135 5.1.2 Lens-Fiber mounting principle, p.138 ,
162 5.3.1 Statistics of a light source, p.166 ,
168 5.3.2 Second order correlation function, p.168 ,
Experimental realization of a localized one-photon state, Physical Review Letters, vol.56, issue.1, pp.58-60, 1986. ,
DOI : 10.1103/PhysRevLett.56.58
Quantum cryptography based on bell's theorem. Physical review letters, pp.661-259, 1991. ,
Single Photon Quantum Cryptography, Physical Review Letters, vol.89, issue.18, pp.187901-259, 2002. ,
DOI : 10.1103/PhysRevLett.89.187901
URL : https://hal.archives-ouvertes.fr/hal-00509134
Limitations on Practical Quantum Cryptography, Physical Review Letters, vol.85, issue.6, pp.1330-1333, 2000. ,
DOI : 10.1103/PhysRevLett.85.1330
A scheme for efficient quantum computation with linear optics, Nature, vol.409, issue.6816, pp.46-52, 2001. ,
DOI : 10.1038/35051009
Photonic quantum technologies, Nature Photonics, vol.3, issue.12 1, pp.687-695, 2009. ,
Near-optimal single-photon sources in the solid state, Nature Photonics, vol.5, issue.5, p.259, 2016. ,
DOI : 10.1038/nphoton.2016.23
URL : https://hal.archives-ouvertes.fr/hal-01386640
Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength, Nature, vol.1, issue.7424, pp.491421-425, 2012. ,
Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991. ,
DOI : 10.1038/354056a0
Mechanical properties of carbon nanotubes, Applied Physics A: Materials Science & Processing, vol.69, issue.3, pp.255-260, 0205. ,
DOI : 10.1007/s003390050999
Advances in the science and technology of carbon nanotubes and their composites: a review, Composites science and technology, issue.13, pp.611899-1912, 0205. ,
Band gap fluorescence from individual single-walled carbon nanotubes Length-sorted, large-diameter, polyfluorene-wrapped semiconducting single-walled carbon nanotubes for high-density, short-channel transistors, 260 REFERENCES [17] Frank Hennrich, pp.593-5961888, 2002. ,
The Optical Resonances in Carbon Nanotubes Arise from Excitons, Science, vol.308, issue.5723, pp.838-841, 2005. ,
DOI : 10.1126/science.1110265
Dependence of exciton transition energy of single-walled carbon nanotubes on surrounding dielectric materials, Chemical Physics Letters, vol.442, issue.4-6, pp.394-399, 2007. ,
DOI : 10.1016/j.cplett.2007.06.018
Unifying the Low-Temperature Photoluminescence Spectra of Carbon Nanotubes: The Role of Acoustic Phonon Confinement, Physical Review Letters, vol.113, issue.5, pp.57402-110, 1920. ,
DOI : 10.1103/PhysRevLett.113.057402
URL : https://hal.archives-ouvertes.fr/hal-01066160
Photon Antibunching in the Photoluminescence Spectra of a Single Carbon Nanotube, Physical Review Letters, vol.100, issue.21, pp.217401-131, 2008. ,
DOI : 10.1103/PhysRevLett.100.217401
Femtosecond Spectroscopy of Optical Excitations in Single-Walled Carbon Nanotubes: Evidence for Exciton-Exciton Annihilation, Physical Review Letters, vol.94, issue.15, pp.157402-260, 2005. ,
DOI : 10.1103/PhysRevLett.94.157402
All-optical trion generation in single-walled carbon nanotubes, Phys. Rev. Lett, vol.107, pp.187401-260, 2011. ,
Existence of an upper limit on the density of excitons in carbon nanotubes by diffusion-limited exciton-exciton annihilation: Experiment and theory, Physical Review B, vol.80, issue.3, pp.35432-260, 2009. ,
DOI : 10.1103/PhysRevB.80.035432
Probing Exciton Localization in Single-Walled Carbon Nanotubes Using High-Resolution Near-Field Microscopy, ACS Nano, vol.4, issue.10, pp.5914-5920, 2010. ,
DOI : 10.1021/nn101443d
Bright, long-lived and coherent excitons in carbon nanotube quantum dots, Nature nanotechnology, vol.8, issue.123, pp.502-505, 2013. ,
Room-temperature single-photon generation from solitary dopants of carbon nanotubes, Nature Nanotechnology, vol.10, issue.8, pp.671-675, 0206. ,
DOI : 10.1007/s12274-014-0680-z
Photon antibunching in single-walled carbon nanotubes at telecommunication wavelengths and room temperature, Applied Physics Letters, vol.106, issue.11, p.263, 0206. ,
DOI : 10.1103/PhysRevB.73.245424
Cavity-enhanced light emission from electrically driven carbon nanotubes, Nature Photonics, vol.5, issue.6, pp.420-427, 0206. ,
DOI : 10.1038/nphoton.2016.70
Fully integrated quantum photonic circuit with an electrically driven light source, Nature Photonics, vol.5, issue.11, pp.727-732, 2016. ,
DOI : 10.1038/nphoton.2016.178
Spontaneous emission probabilities at radio frequencies, Physical Review, vol.69, pp.681-261, 1946. ,
Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters, Nature Communications, vol.1, issue.261, p.263, 2014. ,
DOI : 10.1038/ncomms6580
A fiber Fabry???Perot cavity with high finesse, New Journal of Physics, vol.12, issue.6, pp.65038-76, 2010. ,
DOI : 10.1088/1367-2630/12/6/065038
Pure emitter dephasing: A resource for advanced solid-state single-photon sources, Physical Review A, vol.79, issue.5, pp.53838-261, 1920. ,
DOI : 10.1103/PhysRevA.79.053838
URL : https://hal.archives-ouvertes.fr/hal-00999555
Controlling the dynamics of a coupled atom-cavity system by pure dephasing, Physical Review B, vol.81, issue.24, pp.245419-261, 1998. ,
DOI : 10.1103/PhysRevB.81.245419
URL : https://hal.archives-ouvertes.fr/hal-00710232
Generation of single optical plasmons in metallic nanowires coupled to quantum dots, Nature, vol.94, issue.7168, pp.450402-406, 2007. ,
DOI : 10.1038/nature06230
Strong coupling in a single quantum dot???semiconductor microcavity system, Nature, vol.65, issue.7014, pp.432197-200, 2004. ,
DOI : 10.1103/PhysRevLett.89.233001
Cavity QED with Semiconductor Nanocrystals, Nano Letters, vol.6, issue.3, pp.557-561, 2006. ,
DOI : 10.1021/nl060003v
Cavity QED with Diamond Nanocrystals and Silica Microspheres, Nano Letters, vol.6, issue.9, pp.2075-2079, 2006. ,
DOI : 10.1021/nl061342r
URL : http://arxiv.org/abs/cond-mat/0608493
Temperature Dependence of Exciton Recombination in Semiconducting Single-Wall Carbon Nanotubes, Nano Letters, vol.7, issue.2, pp.398-402, 0209. ,
DOI : 10.1021/nl062609p
URL : https://hal.archives-ouvertes.fr/hal-00123080
Quantum Optics: An Introduction: An Introduction, OUP Oxford, vol.9, issue.170, pp.169-173, 2006. ,
Exploring the quantum: atoms, cavities, and photons, p.13, 2006. ,
DOI : 10.1093/acprof:oso/9780198509141.001.0001
Strong-coupling regime for quantum boxes in pillar microcavities: Theory, Physical Review B, vol.60, issue.19, pp.13276-80, 1999. ,
DOI : 10.1103/PhysRevB.60.13276
Cavity-enhanced Photon-Photon Interactions With Bright Quantum Dot Sources, p.209, 2015. ,
DOI : 10.1103/physrevb.92.161302
URL : https://hal.archives-ouvertes.fr/tel-01272948
Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator, Physical Review Letters, vol.58, issue.13, pp.1320-1323, 1987. ,
DOI : 10.1103/PhysRevLett.58.1320
Observation of cavity-enhanced single-atom spontaneous emission. Physical review letters, pp.1903-1921, 1983. ,
Atomes de Rydberg et cavités : observation de la décohérence dans une mesure quantique. Theses, 1997. ,
Tunable whispering gallery modes for spectroscopy and CQED experiments, New Journal of Physics, vol.3, issue.1, pp.14-19, 2001. ,
DOI : 10.1088/1367-2630/3/1/314
Whispering-Gallery Mode Resonances Observed on Fused Silica Microspheres, Europhysics Letters (EPL), vol.23, issue.5, pp.327-346, 1993. ,
DOI : 10.1209/0295-5075/23/5/005
Ultralong Dephasing Time in InGaAs Quantum Dots, Physical Review Letters, vol.87, issue.15, p.157401, 1920. ,
DOI : 10.1103/PhysRevLett.87.157401
Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot, Nature Physics, vol.22, issue.11, pp.759-764, 1920. ,
DOI : 10.1103/PhysRevB.68.233301
URL : https://hal.archives-ouvertes.fr/hal-00105812
Influence of Exciton Dimensionality on Spectral Diffusion of Single-Walled Carbon Nanotubes, ACS Nano, vol.8, issue.10, pp.10613-10620, 2014. ,
DOI : 10.1021/nn504138m
Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes, The Journal of Chemical Physics, vol.15, issue.3, pp.34504-34524, 2011. ,
DOI : 10.1126/science.1141316
Étude du régime de Purcell pour une boîte quantique unique dans une microcavité semiconductrice. Vers une non-linéarité optique géante, p.209, 2009. ,
Ultrabright source of entangled photon pairs, Nature, vol.76, issue.7303, pp.466217-220, 2010. ,
DOI : 10.1038/nature09148
Bright solid-state sources of indistinguishable single photons, Nature Communications, vol.108, pp.1425-1450, 2013. ,
DOI : 10.1038/ncomms2434
Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity, Physical Review Letters, vol.95, issue.6, pp.67401-782828, 2001. ,
DOI : 10.1103/PhysRevLett.95.067401
Vertical beaming of wavelength-scale photonic crystal resonators, Physical Review B, vol.73, issue.23, pp.235117-235144, 2006. ,
High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature, vol.425, issue.6961, pp.944-947, 2003. ,
DOI : 10.1038/nature02063
Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal, Physical Review Letters, vol.95, issue.1, pp.13904-13931, 2005. ,
DOI : 10.1103/PhysRevLett.95.013904
Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity, Applied Physics Letters, vol.87, issue.16, pp.163107-163134, 2005. ,
DOI : 10.1016/S0022-2313(01)00363-5
Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature, vol.89, issue.7014, pp.432200-203, 2004. ,
DOI : 10.1038/nature03119
Quantum plasmonics, Nature Physics, vol.9, issue.6, pp.329-340, 2013. ,
Quantum Statistics of Surface Plasmon Polaritons in Metallic Stripe Waveguides, Nano Letters, vol.12, issue.5, pp.2504-2508, 2012. ,
DOI : 10.1021/nl300671w
Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle, Optics Communications, vol.261, issue.2, pp.368-375, 2006. ,
DOI : 10.1016/j.optcom.2005.12.009
URL : https://hal.archives-ouvertes.fr/hal-00133243
Unidirectional emission of a quantum dot coupled to a nanoantenna, Science, issue.5994, pp.329930-933, 2010. ,
Ultrasmall Mode Volume Plasmonic Nanodisk Resonators, Nano Letters, vol.10, issue.5, pp.1537-1541, 2010. ,
DOI : 10.1021/nl902546r
Design of plasmon cavities for solid-state cavity quantum electrodynamics applications, Applied Physics Letters, vol.90, issue.3, pp.33113-33140, 2007. ,
DOI : 10.1063/1.555614
Antenna-Enhanced Optoelectronic Probing of Carbon Nanotubes, Nano Letters, vol.14, issue.7, pp.3773-3778, 2014. ,
DOI : 10.1021/nl5006959
Tailoring Light-Matter Interaction with a Nanoscale Plasmon Resonator, Physical Review Letters, vol.108, issue.22, p.226803, 1928. ,
DOI : 10.1103/PhysRevLett.108.226803
Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes, Science, vol.308, issue.5725, pp.1158-1161, 2005. ,
DOI : 10.1126/science.1109815
Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography, Physical Review Letters, vol.101, issue.26, p.267404, 1928. ,
DOI : 10.1103/PhysRevLett.101.267404
Individually suspended single-walled carbon nanotubes in various surfactants, Nano letters, vol.3, issue.10, pp.1379-1382, 2003. ,
Optical microcavity with semiconducting single-wall carbon nanotubes, Optics Express, vol.18, issue.6, pp.5740-5745, 2010. ,
DOI : 10.1364/OE.18.005740
Monolithic microcavity with carbon nanotubes as active material, Applied Physics Letters, vol.102, issue.15, pp.2013-2044 ,
DOI : 10.1063/1.3116723
URL : https://hal.archives-ouvertes.fr/hal-00829153
Electrically driven, narrow-linewidth blackbody emission from carbon nanotube microcavity devices, Applied Physics Letters, vol.103, issue.14, p.30, 2013. ,
DOI : 10.1109/3.328610
Light emission in silicon from carbon nanotubes Controlling carbon nanotube photoluminescence using silicon microring resonators, ACS Nano Nanotechnology, vol.680, issue.32, pp.3813-3819, 2012. ,
Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals, Nano Letters, vol.16, issue.5, pp.3278-3284, 2016. ,
DOI : 10.1021/acs.nanolett.6b00827
Waveguide-Integrated Light-Emitting Carbon Nanotubes, Advanced Materials, vol.2, issue.21, pp.3465-3472, 2014. ,
DOI : 10.1002/adma.201305634
Quantum imaging with uncorrelated single photon sources, Optical Engineering+ Applications 70920C?70920C. International Society for Optics and Photonics, p.171, 2008. ,
Efficient narrow-band light emission from a single carbon nanotube p???n diode, Nature Nanotechnology, vol.6, issue.1, pp.27-31, 2010. ,
DOI : 10.1038/nnano.2009.319
URL : http://arxiv.org/abs/1004.5562
A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths, Nature Nanotechnology, vol.314, issue.10, pp.609-613, 2008. ,
DOI : 10.1038/nnano.2008.241
Microcavity-Integrated Carbon Nanotube Photodetectors, ACS Nano, vol.10, issue.7, pp.6963-6971, 2016. ,
DOI : 10.1021/acsnano.6b02898
Optical control of individual carbon nanotube light emitters by spectral double resonance in silicon microdisk resonators, Applied Physics Letters, vol.102, issue.16, pp.2013-2049 ,
DOI : 10.1126/science.1155441
Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities, Applied Physics Letters, vol.101, issue.14, pp.2012-131 ,
DOI : 10.1063/1.3443634
Cavity-enhanced raman microscopy of individual carbon nanotubes, Nat Comms, vol.7, p.131, 2016. ,
Cavity-enhanced optical detection of carbon nanotube Brownian motion, Applied Physics Letters, vol.102, issue.15, pp.151910-151949, 2013. ,
DOI : 10.1038/nature09933
Etude optique de la dynamique des interactions électroniques dans des nanotubes de carbone, p.56, 2007. ,
Interaction between carbon nanotubes and their physico-chemical environment : towards the control of the optical properties. Theses, p.209, 2014. ,
URL : https://hal.archives-ouvertes.fr/tel-00971753
Propriétés optiques hors-équilibre des nanotubes de carbone nus ou fonctionnalisés, ThÃ?se de doctorat dirigée par Voisin, p.209, 2014. ,
Racemic Single-Walled Carbon Nanotubes Exhibit Circular Dichroism When Wrapped with DNA, Journal of the American Chemical Society, vol.128, issue.28, pp.9004-9005, 2006. ,
DOI : 10.1021/ja062095w
The electronic properties of graphene, Reviews of Modern Physics, vol.81, issue.1, pp.109-162, 2009. ,
DOI : 10.1103/RevModPhys.81.109
Universal Density of States for Carbon Nanotubes, Physical Review Letters, vol.81, issue.12, pp.2506-52, 1998. ,
DOI : 10.1103/PhysRevLett.81.2506
Analytical approach to optical absorption in carbon nanotubes, Phys. Rev. B, vol.74, p.53, 2006. ,
point in graphite and carbon nanotubes, Physical Review B, vol.67, issue.16, pp.165402-53, 2003. ,
DOI : 10.1103/PhysRevB.67.165402
Exciton absorption of perpendicularly polarized light in carbon nanotubes, Physical Review B, vol.74, issue.15, pp.155411-423169, 2004. ,
DOI : 10.1103/PhysRevB.74.155411
Photoluminescence from an individual single-walled carbon nanotube, Physical Review B, vol.69, issue.7, pp.75403-113, 2004. ,
DOI : 10.1103/PhysRevB.69.075403
Direct Measurement of the Polarized Optical Absorption Cross Section of Single-Wall Carbon Nanotubes, Physical Review Letters, vol.93, issue.3, pp.37404-54, 2004. ,
DOI : 10.1103/PhysRevLett.93.037404
Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure, Science, issue.5773, pp.312554-556, 2006. ,
Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev, Physical Review B, vol.27, issue.2, pp.985-59, 1983. ,
Semiconductor optics, p.59, 2012. ,
One-Dimensional Hydrogen Atom, American Journal of Physics, vol.27, issue.9, pp.649-655, 1959. ,
DOI : 10.1119/1.1934950
Coulomb-induced suppression of band-edge singularities in the optical spectra of realistic quantum-wire structures. Physical review letters, pp.763642-59, 1996. ,
Scaling of Excitons in Carbon Nanotubes, Physical Review Letters, vol.92, issue.25, pp.257402-59, 2004. ,
DOI : 10.1103/PhysRevLett.92.257402
Auger recombination of excitons in one-dimensional systems, Physical Review B, vol.73, issue.24, pp.245424-59, 2006. ,
DOI : 10.1103/PhysRevB.73.245424
Enhanced binding energy of onedimensional excitons in quantum wires. Physical review letters, pp.2965-59, 1996. ,
Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Physical Review B, vol.72, issue.24, pp.241402-59, 2005. ,
DOI : 10.1103/PhysRevB.72.241402
Excited Excitonic States in Single-Walled Carbon Nanotubes, Nano Letters, vol.8, issue.7, pp.1890-1895, 2008. ,
DOI : 10.1021/nl080518h
Elastic Exciton-Exciton Scattering in Photoexcited Carbon Nanotubes, Physical Review Letters, vol.107, issue.12, pp.127401-59, 2011. ,
DOI : 10.1103/PhysRevLett.107.127401
URL : https://hal.archives-ouvertes.fr/hal-00623859
Size and mobility of excitons in (6, 5) carbon??nanotubes, Nature Physics, vol.78, issue.1, pp.54-58, 2009. ,
DOI : 10.1038/nphys1149
Diameter and chirality dependence of exciton properties in carbon nanotubes, Phys. Rev. B, vol.74, pp.121401-59, 2006. ,
Graphene and Carbon Nanotubes: Ultrafast Optics and Relaxation Dynamics, p.60, 2013. ,
DOI : 10.1002/9783527658749
Direct Experimental Evidence of Exciton-Phonon Bound States in Carbon Nanotubes, Physical Review Letters, vol.95, issue.24, pp.247401-62, 2005. ,
DOI : 10.1103/PhysRevLett.95.247401
-Momentum Dark Excitons in Carbon Nanotubes by Optical Spectroscopy, Physical Review Letters, vol.101, issue.15, pp.157401-62, 2008. ,
DOI : 10.1103/PhysRevLett.101.157401
URL : https://hal.archives-ouvertes.fr/hal-00498610
-momentum dark excitons and triplet dark excitons, Physical Review B, vol.81, issue.3, pp.33401-62, 2010. ,
DOI : 10.1103/PhysRevB.81.033401
URL : https://hal.archives-ouvertes.fr/in2p3-00522603
Selection rules for oneand two-photon absorption by excitons in carbon nanotubes, Phys. Rev. B, vol.73, pp.241406-61, 2006. ,
Role of Bright and Dark Excitons in the Temperature-Dependent Photoluminescence of Carbon Nanotubes, 61 REFERENCES [125] Morgane Gandil, Kazunari Matsuda Trends in Nanotechnology International Conference, pp.27404-61, 2007. ,
DOI : 10.1103/PhysRevLett.98.027404
Carbon formation in very rich hydrocarbon-air flames i. studies of chemical content, temperature, ionization and particulate matter, Symposium (International) on Combustion, pp.559-569, 1958. ,
Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production, Journal of Nanoscience and Nanotechnology, vol.10, issue.6, pp.3739-3758, 2010. ,
DOI : 10.1166/jnn.2010.2939
Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, vol.313, issue.1-2, pp.91-97, 1999. ,
DOI : 10.1016/S0009-2614(99)01029-5
) Structure of Single-Walled Carbon Nanotubes by Modifying Reaction Conditions and the Nature of the Support of CoMo Catalysts, The Journal of Physical Chemistry B, vol.110, issue.5, pp.2108-2115, 2006. ,
DOI : 10.1021/jp056095e
Ultrafast carrier dynamics in single-wall carbon nanotubes. Physical review letters, pp.57404-64, 2003. ,
DOI : 10.1103/physrevlett.90.057404
URL : https://hal.archives-ouvertes.fr/hal-00018421
Crystalline Ropes of Metallic Carbon Nanotubes, Science, vol.273, issue.5274, pp.483-64, 1996. ,
DOI : 10.1126/science.273.5274.483
Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers, Nature Nanotechnology, vol.222, issue.10, pp.640-646, 2007. ,
DOI : 10.1021/ja036622c
Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors, Applied Physics Letters, vol.92, issue.24, pp.92243112-65, 2008. ,
DOI : 10.1021/nl0703727
URL : https://hal.archives-ouvertes.fr/hal-00444351
Absorption Spectroscopy of Individual Single-Walled Carbon Nanotubes, Nano Letters, vol.7, issue.5, pp.1203-1207, 2007. ,
DOI : 10.1021/nl062933k
URL : https://hal.archives-ouvertes.fr/hal-00143899
Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes, Nature Communications, vol.3, p.66, 2013. ,
DOI : 10.1038/ncomms3152
Strong atom???field coupling for Bose???Einstein condensates in an optical cavity on a chip, Nature, vol.74, issue.7167, pp.450272-276, 2007. ,
DOI : 10.1038/nature06331
URL : https://hal.archives-ouvertes.fr/hal-00264333
Micro-cavité Fabry Perot fibrée: une nouvelle approche pour l'étude des polaritons dans des hétérostructures semi-conductrices, pp.69-209, 2013. ,
Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity, Physical Review Letters, vol.110, issue.24, pp.243602-147, 2013. ,
DOI : 10.1103/PhysRevLett.110.243602
Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity, Applied Physics Letters, vol.105, issue.7, p.69, 2014. ,
DOI : 10.1364/OE.20.019956
Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond, Physical Review Applied, vol.7, issue.2, p.69, 2016. ,
DOI : 10.1103/PhysRevApplied.7.024031
Measurement of ultralow losses in an optical interferometer, Optics Letters, vol.17, issue.5, pp.363-365, 1992. ,
DOI : 10.1364/OL.17.000363
High-quality near-field optical probes by tube etching, Applied Physics Letters, vol.75, issue.2, pp.160-162, 1999. ,
DOI : 10.1364/AO.37.007289
Fabrication of a side aligned optical fibre interferometer by focused ion beam machining, Journal of Micromechanics and Microengineering, vol.23, issue.10, pp.105005-76, 2013. ,
DOI : 10.1088/0960-1317/23/10/105005
Total reflection mirrors fabricated on silica waveguides with focused ion beam, Electronics Letters, vol.45, issue.17, pp.883-884, 2009. ,
DOI : 10.1049/el.2009.0473
Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature, Applied Optics, vol.46, issue.33, pp.8118-8133, 2007. ,
DOI : 10.1364/AO.46.008118
Long high finesse fiber fabry-perot resonators, p.77, 2015. ,
DOI : 10.1117/12.2193901
Fiber interfaces between single atoms and single photons. Theses, Ecole normale supérieure, pp.79-209, 2015. ,
URL : https://hal.archives-ouvertes.fr/tel-01382230
Laser micro-fabrication of concave, low-roughness features in silica, AIP Advances, vol.97, issue.1, pp.12119-78, 2012. ,
DOI : 10.1038/nature10225
Transverse-mode coupling and diffraction loss in tunable Fabry???P??rot microcavities, New Journal of Physics, vol.17, issue.5, p.93 ,
DOI : 10.1088/1367-2630/17/5/053051
URL : http://doi.org/10.1088/1367-2630/17/5/053051
Simple analytical expressions for the reflectivity and the penetration depth of a Bragg mirror between arbitrary media, Optics Communications, vol.116, issue.4-6, pp.343-350, 1995. ,
DOI : 10.1016/0030-4018(95)00084-L
Topographic control of open-access microcavities at the nanometer scale, Opt. Express, vol.23, issue.13, pp.17205-17216, 2015. ,
Coupling efficiency of optics in single-mode fiber components, Applied Optics, vol.21, issue.15, pp.2671-2688, 1982. ,
DOI : 10.1364/AO.21.002671
Alignment of Gaussian beams, Applied Optics, vol.23, issue.23, pp.4187-4196, 1984. ,
DOI : 10.1364/AO.23.004187
Fiber Output Beam Shape Study Using Imaging Technique, Journal of Applied Sciences, vol.10, issue.4, pp.312-318, 2010. ,
DOI : 10.3923/jas.2010.312.318
Relation Between Surface Roughness and Specular Reflectance at Normal Incidence, Journal of the Optical Society of America, vol.51, issue.2, pp.123-129, 1961. ,
DOI : 10.1364/JOSA.51.000123
Recent developments in surface roughness characterization, Measurement Science and Technology, vol.3, issue.12, pp.1119-92, 1992. ,
Cavity ring-down spectroscopy: Experimental schemes and applications, International Reviews in Physical Chemistry, vol.19, issue.4, pp.565-607, 2000. ,
DOI : 10.1080/014423500750040627
Methods of single-molecule fluorescence spectroscopy and microscopy, Review of Scientific Instruments, vol.247, issue.8, pp.3597-3619, 2003. ,
DOI : 10.1021/jp992324j
Non-Markovian Decoherence of Localized Nanotube Excitons by Acoustic Phonons, Physical Review Letters, vol.101, issue.6, pp.67402-118, 2008. ,
DOI : 10.1103/PhysRevLett.101.067402
Single Carbon Nanotubes Probed by Photoluminescence Excitation Spectroscopy: The Role of Phonon-Assisted Transitions, Physical Review Letters, vol.94, issue.12, pp.94127403-110, 2005. ,
DOI : 10.1103/PhysRevLett.94.127403
Luminescence Decay and the Absorption Cross Section of Individual Single-Walled Carbon Nanotubes, Physical Review Letters, vol.101, issue.7, pp.77402-114, 2008. ,
DOI : 10.1103/PhysRevLett.101.077402
URL : https://hal.archives-ouvertes.fr/hal-00719454
Suppression of Blinking and Enhanced Exciton Emission from Individual Carbon Nanotubes, ACS Nano, vol.5, issue.4, pp.2664-2670, 2011. ,
DOI : 10.1021/nn102885p
Exciton dynamics in single-walled nanotubes:???Transient photoinduced dichroism and polarized emission, Physical Review B, vol.71, issue.12, pp.125427-115, 2005. ,
DOI : 10.1103/PhysRevB.71.125427
Stepwise Quenching of Exciton Fluorescence in Carbon Nanotubes by Single-Molecule Reactions, Science, vol.126, issue.44, pp.3161465-1468, 2007. ,
DOI : 10.1021/ja046450z
URL : https://hal.archives-ouvertes.fr/hal-00164617
Etude de la dynamique des états excités des nanotubes du carbone mono-paroi, p.115, 2013. ,
Quantum optics with single-wall carbon nanotubes. Theses, Eidgenössische Technische Hochschule Zürich, p.209, 2010. ,
URL : https://hal.archives-ouvertes.fr/tel-00616058
Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes, Nano Letters, vol.16, issue.5, pp.406-423, 1950. ,
DOI : 10.1021/acs.nanolett.5b04901
Phonon-Broadened Impurity Spectra. I. Density of States, Physical Review, vol.139, issue.6A, pp.1965-1982, 1965. ,
DOI : 10.1103/PhysRev.139.A1965
Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots, Physical Review B, vol.65, issue.19, pp.186-256, 0116. ,
DOI : 10.1103/PhysRevB.65.195313
Low-field semiclassical carrier transport in semiconducting carbon nanotubes, Physical Review B, vol.71, issue.20, 0117. ,
DOI : 10.1103/PhysRevB.71.205318
Phonon-induced dephasing in single-wall carbon nanotubes, Physical Review B, vol.84, issue.11, pp.115463-117, 2011. ,
DOI : 10.1103/PhysRevB.84.115463
URL : https://hal.archives-ouvertes.fr/hal-00627579
Phonons and electron-phonon scattering in carbon nanotubes, Physical Review B, vol.65, issue.23, p.235412, 0117. ,
DOI : 10.1103/PhysRevB.65.235412
Acoustic phonon broadening mechanism in single quantum dot emission, Physical Review B, vol.63, issue.15, pp.155307-119, 2001. ,
DOI : 10.1103/PhysRevB.63.155307
Acoustic phonon sidebands in the emission line of single InAs/GaAs quantum dots, Physical Review B, vol.68, issue.23, pp.68233301-119, 2003. ,
DOI : 10.1103/PhysRevB.68.233301
URL : https://hal.archives-ouvertes.fr/hal-00546643
Strong Acoustic Phonon Localization in Copolymer-Wrapped Carbon Nanotubes, ACS Nano, vol.9, issue.6, p.119, 2015. ,
DOI : 10.1021/acsnano.5b01997
Thermal conductivity of single-walled carbon nanotubes, Physical Review B, vol.80, issue.19, pp.195423-119, 2009. ,
Fluorescent Carbon Nanotube Defects Manifest Substantial Vibrational Reorganization, The Journal of Physical Chemistry C, vol.120, issue.20, p.119, 2016. ,
DOI : 10.1021/acs.jpcc.6b02538
Photoinduced Luminescence Blinking and Bleaching in Individual Single???Walled Carbon Nanotubes, ChemPhysChem, vol.10, issue.10, pp.1460-1464, 2008. ,
DOI : 10.1002/cphc.200800179
Power law carrier dynamics in semiconductor nanocrystals at nanosecond timescales, Applied Physics Letters, vol.92, issue.10, pp.92101111-122, 2008. ,
DOI : 10.1017/CBO9780511755668
Universal emission intermittency in quantum dots, nanorods and nanowires, Nature Physics, vol.133, issue.5, pp.519-522, 2008. ,
DOI : 10.1103/PhysRevLett.75.1154
Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect, Physical Review Letters, vol.53, issue.22, pp.2173-2176, 1984. ,
DOI : 10.1103/PhysRevLett.53.2173
Quantum-Confined Stark Effect in Single CdSe Nanocrystallite Quantum Dots, Science, vol.278, issue.5346, pp.2114-2117, 1997. ,
DOI : 10.1126/science.278.5346.2114
Monitoring Surface Charge Movement in Single Elongated Semiconductor Nanocrystals, Physical Review Letters, vol.93, issue.16, pp.167402-122, 2004. ,
DOI : 10.1103/PhysRevLett.93.167402
Photoluminescence intermittency in an individual single-walled carbon nanotube at room temperature, Applied Physics Letters, vol.86, issue.12, pp.123116-122, 2005. ,
DOI : 10.1103/PhysRevLett.83.5098
Single Carbon Nanotube Optical Spectroscopy, ChemPhysChem, vol.93, issue.4, pp.577-582, 2005. ,
DOI : 10.1002/cphc.200400408
Low Temperature Emission Spectra of Individual Single-Walled Carbon Nanotubes: Multiplicity of Subspecies within Single-Species Nanotube Ensembles, Physical Review Letters, vol.93, issue.2, pp.27401-122, 2004. ,
DOI : 10.1103/PhysRevLett.93.027401
Single-walled carbon nanotubes show stable emission and simple photoluminescence spectra with weak excitation sidebands at cryogenic temperatures, Physical Review B, vol.76, issue.7, pp.75422-123, 2007. ,
DOI : 10.1103/PhysRevB.76.075422
Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes REFERENCES [192] Hubert W Lilliefors. On the kolmogorov-smirnov test for normality with mean and variance unknown, Nano Letters Journal of the American Statistical Association, vol.12, issue.178318, pp.179-62399, 1934. ,
DOI : 10.1021/nl204402v
Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities, New Journal of Physics, vol.14, issue.10, pp.14103048-131, 2012. ,
DOI : 10.1088/1367-2630/14/10/103048
A scanning cavity microscope, Nature Communications, vol.30, 0131. ,
DOI : 10.1038/ncomms8249
URL : http://doi.org/10.1038/ncomms8249
Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity, Physical Review Applied, vol.6, issue.5, p.131, 2016. ,
DOI : 10.1103/PhysRevApplied.6.054010
URL : http://doi.org/10.1103/physrevapplied.6.054010
Polariton Boxes in a Tunable Fiber Cavity, Physical Review Applied, vol.3, issue.1, pp.14008-131, 2015. ,
DOI : 10.1103/PhysRevApplied.3.014008
URL : http://arxiv.org/abs/1312.0819
Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry???Perot cavity, New Journal of Physics, vol.15, issue.4, pp.45002-132, 2013. ,
DOI : 10.1088/1367-2630/15/4/045002
Dipole radiation in a multilayer geometry, Physical Review B, vol.36, issue.9, pp.4990-142, 1987. ,
DOI : 10.1103/PhysRevB.36.4990
Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space. Physical review letters, pp.666-150, 1987. ,
Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity, Nature Photonics, vol.2, issue.5, pp.301-305, 2011. ,
DOI : 10.1038/nphoton.2011.52
Observation of Superradiant and Subradiant Spontaneous Emission of Two Trapped Ions, Physical Review Letters, vol.76, issue.12, pp.2049-2052, 1996. ,
DOI : 10.1103/PhysRevLett.76.2049
Indistinguishability of the photons emitted by a semiconductor quantum dot under continuous-wave resonant excitation, 2015. ,
URL : https://hal.archives-ouvertes.fr/tel-01278553
The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks?, Journal of Modern Optics, vol.48, issue.13, pp.2039-2047, 2001. ,
DOI : 10.1063/1.118224
Brightening of excitons in carbon nanotubes on dimensionality modification, Nature Photonics, vol.80, issue.9, pp.715-719, 2013. ,
DOI : 10.1038/nphoton.2012.75
Cavity-Funneled Generation of Indistinguishable Single Photons from Strongly Dissipative Quantum Emitters, Physical Review Letters, vol.114, issue.19, p.264, 0180. ,
DOI : 10.1103/PhysRevLett.114.193601
URL : https://hal.archives-ouvertes.fr/hal-01152522
Many-particle physics, p.256, 2013. ,
Influence of phonons on solid-state cavity-qed investigated using nonequilibrium green's functions. arXiv preprint, p.188, 2016. ,
Dynamics of the dissipative two-state system, Reviews of Modern Physics, vol.59, issue.1, pp.1-85, 1987. ,
DOI : 10.1103/RevModPhys.59.1
Noninteracting-blip approximation for a two-level system coupled to a heat bath, Physical Review A, vol.35, issue.3, pp.1436-1437, 1987. ,
DOI : 10.1103/PhysRevA.35.1436
Dynamics of the dissipative two-state system: The noninteractingblip approximation. Physica A: Statistical Mechanics and its Applications, pp.570-574, 1987. ,
Nonperturbative stochastic method for driven spin-boson model, Phys. Rev. B, vol.87, issue.188, pp.14305-252, 2013. ,
Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime, Physical Review Letters, vol.116, issue.24, p.247402, 0193. ,
DOI : 10.1103/PhysRevLett.116.247402
Chirality dependence of the absorption cross section of carbon nanotubes High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices, Phys. Rev. Lett. Nature nanotechnology, vol.111, issue.812, pp.137402917-922, 0197. ,
Light harvesting with non covalent carbon nanotube/porphyrin compounds, Chemical Physics, vol.413, pp.45-54, 2013. ,
DOI : 10.1016/j.chemphys.2012.09.004
URL : https://hal.archives-ouvertes.fr/hal-00829151
Coupling a Quantum Dot, Fermionic Leads, and a Microwave Cavity on a Chip, Physical Review Letters, vol.107, issue.25, pp.256804-206, 2011. ,
DOI : 10.1103/PhysRevLett.107.256804
URL : https://hal.archives-ouvertes.fr/hal-00657375
Bose???Einstein condensation of exciton polaritons, Nature, vol.214, issue.185, pp.443409-414, 2006. ,
DOI : 10.1038/nature05131
Parametric oscillation in vertical triple microcavities, Nature, vol.37, issue.7086, pp.904-907, 2006. ,
DOI : 10.1038/nature04602
URL : https://hal.archives-ouvertes.fr/hal-00096360
Ultrafast all-optical switching by single photons, Nature Photonics, vol.108, issue.9, pp.605-609, 2012. ,
DOI : 10.1038/nphoton.2012.181
Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp.358-379, 1959. ,
DOI : 10.1098/rspa.1959.0200
Light scattering by an oscillating dipole in a focused beam, p.237, 2009. ,
Diffraction Images in Systems with an Annular Aperture, Proceedings of the Physical Society. Section B, vol.66, issue.2, pp.145-240, 1953. ,
DOI : 10.1088/0370-1301/66/2/312
Two point resolution of annular apertures, p.240 ,