. Denby, 3D tongue motion visualization based on ultrasound image sequences, The 15th Annual Conference of the International Speech Communication Association (InterSpeech)

. Crevier-buchman, An educational platform to capture, visualize and analyze rare singing, The 15th Annual Conference of the International Speech Communication Association (InterSpeech)

N. Moutarde, Grammalidis, Novel 3D Game-like Applications driven by body interactions for learning specific forms of Intangible Cultural Heritage, The 10th International Conference on Computer Vision Theory and Applications (VISAPP2015), 2015.

P. Denby, B. Roussel, S. Picart, F. Dupont, A. Tsalakanidou et al., A novel human interaction game-like application to learn, perform and evaluate modern contemporary singing

B. Denby, Z. Gan, Y. Wan, Y. Bao, C. Leboullenger et al., Towards a Kinect for the Tongue. The 4th International Workshop on Biomechanical and Parametric Modeling of Human Anatomy (PMHA), p.2016

K. Xu, Y. Yang, A. Jaumard-hakoun, C. Leboullenger, P. Roussel et al., Is Speckle Tracking Feasible for Ultrasound Tongue Images?, International Conference on Acoustics, Speech and Signal Processing, p.2017, 2017.
DOI : 10.3813/AAA.919065

K. Xu, T. Gábor-csapó, P. Roussel, B. Denby-]-b, T. Denby et al., Convolutional neural network-based automatic classification of midsagittal tongue gestures using B-mode ultrasound images Submitted toSilent speech interfaceDevelopment of a silent speech interface driven by ultrasound and optical images of the tongue and lipsA guide to analysing tongue motion from ultrasound images, The Journal of the Acoustical Society of America References Speech Communication Speech Communication Clinical Linguistics & Phonetics, vol.52, issue.19, pp.270-287, 2005.

Y. Nayak, Y. Kim, L. Zhu, D. Goldstein, E. Byrd et al., Real-time magnetic resonance imaging and electromagnetic articulography database for speech production research (TC)

J. Westbury, P. Milenkovic, G. Weismer, R. Kent, and A. A. Wrench, Available: http://sail.uscX?ray microbeam speech production databaseA multichannel articulatory database and its application for automatic speech recognitionAutomatic extraction and tracking of the tongue contours, Proceedings 5th Seminar of Speech Production, pp.1307-1311, 1990.

M. Li, C. Kambhamettu, and M. Stone, Automatic contour tracking in ultrasound images, Clinical Linguistics & Phonetics, vol.10, issue.6-7, pp.545-554, 2005.
DOI : 10.1121/1.402934

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Roussos, A. Katsamanis, and P. Maragos, Tongue tracking in Ultrasound images with Active Appearance Models, 2009 16th IEEE International Conference on Image Processing (ICIP), 2009.
DOI : 10.1109/ICIP.2009.5414520

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

I. Fasel and J. Berry, Deep Belief Networks for Real-Time Extraction of Tongue Contours from Ultrasound During Speech, 2010 20th International Conference on Pattern Recognition, 2010.
DOI : 10.1109/ICPR.2010.369

D. Fabre, T. Hueber, F. Bocquelet, and P. Badin, Tongue Tracking in Ultrasound Images using EigenTongue Decomposition and Artificial Neural Networks, InterSpeech, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01228917

A. H. Jaumard, K. Xu, P. Roussel, G. Dreyfus, and B. Denby, Tongue contour extraction from ultrasound images based on deep neural network, Proceedings of the 18th International Congress of Phonetic Sciences, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01366237

L. Tang, T. Bressmann, and G. Hamarneh, Tongue contour tracking in dynamic ultrasound via higher-order MRFs and efficient fusion moves, Medical Image Analysis, vol.16, issue.8, pp.1503-1520
DOI : 10.1016/j.media.2012.07.001

G. Hinton and R. R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, vol.313, issue.5786, pp.504-507, 2006.
DOI : 10.1126/science.1127647

M. Stone, A three???dimensional model of tongue movement based on ultrasound and x???ray microbeam data, The Journal of the Acoustical Society of America, vol.87, issue.5, pp.2207-22017, 1990.
DOI : 10.1121/1.399188

R. W. Tricarico, Physiological modeling of speech production: Methods for modeling soft???tissue articulators, The Journal of the Acoustical Society of America, vol.97, issue.5, pp.3085-3098, 1995.
DOI : 10.1121/1.411871

I. Stavness, J. E. Lloyd, and S. Fels, Automatic prediction of tongue muscle activations using a finite element model, Journal of Biomechanics, vol.45, issue.16, pp.2841-2848, 2012.
DOI : 10.1016/j.jbiomech.2012.08.031

J. E. Lloyd, I. Stavness, and S. Fels, «ArtiSynth: A Fast Interactive Biomechanical Modeling Toolkit Combining Multibody and Finite Element Simulation,» chez Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, pp.355-394, 2012.
DOI : 10.1007/8415_2012_126

Y. Yang, X. Guo, J. Vick, L. G. Torres, and T. F. Campbell, Physics-Based Deformable Tongue Visualization, IEEE Transactions on Visualization and Computer Graphics, vol.19, issue.5, pp.811-823, 2013.
DOI : 10.1109/TVCG.2012.174

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Martin, Introduction to B-mode imaging, Diagnostic ultrasound: physics and equipment, pp.1-22, 2010.
DOI : 10.1017/CBO9780511750885.003

M. Tanter and M. Fink, Ultrafast imaging in biomedical ultrasound, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.61, issue.1, pp.102-119, 2014.
DOI : 10.1109/TUFFC.2014.2882

M. Stone, Preface to the Special Issue on Ultrasound Imaging of the Tongue, Clinical Linguistics & Phonetics, vol.19, issue.6-7, pp.453-454, 2005.
DOI : 10.1080/02699200500113517

J. Cleland, J. Scobbie, and N. Zharkova, Insights from ultrasound: Enhancing our understanding of clinical phonetics, Clinical Linguistics & Phonetics, vol.30, issue.3-5, pp.3-5, 2016.
DOI : 10.1080/02699200500113517

T. L. Szabo, Diagnostic ultrasound imaging: inside out Available: https://en.wikipedia.org, 2004.

L. V. Wang and S. Hu, Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs, Science, vol.5, issue.3, pp.1458-1462, 2012.
DOI : 10.1038/nphoton.2010.306

S. C. Manion and J. P. , Atlas of Ultrasound-Guided Procedures in Interventional Pain Management, Regional Anesthesia and Pain Medicine, vol.36, issue.6, 2010.
DOI : 10.1097/AAP.0b013e31822e0d61

J. Curie and P. Curie, Développement, par pression, de l'électricité polaire dans les cristaux hémièdres à faces inclinées, Comptes Rendus de l'Académie des Sciences, 1883.

K. Martin, Diagnostic ultrasound: physics and equipment, 2010.

B. Cohen and I. Dinstein, Motion estimation in noisy ultrasound images by maximum likelihood, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000.
DOI : 10.1109/ICPR.2000.903515

G. Loiseau, S. Chollet, M. Manitsaris, and . Stone, Towards a practical silent speech interface based on vocal tract imaging, International Seminar on Speech Production, 2011.
URL : https://hal.archives-ouvertes.fr/halshs-00609106

B. H. Amundsen, T. H. Valle, T. Edvardsen, H. Torp, J. Crosby et al., Noninvasive Myocardial Strain Measurement by Speckle Tracking Echocardiography, Journal of the American College of Cardiology, vol.47, issue.4, pp.789-793, 2006.
DOI : 10.1016/j.jacc.2005.10.040

URL : http://doi.org/10.1016/j.jacc.2005.10.040

T. Helle-valle, J. Crosby, T. Edvardsen, E. Lyseggen, B. H. Amundsen et al., New Noninvasive Method for Assessment of Left Ventricular Rotation: Speckle Tracking Echocardiography, Circulation, vol.112, issue.20, pp.3149-3156, 2005.
DOI : 10.1161/CIRCULATIONAHA.104.531558

M. Jacob, H. L. Lehouillier, S. Bora, S. Mcaleavey, D. Dalecki et al., Speckle tracking for the recovery of displacement and velocity information from sequences of ultrasound images of the tongue, The 8th International Seminar on Speech Production, 2008.

C. Kontogeorgakis, M. G. Strintzis, N. Maglaveras, and I. Kokkinidis, Tumor detection in ultrasound B-mode images through motion estimation using a texture detection algorithm, Computers in Cardiology 1994, 1994.
DOI : 10.1109/CIC.1994.470235

F. Yeung, S. F. Levinson, and K. J. Parker, Multilevel and Motion Model-Based Ultrasonic Speckle Tracking Algorithms, Ultrasound in Medicine & Biology, vol.24, issue.3, pp.427-441, 1998.
DOI : 10.1016/S0301-5629(97)00281-0

J. F. Krucker, G. L. Lecarpentier, B. J. Fowlkes, and P. L. Carson, Rapid elastic image registration for 3-D ultrasound, IEEE Transactions on Medical Imaging, vol.21, issue.11, pp.1384-1394, 1121.
DOI : 10.1109/TMI.2002.806424

T. C. Poon and N. R. Robert, Three-dimensional extended field-of-view ultrasound, Ultrasound in Medicine & Biology, vol.32, issue.3, pp.357-369, 2006.
DOI : 10.1016/j.ultrasmedbio.2005.11.003

M. G. Strintzis and I. Kokkinidis, Maximum likelihood motion estimation in ultrasound image sequences, IEEE Signal Processing Letters, vol.4, issue.6, pp.156-157, 1997.
DOI : 10.1109/97.586034

B. Cohen and I. Dinstein, New maximum likelihood motion estimation schemes for noisy ultrasound images, Pattern Recognition, vol.35, issue.2, pp.455-463, 2002.
DOI : 10.1016/S0031-3203(01)00053-X

B. K. Horn and B. G. Schunck, Determining optical flow, International Society for Optics and Photonics Technical Symposium East, 1981.
DOI : 10.1016/0004-3702(81)90024-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, International Joint Conference on Artificial Intelligence, 1981.

D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.
DOI : 10.1023/B:VISI.0000029664.99615.94

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Liu, Y. Jenny, and A. Torralba, SIFT Flow: Dense Correspondence Across Scenes and Its Applications, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.5, pp.978-994, 2011.
DOI : 10.1007/978-3-319-23048-1_2

Z. Wang, A. Bovik, S. Hamid, and E. P. Simoncelli, Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, vol.13, issue.4, pp.600-612, 2004.
DOI : 10.1109/TIP.2003.819861

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. P. Sampat, Z. Wang, S. Gupta, A. Bovik, and M. K. Markey, Complex Wavelet Structural Similarity: A New Image Similarity Index, IEEE Transactions on Image Processing, vol.18, issue.11, pp.2385-2401, 2009.
DOI : 10.1109/TIP.2009.2025923

A. Karasaridis and E. Simoncelli, A filter design technique for steerable pyramid image transforms, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, 1996.
DOI : 10.1109/ICASSP.1996.547763

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. J. Candès, X. Li, Y. Ma, and J. Wright, Robust principal component analysis?, Journal of the ACM, vol.58, issue.3, p.11, 2011.
DOI : 10.1145/1970392.1970395

Y. Nesterov, Gradient methods for minimizing composite objective function, CORE Discussion Papers, 2007.
DOI : 10.1007/s10107-012-0629-5

T. G. Csapó and S. M. Lulich, Error analysis of extracted tongue contours from 2D ultrasound images, Sixteenth Annual Conference of the International Speech Communication Association, 2015.

M. Gérard, J. Ohayon, V. Luboz, P. Perrier, and Y. Payan, Indentation for Estimating the Human Tongue Soft Tissues Constitutive Law: Application to a 3D Biomechanical Model, Medical Simulation, pp.77-83, 2004.
DOI : 10.1007/978-3-540-25968-8_9

M. G. Choi and H. S. Ko, Modal Warping: Real-Time Simulation of Large Rotational Deformation and Manipulation, IEEE Transactions on Visualization and Computer Graphics, vol.11, issue.01, pp.91-101, 2005.
DOI : 10.1109/TVCG.2005.13

Y. Yang, G. Rong, L. Torres, and X. Guo, Real-time hybrid solid simulation: spectral unification of deformable and rigid materials, Computer Animation and Virtual Worlds, vol.28, issue.3, pp.3-4, 2010.
DOI : 10.1002/cav.373

S. Kork, A. Jaumard-hakoun, M. Adda-decker, A. Amelot, L. Buchman et al., A Multi-Sensor Helmet to Capture Rare Singing, An Intangible Cultural Heritage Study, International Seminar on Speech Production, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01188296

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, vol.5, issue.6035, pp.321-331, 1988.
DOI : 10.1007/BF00133570

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=