: Trajectory arcs and their lengths are calculated: trajectory arcs are defined between
two trajectory nodes (not necessarily distinct).

The final step of the process is related to the punctual objects which are projected on
the closest edge of the pedestrian network graph. The projected point locations do not
form a node on the graph but their positions are stored within the trajectory arcs. These
projected points represent the entry and exit points of the graph (Figure 6.7). This
completes the pedestrian network generation process. Please refer to Section 6.6 for the
implementation details.

The next two sections demonstrate the operation of the pedestrian network generation
process on the two separate semantic planar partitions. In these two applications, different
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r1 = dmin1

r2 = dmin2

r3 = dmin3

r4 = dmin4

Figure 6.6: The minimum with of a trajectory arc is defined by the maximum radius of a disk
translating along the trajectory arc that is fully enclosed within the corresponding polygon with
holes.

data sources were utilized with different characteristics. The pipelines introduced in
Chapter 1 for creating the semantic planar partitions are discussed in the following two
Sections (6.4 and 6.5).

Figure 6.7: Projecting punctual objects onto the pedestrian network graph: punctual objects
are projected onto the closest graph element (edge or node).

6.4 Application-1: Saint-Sulpice Paris VI

In this application a pedestrian network was generated for Saint-Sulpice region in Paris.
The area of interest is about 56 hectares and composed of 57 building blocks. A building
block is surrounded by sidewalks which is connected to other building blocks via pedestrian
crossings or other types of walkways.

All applications start with the construction of a semantic planar partition over the region
of interest. Figure 6.8 displays the constructed semantic planar partition for the Saint-
Sulpice region.
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Figure 6.8: Saint-Sulpice region in Paris and its semantic partition: the pedestrian network
graph computed for the highlighted region is displayed in the Figure 6.12

6.4.1 Creation of the Semantic Planar Partition

City of Paris has made a set of vector data public, called OpenData Paris1. For the initial
planar partition we utilized four different datasets from OpenData Paris and an internal
address data base from IGN called BD Adresse R©2. The details of the input vector data
are given in the Table 6.1. Observe that, the vector data used from OpenData Paris
are linear, that is geometric features described in these datasets are composed of line
segments connected to each other which do not necessarily form closed rings, i.e. polygons.
Therefore, when the OpenData Paris vector datasets were converted to 2D arrangements
and merged into a single vector layer, the resulting vector layer was far from being a
valid planar partition. An ideal valid planar partition should correctly model the space
occupancy / footprints of the geospatial urban objects. In such cases, we need to use the
methods described in Section 5.4.2.

OpenData Paris vector datasets are not free of geometric / topological errors and missing

1http://opendata.paris.fr/page/home/
2http://professionnels.ign.fr/bdadresse
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Data Source Content & Type
Sidewalks OpenData Paris Outlines of the sidewalks, linear
Buildings OpenData Paris Outlines of the buildings, linear
Signalization OpenData Paris Outlines of the pedestrian crossings, lampposts, etc.
Poles OpenData Paris Outlines of the poles, linear
BD Adresse R© IGN Locations of the building numbers corresponding to

the entrance of the buildings, punctual

Table 6.1: Employed datasets for creating the Saint-Sulpice semantic planar partition.

data. For example, when signalization and sidewalks vector data are merged, the end
points of the pedestrian crossings do not lie exactly on the borders of the sidewalks in most
of the cases (Figures 6.9, 6.10). Moreover, borders of some buildings and sidewalks are not
complete. The simplification and error fixing tools introduced in Section 5.4.4 are used
to fix many of these errors with the thresholds displayed in the Table 6.2. Then, manual
corrections were done for completing the missing data and fixing the errors that could
not be fixed by the automatic tools. The resulting planar partition (2D arrangement) is
composed of 27877 vertices, 27561 edges and 4274 faces3.

Tool Threshold
Redundant geometry removal Degrees → 0.1
Merging vertices within a neighbourhood Radius → 5 cm
Auto connecting lines Distance → 10 cm

Table 6.2: Simplification and error fixing threshold values adjusted for the OpenData Paris
vector dataset

The next step is the creation of semantic objects and the object hierarchy on top of the
planar partition. Recall from Section 5.4.2 that semantic objects are created by selecting
and grouping geometric primitives and previously created semantic objects. For this
application, four different types of objects were defined: physical roads, logical roads,
obstacles and street numbers.

Physical roads: These objects represent physical surfaces that pedestrians can walk on,
i.e. the walkways. Typical urban objects for this category are sidewalks, parks, pedestrian
crossings, squares, etc. Physical roads lie at the lowest level of the object hierarchy since
they correspond to the real physical surfaces.

Logical roads: These objects are parent objects for the physical road objects, represent-
ing the logical formations on the city surfaces such as streets, avenues, etc.

Obstacles: Any static object on walkways such as street furnitures, lampposts, poles
and waste baskets are considered as obstacles.

Street numbers: Street numbers correspond to address point locations. These are
punctual objects indicating the exit / entrance of the buildings.

3Note that these numbers do not satisfy the Euler’s formula (Equation 1 in Chapter 2) due to existing
isolated vertices and unconnected components (remember that Euler’s formula is valid for connected
planar graphs).
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Figure 6.9: Auto connecting lines in OpenData Paris: an example of handling under-shoot or
coordinate mismatch error. In the sub-figure on the left, pedestrian crossing outlines seem to
touch with the outlines of the sidewalks, however when zoomed in, it can be seen that they are
not (top right). Threshold based auto connecting tool is used to fix these errors by extending
one the lines (bottom left) and removing extra geometry (bottom right).

Figure 6.10: Merging vertices within a neighbourhood in OpenData Paris: in the top left
sub-figure, it looks like a line is tangent to a circular polygon. In fact, when zoomed in (top
right and bottom left sub-figures), it can be seen that the line intersects with two edges of the
polygon forming a tiny triangle. Merging vertices within a neighbourhood tool is used to collapse
triangles like this into a single vertex (bottom right).

The overall process for creating the semantic planar partition took about 5 hours of an
operator which includes converting input datasets to 2D arrangements, running automatic
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error correction and simplification tools, manual error fixing and manually completing the
missing data and creating the semantic objects. Then, the pedestrian network generation
algorithm was run on the semantic partition which took about 50 minutes4 to compute
the pedestrian network using medial axis. Figures 6.11 and 6.12 display some parts of
the generated pedestrian network graph with different levels of detail5.

Walkways

Obstacles

Trajectory nodes

Ordinary nodes

Centrelines

Borderlines

Figure 6.11: A detailed view of the generated pedestrian network for the Saint-Sulpice region
in Paris. In the figure, a part of the pedestrian network graph around the intersection of two
pedestrian crossings and a sidewalk is displayed. In addition, there exists four obstacles (poles)
on the surface of the sidewalk.

6.5 Application-2: CASQY

The region of interest for this application was the urban conurbation of the Saint-Quentin-
en-Yvelines (CASQY) in France. Pedestrian network graphs were generated for two sep-
arate regions (region-1 & region-2) in CASQY. The total surface area of the interested
regions is 127 hectares (region-1: 36 ha, region-2: 91 ha). The input semantic planar par-
titions to the pedestrian network generation pipeline were created differently compared
to the first application (Section 6.4). In this second application, thanks to the relatively

4Ubuntu 14.04 32-bit, TM i5-2500 CPU @ 3.30GHz (only single core was used), 8GB RAM
5Note that it is not possible to render the whole graph with a significant level of detail on a single or

double page.
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well-structured input vector data, we could apply the method described in Section 5.4.3.
That is, semantic planar partitions were created automatically by directly importing the
input vector data.

6.5.1 Creation of the Semantic Planar Partition

Four different vector datasets were used to create the semantic planar partitions. The
details of the creation and preparation of these datasets are described in the following
three subsections (6.5.1.1, 6.5.1.2, 6.5.1.3) but before some preliminary information is
given in Table 6.3.

Name Type Source
CASQY dataset Polygonal Provided by CASQY city hall

Pedestrian crossings Polygonal Manually created on laser orthophotos
Obstacles Polygonal Created using α-shapes of a 2d point cloud

BD Adresse R© Punctual IGN

Table 6.3: Four vector datasets used for creating the CASQY semantic planar partitions.

The 2D arrangements supporting the planar partitions are composed of (11570 vertices,
11969 edges, 1112 faces) for region-1 and (61436 vertices, 63523 edges, 6978 faces) for
region-26. These arrangements were created in parallel to the semantic objects while they
are imported from the input vector data. Three types of semantic objects were defined
for three different data sources. Semantic objects imported from CASQY dataset are
classified as walkways and the other two types were pedestrian crossings and obstacles
correlated to their dataset names. For the first semantic planar partition (region-1), 951
semantic objects were imported (45 pedestrian crossings, 46 walkways, 79 address points,
781 obstacles) and for the second planar partition (region-2) 5727 semantic objects were
imported (50 pedestrian crossings, 164 walkways, 460 address points, 5153 obstacles)7.

Figures 6.13 and 6.14 display the automatically created semantic planar partitions using
the four datasets.

6.5.1.1 Creating the Basic Semantic Planar Partition

The CASQY dataset describes the basic land use of the region and surprisingly the con-
tained vector data are close to form a planar partition. Although the dataset was created
with a non-topological GIS, there were not many errors8 most of which are fixed by uti-
lizing the PostGIS Topology9 package using manual and automatic tools. In fact, these
errors could have been fixed within StreetMaker but since we wanted to follow a different

6Note that these numbers do not satisfy the Euler’s formula (Equation 1) since corresponding planar
partitions are not composed of a single connected planar graph, instead they are a collection of connected
planar graphs.

7Not all of the imported obstacles were on the walkways. The ones that were outside the walkways
were discarded from the pedestrian network generation process but they are included in the total number
of imported obstacles.

8There were a couple of hundreds of overlapping polygons and some gaps between the polygons.
9http://postgis.net/docs/manual-dev/Topology.html
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Figure 6.13: Semantic planar partition for region-1 in CASQY: four datasets were used to
create the semantic partition. Although there exist three types of semantic objects, only the
walkways are clearly visible in this figure and in Figure 6.14 due to the relatively small scales of
the pedestrian crossings and obstacles.

Figure 6.14: Semantic planar partition for region-2 in CASQY: four datasets were used to
create the semantic partition.
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pipeline than the first application, external tools are used to pre-process the input vector
datasets.

Figure 6.15 displays the two interested regions in the CASQY dataset. In this dataset,
each polygonal feature has a type attribute. Semantic objects were imported from the
dataset based on a type-filter. Table 6.4 displays the different types of geometric features
and indicates the selected types that were imported into semantic planar partitions as
semantic objects of type walkways.

other
hydrography
green area
agricultural area
car parking
bicycle pist
railway

wooded area
private area
pedestrian area
pedestrian path
road
crossroad

Figure 6.15: Two regions of CASQY dataset that were imported into StreetMaker for creating
the semantic planar partitions displayed in Figures 6.13 and 6.14.

crossroad × car parking X pedestrian path X other ×
bicycle pist X green area × wooded area × railway ×

road × pedestrian area X private area × hydrography ×
agricultural area ×

Table 6.4: CASQY dataset type attribute: Each polygonal feature in the CASQY dataset has
a type attribute. Different values of this attribute are given in the table. Polygonal features
imported as walkways are marked with Xand the rest of them are marked with ×.

6.5.1.2 Importing Pedestrian Crossings

Almost all of the walkwable surfaces were imported as walkways from the CASQY dataset,
however the CASQY dataset lacks the pedestrian crossings without which the pedestrian
networks would not be much useful. Besides, there were not any previously created vector
data containing the pedestrian crossings. Therefore, they had to be created manually.

IGN has a street-based Mobile Mapping System (MMS) called STEREOPOLIS [Papar-
oditis et al., 2012] which can capture image and lidar data. STEREOPOLIS collected
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spatial data from the CASQY region from which laser orthophotos were generated using
the methods defined in Brédif et al. [2015] and Vallet and Papelard [2015]. Then, pedes-
trian crossings were captured manually (using QGIS10) with the guidance of the laser
orthophotos (Figures 6.16 and 6.17).

Figure 6.16: Laser orthophoto and manually drawn pedestrian crossings for CASQY region-1.
The highlighted region is displayed in Figure 6.17 for a closer look.

Figure 6.17: A closer look into the highlighted region in Figure 6.16.

Captured pedestrian crossings were imported into the semantic planar partitions that
were containing only the walkways after the first mini-pipeline described in the previous
Section (6.5.1.1). Many of the disconnected walkways were connected with the newly
constructed pedestrian crossings.

10http://www.qgis.org/en/site/
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6.5.1.3 Creating and Importing Obstacles

The static obstacles on the walkways were also generated using the 3D lidar point cloud
data collected by STEREOPOLIS. First, 3D points classified as static obstacles [Serna and
Marcotegui, 2014] were projected vertically and the corresponding 2D silhouette points
are obtained. Then, the α-shapes algorithm (Sections 4.2 and 5.6.1) was utilized (with α
equals to 20 cm) to estimate the shapes of the obstacles. Finally, estimated obstacles were
imported on the walkways and the pedestrian crossings which completed the creation of
semantic planar partitions. The overall view of the created semantic planar partitions
are already given in the Figures 6.13 and 6.14. On the other hand, Figures 6.19 and
6.21 display much more closer views from the created semantic planar partitions and
additionally, Figures 6.20 and 6.22 display the corresponding regions in the generated
pedestrian network graphs.

Figure 6.18: A close look at the three datasets used to create the semantic planar parti-
tions. The polygonal datasets are displayed as layers on top of each other (in QGIS). The order
from bottom to top is: CASQY dataset, pedestrian crossings (transparent brown) and obstacles
(black). See also Figures 6.19 and 6.20 for the corresponding semantic planar partition and the
generated pedestrian network graph.

The second pipeline explained in this section is more effective than the first pipeline
discussed previously (6.4). Since the data at hand were more structured than the data
in the first application, it took less time to create the semantic planar partitions. The
total time for executing (using the same operating system and hardware as in the first
application) the whole pipeline was around 5 hours including the preprocessing the initial
CASQY dataset (∼ 1 hour), manually drawing the pedestrian crossings (∼ 1.5 hours),
estimating the shapes of obstacles from the 2D point cloud (∼ 1 hour), importing the
vector data and creating the semantic objects (∼ 30 min.), running the pedestrian network
generation algorithm for CASQY region-1 (∼ 5 minutes) and region-2 (∼ 30 min.). Note
that the run times are not directly related to the number of geometric primitives but also
their configuration with respect to each other (e.g. the number of holes within a face, the
number of reflex vertices in the polygons, etc.).
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Figure 6.19: A close view of the CASQY semantic planar partition: walkways (cyan), pedes-
trian crossings (olive), obstacles (black). See also Figures 6.18 and 6.20 for the corresponding
input datasets and the generated pedestrian network graph.

Figure 6.20: A close view of the pedestrian network graph computed from the CASQY semantic
partitions: walkways including the pedestrian crossings (yellow), obstacles (black), borderlines
(red), graph edges (green), graph nodes (green for ordinary nodes and white nodes stroked with
green for trajectory nodes). See also Figures 6.18 and 6.19 for the corresponding input datasets
and the semantic planar partition.

6.6 Implementation Details

6.6.1 Merging Delaunay Triangulations

STEREOPOLIS[Paparoditis et al., 2012] collects and stores lidar points in separate files.
These files can be merged and processed at one time, however a better choice might be
keeping them separate if one can process the separate files in parallel and merge the
results. As mentioned before (Section 6.5.1.3), we wanted to estimate the shapes of the
obstacles using the α-shapes which depends on the Delaunay triangulation of the point

110



6.6. Implementation Details

Figure 6.21: Another close view of the CASQY semantic planar partition: walkways (cyan),
obstacles (black). See also Figure 6.22 for the corresponding generated pedestrian network graph.

Figure 6.22: Another close view of the pedestrian network graph computed from the CASQY
semantic partitions: walkways including the pedestrian crossings (yellow), obstacles (black),
graph edges (green), graph nodes (green for ordinary nodes and white nodes stroked with green
for trajectory nodes). See also Figure 6.21 for the corresponding semantic planar partition.

sets. Delaunay triangulation of separate files can be computed in parallel and then the
resulting triangulations can be merged using the implemented algorithm developed by Lee
and Schachter [1980]. The steps of this merging algorithm are described in detail along
an example in Appendix B B.2. The parallel processing technique described here is one
of the steps that we will need in scaling our pipeline. In our application however, we did
not need parallel processing since the region that we worked on is relatively small.

6.6.2 Computing the Union of the Object Surfaces

Remember that at the lowest level a semantic object is defined by a set of faces in a
2D arrangement and the faces of an object are not necessarily connected. First, each
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connected group of faces belonging to the same object are recursively detected using the
topological relations embedded in the halfedge data structure of the 2D arrangements.
Then, these faces are converted into polygon with holes after applying an antenna removal
procedure which removes possible antenna like structures those invalidating the polygon
with holes. This first set of polygon with holes are kept in memory since they are also
used to calculate the boundaries between different objects. These polygon with holes rep-
resenting each object are then merged into another set of polygon with holes representing
the union of all the walk-able surfaces on which the medial axis (Section 5.6.2) and/or
straight skeleton (Section 5.6.3) algorithms run.

6.6.3 Representing Parabola Segments with Quadratic Bézier Curves

The intersection points between the medial axis and the borderlines are computed using
the Bézier arrangement package of CGAL. First, each line and parabola segment defining
the medial axis is inserted into a Bézier arrangement. But before line segments are
converted to linear Bézier curves and parabola segments are converted to quadratic Bézier
curves (see Figure 6.23 for the illustration of the proof).

A

A′

B

B′

C

F

l

Figure 6.23: Representing a parabola segment with a quadratic Bézier curve: Let ÂB be a
parabola segment on a parabola defined by a directrix l and a focus F . Also assume that A′ and
B′ are the feet of the perpendiculars from A and B to l. By definition of the parabola, AA′ = AF
and BB′ = BF . Observe that the perpendicular bisectors of A′F and B′F meet at point C which
is also the center of the circle passing through A′, B′, F (Observe that A′C = FC = B′C). Notice
that the bisectors are tangent to the parabola at A and B (by tangent bisection theorem Byer
et al. [2010]). Hence, a quadratic Bézier curve can be defined with the control points A,C,B.

6.6.4 Length of Quadratic Bézier curves

The length of a parametric curve (x = fx(t), y = fy(t)) is given by the Equation 1
[Vince, 2013]. Let B(t) be a quadratic Bézier curve with control points P0, P1, P2 ∈ R2.
Then, the equation of B(t) and its derivative are given by 2 and 3. Furthermore, let
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Q1 = (q1x, q1y) = 2(P0 − 2P1 + P2) and Q2 = (q2x, q2y) = 2(P1 − P0) be two points in
R2. Then observe that Equation 4 holds for A = q21x + q21y, B = 2(q1xq2x + q1yq2y), and
C = q22x+ q22y. Finally, the length of a quadratic Bézier curve computed using the formula
5.

s =

∫ 1

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt (1)
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6.6.5 Projecting Points on Quadratic Bézier Curves

Let Q be an arbitrary point in R2 and B(t) be a quadratic Bézier curve with control
points P0, P1, P2 ∈ R2. The projection of Q on B(t) can be computed by solving the
following optimization problem 6. This formulation leads to a cubic polynomial displayed
in 7 where a = P0 − 2P1 + P2, b = P1 − P0, and c = P0 −Q. The projection point can be
found by analysing the roots of this polynomial.

minimize
t

‖B(t)−Q‖2 subject to t ∈ [0, 1] (6)

a2t3 + 3abt2 + (2b2 + ac)t+ bc = 0 (7)

6.6.6 Splitting Quadratic Bézier Curves

CGAL Bézier arrangement package requires the inserted curves to be x-monotone. If
this is not the case, then it automatically splits the inserted curves at the vertical tan-
gent points. Moreover, each newly inserted curve may split the already existing ones.
However the utilized library only calculates the split points but not the newly generated
control points. These control points are required when exporting the computed pedestrian
network graphs which are found using the well known De Casteljau’s algorithm.
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6.7 Conclusion

In this chapter, we introduced our proposed pedestrian network generation process and
demonstrated how it is applied for two real life projects. In addition, we also presented
two different pipelines for creating the required semantic planar partitions for pedestrian
network generation.

The created graphs are the first examples of geometrically correct pedestrian networks.
That is, the graph nodes are geo-referenced and the graph edges represent the true cen-
trelines of the walkways. In addition, the geometric computations are done using the
exact computation paradigm. The resulting graphs are further processed to identify ho-
mogeneous regions called trajectory arcs such that a travelling entity can move freely
on a trajectory arc without giving any further navigational decisions. Furthermore, for
each trajectory arc, the total length and the minimum distance to the surrounding ob-
ject borders are also computed. These properties might be very useful for autonomous /
semi-autonomous devices such as robots, smart electronic wheelchairs and personal trans-
portation vehicles (e.g. two-wheeled self balancing devices) that use the generated graphs
for navigation.

We have seen (Section 6.1) that in the literature there exist two types of pedestrian
network graphs with different levels of detail. The detailed network graphs are generally
designed for visually or mobility impaired pedestrians along with other types of helping
devices. The graphs used for these purposes were created manually using GISs. In
addition, we also quoted from some researchers who expressed the needs of new methods
and tools for generating detailed pedestrian network graphs. Our work is the first effort
in automatically generating such detailed graphs.

The proposed pedestrian network generation process depends on the input semantic pla-
nar partitions which are mainly composed of areal semantic objects. The semantic and
thematic information captured by these objects are used to enrich the graph contents.
For instance, there exist graph nodes for every intersection point between the walkway
centrelines and the object borderlines. Therefore, such a node indicates a change from
one object to another. In addition, any semantic information that can possibly sup-
ply particular knowledge/intelligence is embedded into the graphs. Consequently, if the
initial partitions are maintained and the semantic information is gathered in time, the
corresponding pedestrian networks can be recomputed to utilize the gathered semantics.

The object resolution of the input semantic planar partitions define the resolution of
the generated graphs. That is, the more detailed input partitions, the more correct and
enriched graphs we get. Having finer details in the semantic planar partitions do not
harm if a less detailed graph is wanted. Semantic objects used to compute the graphs can
be filtered according to their types. For instance, if a static obstacle avoiding graph is
desired, the barrier objects preventing the movement of the pedestrians can be excluded
from the walkable surfaces, therefore the surfaces occupied by them will not be included
in the centreline calculation. On the other hand, these objects can be included in the
process (by not excluding) if we do not need such detailed graphs.

Although we applied the pedestrian network generation process for relatively large re-
gions, as the region of interest gets larger, our process will be limited due to the required
computation time. For processing larger regions such as the whole cities, some sort of par-
allel programming (single machine multiple cores, distributed computing, grid computing
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and cloud computing) is required. Another limitation is the stability of the medial axis
algorithm used to compute the centrelines of the walkways. That is, very small features
(e.g. a tiny spike) at the borders of the objects cause useless branches in the generated
graphs. Smart ways of eliminating these unwanted branches can be searched as a future
work. The first trial to solve this problem might be finding the graph nodes with degree
greater than two and then checking the lengths of the connected edges until a degree one
node is reached. The branches whose total lengths are below a certain threshold can be
removed from the graphs.

In our applications, we did not encounter any pedestrian bridges going on top of other
pedestrian paths. Such a case would cause a problem in our current design, since it is
limited to 2D. In order to handle such cases, we need at least 2.5D arrangements. A 2.5D
arrangement can be achieved by embedding the height information into the arrangement
vertices.

In both applications we projected the positions of building doors onto the generated graphs
to find the nodes from which the pedestrians can enter into the network. Similarly, we
could have also projected the locations of bus stops, metro and tramway stations to find
out the connection points between different types of networks. These connections will
be very useful for full, city level navigation maps so that many alternative routes can be
calculated with different options. In addition, indoor maps can also be used as a part of
bigger semantic planar partitions. For instance, a train station, a commercial center or
administrative building plans can be added to the partitions as separate objects. In this
case, we need to differentiate two different types of borders between two objects (e.g. a
sidewalk and a building): borders that are allowed (the doors of the building) and not
allowed (the walls of the building) to be crossed by a travelling entity. Moreover, remember
that additional rules can be applied to the boundary crossings with the connectivity
graphs.

Similar pedestrian network graphs can also be computed for indoor environments such
as big governmental buildings, museums, commercial centres, etc. These graphs together
with indoor positioning systems (e.g. a portable device carried by a pedestrian locating
its position with respect to an indoor map and a network graph) will be very useful both
for people and autonomous devices such as cleaning robots and carrier robots. Finally,
pedestrian graphs can be used in pedestrian simulation applications and computer games.
For instance, navigation meshes are generally used in computer games (to define which
areas of an environment are traversable by agents) can be replaced with a semantic planar
partition and a corresponding network graph.
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Chapter 7

3D Generalized Cylinder Modelling
from a Single Image

7.1 Introduction

In the previous chapters, we have discussed 2D GIS application development process along
with the static obstacle avoiding pedestrian network generation. We have seen that the
models of the 2D ground surfaces are needed in order to compute the desired network
graphs. Similarly, for 3D GIS applications, the environments should be modelled in 3D. A
3D environment is composed of a 2D ground surface embedded in 3D and the 3D objects
are positioned on the ground surface. There exist many different types of objects (e.g.
buildings, trees, city furnitures, traffic lamps and signs, etc.) which can be represented
/ modelled best (relatively) with different techniques1. In this chapter, we will present
the preliminary work and research that has been carried out in order to develop a 3D
modelling system for 3D GIS applications.

There exist two fundamental types of data that are commonly used in 3D modelling and
reconstruction. These data are images and laser point clouds. In the literature, numerous
works using either or both of these data have been published: modelling from single
images [Oh et al., 2001; Lau et al., 2010; Xue et al., 2012; Chen et al., 2013], modelling
from multiple images [Debevec et al., 1996; Pollefeys and Gool, 2002; Seitz et al., 2006],
modelling from laser point clouds [Fangi et al., 2001; Li et al., 2011] and modelling from
both [Syed et al., 2005; Pylvanainen et al., 2012]. Our final goal is the development of a
semi-automatic system which enables easy 3D modelling from both of these data sources.
Such a system can be integrated into a web-based 3D application (e.g. Google street
view [Anguelov et al., 2010] and IGN’s itowns [Nguyen et al., 2015]) so that the users can
collaborate to generate photo-realistic virtual city models. Reaching this ultimate goal
is a challenging task and it is difficult to achieve as an additional part of a PhD work.
However, the task at hand is composed of many interesting research topics and we chose

1Stroud [2006] classified representations for solid modelling into four main groups: cell decomposition,
general sweeping, set theoretic (Constructive Solid Geometry (CSG) and half-space modelling technique)
and boundary representation. Besides these, surface mesh models are common especially in computer
graphics. Interested reader may also refer to Mäntylä [1988], Mortenson [1997] and Campbell and Flynn
[2001] for more information and broad surveys on the 3D model representation in geometric modelling
and computer graphics.
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to work on the 3D generalized cylinder modelling from single view images as a starting
point to such an advanced modelling system.

From a single image, an object model can only be reconstructed upto a scale factor if
there is not any prior information about the size of the object or its distance from the
camera. For a correctly scaled geo-referenced model, at least two-views of the object and
the camera parameters are needed. Once the shape of the object is reconstructed upto a
scale factor, geo-referencing and scaling can be done afterwards which is left as a future
work. Notice also that, integrating other views of the object into the modelling pipeline
should improve the geometric quality of the reconstructed model. In addition, some of
the dimensions of the object cannot be reconstructed from a single-view when the object’s
geometry lacks symmetry.

Objects of type lampposts, poles, tree trunks, signposts, etc. are all in the form of a
generalized cylinder (Figure 7.1) and these are among the most frequent objects that
we encounter on the surface of the walkways. Recall that for the pedestrian network
generation application, we need to construct the outlines of the obstacles on the walkways.
In fact, once the modelled objects are geo-referenced and scaled accordingly, the footprints
of these objects (a 3D circle on the ground surface for this case) can be utilized to define
obstacles in the pedestrian network generation application.

(a) tree trunk (b) pole (c) signpost (d) lamppost

Figure 7.1: Examples of geospatial objects in the form of generalized cylinder.

Kolbe et al. [2005] defined five levels of detail for 3D virtual city models ranging from
0 to 4. Level-0 is the coarsest level describing only the terrain (ground surface) over
which an areal image or a map can be draped. Level-1 city models possess block building
models without any texture or roof structure whereas level-2 city models have different
roof structures and textures on the buildings. Level-3 increases the details on the building
walls (balconies, bays, projections) and roof structures on which high resolution textures
can be applied. Additionally, detailed vegetation and transportation objects are also
modelled. And at the highest level (level-4), interior structures to the buildings (e.g.
stairs, rooms, doors, furnitures) are added. Although, it is not explicitly mentioned, one
can consider the street level small-scale objects as a part of level-4 since their in-door
counterparts exist in the same level. Therefore, our attempts described in this chapter
can be considered within this context, i.e. level-4 virtual city modelling. Interested reader
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may refer to Thomas and Donikian [2000], Döllner et al. [2006], Ross [2010] and Singh
et al. [2013] for generating the 3D city models at various levels of detail.

This chapter continues with Section 7.2 in which our modelling system is described. In
Section 7.2.1, first a generative definition of generalized cylinders is given, then a brief
state of the art is presented. The main focus of this section is on a recent paper [Chen
et al., 2013] that our preliminary work can be compared with. The next section (Section
7.2.2) explains the representation of generalized cylinders in our system. Then the first
step of the generalized cylinder modelling is illustrated in Section 7.2.3. In this first
step, the user is asked to draw a 2D ellipse on the image which is the projection of a 3D
circle. In the following section (Section 7.2.4), the analytic methods of computing such
3D circles from their perspective and orthographic projections are discussed in detail. The
computed 3D circle is used as the first 3D cross section in the generalized cylinder that is
to be modelled. Then the user sweeps the major axis of the initial elliptic 2D profile along
the image of the generalized cylinder while the dragged major axis is adjusted to fit the
silhouette of the generalized cylinder. The data generated during this sweep is used to
estimate the final 3D model of the generalized cylinder together with a user selected prior
constraint on the axis of the generalized cylinder. This final step is discussed in Section
7.2.5 and the chapter is concluded (Section 7.4) with the discussion of contributions and
perspectives.

7.2 3D Generalized Cylinder Modelling from a Single
Image

7.2.1 A Brief State of the Art

Binford [1971] inspired by the medial axis transform [Blum, 1967] and introduced the
term “generalized cylinder”. The idea was originated from sweeping a planar curve (cross-
section) along an axis or spine which generates an object of type generalized cylinder.
That is, a generalized cylinder is defined by a space curve called the axis of the object,
and a set of cross-sections. According to the properties of the cross-sections and the axis
of the objects, Shafer [1985]; Naeve and Eklundh [1995] presented detailed generalized
cylinder taxonomies. The first group of generalized cylinders can be classified according
to the constraints defined on the axis. The axis can be a straight line (Straight Gen-
eralized Cylinder (SGC)), planar curve, general space curve, open curve or closed curve
(Toroidal Generalized Cylinder (TGC)). Similar constraints can also be defined on the
cross-sections. For instance, cross-section planes can be perpendicular to the tangents
to the axis (Right Generalized Cylinder (RGC) - opposite: Oblique Generalized Cylin-
der (OGC)). Moreover, cross-section shape types can also be used to further classify the
generalized cylinders: cross-sections can only be circles (Circular Generalized Cylinder
(CGC)), polygons (Polygonal Generalized Cylinder (PGC)), open (cross-sections are not
Jordan curves - not simple closed curves) and closed. Finally, some subclasses of gener-
alized cylinders can be formed by restricting the transformation from one cross-section
to the another. For instance, a Homogeneous Generalized Cylinder (HGC) allows only
uniform scaling of the cross-sections, i.e. all cross-sections have the same shape but vary
in size. On the other hand, a Uniform Generalized Cylinder (UGC) enforces all the cross-
sections to be identical in size and shape. Interested reader may refer to aforementioned
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references for the details and the full taxonomy charts. In the context of this chapter, we
are interested in Circular Homogeneous Generalized Cylinders (CHGCs) and from now on
unless otherwise is stated, the term “generalized cylinder” should be accepted as CHGC.

Modelling objects from single-view images is an ill-posed problem due to the lost of depth
information during image formation (perspective transformation). Therefore, all of the
works that have been done in this field came with various assumptions and constraints to
infer the 3D geometry of a scene or an object. Interested reader may refer to Oswald et al.
[2013] for a survey of the state of the art single-view modelling methods and algorithms.
In this chapter, our focus is on the generalized cylinder modelling from single-view images.

A sub-class of generalized cylinders called Straight Homogeneous Generalized Cylinders
(SHGCs) (esp. a subgroup of SHGCs called solids of revolution) have been studied a lot.
Ponce et al. [1989] analysed the orthographic projections of SHGCs (with the assumption:
cross-sections are perpendicular to the axis, i.e. right SHGCs) using differential geometry
and identified several invariants which can further be extended to perspective projection.
In deed, Richetin et al. [1991] extended the results of Ponce et al. [1989] for perspective
camera models. Later, other researchers developed methods for modelling SHGCs from
single-view images [Sato and Binford, 1993; Ulupinar and Nevatia, 1995; Zerroug and
Nevatia, 1999] that exploited these works. Some other notable works on the topic can be
listed as Gross and Boult [1990, 1996]; Sayd et al. [1996]; Utcke and Zisserman [2003];
Colombo et al. [2005].

Chen et al. [2013] developed an interactive part-based system for modelling 3D man-made
objects (objects that are composed of primitive parts: generalized cylinders, cuboids and
spheres) from a single image. First, object parts are modelled separately and then geo-
semantic constraints (parallelism, orthogonality, collinear axis endpoints, overlapping axis
endpoints, coplanar axis endpoints and coplanar axes) are introduced between the object
parts based on some anchor points defined on the parts. Users can manually edit these au-
tomatically inferred constraints which are later used in an optimization process2 to solve
the position and orientation of the modelled parts. Furthermore, a local coordinate frame
is defined (Figure 7.2(a)) for each part which is used to parametrize3 the anchor points
with respect to the depths of the local coordinate frame centres. These parametrizations
are used to keep the projections of the parts consistent with the image during the opti-
mization process which tries to localize 3D parts that satisfy the geo-semantic constraints.

The previous paragraph summarizes the over-all process applied by Chen et al. [2013] for
modelling a 3D object which includes the modelling of individual parts separately and
then merging the parts to compose the final object based on an optimization problem. In
this paragraph, the modelling of the primitives of type generalized cylinders are explained
from which we have inspired to design our modelling system. Users initiate the modelling
by drawing an elliptic 2D profile on the input image. This 2D profile corresponds to the
perspective projection of the first 3D circle on the generalized cylinder (Figure 7.2(a)).
This initial 3D circle is estimated such that its centre is located on the viewing plane
(image plane) and its normal and radius are assigned according to the length and ori-
entation of the major and minor axes of the 2D profile. The user then completes the
generalized cylinder modelling by sweeping the 2D profile along the image of the gener-

2Some internal constraints for each individual part are also added to this optimization which are
mentioned in the corresponding article but not given explicitly.

3These parametrizations are obtained using the orthogonality constraints between the frame axes and
the inverse perspective projection equations.

120



7.2. 3D Generalized Cylinder Modelling from a Single Image

alized cylinder. This sweep generates an approximation to the axis of the 3D generalized
cylinder under the constraint of planar axis and the axis plane is parallel to the viewing
plane. The generated axis is sampled uniformly (at every 5-pixel) in the image space and
at each point a copy of the previously estimated 3D circle is centred. The normals of
the copied 3D circles are aligned according to the bending / orientation of the axis curve
at that point and their radii are adjusted to meet the generalized cylinder’s outline in
the image (Figures 7.2(b) and (c)). As a result, a set of 3D circles are generated along
the approximated axis of the modelled generalized cylinder. The positions of these 3D
circles are later updated within the aforementioned optimization process after which the
3D circles can be warped to 3D ellipses. The methods utilized by Chen et al. [2013] will
be further explained and compared to our methods along the Sections 7.2.4.3 and 7.2.5
once the foundations of the problem are discussed.

S1 S2

S3

A0

A1

A3

A2

A0

A1

A3

A2

(a) (b) (c)

Figure 7.2: 3-sweep generalized cylinder modelling: first two lines (S1S2 and S2S3) and the
sweep of the axis. S1S2 and S2S3 define the first 2D elliptic profile and the four points (S1,
S2, S3, the first sampled point along the sweep) define the perspective projection of the local
coordinate frame of the generalized cylinder (a). At each sampled point on the axis, a copy
of the previously created 3D circle is positioned (b). Then the copied circle is snapped to the
generalized cylinder outline (c). This figure is taken from Chen et al. [2013] but the caption of
the figure is re-written.

The discussed modelling system needs to identify the outlines of the imaged objects. Chen
et al. [2013] first utilized a hierarchical edge feature extraction method from Arbelaez
et al. [2011] and then merged the detected edges into continuous curves via Cheng [2009].
Therefore, a two-step preprocessing is required before starting to the modelling.

7.2.2 Representing 3D Generalized Cylinders

The generative definition of the generalized cylinders given by Binford [1971] requires an
infinite number of cross-sections (3D circles in our case). A practical solution for realizing
the generalized cylinders in computers is to approximate the axis by a set of connected
linear space curves and placing a cross-section at every point where these linear segments
meet. An example of a generalized cylinder constructed in this way is displayed in Figure
7.3.
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Figure 7.3: A homogeneous circular generalized cylinder: approximated by 10 (ten) cross-
sections, therefore the axis of the generalized cylinder is defined by 9 (nine) 3D linear segments
connected to each other. Colour codes: axis (red), cross-sections (green), curves on the surface
of the generalized cylinder (light gray).

7.2.3 Drawing the Initial 2D Elliptic Profile

The procedure for modelling a generalized cylinder is initiated when the user begins to
draw the projection of the initial cross-section of the generalized cylinder on the input
image. Three mouse clicks are required to accomplish this task. The first click is accepted
as the major axis starting point of the 2D ellipse. While the mouse pointer is being
dragged, the current major axis line is drawn in real time to give visual guide to the user
(Figure 7.4(a)). The second click is taken as the endpoint of the major axis, which also
defines the centre of the 2D elliptic profile (the midpoint of the first and second clicks).
Furthermore, a minor axis guideline is also displayed to the user which is perpendicular
to the major axis and its length is equal to the major axis (Figure 7.4(b)). After the
second click, the user drags the mouse pointer over the image for the third click which
finalizes the 2D profile drawing. During this dragging, the mouse pointer is projected
onto the minor axis guideline and based on these projected points, candidate ellipses are
dynamically displayed to the user (Figures 7.4(c) and 7.4(d)). For an ellipse, the length
of the minor axis can be at most equal to the length of the major axis (i.e. the ellipse is a
circle). Therefore, if the mouse pointer projection falls outside the minor axis guideline,
it is assigned to the closest endpoint of the minor axis guideline.

Observe that the third click can be performed at both ends of the minor axis (i.e. as either
in Figure 7.4(e) or Figure 7.4(f)). Although, the resulting ellipse on the image plane is
same, we have different interpretations depending on which endpoint is selected by the
user. This is related to the selection of the two possible 3D circles whose projections fit
to the 2D ellipse. This will be further discussed in the Section 7.2.4.3 after analysing the
estimation of 3D circles from their perspective projection (Section 7.2.4.1).

Once the 2D ellipse is drawn on the image, its algebraic equation (ax2 + bxy+ cy2 + dx+
ey + f = 0) can be computed from the ellipse parameters: centre (ρ(ρx, ρy)), semi-major
axis length (m), semi-minor axis length (n) and the angle of rotation (θ: the counter
clockwise angle between the major axis and the positive x-axis). By starting from an
ellipse in the standard form (i.e. the ellipse is centred at the origin and its axes are
parallel to the coordinate frame axes) and applying the required transformations, one can

122



7.2. 3D Generalized Cylinder Modelling from a Single Image

(a) 1st click (b) 2nd click

(c) dragging for the 3rd click (d) dragging for the 3rd click

(e) 3rd click (f) alternative 3rd click

Figure 7.4: Drawing the initial 2D elliptic profile with three mouse clicks. A small green circle
is positioned at the critical points: first click, second click, centre of the 2D ellipse, and the
projections of the mouse pointer and the third click onto the minor axis guideline. Major axis
and the minor axis guideline are displayed in red. The candidate and final ellipses are displayed
in cyan.

compute the relations given in the Equation 1. In the next section (Section 7.2.4), we
will see that the algebraic equation of the ellipse is needed for computing the 3D circles
whose perspective projections are the ellipse.

a = 0.5(m2 + n2 + (n2 −m2) cos(2θ))

b = (n2 −m2) sin(2θ))

c = 0.5(m2 + n2 − (n2 −m2) cos(2θ))

d = −2aρx − bρy
e = −2cρy − bρx
f = aρ2x + bρxρy + cρ2y −m2n2

(1)
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7.2.4 Estimating a 3D Circle from Its Projection

In this section, we will analyse the estimation of 3D circles from their single view ortho-
graphic and perspective projections. In orthographic projection, 3D object coordinates
are transformed on the viewing plane along parallel lines which intersect with the viewing
plane at 90 degrees. On the other hand, in perspective projection, 3D object coordinates
are transformed to the viewing plane along projection lines that converge at the centre of
projection. We can say that the centre of projection for the orthographic projection is at
the infinity.

Observe that a 3D circle can be moved along the viewing direction as the projection lines
keep passing through the circle. This can happen if only the 3D circle is scaled during
its movement. In addition, since the projection lines are passing through the circle, its
projection on the image plane does not change. Therefore, we can conclude that there exist
infinitely many 3D circles whose projection (valid for both perspective and orthographic
projections) are same. On the other hand, we will see that for the general case (i.e. when
the projection of the circle is an ellipse), when the depth (i.e. the component of the
circle centre along the viewing direction) or radius of the circles are fixed, there exist two
separate 3D circles whose projections are same.

7.2.4.1 Estimating 3D Circles Under Perspective Projection

The perspective projection of a 3D circle on the image plane is an ellipse except for the
two special cases. The first special case occurs when the plane of the 3D circle is parallel
to the viewing direction, i.e. the circle normal is perpendicular to the viewing direction or
the circle plane passes through the centre of the projection. In this first special case, the
3D circle is projected as a line segment on the image plane. In the second special case,
a 3D circle is projected as a circle on the image plane. The special cases will be further
discussed in the following paragraphs.

The problem of computing 3D circles from their perspective projections can be classified
as solved after Safaee-Rad et al. [1992] presented an analytical solution to the problem.
Yet other works have been published on the topic which applies different methods. For
instance, Philip [1997] proposed a method which analyses the eigenvalues of a quadratic
form that is associated with the projected ellipse. Then, he inserts the parametric equa-
tion of the 3D circle into this quadratic form and obtain six equations which constrain
the parameters of the 3D circle. Based on these constraints and a geometric intuition he
managed to solve the problem approximately (refer to the article for the error analysis).
Ferri et al. [1993] proposed another method based on decomposition of a quadratic form
into two linear forms which define two planes that support the 3D circles. This decom-
position requires an optimization step and only after the circle centres are determined by
intersecting these planes with the 3D viewing cone which passes through the projected
ellipse and the circles. In our tests, this method generally works well but it has robustness
issues especially when the elliptic projections are relatively small. This is caused by the
optimization process which returns either local minimums or false global minimums due
to relatively noisy data.

We utilized the analytical method of Safaee-Rad et al. [1992] which solves the problem
in two steps using the pinhole camera model. In the first step, the orientation problem
is solved (i.e. the circle normals are found), then the circle centres are computed in the
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second step. In this section, the problem will be solved for unit circles from which other
circles can be obtained at the desired depth or radius by scaling. The analysis presented
in this section similar to Safaee-Rad et al. [1992] but it is more detailed, the symmetry in
the solution set is explicitly discussed and additionally the degenerate case is also included
in the analysis.

The input to the problem is a given ellipse (E , Equation 2) on the image plane and the
focal length (|k|) of the pinhole camera (see Section 7.3 for the other needed parameters
for a practical application). The desired solution is a set of unit 3D circles (let C be of
one these circles) in the camera coordinate frame whose projections match with the given
ellipse on the image plane.

E : ax2 + bxy + cy2 + dx+ ey + f = 0 (2)

Let the camera is positioned at the centre of the camera coordinate frame and it is looking
down the negative z-axis4. Therefore, the image plane is located at z = k (k < 0). Observe
in Figure 7.5 that the projection lines passing through both the 3D circle and the projected
ellipse form a cone called viewing cone whose apex (or vertex) is at the centre of projection.
Based on this observation, we can reformulate the 3D circle estimation problem: given a
cone (Φ, Equation 3)5 with its vertex at the origin of the camera coordinate frame and
its intersection with the image plane (z = k) is a known ellipse (E), then find the set
of unit 3D circles (position and orientation) that are generated by intersecting Φ with a
corresponding set of planes (let Π be one of these planes).

Φ : XTQX = Ax2 +By2 + Cz2 + 2Fyz + 2Gxz + 2Hxy = 0 (3)

where

X =
[
x y z

]T and Q =

A H G
H B F
G F C


The relations between the coefficients of Φ and E can be computed by replacing z = k
into the equation of Φ (Equation 4). As a result, from the given E , the viewing cone can
be constructed.

a = A b = 2H c = B

d = 2Gk e = 2Fk f = Ck2
(4)

The cross-product terms (if any) in the cone equation can be eliminated by a change
of variables which can be achieved by applying the Principal Axes Theorem [Anton and
Rorres, 2005]. Observe that Q is a symmetric matrix and the principal axes theorem states
that every n×n symmetric matrix has real eigenvalues and there is an orthonormal basis
of its eigenvectors. Therefore, eigen decomposition of Q can be computed as Q = PDP T

where D is a diagonal matrix whose entries are eigenvalues of Q and P is an orthogonal
matrix whose columns are eigenvectors of Q. Assume that the eigenvalues of Q are
λ1, λ2, λ3 and the corresponding eigenvectors are e1, e2, e3. Then, the change of variables

4This is the default camera orientation in OpenGL.
5The equation of a cone whose vertex is at the origin of a coordinate frame [Sharma, 2005].
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Figure 7.5: Perspective projection of a 3D circle: camera coordinate frame (XYZ → RGB),
the projected ellipse (cyan) on the image plane, the 3D circle (red) and its supporting plane.
Observe that projection lines (yellow) passing through both the 3D circle and the projected
ellipse, constitute a cone (viewing cone) whose apex is at the centre of the camera coordinate
frame.

(i.e. change of the coordinate system by rotating it) can be obtained by applyingX = PX ′

to the cone equation (Equation 5).

Φ′ : (PX ′)TQ(PX ′) = X ′TP TQPX ′

= X ′TDX ′

= λ1x
′2 + λ2y

′2 + λ3z
′2 = 0

(5)

where

X ′ =
[
x′ y′ z′

]T , P =
[
e1 e2 e3

]
and D =

λ1 0 0
0 λ2 0
0 0 λ3


Observe that, in the new x′y′z′ coordinate frame, the cone (Φ′) is free of cross-product
terms (Equation 5). A cone equation free of cross-product terms is said to be in a standard
form which has the following property: one of the three coefficients of the quadratic terms
has a different sign than the other two. This property can also be derived directly from
the Equation 5. If all the eigenvalues had the same sign, then the only eigenvalues that
satisfy the equation would be all zero. Therefore, one of the eigenvalues should have a
different sign than the others. As a result, the sign of the eigenvalues of Q should be
either (λ1, λ2, λ3)→ (+,+,−) or (−,−,+). One can always multiply Q by −1 in order to
select one of the two sign configurations. Assume that the first configuration is selected.

Observe also that, six different P and D matrix pairs can be constructed by permuting
the order of the eigenvectors and the corresponding eigenvalues. In half of these matrix
pairs, P is a rotation matrix (det(P ) = 1) and it is a reflection matrix (det(P ) = −1)
for the remaining. We want P to be a rotation matrix (for rotating the coordinate
frame) since reflections reverse the clockwise / counter clockwise orientations. Among the
remaining three possible configurations, we put e3 into the third column of P and select
the configuration displayed in Equation 5. Note that, the axis of a cone in standard form
is aligned with the coordinate axis whose coefficient has a different sign than the other
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two. According to our selection, the axis of Φ′ is aligned with the z′-axis in the x′y′z′
coordinate frame.

The next step is to find a plane (Π′, Equation 6) in x′y′z′ coordinate frame such that it
intersects with Φ′ on a 3D circle. Also assume that n′ =

(
a b c

)
is the unit normal of

Π′.

Π′ : ax′ + by′ + bz′ + d = 0

a2 + b2 + c2 = 1
(6)

Intersecting Φ′ and Π′ is not easy in the x′y′z′ coordinate frame. Let’s change the coor-
dinate frame once more in order to simplify the computations. In this case, we want to
simplify the equation of Π′ such that in the new coordinate frame (x′′y′′z′′), Π′′ becomes
parallel to the x′′y′′-plane. For this transformation, another change of variables matrix M
is needed so that X ′ = MX ′′ for X ′′ =

[
x′′ y′′ z′′

]T . Note that, the coordinate transfor-
mation matrix is just the transpose ofM , i.e. X ′′ = MTX ′ (M−1 = MT for an orthogonal
matrix). The desired change of variables matrix should transform the vector (0, 0, 1) to
(a, b, c). There exists infinitely many different rotation matrices for this purpose. One of
them is selected as given in the Equation 7.

M =


−b√
a2 + b2

−ac√
a2 + b2

a

a√
a2 + b2

−bc√
a2 + b2

b

0
√
a2 + b2 c

 (7)

Using M , the change of variables yields the plane and the cone in the x′′y′′z′′ coordinate
frame as given in Equations 8 and 9 respectively.

Π′′ : z′′ + d = 0 (8)

Φ′′ : (MX ′′)TD(MX ′′) = X ′′TMTDMX ′′ =

λ1

(
− acy′′√

a2 + b2
+ az′′ − bx′′√

a2 + b2

)2

+

λ2

(
ax′′√
a2 + b2

− bcy′′√
a2 + b2

+ bz′′
)2

+

λ3
(
cz′′ + y′′

√
a2 + b2

)2
= 0

(9)

The intersection of Φ′′ and Π′′ can be computed in the x′′y′′z′′ coordinate frame and the
conditions under which the resultant conic (Equation 10) is a 3D circle can be found. Note
that, the transformations that are carried out are all rigid, i.e. the shape and size of the
objects are not altered. Therefore, the identified relationships in the x′′y′′z′′ coordinate
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frame can be reverted back to the xyz coordinate frame.

[
λ1b

2

a2 + b2
+

λ2a
2

a2 + b2

]
x′′2 +

[
2λ1abc

a2 + b2
− 2λ2abc

a2 + b2

]
x′′y′′+

[
λ1a

2c2

a2 + b2
+
λ2b

2c2

a2 + b2
+ λ3(a

2 + b2)

]
y′′2 − d

[
− 2λ1ab√

a2 + b2
+

2λ2ab√
a2 + b2

]
x′′+

−d
[
− 2λ1a

2c√
a2 + b2

− 2λ2b
2c√

a2 + b2
+ 2λ3c

√
a2 + b2

]
y′′ + [λ1a

2 + λ2b
2 + λ3c

2] d2 = 0

(10)

In order the Equation 10 to be a circle6, the conditions given in Equations 11, 12 and 13
must hold.

(λ1 − λ2) (abc) = 0 (11)

a2 + b2 6= 0 (12)

λ1b
2 + λ2a

2 = c2
(
λ1a

2 + λ2b
2
)

+ λ3
(
a2 + b2

)2 (13)

Equation 11 holds if λ1 = λ2 and / or the product abc = 0. The former leads to a special
case which will be discussed soon. The later requires at least one of a, b or c to be zero but
according to Equation 12 both a and b cannot be zero. Also remember the assumptions
made earlier: a2 + b2 + c2 = 1, λ1 > 0, λ2 > 0 and λ3 < 0. Let’s analyse the remaining
condition (Equation 13) along with these constraints under three different cases (cases I,
II, and III) and discuss the special case with an additional case (case IV).

CASE-I: a = 0

This yields four possible solutions for (a, b, c) under the constraint λ2 > λ1 (Equation 14).

a = 0, b = ±
√
λ2 − λ1
λ2 − λ3

, c = ±
√
λ1 − λ3
λ2 − λ3

(14)

CASE-II: b = 0

This yields four possible solutions for (a, b, c) under the constraint λ1 > λ2 (Equation 15).

a = ±
√
λ1 − λ2
λ1 − λ3

, b = 0, c = ±
√
λ2 − λ3
λ1 − λ3

(15)

6A conic equation ax2 + bxy + cy2 + dx + ey + f = 0 represents a circle if and only if a = c and
b = 0. Then, the circle centre and radius can be computed as (−d/2a,−e/2a) and

√
d2 + e2 − 4af/2|a|

respectively.
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CASE-III: c = 0

This yields four possible solutions for (a, b, c) under the constraints λ1 > λ2 and λ2 > λ1
(Equation 16). Observe that, the constraints contradict with each other, thus no solution
is obtained from this case.

a = ±
√
λ1 − λ3
λ1 − λ2

, b = ±
√
λ2 − λ3
λ2 − λ1

, c = 0 (16)

CASE-IV: λ1 = λ2 = λ

For this case, Equation 13 becomes (λ−λ3)(a2 + b2)2 = 0. Observe that the two solutions
of this equation are λ = λ3 and a = b = 0 which contradict with the already made
assumptions. However, notice that for the λ1 = λ2 case, we do not need to perform this
analysis in the x′′y′′z′′ coordinate frame since the Equation 5 becomes a right circular cone
in the x′y′z′ coordinate frame. That is, any plane parallel to the x′y′ plane intersects with
the cone (Φ′) in circles. For instance, if we choose Π′ as z′ = β, then Π′ and Φ′ intersect
on a 3D circle (C ′) whose centre (ρ′), normal (n′) and radius (r) can be computed as given
in the Equation 17.

ρ′ → (0, 0, β), n′ → (0, 0, 1), r = |β|
√
−λ3
λ

(17)

For a unit circle, β = ±
√
−λ/λ3. Observe that, the two different values of β generate

two symmetric planes that intersect with the cone (Φ′) and yield two different 3D circles
which have the same normal and radius but symmetric origins w.r.t. the origin of the
x′y′z′ coordinate frame. The corresponding 3D circles in the camera coordinate frame can
be obtained by applying the backward transformations (Equation 18). The symmetry of
the centres are preserved in the camera coordinate frame and one of the two solutions can
be eliminated according to the viewing direction of the camera. The camera is looking
down the negative z-axis, thus the 3D circle that lies on the negative part of the z-axis
becomes the only solution.

ρ = Pρ′ = βe3, n = Pn′ = e3 (18)

For CASE-I and CASE-II, we have not found the intersected 3D circles yet. One can
construct the Equation 10 for different solutions of n′ = (a, b, c) (see Equations 14 and
15) and compute the corresponding centres (ρ′′) and radii (r). We will perform these
computations only for CASE-I since the computations for CASE-II are exactly same
other than the parameter values.

For CASE-I, the radius and the corresponding d (the signed distance between the origin
of the x′y′z′ coordinate frame and the plane Π′) are computed as in the Equation 19.

r =
|d|
λ1

√
−λ2λ3 and d = ± λ1√

−λ2λ3
for r = 1 (19)

Eight different planes (Π′) can be constructed based on the possible values of n′ = (a, b, c)
and d. Equation 20 displays all of the possible circle centres and normals. Note that the
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centres are in the x′′y′′z′′ coordinate frame whereas the normals are in the x′y′z′ coordinate
frame.

ρ′′1 = |d|
(
0 −δ −1

)
for n′1 =

(
0 |b| |c|

)
and d > 0

ρ′′2 = |d|
(
0 δ 1

)
for n′2 =

(
0 |b| |c|

)
and d < 0

ρ′′3 = |d|
(
0 δ −1

)
for n′3 =

(
0 |b| −|c|

)
and d > 0

ρ′′4 = |d|
(
0 −δ 1

)
for n′4 =

(
0 |b| −|c|

)
and d < 0

ρ′′5 = |d|
(
0 −δ −1

)
for n′5 =

(
0 −|b| |c|

)
and d > 0

ρ′′6 = |d|
(
0 δ 1

)
for n′6 =

(
0 −|b|, |c|

)
and d < 0

ρ′′7 = |d|
(
0 δ −1

)
for n′7 =

(
0 −|b| −|c|

)
and d > 0

ρ′′8 = |d|
(
0 −δ 1

)
for n′8 =

(
0 −|b| −|c|

)
and d < 0

(20)

where

δ =

√
(λ2 − λ1)(λ1 − λ3)

λ1

Observe in Equation 20 that ρ′′1 = ρ′′5, ρ′′2 = ρ′′6, ρ′′3 = ρ′′7 and ρ′′4 = ρ′′8. In fact, all
these circles have the same normal (observe that supporting planes have the same normal
n′′ = (0, 0, 1)) in the x′′y′′z′′ coordinate frame which is enough to conclude there will
be four different solutions in the camera coordinate frame. However, we will do further
analysis for completeness. Circle centres in x′y′z′ coordinate frame can be computed by
ρ′ = Mρ′′. Observe in Equation 7 that, the matrix M depends on the values of the a, b
and c and it can be simplified for CASE-I (Equation 21).

M =


−sign(b) 0 0

0 −sign(b)sign(c)|c| sign(b)|b|

0 |b| sign(c)|c|

 (21)

The obtained centres in the x′y′z′ coordinate frame are displayed in the Equation 22.
Observe that, ρ′1 = ρ′8, n′1 = −n′8, ρ′2 = ρ′7, n′2 = −n′7, ρ′3 = ρ′6, n′3 = −n′6, ρ′4 = ρ′5
and n′4 = −n′5. Notice that, the circles which have identical centres have normals in
the opposite directions (symmetric normals w.r.t origin). This is the result of using both
positive and negative values of d. As a result, once the sign of d is chosen, four solutions are
obtained and reversing the sign of d, alters the direction of the computed circle normals.
The centre locations are not affected by the sign of the d. Furthermore, notice also that
ρ′1 and ρ′7, ρ′2 and ρ′8, ρ′3 and ρ′5, ρ′4 and ρ′6 are symmetric w.r.t the origin of the x′y′z′
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coordinate frame.

ρ′1 = |d|
(
0 δ|c| − |b| −δ|b| − |c|

)
ρ′2 = −ρ′1
ρ′3 = |d|

(
0 δ|c| − |b| δ|b|+ |c|

)
ρ′4 = −ρ′3
ρ′5 = |d|

(
0 −δ|c|+ |b| −δ|b| − |c|

)
ρ′6 = −ρ′5
ρ′7 = |d|

(
0 −δ|c|+ |b| δ|b|+ |c|

)
ρ′8 = −ρ′7

(22)

The normals and centres of the 3D circles can now be transformed back to the camera
coordinate frame by ρ = Pρ′ n = Pn′. Then, two of the four 3D circles can be eliminated
based on the camera’s viewing direction and the symmetry between the computed circles.
As a result, the remaining two circles that lie on the negative side of the z-axis are
accepted as the solutions. These circles can now be scaled to desired depth or radius
using the similar triangles (ρ2 = (r1/r2)ρ1). Figures 7.6 and 7.7 display 3D circles that
are computed using the methods explained in this section.

Figure 7.6: Computed 3D circles from a perspective projection: Coordinate frame (XYZ →
RGB), image plane (dark blue) and the projected ellipse (white) on the image plane, two 3D
circles (red and green) and perspective projection lines (yellow).

DEGENERATE CASE:

The only remaining analysis that has to be done is related to the case when the projection
of the 3D circle is not an ellipse. A 3D circle’s projection is a line segment when the plane
of the circle passes through the centre of projection. Let p1 and p2 be the endpoints of
the line segment on the image plane. Then, notice that the normal of the 3D circle can
be computed as ~n = ~p1 × ~p2 and the circle centre has the same direction with the ~p1 + ~p2
vector. After some arithmetic based on the Figure 7.8, one can find r = ||~ρ|| sin(α).
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Figure 7.7: The same circles in the Figure 7.6 are displayed with a different point of view. This
time, the image plane is not displayed but the supporting planes are added.

r

r

ρ

C

T1

T2

p1

p2

α
α

Figure 7.8: 3D circle projection for the degenerate case: centre of projection (C), circle centre
(ρ), projection of the circle (line segment between the points p1 and p2), perspective projection
lines passing through p1 and p2 are tangent to the circle at T1 and T2. The centre of the circle
has the same direction with the vector p1 + p2.

As a result, for a fixed depth or radius and a specific viewing direction, this problem has
a single solution for the special cases (when the projection of the 3D circle is a circle or
a line segment) and two solutions for the general case (the projection of the 3D circle is
an ellipse).

7.2.4.2 Estimating 3D Circles Under Orthographic Projection

Under orthographic projection, 3D circles are also projected as ellipses other than the
special cases. If the supporting plane of the 3D circle is parallel to the image plane, then
the circle is projected as a circle. On the other hand, if supporting plane and the image
plane are perpendicular to each other, then the projection will be a line segment whose
length is equal to the diameter of the circle.

The ratio of lengths are preserved under orthographic projection which leads to the fol-
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lowing property: the centre of a 3D circle is projected as the centre of the projected ellipse
and any line segment passing through the ellipse centre whose endpoints are on the ellipse
is the projection of a circle diameter. Therefore, when the circle centre is positioned on
the image plane, the centres of the projected ellipse and the circle becomes the same point
and the major axis of the ellipse becomes an actual diameter of the 3D circle. Conse-
quently, given an ellipse (E) on the image plane, one can construct a 3D circle (Ci) on the
image plane whose centre and diameter coincide with the ellipse centre and major axis,
respectively. Then, the estimation problem can be reformulated as follows: find the tilt
angle (θ), that is applied to Ci so that the tilted 3D circle (Ct) orthographically projects
to E .
The semi-major and semi-minor axes of the projected ellipse are represented with 3D
vectors pointing outward from the ellipse centre. There exist four different orientations
of these vectors (Figure 7.9). We will see how the orientation of these vectors change the
estimated circles. For our analysis, we select the orientation (a) given in the Figure 7.9.

(a)

~u~v

(b)

~u

~v

(c)

~u
~v

(d)

~u
~v

x

y

Figure 7.9: Four possible orientations of the semi-major and the semi-minor axes of an ellipse:
semi-major vector (~u) and semi-minor vector (~v).

Figure 7.10 displays the concentric 3D circle (Ci) and the ellipse (E) on the image plane.
According to the reformulation of the problem, we want to rotate Ci around its diameter
that coincides with the ellipse’s major axis.

The normal (ni) of Ci is taken in the direction of the cross product ~u × ~v. Therefore,
ni =

(
0 0 1

)
for our selected orientation. In addition, ~u and ~v can be written in terms

of the angle of rotation (φ) as given in the Equation 23.

~u =
(
ux uy 0

)
= ||~u||

(
cosφ sinφ 0

)
~v =

(
vx vy 0

)
= ||~v||

(
− sinφ cosφ 0

) (23)

Ci can be tilted (rotated) either towards or away from the camera center. We fix the
direction of the tilt towards the center of the camera. In order to compute the amount
of tilt, a vector (~r1) of length ||~u|| that is aligned with ~v is utilized (Figures 7.10 and
7.11). Observe that, if the projection of ~r2 matches with ~v on the image plane, then the
orthographic projection of Ct matches with the E (Figure 7.11).

133



Chapter 7. 3D Generalized Cylinder Modelling from a Single Image

~u
~v

ρ

~r1

φ

Figure 7.10: Concentric ellipse (E) and circle (Ci) on the image plane when looking from the
origin of the camera coordinate frame: centre of E and Ci (ρ), semi-major vector (~u), semi-minor
vector (~v), angle of rotation (φ), a vector on the image plane (~r1) that is aligned with ~v and its
length is equal to the radius of Ci which is also equal to the length of ~u. The dashed black line
is the horizontal x-axis on the image plane.

θ

ρ

~v

~t

~r1

~r2

Figure 7.11: Computing the tilt angle (θ). This figure is drawn according to a viewer looking
from the tip of the semi-major vector (~u). That is, the semi-major vector is directed out of page.
ρ is the centre of the ellipse (E) and the 3D circle (Ci) that lie on the image plane. ~v is the
semi-minor vector. ~r1 is a vector on the image plane that is aligned with ~v and its magnitude
is equal to the radius of Ci (i.e. r = ||~r1|| = ||~u||) and ~r2 is the vector obtained by rotating ~r1
around the semi-major vector in the counter clock-wise direction by the amount of tilt angle.
~t is the tilt vector perpendicular to the image plane towards the camera center. Observe that
~r2 = ~v + ~t.

The tilt angle (θ) and the tilt vector (~t in the Figure 7.11) can be computed as given in
Equation 24. Furthermore, the normal (nt) of Ct can be obtained either by rotating ni by
the tilt angle around the same axis or by the Equation 25.

cos θ =
||~v||
||~u||

, ~t =
(
0 0

√
||~u||2 − ||~v||2

)
(24)

~r2 = ~v + ~t

~nt = ~u× ~r2

=
(
sin θ sinφ − sin θ cosφ cos θ

) (25)
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Figures 7.12 and 7.13 display an estimated 3D circle from a projected ellipse under or-
thographic projection.

Figure 7.12: Estimated 3D circle under orthographic projection. The ellipse (E) and the circle
(Ci) on the image plane are displayed in red and blue respectively. The estimated circle (Ct) is
displayed in magenta. The semi-major and semi-minor axis vectors are displayed in white and
the tilt vector is displayed in cyan. Finally, the white horizontal line on the image plane indicates
the x-axis.

Figure 7.13: This figure displays a simplified version of the Figure 7.12. Additionally, ortho-
graphic projection lines are also displayed (yellow).

Note that the performed calculations are based on the selected orientation of the ellipse
axes (Figure 7.9). When the same analysis is carried out for the other orientations,
different solutions are obtained. Figure 7.14 displays the four different estimated 3D
circles with four different orientations of the axes vectors. Please read the caption of the
figure for the details. Recall that, we fixed the direction of the tilt vector towards the
camera and select the normal of Ci along the direction of ~u × ~v. Both of these vectors
could have been taken in the opposite directions which would yield the same 3D circles
(as displayed in Figure 7.14). However, just toggling the direction of the tilt or the ni
still generates the same set of 3D circles but this changes the bijection between the axes
vector orientations and the computed 3D circles.
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Figure 7.14: Four possible 3D circles estimated under orthographic projection. The projected
ellipse and the circle on the image plane are displayed with red and blue, respectively. Notice that,
the image plane is horizontal in this figure. Figure 7.9 displays the four possible orientations of the
semi-major and semi-minor axes of the projected ellipse. Computations based on configuration
(a) and (c) yield the 3D circles displayed in magenta whereas for (b) and (d) the cyan circles are
computed. Notice that, for these pairs, the same circles are obtained but with opposite normal
orientations.

7.2.4.3 Further Analysis on the Perspective Projection of 3D Circles

In Section 7.2.4.1 we have seen the analytic method of finding the two 3D circles at a
fixed depth or radius whose projections are the same given ellipse on the image plane
under the perspective projection. In this section, perspective projection of 3D circles are
discussed a bit further.

Figure 7.15 displays one of the two 3D circles on the left and their projection on the right.
Notice that, the centres of the circles do not project as the centre of the ellipse and the
axes of the projected ellipse do not correspond to diameters of the circles. This is due
to the perspective projection in which the ratio of the lengths are not preserved (on the
contrary to the orthographic projection).

Recall that in Section 7.2.3, we mentioned two different drawing methods of the first 2D
profile which result in the same 2D ellipse. These two different drawing methods are used
to select one of the two possible 3D circles that are computed using the drawn ellipse.
The user’s task is defined as always doing the third click towards side which is closer to
the camera. According to this, the expected drawing that should be done in Figure 7.4
is 7.4(e). The normal and centre equations derived in Section 7.2.4.1 always (except the
special cases) yield two 3D circles that are oppositely oriented with respect to the viewing
direction.

In Section 7.2.1, we have discussed the work presented by Chen et al. [2013]. Recall that,
in their work 3D circles are initially estimated such that the circle and the projected
ellipse centres coincide. This can only be achieved by a ratio preserving projection such
as orthogonal projection. The post optimization process (see Section 7.2.1 for a brief
overview or the corresponding article for the details) utilized in their work compensates
for the non-perspective construction of the generalized cylinders at the cost of deviating
from 3D circles by warping them into 3D ellipses.
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C1

P1

P2Pe
Pm

p1 p2
pe

c1

c2

pm

Figure 7.15: Perspective projection of a 3D circle. The upper-case and the lower-case labels
on the circle and the ellipse indicate the corresponding points such that the lower-case labels are
the perspective projections of the upper-case ones. Recall that at a given depth or fixed radius
there exist two 3D circles whose projections are the same ellipse. In the figure, only one of the
circles is displayed, but the projection of the second circle’s centre is also displayed (c2). pe is
the centre of the ellipse, p1 and p2 are the endpoints of the major axis, C1 is centre of the 3D
circle and Pm is midpoint of the P1 and P2.

In the next Section (7.2.5), we will derive the parametric representation of the centre of
a 3D circle whose perspective projection is partially known. Equation 26 displays the
coordinates of some critical points that are used in the related derivations which are also
displayed in the Figure 7.15. These point coordinates are written with the assumption of
a pin-hole camera model which is looking along the negative z-axis.

p1 =
[
x1 y1

]
p2 =

[
x2 y2

]
Pi1 =

[
x1 y1 n

]
Pi2 =

[
x2 y2 n

]
P1 = Z1

[
x1/n y1/n 1

]
P2 = Z2

[
x2/n y2/n 1

]
Pe = Ze

[
(x1 + x2)/2n (y1 + y2)/2n 1

]
Pm = (P1 + P2)/2

pe =
[
(x1 + x2)/2 (y1 + y2)/2

]
(26)

7.2.5 Piecewise Sweeping the Generalized Cylinder Image and
Estimating the Generalized Cylinder

After drawing the projection of the initial cross-section (Section 7.2.3), the user sweeps
the major axis of the initial profile along the image of the generalized cylinder. However,
instead of continuous sweeping used by Chen et al. [2013], we adopted a piecewise sweeping
approach for simplicity. That is, we try to fit a 2D line segment to the outline of the
generalized cylinder whenever the mouse button is clicked. During the sweep, a copy of
the previously fit line segment is positioned to the current mouse point and its orientation
is adjusted according to the bend of the axis. In order to fit these line segments to the
object outlines, the edges in the input images have to be detected in advance. We used
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the gradient image for this purpose. The user drawn initial 2D elliptic profile and the
following piecewise sweeping generate the input data for estimating the 3D model of the
imaged generalized cylinders. An example of such data is displayed in Figure 7.16.

Figure 7.16: Generalized cylinder estimation input data: red dots are the user clicked points
first three of which are used to construct the initial 2D elliptic profile (yellow), blue dashed lines
illustrate the 2D line segments that are fit to the outline of the imaged generalized cylinder.

In Section 7.2.4.1, the computation of 3D circles from their perspective projections are
presented. Notice that in the generalized cylinder modelling described in the previous
paragraph, we do not have the minor axis information apart from the initial 2D elliptic
profile. Therefore, the equations derived in the Section 7.2.4.1 cannot be used for these
cases due to the insufficient input data. On the other hand, we will see that with the
assumption of a known normal, a 3D circle can be computed up to a scale factor from
the major axis of its projected ellipse. After deriving the necessary equations, we will
continue with the discussion of the 3D generalized cylinder reconstruction.

7.2.5.1 Mathematical Representation of 3D Circles

In Euclidean geometry, a 3D circle can be represented in the form a polynomial equation
(as the intersection of a plane and a sphere or intersection of two spheres) or in parametric
form (C +R cos θ~i+R sin θ~j where C is the centre of the circle, ~i and ~j are two perpen-
dicular unit vectors that span the supporting plane of the 3D circle and 0 ≤ θ < 2Π).
Furthermore, one can also represent 3D circles in projective geometry using dual quadrics
[Soheilian and Brédif, 2014] (Equation 27).

Q∗ = R2

[
[n]x 0
0 0

]
+

[
C
1

] [
C
1

]T
(27)

where R is the radius of the 3D circle, C is the centre and [n]x is the matrix encoding the
vector product (i.e. n× v = [n]xv).
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7.2.5.2 Supporting Plane

The equation of the supporting plane or the plane of the 3D circle (Π0 : a0x+ b0y+ c0z+
d0 = 0) can be computed from (P − P1) · n̂0 = (P − P2) · n̂0 = (P − Pe) · n̂0 = 0 where
n̂0 =

[
a0 b0 c0

]
is the unit normal of the 3D circle and P is an arbitrary point on Π0.

This yields the relations given in Equation 28 between the z-coordinates (depths) of P1,
P2 and Pe.

Z1 = kZ2, Ze =
2k

1 + k
Z2, where k =

P2i · n̂0

P1i · n̂0

(28)

7.2.5.3 Bisector Plane

Bisector plane (Π1 : a1x + b1y + c1z + d1 = 0) is the plane passing through C and Pm
and perpendicular to the supporting plane. The equation of the bisector plane can be
obtained by (C − Pm) · (P1 − P2) = 0 which yields the Equation 29.

n1 =
[
a1 b1 c1

]
= n̂0 × (P2i × P1i)

d1 = Z2
(n̂0 · P2i)

2(P1i · P1i)− (n̂0 · P1i)
2(P2i · P2i)

2n(n̂0 · P1i)

(29)

Notice that the bisector plane is the locus of the points whose distance to P1 and P2 are
equivalent. One can compute the same plane by intersecting two spheres centred at P1

and P2 with radii R and computing the supporting plane for the intersection. That is
S1 : ||P1 − C||2 = R2, S2 : ||P2 − C||2 = R2 and Π1 is the supporting plane for the circle
S1 ∩ S2.

7.2.5.4 Offset Planes

Observe the two lines (lpi) in the Figure 7.17 that are passing through pi and perpendicular
to the major axis. Notice that, the planes (Ti) passing through the camera center and
these lines are tangent to the 3D circle at the points Pi. In 2D projective space, any point
p on a line l holds the equation: pT l = lTp = 0. Similarly, in 3D projective space, any
point P on a plane Π holds the equation: P TΠ = ΠTP = 0. Furthermore, a 3D point is
projected onto the image plane as p = PmatP where Pmat is the 3× 4 camera projection
matrix7. Based on these, piT lpi = Pi

TPmat
T lpi = 0 and therefore Ti = Pmat

T lpi .

The tangent planes Ti to the 3D circle (Q∗, Equation 27) at points Pi must hold the
relation between a dual quadric and its tangent planes. That is: TiTQ∗Ti = 0. When this
expression is simplified, one can obtain [CTWi]

2 + R2(Wi
T [n̂0]x

2Wi) = 0 where Wi is the
unit normal of the tangent plane Ti. This equation can be decomposed into two plane
equations as given in the Equation 30.(

CTWi +R

√
−Wi

T [n̂0]x
2Wi

)(
CTWi −R

√
−Wi

T [n̂0]x
2Wi

)
= 0 (30)

7Pmat = KR[I3| − S] where K is the calibration matrix of the camera, R is the orientation of the
camera, I3 is the 3× 3 identity matrix and S is the position of the camera.
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p1

p2l

lp2

lp1

Figure 7.17: Computing the tangent lines (lp1 and lp2) to the ellipse at the major axis endpoints
(p1 = (x1, y1, 1) and p2 = (x2, y2, 1)). The major axis line (l) can be computed as: l = p1 ×
p2 = (l1, l2, l3) and the orthogonal lines to l passing through p1 and p2 can be computed as:
lp1 = (l2,−l1, l1y1 − l2x1) and lp2 = (l2,−l1, l1y2 − l2x2).

Notice that these two planes have the same normal with the corresponding tangent plane
(i.e. parallel to the corresponding tangent plane) and in fact they are the offset versions
of the tangent planes. The signed distance between the corresponding tangent plane and

these offset planes are ±R
√
−Wi

T [n̂0]x
2Wi. Moreover, the signed distance between the

circle centre and the tangent plane Ti is CTWi which is equal to one of the signed distances
between the tangent and offset planes. Therefore, the circle centre must lie on of the offset
planes. The offset plane on which the circle centre lies can be found with a very simple
test which is illustrated in the Figure 7.18. After eliminating two of the four offset planes,
two planes (Π2 : a2x + b2y + c2z + d2 = 0 and Π3 : a3x + b3y + c3z + d3 = 0) remain on
which the circle centre lies.

p1

p2

P1

P2

C

ray1

ray2

Cproj

pl1

pl2

pl3

pl4

Figure 7.18: Eliminating offset planes: two of the four offset planes are eliminated based on
the intersection test illustrated in the figure (a 2D cross-section from the top-view). Two rays
(ray1 and ray2) are shot from the centre of projection (camera centre, Cproj) passing through the
two end-points (p1, p2) and the offset planes that are not intersected by the rays are eliminated
(Eliminated planes are displayed as dashed lines).
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7.2.5.5 Parametric Solution to 3D Circle Centre

Three planes (Π1, Π2 and Π3) have been identified on which the centre of the 3D circle
lies. The value of d1 depends on Z2 (also Z1 and Ze via Equation 28) and the values of d2
and d3 depend on the radius of the 3D circle. Therefore, the intersection of these three
planes generates a parametric solution (using Cramer’s rule) to the circle centre in which
the parameters are Z2 and R. (Equation 31).

C(Z2, R) =

X = fx(Z2, R)

Y = fy(Z2, R)

Z = fz(R)

 =

s1R + s2Z2

s3R + s4Z2

s5R

 (31)

Observe that the distance between the circle centre and P2 is equal to R. Let’s choose
the scale of the circle such that it becomes a unit circle (i.e. let’s take R = 1). Therefore,
the equation ||C − P2|| = 1 can be solved for Z2 which leads to the computation of the
unit circle centre using the parametric centre equation.

As a result, from the given major axis and the normal of the 3D circle, the position of the
circle can be computed upto a scale. Additionally if a radius or depth is given, then the
computed unit circle can be scaled to find the 3D circle. Having found the unit circle, we
can proceed for the discussion of the generalized cylinder modelling.

7.2.5.6 Generalized Cylinder Modelling

The parametric centre equation (Equation 31) requires the circle normal which has to
be estimated in order to compute the centre of the circle (up to a scale) by only using
the major axis of its projection. Recall that Chen et al. [2013] made two fundamental
assumptions for the same purpose: planar axis whose supporting plane is parallel to
the image plane and a ratio preserving projection. These assumptions are sufficient to
estimate the circles up to a scale (the scale is selected such that the circle centres lie on the
image plane) from the major axes. The radii of the circles are taken as the semi-major axis
lengths, the normals are taken along the user drawn sweep curve and the centres are taken
as the midpoint of the major axes (i.e. ellipse centres on the image plane). Although,
these assumptions generate 3D circles whose perspective projections approximate8 the
outline of the imaged generalized cylinder, their 3D positions are not correct. However,
they solved the overall model (which may be composed of several separate parts) by
minimizing a set of geometrically inferred constraints (geo-semantic constraints and part
based internal constraints) that fixes the 3D positions of the estimated circles (the shapes
of the circles can also be changed and warped into ellipses after this optimization).

In our modelling system, we do not have an overall optimization process for fixing initially
made assumptions. Therefore, we need a better way of estimating 3D circles. For the
initial 3D circle we utilized the method explained in Section 7.2.4.1 in order to compute
3D circles from their perspective projections. However, in order to estimate the remaining
3D circles we need to infer some prior constraints. The rest of this section analyses three
different prior constraints: (i) constant depth, (ii) planar axis, (iii) linear axis.

8The approximation errors can be seen at both ends of the generalized cylinders where either the
entire or half of the projected ellipses are visible in the image.
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Constant Depth Prior:

This is the same prior used by Chen et al. [2013]. The assumption of planar axis whose
supporting plane is parallel to the image plane results in 3D circles with the same depth
(the z-coordinate of the circle centre for our camera set-up). We selected an arbitrary
depth within the view frustum so that the model is visible on the screen.

The normals of the circles can be estimated easily using the constant depth prior. Notice
that when the axis plane is parallel to the image plane and the normals are assumed to
be in the axis plane, then the circle normals become parallel to the user drawn piecewise
linear sweep curve segments. Using these normals and the major axes that are fit to
the generalized cylinder outline, the corresponding circle centres are computed using the
parametric centre equation (Equation 31). As a result, the corresponding generalized
cylinder can be constructed by cascading the reconstructed circles in order (Figures 7.19(a)
and 7.19(b)).

(a) image and model rendering-1 (b) image and model rendering-2

(c) model - top view (d) model - side view

Figure 7.19: A generalized cylinder modelled with constant depth prior: the projection of the
model matches with the image except at the end of the generalized cylinder. Notice also that
the normal of the first circle is not parallel to the approximated axis.

Observe in Figures 7.19(a) and 7.19(b) that the constructed model’s perspective projection
fits with the silhouette of the generalized cylinder in the image. Notice that, this fit is
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not exact other than the projection of the first 3D circle which is computed analytically
according to the user drawn ellipse (i.e. the projection fit of the first circle is correct up
to the user’s accuracy of drawing its projection). The source of these errors might be the
falsely estimated normals and/or falsely fit major axes.

Recognize that, the selected constant depth prior and the computation of the first 3D
circle are independent from each other. That is, neither of the two are computed from
the other. Therefore, the computed normal of the first 3D circle is not necessarily parallel
to the approximated axis of the model which results in oblique models (Figures 7.19(c)
and 7.19(d)). An oblique model might not be plausible for many users, since most of the
real world objects of type generalize cylinder are right. In addition, the intermediately
reconstructed 3D circles are not necessarily perpendicular to the axis of the object either.
This is due to the fact that the user approximation to the axis (and the correspond-
ingly estimated normals) is based on the projected ellipse centres which are close to the
projected circle centres (Figure 7.15). The related error is very difficult to assess (since
many parameters affect the projection of a 3D circle) but in practice it does not prevent
reconstructing plausible models.

Note that the normal of the first 3D circle in the reconstructed model can be changed
so that it becomes parallel to the approximated axis. However, this will increase the
projection fit error and the analytical computation of the initial 3D circle becomes less
useful in the first place.

Planar Axis Prior:

Another prior can be obtained by relaxing the parallel axis plane constraint introduced
for constant depth prior. However, the input data is not sufficient to compute the plane
of the axis. In order to compute the plane of the axis, it is asked from users to finish the
modelling on the other end of the generalized cylinder by also drawing the projection of
the last 3D circle. As a result, two circles (first and the last) upto a scale are computed
analytically. A random depth or scale can be selected for one of the circles and a point
(centre of the circle) on the axis plane is obtained. Then the normal of the axis plane is
computed by the vector product of the two circle normals which are assumed to be two
vectors on the axis plane.

Once the axis plane is defined, the normals of the intermediate 3D circles are estimated
by projecting the user drawn sweep curve onto the estimated axis plane. That is, the
normals are first estimated using the constant depth prior and then they are transformed
to the axis plane. Having estimated the normal, the circle centres are again computed
by the parametric centre equation (Equation 31). As a final step, the scales of circles are
chosen such that the circle centres lie on the axis plane and the generalized cylinder is
constructed. Figure 7.20 displays a modelled generalized cylinder using the same image
as in Figure 7.19(a) but this time with planar axis prior.

When compared with the constant depth prior, the additional projection drawing mecha-
nism also prevents the projection fit error at the end of the generalized cylinders. There-
fore, the total amount of error is reduced with the planar axis prior. On the other hand,
in order to draw the projection of the last 3D circle, the whole image of the generalized
cylinder has to be visible in the input image. That is, partially visible generalized cylin-
ders cannot be modelled or the user has to guess the minor axis of the last 2D profile
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(a) image and model rendering-1 (b) image and transparent model

(c) image and 3D circles (d) model is slightly moved and rotated

(e) model - top view: 3D circle and vertex nor-
mals

Figure 7.20: A generalized cylinder modelled with planar axis prior: the projection of the
model matches with the image and the first circle is perpendicular to the approximated axis.

which might not be good enough to generate a plausible model. Another limitation is
related to the normals of the estimated circles at both ends of the generalized cylinder.
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If the two normals are parallel to each other, then the axis plane cannot be computed. A
common case of the parallel normals occurs when the generalized cylinder is straight, i.e.
when the normals are collinear or the axis is linear.

Linear Axis Prior:

For straight generalized cylinders, the axis is a 3D line segment which is defined by the
normal and the centre of the first 3D circle (after selecting a random depth or scale). The
centre positions of the remaining circles are then computed with the parametric center
(Equation 31) equation. The scale of these circles are selected such that the computed
circle centre lies on the axis line. Note that, the rays passing through the camera centre
and the circle centres may not intersect exactly with the approximated axis line (due to
numerical or estimation errors). In these cases, the circle scales are selected such that their
distance to the axis line is minimum. Figure 7.21 displays a modelled straight generalized
cylinder from a synthetic image.

(a) input image (b) model rendering-1 (c) model rendering-2

(d) 3D circles of the generalized cylinder and their normals

Figure 7.21: A generalized cylinder modelled with linear axis prior from a synthetic image.
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More Examples and Discussions:

Figures 7.22, 7.23 and 7.24 display three reconstructed models from the panoramic images
of the IGN’s MMS (STEREOPOLIS, [Paparoditis et al., 2012]). The body of the first
two models (pole and lamppost) are straight cylinders therefore modelled with linear axis
prior and the tree trunk is modelled with the planar axis prior.

Figure 7.22: A modelled pole: different renderings of the model are displayed, the right most
image is the gradient of the input image.

Figure 7.23: A modelled lamppost: different renderings of the model are displayed.

In this work, we have focused on the geometric reconstruction problem rather than the
edge detection and better user interface. We use the simple gradient images in order
to fit the major axes of the elliptic profiles to the outline of the generalized cylinders.
Therefore, modelling from real images with a minimum error is a challenging task and it
might be difficult to reconstruct a plausible model at the first trial. On the other hand,
with synthetic or hand drawn images, there is not any difficulty for detecting edges which
results in easier modelling.
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(a) model rendering-1 (b) model rendering-2 (c) model rendering-3 (d) another view

(e) model rendering-4 (f) model rendering-5

Figure 7.24: A 3D model of a tree trunk: (a), (b), (c), (e) and (f) display the model recon-
structed from the input image and (d) displays an another image of the same tree from a different
point of view which is not used in the modelling. The image at (b) is the gradient image.

In Figure 7.24, another view of the modelled tree trunk is displayed. When an object
is modelled from a single view, the dimensions of the object along the viewing direction
cannot be reconstructed (estimated). Compare the images 7.24(c) and 7.24(d) and notice
the bending of the tree trunk at the upper part of it. This bending cannot be modelled
from 7.24(d). As a result, multiple views of the objects are required for more accurate
geometric reconstructions.

Figure 7.25 displays a reconstructed model of a bended pipe with the planar axis prior.
Notice in this model that the radii of the reconstructed 3D circles are not equal and slightly
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change along the model. There might be two reasons for this noise: (i) the estimation error
of the axis plane might be relatively large due to inaccurately drawn 2D elliptic profiles,
(ii) the major axis fit to the outlines of the model might not be precise enough. The
axis plane error can be reduced by adjusting/fitting the user drawn elliptic profiles to the
edges in the images and the major axis fitting can be reduced by a better edge detection
algorithm. Another solution might be defining an optimization problem (for computing
the position of the circle centres) which loosens the current hard constraints (major axis
fit: axis length and orientation, normal estimation) and introducing additional ones such
as constant radius.

(a) input image (b) model rendering-1

(c) model rendering-2 (d) model rendering-3

(e) model rendered from a different point of view

Figure 7.25: A 3D model of a bended pipe with different renderings: the image at (c) is the
gradient image.

Figures 7.26(d) and 7.27 display two reconstructed models from drawings. The first
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drawing is a wall lamp composed of a single generalized cylinder whereas the second
drawing is a menorah composed of four generalized cylinders one of which is straight.

(a) asymmetric fitting-1 (b) asymmetric fitting-2 (c) asymmetric fitting-3

(d) symmetric fitting-1 (e) symmetric fitting-2 (f) symmetric fitting-3

Figure 7.26: A 3D model of a wall lamp reconstructed from a drawing with two different major
axis fitting strategy: symmetric (a, b, c) and asymmetric (d, e, f). (a, d) display the projections
of the reconstructed 3D circles, (b, e) display the corresponding models and (c, f) display the
models with a different viewing point.

Recall that users approximate the axis of the generalized cylinder by a piecewise 2D curve
on the input image. At the endpoints of the linear segments (constituting the piecewise
curve) the previously fit major axis is copied to the current point and it is fit to the
outline of the generalized cylinder. This fitting is executed by first rotating the major
axis w.r.t the bend of the axis and then shooting inward and outward rays form the
major axis endpoints. The fitting is completed by updating the positions of the major
axis endpoints according to the ray shooting results. Notice that, if the major axis is
not scaled homogeneously, the centre (midpoint) of the major axis deviates from the
user clicked point. This fitting strategy is called asymmetric major axis fitting. Another
strategy called symmetric major axis fitting forces homogeneous scaling of the major axes
which keeps the location of the major axis centres at the user clicked points. However, if
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the projection of the model in the input image is not symmetric, then the reconstructed
model’s projection does not fit to the outline of the object (Figure 7.26(e)).

(a) input drawing (b) models rendering-1

(c) models rendering-2 (d) models rendered from a dif-
ferent point of view

Figure 7.27: A 3Dmodel of a menorah reconstructed from a drawing: note that each generalized
cylinder is reconstructed independently, object modelling by merging the separately constructed
parts is not supported by the current version of or modelling system.

The generalized cylinders in the Figure 7.27 are modelled separately and when they are
rendered with a different point of view, it can be seen that their locations are not coherent
with each other to form the model of the menorah object. Part based object modelling
remains as a future work.
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Observe the projection fit error at the end of the straight generalized cylinder in Figures
7.27(b) and 7.27(c). As the angles between the viewing rays (from camera centre to circle
centres) and the circle normals decrease, the assumption of a major axis (corresponding
to the perspective projection of a 3D circle whose normal is approximately parallel to
the axis of the generalized cylinder) whose endpoints are on the silhouette of the straight
cylinder becomes invalid. Therefore, the projection fit error is relatively high under these
circumstances.

To conclude, in our system we have three different prior constraints one of which can be
selected by the user before starting to modelling. The first prior is the constant depth
prior which leads to oblique generalized cylinders. The second prior is the planar axis
prior which requires drawing the projection of two circles at both ends of the generalized
cylinders. The normals of the reconstructed 3D circles are then used to compute the axis
plane which is not possible when the two circle normals are parallel or collinear. And the
third prior is used to model straight generalized cylinders for which all the circle centres
lie on a 3D line segment. This prior suffers from the inaccurate major axis estimations
under the circumstances described in the previous paragraph.

7.3 Implementation Details

Our modelling system is programmed in C++ using the libraries: OpenSceneGraph9

(based on OpenGL) for 3D graphics, Orfeo Toolbox10 for image processing and WxWid-
gets11 for GUI development.

In OpenGL, a camera projection matrix performs two things cascaded to each other:
projects the 3D points (in the camera coordinate frame) onto the near clipping plane
(i) and then computes the clipping coordinates for the projected points (ii). The first
part is related to the camera model and the second part is related to the elimination
of the projected points that were originally outside the viewing volume (frustum). One
can decompose the camera projection matrix into two, change the camera model and
recompose the camera projection matrix again. As a result, a camera model other than
the default pinhole model can be implemented within OpenGL. However, for other camera
models all the derivations given in Section 7.2.4 have to be re-done.

In OpenGL, the viewing volume of a camera is defined by the six clipping planes: left,
right, bottom, top, near and far. If the viewing volume is symmetric (in x and y axes along
the line of sight) then it can be defined by four parameters: vertical field of view, aspect
ratio, near and far. We defined our camera model with a symmetric viewing volume. The
aspect ratio is computed from the input image size which is fit to the viewport on the
screen (aspect ratio = viewport width/viewport height, therefore the image is displayed
without distortion). The vertical field of view is set to a typical value of 45 degrees for a
standard application and the near and far values are selected as 1.0 and 100.0 respectively.

In OpenGL, a 3D point in the camera coordinate frame passes through a series of transfor-
mations until it is mapped to a 2D point on the screen. First, it is multiplied by the camera
projection matrix which transforms the point to the clipping space (first into projection

9http://www.openscenegraph.org/
10https://www.orfeo-toolbox.org/
11https://www.wxwidgets.org/
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space and then into clipping space) in which the clipping (eliminating the non-visible
points) and perspective division (converting homogeneous to Cartesian representation) is
performed. After perspective division, normalized device coordinates are obtained which
are then converted to the window or screen coordinates by view-port transformation. The
equations derived in Section 7.2.4 start from the projected space but in a real system, the
user clicked points are in the window coordinates and they have to be transformed to the
projection space.

7.4 Conclusion

In this chapter, we presented a system for modelling generalized cylinders from a single
input image. The problem of geometric reconstruction from a single image is ill-posed
since the depth information is lost during the imaging process (perspective projection).
However, with the help of some prior constraints approximate solutions (plausible models)
can be obtained.

As a contribution, (i) analytical computation of 3D circles from their perspective and
orthographic projections are explained in detail including the special and degenerate cases;
(ii) a closed form solution to the centre of a 3D circle is found when its normal is known
and its perspective projection is partially known (only the major axis); (iii) this closed
form solution is used to reconstruct (estimate) the geometry of the generalized cylinders
from single images together with some user selected prior constraints related to the axis
of the generalized cylinders.

Chen et al. [2013] developed a more complete system for modelling part-based objects
which depends on an optimization problem for finding the positions of the separately
modelled parts as well as for compensating the ratio preserving projection (in order to
minimize the perspective projection fit error) which is used to model individual parts.
Our system does not support the modelling of objects that are composed of several parts.
On the other hand, we used perspective projection in our computations and the resultant
models are circular and homogeneous unlike the their system which may warp the 3D
circles into 3D ellipses for the minimization of the perspective projection fit error.

The presented system is in a preliminary state and there is plenty of room for further
improvement most of which have already been discussed. Here are some future works: (i)
texturing from the input images, (ii) modelling primitives other than generalized cylinders,
(iii) modelling objects that are composed of multiple primitive types, (iv) integrating
better edge detection methods to improve major axis fitting, (v) integrating a continuous
sweep for the axis approximation (i.e. sampling projection of the axis with a greater
number of points), (vi) searching for other prior constraints especially for fixing the radii
of the reconstructed circles, (vii) integrating the other views of the modelled objects into
the modelling procedure so that the reconstructed models can be truly scaled and geo-
referenced as well as the quality of the reconstructed models can be improved.
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Chapter 8

Conclusion

The work that has been done in the main part of this thesis can be considered as an
effort to design new ways of representing/storing geo-data such that it enables easy GIS
application development. As the time passes, more and more amount of data is being
produced with the spread of advancing technology and emerging new sensors. Parallel
to the data, there will be more applications flourishing which will bring the necessity
of better ways of data management and organization (dealing with big data). The GIS
application development pipeline presented in this thesis is composed of two main steps:
(i) object-based hierarchical modelling of the interested region in 2D (ii) developing the
application specific algorithms/pipelines and applying them on the generated 2D models
in the first step. These 2D models are generic in the sense that they can be used by
different algorithms for different applications. The next paragraph identifies a potential
usage of such a generic model.

Traditionally, geo-data related to different thematic concepts are stored separately without
any coherence in between. An example to such data can be the cadastral maps and the
road network graphs. Therefore, once the physical environments change, all of the related
data have to be updated independently. 2D models capturing the environments in many
aspects similar to ours can be utilized to merge all kinds of different purposed databases
at the very basic level. Then, when a modification is done on this model, all other upper
layers of data can be computed from the underlying 2D model. That is, each of these
upper layer data can be considered as the output of a separate application processing
the base 2D model. The pedestrian network graphs computed in this thesis can also be
considered as an example to such an application.

As the amount of semantic data stored in the base models increase there will be new
application ideas that can emerge by the analysis or combination of different aspects of
the data. Especially, the spatial statistical data collected in time might be very useful
to identify patterns and relationships between the geospatial objects and the entities
interacting with them. Integrating multi-diverse data and making decisions based on
these might be one of the key components of the future intelligent agents. In this regard,
the following paragraphs are presenting some ideas (inspired by the paper Goodchild and
Longley [1999]) related to feature of GIS which will need generic, efficient and effective
ways of handling (i.e. organization, management and usage) data.

Real time locating systems using the satellite positioning systems (e.g. GPS, GLONASS,
Galileo) and ground based systems (e.g. mobile cellular networks, indoor positioning
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systems based on RFID or Wifi) are being used all around us. Besides, the number
of sensors receiving signals from such systems is getting bigger and bigger as more and
more people are possessing the portable/wearable smart devices. In addition, location
based services have already become popular for navigation or for entertainment in social
networks. In the near feature, the emergence of more smart applications based on locations
of people, vehicles, pets, etc. might be on the horizon. Examples of such applications can
be: collecting data on the movement of people and designing better public spaces based on
the calculated statistics, reaching quickly to the people that are in emergency conditions,
finding lost pets, etc. Although such applications are welcome for many people, some
may have privacy concerns which needs to be carefully assigned to application designs
and standards to comply with the ethical issues.

OpenStreetMap1 is a very successful example of a crowd sourcing project. People from all
around the world are collaborating with each other for generating a worldwide map. The
advantage of such a map is that anyone can use his/her local knowledge to contribute.
In the near future, there will be more crowd source applications. For instance, point
clouds generated by portable mobile laser scanners can be registered/merged to generate
a worldwide 3D point cloud and automatic/semi-automatic 3D modelling can be done
on this data. Researches might need to work on better and easier platforms (e.g. new
types of user interfaces, standards and protocols) for encouraging people to collaborate
on such crowd source projects. Additionally, new algorithms and application pipelines
will be needed in order to make the best out of the collectively collected data.

Although there exist 3D models being used in GISs, many of the current systems are still
based on 1D and 2D. In the future GISs, higher dimensions (3D, 4D → 3D + time, etc.)
will be dominating and there will be more cross-disciplinary applications involving many
fields of science and technology such as computer graphics, computer vision and remote
sensing. A virtual reality GIS can be a good candidate for such an application. As a
result of evolving branches of science, the growing space between these branches will be
filled with more and more multi-disciplinary research. The last chapter of the thesis can
be considered as a research carried out in this direction.

1https://www.openstreetmap.org
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Appendix A

Geometric Data Structures

The advantages and disadvantages of some of the geometric data structures are discussed
in Section 2.2. In this appendix, simple definitions of some geometric data structures are
given in pseudo C++ code without actual implementations. This appendix is comple-
mentary to the section 2.2 for the interested reader.

A.1 Polygon Soup

// v e r t e x d e f i n i t i o n
struct Vertex {

double x , y ;
} ;

// face d e f i n i t i o n
struct Face {

std : : vector<Vertex> v e r t i c e s ;
FaceDataObject data ;

} ;

// conta iner f o r f a c e s
std : : vector<Face> f a c e s ;

Listing A.1: An example definition of the polygon soup (spaghetti) data structure

A.2 Shared Vertex

// v e r t e x d e f i n i t i o n
struct Vertex {

double x , y ;
VertexDataObject data ;

} ;
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// face d e f i n i t i o n
struct Face {

std : : vector<VertexRef> v e r t i c e s ;
FaceDataObject data ;

} ;

// conta iner f o r v e r t i c e s and f a c e s
std : : vector<Vertex> v e r t i c e s ;
s td : : vector<Face> f a c e s ;

Listing A.2: An example definition of the shared vertex data structure

A.3 Winged-Edge

// edge d e f i n i t i o n
struct Edge {

VertexRef ver tex_star t ;
VertexRef vertex_end ;
FaceRef l e f t_ f a c e ;
FaceRef r i ght_face ;
EdgeRef l e f t_ su c c e s s o r ;
EdgeRef l e f t_p r ed e c e s s o r ;
EdgeRef r i gh t_succe s so r ;
EdgeRef r i ght_predece s so r ;
EdgeDataObject data ;

} ;

// v e r t e x d e f i n i t i o n
struct Vertex {

double x , y ;
EdgeRef edge ;
VertexDataObject data ;

} ;

// face d e f i n i t i o n
struct Face {

EdgeRef edge ;
FaceDataObject data ;

} ;

// con ta ine r s
std : : vector<Vertex> v e r t i c e s ;
s td : : vector<Edge> edges ;
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std : : vector<Face> f a c e s ;

Listing A.3: An example definition of the Winged-edge data structure

A.4 Half-Edge

// ha l f−edge d e f i n i t i o n
struct Hal fedge {

Hal fedgeRef next_hal fedge ;
Hal fedgeRef oppos i t e_ha l f edge ;
FaceRef f a c e ;
VertexRef to_vertex ;

} ;

// v e r t e x d e f i n i t i o n
struct Vertex {

double x , y ;
Hal fedgeRef outgoing_hal fedge ;
FaceDataObject data ;

} ;

// face d e f i n i t i o n
struct Face {

Hal fedgeRef ha l f edge ;
FaceDataObject data ;

} ;

// con ta ine r s
std : : vector<Vertex> v e r t i c e s ;
s td : : vector<Halfedge> ha l f edg e s ;
s td : : vector<Face> f a c e s ;

Listing A.4: An example definition of the Half-edge data structure
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Appendix B

Delaunay Triangulation Extended
Notes

This appendix is composed of two parts. In the first part, a proof for the legal and illegal
edges of a Delaunay triangulation is given. The proof is quite simple but it is omitted
in the modern text books which motivated the author to put it into the appendix. The
second part is devoted to the explanation of the merge step for the divide and conquer
Delaunay triangulation algorithm. Each step of the merge algorithm is displayed with an
illustrative figure, which eases to understand the algorithm [Lee and Schachter, 1980].

B.1 Delaunay Triangulation Legal and Illegal edges

Please refer to Section 4.1.2 for the definition of legal and illegal edges within a Delaunay
triangulation. In this section of the appendix, a proof for the definition of legal and illegal
edges is given using the very basic geometry known more than two thousands years.

Euclid Elements - Book I - Proposition-32: In any triangle, if one of the sides is produced,
then the exterior angle equals the sum of the two interior and opposite angles, and the
sum of the three interior angles of the triangle equals two right angles (Figure B.1).

Euclid Elements - Book III - Proposition-20: In a circle the angle at the center is double
the angle at the circumference when the angles have the same circumference as base
(Figure B.1).

Euclid Elements - Book III - Proposition-21: In a circle the angles in the same segment
equal one another (Figure B.1).

Proposition-B1: Let A,B,C be three non-collinear points in Euclidean plane (R2). Let
also D,E ∈ R2 be two other distinct points such that D is on the bounded side and E is
on the unbounded side of the circumcircle of 4ABC. Then the angles formed by these
points has the order given in Equation 1 (Figure B.2).

∠(BDC) > ∠(BAC) > ∠(BEC) (1)

Proposition-B1 can easily be proved using Euclid’s elements, Book-I Proposition-32 and
Book-III Proposition-20 and Proposition-21. The Figures B.1 and B.2 are sufficiently
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Figure B.1: Euclid’s Elements: Book-I Proposition-32 (left) and Book-III Proposition-20 and
Proposition-21 (right)
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Figure B.2: Proposition-B1: θ > α > β

clear that no more explanation is needed.

Proposition-B2: Let AC be an internal edge of a triangulation between the triangles
4ABC and 4ACD. Then, AC is a legal edge if D is outside the circumcircle of 4ABC
and an illegal edge if D is inside the circumcircle.

Proof: Let D be is inside the circumcircle of 4ABC. We’ll prove that the edge AC is
illegal. Figure B.3 displays the angles constructed by the two diagonals of the quadrangle
♦ABCD.

Let VAC = {θ1, θ2, θ3, θ4, α1+α2, α3+α4} and VBD = {α1, α2, α3, α4, θ1+θ4, θ2+θ3} be two
sets representing the angles formed by the diagonals AC and BD respectively. Observe
in Figure B.3 that αi > θi for i ∈ {1, 2, 3, 4} by Proposition-B1. That is, for any element
of the set VBD, there exists a smaller element in VAC providing the edge AC is illegal.

The other part of the algorithm, i.e. legality of edge BD can be proven similarly way.

B.2 Delaunay Triangulation Merge Algorithm

Lee and Schachter [1980] developed the first divide and conquer algorithm for generating
Delaunay triangulations. The backbone of their algorithm is the merging of two separate
Delaunay triangulations. Let SL and SR be two point sets which are separated by a
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Figure B.3: Angles constructed by two diagonals

vertical line l where SL lies on the left and SR lies on the right of l. In addition, let the
corresponding Delaunay triangulations be DT (SL) and DT (SR) (Figure B.4). Finally, let
S = SL ∪ SR be the joint point set and DT (S) denotes its Delaunay triangulation.

DT (SL) DT (SR)l

Figure B.4: Delaunay triangulation of two point sets: DT (SL) (on the left) and DT (SR) (on
the right)

Let’s call the edges of DT (SL) and DT (SR) as LL-edges and RR-edges, respectively. At
the end of the merging process DT (S) will be composed of LL-edges and RR − edges
besides the newly generated LR-edges. LR-edges connect two points pL, pR where pL ∈ SL
and pR ∈ SR. During the merging process, some of the LL-edges and RR-edges might
become illegal. Those become illegal are deleted from DT (S). Please refer to Section 4.1
in order to recall the definition of legal and illegal edges in a Delaunay triangulation.

The algorithm starts by finding the Lower Common Tangent (LCT) between DT (SL)
and DT (SR). This sub-problem is well known from the merging of two convex hulls
[Preparata and Hong, 1977]. LCT is the first LR-edge that is inserted into DT (S). After
the insertion of the first LR-edge, we search for the next LR-edges to be inserted into
DT (S). Each consecutive LR-edge will be located above the previous one. Moreover, a
pair of consecutive LR-edges share an end-point either at the left or right side. Starting
from LCT, next LR-edges are found iteratively until the last LR-edge is reached. The
last LR-edge will be the Upper Common Tangent (UCT) of DT (SL) and DT (SR).

Let’s call the current or recently added LR-edge as base LR-edge and let’s denote the
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end-points of a base LR-edge with L and R such that L ∈ SL and R ∈ SR. Either L or
R will be used as one of the end-point of the next LR-edge. For instance, if L is used,
then the other end-point of the next LR-edge will be selected from the right side and vice
versa.

For the end-point selection let’s define two sets one for the left and one for the right
side, containing the candidate points. Let’s denote the candidate point sets as CSL =
{CL1, CL2, ..., CLn} and CSR = {CR1, CR2, ..., CRm}.
Any point CLi ∈ CSL must comply to the following criteria.

1. CLi must be connected to L by an LL-edge.

2. The point triple (R,L,CLi) must make a right turn.

3. The angle formed by (R,L,CLi) must be smaller than the angle (R,L,CL(i+1)).

Similarly, any point CRi ∈ CSR must comply to the following criteria.

1. CRi must be connected to R by an RR-edge.

2. The point triple (L,R,CRi) must make a left turn.

3. The angle formed by (L,R,CRi) must be smaller than the angle (L,R,CR(i+1)).

Observe Figure B.5 for the constructed candidate point sets.

L

cL1cL2

R

cR1

cR2

cR3

E

Figure B.5: The first edge added to DT (S) is the lower common tangent of DT (SL) and
DT (SR) labelled as E. E is the recently added LR-edge, i.e, it is the base LR-edge. Its end-
points are marked with L and R. The points satisfying the candidate point criteria are also
labelled: CSL = {CL1, CL2} and CSR = {CR1, CR2, CR3}.

After constructing the candidate point sets we inspect each candidate point one by one
starting from the beginning. The first candidate point satisfying the one final criterion
will be the nominated for the final candidate point representing its set (CSL or CSR). The
final criterion is: the circumcircle defined by L, R and the current candidate point must
not contain the next potential candidate in its interior. This criterion is also called as
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L
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Figure B.6: CL = CL1 passes the circumcircle test and becomes the nominee of CSL for the
final candidate.

circumcircle test. Observe the Figure B.6, the first candidate point passes the circumcircle
test and it’s selected as a nominee (CL) for the final candidate from the left side.

On the right side, the first candidate point fails the circumcircle test. When a candidate
point fails the test, it makes the edge connecting the candidate point to end-point of the
base LR-edge on the same side becomes illegal and it has to be deleted (Figure B.7).

L

cL

R

cR1

cR2

cR3

E

Figure B.7: CR1 fails the circumcircle test and the corresponding RR-edge is deleted from
DT (S). Observe that the next potential candidate CR2 is in the interior of the circumcircle.

After the failure of the first candidate point we move onto the second candidate point.
This time, the circumcircle test is passed and the nominee (CR) for the final candidate
point from the right side is selected as CR2 (Figure B.8).

At this point, we have two nominees for the final candidate point one from left: CL ∈ SL
and one from right: CR ∈ SR. We need to select one of them and the test for this
selection is one more time, the circumcircle test. If CR is not contained in the interior
of the circle defined by (L,R,CL), then CL defines the next LR-edge and vice-versa. By
the guaranteed existence of the Delaunay triangulation, at least one of the candidates will
satisfy this and by the uniqueness of the Delaunay triangulation, only one candidate will
satisfy this except in the case when the four points are co-circular (both candidates pass
the circumcircle test and one of them can be chosen). For our example, CL is selected as
the end-point of the next LR-edge. Hence, automatically R becomes the other end of the
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L R
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cL

cR = cR2

cR3

Figure B.8: CR = CR2 passes the circumcircle test and becomes the nominee of CSR for the
final candidate.

next LR-edge (Figure B.9 and Figure B.10).

L R

E

cL

cR

Figure B.9: Circumcirle test for the selection of the end point of the next LR-edge. The interior
of the (L,R,CL) circumcircle does not contain CR whereas the interior of (L,R,CR) circumcirle
contains CL. Hence CL is selected as the end-point of the next LR-edge.

L

R

E

cL1

cL2
cR1

cR2

Figure B.10: The next LR-edge has been added to DT (S), which becomes the base LR-edge.
As a result a new triangle is constructed within DT (S). The new candidate point sets are then
generated as: CSL = {CL1, CL2} and CSR = {CR1, CR2}.

166



B.2. Delaunay Triangulation Merge Algorithm

While applying the process iteratively, we might not have a nominee for the final candidate
point from left or right side. This might happen if the corresponding candidate point set
is empty or none of the points in the candidate point set passes the circumcircle test. In
this case, the nominee from the other side is automatically selected as the final candidate
point. Finally, we end the process when we do not have any nominees both from left and
right sides. In fact, such a case occurs only after we reached the UCT of DT (SL) and
DT (SR).

For the example point set that we used to discuss the Delaunay triangulation merge
algorithm, S = SL ∪ SR, Figure B.11 displays the final output DT (S) and Figure B.12
displays the circumcircles of the merging triangles.

Figure B.11: Merged Delaunay triangulation DT (S): Red and blue triangles illustrate the tri-
angles within DT (S) which are preserved from DT (SL) and DT (SR) respectively. Furthermore,
the green triangles are generated in order to merge DT (SL) and DT (SR)
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Figure B.12: Circumcircles of the merging triangles
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2D Arrangements for
Public Space Mapping and Transportation

This thesis addresses easy and effective development of mapping and transportation appli-
cations which especially focuses on the generation of pedestrian networks for applications
like navigation, itinerary calculation, accessibility analysis and urban planning. In order
to achieve this goal, we proposed a two layered data model which encodes the public
space into a hierarchy of semantic geospatial objects. At the lower level, the 2D geometry
of the geospatial objects are captured using a planar partition which is represented as
a topological 2D arrangement. This representation of a planar partition allows efficient
and effective geometry processing and easy maintenance and validation throughout the
editions when the geometry or topology of an object is modified. At the upper layer,
the semantic and thematic aspects of geospatial objects are modelled and managed. The
hierarchy between these objects is maintained using a directed acyclic graph (DAG) in
which the leaf nodes correspond to the geometric primitives of the 2D arrangement and
the higher level nodes represent the aggregated semantic geospatial objects at different
levels. We integrated the proposed data model into our GIS framework called StreetMaker
together with a set of generic algorithms and basic GIS capabilities. This framework is
then rich enough to generate pedestrian network graphs automatically. In fact, within
an accessibility analysis project, the full proposed pipeline was successfully used on two
sites to produce pedestrian network graphs from various types of input data: existing GIS
vector maps, semi-automatically created vector data and vector objects extracted from
Mobile Mapping lidar point clouds.

While modelling 2D ground surfaces may be sufficient for 2D GIS applications, 3D GIS
applications require 3D models of the environment. 3D modelling is a very broad topic
but as a first step to such 3D models, we focused on the semi-automatic modelling of
geospatial objects (such as poles, lampposts, tree trunks, etc.) which can be modelled or
approximated by generalized cylinders from single images. The developed methods and
techniques are presented and discussed.

Keywords : 2D Arrangements, Alpha shapes, Centreline generation, Computational
geometry, Delaunay triangulations, Directed Acyclic Graphs (DAG), Geographic Informa-
tion Systems (GIS), Medial axis, Hierarchical GIS modelling, Pedestrian network graphs,
Planar partition, Robust exact geometric computation, Straight skeleton, StreetMaker, 3D
generalized cylinder modelling
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