]. E. Azaceta, N. Thi, D. F. Pickup, C. Rogero, J. E. Ortega et al., One-step wet chemical deposition of NiO from the electrochemical reduction of nitrates in ionic liquid based electrolytes Synthesis of NiO and NiO/TiO 2 films with electrochromic and photocatalytic activities NiO cathodic electrochemical deposition from an aprotic ionic liquid : Building metal oxide n?p heterojunctions One-step fabrication of nanostrutured deep eutectic solvent with enhanced electrochromic performance, Electrochim. Acta Surf. Coat. Technol. Electrochim. Acta J. Mater, vol.96, issue.71, pp.261-267, 2012.

W. Lili, L. I. Jing, and . Xiaoyun, Electrodeposition in organic system and properties of NiO electrochromic films Fiche toxicologique de N, N-Diméthylformamide N°69 Fiche toxicologique de Diméthylsulfoxyde N°137 Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films, Base données INRS Electrical and Optical Properties of Narrow-Band Materials, pp.1545-1550, 2002.

F. Odobel, L. Le-pleux, Y. Pellegrin, and E. Blart, New Photovoltaic Devices Based on the Sensitization of p-type Semiconductors: Challenges and Opportunities, Accounts of Chemical Research, vol.43, issue.8, pp.1063-1071, 2010.
DOI : 10.1021/ar900275b

G. Turgut and S. Duman, Sol???gel growth and characterization of a new p-NiO/n-GaAs structure, Journal of Alloys and Compounds, vol.664, pp.547-552, 2016.
DOI : 10.1016/j.jallcom.2016.01.026

P. M. Ponnusamy, S. Agilan, N. Muthukumarasamy, T. S. Senthil, and G. Rajesh, Structural, optical and magnetic properties of undoped NiO and Fe-doped NiO nanoparticles synthesized by wet-chemical process, Materials Characterization, vol.114, pp.166-171, 2016.
DOI : 10.1016/j.matchar.2016.02.020

Y. Luo, B. Yin, H. Zhang, Y. Qiu, and J. Lei, Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes, Journal of Materials Science: Materials in Electronics, vol.94, issue.3, pp.2342-2348, 2016.
DOI : 10.1007/s10854-015-4031-y

L. J. Oblonsky and T. M. Devine, A surface enhanced Raman spectroscopic study of the passive films formed in borate buffer on iron, nickel, chromium and stainless steel, Corrosion Science, vol.37, issue.1, pp.17-41, 1995.
DOI : 10.1016/0010-938X(94)00102-C

N. Mironova-ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos et al., A surface enhanced Raman spectroscopic study of the passive films formed in borate buffer on iron, nickel, chromium and stainless steel Corros

J. L. Sci, S. Bantignies, A. Deabate, S. Righi, P. Rols et al., New insight into the vibrational behavior of nickel hydroxide and oxyhydroxide using inelastic neutron scattering, far/mid-infrared and Raman spectroscopies, Thèse de l'Université de Nantes, pp.17-41, 1995.

C. Dong, M. Zhong, T. Huang, M. Ma, D. Wortmann et al., Photodegradation of methyl Orange under visible light by micro-nano hierarchical Cu 2 O structure fabricated by hybrid laser processing and chemical dealloying Synthesis of Cu 2 O nanospheres decorated with TiO 2 nanoislands, their enhanced photoactivity and stability under visible light illumination , and their post-illumination catalytic memory Highly aligned Cu 2 O/CuO/TiO 2 core/shell nanowire arrays as photocathodes for water photoelectrolysis Highly active oxide photocathode for photoelectrochemical water reduction Gel probe photocurrent measurement of cuprous oxide films Electrochemically deposited p-n homojunction cuprous oxide solar cells, Thinfilm ZnO/Cu 2 O solar cells incorporating an organic buffer layer, pp.4332-4338, 2010.

C. Sisi, S. U. Pengfei, W. Peng, C. A. Biao, L. I. Yaxin et al., Highly efficiency p-type Dye Sensitized Solar Cells based on polygonal starmorphology Cu 2 O material of photocathodes Photoelectrochemical characteristics of cells with dyed and undyed nanoporous p-type semiconductor CuO electrodes, Sol. Energy Mater. Sol. Cells Chem. Res. Chin. Univ J. Photochem. Photobiol. A Chem, vol.93, issue.194, pp.153-157, 2008.

O. Langmar, C. R. Ganivet, A. Lennert, R. D. Costa, G. De-torre et al., Combining Electron-Accepting Phthalocyanines and Nanorod-like CuO Electrodes for p-Type Dye-Sensitized Solar Cells, Angew.Chem, vol.127, pp.1-6, 2015.
DOI : 10.1002/ange.201501550

URL : https://repositorio.uam.es/bitstream/10486/672099/1/combining_langmar_ac_2015_ps.pdf

J. W. Schultze and M. M. , Stability, reactivity and breakdown of passive films. Problems of recent and future research, Electrochimica Acta, vol.45, issue.15-16, pp.2499-2513, 2000.
DOI : 10.1016/S0013-4686(00)00347-9

S. Powar, D. Xiong, T. Daeneke, M. T. Ma, A. Gupta et al., Nanoparticles, The Journal of Physical Chemistry C, vol.118, issue.30, pp.16375-16379, 2014.
DOI : 10.1021/jp409363u

H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi et al., P-type electrical conduction in transparent thin films of CuAlO 2, Nature, vol.389, issue.6654, pp.939-942, 1997.
DOI : 10.1038/40087

M. Asemi and M. Ghanaatshoar, Conductivity improvement of CuCrO2 nanoparticles by Zn doping and their application in solid-state dye-sensitized solar cells, Ceramics International, vol.42, issue.6, pp.6664-6672, 2015.
DOI : 10.1016/j.ceramint.2016.01.017

D. Ursu, M. Miclau, R. Banica, and N. Vaszilcsin, Impact of Fe doping on performances of CuGaO2 p-type dye-sensitized solar cells, Materials Letters, vol.143, issue.1, pp.91-93, 2015.
DOI : 10.1016/j.matlet.2014.12.081

M. Yu, T. I. Draskovic, and Y. Wu, for Controlled Hydrothermal Synthesis of Nanoparticles and Nanoplates, Inorganic Chemistry, vol.53, issue.11, pp.5845-5851, 2014.
DOI : 10.1021/ic500747x

C. G. Read, Y. Park, and K. Choi, Electrodes for Use in a Photoelectrochemical Cell, The Journal of Physical Chemistry Letters, vol.3, issue.14, pp.1872-1876, 2012.
DOI : 10.1021/jz300709t

G. Riveros, C. Garin, D. Ramirez, E. A. Dalchiele, R. E. Marotti et al., Delafossite CuFeO2 thin films electrochemically grown from a DMSO based solution, Electrochimica Acta, vol.164, pp.297-306, 2015.
DOI : 10.1016/j.electacta.2015.02.226

M. Izaki, T. Ohta, M. Kondo, T. Takahashi, F. B. Mohamad et al., O Photovoltaic Device with Highly Resistive ZnO Intermediate Layer, ACS Applied Materials & Interfaces, vol.6, issue.16, pp.13461-13469, 2014.
DOI : 10.1021/am502246j

T. Shinagawa, Y. Ida, K. Mizuno, S. Watase, M. Watanabe et al., O Films by Electrocrystallization from Aqueous Solutions, Crystal Growth & Design, vol.13, issue.1, pp.52-58, 2013.
DOI : 10.1021/cg300813z

P. Dawson, M. M. Hargreave, and G. R. Wilkinson, The dielectric and lattice vibrational spectrum of cuprous oxide, Journal of Physics and Chemistry of Solids, vol.34, issue.12, pp.2201-2208, 1973.
DOI : 10.1016/S0022-3697(73)80067-8

A. Singhal, M. R. Pai, R. Rao, K. T. Pillai, I. Lieberwirth et al., Copper(I) Oxide Nanocrystals - One Step Synthesis, Characterization, Formation Mechanism, and Photocatalytic Properties, European Journal of Inorganic Chemistry, vol.133, issue.14, pp.2640-2651, 2013.
DOI : 10.1002/ejic.201201382

URL : http://hdl.handle.net/11858/00-001M-0000-0013-A684-F

Z. Compaan and C. , O, Physical Review B, vol.6, issue.12, pp.4753-4757, 1972.
DOI : 10.1103/PhysRevB.6.4753

A. Compaan, Surface damage effects on allowed and forbidden phonon raman scattering in cuprous oxide, Solid State Communications, vol.16, issue.3, pp.293-296, 1975.
DOI : 10.1016/0038-1098(75)90171-4

D. Powell, A. Compaan, J. R. Macdonald, and R. A. Forman, Raman-scattering study of ionimplantation-produced damage in Cu 2 O, 1975.

M. Huang, T. Wang, W. Chang, J. Lin, C. Wu et al., Temperature dependence on p-Cu2O thin film electrochemically deposited onto copper substrate, Applied Surface Science, vol.301, pp.369-377, 2014.
DOI : 10.1016/j.apsusc.2014.02.085

Y. Hsu, C. Yu, Y. Chen, and Y. Lin, Synthesis of novel Cu2O micro/nanostructural photocathode for solar water splitting, Electrochimica Acta, vol.105, pp.62-68, 2013.
DOI : 10.1016/j.electacta.2013.05.003

Y. K. Hsu, C. H. Yu, Y. C. Chen, and Y. G. Lin, Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation, Journal of Power Sources, vol.242, pp.541-547, 2013.
DOI : 10.1016/j.jpowsour.2013.05.107

Y. S. Gong, C. Lee, and C. K. Yang, Atomic force microscopy and Raman spectroscopy studies on the oxidation of Cu thin films, Journal of Applied Physics, vol.70, issue.10, pp.5422-5425, 1995.
DOI : 10.1016/0921-4534(90)90044-F

K. Mizuno, M. Izaki, K. Murase, T. Shinagawa, M. Chigane et al., Structural and Electrical Characterizations of Electrodeposited p-Type Semiconductor Cu[sub 2]O Films, Journal of The Electrochemical Society, vol.152, issue.4, pp.179-182, 2005.
DOI : 10.1149/1.1862478

S. Laidoudi, A. Y. Bioud, A. Azizi, G. Schmerber, J. Bartringer et al., O thin films, Semiconductor Science and Technology, vol.28, issue.11, p.115005, 2013.
DOI : 10.1088/0268-1242/28/11/115005

Y. Kobayashi and T. Sakuraba, Silica-coating of metallic copper nanoparticles in aqueous solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.317, issue.1-3, pp.1-3, 2008.
DOI : 10.1016/j.colsurfa.2007.11.009

N. A. Dhas, C. P. Raj, and A. Gedanken, Synthesis, Characterization, and Properties of Metallic Copper Nanoparticles, Chemistry of Materials, vol.10, issue.5, pp.1446-1452, 1998.
DOI : 10.1021/cm9708269

L. Wu, L. Tsui, N. Swami, and G. Zangari, O Films, The Journal of Physical Chemistry C, vol.114, issue.26, pp.11551-11556, 2010.
DOI : 10.1021/jp103437y

URL : https://hal.archives-ouvertes.fr/hal-01243085

]. H. Sato, T. Minami, S. Takata, and T. Yamada, Transparent conducting p-type NiO thin films prepared by magnetron sputtering, Thin Solid Films, vol.236, issue.1-2, pp.27-31, 1993.
DOI : 10.1016/0040-6090(93)90636-4

H. L. Chen, Y. M. Lu, and W. S. Hwang, Characterization of sputtered NiO thin films, Surface and Coatings Technology, vol.198, issue.1-3, pp.138-142, 2005.
DOI : 10.1016/j.surfcoat.2004.10.032

. Fig, SEM images of (a) opal PS macrosphere template, hexagonally self-organized on the glass/FTO substrate

R. K. Gupta, K. Ghosh, and P. K. , Fabrication and characterization of NiO/ZnO p???n junctions by pulsed laser deposition, Physica E: Low-dimensional Systems and Nanostructures, vol.41, issue.4, pp.41-617, 2009.
DOI : 10.1016/j.physe.2008.10.013

X. Liu, X. Zhang, and S. Fu, Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors, Materials Research Bulletin, vol.41, issue.3, pp.41-620, 2006.
DOI : 10.1016/j.materresbull.2005.09.006

Z. Liang, Y. Zhu, and X. Hu, ??-Nickel Hydroxide Nanosheets and Their Thermal Decomposition to Nickel Oxide Nanosheets, The Journal of Physical Chemistry B, vol.108, issue.11, pp.3488-3491, 2004.
DOI : 10.1021/jp037513n

Y. Wu, Y. He, T. Wu, T. Chen, W. Weng et al., Influence of some parameters on the synthesis of nanosized NiO material by modified sol???gel method, Materials Letters, vol.61, issue.14-15, pp.61-3174, 2007.
DOI : 10.1016/j.matlet.2006.11.018

T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian, and S. Yoshikawa, A modified sol???gel process-derived highly nanocrystalline mesoporous NiO with narrow pore size distribution, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.296, issue.1-3, pp.222-229, 2007.
DOI : 10.1016/j.colsurfa.2006.09.048

V. Srinivasan and J. W. Weidner, An Electrochemical Route for Making Porous Nickel Oxide Electrochemical Capacitors, Journal of The Electrochemical Society, vol.144, issue.8, pp.210-213, 1997.
DOI : 10.1149/1.1837859

K. R. Prasad and N. Miura, Electrochemically deposited nanowhiskers of nickel oxide as a high-power pseudocapacitive electrode, Applied Physics Letters, vol.85, issue.18, pp.4199-4201, 2004.
DOI : 10.1002/adfm.200390013

K. W. Nam and K. B. Kim, A study of the preparation of NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism, A346?A354. [11] S. Koussi-Daoud, T. Pauporté, Electrochemical deposition and characterizations of adherent NiO porous films for photovoltaic applications, Proc. SPIE, p.936425, 2002.

M. Wu, Y. Huang, J. Jow, W. Yang, C. Hsieh et al., Anodically potentiostatic deposition of flaky nickel oxide nanostructures and their electrochemical performances, International Journal of Hydrogen Energy, vol.33, issue.12, pp.2921-2926, 2008.
DOI : 10.1016/j.ijhydene.2008.04.012

T. Pauporté, L. Mendoza, M. Cassir, M. C. Bernard, and J. Chivot, Direct Low-Temperature Deposition of Crystallized CoOOH Films by Potentiostatic Electrolysis, Journal of The Electrochemical Society, vol.152, issue.2, pp.49-53, 2005.
DOI : 10.1149/1.1842044

V. M. Guérin, J. Rathousky, and T. Pauporté, Electrochemical design of ZnO hierarchical structures for dye-sensitized solar cells, Solar Energy Materials and Solar Cells, vol.102, pp.8-14, 2012.
DOI : 10.1016/j.solmat.2011.11.046

P. A. Nelson and J. R. Owen, A High-Performance Supercapacitor/Battery Hybrid Incorporating Templated Mesoporous Electrodes, Journal of The Electrochemical Society, vol.150, issue.10, pp.1313-1317, 2003.
DOI : 10.1149/1.1603247

M. Wu, Y. Huang, and C. Yang, Capacitive Behavior of Porous Nickel Oxide/Hydroxide Electrodes with Interconnected Nanoflakes Synthesized by Anodic Electrodeposition, Journal of The Electrochemical Society, vol.155, issue.11, pp.155-798, 2008.
DOI : 10.1149/1.2969948

G. Su, M. Song, W. Sun, L. Cao, W. Liu et al., Electrodeposition in organic system and properties of NiO electrochromic films, Science China Technological Sciences, vol.254, issue.115, pp.55-1545, 2012.
DOI : 10.1007/s11431-012-4858-x

Y. F. Yuan, X. H. Xia, J. B. Wu, Y. B. Chen, J. L. Yang et al., Enhanced electrochromic properties of ordered porous nickel oxide thin film prepared by self-assembled colloidal crystal template-assisted electrodeposition, Electrochimica Acta, vol.56, issue.3, pp.1208-1212, 2011.
DOI : 10.1016/j.electacta.2010.10.097

A. C. Sonavane, A. I. Inamdar, P. S. Shinde, H. P. Deshmukh, R. S. Patil et al., Efficient electrochromic nickel oxide thin films by electrodeposition, Journal of Alloys and Compounds, vol.489, issue.2, pp.489-667, 2010.
DOI : 10.1016/j.jallcom.2009.09.146

M. Wu, Y. Huang, C. Yang, and J. Jow, Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors, International Journal of Hydrogen Energy, vol.32, issue.17, pp.4153-4159, 2007.
DOI : 10.1016/j.ijhydene.2007.06.001

E. Azaceta, S. Chavhan, P. Rossi, M. Paderi, S. Fantini et al., NiO cathodic electrochemical deposition from an aprotic ionic liquid: Building metal oxide n???p heterojunctions, Electrochimica Acta, vol.71, pp.39-43, 2012.
DOI : 10.1016/j.electacta.2012.03.093

E. Azaceta, N. T. Tuyen, D. F. Pickup, C. Rogero, J. E. Ortega et al., One-step wet chemical deposition of NiO from the electrochemical reduction of nitrates in ionic liquid based electrolytes, Electrochimica Acta, vol.96, pp.261-267, 2013.
DOI : 10.1016/j.electacta.2013.02.089

G. Cai, J. Tu, C. Gu, J. Zhang, J. Chen et al., One-step fabrication of nanostructured NiO films from deep eutectic solvent with enhanced electrochromic performance, Journal of Materials Chemistry A, vol.131, issue.88, pp.4286-4292, 2013.
DOI : 10.1039/c3ta01055d

G. F. Cai, C. D. Gu, J. Zhang, P. C. Liu, X. L. Wang et al., Ultra fast electrochromic switching of nanostructured NiO films electrodeposited from choline chloride-based ionic liquid, Electrochimica Acta, vol.87, pp.341-347, 2013.
DOI : 10.1016/j.electacta.2012.09.047

X. Qi, G. Su, G. Bo, L. Cao, and W. Liu, Synthesis of NiO and NiO/TiO 2 films with electrochromic and photocatalytic activities, Surface and Coatings Technology, vol.272, pp.272-79, 2015.
DOI : 10.1016/j.surfcoat.2015.04.020

V. M. Guérin, J. Elias, T. T. Nguyen, L. Philippe, and T. Pauporté, Ordered networks of ZnO-nanowire hierarchical urchin-like structures for improved dye-sensitized solar cells, Physical Chemistry Chemical Physics, vol.102, issue.37, pp.14-12948, 2012.
DOI : 10.1039/c2cp42085f

H. W. Yan, C. F. Blanford, B. T. Holland, W. H. Smyrl, and A. Stein, General Synthesis of Periodic Macroporous Solids by Templated Salt Precipitation and Chemical Conversion, Chemistry of Materials, vol.12, issue.4, pp.12-1134, 2000.
DOI : 10.1021/cm9907763

V. Q. Nguyen, D. Schaming, P. Martin, and J. C. Lacroix, Highly Resolved Nanostructured PEDOT on Large Areas by Nanosphere Lithography and Electrodeposition, ACS Applied Materials & Interfaces, vol.7, issue.39, pp.21673-21681, 2015.
DOI : 10.1021/acsami.5b06699

A. G. Xiao, J. F. Yang, and W. Q. Zhang, Hierarchically porous-structured nickel oxide film prepared by chemical bath deposition through polystyrene spheres template, Journal of Porous Materials, vol.402, issue.3, pp.283-287, 2010.
DOI : 10.1007/s10934-009-9290-7

V. O. Williams, E. J. Demarco, M. J. Katz, J. A. Libera, S. C. Riha et al., Fabrication of Transparent-Conducting-Oxide-Coated Inverse Opals as Mesostructured Architectures for Electrocatalysis Applications: A Case Study with NiO, ACS Applied Materials & Interfaces, vol.6, issue.15, pp.12290-12294, 2014.
DOI : 10.1021/am501910n

Y. F. Yuan, X. H. Xia, J. B. Wu, Y. B. Chen, J. L. Yang et al., Enhanced electrochromic properties of ordered porous nickel oxide thin film prepared by self-assembled colloidal crystal template-assisted electrodeposition, Electrochimica Acta, vol.56, issue.3, pp.1208-1212, 2011.
DOI : 10.1016/j.electacta.2010.10.097

H. Zhang, X. Yu, and P. V. Braun, Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes, Nature Nanotechnology, vol.140, issue.5, pp.277-281, 2011.
DOI : 10.1038/nnano.2011.38

X. Xia, J. G. Tu, X. Wang, C. Gu, and X. Zhao, Hierarchically porous NiO film grown by chemical bath depositionvia a colloidal crystal template as an electrochemical pseudocapacitor material, J. Mater. Chem., vol.36, issue.3, pp.671-679, 2011.
DOI : 10.1039/C0JM02784G

Y. F. Yuan, X. H. Xia, J. B. Wu, J. L. Yang, Y. B. Chen et al., Hierarchically ordered porous nickel oxide array film with enhanced electrochemical properties for lithium ion batteries, Electrochemistry Communications, vol.12, issue.7, pp.12-890, 2010.
DOI : 10.1016/j.elecom.2010.04.013

R. E. Dietz, G. I. Parisot, and A. E. Meixner, Infrared Absorption and Raman Scattering by Two-Magnon Processes in NiO, Physical Review B, vol.4, issue.7, pp.2302-2310, 1971.
DOI : 10.1103/PhysRevB.4.2302

N. Mironova-ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos et al., Raman scattering in nanosized nickel oxide NiO, Journal of Physics: Conference Series, vol.93, p.12039, 2007.
DOI : 10.1088/1742-6596/93/1/012039

L. J. Oblonsky and T. M. Devine, A surface enhanced Raman spectroscopic study of the passive films formed in borate buffer on iron, nickel, chromium and stainless steel, Corrosion Science, vol.37, issue.1, pp.17-41, 1995.
DOI : 10.1016/0010-938X(94)00102-C

J. H. Kim, S. H. Kang, K. Zhu, J. Y. Kim, N. R. Neale et al., Ni-NiO co-shell inverse opal electrodes for supercapacitors, Chem. Commun, pp.47-5214, 2011.
DOI : 10.1039/c0cc05191h

M. S. Wu, M. J. Wang, and J. J. Jow, Fabrication of porous nickel oxide film with open macropores by electrophoresis and electrodeposition for electrochemical capacitors, Journal of Power Sources, vol.195, issue.12, pp.3950-3955, 2010.
DOI : 10.1016/j.jpowsour.2009.12.136