V. Banakh and I. Smalikho, Coherent Doppler wind lidars in a turbulent atmosphere, 2013.

F. Barbaresco and U. Meier, Radar monitoring of a wake vortex: Electromagnetic reflection of wake turbulence in clear air, Comptes Rendus Physique, vol.11, issue.1, pp.54-67, 2010.
DOI : 10.1016/j.crhy.2010.01.001

P. Benoit, Architectures laser à fibre pour la mseure du méthane à 1645 nm, 2016.

L. Bricteux, D. Duponcheel, G. Visscher, and . Winckelmans, LES investigation of the transport and decay of various-strengths wake vortices in ground effect and subjected to a turbulent crosswind, Physics of Fluids, vol.28, issue.6, p.65105, 2016.
DOI : 10.2514/1.C032035

J. Cariou, Next generation of doppler lidars for modern regulations on wake turbulence. WakeNet-Europe slides available on www, 2015.

A. Corjon and T. Poinsot, Behavior of Wake Vortices Near Ground, AIAA Journal, vol.35, issue.5, pp.849-855, 1997.
DOI : 10.2514/2.7457

C. Steven and . Crow, Stability theory for a pair of trailing vortices, AIAA journal, vol.8, issue.12, pp.2172-2179, 1970.

A. De-bruin and G. Winckelmans, Cross-flow kinetic energy and core size growth of analytically defined wake vortex pairs, 2005.

I. De-visscher, G. Lonfils, and . Winckelmans, Fast-Time Modeling of Ground Effects on Wake Vortex Transport and Decay, Journal of Aircraft, vol.50, issue.5, pp.1514-1525, 2013.
DOI : 10.2514/1.C032035

G. Ivan-de-visscher, T. Winckelmans, L. Lonfils, M. Bricteux, N. Duponcheel et al., The WAKE4D Simulation Platform for Predicting Aircraft Wake Vortex Transport and Decay: Description and Examples of Application, AIAA Atmospheric and Space Environments Conference, p.2010, 2010.
DOI : 10.2514/6.2010-7994

A. Dolfi-bouteyre, . Augere, . Valla, . Goular, . Fleury et al., Aircraft wake vortex study and characterization with 1.5 µm fiber doppler lidar, AerospaceLab, issue.1, p.1, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01180652

A. Dolfi-bouteyre, Lidar for wake vortex measurement at onera. Future Sky Safety - EREA slides available on http, 2016.

A. Dolfi-bouteyre, B. Augére, C. Besson, G. Canat, D. Fleury et al., al. 1.5 µm all fiber pulsed lidar for wake vortex monitoring, Conference on Lasers and Electro-Optics, p.3, 2008.

A. Dolfi-bouteyre, G. Canat, M. Valla, B. Augere, C. Besson et al., Didier Fleury, et al. Pulsed 1.5-m lidar for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier, Selected Topics in Quantum Electronics IEEE Journal, issue.2, pp.15441-450, 2009.

G. Fleury, Analyse spectrale : méthodes non-paramétriques et paramétriques, Ellipses, 2001.

R. Frehlich, Cramer-Rao bound for Gaussian random processes and applications to radar processing of atmospheric signals, IEEE Transactions on Geoscience and Remote Sensing, vol.31, issue.6, pp.1123-1131, 1993.
DOI : 10.1109/36.317450

R. Frehlich, Coherent Doppler lidar signal covariance including wind shear and wind turbulence, Applied Optics, vol.33, issue.27, pp.6472-6481, 1994.
DOI : 10.1364/AO.33.006472

R. Frehlich and R. Sharman, Maximum Likelihood Estimates of Vortex Parameters from Simulated Coherent Doppler Lidar Data, Journal of Atmospheric and Oceanic Technology, vol.22, issue.2, pp.117-130, 2005.
DOI : 10.1175/JTECH-1695.1

T. Gerz, F. Holzaepfel, D. Darracq, . De-bruin, . Elsenaar et al., Aircraft wake vortices : a position paper, Wakenet, the european thematic network on wake vortex position paper, 2001.
DOI : 10.1007/bfb0106095

F. Holzäpfel, Sensitivity Analysis of the Effects of Aircraft and Environmental Parameters on Aircraft Wake Vortex Trajectories and Lifetimes, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p.2013, 2013.
DOI : 10.2514/6.2013-363

F. Holzäpfel, T. Gerz, F. Köpp, E. Stumpf, M. Harris et al., Strategies for Circulation Evaluation of Aircraft Wake Vortices Measured by Lidar, Journal of Atmospheric and Oceanic Technology, vol.20, issue.8, pp.1183-1195, 2003.
DOI : 10.1175/1520-0426(2003)020<1183:SFCEOA>2.0.CO;2

D. Jacob, J. Matthew, . Pruis, D. Lai, and . Delisi, Wakemod 4.1 : A new standalone wake vortex algorithm for estimating circulation strength and position, 7th AIAA Atmospheric Space Environments Conference, 2015.

G. Holly, V. Johnson, L. Brion, and . Jacquin, Crow instability : nonlinear response to the linear optimal perturbation, Journal of Fluid Mechanics, vol.795, pp.652-670, 2016.

F. Köpp, S. Rahm, I. Smakikho, A. Dolfi, J. Cariou et al., Comparison of Wake-Vortex Parameters Measured by Pulsed and Continuous-Wave Lidars, Journal of Aircraft, vol.42, issue.4, pp.916-923, 2005.
DOI : 10.2514/1.8177

F. Köpp, S. Rahm, and I. Smalikho, m Pulsed Doppler Lidar, Journal of Atmospheric and Oceanic Technology, vol.21, issue.2, pp.194-206, 2004.
DOI : 10.1175/1520-0426(2004)021<0194:COAWVB>2.0.CO;2

N. Ahmad-nash-'at, H. Fred, F. M. Proctor, D. Limon-duparcmeur, and . Jacob, Review of idealized aircraft wake vortex models, 2014.

B. Porat and B. Friedlander, Computation of the exact information matrix of Gaussian time series with stationary random components, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.34, issue.1, pp.118-130, 1986.
DOI : 10.1109/TASSP.1986.1164786

F. Prévost, Combinaison cohérente d'une fibre multicoeur et application LIDAR, 2016.

J. Daniel, C. Ramsey, and . Nguyen, Characterizing aircraft wake vortices with groundbased pulsed coherent lidar : Effects of vortex circulation strength and lidar signal-to-noise ratio on the spectral signature, 3rd AIAA Atmospheric Space Environments Conference, p.3198, 2011.

J. Barry, R. Rye, and . Hardesty, Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. i. spectral accumulation and the cramer-rao lower bound. Geoscience and Remote Sensing, IEEE Transactions on, vol.31, issue.1, pp.16-27, 1993.

P. Salamitou, A. Dabas, H. Pierre, and . Flamant, Simulation in the time domain for heterodyne coherent laser radar, Applied Optics, vol.34, issue.3, pp.499-506, 1995.
DOI : 10.1364/AO.34.000499

. Skybrary, Recat -wake turbulence re-categorisation, 2016.

I. Smalikho and V. Banakh, Estimation of aircraft wake vortex parameters from data measured with a 15-??m coherent Doppler lidar, Optics Letters, vol.40, issue.14, pp.3408-3411, 2015.
DOI : 10.1364/OL.40.003408

I. Smalikho, . Va-banakh, S. Holzäpfel, and . Rahm, Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar, Optics Express, vol.23, issue.19, pp.1194-1207, 2015.
DOI : 10.1364/OE.23.0A1194

A. Stephan, F. Holzäpfel, and T. Misaka, Aircraft Wake-Vortex Decay in Ground Proximity???Physical Mechanisms and Artificial Enhancement, Journal of Aircraft, vol.50, issue.4, pp.1250-1260, 2013.
DOI : 10.2514/1.C032179

URL : http://elib.dlr.de/76936/1/AIAA-2012-2672-285.pdf

M. Valla, Etude d'un lidar doppler impulsionnel à laser Erbium fibré pour des mesures de champ de vent dans la couche limite, 2005.

S. Hadi, D. Wassaf, F. Burnham, and . Wang, Wake vortex tangential velocity adaptive spectral (tvas) algorithm for pulsed lidar systems, 16th CLRC meeting, 2011.

D. Peter and . Welch, The use of fast fourier transform for the estimation of power spectra : A method based on time averaging over short, modified periodograms, IEEE Transactions on audio and electroacoustics, vol.15, issue.2, pp.70-73, 1967.

G. Winckelmans, Aircraft wake vortices : physics ans ucl models. WakeNet3-Europse Specific Workshop "Re-categorization" slides available on www, 2011.

G. Winckelmans and I. D. Visscher, Rmc-based severity metrics : possibilities and scalings. WakeNet-Europe slides available on www, 2014.

E. Yoshikawa and N. Matayoshi, Detection and estimation of wake vortex on ultra fast-scanning pulsed-doppler lidar