]. A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor ElectrodeHeterogeneous Photocatalysis: Fundamentals And Applications To The Removal Of Various Types Of Aqueous Pollutants, Nature Catalysis Today, vol.238, issue.37, pp.53-115, 1972.

M. Li, W. Hebenstreit, U. Diebold, A. M. Tyryshkin, M. K. Bowman et al., (110) Single Crystals, The Journal of Physical Chemistry B, vol.104, issue.20, pp.4944-4950, 2000.
DOI : 10.1021/jp9943272

D. S. Bhatkhande, V. G. Pangarkar, and A. A. Beenackers, Photocatalytic degradation for environmental applications - a review, Journal of Chemical Technology & Biotechnology, vol.109, issue.1, pp.77-102, 2001.
DOI : 10.1002/jctb.532

]. A. Mills, R. Davies, and D. Worsley, Water purification by semiconductor photocatalysis, Chemical Society Reviews, vol.22, issue.6, pp.417-425, 1993.
DOI : 10.1039/cs9932200417

]. A. Mills and S. L. Hunte, An overview of semiconductor photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, vol.108, issue.1, pp.1-35, 1997.
DOI : 10.1016/S1010-6030(97)00118-4

]. B. Ohtani, O. O. Prieto-mahaney, D. Li, and R. Abe, What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test, Journal of Photochemistry and Photobiology A: Chemistry, vol.216, issue.2-3, pp.216-179, 2010.
DOI : 10.1016/j.jphotochem.2010.07.024

URL : http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/44837/1/JPPA216-2-3_179-182.pdf

]. S. Fukuzawa, K. M. Sancier, and T. Kwan, Photoadsorption And Photodesorption Of Oxygen On Titanium Dioxide, Journal of Catalysis, vol.364, issue.11, p.11, 1968.

C. D. Jaeger and A. J. Bard, Spin Trapping and Electron Spin Resonance Detection of Radical Intermediates in the Photodecomposition of Water at TiO 2 Particulate Systems, The Journal of Physical Chemistry, pp.83-3146, 1979.

]. R. Wang, N. Sakai, A. Fujishima, T. Watanabe, and K. Hashimoto, Single-Crystal Surfaces, Studies of Surface Wettability Conversion on TiO 2 Single-Crystal Surfaces, pp.2188-2194, 1999.
DOI : 10.1021/jp983386x

]. A. Fujishima, T. N. Rao, and D. A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol.1, issue.1, pp.1-21, 2000.
DOI : 10.1016/S1389-5567(00)00002-2

]. C. Guillard, B. Kartheuser, and S. Lacombe, La photocatalyse: dépollution de l'eau ou de l'air et matériaux autonettoyants, 2011.

]. A. Fujishima, X. T. Zhang, and D. A. Tryk, TiO2 photocatalysis and related surface phenomena, Surface Science Reports, vol.63, issue.12, pp.515-582, 2008.
DOI : 10.1016/j.surfrep.2008.10.001

]. Y. Paz, Application of TiO 2 photocatalysis for air treatment: Patents' overview, Applied Catalysis B: Environmental, pp.99-448, 2010.

M. L. Sauer, M. A. Hale, and D. F. Ollis, Heterogeneous Photocatalytic Oxidation Of Dilute Toluene-Chlorocarbon Mixtures In Air, Journal of Photochemistry and Photobiology A - Chemistry, pp.88-169, 1995.

J. Peral and D. F. Ollis, Heterogeneous Photocatalytic Oxidation Of Gas-Phase Organics For Air Purification -Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, And Meta-Xylene Oxidation, Journal of Catalysis, pp.136-554, 1992.

D. T. Tompkins, B. J. Lawnicki, W. A. Zeltner, and M. A. Anderson, Evaluation Of Photocatalysis For Gas-Phase Air Cleaning -Part 1: Process, Technical, And Sizing Considerations, Ashrae Transactions, pp.111-60, 2005.

M. Klavarioti, D. Mantzavinos, and D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environment International, vol.35, issue.2, pp.402-417, 2009.
DOI : 10.1016/j.envint.2008.07.009

]. X. Ding, S. Zhou, L. Wu, G. Gu, and J. Yang, Formation of supra-amphiphilic self-cleaning surface through sun-illumination of titania-based nanocomposite coatings, Surface and Coatings Technology, vol.205, issue.7, pp.205-2554, 2010.
DOI : 10.1016/j.surfcoat.2010.10.002

C. Mccullagh, J. M. Robertson, D. W. Bahnemann, and P. K. Robertson, The Application Of TiO 2 Photocatalysis For Disinfection Of Water Contaminated With Pathogenic Micro- Organisms: A Review, Research on Chemical Intermediates, pp.33-359, 2007.

]. S. Malato, P. Fernandez-ibanez, M. I. Maldonado, J. Blanco, and W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends, Catalysis Today, vol.147, issue.1, pp.147-148, 2009.
DOI : 10.1016/j.cattod.2009.06.018

S. Pigeot-remy, F. Simonet, E. Errazuriz-cerda, J. C. Lazzaroni, D. Atlan et al., Photocatalysis and disinfection of water: Identification of potential bacterial targets, Applied Catalysis B: Environmental, vol.104, issue.3-4, pp.390-398, 2011.
DOI : 10.1016/j.apcatb.2011.03.001

URL : https://hal.archives-ouvertes.fr/hal-00602777

C. Guillard, T. H. Bui, C. Felix, V. Moules, B. Lina et al., Microbiological disinfection of water and air by photocatalysis, Comptes Rendus Chimie, vol.11, issue.1-2, pp.11-107, 2008.
DOI : 10.1016/j.crci.2007.06.007

URL : https://hal.archives-ouvertes.fr/hal-00474598

H. Sakai, R. Baba, K. Hashimoto, Y. Kubota, and A. Fujishima, Selective Killing Of A Single Cancerous T24 Cell With TiO 2 Semiconducting Microelectrode Under Irradiation, Chemistry Letters, vol.3, pp.185-186, 1995.

D. M. Blake, P. C. Maness, Z. Huang, E. J. Wolfrum, J. Huang et al., Application of the Photocatalytic Chemistry of Titanium Dioxide to Disinfection and the Killing of Cancer Cells, Separation and Purification Methods, pp.28-29, 1999.
DOI : 10.1093/nar/24.8.1389

J. M. Herrmann, From catalysis by metals to bifunctional photocatalysis, Topics in Catalysis, vol.200, issue.1-2, pp.3-10, 2006.
DOI : 10.1007/s11244-006-0032-7

J. M. Herrmann, C. Duchamp, M. Karkmaz, B. T. Hoai, H. Lachheb et al., Environmental green chemistry as defined by photocatalysis, Journal of Hazardous Materials, vol.146, issue.3, pp.146-624, 2007.
DOI : 10.1016/j.jhazmat.2007.04.095

URL : https://hal.archives-ouvertes.fr/hal-00179290

]. O. Carp, C. L. Huisman, and A. Reller, Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry, vol.32, issue.1-2, pp.33-177, 2004.
DOI : 10.1016/j.progsolidstchem.2004.08.001

]. F. Mahdavi, T. C. Bruton, and Y. Z. Li, Photoinduced reduction of nitro compounds on semiconductor particles, The Journal of Organic Chemistry, vol.58, issue.3, pp.58-744, 1993.
DOI : 10.1021/jo00055a033

]. K. Shimizu, H. Imai, H. Hirashima, and K. Tsukuma, Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions, Thin Solid Films, pp.351-220, 1999.
DOI : 10.1016/B978-044450247-6.50067-9

F. Pedraza and A. Vazquez, Obtention of TiO 2 rutile at room temperature through direct oxidation of TiCl 3, Journal of Physics and Chemistry of Solids, pp.60-445, 1999.

S. K. Poznyak, A. I. Kokorin, and A. I. Kulak, Effect of electron and hole acceptors on the photoelectrochemical behaviour of nanocrystalline microporous TiO 2 electrodes, Journal of Electroanalytical Chemistry, pp.442-99, 1998.

]. S. Yin, Y. Fujishiro, J. H. Wu, M. Aki, and T. Sato, Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions, Journal of Materials Processing Technology, vol.137, issue.1-3, pp.137-182, 2003.
DOI : 10.1016/S0924-0136(02)01065-8

C. S. Kim, B. K. Moon, J. H. Park, B. C. Choi, and H. J. Seo, Solvotherinal synthesis of nanocrystalline TiO 2 in toluene with surfactant, Journal of Crystal Growth, pp.257-309, 2003.

J. P. Jolivet, De le Solution à l'Oxyde, Ouvrage publié par InterEditions CNRS, 1994.

H. Zhang and H. Zhu, Preparation of Fe-doped TiO2 nanoparticles immobilized on polyamide fabric, Applied Surface Science, vol.258, issue.24, pp.10034-10041, 2012.
DOI : 10.1016/j.apsusc.2012.06.069

E. Zhiyonga, J. Mielczarski, D. Mielczarski, P. Laub, U. Buffat et al., Photocatalytic applications, Preparation, stabilization and characterization of TiO 2 on thin polyethylene films (LDPE), pp.41-862, 2007.

]. B. Gallas, A. Brunet-bruneau, S. Fisson, G. Vuye, and J. Rivory, SiO 2 -TiO 2 interfaces studied by ellipsometry and x-ray photoemission spectroscopy, Journal of Applied Physics, pp.92-1922, 2002.
DOI : 10.1063/1.1494843

URL : https://hal.archives-ouvertes.fr/hal-00002702

]. L. Peruchon, Thèse: "Caracterisations Des Propriétés Photocatalytiques Des Verres Autonettoyants ? Corrélation Entre Paramètres Physico-Chimiques Et Activité Photocatalytique, 2007.

C. Guillard, D. Debayle, A. Gagnaire, H. Jaffrezic, and J. Herrmann, Physical properties and photocatalytic efficiencies of TiO2 films prepared by PECVD and sol?gel methods, Materials Research Bulletin, pp.39-1445, 2004.

]. A. Eshaghi, R. Mozaffarinia, M. Pakshir, and A. Eshaghi, Photocatalytic properties of TiO 2 sol? gel modified nanocomposite films, Ceramics International, pp.37-327, 2011.
DOI : 10.1016/j.ceramint.2010.09.008

]. N. Arconada, Y. Castro, and A. Durán, Photocatalytic properties in aqueous solution of porous TiO 2 -anatase films prepared by sol?gel process, Applied Catalysis A: General, pp.385-101, 2010.

]. A. Fernandez, G. Lassaletta, V. M. Jimknez, A. Justo, A. R. Gonzalez-elipe et al., Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification, Preparation And Characterization Of TiO 2 Photocatalysts Supported On Various Rigid Supports (Glass, Quartz And Stainless Steel). Comparative Studies Of Photocatalytic Activity In Water Purification, pp.49-63, 1995.
DOI : 10.1016/0926-3373(95)00026-7

T. Hisanaga and K. Tanaka, Photocatalytic Degradation Of Benzene On Zeolite-Incorporated TiO 2 Film, Journal of Hazardous Materials, pp.93-331, 2002.
DOI : 10.1016/s0304-3894(02)00050-x

]. A. Bozzi, T. Yuranova, and J. Kiwi, Self-cleaning of wool-polyamide and polyester textiles by TiO 2 -rutile modification under daylight irradiation at ambient temperature, Journal of Photochemistry and Photobiology A -Chemistry, pp.172-199, 2005.

]. E. Pakdel, W. A. Daoud, and X. G. Wang, Self-cleaning and superhydrophilic wool by TiO 2 /SiO 2 nanocomposite, Applied Surface Science, pp.275-397, 2013.
DOI : 10.1016/j.apsusc.2012.10.141

URL : http://dro.deakin.edu.au/eserv/DU:30051202/wang-selfcleaning-2013.pdf

]. Y. Iguchi, H. Ichiura, T. Kitaoka, and H. Tanaka, Preparation and characteristics of high performance paper containing titanium dioxide photocatalyst supported on inorganic fiber matrix, Chemosphere, vol.53, issue.10, pp.53-1193, 2003.
DOI : 10.1016/S0045-6535(03)00582-4

A. Fujishima and X. Zhang, Titanium dioxide photocatalysis: present situation and future approaches, Comptes Rendus Chimie, vol.9, issue.5-6, pp.750-760, 2006.
DOI : 10.1016/j.crci.2005.02.055

]. L. Cassar, Photocatalysis of Cementitious Materials: Clean Buildings and Clean Air, MRS Bulletin, vol.1, issue.05, pp.328-331, 2004.
DOI : 10.1016/1010-6030(96)04328-6

S. Masayuki and N. Yukimasa, Deodorant Fiber SheetWall paper with deodorizing function and preparation method thereof, Brevet JP2006014965 Brevet CN102251441, p.61, 2006.

I. Chapitre, S. Bibliographique, ]. S. Veran61, R. Li, H. Mayernik et al., Flexible fireproof member with photocatalytic coating, use thereof in an inner space, and method for making samePhotocatalytic substrate and process for producing the samePhotocatalyst-coated textile containing fullerenesMedium for photocatalytic filterAcoustic tileSilicon elastomer substrate coated with an antisoiling film containing a photocatalysis promoter and support comprising a substrate thus coatedSubstrate with photocatalytic coatingHeterogeneous Photocatalysis I. The Influence Of Oxidizing And Reducing Gases On The Electrical Conductivity Of Dark And Illuminated Zinc Oxide Surfaces, Brevet WO2009068833 Brevet US2008063803 Brevet JP2009119409 Brevet WO2010010231 Brevet US2003082367 Journal of Catalysis, vol.3, pp.156-170, 1964.

]. B. Tan, B. Gao, J. Guo, X. Guo, and M. Long, A comparison of TiO 2 coated self-cleaning cotton by the sols from peptizing and hydrothermal routes, Surface and Coatings Technology, pp.232-258, 2013.

M. Formenti, F. Juillet, P. Meriaude, S. J. Teichner, M. Formenti et al., Heterogeneous Photocatalysis For Partial Oxidation Of Paraffins Photooxidation Of Paraffins And Olefins In Presence Of Anatase At Ambient Temperature, Comptes Rendus Hebdomadaires Des Seances De L'Academie Des Sciences -Serie C, 1970.

]. S. Fukahori, Y. Iguchi, H. Ichiura, T. Kitaoka, H. Tanaka et al., Effect of void structure of photocatalyst paper on VOC decomposition, Chemosphere, vol.66, issue.11, pp.66-2136, 2007.
DOI : 10.1016/j.chemosphere.2006.09.022

]. E. Keidel, Die Beeinflussung der Lichtechtheit von Teerfarblacken durch Titanweiss [The Influence of Light Fastness of Colored Tar Coatings with Titanium White], pp.34-1242, 1929.

]. R. Kaegi, A. Ulrich, B. Sinnet, R. Vonbank, A. Wichser et al., Synthetic TiO 2 nanoparticle emission from exterior facades into the aquatic environment, Environmental Pollution, pp.156-233, 2008.
DOI : 10.1016/j.envpol.2008.08.004

W. C. Sungmin and . Cho, Solid-phase photocatalytic degradation of PVC?TiO 2 polymer composite, Journal of Photochemistry and Photobiology A: Chemistry, pp.143-221, 2001.

M. Nikaido, S. Furuya, T. Kakui, and H. Kamiya, Photocatalytic behavior of TiO 2 nanoparticles supported on porous aluminosilicate surface modified by cationic surfactant, Advanced Powder Technology, pp.20-598, 2009.

J. Kasanen, M. Suvanto, and T. T. Pakkanen, Improved Adhesion of TiO 2 -Based Multilayer Coating on HDPE and Characterization of Photocatalysis, Journal of Applied Polymer Science, pp.119-2235, 2011.

]. B. Sánchez, J. M. Coronado, R. Candal, R. Portela, I. Tejedor et al., Preparation of TiO 2 coatings on PET monoliths for the photocatalytic elimination of trichloroethylene in the gas phase, Applied Catalysis B: Environmental, pp.66-295, 2006.

. Herrmann, Solar Efficiency Of A New Deposited Titania Photocatalyst: Chlorophenol, Pesticide And Dye Removal Applications, Applied Catalysis B-Environmental, vol.46, pp.319-332, 2003.

A. Y. Shan, T. I. Ghazi, and S. A. Rashid, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review, Applied Catalysis A: General, vol.389, issue.1-2, pp.389-390, 2010.
DOI : 10.1016/j.apcata.2010.08.053

C. Anderson and A. J. Bard, Improved Photocatalytic Activity and Characterization of Mixed TiO 2, Journal of physical chemistry B, vol.2, issue.101, pp.2611-2616, 1997.

M. López-muñoz, R. V. Grieken, J. Aguado, and J. Marugán, Role of the support on the activity of silica-supported TiO2 photocatalysts: Structure of the TiO2/SBA-15 photocatalysts, Catalysis Today, vol.101, issue.3-4, pp.307-314, 2005.
DOI : 10.1016/j.cattod.2005.03.017

G. Goncalves, P. Marques, R. J. Pinto, T. Trindade, and C. P. Neto, Surface modification of cellulosic fibres for multi-purpose TiO 2 based nanocomposites, Composites Science and Technology, pp.69-1051, 2009.

M. I. Mejía, J. M. Marín, G. Restrepo, L. A. Rios, C. Pulgarín et al., Preparation, testing and performance of a TiO 2 /polyester photocatalyst for the degradation of gaseous methanol, Applied Catalysis B: Environmental, pp.94-166, 2010.

M. I. Mejia, J. M. Marin, G. Restrepo, C. Pulgarin, and J. Kiwi, Photocatalytic evaluation of TiO 2 /nylon systems prepared at different impregnation times, Catalysis Today, pp.161-176, 2011.

W. Doerffler and K. Hauffe, Heterogeneous photocatalysis II. The mechanism of the carbon monoxide oxidation at dark and illuminated zinc oxide surfaces, Journal of Catalysis, vol.3, issue.2, pp.171-178, 1964.
DOI : 10.1016/0021-9517(64)90124-1

]. T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. C. Zhao et al., Photooxidative Ndemethylation of methylene blue in aqueous TiO 2 dispersions under UV irradiation, Journal of Photochemistry and Photobiology a-Chemistry, vol.87, pp.140-163, 2001.

P. Evans, S. Mantke, A. Mills, A. Robinson, and D. W. Sheel, A comparative study of three techniques for determining photocatalytic activity, Journal of Photochemistry and Photobiology A: Chemistry, vol.188, issue.2-3, pp.188-387, 2007.
DOI : 10.1016/j.jphotochem.2006.12.040

M. E. Simonsen, Z. Li, and E. G. Søgaard, Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol?gel TiO 2 film, Applied Surface Science, pp.255-8054, 2009.

C. H. Su, B. Tseng, and C. , Sol???gel preparation and photocatalysis of titanium dioxide, Catalysis Today, vol.96, issue.3, pp.96-119, 2004.
DOI : 10.1016/j.cattod.2004.06.132

]. V. Roméas, P. Pichat, C. Guillard, T. Chopin, and C. Lehaut, Degradation of palmitic (hexadecanoic) acid deposited on TiO 2 -coated self-cleaning glass: kinetics of disappearance, intermediate products and degradation pathways, New Journal of Chemistry, pp.365-374, 1999.

D. H. Kim and M. A. Anderson, Solution factors affecting the photocatalytic and photoelectrocatalytic degradation of formic acid using supported TiO 2 thin films, Journal of Photochemistry and Photobiology a-Chemistry, pp.94-221, 1996.

P. Y. Zhang, F. Y. Liang, G. Yu, Q. Chen, and W. P. Zhu, A comparative study on decomposition of gaseous toluene by O 3 /UV, Journal of Photochemistry and Photobiology, vol.3, issue.2 2, pp.156-189, 2003.

F. T. Liu, P. F. Chen, S. J. Fang, Y. P. Wang, F. Gao et al., Study of adsorption-assisted photocatalytic oxidation of benzene with TiO 2/ SiO 2 nanocomposites, Applied Catalysis a-General, pp.451-120, 2013.

C. H. Ao, S. C. Lee, S. C. Zou, and C. L. Mak, Inhibition effect of SO 2 on NO x and VOCs during the photodegradation of synchronous indoor air pollutants at parts per billion (ppb) level by TiO 2, Applied Catalysis B-Environmental, pp.49-187, 2004.

]. V. Romeas, P. Pichat, C. Guillard, T. Chopin, and C. Lehaut, Testing the Efficacy and the Potential Effect on Indoor Air Quality of a Transparent Self-Cleaning TiO 2 -Coated Glass through the Degradation of a Fluoranthene Layer, Industrial & Engineering Chemistry Research, pp.38-3878, 1999.

W. Lee and . Choi, Interface:?? The Role of Migrating OH Radicals, The Journal of Physical Chemistry B, vol.106, issue.45, pp.11818-11822, 2002.
DOI : 10.1021/jp026617f

]. A. Mills, A. Lepre, N. Elliott, S. Bhopal, I. P. Parkin et al., Characterisation of the photocatalyst Pilkington Activ (TM): a reference film photocatalyst?, Journal of Photochemistry and Photobiology, pp.160-213, 2003.

K. Rajeshwar, C. R. Chenthamarakshan, S. Goeringer, and M. Djukic, Titania-based heterogeneous photocatalysis. Materials, mechanistic issues, and implications for environmental remediation, Pure and Applied Chemistry, vol.73, issue.12, pp.73-1849, 2001.
DOI : 10.1351/pac200173121849

V. I. Shapovalov, Nanopowders and films of titanium oxide for photocatalysis: A review, Glass Physics and Chemistry, vol.36, issue.2, pp.121-157, 2010.
DOI : 10.1134/S108765961002001X

T. N. Obee and R. T. Brown, TiO 2 Photocatalysis For Indoor Air Applications -Effects Of Humidity And Trace Contaminant Levels On The Oxidation Rates Of Formaldehyde, Toluene and 1,3-Butadiene, Environmental Science & Technology, pp.29-1223, 1995.

S. Li, W. Wang, Y. Chen, L. Zhang, J. Guo et al., Fabrication and characterization of TiO 2 /BaAl 2 O 4 : Eu 2+ , Dy 3+ and its photocatalytic performance towards oxidation of gaseous benzene, Catalysis Communications, pp.10-1048, 2009.

A. Mills, S. Hodgen, and S. K. Lee, Self-cleaning titania films: an overview of direct, lateral and remote photo-oxidation processes, Research on Chemical Intermediates, vol.31, issue.4-6, pp.31-295, 2005.
DOI : 10.1163/1568567053956644

N. P. Mellott, C. Durucan, C. G. Pantano, and M. Guglielmi, Commercial and laboratory prepared titanium dioxide thin films for self-cleaning glasses: Photocatalytic performance and chemical durability, Thin Solid Films, vol.502, issue.1-2, pp.502-112, 2006.
DOI : 10.1016/j.tsf.2005.07.255

G. Rothenberger, J. Moser, M. Gratzel, N. Serpone, and D. K. Sharma, Charge carrier trapping and recombination dynamics in small semiconductor particles, Journal of the American Chemical Society, vol.107, issue.26, pp.8054-8059, 1985.
DOI : 10.1021/ja00312a043

A. G. Rincon and C. Pulgarin, Photocatalytical inactivation of E. coli: effect of (continuous???intermittent) light intensity and of (suspended???fixed) TiO2 concentration, Applied Catalysis B: Environmental, vol.44, issue.3, pp.44-263, 2003.
DOI : 10.1016/S0926-3373(03)00076-6

T. E. Agustina, H. M. Ang, and V. K. Vareek, A review of synergistic effect of photocatalysis and ozonation on wastewater treatment, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol.6, issue.4, pp.264-273, 2005.
DOI : 10.1016/j.jphotochemrev.2005.12.003

S. Helali and T. , Application de la photocatalyse pour la dégradation des polluants chimiques et bactériologiques dans l'eau en utilisant des catalyseurs irradiés par des photons de lumière naturelle ou artificielle, 2012.

D. F. Ollis, E. Pelizzetti, and N. Serpone, Photocatalyzed destruction of water contaminants, Environmental Science & Technology, vol.25, issue.9, pp.25-1522, 1991.
DOI : 10.1021/es00021a001

J. P. Vicente, T. Gacoin, P. Barboux, J. P. Boilot, M. Rondet et al., thin films, International Journal of Photoenergy, vol.5, issue.2, pp.95-98, 2003.
DOI : 10.1155/S1110662X03000199

URL : https://hal.archives-ouvertes.fr/hal-01138530

R. W. Matthews, Photocatalytic oxidation and adsorption of methylene blue on thin films of near-ultraviolet-illuminated TiO 2, Journal of the Chemical Society, Faraday Transactions Physical Chemistry in Condensed Phases, vol.1, pp.85-1291, 1989.

A. Mills, C. Hill, and P. K. Robertson, Overview of the current ISO tests for photocatalytic materials, Journal of Photochemistry and Photobiology A: Chemistry, vol.237, pp.7-23, 2012.
DOI : 10.1016/j.jphotochem.2012.02.024

C. Brunon, X. Thèse, . Tof-sims, . Sims, . Eels et al., Application des caractérisations de surface par TEM à la compréhension des mécanismes de protection antimicrobienne de textiles modifiés par traitements de surface, 2010.

H. Tada and M. Tanaka, Dependence of TiO 2 Photocatalytic Activity upon its film thickness, Langmuir, pp.13-360, 1997.

J. T. Carneiro, T. J. Savenije, J. A. Moulijn, and G. Mul, How Phase Composition Influences Optoelectronic and Photocatalytic Properties of TiO 2, The Journal of Physical Chemistry C, pp.115-2211, 2011.
DOI : 10.1021/jp110190a

Q. Chen and N. L. Yakovlev, Adsorption and interaction of organosilanes on TiO2 nanoparticles, Applied Surface Science, vol.257, issue.5, pp.1395-1400, 2010.
DOI : 10.1016/j.apsusc.2010.08.036

A. Ennaoui, B. R. Sankapal, V. Skryshevsky, and M. C. Lux-steiner, TiO 2 and TiO 2 ?SiO 2 thin films and powders by one-step soft-solution method: Synthesis and characterizations, Solar Energy Materials and Solar Cells, pp.90-1533, 2006.

K. S. Guan, H. Xu, and B. J. Lu, Hydrophilic property of SiO 2 -TiO 2 overlayer films and TiO 2 /SiO 2 mixing films, Transactions of Nonferrous Metals Society of China, pp.14-251, 2004.

H. Jensen, A. Soloviev, Z. Li, and E. G. Søgaard, XPS and FTIR investigation of the surface properties of different prepared titania nano-powders, Applied Surface Science, vol.246, issue.1-3, pp.246-239, 2005.
DOI : 10.1016/j.apsusc.2004.11.015

P. Swift, Adventitious carbon?the panacea for energy referencing?, Surface and Interface Analysis, vol.22, issue.2, p.47, 1982.
DOI : 10.1002/sia.740040204

Y. Leprince-wang, Study of the initial stages of TiO2 growth on Si wafers by XPS, Surface and Coatings Technology, vol.150, issue.2-3, pp.257-262, 2002.
DOI : 10.1016/S0257-8972(01)01541-9

URL : https://hal.archives-ouvertes.fr/hal-00693645

A. Majumdar, G. Das, N. Patel, P. Mishra, D. Ghose et al., Microstructural and chamical evolution of -CH 3 Incorporated (Low-k) SiCO(H) films prepared by dielectric barrier discharge Plasme, Journal of the Electrochemical Society, pp.155-177, 2008.
DOI : 10.1149/1.2801345

N. Koshizaki, H. Umehara, and T. Oyama, XPS characterization and optical properties of Si/SiO 2 , Si/Al 2 O 3 and Si/MgO co-sputtered film, Thin Solid Films, pp.325-130, 1998.
DOI : 10.1016/s0040-6090(98)00512-4

L. A. O-'hare, B. Parbhoo, and S. R. Leadley, Development of a methodology for XPS curvefitting of the Si 2p core level of siloxane materials, Surface and Interface Analysis, pp.36-1427, 2004.

M. R. Alexander, R. D. Short, F. R. Jones, W. Michaeli, and C. J. Blomfield, A study of HMDSO/O2 plasma deposits using a high-sensitivity and -energy resolution XPS instrument: curve fitting of the Si 2p core level, Applied Surface Science, vol.137, issue.1-4, pp.137-179, 1999.
DOI : 10.1016/S0169-4332(98)00479-6

J. Heo, H. J. Kim, J. Han, and J. Shon, The structures of low dielectric constant SiOC thin films prepared by direct and remote plasma enhanced chemical vapor deposition, Thin Solid Films, vol.515, issue.12, pp.515-5035, 2007.
DOI : 10.1016/j.tsf.2006.10.095

A. Fernandez, G. Lassaletta, V. M. Jimknez, A. Justo, A. R. Gonzalez-elipe et al., Spectroscopic characterization of quantum-Sized TiO 2 supported on silica : influence of size and TiO 2 -SiO 2 interface composition, Journal of Physical Chemistry, pp.99-1484, 1995.

S. Permpoon, G. Berthomé, B. Baroux, J. C. Joud, and M. Langlet, Natural superhydrophilicity of sol-gel derivated SiO 2 -TiO 2 composite films, JOURNAL OF MATERIALS SCIENCE, pp.41-7650, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00140852

E. Mccafferty and J. P. Wightman, An X-ray photoelectron spectroscopy sputter profile study of the native air-formed oxide film on titanium, Applied Surface Science, vol.143, issue.1-4, pp.143-92, 1999.
DOI : 10.1016/S0169-4332(98)00927-1

L. Ge, M. Xu, H. Fang, and M. Sun, Preparation of TiO 2 thin films from autoclaved sol containing needle-like anatase crystals, Applied Surface Science, vol.253, issue.2, pp.253-720, 2006.
DOI : 10.1016/j.apsusc.2005.12.162

M. Houmard and T. , Révêtement sol-gel TiO 2 -SiO 2 naturellement super-hydrophiles visant à développer des surfaces à nettoyabilité accrue, 2009.

M. Houmard, D. Riassetto, F. Roussel, A. Bourgeois, G. Berthomé et al., Enhanced persistence of natural super-hydrophilicity in TiO2???SiO2 composite thin films deposited via a sol???gel route, Surface Science, vol.602, issue.21, pp.602-3364, 2008.
DOI : 10.1016/j.susc.2008.09.016

URL : https://hal.archives-ouvertes.fr/hal-00345546

Y. Mizokawa, K. M. Geib, and C. W. Wilmsen, Characterization of ?????SiC surfaces and the Au/SiC interface, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.4, issue.3, p.1696, 1986.
DOI : 10.1116/1.573958

P. W. Wang, S. Bater, L. P. Zhang, M. Ascherl, and J. H. Craig, XPS investigation of electron beam effects on a trimethylsilane dosed Si(100) surface, Applied Surface Science, vol.90, issue.4, pp.90-413, 1995.
DOI : 10.1016/0169-4332(95)00181-6

G. Beamson and D. Briggs, Hight Resolution XPS of Organic Polymers: The Science ESCA300 Database, Ouvrage publié par, 1992.

H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda et al., Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques, Polymer, vol.41, issue.18, pp.41-6851, 2000.
DOI : 10.1016/S0032-3861(00)00039-2

S. Roualdes, R. Berjoan, and J. Durand, Si-29 NMR and Si2p XPS correlation in polysiloxane membranes prepared by plasma enhanced chemical vapor deposition, Separation and Purification Technology, pp.25-391, 2001.
DOI : 10.1016/s1383-5866(01)00067-3

P. Web, www.xpsfitting.com, 2008.

A. F. Carley, P. R. Chalker, J. C. Riviere, and M. W. Roberts, The identification and characterisation of mixed oxidation states at oxidised titanium surfaces by analysis of X-ray photoelectron spectra, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.83, issue.2, pp.83-351, 1987.
DOI : 10.1039/f19878300351

B. Siemensmeyer and J. Schultze, XPS and UPS studies of gas-phase oxidation, electrochemistry and corrosion behavior of Ti and Ti 5 Ta, Surface and Interface Analysis, pp.16-309, 1990.

T. Choudhury, S. O. Saied, J. L. Sullivan, and A. M. Abbot, Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment, Journal of Physics D: Applied Physics, vol.22, issue.8, pp.22-1185, 1989.
DOI : 10.1088/0022-3727/22/8/026

H. Gnaser, A. Orendorz, C. Ziegler, E. Rowlett, and W. Bock, TOF-SIMS study of photocatalytic decomposition reactions on nanocrystalline TiO 2 films, Applied Surface Science, pp.252-6996, 2006.

A. Orendorz, C. Ziegler, and H. Gnaser, Photocatalytic decomposition of methylene blue and 4-chlorophenol on nanocrystalline TiO 2 films under UV illumination: A ToF-SIMS study, Applied Surface Science, pp.255-1011, 2008.

M. Nakamura, M. Kobayashi, N. Kuzuya, T. Komatsu, and T. Mochizuka, Hydrophilic property of SiO 2 /TiO 2 double layer films, Thin Solid Films, pp.502-121, 2006.

K. Miyashita, S. Kuroda, T. Ubukata, T. Ozawa, and H. Kubota, Enhanced effect of vacuumdeposited SiO 2 overlayer on photo-induced hydrophilicity of TiO 2 film, JOURNAL OF MATERIALS SCIENCE, pp.36-3877, 2001.

M. Karches, M. Morstein, P. Von-rohr, R. L. Pozzo, J. L. Giombi et al., Plasma-CVD-coated Glass Beads as Photocatalyst for Water Decontamination, Chemie Ingenieur Technik, vol.73, issue.6, pp.72-267, 2002.
DOI : 10.1002/1522-2640(200106)73:6<700::AID-CITE7001111>3.0.CO;2-J

I. Substrats-textiles and .. , 74 II-A. 2 Substrats papiers et non-tissés Tyvek ®, p.74

D. Et and P. , 80 II-C. 1 Protocoles des tests d'activité photocatalytique en milieu aqueux, 80 II-C. 1

M. Spectroscopie-de, Etude des mécanismes de photovieillissement de revêtements organiques anti-corrosion pour application comme peintures marines, 2009.

P. Spectroir and T. Bussiere, Etude des consequences de l'evolution de la structure chimique sur la variation des proprietes physiques de polymeres soumis à un vieillissement photochimique, 2005.

]. J. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron spectroscopy (Physical electronics), Ouvrage publié par, 1992.

]. B. Ohtani, O. O. Prieto-mahaney, D. Li, and R. Abe, surface pour l'élaboration et l'application d'un revêtement composite à propriétés photocatalytiques sur des substrats organiques Références BibliographiquesWhat is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test, Chapitre III Apport des caractérisations de, pp.216-179, 2010.
DOI : 10.1016/j.jphotochem.2010.07.024

URL : http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/44837/1/JPPA216-2-3_179-182.pdf

]. D. Gregori and T. , Revêtement photocatalytique pour substrats organiques souples, 2014.

]. B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie et al., XPS and FTIR Surface Characterization of TiO 2 Particles Used in Polymer Encapsulation, Langmuir, pp.17-2664, 2001.

M. R. Alexander, R. D. Short, F. R. Jones, W. Michaeli, and C. J. Blomfield, Etude de la modification structurale d'une matrice hybride organique/minérale aux propriétés phtocatalytiques -Analyse par ToF-SIMSA study of HMDSO/O 2 plasma deposits using a high-sensitivity and energy resolution XPS instrument: curve fitting of the Si 2p core level, Applied Surface Science, pp.137-179, 1999.

]. S. Roualdes, R. Berjoan, and J. Durand, Si-29 NMR and Si2p XPS correlation in polysiloxane membranes prepared by plasma enhanced chemical vapor deposition, Separation and Purification Technology, issue.6, pp.25-391, 2001.
DOI : 10.1016/s1383-5866(01)00067-3

]. G. Beamson and D. Briggs, Hight Resolution XPS of Organic Polymers: The Science ESCA300 Database, Ouvrage publié par, issue.7, 1992.

L. A. O-'hare, B. Parbhoo, and S. R. Leadley, Development of a methodology for XPS curvefitting of the Si 2p core level of siloxane materials, Surface and Interface Analysis, pp.36-1427, 2004.

S. Permpoon, G. Berthomé, B. Baroux, J. C. Joud, and M. Langlet, Natural superhydrophilicity of sol-gel derivated SiO 2 -TiO 2 composite films, JOURNAL OF MATERIALS SCIENCE, pp.41-7650, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00140852

]. H. Yamashita, S. Kawasaki, Y. Ichihashi, and M. Harada, Characterization of Titanium???Silicon Binary Oxide Catalysts Prepared by the Sol???Gel Method and Their Photocatalytic Reactivity for the Liquid-Phase Oxidation of 1-Octanol, The Journal of Physical Chemistry B, vol.102, issue.30, pp.5870-5875, 1998.
DOI : 10.1021/jp981343a

T. Lin, Y. Wang, and . Jin, Surface characteristics of hydrous silica-coated TiO 2 particles, Powder technology, pp.123-194, 2002.
DOI : 10.1016/s0032-5910(01)00470-3

]. B. Gallas, A. Brunet-bruneau, S. Fisson, G. Vuye, and J. Rivory, SiO 2 -TiO 2 interfaces studied by ellipsometry and x-ray photoemission spectroscopy, Journal of Applied Physics, pp.92-1922, 2002.
DOI : 10.1063/1.1494843

URL : https://hal.archives-ouvertes.fr/hal-00002702

]. A. Fernandez, G. Lassaletta, V. M. Jimknez, A. Justo, A. R. Gonzalez-elipe et al., Spectroscopic characterization of quantum-Sized TiO 2 supported on silica : influence of size and TiO 2 -SiO 2 interface composition, Journal of Physical Chemistry, pp.99-1484, 1995.

T. Kondo and C. Sawatari, A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose, Polymer, vol.37, issue.3, pp.31-393, 1996.
DOI : 10.1016/0032-3861(96)82908-9

]. J. Coates, In Encyclopedia of Analytical ChemistryInterpretation of Infrared Spectra, A Practical Approach, pp.10815-10837, 2000.

L. P. Real and J. Gardette, Ageing and characterisation of PVC-based compounds utilised for exterior applications in the building construction field: 1: Thermal ageing, Polymer testing, pp.20-779, 2001.

]. D. Grégori, C. Guillard, F. Chaput, and S. Parola, Procédé de dépôt d'un revêtement photocatalytique, revêtements, matériaux textiles et utilisation en photocatalyse associés, Brevet FR, pp.13-53122, 2013.

M. Gohin, E. Allain, N. Chemin, I. Maurin, T. Gacoin et al., Sol???gel nanoparticulate mesoporous films with enhanced self-cleaning properties, Chapitre IV : Apport des caractérisations des propriétés photocatalytiques et de l'analyse de surface dans l'élaboration de microparticules SiO2/TiO2 photoactives Références Bibliographiques [1], pp.216-142, 2010.
DOI : 10.1016/j.jphotochem.2010.06.029

C. W. Dong, X. C. Lee, Y. J. Lu, W. M. Sun, G. S. Hua et al., Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO 2 -SiO 2 nanocomposites generating excellent degradation activity of RhB dye, Applied Catalysis B-Environmental, pp.95-197, 2010.

]. E. Pakdel, W. A. Daoud, and X. G. Wang, Self-cleaning and superhydrophilic wool by TiO 2 /SiO 2 nanocomposite, Applied Surface Science, issue.4, pp.275-397, 2013.
DOI : 10.1016/j.apsusc.2012.10.141

URL : http://dro.deakin.edu.au/eserv/DU:30051202/wang-selfcleaning-2013.pdf

M. Houmard, D. Riassetto, F. Roussel, A. Bourgeois, G. Berthomé et al., Enhanced persistence of natural super-hydrophilicity in TiO2???SiO2 composite thin films deposited via a sol???gel route, Surface Science, vol.602, issue.21, pp.602-3364, 2008.
DOI : 10.1016/j.susc.2008.09.016

URL : https://hal.archives-ouvertes.fr/hal-00345546

]. A. Carretero-genevrier, C. Boissiere, L. Nicole, and D. Grosso, Distance Dependence of the Photocatalytic Efficiency of TiO 2 Revealed by in Situ Ellipsometry, Journal of the American Chemical Society, issue.6, pp.134-10761, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01468421

D. Grosso, A. R. Balkenende, P. A. Albouy, A. Ayral, H. Amenitsch et al., Two-Dimensional Hexagonal Mesoporous Silica Thin Films Prepared from Block Copolymers:?? Detailed Characterization and Formation Mechanism, Chemistry of Materials, vol.13, issue.5, pp.13-1848, 2001.
DOI : 10.1021/cm001225b

D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, Journal of the American Chemical Society, vol.120, issue.24, pp.6024-6036, 1998.
DOI : 10.1021/ja974025i

]. D. Fattakhova-rohlfing, M. Wark, T. Brezesinski, B. M. Smarsly, and J. Tathovsky, Highly Organized Mesoporous TiO 2 Films with Controlled Crystallinity: A Li-Insertion Study, Advanced Functional Materials, pp.17-123, 2007.
DOI : 10.1002/adfm.200600425

]. Lee, S. Kong, W. Kim, and J. Kim, Preparation and characterization of SiO 2 /TiO 2 coreshell particles with controlled shell thickness, Chapitre IV Apport des caractérisations des propriétés photocatalytiques et de l'analyse de surface dans l'élaboration de microparticules SiO2/TiO2 photoactives, pp.106-145, 2007.

]. D. Grosso, F. Babonneau, P. Albouy, H. Amenitsch, A. R. Balkenende et al., An in Situ Study of Mesostructured CTAB???Silica Film Formation during Dip Coating Using Time-Resolved SAXS and Interferometry Measurements, Chemistry of Materials, vol.14, issue.2, pp.14-931, 2002.
DOI : 10.1021/cm011255u

]. D. Grosso, F. Cagnol, G. J. Soler-illia, E. L. Crepaldi, H. Amenitsch et al., Fundamentals of Mesostructuring Through Evaporation-Induced Self-Assembly, Advanced Functional Materials, vol.14, issue.4, pp.14-309, 2004.
DOI : 10.1002/adfm.200305036

URL : https://hal.archives-ouvertes.fr/hal-00005435

]. C. Boissiere, D. Grosso, S. Lepoutre, L. Nicole, A. B. Bruneau et al., Porosity and Mechanical Properties of Mesoporous Thin Films Assessed by Environmental Ellipsometric Porosimetry, Langmuir, vol.21, issue.26, pp.21-12362, 2005.
DOI : 10.1021/la050981z

URL : https://hal.archives-ouvertes.fr/hal-00022622

]. M. Piton and A. Rivaton, Photooxidation of polybutadiene at long wavelengths (?? > 300 nm), Polymer Degradation and Stability, vol.53, issue.3, pp.343-359, 1996.
DOI : 10.1016/0141-3910(96)00093-6

]. B. Forsthuber, U. Müller, A. Teischinger, and G. Grül, Chemical and mechanical changes during photooxidation of an acrylic clear wood coat and its prevention using UV absorber and micronized TiO2, Polymer Degradation and Stability, vol.98, issue.7, pp.98-1329, 2013.
DOI : 10.1016/j.polymdegradstab.2013.03.029

]. J. Gaume, P. Wong-wah-chung, A. Rivaton, S. Therias, and J. Gardette, Photochemical behavior of PVA as an oxygen-barrier polymer for solar cell encapsulation, RSC Advances, vol.50, issue.512, pp.1471-1481, 2011.
DOI : 10.1039/c1ra00350j

. De-façon-générale, un solide, il se forme un angle de raccordement entre l'un et l'autre. Cet angle dit « de contact » représente l'angle du liquide par rapport à la surface d'un solide au point triple. Le point triple est l'endroit où les trois tensions interfaciales coexistent. En effet selon Thomas Young en 1805 (Figure A-1), l'équilibre mécanique d'une goutte déposée sur un support solide est régit par trois paramètres : La tension interfaciale solide-liquide ? S

D. Intrinsèquement and . Le, cas où liquide est de l'eau, la surface est dite hydrophile lorsque l'angle de contact est quasi-nul, alors qu'elle est hydrophobe lorsque l

B. Annexe, Spectres et images supplémentaires au Chapitre II [1] H. BlasLa Chimie Sol-gel au service du Textile, Actualité Chimique, pp.360-361, 2012.

]. J. Jolivet, De le Solution à l'Oxyde, Ouvrage publié par InterEditions CNRS, issue.2, 1994.

D. Grosso, F. Cagnol, G. J. Soler-illia, E. L. Crepaldi, H. Amenitsch et al., Fundamentals of Mesostructuring Through Evaporation-Induced Self-Assembly, Advanced Functional Materials, vol.14, issue.4, pp.14-309, 2004.
DOI : 10.1002/adfm.200305036

URL : https://hal.archives-ouvertes.fr/hal-00005435

]. M. Ghazzal and T. , Développement et validation d'un test pour déterminer les propriétés photocatalytiques de surfaces autonettoyantes : application aux couches minces de TiO, 2008.

]. G. Soler-illia, C. Sanchez, B. Lebeau, and J. Patarin, Chemical Strategies To Design Textured Materials:?? from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures, Chemical Reviews, vol.102, issue.11, pp.102-4093, 2002.
DOI : 10.1021/cr0200062

]. B. Mahltig, H. Haufe, and H. Bottcher, Functionalisation of textiles by inorganic sol???gel coatings, Journal of Materials Chemistry, vol.283, issue.8, pp.4385-4398, 2005.
DOI : 10.1039/b505177k

C. Annexe and P. Evonik, Spectres ToF-SIMS en mode négatif (m/z = 0-700) des nanoparticules de TiO 2, p.268

C. Annexe, Clichés SEM à faible agrandissement d'un revêtement composite de référence déposé sur un substrat de silicium témoignant de l'homogéneité du dépôt sur le substrat, p.270

C. Annexe, Représentation des environnements chimiques (%) obtenus par déconvolution des pics XPS C1s, O1s, et Si2p (XPS) du revêtement composite déposé sur substrat de silicium, p.271

C. Annexe, 10 Spectres ToF-SIMS en mode positif (m/z = 0-700) du revêtement composite déposé sur substrat de silicium après test photocatalytique en présence d'un polluant modèle (l'acide formique), p.274

C. Annexe, 11 Spectres ToF-SIMS en mode négatif (m/z = 0-700) du revêtement composite déposé sur substrat de silicium après test photocatalytique en présence d'un polluant modèle (l'acide formique), p.274

C. Annexe and U. , Représentation des environnements chimiques (%) obtenus par déconvolution des pics XPS C1s, O1s, et Si2p (XPS) du revêtement composite déposé sur substrat de silicium après traitement, p.277

C. Annexe and .. Tof-sims-en-mode-positif, -700) d'un substrat textile PET/PVC revêtu d'un revêtement composite Signatures caractéristiques du substrat textile PET/PVC seul (*) et signatures caractéristiques du revêtement composite (?), p.285

C. Annexe and .. Tof-sims-en-mode-positif, 0-700) du substrat textile PET/PVC revêtu d'un revêtement composite pré-traité sous UV pendant 27h en présence d'eau. Signatures caractéristiques du substrat textile PET/PVC seul (*) et signatures caractéristiques du revêtement composite (?), p.286

C. Annexe, Représentation des environnements chimiques (%) obtenus par déconvolution des pics XPS C1s, O1s, p.287

C. Annexe and .. Tof-sims-en-mode-positif, -700) d'un substrat textile PET/PVC revêtu d'un revêtement composite après un photo-vieillissement de 1000h. Signatures caractéristiques du substrat textile PET/PVC seul (*) et signatures caractéristiques du revêtement composite (?), p.288

C. Annexe, EDS du substrat substrat non-tissé Tyvek® revêtu du revêtement composite, Image SEM, p.292

C. Annexe and .. Tof-sims-en-mode-positif, du substrat non-tissé Tyvek® revêtu d'un revêtement composite pré-traité sous UV pendant 27h en présence d'eau. Signatures caractéristiques du revêtement composite (?) détectés à m/z = 326,967 ; 388,896 ; 446,877 ; 460,901; 504,877; 520,782 ; 580,863, p.295

C. Annexe and .. Tof-sims-en-mode-positif, 700) du substrat non-tissé Tyvek® revêtu d'un revêtement composite après un photo-vieillissement accéléré, p.297

C. Annexe, Spectres et images supplémentaires au Chapitre III Annexe C-1 Spectres ToF-SIMS en mode positif (m

C. Annexe, Spectres ToF-SIMS en mode négatif (m/z = 0-700) des nanoparticules de TiO Energie de liaison (eV) Intensité

. Coates, In Encyclopedia of Analytical ChemistryInterpretation of Infrared Spectra, A Practical Approach, pp.10815-10837, 2000.

C. Kondo and . Sawatari, A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose, Polymer, vol.37, issue.3, pp.31-393, 1996.
DOI : 10.1016/0032-3861(96)82908-9

. Si-oh, Elongation 3400-3200 O-H (polymérique) Elongation 2935-2915 C-H (CH 2 ) Elongation symétrique et asymétrique 2865-2845 C-H (CH 3 ) Elongation symétrique et asymétrique 1750-1725 C=O Elongation 1610-1500 COO Elongation asymétrique 1485-1445 C-H (CH 2 ) Déformation symétrique 1470-1430 C-H (CH 3 ) Déformation symétrique

D. Annexe, Spectre ToF-SIMS en mode positif d'un dépôt de nanoparticules de TiO 2 déposé à partir de la solution commerciale "Nanostructured & Amorphous Materials" par dip-coating sur substrat de silicium, p.302

D. Annexe, Spectre ToF-SIMS en mode négatif d'un dépôt de nanoparticules de TiO 2 déposé à partir de la solution commerciale "Nanostructured & Amorphous Materials" par dip-coating sur substrat de silicium, p.302

D. Annexe, Représentation des environnements chimique (%) obtenus par déconvolution des pics XPS C1s, O1s, et Si2p des microparticules SiO 2 /TiO 2 avec le Brij-56 comme agent porogène produites à l'échelle R&D 305

D. Annexe, Spectre ToF-SIMS en mode positif des microparticules SiO 2 /TiO 2 produites par Pylote à l'échelle "R&D" (agent porogène: CTAB) n'ayant pas subit de traitement thermique, p.309

D. Annexe, Spectre ToF-SIMS en mode négatif de microparticules SiO 2 /TiO 2 produites par Pylote à l'échelle "R&D" (agent porogène: CTAB) n'ayant pas subit de traitement thermique, p.310

D. Annexe, Représentation des environnements chimique (%) obtenus par déconvolution des pics XPS C1s, O1s, et Si2p des microparticules SiO 2 /TiO 2 produites par Pylote à l'échelle semi-industrielle (campagne 1), p.314

F. -echantillon, TiO 2 sur non tissé Tyvek -Echantillon D (taux de dispersant: 4,9% massique -dispersant : acétique) -Echantillon E (taux de dispersant: 9% massique dispersant : acide acétique), Annexe D-20 Spectres généraux XPS des dépôts de microparticules SiO 2, pp.318-320