.. Free-space-to-cavity-switching, 135 5.1.2 Lens-Fiber mounting principle, p.138

.. Single-photon-source, 162 5.3.1 Statistics of a light source, p.166

.. Sub-poissonian-source, 168 5.3.2 Second order correlation function, p.168

C. K. Hong and L. Mandel, Experimental realization of a localized one-photon state, Physical Review Letters, vol.56, issue.1, pp.58-60, 1986.
DOI : 10.1103/PhysRevLett.56.58

K. Artur and . Ekert, Quantum cryptography based on bell's theorem. Physical review letters, pp.661-259, 1991.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. Poizat et al., Single Photon Quantum Cryptography, Physical Review Letters, vol.89, issue.18, pp.187901-259, 2002.
DOI : 10.1103/PhysRevLett.89.187901

URL : https://hal.archives-ouvertes.fr/hal-00509134

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, Limitations on Practical Quantum Cryptography, Physical Review Letters, vol.85, issue.6, pp.1330-1333, 2000.
DOI : 10.1103/PhysRevLett.85.1330

E. Knill, R. Laflamme, J. Gerald, and . Milburn, A scheme for efficient quantum computation with linear optics, Nature, vol.409, issue.6816, pp.46-52, 2001.
DOI : 10.1038/35051009

L. Jeremy, A. O-'brien, J. Furusawa, and . Vu?kovi?, Photonic quantum technologies, Nature Photonics, vol.3, issue.12 1, pp.687-695, 2009.

N. Somaschi, . Giesz, J. De-santis, . Loredo, . Mp-almeida et al., Near-optimal single-photon sources in the solid state, Nature Photonics, vol.5, issue.5, p.259, 2016.
DOI : 10.1038/nphoton.2016.23

URL : https://hal.archives-ouvertes.fr/hal-01386640

L. Kristiaan-de-greve, . Yu, L. Peter, J. S. Mcmahon, . Pelc et al., Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength, Nature, vol.1, issue.7424, pp.491421-425, 2012.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

J. Salvetat, J. Bonard, N. H. Thomson, A. J. Kulik, L. Forró et al., Mechanical properties of carbon nanotubes, Applied Physics A: Materials Science & Processing, vol.69, issue.3, pp.255-260, 0205.
DOI : 10.1007/s003390050999

T. Erik, Z. Thostenson, T. Ren, and . Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Composites science and technology, issue.13, pp.611899-1912, 0205.

J. Michael, M. Sergei, C. B. Bachilo, . Huffman, C. Valerie et al., Band gap fluorescence from individual single-walled carbon nanotubes Length-sorted, large-diameter, polyfluorene-wrapped semiconducting single-walled carbon nanotubes for high-density, short-channel transistors, 260 REFERENCES [17] Frank Hennrich, pp.593-5961888, 2002.

F. Wang, G. Dukovic, E. Louis, T. F. Brus, and . Heinz, The Optical Resonances in Carbon Nanotubes Arise from Excitons, Science, vol.308, issue.5723, pp.838-841, 2005.
DOI : 10.1126/science.1110265

Y. Miyauchi, R. Saito, K. Sato, Y. Ohno, S. Iwasaki et al., Dependence of exciton transition energy of single-walled carbon nanotubes on surrounding dielectric materials, Chemical Physics Letters, vol.442, issue.4-6, pp.394-399, 2007.
DOI : 10.1016/j.cplett.2007.06.018

F. Vialla, Y. Chassagneux, R. Ferreira, C. Roquelet, C. Diederichs et al., Unifying the Low-Temperature Photoluminescence Spectra of Carbon Nanotubes: The Role of Acoustic Phonon Confinement, Physical Review Letters, vol.113, issue.5, pp.57402-110, 1920.
DOI : 10.1103/PhysRevLett.113.057402

URL : https://hal.archives-ouvertes.fr/hal-01066160

A. Hogele, C. Galland, M. Winger, and A. Imamoglu, Photon Antibunching in the Photoluminescence Spectra of a Single Carbon Nanotube, Physical Review Letters, vol.100, issue.21, pp.217401-131, 2008.
DOI : 10.1103/PhysRevLett.100.217401

Y. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, Femtosecond Spectroscopy of Optical Excitations in Single-Walled Carbon Nanotubes: Evidence for Exciton-Exciton Annihilation, Physical Review Letters, vol.94, issue.15, pp.157402-260, 2005.
DOI : 10.1103/PhysRevLett.94.157402

M. Silvia, B. Santos, S. Yuma, J. Berciaud, M. Shaver et al., All-optical trion generation in single-walled carbon nanotubes, Phys. Rev. Lett, vol.107, pp.187401-260, 2011.

Y. Murakami and J. Kono, Existence of an upper limit on the density of excitons in carbon nanotubes by diffusion-limited exciton-exciton annihilation: Experiment and theory, Physical Review B, vol.80, issue.3, pp.35432-260, 2009.
DOI : 10.1103/PhysRevB.80.035432

C. Georgi, A. A. Green, M. C. Hersam, and A. Hartschuh, Probing Exciton Localization in Single-Walled Carbon Nanotubes Using High-Resolution Near-Field Microscopy, ACS Nano, vol.4, issue.10, pp.5914-5920, 2010.
DOI : 10.1021/nn101443d

S. Matthias, J. T. Hofmann, J. Glückert, C. Noé, R. Bourjau et al., Bright, long-lived and coherent excitons in carbon nanotube quantum dots, Nature nanotechnology, vol.8, issue.123, pp.502-505, 2013.

X. Ma, F. Nicolai, . Hartmann, K. Jon, . Baldwin et al., Room-temperature single-photon generation from solitary dopants of carbon nanotubes, Nature Nanotechnology, vol.10, issue.8, pp.671-675, 0206.
DOI : 10.1007/s12274-014-0680-z

T. Endo, J. Ishi-hayase, and H. Maki, Photon antibunching in single-walled carbon nanotubes at telecommunication wavelengths and room temperature, Applied Physics Letters, vol.106, issue.11, p.263, 0206.
DOI : 10.1103/PhysRevB.73.245424

F. Pyatkov, V. Futterling, S. Khasminskaya, B. S. Flavel, F. Hennrich et al., Cavity-enhanced light emission from electrically driven carbon nanotubes, Nature Photonics, vol.5, issue.6, pp.420-427, 0206.
DOI : 10.1038/nphoton.2016.70

S. Khasminskaya, F. Pyatkov, K. S?owik, S. Ferrari, O. Kahl et al., Fully integrated quantum photonic circuit with an electrically driven light source, Nature Photonics, vol.5, issue.11, pp.727-732, 2016.
DOI : 10.1038/nphoton.2016.178

E. Mills and P. , Spontaneous emission probabilities at radio frequencies, Physical Review, vol.69, pp.681-261, 1946.

R. Miura, . Imamura, . Ohta, . Ishii, . Liu et al., Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters, Nature Communications, vol.1, issue.261, p.263, 2014.
DOI : 10.1038/ncomms6580

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, W. Theodor et al., A fiber Fabry???Perot cavity with high finesse, New Journal of Physics, vol.12, issue.6, pp.65038-76, 2010.
DOI : 10.1088/1367-2630/12/6/065038

A. Auffeves, J. Gérard, and J. Poizat, Pure emitter dephasing: A resource for advanced solid-state single-photon sources, Physical Review A, vol.79, issue.5, pp.53838-261, 1920.
DOI : 10.1103/PhysRevA.79.053838

URL : https://hal.archives-ouvertes.fr/hal-00999555

A. Auffeves, D. Gerace, J. Gérard, M. Fran-Ça-santos, L. C. Andreani et al., Controlling the dynamics of a coupled atom-cavity system by pure dephasing, Physical Review B, vol.81, issue.24, pp.245419-261, 1998.
DOI : 10.1103/PhysRevB.81.245419

URL : https://hal.archives-ouvertes.fr/hal-00710232

A. Akimov, C. Mukherjee, D. Yu, . Chang, . Zibrov et al., Generation of single optical plasmons in metallic nanowires coupled to quantum dots, Nature, vol.94, issue.7168, pp.450402-406, 2007.
DOI : 10.1038/nature06230

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn et al., Strong coupling in a single quantum dot???semiconductor microcavity system, Nature, vol.65, issue.7014, pp.432197-200, 2004.
DOI : 10.1103/PhysRevLett.89.233001

N. Le-thomas, . Woggon, . Schöps, . Artemyev, U. Kazes et al., Cavity QED with Semiconductor Nanocrystals, Nano Letters, vol.6, issue.3, pp.557-561, 2006.
DOI : 10.1021/nl060003v

Y. Park, K. Andrew, H. Cook, and . Wang, Cavity QED with Diamond Nanocrystals and Silica Microspheres, Nano Letters, vol.6, issue.9, pp.2075-2079, 2006.
DOI : 10.1021/nl061342r

URL : http://arxiv.org/abs/cond-mat/0608493

S. Berger, C. Voisin, C. Cassabois, P. Delalande, X. Roussignol et al., Temperature Dependence of Exciton Recombination in Semiconducting Single-Wall Carbon Nanotubes, Nano Letters, vol.7, issue.2, pp.398-402, 0209.
DOI : 10.1021/nl062609p

URL : https://hal.archives-ouvertes.fr/hal-00123080

M. Fox, Quantum Optics: An Introduction: An Introduction, OUP Oxford, vol.9, issue.170, pp.169-173, 2006.

S. Haroche and J. Raimond, Exploring the quantum: atoms, cavities, and photons, p.13, 2006.
DOI : 10.1093/acprof:oso/9780198509141.001.0001

L. C. Andreani, G. Panzarini, and J. Gérard, Strong-coupling regime for quantum boxes in pillar microcavities: Theory, Physical Review B, vol.60, issue.19, pp.13276-80, 1999.
DOI : 10.1103/PhysRevB.60.13276

V. Giesz, Cavity-enhanced Photon-Photon Interactions With Bright Quantum Dot Sources, p.209, 2015.
DOI : 10.1103/physrevb.92.161302

URL : https://hal.archives-ouvertes.fr/tel-01272948

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator, Physical Review Letters, vol.58, issue.13, pp.1320-1323, 1987.
DOI : 10.1103/PhysRevLett.58.1320

P. Goy, . Jm-raimond, S. Gross, and . Haroche, Observation of cavity-enhanced single-atom spontaneous emission. Physical review letters, pp.1903-1921, 1983.

J. Dreyer, Atomes de Rydberg et cavités : observation de la décohérence dans une mesure quantique. Theses, 1997.

R. Wolf-von-klitzing, . Long, S. Vladimir, J. Ilchenko, and . Hare, Tunable whispering gallery modes for spectroscopy and CQED experiments, New Journal of Physics, vol.3, issue.1, pp.14-19, 2001.
DOI : 10.1088/1367-2630/3/1/314

L. Collot, V. Lefevre-seguin, M. Brune, S. Jm-raimond, and . Haroche, Whispering-Gallery Mode Resonances Observed on Fused Silica Microspheres, Europhysics Letters (EPL), vol.23, issue.5, pp.327-346, 1993.
DOI : 10.1209/0295-5075/23/5/005

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin et al., Ultralong Dephasing Time in InGaAs Quantum Dots, Physical Review Letters, vol.87, issue.15, p.157401, 1920.
DOI : 10.1103/PhysRevLett.87.157401

A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande et al., Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot, Nature Physics, vol.22, issue.11, pp.759-764, 1920.
DOI : 10.1103/PhysRevB.68.233301

URL : https://hal.archives-ouvertes.fr/hal-00105812

X. Ma, O. Roslyak, F. Wang, J. G. Duque, A. Piryatinski et al., Influence of Exciton Dimensionality on Spectral Diffusion of Single-Walled Carbon Nanotubes, ACS Nano, vol.8, issue.10, pp.10613-10620, 2014.
DOI : 10.1021/nn504138m

M. W. Graham, Y. Ma, A. A. Green, M. C. Hersam, and G. R. Fleming, Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes, The Journal of Chemical Physics, vol.15, issue.3, pp.34504-34524, 2011.
DOI : 10.1126/science.1141316

M. Munsch, Étude du régime de Purcell pour une boîte quantique unique dans une microcavité semiconductrice. Vers une non-linéarité optique géante, p.209, 2009.

A. Dousse, J. Suffczy?ski, A. Beveratos, O. Krebs, A. Lemaître et al., Ultrabright source of entangled photon pairs, Nature, vol.76, issue.7303, pp.466217-220, 2010.
DOI : 10.1038/nature09148

O. Gazzano, S. Michaelis-de-vasconcellos, . Arnold, . Nowak, . Galopin et al., Bright solid-state sources of indistinguishable single photons, Nature Communications, vol.108, pp.1425-1450, 2013.
DOI : 10.1038/ncomms2434

E. Peter, P. Senellart, D. Martrou, A. Lemaître, . Hours et al., Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity, Physical Review Letters, vol.95, issue.6, pp.67401-782828, 2001.
DOI : 10.1103/PhysRevLett.95.067401

. Se-heon, S. Kim, Y. Kim, and . Lee, Vertical beaming of wavelength-scale photonic crystal resonators, Physical Review B, vol.73, issue.23, pp.235117-235144, 2006.

Y. Akahane, T. Asano, B. Song, and S. Noda, High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature, vol.425, issue.6961, pp.944-947, 2003.
DOI : 10.1038/nature02063

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang et al., Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal, Physical Review Letters, vol.95, issue.1, pp.13904-13931, 2005.
DOI : 10.1103/PhysRevLett.95.013904

S. Laurent, L. Varoutsis, . Gratiet, . Lemaître, . Sagnes et al., Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity, Applied Physics Letters, vol.87, issue.16, pp.163107-163134, 2005.
DOI : 10.1016/S0022-2313(01)00363-5

T. Yoshie, A. Scherer, . Hendrickson, . Khitrova, . Gibbs et al., Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature, vol.89, issue.7014, pp.432200-203, 2004.
DOI : 10.1038/nature03119

S. Mark, . Tame, . Mcenery, . ?k-Özdemir, . Lee et al., Quantum plasmonics, Nature Physics, vol.9, issue.6, pp.329-340, 2013.

Y. Giuliana-di-martino, S. Sonnefraud, M. Kéna-cohen, . Tame, K. Sahin et al., Quantum Statistics of Surface Plasmon Polaritons in Metallic Stripe Waveguides, Nano Letters, vol.12, issue.5, pp.2504-2508, 2012.
DOI : 10.1021/nl300671w

R. Carminati, J. Greffet, C. Henkel, and J. Vigoureux, Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle, Optics Communications, vol.261, issue.2, pp.368-375, 2006.
DOI : 10.1016/j.optcom.2005.12.009

URL : https://hal.archives-ouvertes.fr/hal-00133243

G. Alberto, G. Curto, . Volpe, H. Tim, . Taminiau et al., Unidirectional emission of a quantum dot coupled to a nanoantenna, Science, issue.5994, pp.329930-933, 2010.

M. Kuttge, F. J. García-de-abajo, and A. Polman, Ultrasmall Mode Volume Plasmonic Nanodisk Resonators, Nano Letters, vol.10, issue.5, pp.1537-1541, 2010.
DOI : 10.1021/nl902546r

Y. Gong and J. Vu?kovi?, Design of plasmon cavities for solid-state cavity quantum electrodynamics applications, Applied Physics Letters, vol.90, issue.3, pp.33113-33140, 2007.
DOI : 10.1063/1.555614

N. Mauser, N. Hartmann, S. Matthias, J. Hofmann, A. Janik et al., Antenna-Enhanced Optoelectronic Probing of Carbon Nanotubes, Nano Letters, vol.14, issue.7, pp.3773-3778, 2014.
DOI : 10.1021/nl5006959

N. P. De-leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov et al., Tailoring Light-Matter Interaction with a Nanoscale Plasmon Resonator, Physical Review Letters, vol.108, issue.22, p.226803, 1928.
DOI : 10.1103/PhysRevLett.108.226803

A. Badolato, K. Hennessy, E. Mete-atatüre-dreiser, . Hu, M. Pierre et al., Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes, Science, vol.308, issue.5725, pp.1158-1161, 2005.
DOI : 10.1126/science.1109815

A. Dousse, L. Lanco, J. Suffczy?ski, E. Semenova, A. Miard et al., Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography, Physical Review Letters, vol.101, issue.26, p.267404, 1928.
DOI : 10.1103/PhysRevLett.101.267404

C. Valerie, . Moore, S. Michael, . Strano, H. Erik et al., Individually suspended single-walled carbon nanotubes in various surfactants, Nano letters, vol.3, issue.10, pp.1379-1382, 2003.

E. Gaufrès, N. Izard, X. L. Roux, S. Kazaoui, D. Marris-morini et al., Optical microcavity with semiconducting single-wall carbon nanotubes, Optics Express, vol.18, issue.6, pp.5740-5745, 2010.
DOI : 10.1364/OE.18.005740

D. Legrand, C. Roquelet, G. Lanty, . Ph, X. Roussignol et al., Monolithic microcavity with carbon nanotubes as active material, Applied Physics Letters, vol.102, issue.15, pp.2013-2044
DOI : 10.1063/1.3116723

URL : https://hal.archives-ouvertes.fr/hal-00829153

M. Fujiwara, D. Tsuya, and H. Maki, Electrically driven, narrow-linewidth blackbody emission from carbon nanotube microcavity devices, Applied Physics Letters, vol.103, issue.14, p.30, 2013.
DOI : 10.1109/3.328610

E. Gaufrès, N. Izard, A. Noury, X. L. Roux, G. Rasigade et al., Light emission in silicon from carbon nanotubes Controlling carbon nanotube photoluminescence using silicon microring resonators, ACS Nano Nanotechnology, vol.680, issue.32, pp.3813-3819, 2012.

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt et al., Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals, Nano Letters, vol.16, issue.5, pp.3278-3284, 2016.
DOI : 10.1021/acs.nanolett.6b00827

S. Khasminskaya, F. Pyatkov, B. S. Flavel, W. H. Pernice, and R. Krupke, Waveguide-Integrated Light-Emitting Carbon Nanotubes, Advanced Materials, vol.2, issue.21, pp.3465-3472, 2014.
DOI : 10.1002/adma.201305634

C. Thierry-bastin, . Thiel, . Solano, G. Zanthier, and . Agarwal, Quantum imaging with uncorrelated single photon sources, Optical Engineering+ Applications 70920C?70920C. International Society for Optics and Photonics, p.171, 2008.

T. Mueller, M. Kinoshita, M. Steiner, V. Perebeinos, A. Ageeth et al., Efficient narrow-band light emission from a single carbon nanotube p???n diode, Nature Nanotechnology, vol.6, issue.1, pp.27-31, 2010.
DOI : 10.1038/nnano.2009.319

URL : http://arxiv.org/abs/1004.5562

F. Xia, M. Steiner, Y. Lin, and P. Avouris, A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths, Nature Nanotechnology, vol.314, issue.10, pp.609-613, 2008.
DOI : 10.1038/nnano.2008.241

S. Liang, Z. Ma, G. Wu, N. Wei, L. Huang et al., Microcavity-Integrated Carbon Nanotube Photodetectors, ACS Nano, vol.10, issue.7, pp.6963-6971, 2016.
DOI : 10.1021/acsnano.6b02898

S. Imamura, R. Watahiki, R. Miura, T. Shimada, and Y. K. Kato, Optical control of individual carbon nanotube light emitters by spectral double resonance in silicon microdisk resonators, Applied Physics Letters, vol.102, issue.16, pp.2013-2049
DOI : 10.1126/science.1155441

R. Watahiki, T. Shimada, P. Zhao, S. Chiashi, S. Iwamoto et al., Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities, Applied Physics Letters, vol.101, issue.14, pp.2012-131
DOI : 10.1063/1.3443634

T. Hümmer, J. Noe, S. Matthias, . Hofmann, W. Theodor et al., Cavity-enhanced raman microscopy of individual carbon nanotubes, Nat Comms, vol.7, p.131, 2016.

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero et al., Cavity-enhanced optical detection of carbon nanotube Brownian motion, Applied Physics Letters, vol.102, issue.15, pp.151910-151949, 2013.
DOI : 10.1038/nature09933

S. Berger, Etude optique de la dynamique des interactions électroniques dans des nanotubes de carbone, p.56, 2007.

F. Vialla, Interaction between carbon nanotubes and their physico-chemical environment : towards the control of the optical properties. Theses, p.209, 2014.
URL : https://hal.archives-ouvertes.fr/tel-00971753

B. Langlois, Propriétés optiques hors-équilibre des nanotubes de carbone nus ou fonctionnalisés, ThÃ?se de doctorat dirigée par Voisin, p.209, 2014.

G. Dukovic, M. Balaz, P. Doak, D. Nina, M. Berova et al., Racemic Single-Walled Carbon Nanotubes Exhibit Circular Dichroism When Wrapped with DNA, Journal of the American Chemical Society, vol.128, issue.28, pp.9004-9005, 2006.
DOI : 10.1021/ja062095w

A. H. Castro-neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Reviews of Modern Physics, vol.81, issue.1, pp.109-162, 2009.
DOI : 10.1103/RevModPhys.81.109

J. Mintmire and C. White, Universal Density of States for Carbon Nanotubes, Physical Review Letters, vol.81, issue.12, pp.2506-52, 1998.
DOI : 10.1103/PhysRevLett.81.2506

E. Malic, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, Analytical approach to optical absorption in carbon nanotubes, Phys. Rev. B, vol.74, p.53, 2006.

A. Grüneis, R. Saito, G. G. Samsonidze, T. Kimura, M. A. Pimenta et al., point in graphite and carbon nanotubes, Physical Review B, vol.67, issue.16, pp.165402-53, 2003.
DOI : 10.1103/PhysRevB.67.165402

S. Uryu, T. Ando, J. Jiang, . Saito, . Grüneis et al., Exciton absorption of perpendicularly polarized light in carbon nanotubes, Physical Review B, vol.74, issue.15, pp.155411-423169, 2004.
DOI : 10.1103/PhysRevB.74.155411

J. Lefebvre, J. M. Fraser, P. Finnie, and Y. Homma, Photoluminescence from an individual single-walled carbon nanotube, Physical Review B, vol.69, issue.7, pp.75403-113, 2004.
DOI : 10.1103/PhysRevB.69.075403

M. F. Islam, D. E. Milkie, C. L. Kane, A. G. Yodh, and J. M. Kikkawa, Direct Measurement of the Polarized Optical Absorption Cross Section of Single-Wall Carbon Nanotubes, Physical Review Letters, vol.93, issue.3, pp.37404-54, 2004.
DOI : 10.1103/PhysRevLett.93.037404

Y. Matthew, T. Sfeir, F. Beetz, L. Wang, H. Huang et al., Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure, Science, issue.5773, pp.312554-556, 2006.

E. David, A. Aspnes, and . Studna, Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev, Physical Review B, vol.27, issue.2, pp.985-59, 1983.

F. Claus and . Klingshirn, Semiconductor optics, p.59, 2012.

R. Loudon, One-Dimensional Hydrogen Atom, American Journal of Physics, vol.27, issue.9, pp.649-655, 1959.
DOI : 10.1119/1.1934950

F. Rossi and E. Molinari, Coulomb-induced suppression of band-edge singularities in the optical spectra of realistic quantum-wire structures. Physical review letters, pp.763642-59, 1996.

V. Perebeinos, J. Tersoff, and P. Avouris, Scaling of Excitons in Carbon Nanotubes, Physical Review Letters, vol.92, issue.25, pp.257402-59, 2004.
DOI : 10.1103/PhysRevLett.92.257402

F. Wang, Y. Wu, M. S. Hybertsen, and T. F. Heinz, Auger recombination of excitons in one-dimensional systems, Physical Review B, vol.73, issue.24, pp.245424-59, 2006.
DOI : 10.1103/PhysRevB.73.245424

T. Someya, H. Akiyama, and . Sakaki, Enhanced binding energy of onedimensional excitons in quantum wires. Physical review letters, pp.2965-59, 1996.

J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi et al., Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Physical Review B, vol.72, issue.24, pp.241402-59, 2005.
DOI : 10.1103/PhysRevB.72.241402

J. Lefebvre and P. Finnie, Excited Excitonic States in Single-Walled Carbon Nanotubes, Nano Letters, vol.8, issue.7, pp.1890-1895, 2008.
DOI : 10.1021/nl080518h

D. T. Nguyen, C. Voisin, . Ph, C. Roussignol, J. S. Roquelet et al., Elastic Exciton-Exciton Scattering in Photoexcited Carbon Nanotubes, Physical Review Letters, vol.107, issue.12, pp.127401-59, 2011.
DOI : 10.1103/PhysRevLett.107.127401

URL : https://hal.archives-ouvertes.fr/hal-00623859

L. Lüer, S. Hoseinkhani, D. Polli, J. Crochet, T. Hertel et al., Size and mobility of excitons in (6, 5) carbon??nanotubes, Nature Physics, vol.78, issue.1, pp.54-58, 2009.
DOI : 10.1038/nphys1149

. Louie, Diameter and chirality dependence of exciton properties in carbon nanotubes, Phys. Rev. B, vol.74, pp.121401-59, 2006.

E. Malic and A. Knorr, Graphene and Carbon Nanotubes: Ultrafast Optics and Relaxation Dynamics, p.60, 2013.
DOI : 10.1002/9783527658749

F. Plentz, H. B. Ribeiro, A. Jorio, M. S. Strano, and M. A. Pimenta, Direct Experimental Evidence of Exciton-Phonon Bound States in Carbon Nanotubes, Physical Review Letters, vol.95, issue.24, pp.247401-62, 2005.
DOI : 10.1103/PhysRevLett.95.247401

O. N. Torrens, M. Zheng, and J. M. Kikkawa, -Momentum Dark Excitons in Carbon Nanotubes by Optical Spectroscopy, Physical Review Letters, vol.101, issue.15, pp.157401-62, 2008.
DOI : 10.1103/PhysRevLett.101.157401

URL : https://hal.archives-ouvertes.fr/hal-00498610

R. Matsunaga, K. Matsuda, and Y. Kanemitsu, -momentum dark excitons and triplet dark excitons, Physical Review B, vol.81, issue.3, pp.33401-62, 2010.
DOI : 10.1103/PhysRevB.81.033401

URL : https://hal.archives-ouvertes.fr/in2p3-00522603

G. Louie, M. S. Dresselhaus, and . Dresselhaus, Selection rules for oneand two-photon absorption by excitons in carbon nanotubes, Phys. Rev. B, vol.73, pp.241406-61, 2006.

I. B. Mortimer and R. J. Nicholas, Role of Bright and Dark Excitons in the Temperature-Dependent Photoluminescence of Carbon Nanotubes, 61 REFERENCES [125] Morgane Gandil, Kazunari Matsuda Trends in Nanotechnology International Conference, pp.27404-61, 2007.
DOI : 10.1103/PhysRevLett.98.027404

M. Joseph, J. Singer, and . Grumer, Carbon formation in very rich hydrocarbon-air flames i. studies of chemical content, temperature, ionization and particulate matter, Symposium (International) on Combustion, pp.559-569, 1958.

M. Kumar and Y. Ando, Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production, Journal of Nanoscience and Nanotechnology, vol.10, issue.6, pp.3739-3758, 2010.
DOI : 10.1166/jnn.2010.2939

P. Nikolaev, J. Michael, K. Bronikowski, F. Bradley, . Rohmund et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, vol.313, issue.1-2, pp.91-97, 1999.
DOI : 10.1016/S0009-2614(99)01029-5

G. Lolli, L. Zhang, L. Balzano, N. Sakulchaicharoen, Y. Tan et al., ) Structure of Single-Walled Carbon Nanotubes by Modifying Reaction Conditions and the Nature of the Support of CoMo Catalysts, The Journal of Physical Chemistry B, vol.110, issue.5, pp.2108-2115, 2006.
DOI : 10.1021/jp056095e

J. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol et al., Ultrafast carrier dynamics in single-wall carbon nanotubes. Physical review letters, pp.57404-64, 2003.
DOI : 10.1103/physrevlett.90.057404

URL : https://hal.archives-ouvertes.fr/hal-00018421

A. Thess, R. Lee, P. Nikolaev, and H. Dai, Crystalline Ropes of Metallic Carbon Nanotubes, Science, vol.273, issue.5274, pp.483-64, 1996.
DOI : 10.1126/science.273.5274.483

A. Nish, J. Hwang, J. Doig, and R. J. Nicholas, Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers, Nature Nanotechnology, vol.222, issue.10, pp.640-646, 2007.
DOI : 10.1021/ja036622c

N. Izard, S. Kazaoui, K. Hata, T. Okazaki, T. Saito et al., Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors, Applied Physics Letters, vol.92, issue.24, pp.92243112-65, 2008.
DOI : 10.1021/nl0703727

URL : https://hal.archives-ouvertes.fr/hal-00444351

S. Berciaud, L. Cognet, P. Poulin, B. Bruce-weisman, and . Lounis, Absorption Spectroscopy of Individual Single-Walled Carbon Nanotubes, Nano Letters, vol.7, issue.5, pp.1203-1207, 2007.
DOI : 10.1021/nl062933k

URL : https://hal.archives-ouvertes.fr/hal-00143899

I. Sarpkaya, Z. Zhang, W. Walden-newman, X. Wang, J. Hone et al., Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes, Nature Communications, vol.3, p.66, 2013.
DOI : 10.1038/ncomms3152

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger et al., Strong atom???field coupling for Bose???Einstein condensates in an optical cavity on a chip, Nature, vol.74, issue.7167, pp.450272-276, 2007.
DOI : 10.1038/nature06331

URL : https://hal.archives-ouvertes.fr/hal-00264333

B. Besga, Micro-cavité Fabry Perot fibrée: une nouvelle approche pour l'étude des polaritons dans des hétérostructures semi-conductrices, pp.69-209, 2013.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity, Physical Review Letters, vol.110, issue.24, pp.243602-147, 2013.
DOI : 10.1103/PhysRevLett.110.243602

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell et al., Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity, Applied Physics Letters, vol.105, issue.7, p.69, 2014.
DOI : 10.1364/OE.20.019956

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer et al., Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond, Physical Review Applied, vol.7, issue.2, p.69, 2016.
DOI : 10.1103/PhysRevApplied.7.024031

G. Rempe, . Lalezari, H. Thompson, and . Kimble, Measurement of ultralow losses in an optical interferometer, Optics Letters, vol.17, issue.5, pp.363-365, 1992.
DOI : 10.1364/OL.17.000363

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick et al., High-quality near-field optical probes by tube etching, Applied Physics Letters, vol.75, issue.2, pp.160-162, 1999.
DOI : 10.1364/AO.37.007289

J. Sun, . Li, D. P. Maier, W. N. Hand, . Macpherson et al., Fabrication of a side aligned optical fibre interferometer by focused ion beam machining, Journal of Micromechanics and Microengineering, vol.23, issue.10, pp.105005-76, 2013.
DOI : 10.1088/0960-1317/23/10/105005

K. Watanabe, J. Schrauwen, A. Leinse, R. Thourhout, R. Heideman et al., Total reflection mirrors fabricated on silica waveguides with focused ion beam, Electronics Letters, vol.45, issue.17, pp.883-884, 2009.
DOI : 10.1049/el.2009.0473

R. Kitamura, L. Pilon, and M. Jonasz, Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature, Applied Optics, vol.46, issue.33, pp.8118-8133, 2007.
DOI : 10.1364/AO.46.008118

K. Ott, S. Garcia, R. Kohlhaas, P. Rosenbusch, and J. Reichel, Long high finesse fiber fabry-perot resonators, p.77, 2015.
DOI : 10.1117/12.2193901

S. Garcia, Fiber interfaces between single atoms and single photons. Theses, Ecole normale supérieure, pp.79-209, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01382230

D. Hunger, C. Deutsch, J. Russell, . Barbour, J. Richard et al., Laser micro-fabrication of concave, low-roughness features in silica, AIP Advances, vol.97, issue.1, pp.12119-78, 2012.
DOI : 10.1038/nature10225

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel et al., Transverse-mode coupling and diffraction loss in tunable Fabry???P??rot microcavities, New Journal of Physics, vol.17, issue.5, p.93
DOI : 10.1088/1367-2630/17/5/053051

URL : http://doi.org/10.1088/1367-2630/17/5/053051

L. Brovelli and U. Keller, Simple analytical expressions for the reflectivity and the penetration depth of a Bragg mirror between arbitrary media, Optics Communications, vol.116, issue.4-6, pp.343-350, 1995.
DOI : 10.1016/0030-4018(95)00084-L

A. P. Aurélien, P. R. Trichet, D. M. Dolan, G. M. Coles, J. M. Hughes et al., Topographic control of open-access microcavities at the nanometer scale, Opt. Express, vol.23, issue.13, pp.17205-17216, 2015.

R. Wagner and W. Tomlinson, Coupling efficiency of optics in single-mode fiber components, Applied Optics, vol.21, issue.15, pp.2671-2688, 1982.
DOI : 10.1364/AO.21.002671

W. B. Joyce and B. C. Deloach, Alignment of Gaussian beams, Applied Optics, vol.23, issue.23, pp.4187-4196, 1984.
DOI : 10.1364/AO.23.004187

A. Asadpour and H. Golnabi, Fiber Output Beam Shape Study Using Imaging Technique, Journal of Applied Sciences, vol.10, issue.4, pp.312-318, 2010.
DOI : 10.3923/jas.2010.312.318

H. Bennett and J. Porteus, Relation Between Surface Roughness and Specular Reflectance at Normal Incidence, Journal of the Optical Society of America, vol.51, issue.2, pp.123-129, 1961.
DOI : 10.1364/JOSA.51.000123

M. Jean and . Bennett, Recent developments in surface roughness characterization, Measurement Science and Technology, vol.3, issue.12, pp.1119-92, 1992.

G. Berden, R. Peeters, and G. Meijer, Cavity ring-down spectroscopy: Experimental schemes and applications, International Reviews in Physical Chemistry, vol.19, issue.4, pp.565-607, 2000.
DOI : 10.1080/014423500750040627

W. Moerner, P. David, and . Fromm, Methods of single-molecule fluorescence spectroscopy and microscopy, Review of Scientific Instruments, vol.247, issue.8, pp.3597-3619, 2003.
DOI : 10.1021/jp992324j

C. Galland, A. Högele, H. E. Türeci, and A. Imamo?lu, Non-Markovian Decoherence of Localized Nanotube Excitons by Acoustic Phonons, Physical Review Letters, vol.101, issue.6, pp.67402-118, 2008.
DOI : 10.1103/PhysRevLett.101.067402

H. Htoon, M. J. O-'connell, S. K. Doorn, and V. I. Klimov, Single Carbon Nanotubes Probed by Photoluminescence Excitation Spectroscopy: The Role of Phonon-Assisted Transitions, Physical Review Letters, vol.94, issue.12, pp.94127403-110, 2005.
DOI : 10.1103/PhysRevLett.94.127403

S. Berciaud, L. Cognet, and B. Lounis, Luminescence Decay and the Absorption Cross Section of Individual Single-Walled Carbon Nanotubes, Physical Review Letters, vol.101, issue.7, pp.77402-114, 2008.
DOI : 10.1103/PhysRevLett.101.077402

URL : https://hal.archives-ouvertes.fr/hal-00719454

N. Ai, W. Walden-newman, Q. Song, S. Kalliakos, and S. Strauf, Suppression of Blinking and Enhanced Exciton Emission from Individual Carbon Nanotubes, ACS Nano, vol.5, issue.4, pp.2664-2670, 2011.
DOI : 10.1021/nn102885p

C. Sheng, Z. V. Vardeny, R. Dalton, and . Baughman, Exciton dynamics in single-walled nanotubes:???Transient photoinduced dichroism and polarized emission, Physical Review B, vol.71, issue.12, pp.125427-115, 2005.
DOI : 10.1103/PhysRevB.71.125427

L. Cognet, A. Dmitri, J. Tsyboulski, . Rocha, D. Condell et al., Stepwise Quenching of Exciton Fluorescence in Carbon Nanotubes by Single-Molecule Reactions, Science, vol.126, issue.44, pp.3161465-1468, 2007.
DOI : 10.1021/ja046450z

URL : https://hal.archives-ouvertes.fr/hal-00164617

Y. Bertrand, Etude de la dynamique des états excités des nanotubes du carbone mono-paroi, p.115, 2013.

C. Galland, Quantum optics with single-wall carbon nanotubes. Theses, Eidgenössische Technische Hochschule Zürich, p.209, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00616058

M. S. Hofmann, J. Noé, A. Kneer, J. J. Crochet, and A. Högele, Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes, Nano Letters, vol.16, issue.5, pp.406-423, 1950.
DOI : 10.1021/acs.nanolett.5b04901

C. B. Duke and G. D. Mahan, Phonon-Broadened Impurity Spectra. I. Density of States, Physical Review, vol.139, issue.6A, pp.1965-1982, 1965.
DOI : 10.1103/PhysRev.139.A1965

B. Krummheuer, V. M. Axt, and T. Kuhn, Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots, Physical Review B, vol.65, issue.19, pp.186-256, 0116.
DOI : 10.1103/PhysRevB.65.195313

G. Pennington and N. Goldsman, Low-field semiclassical carrier transport in semiconducting carbon nanotubes, Physical Review B, vol.71, issue.20, 0117.
DOI : 10.1103/PhysRevB.71.205318

D. T. Nguyen, C. Voisin, . Ph, C. Roussignol, J. S. Roquelet et al., Phonon-induced dephasing in single-wall carbon nanotubes, Physical Review B, vol.84, issue.11, pp.115463-117, 2011.
DOI : 10.1103/PhysRevB.84.115463

URL : https://hal.archives-ouvertes.fr/hal-00627579

H. Suzuura and T. Ando, Phonons and electron-phonon scattering in carbon nanotubes, Physical Review B, vol.65, issue.23, p.235412, 0117.
DOI : 10.1103/PhysRevB.65.235412

L. Besombes, . Kheng, H. Marsal, and . Mariette, Acoustic phonon broadening mechanism in single quantum dot emission, Physical Review B, vol.63, issue.15, pp.155307-119, 2001.
DOI : 10.1103/PhysRevB.63.155307

I. Favero, G. Cassabois, . Ferreira, C. Darson, . Voisin et al., Acoustic phonon sidebands in the emission line of single InAs/GaAs quantum dots, Physical Review B, vol.68, issue.23, pp.68233301-119, 2003.
DOI : 10.1103/PhysRevB.68.233301

URL : https://hal.archives-ouvertes.fr/hal-00546643

I. Sarpkaya, D. Ehsaneh, . Ahmadi, D. Gabriella, . Shepard et al., Strong Acoustic Phonon Localization in Copolymer-Wrapped Carbon Nanotubes, ACS Nano, vol.9, issue.6, p.119, 2015.
DOI : 10.1021/acsnano.5b01997

V. Alexander, B. Savin, Y. S. Hu, and . Kivshar, Thermal conductivity of single-walled carbon nanotubes, Physical Review B, vol.80, issue.19, pp.195423-119, 2009.

M. Kim, L. Adamska, F. Nicolai, H. Hartmann, J. Kwon et al., Fluorescent Carbon Nanotube Defects Manifest Substantial Vibrational Reorganization, The Journal of Physical Chemistry C, vol.120, issue.20, p.119, 2016.
DOI : 10.1021/acs.jpcc.6b02538

C. Georgi, N. Hartmann, T. Gokus, A. Alexander, . Green et al., Photoinduced Luminescence Blinking and Bleaching in Individual Single???Walled Carbon Nanotubes, ChemPhysChem, vol.10, issue.10, pp.1460-1464, 2008.
DOI : 10.1002/cphc.200800179

P. Sher, . Smith, . Dalgarno, . Warburton, . Chen et al., Power law carrier dynamics in semiconductor nanocrystals at nanosecond timescales, Applied Physics Letters, vol.92, issue.10, pp.92101111-122, 2008.
DOI : 10.1017/CBO9780511755668

P. Frantsuzov, M. Kuno, B. Janko, A. Rudolph, and . Marcus, Universal emission intermittency in quantum dots, nanorods and nanowires, Nature Physics, vol.133, issue.5, pp.519-522, 2008.
DOI : 10.1103/PhysRevLett.75.1154

D. A. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann et al., Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect, Physical Review Letters, vol.53, issue.22, pp.2173-2176, 1984.
DOI : 10.1103/PhysRevLett.53.2173

S. A. Empedocles and M. G. Bawendi, Quantum-Confined Stark Effect in Single CdSe Nanocrystallite Quantum Dots, Science, vol.278, issue.5346, pp.2114-2117, 1997.
DOI : 10.1126/science.278.5346.2114

J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin et al., Monitoring Surface Charge Movement in Single Elongated Semiconductor Nanocrystals, Physical Review Letters, vol.93, issue.16, pp.167402-122, 2004.
DOI : 10.1103/PhysRevLett.93.167402

K. Matsuda, Y. Kanemitsu, T. Irie, . Saiki, . Someya et al., Photoluminescence intermittency in an individual single-walled carbon nanotube at room temperature, Applied Physics Letters, vol.86, issue.12, pp.123116-122, 2005.
DOI : 10.1103/PhysRevLett.83.5098

A. Hartschuh, N. Hermenegildo, J. Pedrosa, L. Peterson, P. Huang et al., Single Carbon Nanotube Optical Spectroscopy, ChemPhysChem, vol.93, issue.4, pp.577-582, 2005.
DOI : 10.1002/cphc.200400408

H. Htoon, M. O. Connell, . Cox, . Sk-doorn, I. Victor et al., Low Temperature Emission Spectra of Individual Single-Walled Carbon Nanotubes: Multiplicity of Subspecies within Single-Species Nanotube Ensembles, Physical Review Letters, vol.93, issue.2, pp.27401-122, 2004.
DOI : 10.1103/PhysRevLett.93.027401

O. Kiowski, S. Lebedkin, F. Hennrich, and M. M. Kappes, Single-walled carbon nanotubes show stable emission and simple photoluminescence spectra with weak excitation sidebands at cryogenic temperatures, Physical Review B, vol.76, issue.7, pp.75422-123, 2007.
DOI : 10.1103/PhysRevB.76.075422

W. Walden-newman, I. Sarpkaya, and S. Strauf, Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes REFERENCES [192] Hubert W Lilliefors. On the kolmogorov-smirnov test for normality with mean and variance unknown, Nano Letters Journal of the American Statistical Association, vol.12, issue.178318, pp.179-62399, 1934.
DOI : 10.1021/nl204402v

Z. Di, V. Helene, . Jones, R. Philip, . Dolan et al., Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities, New Journal of Physics, vol.14, issue.10, pp.14103048-131, 2012.
DOI : 10.1088/1367-2630/14/10/103048

M. Mader, J. Reichel, T. W. Hansch, and D. Hunger, A scanning cavity microscope, Nature Communications, vol.30, 0131.
DOI : 10.1038/ncomms8249

URL : http://doi.org/10.1038/ncomms8249

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter et al., Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity, Physical Review Applied, vol.6, issue.5, p.131, 2016.
DOI : 10.1103/PhysRevApplied.6.054010

URL : http://doi.org/10.1103/physrevapplied.6.054010

B. Besga, C. Vaneph, J. Reichel, J. Estève, A. Reinhard et al., Polariton Boxes in a Tunable Fiber Cavity, Physical Review Applied, vol.3, issue.1, pp.14008-131, 2015.
DOI : 10.1103/PhysRevApplied.3.014008

URL : http://arxiv.org/abs/1312.0819

J. Miguel-sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu et al., Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry???Perot cavity, New Journal of Physics, vol.15, issue.4, pp.45002-132, 2013.
DOI : 10.1088/1367-2630/15/4/045002

C. Reed, J. Giergiel, S. Hemminger, and . Ushioda, Dipole radiation in a multilayer geometry, Physical Review B, vol.36, issue.9, pp.4990-142, 1987.
DOI : 10.1103/PhysRevB.36.4990

W. Jhe, . Anderson, . Hinds, . Meschede, S. Moi et al., Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space. Physical review letters, pp.666-150, 1987.

A. Faraon, E. Paul, C. Barclay, . Santori, C. Kai-mei et al., Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity, Nature Photonics, vol.2, issue.5, pp.301-305, 2011.
DOI : 10.1038/nphoton.2011.52

R. G. Devoe and R. G. Brewer, Observation of Superradiant and Subradiant Spontaneous Emission of Two Trapped Ions, Physical Review Letters, vol.76, issue.12, pp.2049-2052, 1996.
DOI : 10.1103/PhysRevLett.76.2049

R. Proux, Indistinguishability of the photons emitted by a semiconductor quantum dot under continuous-wave resonant excitation, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01278553

C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks?, Journal of Modern Optics, vol.48, issue.13, pp.2039-2047, 2001.
DOI : 10.1063/1.118224

Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu et al., Brightening of excitons in carbon nanotubes on dimensionality modification, Nature Photonics, vol.80, issue.9, pp.715-719, 2013.
DOI : 10.1038/nphoton.2012.75

T. Grange, G. Hornecker, D. Hunger, J. Poizat, J. Gérard et al., Cavity-Funneled Generation of Indistinguishable Single Photons from Strongly Dissipative Quantum Emitters, Physical Review Letters, vol.114, issue.19, p.264, 0180.
DOI : 10.1103/PhysRevLett.114.193601

URL : https://hal.archives-ouvertes.fr/hal-01152522

D. Gerald and . Mahan, Many-particle physics, p.256, 2013.

G. Hornecker, A. Auffèves, and T. Grange, Influence of phonons on solid-state cavity-qed investigated using nonequilibrium green's functions. arXiv preprint, p.188, 2016.

A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. Fisher, A. Garg et al., Dynamics of the dissipative two-state system, Reviews of Modern Physics, vol.59, issue.1, pp.1-85, 1987.
DOI : 10.1103/RevModPhys.59.1

H. Dekker, Noninteracting-blip approximation for a two-level system coupled to a heat bath, Physical Review A, vol.35, issue.3, pp.1436-1437, 1987.
DOI : 10.1103/PhysRevA.35.1436

H. Dekker, Dynamics of the dissipative two-state system: The noninteractingblip approximation. Physica A: Statistical Mechanics and its Applications, pp.570-574, 1987.

P. Peter, A. Orth, K. L. Imambekov, and . Hur, Nonperturbative stochastic method for driven spin-boson model, Phys. Rev. B, vol.87, issue.188, pp.14305-252, 2013.

A. Jeantet, Y. Chassagneux, C. Raynaud, . Ph, J. S. Roussignol et al., Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime, Physical Review Letters, vol.116, issue.24, p.247402, 0193.
DOI : 10.1103/PhysRevLett.116.247402

F. Vialla, C. Roquelet, B. Langlois, G. Delport, S. M. Santos et al., Chirality dependence of the absorption cross section of carbon nanotubes High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices, Phys. Rev. Lett. Nature nanotechnology, vol.111, issue.812, pp.137402917-922, 0197.

C. Roquelet, B. Langlois, F. Vialla, D. Garrot, J. Lauret et al., Light harvesting with non covalent carbon nanotube/porphyrin compounds, Chemical Physics, vol.413, pp.45-54, 2013.
DOI : 10.1016/j.chemphys.2012.09.004

URL : https://hal.archives-ouvertes.fr/hal-00829151

M. Delbecq, V. Schmitt, N. Fd-parmentier, . Roch, G. Viennot et al., Coupling a Quantum Dot, Fermionic Leads, and a Microwave Cavity on a Chip, Physical Review Letters, vol.107, issue.25, pp.256804-206, 2011.
DOI : 10.1103/PhysRevLett.107.256804

URL : https://hal.archives-ouvertes.fr/hal-00657375

J. Kasprzak, . Richard, . Kundermann, . Baas, . Jeambrun et al., Bose???Einstein condensation of exciton polaritons, Nature, vol.214, issue.185, pp.443409-414, 2006.
DOI : 10.1038/nature05131

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lemaitre et al., Parametric oscillation in vertical triple microcavities, Nature, vol.37, issue.7086, pp.904-907, 2006.
DOI : 10.1038/nature04602

URL : https://hal.archives-ouvertes.fr/hal-00096360

T. Volz, A. Reinhard, M. Winger, A. Badolato, J. Kevin et al., Ultrafast all-optical switching by single photons, Nature Photonics, vol.108, issue.9, pp.605-609, 2012.
DOI : 10.1038/nphoton.2012.181

B. Richards and E. Wolf, Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp.358-379, 1959.
DOI : 10.1098/rspa.1959.0200

G. Zumofen, M. Nassiredin, M. Mojarad, and . Agio, Light scattering by an oscillating dipole in a focused beam, p.237, 2009.

E. Linfoot and E. Wolf, Diffraction Images in Systems with an Annular Aperture, Proceedings of the Physical Society. Section B, vol.66, issue.2, pp.145-240, 1953.
DOI : 10.1088/0370-1301/66/2/312

P. Mukherjee and L. Hazra, Two point resolution of annular apertures, p.240