Cellules souches embryonnaires et neurales humaines : quand la PrP et l’APP « s’en mêlent » ou « s’emmêlent »
Résumé en Français
La Protéine Prion cellulaire (PrPC) est une protéine ubiquitaire mais majoritairement présente dans le système nerveux central. Elle est plus particulièrement connue pour sa conversion conformationnelle en PrPSc dans les maladies à Prions qui sont des Protéinopathies comme la maladie d’Alzheimer (MA). La MA est en partie associée à des dépôts de peptides beta-amyloïdes (Aβ) agrégés de façon extracellulaire et issus des clivages successifs par la β- puis la γ-sécrétase de la protéine précurseur amyloïde (APP) exprimée dans les neurones.

La PrPC et l’APP partagent des fonctions et des voies protéolytiques communes (α- ou β-sécrétase) les impliquant dans la prolifération, la différenciation, la synaptogenèse et la survie cellulaire. La PrPC est impliquée dans la régulation de la prolifération et la différenciation de différentes cellules souches : neurales adultes (NSC) (Steele, Emsley et al. 2006), hématopoïétiques (HSC) (Zhang, Steele et al. 2006), embryonnaires humaines (CSEh). Si la PrP et l’APP partagent des fonctions communes, plusieurs publications montrent que la PrPC régule négativement le clivage de l’APP en Aβ et positivement le clivage de l’APP en sAPPα suggérant ainsi un rôle anti-amyloïdogénique de la PrPC. La PrP agirait également comme récepteur des Aβ à la surface neuronale induisant notamment l’inhibition des LTP et l’altération synaptique.

Dans ce contexte, les objectifs spécifiques de la thèse sont :

- L’étude de l’expression de la PrP, de l’APP et ses résidus de clivage au cours de l’induction neurale des CSEh en NSC et de la différenciation neuronale
- L’impact de la modulation de l’expression de la PrP sur le clivage de l’APP ainsi que sur les propriétés des cellules souches (survie, prolifération, différenciation).

1. Induction neurale des CSEh en NSC

Une optimisation de ces protocoles a été nécessaire (densité de départ, méthodes de fixation des cellules pour améliorer la détection de la PrP) ainsi que la détermination des conditions d’analyse de l’expression de PrP, d’APP et ses résidus clivés (Aβ, sAPPα/β).

2. Différenciations à partir des NSC
Les NSC obtenues ont ensuite été amplifiées puis différenciées en neurones et/ou astrocytes. Les cellules ont été caractérisées notamment par immunofluorescence et RT-qPCR pour l’expression des principaux marqueurs astrocytaires (GFAP) et neuronaux (BIII-tubuline, Doublecortine, Synaptophysine) et la disparition progressive des marqueurs de NSC. Là encore nous avons établi des conditions précises de densité cellulaire ainsi que les points des analyses cinétiques de nos différents paramètres.

3. Modulation de l’expression de la PrPC
Nous avons utilisés des vecteurs lentiviraux permettant l’expression ou l’inhibition de la PrPC humaine pour transduire des CSEh au moment d’initier l’induction neurale et des NSC. Pour cela nous avons également dû réaliser des optimisations de différents paramètres : densité cellulaire, taille des supports d’ensemencement ou MOI de lentivirus afin d’avoir une transduction efficace tout en limitant la cytotoxicité. De même, les échantillons récoltés nous ont permis d’évaluer l’impact de la modulation de la PrPC sur le clivage de l’APP ainsi que sur la biologie des cellules souches (survie, prolifération, différenciation).

Mots clés en français : maladie d’Alzheimer, prion, amyloïde
Résumé en Anglais
Human embryonic and neural stem cells: when PrP and APP are mixed

The cellular Prion Protein (PrPc) is a ubiquitary protein mainly expressed in the central nervous system. It is particularly known for its conformational conversion in PrPSc in Prion diseases, which are proteinopathies such as Alzheimer’s disease (AD). AD is associated with extracellular deposits of aggregated beta-amyloid peptides (Aβ) derived from successive β- and γ-secretase cleavages of the amyloid precursor protein (APP) expressed by neurons. PrPc and APP share some common functions and proteolytic pathways (α- or β-secretase), involving them in proliferation, differentiation, synaptogenesis and cellular survival. PrPc is involved in the regulation of proliferation and differentiation of many stem cells: adult neural (NSC), hematopoietic (HSC) and human embryonic (CSEh). Several publications also show that PrP downregulates the cleavage of APP in Aβ and positively regulates the cleavage of APP in sAPPα suggesting an anti-amyloidogenic role of PrPc. PrP could also act as a receptor of Aβ at the neuronal surface inducing LTP inhibition and synaptic alteration.

In this context, the specific objectives of my thesis were:

- Study of the expression of PrP, APP and its cleavage residues during neural induction of CSEh in NSC and neuronal differentiation.
- Impact of the modulation of PrP expression on APP cleavages as well as on stem cells properties (survival, proliferation, differentiation).

1. Neural induction of CSEh in NSC

For this project, we have used Human Embryonic Stem Cells (CSEh) for which the laboratory has an authorization from the “Agence de la Biomédecine“.
For the neural induction, we have tested two protocols, the first one allows the obtention of neurospheres in suspension and then figures of “rosettes” composed of NSC, and a “monolayer” protocol that mimics the beginning of corticogenesis.

An optimization of these protocols has been necessary (starting cell density, cell fixation methods to improve PrP detection). We have also determined the best conditions to analyze the expression of PrP, APP and its derived peptides (Aβ, sAPPα/β).

2. Differentiation of NSC

NSC derived from CSEh were amplified and differentiated into neurons and/or astrocytes. Cells were characterized in particular by immunofluorescence and RT-qPCR for the expression of the major astrocytic (GFAP) and neuronal markers (BIII-tubulin, doublecortin, synaptophysin) and the progressive decrease of NSC markers. Again we have determined the best conditions for cell density and kinetic time points for our analysis.

3. Modulation of PrPc expression

We have used lentiviral vectors allowing the expression of an anti-PrP shRNA, human PrP and respective controls. To achieve this task, lentiviral transductions of CSEh and NSC were optimized: cell density, size of the seeding culture wells or MOI of lentivirus. Finally, samples collected allowed us to evaluate the impact of PrPc modulation on the APP cleavages as well as on stem cells properties (survival, proliferation, differentiation).

Mots clés en anglais : Alzheimer's disease, prion, amyloid.
Remerciements

Je suis très sensible à l’honneur qu’elle me fait en acceptant d’être rapporteur de ce mémoire de thèse. Qu’elle trouve ici l’expression respectueuse de ma profonde gratitude.

A Monsieur Vincent Beringue, Directeur de recherche INRA, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas

Je lui suis très reconnaissante d’avoir accepté d’être rapporteur de ce mémoire de thèse. Qu’il trouve ici l’expression sincère de ma gratitude et de mon respect.

A Monsieur Sylvain Lehmann, Professeur des Universités - Praticien Hospitalier, Unité Cellules souches, Plasticité Cellulaire, Médecine Régénératrice et Immunothérapies, IRMB, Montpellier.

Merci de m’avoir accueillie au sein de cette belle et grande équipe, de m’avoir fait confiance pour mener à bien ce projet de thèse et de m’avoir soutenu durant ces trois années. Je vous remercie également pour vos nombreux conseils et explications mais aussi pour la bonne humeur et l’entraîn communicatif que vous faites régner au sein de l’équipe.

A Madame Carole Crozet, Chargé de recherche Inserm, Unité Cellules souches, Plasticité Cellulaire, Médecine Régénératrice et Immunothérapies, IRMB, Montpellier.

Carole, merci de m’avoir fait confiance pour la réalisation de ce projet de thèse et de m’avoir si bien accueilli dans la mini équipe recherche devenue bien grande aujourd’hui. Surtout, un grand merci pour tout le temps et l’énergie que tu as déployés pour me former, me guider, m’accompagner et me soutenir tout au long de ces années de thèse. Je te serais toujours reconnaissante de m’avoir tant appris et d’avoir passé autant de journées, de soirées et de weekends pour me faire évoluer à travers toutes les étapes clés de ce doctorat. Je n’oublierai pas non plus tous les à côtés, les discussions, les petites attentions au quotidien et les belles attentions pour
les événements marquants de ma vie personnelle sauf bien évidemment les bonbons à la réglisse... Encore merci pour tout.

Je les remercie chaleureusement pour m’avoir accueillie au sein de l’Institut. Je suis également reconnaissante de l’intérêt et du soutien qu’ils ont porté à mon travail et ma formation.

Je remercie également vivement le CHU de Montpellier et l’Université de Montpellier pour m’avoir permis de réaliser cette thèse.

Aux membres de l’équipe du Pr S. Lehmann :

Cécile, merci pour ta présence au quotidien, ta bonne humeur et surtout pour ton aide précieuse au cours de ces trois années passées à tes côtés. Je te remercie pour avoir toujours répondu présente dès que j’avais besoin de conseils ou d’aide pour les différentes expériences et surtout pour tes précieuses connaissances en qPCR.

Cosette, merci pour ton soutien indéfectible, ta bonne humeur et ta grande générosité. Tu as toujours été là pour me motiver et me proposer ton aide. Je te remercie pour toutes les pensées positives que tu m’as apportées que ce soit au laboratoire comme en dehors et pour nos discussions riches et variées.

Laura, merci également pour ton soutien et ton aide au cours de ces deux dernières années. Un grand merci pour ta bonne humeur au quotidien et nos nombreuses discussions qui ont fait du P2 un endroit plus sympathique mais surtout merci à toi d’avoir rejoint l’équipe et de m’avoir ainsi permis de grandement apprécier mes weekends libres.

Jérôme, merci pour ta gentillesse et ton soutien au cours de ces trois années passées à tes côtés. Je te remercie également pour m’avoir toujours adressé un petit mot gentil au quotidien.

Laurent, merci pour ton aide précieuse au cours de ces trois années et ta gentillesse sans faille. Merci d’avoir toujours répondu présent lors de mes recherches et lors des différentes MSD réalisées pendant ces trois ans.

Christophe et Constance, merci pour votre soutien, votre gentillesse et pour l’attention que vous m’avez portée au cours de ces trois années de thèse.
Pauline, Amandine et Aleksandra, merci à vous pour avoir toujours répondu présentes lorsque j’avais une question, pour votre gentillesse et pour les différentes attentions que vous m’avez portées pendant ma thèse.

Merci également à Marine, Laurie, Justine et Aurore qui m’ont aidée et soutenue lors de leur présence au laboratoire.

Maintenant un grand merci à tous les membres de ma famille et de mon entourage.

Tout d’abord, merci à mon mari qui m’a suivi, soutenu, motivé, réconforté et accompagné tout au long de cette grande aventure qu’est la thèse. Merci à lui d’avoir tout quitté et fait de nombreux sacrifices pour me permettre de réaliser ce projet de thèse dans son intégralité.

Mes chers parents, merci pour votre soutien indéfectible durant toutes ces années d’études, pour votre aide et pour tous vos encouragements. Merci aussi à vous d’avoir supporté autant de déménagements pour autant de diplômes et d’avoir toujours répondu présents quand j’avais besoin de vous.

Merci également à mes beaux-parents pour leur soutien au cours des ces dernières années et pour avoir toujours su me motiver et m’encourager lors de ces dernières années d’études. Merci à vous d’être présents pour moi, pour nous, au quotidien.

A ma sœur, belle-sœur et mes deux beaux-frères, merci à vous pour votre aide, votre soutien et vos petites attentions.

Forcément, je ne peux omettre de remercier tous les membres des familles Radreau, Vallot, Barraut et Bailly, qui m’ont soutenue, encouragée et accompagnée lors de ces trois années de thèse. Un merci en particulier aux « cousines » et à Lola pour leur bonne humeur et leur soutien sans faille.

Enfin, je tiens à remercier tous mes amis pour m’avoir soutenue et encouragée au cours de ce doctorat, pour m’avoir permise de partager mes connaissances et surtout de m’évader lors de précieux moments passés à vos côtés. Un merci en particulier à mes deux supers demoiselles d’honneur, Pauline et Alison, qui m’ont accompagnée et soutenue tout au long de ma vie. Merci également à Patou et Nadou pour leur soutien et leur merveilleux accueil lors de ces derniers mois de thèse. Un grand merci à tous : Charlène & Quentin, Priscillia, Noélia & Fabien, Romuald & Marjorie, Benoit, Aurélien, Valentin, Gaëtan & Romain.

Je dédicace ce manuscrit à ma future petite fille. Tu es le plus bel imprévu de cette fin de thèse, celui qui m’a causé quelques soucis mais qui m’a tant motivé pour y parvenir. Merci à toi.
Sommaires
Résumé en Français ... 2
Résumé en Anglais ... 5
Remerciements ... 8
Sommaire ... 12
Abréviations ... 18
Liste des Figures .. 22
Listes des Tables et Tableaux ... 32

Introduction ... 34

I. La Protéine Prion et les Encéphalopathies Spongiformes Subaiguës Transmissibles ... 35

A. Les Maladies à Prions .. 35
 1. Historique des ESST .. 35
 2. Le concept « Prion » .. 38

B. Les ESST de l’animal à l’Homme ... 40
 1. Les signes cliniques et pathologiques des ESST 40
 2. Les ESST animales .. 42
 a) La tremblante du mouton (Scrapie) 43
 b) Encéphalopathie Spongiforme Bovine (ESB) 44
 c) Les autres ESST animales ... 45
 3. Les ESST humaines .. 46
 a) Les formes sporadiques ... 46
 b) Les formes Génétiques .. 47
 (1) La maladie de Creuzfeldt-Jakob familiale 48
 (2) Le syndrome de Gerstmann-Sträussler-Scheinker 48
 (3) L’insomnie fatale familiale .. 48
 c) Les formes infectieuses ou acquises 49
 (i) Le Kuru ... 49
 (ii) Le variant de la maladie de Creuzfeldt-Jakob (vMCJ) 50
 (iii) Les formes iatrogènes de MC 50
 4. Les modèles expérimentaux des maladies à prions 51

C. La protéine Prion ... 53
 1. Le gène de la protéine Prion .. 53
 2. Structures de la protéine prion .. 56
 a) Structure primaire .. 56
 b) Structures secondaires et tertiaires 58
 c) Le métabolisme de la protéine prion 58
 (1) Biosynthèse .. 58
 (2) Clivages de la protéine prion 60
 (3) Trafic cellulaire (Figure 14) 61

D. Les fonctions de la protéine Prion ... 63
 1. Les Rôles de la PrP ... 63
 a) Rôle dans le métabolisme du cuivre 63
 b) Rôle dans les récepteurs NMDA 64
 c) Rôle de la PrP dans différentes voies de signalisation 65
 (1) La Fyn-Kinase et les voies des MAPK 65
 (2) La voie PI3-K/Akt .. 66
 (3) La voie Wnt/β-catéline .. 67
 2. Rôle de la PrPc dans la neuroprotection et la survie cellulaire 68
3. Rôle de la PrPc dans la formation des neurites et des synapses .. 69
 a) Implication dans la neuritogenèse ... 69
 b) Implication dans la synaptogenèse .. 71
4. Rôle de la PrPc dans la biologie des cellules souches ... 71
 a) Rôle dans la prolifération ... 71
 b) Rôle dans la différenciation .. 73

E. La protéine prion : implication dans les maladies à prions ... 75
1. Structure et caractéristiques biochimiques de la PrPsc .. 76
2. Les différents mécanismes de conversion ... 78
 a) Le modèle de nucléation-polymérisation (Figure 17) .. 78
 b) Le modèle auto-catalytique (Figure 18) ... 79
 c) Le modèle de nucléation assistée (Figure 19) .. 80
3. Les sites de conversion ... 81
4. La PrPsc et la notion de souches ... 82
5. La notion de Barrière d’Espèce (Figure 22) .. 83

II. La Protéine APP et la Maladie d’Alzheimer .. 85

A. La Maladie d’Alzheimer .. 85
1. L’historique ... 86
2. Les Formes de la Maladie d’Alzheimer ... 88
 a) Les formes sporadiques .. 88
 (1) L’âge .. 89
 (2) L’allèle ApoE4 .. 89
 (3) Les autres facteurs de risques : les facteurs environnementaux 91
 b) Les formes génétiques .. 92
3. Critères diagnostiques ... 96
4. Les lésions caractéristiques ... 100
 a) Les plaques séniles .. 100
 b) Les enchevêtrements neurofibrillaires ... 102
 c) Localisation des Lésions .. 104
5. Les modèles expérimentaux de la maladie .. 105
 a) Les modèles animaux .. 106
 (1) Les modèles non-Mammifères ... 106
 (2) Les modèles Mammifères ... 107
 b) Les modèles cellulaires ... 109

B. La protéine précurseur de l’amyloïde APP .. 112
1. Le gène de l’APP ... 112
2. Structures Primaire et Secondaire de la protéine APP .. 114
3. Métabolisme de l’APP .. 117
 a) Biosynthèse et Trafic cellulaire de l’APP (Figure 38) ... 117
 b) Clivages protéolytiques de l’APP ... 119
 (1) Clivage par l-γ-sécétase (Figure 40) ... 119
 (2) Clivage par la β-sécétase (Figure 41) ... 121
 (3) Clivage par la γ-sécétase (Figure 42) ... 123
 (4) Clivage par la η-sécétase ... 125
 (5) Clivage par les Caspases .. 127
 (6) Les voies amyloïdogénique et non-amyloïdogénique ... 128
 c) L’hypothèse de la cascade amyloïde ... 130
4. Fonctions de l’APP .. 132
 a) Rôle dans la Neuroprotection .. 132
 b) Rôle au niveau de la synapse ... 135
 c) Rôle dans la Croissance des Neurites .. 136
 d) Rôle sur la Mémoire et la Potentialisation à Long Termé ... 137
e) Apoptose ... 138
f) Rôle dans la Signalisation Cellulaire ... 140
g) Implication dans la biologie des cellules souches .. 141
 (1) La prolifération des cellules souches ... 141
 (2) La différenciation des cellules souches ... 143

III. Les interactions entre les protéine PrPc et APP ... 146

 A. Les points communs ... 146

 B. PrPc: un régulateur du clivage de l’APP ... 147

 C. PrPc: un récepteur pour les peptides Aβ ... 150

IV. Les Cellules Souches ... 153

 A. Les cellules souches ... 153
 1. Historique ... 153
 2. Propriétés ... 156
 3. Classification ... 156

 B. Les cellules souches embryonnaires humaines (CSEh) 162
 1. Dérivation et culture ... 162
 2. Propriétés ... 164
 a) Auto-renouvellement .. 164
 b) Pluripotence ... 164
 c) Tératomes .. 165
 d) Corps Embryoides ... 165
 e) Les marqueurs caractéristiques des CSEh .. 166
 (1) Les marqueurs de pluripotence ... 166
 (2) Les marqueurs de surface ... 166
 (3) Les marqueurs intracellulaires .. 166

 C. Les Cellules Souches Neurales (NSC) .. 167

Objectifs de la thèse .. 169

Préambule ... 173

Résultats .. 179

I. Induction neurale ... 180

 A. Les cellules souches embryonnaires humaines 180
 1. Expression des gènes d’intérêts des CSEh ... 182
 a) Par Immunofluorescence ... 182
 b) Par qPCR ... 184

 B. L’induction neurale selon le protocole adapté de Y. Benninger 186
 1. Description du protocole d’induction neurale de Y. Benninger 186
 2. Mise au point du protocole de Y. Benninger .. 187
 a) Détermination de la meilleure technique de dissociation des CSEh 187
 b) Détermination de la densité initiale de CSEh 187

15
c) Détermination de la durée et du nombre de points d’arrêts .. 188
3. Caractérisation des cellules au cours de l’induction neurale ... 189

C. L’induction neurale selon le protocole de Vanderhaeghen ... 194
1. Description du protocole d’induction neurale de Vanderhaeghen ... 194
2. Mises au point du protocole de Vanderhaeghen .. 196
 a) Détermination de la densité initiale de CSEh .. 196
 b) Détermination de la durée et du nombre de points d’arrêts ... 196
 c) Adaptation des précurseurs pour amplification .. 197
3. Caractérisation des cellules au cours de l’induction neurale ... 198

D. Détection des protéines PrPc et APP .. 202
1. Expression de la PrPc ... 202
 a) Par immunofluorescence .. 202
 b) Par qPCR ... 204
 c) Par Western Blot ... 205
2. Expression de l’APP et de ses dérivés de clivage .. 206

II. Différenciation des NSC .. 215

A. Les protocoles de différenciation .. 215
1. Différenciation neuronale ... 215
2. Différenciation Astrocytaire ... 216
3. Différenciation non orientée ... 217

B. Caractérisation des Cellules au cours des différenciations ... 218

C. Expression de la PrPc ... 220

D. Expression de l’APP et de ses produits clivés au cours de la différenciation des NSC 222

III. Transduction des cellules souches .. 224

A. Transduction des CSEh .. 224
1. Mises au point ... 225
 a) Densité et surface d’ensemencement .. 225
 b) MOI de Transduction pour les Lentivirus HIV-GFP et HIV-HuPrP 227
 c) Transduction avec les Lentivirus shRNA-Lu et shRNA-PrP .. 229
2. Caractérisation des cellules après transduction ... 229
3. Expression de la PrP, de l’APP et de ses produits clivés .. 237

B. Transduction des NSC .. 244
1. Mises au point ... 244
2. Surexpression de la PrP ... 251
3. Inhibition de l’expression de la PrP ... 253
4. Caractérisation des cellules transduites .. 255
 a) Surexpression de la PrP .. 256
 b) Inhibition de l’expression de la PrP ... 257
5. Impact de la modification d’expression du gène de la PrP sur l’APP et ses dérivés peptidiques dans les NSC en prolifération ... 259
6. Impact de la modification d’expression de la PrP sur la prolifération des NSC 261
7. Impact de la modification de l’expression de la PrP sur ses capacités protectrices dans les cellules en prolifération

8. Impact de la modification d’expression de la PrP sur la différenciation neuronale des NSC

 a) Expression de la PrP
 b) Impact sur la surexpression de la PrP
 (1) Impact sur la différenciation neuronale
 (2) Impact sur l’expression de l’APP et des peptides dérivés
 c) Impact de l’inhibition de l’expression de la PrP

Discussion

Références Bibliographiques
Abréviations
A : Alanine
AA : Acide Aminé
Aβ : Peptide Beta-Amyloïde
ADAM : A Disintegrin And Metalloprotease
ADN : Acide Désoxyribonucléique
AICD : APP Intracellular Domain
AMPA : Alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid
APH-1 : Anterior Pharynx-Defective 1
APLP : APP-Like Protein
ApoE : Apolipoprotéine E
APP : Amyloid Precursor Protein
sAPP : Fragment Soluble De L’APP
ARN : Acide Ribonucléique
ARNm : ARNmessenger
Asp : Asparagine
AVC : Accident Vasculaire Cérébral

BACE : B-Site APP Cleaving Enzyme
BH2 : Domaine Homologue De Bcl2

CK1a : Casein Kinase 1a
CNS : Système Nerveux Central
CSEh : Cellule Souche Embryonnaire Humaine
CTF : C-Terminal Fragment
CuBD : Copper Binding Domain
CWD : Dépérissement Chronique Des Cervidés

DKK-1 : Dickkopf-1
DG : Gyrus Denté
DR6 : Death Receptor 6

EB : Embryoid Bodies
EEG : Electroencéphalogramme
EGF : Epidermal Growth Factor
ELISA : Enzyme Linked Immuno Sorbent Assay
EMT : Transition Epithélio-Mésenchymateuse

ESB : Encéphalopathie Spongiforme Bovine
ESC : Embryonic Stem Cell
mESC : Murine Embryonic Stem Cell
ESF : Encéphalopathie Spongiforme Félíne
ERK : Extracellular Signal-Regulated Kinase
EST : Encéphalopathie Spongiforme Transmissible
ESST : Encéphalopathie Spongiforme Subaiguë Transmissible

bFGF : Basic Fibroblast Growth Factor
FIV : Fécondation In-Vitro
GABA : Acide Gamma Amino Butyrique
GFAP : Glial Fibrillary Acidic Protein
GPI : Glycosyl Phosphatidyl Inositol
GSK3β : Glycogen Synthase Kinase 3β
GSS : Syndrome De Gerstmann-Sträussler-Scheinker

H : Histidine
HEF : Human Embryonic Fibroblast
HPBD : Heparin Binding Domain
HSC : Hematopoietic Stem Cell
HSPG : Héparanes Sulfates

IFF : Insomnie Fatale Familiale
IRM : Imagerie En Résonance Magnétique
IVG : Interruption Volontaire De Grossesse

JNK : C-Jun N-Terminal Kinases

kDa : Kilodalton
KO : Knock-Out
KPI : Kunitz Protease Inhibitor

LCR : Liquide Céphalo-Rachidien
LRP : Low-Density Lipoprotein Receptor-Related Protein
LTP : Potentialisation A Long-Terme

M : Méthionine
MA : Maladie d’Alzheimer

MAPK : Mitogen-Activated Protein Kinase
MAP2 : Microtubule-Associated Protein 2
MCI : Masse Cellulaire Interne
MCJ : Maladie De Creutzfeldt-Jakob
fMCJ : Forme Familiale De La Maladie De Creutzfeldt-Jakob
sMCJ : Forme Sporadique De La Maladie De Creutzfeldt-Jakob
vMCJ : Variant De La Maladie De Creutzfeldt-Jakob
MEF : Murin Embryonic Fibroblast
MEK : Mitogen-Activated Protein Kinase Kinase
MMP : Matrix Metallopeptidase
MMSE : Mini Mental State Examination

NCAM : Neural Cell Adhesion Molecule
NICD : Notch Intracellular Domain
NMDA : N-ÁEthyl-D-Aspartate
NSC : Cellule Souche Neurale
NSCh : Cellule Souche Neurale Humaine

OMS : Organisation Mondiale De La Santé

PEN-2 : Presenilin Enhancer 2
PGC : Primordial Germ Cell
PI3-K : Phosphatidilinositol 3-Kinase
PK : Protéinase K
PP2A : Protein Phosphatase 2A
PSE : Potentiel Post-Synaptique Excitateur
PRNP : Gène Codant Pour La Protéine Prp C
PrP : Protéine Prion
PrP C : Protéine Prion Cellulaire
PrP Sc : Protéine Prion Anormale (De Type Scrapie)
PS : Préséniline
iPSC : Induced Pluripotent Stem Cell
PSEN : Gène Codant Pour La Préséniline

Q : Glutamine

R : Arginine
RC : Random Coil
RE : Réticulum Endoplasmique
RNAi : ARN Interférent
siRNA : Short Interfering RNA
shRNA : Short Hairpin RNA
ROS : Reactive Oxygen Species

SAF : Scrapie Associated Fibrils
SFK : Tyrosines Kinases Src
SOD : Superoxide Dismutase
SSEA : Stage-Specific Embryonic Antigen
STI : Stress Inducible Protein
SVZ : Zone Sous-Ventriculaire

TACE : Tumor Necrosis Factor-Alpha Converting Enzyme
Tau : Tubulin Associated Unit
TCF7L2 : Transcription Factor 7-Like 2
TFR : Telomeric Repeat Binding Factor
TGN : Transgolgi Network
TH : Tyrosine Hydroxylase

UV : Ultra-Violet

VIH / HIV : Virus De l'Immunodéficience Humaine
V : Valine

WT : Wild Type

ZnBD : Zinc Binding Domain
Liste des Figures
Figure 1: Les différentes formes d’Encéphalopathies Spongiformes Subaiguës Transmissibles...35

Figure 2 : Stanley Prusiner – Prix Nobel de Médecine en 1997 pour sa découverte des prions ..39

Figure 3 : Représentation histopathologiques des lésions de prions sur des coupes de cerveaux de souris ...41

Figure 4 : Représentation de résultats obtenus lors du diagnostic des maladies à prions -- ..42

Figure 5 : Nombre de cas reportés d’encéphalopathies spongiformes bovines dans le monde de 1987 à aujourd’hui ..45

Figure 6 : Principales mutations du gène PRNP humain associées aux polymorphismes MV129 à l’origine des formes héréditaires des maladies à prions ..47

Figure 7 : Organisation génomique des gènes Prnp humain, murin et ovin ..54

Figure 8 : Représentation des gènes murins Prnp, Prnd et Sprn codant les protéines PrP, Doppel et Shado (A) ainsi que les domaines architecturaux de ces protéines (B) ------55

Figure 9 : Représentation schématique des structures primaire et secondaire de la protéine prion cellulaire ..56

Figure 10 : Structure tertiaire de la protéine prion cellulaire ...58

Figure 11 : Profil électrophorétique de la PrPc ...59

Figure 12 : Formes Topologiques de la PrPc. ...60

Figure 13 : Les différents clivages de la PrPc. ...61

Figure 14 : Trafic cellulaire de la protéine prion cellulaire ..62

Figure 15 : Evolution de la représentation des structures tertiaires de la PrPc et de la PrPSc. ..76

Figure 16 : Profil électrophorétique de la PrPc et de la PrPSc ..78

Figure 17 : Modèle de nucléation-polymérisation ..79

Figure 18 : Modèle autocatalytique ..80

Figure 19 : Modèle de nucléation assistée .. 80

Figure 20 : Les différents lieux potentiels de conversion ...81
Figure 21 : Modèle représentant le mécanisme de transmission de la PrP²⁵ par variabilité conformationnelle pouvant expliquer l'existence de différentes souches de prions —— 83

Figure 22 : Transmission interspécifique des prions ———————————————————— 84

Figure 23 : Impact global de la démence ———————————————————— 85

Figure 24 : Incidence de la Maladie d’Alzheimer au niveau mondial ——— 86

Figure 25 : Découverte de la maladie d’Alzheimer et lésions pathologiques —— 88

Figure 26 : Représentation des mutations sur la séquence protéique de l’APP ——— 93

Figure 27 : Représentation des mutations sur la séquence protéique de PSEN1 ——— 94

Figure 28 : Représentation des mutations sur la séquence protéique de PSEN2 ——— 95

Figure 29 : Distribution des mutations responsables des formes génétiques de la MA en France ———————————————————— 95

Figure 30 : Représentation des différents facteurs pouvant participer à la production physiologiques des peptides Aβ et à l’apparition d’une démence de type Maladie d’Alzheimer ———————————————————— 96

Figure 31 : Représentation schématique de l’évolution naturelle de la maladie d’Alzheimer basée sur le test MMSE ———————————————————— 97

Figure 32 : Imagerie par Pet-scan (TEP) des cerveaux d’un patient atteint de la Maladie d’Alzheimer et d’un patient sain ———————————————————— 98

Figure 33 : Les plaques séniles : localisation et composition ———————————————————— 102

Figure 34 : Les enchevêtrements neurofibrillaires : localisation et structure ——— 103

Figure 35 : Les biomarqueurs de la maladie d’Alzheimer : les plaques amyloïdes et les enchevêtrements neurofibrillaires ———————————————————— 104

Figure 36 : Le gène de l’APP ———————————————————— 114

Figure 37 : Schéma de la composition structurale de la protéine APP 770 ——— 117

Figure 38 : Trafic intracellulaire de l’APP ———————————————————— 118

Figure 39 : Schéma de la composition structurale de la protéine APP 770 avec les principaux sites de clivage protéolytique de l’APP ———————————————————— 119

Figure 40 : Clivage de l’APP par l’α-sécétase ———————————————————— 121

Figure 41 : Clivage de l’APP par la β-sécétase ———————————————————— 123
Figure 42 : Clivage de l’APP par la γ-sécrétase ---------------------------------124

Figure 43 : L’architecture du complexe de la γ-sécrétase ------------------125

Figure 44 : Représentation schématique du clivage en η de l’APP (encadré rouge) ----127

Figure 45 : Les voies non-amyloïdogénique et amyloïdogénique pour le clivage de l’APP ---------------------------------129

Figure 46 : Les deux voies d’agrégation des peptides Aβ ------------------130

Figure 47 : La cascade Amyloïde ---131

Figure 48 : L’hypothèse du cycle amyloïde ---------------------------------------132

Figure 49 : Schémas des processus protéolytiques communs entre la PrPC et l’APP --146

Figure 50 : Chronologie de la découverte des Cellules Souches jusqu’en 2010 --------155

Figure 51 : Représentation schématique des propriétés spécifiques des cellules souches ---------------------------------156

Figure 52 : Classification des cellules souches selon leur potentiel de différenciation -157

Figure 53 : Représentation des premières étapes du développement d’un embryon avec la présence des cellules souches totipotentes lors des premières divisions --------157

Figure 54 : Représentation des premières étapes du développement d’un embryon avec la présence des cellules souches pluripotentes du stade Morula au stade Blastocyste ----- ---------------------------------158

Figure 55 : Représentation des possibilités de différenciation des cellules souches pluripotentes vers les trois feuillets embryonnaires donnant toutes les cellules des tissus de l’organisme ---------------------------------158

Figure 56 : Représentation des possibilités de différenciation des cellules souches multipotentes ---159

Figure 57 : Représentation de la possibilité de différenciation restreinte des cellules souches unipotentes --160

Figure 58 : Méthode de Dérivation des CSEh -------------------------------------163

Figure 59 : Photographie en contraste de phase d’une colonie de CSEh H9 --------163

Figure 60 : Représentation schématique de l’auto-renouvellement des CSEh --------164

Figure 61 : Représentation schématique de la pluripotence des CSEh --------------165

25
Figure 62 : Représentation schématique de la différenciation des CSEh en NSC puis en cellules spécialisées : Neurone, Astrocyte et Oligodendrocyte myélinisant167

Figure 63 : Représentation schématique des objectifs de la thèse 172

Figure 64 : Représentation de la démarche expérimentale suivie pendant ma thèse --174

Figure 65 : Différentes analyses de l’APP et de la PrP prévues pour chaque point d’arrêt (tous les 5 jours sur 30 jours sur les lysats cellulaires et sur les surnageants) pour les dosages, expression et détection ...178

Figure 66 : Tableau mis au point au laboratoire pour le suivi des CSEh au quotidien --182

Figure 67 : Exemple d’immunomarquages des CSEh H9 : Oct4, Tra1-60, SSEA4, Nanog, Sox2, Pax6, Nestin-MAP2, βIII-Tubuline-DCX et GFAP-Synaptophysine183

Figure 68 : Exemple de qPCR de gènes d’intérêts sur les CSEh ..185

Figure 69 : Description des différentes étapes du protocole d’induction neurale adapté de Y. Benninger ..189

Figure 70 : Caractérisation des cellules en cours de l’induction neurale selon le protocole de Y. Benninger ...190

Figure 71 : qPCR des principaux gènes au cours de l’induction neurale selon le protocole adapté de Y. Benninger ...192

Figure 72 : Les 4 principales lignées retenues pour les différenciations, obtenues à partir du protocole d’induction neurale adapté de Y. Benninger ...194

Figure 73 : Représentation des différentes étapes du protocole de P. Vanderhaeghen ---- ..195

Figure 74 : Description des différentes étapes du protocole d’induction neurale adapté du protocole de P. Vanderhaeghen ..198

Figure 75 : Caractérisation des cellules dérivées à partir des CSEh selon le protocole de P. Vanderhaeghen ..199

Figure 76 : qPCR des principaux gènes au cours de l’induction neurale selon le protocole adapté de P. Vanderhaeghen ..200

Figure 77 : Les 2 principales lignées retenues pour les différenciations, obtenues à partir du protocole d’induction neurale adapté de P. Vanderhaeghen ...201

Figure 78 : Détermination des meilleurs paramètres pour le marquage de la PrP dans les CSEh (exemple sur les CSEh H9) ..203
Figure 79 : Détection par Immunofluorescence de la protéine PrP, dans les NSC obtenues avec les deux protocoles d’induction neurale sélectionnés ------------------------204

Figure 80 : Détection par qPCR de l’ARNm PRNP codant pour la PrP ------------------205

Figure 81 : Détection par Western Blot des isoformes de la protéine PrP ------------206

Figure 82 : Détection par qPCR de l’ARNm codant pour l’APP et l’APP KPI ---------207

Figure 83 : Représentation schématique du fonctionnement de la technologie MesoScaleDiscovery --208

Figure 84 : Graphique représentant les concentrations des différents peptides Aβ détectées avec le kit Triplex Aβ MSD ---------------------------------------209

Figure 85 : Effet de la Décongélation sur la détection des peptides Aβ avec la technique ELISA MSD ---209

Figure 86 : Effet de la dilution sur la détection des peptides Aβ avec la technique ELISA MSD --210

Figure 87 : Comparaison des techniques de concentration pour la détection du peptide Aβ 1-40 ---211

Figure 88 : Comparaison de différentes techniques de concentration des protéines ----212

Figure 89 : Graphique représentant les concentrations des différents fragments solubles (sAPPα/β) détectés avec le kit Duplex sAPP MSD ------------------------213

Figure 90 : Expression des fragments solubles sAPP et des peptides Aβ dans le surnageant de culture par ELISA multiplex MSD ---------------------------214

Figure 91 : Représentation schématique des différenciations utilisées --------------215

Figure 92 : Description des différentes étapes du protocole de la différenciation neuronale (Adapté de Conti L., Smith A., 2005) ---216

Figure 93 : Description des étapes du protocole de la différenciation astrocytaire ----216

Figure 94: Description des étapes du protocole de la différenciation non orientée ----217

Figure 95 : Exemple des trois différenciations réalisées sur la lignée H1B27G5-4-J25, obtenue à partir des CSEh H1 selon le protocole adapté de Y. Benninger ---------219

Figure 96 : Analyse par qPCR de différents gènes au cours des différenciations neuronale et astrocytaire des H1NSC obtenues à partir des CSEh H1 selon le protocole adapté de Y. Benninger ---220

27
Figure 97 : Expression de la PrP pendant la différenciation des NSC221

Figure 98 : Expression de l’APP, des sAPP et des Aβ au cours des trois différenciations des NSC ..223

Figure 99 : Transductions lentivirales dans les CSEh ...225

Figure 100 : Représentation schématique des mises au point pour la transduction des CSEh ..226

Figure 101 : Analyses qPCR des cellules H9NSC à J12 de l’induction neurale en fonction de la densité et de la surface d’ensemencement ..227

Figure 102 : Observation de l’efficacité de transduction, avec le lentivirus pWPXL-GFP, des CSEh H9 à J4 post-transduction ...228

Figure 103 : Observation de l’efficacité de transduction des lentivirus pWPXL-GFP et pWIG-HuPrP à différents moment au cours de l’induction neurale des CSEh H9 selon le protocole adapté de Y. Benninger ...230

Figure 104 : Immunomarquages des CSEh H9 à J0 et des cellules transduites avec les lentivirus pWPXL-GFP (GFP), pWIG-HuPrP (PrP) ou non transduites (Nt), à J12 de l’induction neurale selon le protocole adapté de Y. Benninger ..232/233

Figure 105 : Analyses qPCR des cellules H9NSC transduites avec les lentivirus pWIG-HuPrP (PrP) et pWPXL-GFP (GFP) et non transduites (Nt), au cours de l’induction neurale ..234

Figure 106 : Analyses qPCR des cellules H9NSC transduites avec les lentivirus pWIG-HuPrP (PrP) et pWPXL-GFP (GFP) et non transduites (Nt), au cours de l’induction neurale ..236

Figure 107 : Observation par immunofluorescence de l’expression de la GFP et de la PrP au cours de l’induction neurale des CSEh H9 transduites ou non ..237

Figure 108 : Analyses par qPCR de l’expression des gènes codant pour la PrP et les isoformes de l’APP au cours de l’induction neurale des cellules CSEh H9 non transduites et transduites avec les lentivirus pWPXL-GFP et pWIG-HuPrP ..239

Figure 109 : Analyse par ELISA MSD, de la production des fragments solubles sAPPα et sAPPβ au cours de l’induction neurale des CSEh H9 non transduites ou transduites avec les lentivirus pWPXL-GFP et pWIG-HuPrP ..241

Figure 110 : Analyse par ELISA MSD, de la production des peptides Aβ 1-40 et 1-42 au cours de l’induction neurale des CSEh H9 non transduites ou transduites avec les lentivirus pWPXL-GFP et pWIG-HuPrP ..243

Figure 111 : Observation de l’efficacité de transduction ...245
Figure 112 : Comparaison de l'efficacité de transduction classique et de magnétotransduction des NSC avec le vecteur lentiviral pWPXL-GFP à J2 post-transduction sur les NSC obtenues à partir des CSEh H9, selon le protocole adapté de Y. Benninger -------------------------------------246

Figure 113 : Transduction des cellules CSEh/NSC ---248

Figure 114 : Expression des marqueurs de CSE et NSC dans les cellules H9NSC de Gibco - ---250

Figure 115 : Observation de l'efficacité de transduction des H9NSC Gibco à J4 post-transduction ---250

Figure 116 : Cellules H9NSC transduites ---251

Figure 117 : Expression de la GFP et de la PrP dans les cellules H9NSC transduites ----252

Figure 118 : Expression de la PrP dans les cellules H9NSC non transduites (Nt) et transduites avec les vecteurs lentiviraux pWPXL-GFP (GFP) et pWIG-HuPrP (PrP) --- 253

Figure 119 : Expression de la PrP dans les cellules H9NSC non transduites (Nt) et transduites avec les vecteurs lentiviraux pAPM-shRNA-Luciférase (shLu) et pAPM-shRNA-HuPrP (shPrP) avant et après sélection à la puromycine (shLu2 et shPrP2 respectivement) --254

Figure 120 : Observation par immunofluorescence des gènes Nestin, MAP2, βIII-Tubuline et GFAP dans les cellules H9NSC (Gibco) transduites ou non ---------------------256

Figure 121 : Analyses par qPCR de l'expression de différents gènes dans les cellules transduites avec les lentivirus pWPXL-GFP (GFP, vert) et pWIG-HuPrP (PrP, rouge) - 257

Figure 122 : Analyses par qPCR de l'expression de différents gènes dans les cellules transduites avec les lentivirus pAPM-shRNA-Luciférase (shLu, bleu foncé) et pAPM-shRNA-HuPrP (shPrP, bleu clair) ---258

Figure 123 : Analyses par qPCR de l'expression des gènes codant pour toutes les isoformes de l'APP (APP) ou seulement celles contenant le domaine KPI (APP-KPI) - 259

Figure 124 : Analyse par ELISA MSD de la quantité des peptides issus du clivage de l'APP : sAPPα/β et Aβ 38/40/42 dans les H9NSC transduites avec les lentivirus pWPXL-GFP (vert) et pWIG-HuPrP (rouge), en prolifération --------------------------------- 260

Figure 125 : Analyse par ELISA MSD de la quantité des peptides issus du clivage de l'APP : sAPPα/β et Aβ 38/40/42 dans les H9NSC transduites avec les lentivirus pAPM-shRNA-Luciférase (bleu foncé) et pAPM-shRNA-HuPrP (bleu clair), en prolifération - 261

Figure 126 : Mesure de la prolifération cellulaire par incorporation Edu dans les cellules H9NSC non transduites (Nt, gris) ou transduites avec les 4 lentivirus : pWPXL-GFP (GFP,

Figure 127 : Sélection par FACS des cellules transduites avec les vecteurs pWPXL-GFP (GFP) et pWIG-HuPrP (PrP) exprimant des niveaux élevés de GFP

Figure 128 : Mesure de la viabilité, de la cytotoxicité et de l’activité des caspases 3 et 7 dans les cellules H9NSC non transduites (NT, gris) ou transduites avec les 4 lentivirus : pWPXL-GFP (GFP, vert), pWIG-HuPrP (PrP, Rouge), pAPM-shRNA-Luciférase (shLu, bleu foncé) et pAPM-shRNA-HuPrP (shPrP, bleu clair)

Figure 129 : Vérification du maintien des caractères modifiés par transduction au cours de la différenciation neuronale des H9NSC Gibco

Figure 130 : Expression de la PrP dans les H9NSC transduites avec les lecteurs lentiviraux pWIG-HuPrP (PrP, rouge), pWPXL-GFP (GFP, vert) et non transduites (NT), au cours de la différenciation neuronale

Figure 131 : Analyse par qPCR des gènes spécifiques des NSC et des jeunes neurones dans les cellules transduites avec les lentivirus pWPXL-GFP (GFP, vert) et pWIG-HuPrP (PrP, rouge) au cours de la différenciation neuronale

Figure 132 : Analyse par immunofluorescence de l’expression de Nestin et de la βIII-Tubuline dans les cellules H9NSC transduites avec les lentivirus pWPXL-GFP (GFP) et pWIG-HuPrP (PrP) au cours de la différenciation neuronale

Figure 133 : Analyse par immunofluorescence et qPCR de l’expression des marqueurs des NSC et des jeunes neurones dans les cellules H9NSC transduites avec les lentivirus pWPXL-GFP (GFP, vert) et pWIG-HuPrP (PrP, rouge) au cours de la différenciation neuronale

Figure 134 : Analyse par qPCR des différentes isoformes de l’APP (APP) ou seulement celles contenant le domaine KPI (APP-KPI), au cours de la différenciation neuronale des H9NSC transduites avec les lentivirus pWPXL-GFP (GFP, vert) et pWIG-HuPrP (PrP, rouge)

Figure 135 : Analyse par ELISA MSD des concentrations de peptides sAPPα et sAPPβ au cours de la différenciation neuronale des H9NSC transduites avec les lentivirus pWPXL-GFP (GFP, vert) et pWIG-HuPrP (PrP, rouge)

Figure 136 : Analyse par ELISA MSD des concentrations de peptides Aβ38/40/42 au cours de la différenciation neuronale des H9NSC transduites avec les lentivirus pWPXL-GFP (GFP, vert) et pWIG-HuPrP (PrP, rouge)

Figure 137 : Expression de la PrP dans les H9NSC transduites avec les lecteurs lentiviraux pAPM-shRNA-Luciférase (shLu , bleu foncé) et pAPM-shRNA-HuPrP (shPrP, bleu clair), au cours de la différenciation neuronale

30
Figure 138 : Analyse par qPCR des gènes spécifiques des NSC et des jeunes neurones dans les cellules transduites avec les lentivirus pAPM-shRNA-Luciférase (shLu, bleu foncé) et pAPM-shRNA-HuPrP (shPrP, bleu clair) au cours de la différenciation neuronale --278

Figure 139 : Analyse par immunofluorescence et qPCR de l'expression des marqueurs des NSC et des jeunes neurones dans les cellules H9NSC transduites, au cours de la différenciation neuronale --- 279/280

Figure 140 : Analyse par qPCR des différentes isoformes de l'APP (APP) ou seulement celles contenant le domaine KPI (APP-KPI), au cours de la différenciation neuronale des H9NSC transduites avec les lentivirus pAPM-shRNA-Luciférase (shLu, bleu foncé) et pAPM-shRNA-PrP (shPrP, bleu clair) ---281

Figure 141 : Analyse par ELISA MSD des concentrations de peptides sAPPα et sAPPβ au cours de la différenciation neuronale des H9NSC transduites avec les lentivirus pAPM-shRNA-Luciférase (shLu, bleu foncé) et pAPM-shRNA-PrP (shPrP, bleu clair) --------282

Figure 142 : Analyse par ELISA MSD des concentrations de peptides Aβ38/40/42 au cours de la différenciation neuronale des H9NSC transduites avec les lentivirus pAPM-shRNA-Luciférase (shLu, bleu foncé) et pAPM-shRNA-PrP (shPrP, bleu clair) --------283
Listes des Tables et Tableaux
Table 1 : Chronologie des principales avancées dans la recherche sur le Prion -------38
Table 2 : Les ESST Animales --43
Table 3 : Les ESST Humaines --46
Table 4 : Présentation des principaux modèles animaux de la maladie d’Alzheimer ---109
Table 5 : Résumé des principales lignées iPSC modèles de la Maladie d’Alzheimer ----112

Tableau 1 : Comparaison des caractéristiques biochimiques de la PrPc et de la PrPsc ---77
Tableau 2 : Répertoire des différentes lignées de NSC produites à partir du protocole adapté de Y. Benninger ---193
Tableau 3 : Répertoire des différentes lignées de NSC produites à partir du protocole adapté de P. Vanderhaeghen ---201
Introduction
I. La Protéine Prion et les Encéphalopathies Spongiformes Subaiguës Transmissibles

A. Les Maladies à Prions

Les maladies à prions ou Encéphalopathies spongiformes subaiguës transmissibles (ESST) sont des affections dégénératives du système nerveux central (CNS) qui touchent aussi bien les hommes que les animaux. Les ESST sont caractérisées par une longue période d’incubation avant l’apparition des premiers symptômes suivie d’une évolution rapide et fatale (Figure 1).

![Diagramme des maladies à prions](image)

Figure 1 : Les différentes formes d’Encéphalopathies Spongiformes Subaiguës Transmissibles.

1. Historique des ESST

L’histoire des ESST débute au XVIIIème siècle en Grande-Bretagne et dans d’autres pays
Européens, avec la description d'une maladie touchant les ovins et appelée « tremblante du mouton » ou « scrapie » en raison de la tendance des animaux atteints à se gratter (=to scrape). Dès lors, de nombreuses hypothèses apparurent quand à l'origine de la maladie, d'une hyperactivité sexuelle des béliers, aux orages en passant par le parasite Sarcosporidium.

En 1899, C. Besnoit émit l'hypothèse que la scrapie était une maladie virale (Besnoit 1899). C'est ensuite J. Cuillé et P.L. Chelle en 1936, qui ont montré le caractère transmissible de la tremblante. En effet, ils sont parvenus à transmettre la tremblante d'un mouton à un autre mouton ainsi que du mouton à la chèvre montrant la nature infectieuse de l'agent de la tremblante et la caractére transmissible intra- et inter-spèces (Cuille 1933); (Cuille 1936); (Cuille 1938a); (Cuille 1938b); (Cuille 1938c); (Cuille 1939). Les expériences de Cuille et Chelle ont été reproduites par W.S. Gordon sur 700 animaux et 200 ont développé la tremblante confirmant ainsi le caractère transmissible de la tremblante (Gordon 1946).

Chez l'Homme, au début du XXème siècle, Hans-Gerhard Creutzfeldt (Creutzfeldt 1920) et Alfons Maria Jakob (Jakob 1921) décrivent pour la première fois chez l'Homme une maladie, appelée alors maladie de Creutzfeldt-Jakob, qui se caractérise par une dégénérescence du système nerveux central associée à la présence de vacuoles conférant un aspect spongieux au cerveau d'où le nom d'encéphalopathie spongiforme. En 1957, Daniel C. Gajdusek et Vincent Zigas, décrivent à leur tour, une maladie neurodégénérative humaine à caractère infectieux appelée Kuru et existant depuis une vingtaine d'année dans la tribu des Fores en Papouasie Nouvelle Guinée (Gajdusek & Zigas 1957). Le Kuru affectait 10% de la population, principalement les femmes et les enfants qui se nourrissaient du cerveau et des abats du défunt lors de rites funéraires cannibales. D'autres groupes ethniques également cannibales existaient mais ne présentaient pas le Kuru d'où l'idée que le cannibalisme était uniquement le moyen de transmettre un agent infectieux qui restait à identifier. Ce sont ensuite les observations de W. Haldlow qui firent avancer les connaissances sur le Kuru. En effet, il fit part à Gajdusek de l'existence de similitudes entre le Kuru et la tremblante. Ainsi, des études sur le Chimpanzé ont permis de montrer le caractère transmissible du Kuru et de la maladie de Creutzfeldt-Jakob (Gajdusek et al. 1966); (Gajdusek et al. 1967); (Gibbs et al. 1968).
Dès lors, toutes les pathologies humaines et animales à caractère transmissible présentant des lésions spécifiques du système nerveux central sont regroupées au sein du même groupe de maladies neurodégénératives sous le nom d’encéphalopathies spongiformes subaiguës transmissibles (ESST).

Dans les années quatre-vingt, les ESST sont de nouveau propulsées sur le devant de la scène à travers plusieurs éléments dramatiques. En effet, plusieurs cas de MCJ sont apparus chez des enfants aux États-Unis, au Royaume-Uni et en France, après contaminations accidentelles de lots d’hormone de croissance. En 1986, de nombreux animaux au Royaume Uni présentent une encéphalopathie spongiforme bovine (ESB) déclenchant ainsi la crise de la « vache folle ». L’origine de la maladie proviendrait de la consommation de compléments protéiques issus de farines de viandes et d’os de bovins contaminés par une ESST. La consommation de viande de bovins infectés par l’ESB a provoqué l’émergence d’une forme atypique de la maladie de Creutzfeldt-Jakob, chez des personnes jeunes alors que les formes classiques apparaissent préférentiellement avec l’âge. Cette forme de MCJ est alors appelée « variant de la maladie de Creutzfeldt-Jakob » (vMCJ) (Will et al. 1996).
Table 1 : Chronologie des principales avancées dans la recherche sur le Prion. D’après (Aguzzi & Polymenidou 2004).

2. Le concept « Prion »

Les questions concernant la nature et le mode de transmission des ESST ont fortement stimulé les recherches visant à isoler et identifier un potentiel agent infectieux.

Ainsi, l’hypothèse « prion », issu de la « contraction inversée » de « PROteinaceous INFectious particle only », a été formulée par S. Prusiner en 1982 (Prusiner 1982). L’hypothèse propose que l’agent du prion serait de nature protéique puisque l’agent infectieux serait constitué d’une protéine capable de s’auto-répliquer, sans ADN ni ARN (Griffiths 1967). En effet, l’infectiosité d’extraits de cerveaux de moutons atteints de tremblante diminue après utilisation de traitements visant à dénaturer les protéines ce qui n’est pas le cas avec des méthodes utilisées pour inactiver les acides nucléiques (Prusiner 1982); (Bolton et al. 1982). Ceci avait déjà été évoqué par T. Alper qui
propose que l’agent de la tremblante du mouton est dépourvu d’acides nucléiques puisque des extraits de cerveaux atteints gardent leur infectiosité après traitements aux ultra-violets ou radiations ionisantes connus pour détruire les acides nucléiques (Alper et al. 1967).

De plus, Cho et al. ont montré que des filtrats de cerveaux de souris infectées par la tremblante présentaient une diminution quasiment totale de l’infectiosité après un traitement à la pronase, une légère réduction après un traitement à la DNase I mais n’était pas affectée par un traitement à la RNase A (Cho 1980).

Les Prions sont ainsi qualifiés d’Agents Transmissibles Non Conventionnels (ATNC) puisqu’ils sont résistants aux procédés physico-chimiques et thermiques qui détruisent les pathogènes classiques, qu’ils se propagent sous un mode auto-réplicatif et qu’ils ne provoquent, par ailleurs, pas de réaction inflammatoire.

La protéine prion (PrP) fut identifiée par le groupe de S. Prusiner (McKinley et al. 1983). En effet, des cerveaux de hamster infecté avec la tremblante sont enrichis, après digestion à la protéinase K (PK), en une protéine prion PrPSc (PrPScrapie) de 27 à 30 kDa (PrP27-30). Cette protéine est en revanche absente dans des cerveaux sains (Prusiner et al. 1983).

Différentes études sur des ADN de hamsters, de souris ou d’humains, ont ensuite permis de déterminer qu’un seul gène codait à la fois pour la PrPSc et pour la PrP cellulaire (PrPC). La PrPSc serait donc codée par l’hôte (Chesebro et al. 1985); (Oesch et al. 1985); (Basler et al. 1986).

Par ailleurs, l’ablation de ce gène chez la souris conduit à une résistance à la tremblante (Bueler et al. 1992) et que la protéine PrPC était non seulement indispensable pour servir de substrat et s’accumuler mais aussi pour médier la neurotoxicité induite par le prion (Brandner et al. 1996).

Figure 2 : Stanley Prusiner – Prix Nobel de Médecine en 1997 pour sa découverte des prions.
B. Les ESST de l'animal à l'Homme

Actuellement, les ESST sont des affections rares, de l’ordre de 1 à 2 cas par an et par million d’habitants chez l'Homme, et qui touchent aussi bien l’Homme que l’animal. Chez l’animal, différentes espèces de Mammifères sont touchées à travers le monde. Chez l'Homme, il existe plusieurs formes nosologiques : sporadiques, familiales et infectieuses (Prusiner 1998). Les formes sporadiques sont de cause inconnue alors que les formes génétiques sont dues à des mutations dans le gène de la protéine PrP. Les formes infectieuses ou acquises résultent de la transmission de la maladie à partir d’un animal ou d’une autre personne.

1. Les signes cliniques et pathologiques des ESST

Les maladies à prions se caractérisent par des marques histopathologiques communes principalement dans le système nerveux central. Tout d’abord, une vacuolisation dite spongiforme dans toute la substance grise du cerveau donnant un aspect d’éponge au CNS. La vacuolisation est souvent associée à une perte neuronale. On retrouve également une gliose réactionnelle correspondant à une hypertrophie et une prolifération des astrocytes et de la microglie. La gliose peut notamment être mise en évidence par une augmentation de l’expression de la protéine astrocystaire GFAP (Glial Fibrillary Acidic Protein) et peut également être impliquée dans la mort neuronale (Diedrich et al. 1991) (Dormont et al. 1981). Les ESST sont aussi caractérisées par une accumulation de protéine PrPSc, principalement dans le cerveau mais également dans d’autres tissus périphériques (DeArmond et al. 1992); (Williams et al. 1994); (Forloni et al. 1993). Ces dépôts peuvent être diffus, ponctiformes ou sous forme de plaques.
Figure 3 : Représentation histopathologiques des lésions de prions sur des coupes de cerveaux de souris

A : Spongiose ou vacuolisation neuronale (coloration hématoxyline-éosine)
B : Prolifération Astrocytaire (Immunohisto chimique avec anticorps anti-GFAP : Glial Fibrillary Acidic Protein)
C : Accumulation de Protéine anormale PrPSc (Marquage Saf 84)

Ces caractéristiques sont à la base du diagnostic de certitude post-mortem des maladies à prions humaines. En particulier, les investigations sur la localisation des lésions neuronales et la nature des dépôts de PrPSc dans le cerveau et son profil électrophorétique en Western Blot, sont utilisées pour le diagnostic différentiel des formes sporadiques, génétiques et acquises des maladies à prions humaines. Concernant le diagnostic précoce, les ESST sont caractérisées par des anomalies de l’activité cérébrale repérées par électroencéphalogramme (EEG), la présence de la protéine neuronale 14-3-3 dans le liquide céphalo-rachidien (LCR) et l’absence d’inflammation dans le LCR ou encore la présence d’anomalies particulières dans certaines régions du cerveau (noyaux gris centraux, cortex) observés par IRM (Steinhoff et al. 1996); (Zerr et al. 1998); (Hsich et al. 1996) (Figure 4). Il existe cependant un tableau de signes cliniques que nous ne détaillerons pas ici.
Figure 4: Représentation de résultats obtenus lors du diagnostic des maladies à prions.
A : EEG d’un patient atteint de fMCJ : ondes pointues de période 1Hz
B : Détecton de la protéine 14-3-3 dans le LCR : contrôle positif (C+) avec la lignée cellulaire NIH3T3 ; contrôle négatif (N) et patient avec la mutation V210I (P).
C : Hypersignaux striataux (Séquence FLAIR) chez un patient atteint de MCJ sporadique.

Ces examens peuvent être associés à l’étude du gène PRNP dans le cas des formes génétiques des ESST. L’étude du polymorphisme de ce dernier peut également être utilisée pour le diagnostic d’une forme de maladie à prion. En particulier, le polymorphisme du codon 129 (Méthionine M - Valine V) du gène PRNP est le plus connu. Dans la population générales, 50% des personnes sont hétérozygotes MV, 40% sont homozygotes MM et 10% homozygotes VV. Ce polymorphisme peut être associé aux maladies à prions puisque l’homozygotie MM est retrouvée dans 64% des cas de MCJ (Palmer et al. 1991) alors qu’il y a 19% de VV et 17% de MV. L’homozygotie MM serait ainsi un facteur de risque de MCJ sporadique (Laplanche 1994). De même, tous les cas déclarés de variant de la MCJ sont également homozygotes MM (Will et al. 2000).

Pour l’Homme, les thérapeutiques sont actuellement inexistantes. Si des études chez l’animal avaient mis en évidence des traitements potentiels tels que la Quinacrine, le Pentosane Polysulphate, la Doxicycline ou la Flupirtine, tous les essais cliniques étaient cependant restés inefficaces.

2. Les ESST animales
Les ESST peuvent affecter différentes espèces animales (*Table 2*).

<table>
<thead>
<tr>
<th>Animal Hôte</th>
<th>Maladie</th>
<th>Première Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovins, Caprins</td>
<td>Tremblante</td>
<td>1730</td>
</tr>
<tr>
<td>Bovins</td>
<td>Encéphalopathie Spongiforme Bovine (ESB)</td>
<td>1985</td>
</tr>
<tr>
<td>Cervidés</td>
<td>Dépérissement Chronique des Cervidés (CWD)</td>
<td>1967</td>
</tr>
<tr>
<td>Visons d'élevages</td>
<td>Encéphalopathie Transmissible du Vison</td>
<td>1947</td>
</tr>
<tr>
<td>Félidés domestiques ou de captivité</td>
<td>Encéphalopathie Spongiforme Féline (ESF)</td>
<td>1990</td>
</tr>
</tbody>
</table>

Table 2 : Les ESST Animaux. D'après (Ironside et al. 2001); (Lberski 2012); *The Center for Food Security and Public Health* (http://www.cfsph.iastate.edu).

a) **La tremblante du mouton (Scrapie)**

La tremblante du mouton est une maladie neurodégénérative connue depuis plusieurs siècles, qui affecte les petits ruminants (ovins, caprins). La tremblante existe dans presque tous les pays du monde à l'exception de l'Australie et de la Nouvelle Zélande qui ont réussi à éradiquer la maladie dans les années 1950 suite à des mesures drastiques. En général, la période d'incubation est de 2 à 5 ans chez les ovins et de 2 à 8 ans chez les caprins. Seuls quelques individus d'un troupeau sont atteints et présentent tout d'abord des troubles du comportement avec une mise à l'écart du troupeau. Les animaux deviennent ensuite hyperexcitables et d'autres signes tels que des tremblements, une démarche inhabituelle ou une perte de poids peuvent apparaître ainsi qu'un prurit poussant l'animal à se gratter. Les signes s'intensifient avec l'évolution de la maladie et les animaux meurent rapidement de quelques semaines à 6 mois.
Plusieurs publications ont mis en évidence l’existence de nombreux polymorphismes dans le gène de la PrP ovine et en particulier les polymorphismes aux codons 136, 154 et 171 qui selon les combinaisons (ARR, ARQ, VRQ, ARH……) vont rendre les animaux plus ou moins sensibles à la tremblante. Par exemple contrairement aux autres polymorphismes, les moutons ARR sont résistants aux tremblantes dites classiques mais ils demeurent sensibles à certaines souches de tremblante atypiques (NOR98) et à l’agent de l’ESB (Goldmann et al. 1994), (Buschmann et al. 2004a), (Buschmann et al. 2004b), (Le Dur 2005).

b) Écœncéphalopathie Spongiforme Bovine (ESB)

Les premiers cas d’ESB sont apparus dans les années 1980 au Royaume-Uni puis ont été recensés dans de nombreux autres pays. La période d’incubation de la maladie est longue, 4, 5 ans en moyenne. Les animaux atteints d’ESB présentent des comportements nerveux ou agressifs, de l’anxiété, des tremblements ou encore des anomalies de posture. L’animal peut également présenter un prurit comme dans le cas de tremblante et meurt rapidement, entre deux à six mois.

Jusqu’au début du XXIème siècle, une seule souche de l’ESB avait été identifiée. En 2004, deux nouveaux profils atypiques ont été mis en évidence correspondant à ce qui a été appelé par la suite l’ESB atypique de type L ou de type H (Casalone et al. 2004); (Biacabe et al. 2004). Les études de transmission (bovins, primates, souris) suggèrent un potentiel infectieux important pour l’ESB-L (Lombardi et al. 2008), (Beringue et al. 2007), (Beringue et al. 2008) (Comoy et al. 2008), (Kong et al. 2008), (Capobianco et al. 2007).

Le nombre de cas d’ESB au Royaume-Uni a ainsi atteint son maximum en 1992, et plus de 180 000 cas y ont été recensés. Les mesures d’interdiction ainsi que la surveillance des troupeaux ont permis une décroissance progressive des cas d’ESB et l’arrêt de l’abattage systématique des troupeaux suite à la découverte d’un individu atteint (Figure 5).

Figure 5 : Nombre de cas reportés d’encéphalopathies spongiformes bovines dans le monde de 1987 à aujourd’hui. Données de l’Organisation Mondiale de la Santé Animale (OIE), Juin 2015

c) Les autres ESST animales

Le dépérissement chronique des cervidés (CWD) : cette ESST touche les Cerfs, en liberté ou en captivité, des Etats-Unis et du Canada. Elle est apparue dans les années 1960 et se caractérise par des troubles du comportement et notamment une cachexie de l’animal conduisant à un amaigrissement progressif et à sa mort en quelques mois.

L’encéphalopathie transmissible du vison : il s’agit d’une maladie rare apparue dans les fermes d’élevage à travers le monde. Elle se caractérise par des troubles du comportement, une ataxie et la mort de l’animal en quelques semaines. Tout comme les autres encéphalopathies, la contamination serait due à l’utilisation des farines animales dans l’alimentation des animaux (Baron et al. 2007), (Marsh & Bessen 1993).
L’encéphalopathie spongiforme feline (ESF) : cette ESST est apparue au Royaume Uni en 1989 sur un chat siamois puis d’autres cas ont été recensés en particulier parmi les espèces en captivité (Guépard, Tigre...). Elle se caractérise également par des troubles du comportement, une ataxie, des tremblements, des convulsions et la mort de l’animal en quelques semaines.

3. **Les ESST humaines**

Les ESST humaines regroupent la Maladie de Creutzfeldt-Jakob (MCJ), l’Insomnie Fatale Familiale (IFF), le syndrome de Gerstmann-Sträussler-Scheinker (GSS) et le Kuru et ont actuellement, une incidence de 1 à 2 cas par an par habitants. Ces maladies peuvent être classées en trois groupes en fonction de leur étiologie : les formes sporadiques, génétiques et acquises représentant respectivement 85%, 15% et 5% des ESST. Dans tous les cas, les ESST entrainent une démence et des troubles moteurs *(Table 3)*.

<table>
<thead>
<tr>
<th>Maladie</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sporadique</td>
<td></td>
</tr>
<tr>
<td>Maladie de Creutzfeldt-Jakob sporadique (sMCJ)</td>
<td>Mutation non héritable dans le gène Prnp,</td>
</tr>
<tr>
<td></td>
<td>Conversion en PrPSc</td>
</tr>
<tr>
<td>Génétique</td>
<td></td>
</tr>
<tr>
<td>MCJ familiale (fMCJ)</td>
<td>Mutation dans le gène Prnp</td>
</tr>
<tr>
<td>Gerstmann-Sträussler- Scheinker (GSS)</td>
<td>Mutation dans le gène Prnp</td>
</tr>
<tr>
<td>Insomnie Fatale Familiale (IFF)</td>
<td>Mutation dans le gène Prnp</td>
</tr>
<tr>
<td>Infectieuse ou Acquise</td>
<td></td>
</tr>
<tr>
<td>Le Kuru</td>
<td>Endocannibalisme</td>
</tr>
<tr>
<td>Variant de la MCJ (vMCJ)</td>
<td>Consommation de produits contaminés par l’ESB. Transfusion sanguine</td>
</tr>
<tr>
<td>MCJ iatrogène (iMCJ)</td>
<td>Interventions chirurgicales. Pratiques médicales</td>
</tr>
</tbody>
</table>

Table 3 : Les ESST Humaines. D’après (Ironside, Seilhean et al. 2001); (Liberski 2012).

a) **Les formes sporadiques**
Les formes sporadiques (sMCJ) représentent 85% des cas de Maladie de Creutzfeldt-Jakob. La sMCJ affecte des individus de 45 à 75 ans, 60 ans en moyenne, sans distinction de sexe et de situation géographique. Les causes de la maladie sont toujours méconnues. Les symptômes sont variables mais en général, la démence progressive s’accompagne de différents troubles : tremblements, troubles du sommeil, de la vision, de la mémoire, une ataxie ou encore des myoclonies... L’évolution clinique est très rapide et provoque un alitement des malades et un décès en seulement quelques mois. La durée moyenne entre l’apparition des symptômes et le décès est de 6 mois mais cela peut aller jusqu’à plus d’un an dans 10% des cas.

b) Les formes Génétiques

Les formes génétiques représentent 15% des ESST humaines et se caractérisent par une mutation du gène codant pour la protéine prion PRNP avec transmission de type autosomique dominante (Figure 6). Il existe trois principales formes familiales : la MCJ familiale (fMCJ), l’Insomnie Fatale Familiale (IFF) et le syndrome de Gerstmann-Sträussler-Scheinker (GSS) ; séparées en raison de différences au niveau clinique et neuropathologique.

Figure 6 : Principales mutations du gène PRNP humain associées aux polymorphismes MV129 à l’origine des formes héréditaires des maladies à prions. D’après (Aguzzi et al. 2008), (Giachin et al. 2013).
(1) La maladie de Creutzfeldt-Jakob familiale

Les formes familiales de la MCJ représentent 10 à 15% des maladies à prions. En règle générale, l'apparition de la maladie est plus précoce (entre 40 et 60 ans) et la durée de la maladie est plus longue (jusqu'à plusieurs années). Les signes cliniques sont semblables à ceux observés dans les formes sporadiques de la maladie. Ainsi, la seule façon d'établir définitivement la nature génétique de la maladie se fait par l'histoire de la famille et des tests génétiques. Plus de 50 mutations différentes du gène PRNP ont été identifiées dans les cas de MCJ familiales. Dans 95% des cas, la maladie est due à des mutations ponctuelles du gène PRNP, comme par exemple situées sur les codons 178 (D/N), 200 (E/K) et 210 (V/I), ou des insertions de répétitions d'octapeptides (Capellari et al. 2005).

(2) Le syndrome de Gerstmann-Sträussler-Scheinker

Le syndrome de Gerstmann-Sträussler-Scheinker (GSS) est une maladie rare puisqu'elle a une incidence de 1 à 10 pour 100 millions d'habitants. Le GSS présente une phase clinique variable entre 5 à 10 ans et touche des individus entre 30 et 50 ans conduisant toujours à la mort du patient. Les signes cliniques sont très variés mais en général les patients présentent des troubles cognitifs, une démence et sont plus sujets à une ataxie cérébelleuse progressive. Le GSS se distingue également des autres ESST par de nombreux dépôts de protéines prion anormales sous forme de plaques amyloïdes (Masters et al. 1981). Plusieurs mutations ponctuelles et insertions sont associées au GSS et en particulier 4 mutations ponctuelles : P102L, A117V, F189S et Q217R (Brown & Mastrianni 2010).

(3) L’insomnie fatale familiale

L’insomnie fatale familiale (IFF) touche des individus de 50 ans et dure un an en moyenne. Ces maladies présentent des signes cliniques particuliers tels que des troubles du sommeil (insomnie, agitation, hallucinations...), une perturbation du cycle veille-sommeil et des troubles moteurs ou de la mémoire. La mutation D178N sur le codon 178 du gène PRNP est caractéristique de l’IFF mais peut également être retrouvée dans certains cas de fMCJ. En effet, la mutation D178N chez les patients IFF est associée à
l’homozygotie M/M sur le codon 129 (Medori et al. 1992), (Medori, Montagna et al. 1992) et aux autres polymorphismes dans le cas des fMCJ (Goldfarb et al. 1992). A la différence des autres ESST humaines, les dépots de PrPSc sont très légers.

c) Les formes infectieuses ou acquises

Les formes infectieuses ou acquises sont caractérisées par l’introduction accidentelle du prion dans l’organisme de sujets sains à partir d’un animal ou d’une autre personne.
Il existe trois principales formes acquises :
1. **Le Kuru** : il s’agit d’une ESST confinée à la tribu des Fores en Papouasie-Nouvelle-Guinée
2. **Le variant de la MCJ** : il s’agit d’une ESST humaine qui d’après les données épidémiologiques et d’études de souches, serait due à une contamination par l’agent de l’ESB
3. **Les MCJ iatrogènes** : Il s’agit de maladies qui sont transmises accidentellement au cours de procédures médicales ou chirurgicales.

(i) Le Kuru

(ii) *Le variant de la maladie de Creutzfeldt-Jakob (vMCJ)*

Les premiers cas de variant de la maladie de Creutzfeldt-Jakob ont été recensés dans les années 1990 au Royaume-Uni principalement puis en France. Le vMCJ se distingue des MCJ sporadique ou familiale par :

1. l’absence de facteurs génétiques
2. une apparition des premiers symptômes chez des individus jeunes
3. une phase clinique d’environ 1 an
4. un âge moyen de décès de 30 ans
5. la présence de dépôts de PrPsc dans les organes lymphoïdes (rate, amygdales...)

Quatre cas de transmission secondaire de la vMCJ ont été observés suite à des transfusions sanguines au Royaume Uni. Ces patients ont développé une vMCJ avec présence de protéines PrPsc dans les organes lymphoïdes (Llewelyn *et al.* 2004), (Peden *et al.* 2004), (Wroe *et al.* 2006). Aucun cas de contamination par transfusion n’a été recensé en France mais cela reste difficile à évaluer en raison du manque de recul si l’on considère la longue période d’incubation des maladies à prions.

(iii) *Les formes iatrogènes de MCJ*

Les formes iatrogènes de la MCJ sont des maladies à prions rares et contractées accidentellement suite à des interventions chirurgicales (greffe de cornée ou de dure-mère, neurochirurgie) ou des traitements (injection d’hormone de croissance).

Le premier cas de MCJ iatrogène a été décrit en 1974 suite à une greffe de cornée (Duffy *et al.* 1974). Le greffon provenait d’une femme atteinte d’une maladie neurologique qui s’avéra, après autopsie, être une MCJ. La personne greffée développpa la même maladie quelques mois après l’opération.
Les cas les plus fréquents de MCJ iatrogènes restent ceux liés à l’injection d’hormone de croissance à des enfants. Depuis les années 1950 et jusqu’en 1985, cette hormone était purifiée à partir d’hypophyses prélevées sur des patients décédés dans les hôpitaux. Après la découverte du premier cas de MCJ iatrogène due à des lots d’hormones de croissance contaminés, les injections ont alors été réalisées avec une forme recombinante de l’hormone de croissance.
Dans certains cas, les transmissions iatrogènes sont dues à la résistance des prions aux procédés de décontamination et de stérilisation (Brown 1992), (Dickinson et al. 1978). Les instruments chirurgicaux étaient en effet stérilisés au formaldéhyde et à l'alcool alors qu’aujourd’hui on utilise des détergents et formulations chimiques (validées pour altérer le plus possible les prions) et un autoclavage à haute température (quand cela est possible) ou enfin des instruments jetables pour limiter toute possibilité de transmission (Dickinson & Taylor 1978). Enfin des mesures ont été prises pour disposer d’une traçabilité de tous les instruments utilisés dans les actes chirurgicaux ou les endoscopies dites à risque.

4. Les modèles expérimentaux des maladies à prions

La compréhension des maladies à prions est très importante d’un point de vue non seulement fondamental car il s’agit d’un mode de propagation et de développement d’une pathologie tout à fait marginal mais, paradoxalement, aussi parce que les maladies à prions font partie, au même titre que la maladie d’Alzheimer, Parkinson et Huntington de la famille des proteinopathies neurodégénératives. Elles endossent, à la fois un caractère fascinant quant à la compréhension de la propagation et la transmission d’une information, qui plus est, revêt un caractère pathologique ; mais elles sont sources d’inspiration et de compréhension pour d’autres maladies neurodégénératives. Cependant, la longue période d’incubation de la pathologie limite considérablement les avancées dans la compréhension des mécanismes d’évolution de la maladie et l’établissement de traitements. La création de modèles expérimentaux a donc été nécessaire. Il existe deux types de modèles d’étude des maladies à prions qui sont décrits ci-dessous.
- Les modèles animaux

Depuis la transmission de la tremblante à des souris (Chandler 1961), différents modèles expérimentaux des ESST ont été développés. Des broyats de cerveaux infectés issus de différentes espèces (moutons, chèvre, vache, homme) sont inoculés à des rongeurs (rat, souris, hamster) ou à des primates non humains.

De nombreux modèles de souris transgéniques exprimant la PrPc de différentes espèces telles que les ovins, bovins, porcin, humains, ont été générés par transgénèse additionnelle sur fond génétique Prnp0/0 (Crozet et al. 2001), (Vilotte et al. 2001), (Scott et al. 1999), (Buschmann & Groschup 2005), (Beringue, Vilotte et al. 2008). Tous ces modèles ont permis de grandes avancées dans la connaissance des maladies à prions et notamment pour l’évaluation de l’infectiosité de tissus provenant d’animaux ou de patients atteints, la compréhension du franchissement de la barrière d’espèce ou encore d’apprêhender la propagation de l’agent infectieux. Les souris WT sont également très employées pour tester des drogues. Cependant, ces modèles ont des limites puisque parfois la période d’incubation peut dépasser la durée de vie de l’animal.

L’utilisation de primates non humains apparaît donc comme des modèles de choix pour l’étude des ESST humaines en particulier mais ils restent tout de même peu utilisés. Ces modèles sont importants notamment pour le développement de stratégies thérapeutiques ou pour la validation d’outils diagnostiques.

- Les modèles in vitro

Les modèles animaux constituant des modèles difficiles à utiliser en raison de la longue période d’incubation et la complexité des événements. La mise au point de modèles cellulaires a donc permis de répondre à certaines questions.

Les premiers essais d’infection se sont déroulés sur les cellules de neuroblastome N2a (Race et al. 1987). Cependant, le rendement d’infection était vraiment faible, améliorer par la suite grâce à un sous-clonage des cultures infectées (Bosque & Prusiner 2000) ou par la surexpression de la PrPc (Nishida et al. 2000).

La méthode la plus couramment utilisée repose sur l’ajout d’homogénats de cerveaux infectées dans les cultures cellulaires. Des lignées dérivées directement de cerveaux d’animaux infectés ont également été générées comme la lignée Scrapie Mouse Brain
Très peu de lignées cellulaires sont permissives à l’infection par les prions. On a par exemple la lignée N2a, les cellules neuroendocrines de souris GT1, les cellules de phéochromocytome de rat PC12 et la lignée R0v (Rabbit Ovine) obtenue après transfection du gène ovin de la PrPC dans la lignée épithéliale de lapin RK13 (Vilette et al. 2001). De nouveaux modèles sont apparus récemment : les cultures primaires de neurones (Cronier et al. 2004) ou des coupes organotypiques (Falsig & Aguzzi 2008).

Les cellules souches neurales sont également infectables par différentes souches de prions (Giri et al. 2006), (Milhavet et al. 2006), (Herva et al. 2010), (Iwamaru et al. 2013). Ces cellules sont capables de se différencier en neurones et astrocytes et de répliquer les prions (Herva, Relano-Gines et al. 2010). Une étude au laboratoire a également permis de montrer que les NSC adultes isolées à partir de souris infectées, accumulent et répliquent les prions, entraînant une augmentation de la prolifération et de l’apoptose et une altération de la différenciation neuronale (Relano-Gines et al. 2013).

C. La protéine Prion

1. Le gène de la protéine Prion

La structure de ce gène est variable en fonction des espèces (Figure 7) : 1 exon pour les primates non humains, les lapins et les oiseaux ; 2 exons pour l’homme et le hamster et 3 pour la souris, le rat, les bovins et les ovins. Toutefois le cadre de lecture de tous les
gènes PrP des Mammifères réside dans le dernier exon (Basler, Oesch et al. 1986), (Westaway et al. 1987), (Hsiao et al. 1989), (Gabriel, Oesch et al. 1992).

![Diagramme des gènes PrP humain, murin et ovin](image)

Figure 7 : Organisation génomique des gènes Prnp humain, murin et ovin. Les exons sont indiqués en vert et les introns en bleu. Il existe chez l’humain un pseudo exon appelé exon-like. D’après (Lee, Westaway et al. 1998).

L’expression de la PrP est retrouvée au cours de l’embryogenèse précoce et les transcrits sont présents dans une majorité de tissus (Manson et al. 1992), (Tanji et al. 1995). Chez la souris, les transcrits sont détectés dans les tissus extra-embryonnaires.
dès 6,5 jours puis leur expression augmente pendant le développement fœtal du cerveau et après la naissance (Manson, West et al. 1992), (Miele et al. 2003). L’expression du gène de la PrP est ubiquitaire mais est majoritairement présente dans le CNS. On la retrouve notamment dans la substance grise, dans les neurones, les synapses et plus faiblement dans les astrocytes ou la microglie (Moya et al. 2000), (H. 2006), (Brown et al. 1996). Parmi les différents types de neurones, les neurones GABAérgiques expriment fortement la PrPc à l’inverse des neurones cholinergiques et dopaminergiques (Ford et al. 2002a), (Ford et al. 2002b). La protéine prion est également présente dans d’autres types cellulaires comme les cellules circulantes (cellules T et B), les cellules du système immunitaire (cellules dendritiques, lymphocytes, macrophages) ou encore dans les cellules souches hématopoïétiques (Zhang, Steele et al. 2006), (Dodelet & Cashman 1998). On la détecte aussi dans la rate, les reins, les poumons et les glandes surrénales (Horiuchi et al. 1995).

Figure 8 : Représentation des gènes murins Prnp, Prnd et Sprn codant les protéines PrP, Doppel et Shadoo (A) ainsi que les domaines architecturaux de ces protéines (B). Sur le chromosome 2, le locus Prn contient les gènes Prnp et Prnd codant les protéines PrP et Doppel respectivement. Le gène Sprn situé sur le chromosome 7, code lui pour la protéine Shadoo. La séquence de la PrP présente des homologies avec Doppel dans la partie C-Terminale de Doppel et avec Shadoo dans la partie N-Terminale. D’après (Watts & Westaway 2007).
2. Structures de la protéine prion

a) Structure primaire

Figure 9 : Représentation schématique des structures primaire et secondaire de la protéine prion cellulaire. Les Hélices alpha sont représentées en violet et les Feuilllets beta en rouge. D’après (Watts & Westaway 2007).

La protéine prion est une glycoprotéine membranaire de 253 acides aminés chez l’homme, 254 chez la souris, 269 chez les bovins et 256 chez les ovins, exposée à l’extérieur de la cellule. Son poids moléculaire varie de 33 à 45 kDa en fonction du degré de glycosylation (Harris 1999). Le précurseur de la protéine prion comprend cinq domaines principaux (Figure 9):

- La région I N-Terminal (aa 1-22) : elle correspond au peptide signal d’adressage dans le réticulum endoplasmique, qui sera ensuite clivé lors de la translocation de la protéine vers la surface cellulaire (Oesch 1994).

- La région II (aa 23-91) : elle contient les répétitions d’octapeptides riches en proline et glycine avec la séquence suivante PHGGGWGQ. Cette région appartient au domaine dit flexible de la PrPc et est connue pour lier le cuivre (Hornshaw et al. 1995), le zinc (Lehmann 2002) ou le manganèse (Jackson et al. 2001). Il existe
des variations intra- et inter-espèces concernant le nombre de répétitions : 1 à 9 chez l'Homme (4 en général). Ces répétitions ont une incidence sur la maladie tout comme les mutations présentes dans cette région conduisant aux formes familiales d’ESST (Harris 1999).

- La région III (aa 92-135) : elle contient un domaine hydrophobe très conservé chez les Mammifères (Van Rheede 2003). Cette région aurait un rôle important dans la transition conformationnelle de la PrPc en PrPsc (Chabry et al. 1999), (Holscher et al. 1998), (Norstrom & Mastrianni 2005).

- La région IV (aa 136-231) : elle correspond au domaine globulaire très structuré contenant les deux sites de N-glycosylation sur les résidus Asp 181 et Asp 197 (Endo et al. 1989) conduisant aux 3 formes glycosylées de la protéine. Ce domaine contient un pont disulfure entre deux résidus cystéines (positions 179 et 214) (Welker et al. 2002), créant une boucle de type V3 très importante pour l'interaction de la protéine avec des sphingolipides (Mahfoud et al. 2002). On note également un résidu sérine sur le codon 231 permettant la liaison à l’ancre GPI et favorisant l’attache de la PrPc à la surface cellulaire (Harris 1999), (Oesch, Westaway et al. 1985), (Stahl et al. 1987).

- La région V (aa 232-253) : elle correspond à la région C-terminale de la protéine qui est clivée par une transaminase permettant ensuite l’ajout de l’ancre glycosylphosphatidylinositol (GPI) permettant la fixation de la protéine prion à la membrane plasmique (Stahl et al. 1992).
b) **Structures secondaires et tertiaires**

![Structure tertiaire de la protéine prion cellulaire](image)

Figure 10 : Structure tertiaire de la protéine prion cellulaire. Les Hélices alpha sont représentées en rouge et les Feuilllets beta par des flèches bleues. D’après (Burns et al. 2003).

La structure tridimensionnelle de la protéine a été établie par différentes techniques : résonance magnétique nucléaire, cristallographie infra-rouge et dichroïsme circulaire ; et sur différentes espèces : souris (Riek et al. 1996), hamster (Donne et al. 1997), bovin (Lopez Garcia et al. 2000), ovin, félin, canin, porcin (Calzolai et al. 2000) et homme (Zahn et al. 2000). Quelle que soit l’espèce, ces travaux ont mis en évidence deux régions distinctes dans la protéine : une longue chaîne amino-terminale et un domaine carboxy-terminal globulaire (Figure 10).

La région amino-terminale comporte les motifs répétés d’octapeptides. Le domaine globulaire de la PrPc contient majoritairement des Hélices alpha (42%) et très peu de feuilllets beta : 3 hélices alpha (a1, a2 et a3) et de 2 feuilllets beta (b1 et b2) antiparallèles (Pan et al. 1993), (Riek, Hornemann et al. 1996), (Wuthrich & Riek 2001). Cette structure est stabilisée par un pont disulfure intra-chaîne reliant les hélices a2 et a3 (Turk et al. 1988).

c) **Le métabolisme de la protéine prion**

(1) Biosynthèse

La PrPc est une sialoglycoprotéine synthétisée dans les ribosomes. Elle passe ensuite par le réticulum endoplasmique rugueux où elle reçoit son ancre GPI et gagne ensuite
l’appareil de Golgi où elle subit une glycosylation variable avant d’être transportée à la surface cellulaire.

On observe donc 3 glyco-formes de la PrPC de 30 à 36 kDa (Figure 11): la forme non-glycosylée (5%), la forme mono-glycosylée (25%) et la forme bi-glycosylée (70%).

![Figure 11 : Profil électrophorétique de la PrPC.](image)

En l’absence de protéinase K, la protéine prion cellulaire existe sous 3 formes: non-, mono- et bi-glycosylée (puits 1). Après digestion par la Protéinase K, la PrPC est totalement dégradée (puits 2).

D’autres modifications post-traductionnelles de la PrPC existent comme les clivages ou l’ajout d’oligosaccharides. Des oses sont attachés sur les résidus Asp 181 et Asp 197 et la composition chimique variable de ces glycanes influence l’hétérogénéité de masse moléculaire apparente et peut également jouer un rôle dans l’adressage cellulaire de la protéine (Endo, Groth et al. 1989), (Cancellotti et al. 2005).

La forme ancrée dans la membrane de la PrPC est majoritaire mais il existe aussi 2 formes topologiques transmembranaires, CtmPrP et NtmPrP qui résultent de l’insertion du domaine hydrophobe de la protéine (aa 111-134) dans la membrane plasmique (Figure 12).
Clivages de la protéine prion

A la surface de la cellule, la PrP\(^\text{C}\) peut être clivée par différentes protéases (*Figure 13*). Le clivage alpha est le plus fréquent et se situe entre les résidus acides aminés 111 et 112 permettant la libération d’un fragment amino-terminal soluble N1 et d’un fragment tronqué carboxy-terminal C1 toujours lié à la membrane par l’ancre GPI (Chen et al. 1995), (Laffont-Proust et al. 2005), (Jimenez-Huete et al. 1998). Deux métaalloprotéases membranaires appartenant à la famille des ADAM (A Disintegrin And Metalloprotease), ADAM 10 et ADAM 17 seraient impliquées dans le clivage alpha de la PrP\(^\text{C}\) (Shyng et al. 1995), (Taylor et al. 2009).

Un clivage beta de la PrP\(^\text{C}\), entre les résidus acides aminés 89 et 90 de la région des octapeptides, permet la libération d’un fragment amino-terminal N2 et un fragment ancré carboxy-terminal C2 (Mange et al. 2004). Le mode d’action de ce clivage n’est pas connu mais serait dépendant des ROS (Reactive Oxygen Species), du cuivre et de la calpain (Yadavalli et al. 2004), (Watt et al. 2005). Toutes ces formes clivées sont retrouvées dans le cerveau de sujets sains mais aussi dans le cerveau de sujets malades mais avec des proportions différentes selon les régions neuro-anatomiques (Beringue et al. 2003).
La protéine PrP^c est aussi sécrétée grâce au clivage de l’ancre GPI par des phospholipases endogènes (Lehmann <i>et al.</i> 1999), (Parizek <i>et al.</i> 2001). Une fois clivée, la PrP^c a un temps de demi-vie variable de 3 à 6 heures (Caughey 1991) voire même 1h comme dans des cultures primaires neuronales ou lymphoïdes (Parizek, Roeckl <i>et al.</i> 2001).

![Diagram](image)

Figure 13 : Les différents clivages de la PrP^c. D’après (Watts & Westaway 2007).

(3) Trafic cellulaire (**Figure 14**)
Implication dans de nombreux processus biologiques tels que la signalisation transmembranaire, le trafic intracellulaire ou encore la capture des virus.

Toutes les molécules de PrPc ne restent pas à la surface cellulaire en permanence : 90% des protéines PrPc vont être recyclées :

1. Via des vésicules de clathrine (Shyng et al. 1994), (Harris 2003), (Sarnataro et al. 2009). L'ancre GPI ne pouvant pas interagir avec les puits de clathrine, une molécule intermédiaire est nécessaire. Le récepteur LRP1 (Low-density lipoprotein Receptor-related Protein 1) semble assurer cette liaison et participer à l'adressage de la PrPc à la membrane (Taylor & Hooper 2007), (Parkyn et al. 2008).

Les 10% restant vont être dégradés par voie lysosomiale à chaque cycle (Lehmann, Milhavet et al. 1999).

Figure 14 : Trafic cellulaire de la protéine prion cellulaire. La PrPc représentée en rose est synthétisée dans le réticulum endoplasmique, maturée dans le Golgi puis transportée vers la surface de la membrane plasmique pour y être ancrée, principalement au niveau des rafts lipidiques. La PrPc peut ensuite être internalisée via les puits de clathrine ou de cavéoline pour être recyclée ou dégradée. D’après Campana et al. 2005 (Campana et al. 2005).
D. Les fonctions de la protéine Prion

L’expression ubiquitaire de la PrPC et une très grande conservation de son gène entre les espèces plaident en faveur d’un rôle majeur de la protéine au niveau cellulaire voire même de l’organisme entier. La compréhension de sa/ses fonction(s) représente donc un enjeu majeur pour comprendre les maladies à prions mais à ce jour les nombreux travaux entrepris n’ont pas permis de l’éclaircir clairement.

Dans le but d’étudier le rôle physiologique de la PrPC, plusieurs lignées de souris déficientes en PrPC (Prnp-/- ou Prnp null) ont été générées. Contrairement à ce qui était attendu, les souris ainsi invalidées:

- Sont viables
- Ont un développement apparemment normal
- Présentent des anomalies biologies ou anatomiques au niveau par exemple :
 - De la transmission synaptique (Collinge et al. 1994), (Mallucci et al. 2002)
 - De la sensibilité au stress oxydant (Brown)
 - De la cognition (Coitinho et al. 2003)
 - Du cycle veille sommeil
- Du système immunitaire (Aucouturier et al. 2000)

suggérant un rôle mineur de la PrPC dans le développement (Bueler, Fischer et al. 1992), (Manson et al. 1994), (Weissmann & Flechsig 2003), (Tobler et al. 1996).

Ainsi, les différentes études réalisées sur les souris déficientes pour la PrPC et sur les cellules issues de ces souris ont permis d’élucider de nombreuses fonctions de la PrPC et qui sont ensuite complétées par des études concernant les molécules ou protéines interagissant avec la PrPC.

1. Les Rôles de la PrP

a) Rôle dans le métabolisme du cuivre

La PrPC possède dans sa région N-terminale, la région octapeptidiques qui est capable de se lier spécifiquement aux ions cuivre (Cu2+) suggérant un rôle de la protéine dans le transport et le métabolisme du cuivre. L’hypothèse selon laquelle les maladies à prions seraient en partie dues à une perte de fonction de la PrPC dans l’homéostasie du cuivre

63
est souvent mise en avant (Brown et al. 1997), (Miura et al. 1999), (Viles et al. 1999), (Waggoner et al. 1999) et a été étayée par différentes études :

- Les souris KO pour la PrPc présentent un taux plus faible de Cu²⁺ à l’intérieur de la cellule
- Des cultures de neurones PrP⁻/⁻ sont plus vulnérables à des taux élevés de Cu²⁺ effet qui est réversible par l’ajout d’un peptide synthétique PrP 59-91
- Des souris transgéniques pour la protéine PrPc (KO-PrP, Tg20 surexprimant la PrPc et C4 (souris transgéniques contenant une délétion dans la région octapeptide de la PrP : Δ32-93, (Flechsig et al. 2000)) présentent des altérations de l’entrée, du stockage et de la sortie du cuivre de la cellule (Brown, Qin et al. 1997), (Brown et al. 1998b), (Kralovicova et al. 2009).

Le cuivre aurait, lui aussi, un effet sur la PrPc puisque l’ajout de fortes concentrations de cuivre ou de zinc, dans des cultures de cellules neuronales, favorise une endocytose rapide de la PrPc murine et des modifications de la région octapeptides (délétion, mutation) permettent quant à elles une abolition de cette endocytose suggérant un rôle des métaux dans l’intérmdestination de la PrPc (Sumudhu 2001). De plus, l’utilisation d’un régime à faible teneur en cuivre pour l’alimentation de souris WT provoque une diminution de l’expression de la PrPc dans le cerveau (Kralovicova, Fontaine et al. 2009).

Par ailleurs, le cuivre est connu pour être un cofacteur d’enzymes catalysant les réactions redox comme la superoxyde dismutase (SOD), enzyme impliquée dans la régulation des radicaux libres (Vassallo & Hermès 2003). La liaison du cuivre avec la PrPc, permettrait à cette dernière d’interagir avec des ions superoxydes et le peroxyde d’hydrogène, suggérant que la PrPc possèderait des propriétés de détoxicification des espèces réactives de l’oxygène (ROS). En effet, des études réalisées sur des cultures cellulaires et in vivo, ont montré que l’expression de la PrPc est corrélée à une augmentation de l’activité de la SOD et que la PrP elle-même possèderait une activité SOD like (Brown et al. 1998a), (Brown et al. 1999).

b) Rôle dans les récepteurs NMDA

Les récepteurs N-méthyl-D-Aspartate (NMDA) sont des canaux cationiques (sodium, calcium), impliqués dans les potentiels post-synaptiques et la potentialisation à long
terme (Bartlett & Wang 2013). Une activité trop importante de ces récepteurs, notamment pendant une ischémie, favorise l’entrée de calcium dans la cellule et participerait ainsi à une excitotoxicité et la mort neuronale. Cette hyperactivité des récepteurs pourrait être impliquée dans la pathogenèse de nombreux troubles tels que les accidents vasculaires cérébraux ou encore les maladies neurodégénératives (Parsons & Raymond 2014).

Récemment, des études ont montré que la PrP\(^C\) interagirait avec les récepteurs NMDA puisque les souris déficientes pour la PrP\(^C\) présentent une augmentation de l’excitabilité neuronale et de l’exotoxicité induites par ces récepteurs (Khosravani et al. 2008). La PrP\(^C\) interagirait donc avec les récepteurs NMDA afin de les inhiber de façon à limiter l’exotoxicité induite par ces récepteurs lors de leur suractivation (Black et al. 2014). En effet, l’absence de la PrP\(^C\) dans des cultures primaires de neurones ou de neurones hippocampaux provoque une augmentation de l’activité des récepteurs NMDA et donc de l’excitotoxicité (Khosravani, Zhang et al. 2008), (You et al. 2012). Cet effet est également observé lors de l’utilisation d’un siRNA-PrP dans des cultures de neurones hippocampaux PrP\(^{+/+}\) et peut être contrecarré par l’ajout de PrP exogène suggérant un rôle neuroprotecteur de la PrP\(^C\).

c) **Rôle de la PrP dans différentes voies de signalisation**

La localisation de la PrP\(^C\) à la surface grâce à son ancre GPI et sa présence dans les rafts lipidiques ont orienté les recherches vers un rôle de la PrP dans la signalisation cellulaire. De nombreuses études ont en effet confirmé ce rôle puisque la PrP\(^C\) est maintenant reconnue comme impliquée dans plusieurs voies de signalisation cellulaire que nous allons décrire dans le paragraphe qui suit (Taylor & Hooper 2006), (Petrakis & Sklaviadis 2006).

(1) **La Fyn-Kinase et les voies des MAPK**

La première étude en faveur d’un rôle de la PrP dans les voies de signalisation a été faite dans les cellules 1C11 décrites comme des précurseurs neuronaux bipotentiels pouvant se différencier en neurones serotoninergiques ou noradrenergiques (Mouillet-Richard et
al. 2000). En effet, dans les cellules différenciées la PrPc neuritique serait capable
d’activer la tyrosine kinase Fyn par un couplage couplage dépendant de la caveoline.
De plus, la PrPc, favoriserait l’activation de la NADPH oxydase dans les cellules
progenitrices 1C11 et les neurones baminergiques ainsi que la phosphorylation des
kinases ERK1/2 (Schneider et al. 2003). Ces observations ont également été confirmées
dans des cellules hypothalamiques (GT1-7) et lymphoides (BW5147) suggérant une
activité de la PrPc dans la signalisation non restreinte aux cellules neurinales. En
revanche, seules les cellules 1C11 différenciées présentent une implication du
« complexe » PrPc-Cavéoline-Fyn dans la régulation de la NADPH oxydase et des kinases
ERK1/2. Cette cascade de signalisation impliquant la PrPc a également été observée
dans la lignée cellulaire PC12 (obtenues à partir d’un phéochromocytome des glandes
surrénales de rat) (Pantera et al. 2009). L’implication de Fyn, de la cavéoline-1 et de
ERK1/2 dans la signalisation dépendante de la PrPc y est non seulement observées, mais
l’impact de l’activation de Fyn sur l’initiation de la cascade de signalisation de la voie
Ras-Raf-Erk est également décrite.

(2) La voie PI3-K/Akt

La voie de signalisation Phosphatidilinositol 3-kinase (PI3-K)/Akt intervient dans des
processus cellulaires variés tels que l’apoptose ou la prolifération. La voie PI3-K/Akt
interviendrait suite à un stress (ROS, température...) et son activation serait médiée par
des métaux (cuivre, zinc) (Andreas Barthel Stimulation of phosphoinositide 3-
kinase/Akt signaling by copper and zinc ions: Mechanisms and consequences
doi:10.1016/j.abb.2007.04.015). La PrPc semblerait également intervenir dans cette
voie de signalisation puisque différentes lignées cellulaires (N2a, neurones
hippocampaux murins) surexprimant la PrPc murine présentent une augmentation de
l’activité de la PI3-K par comparaison avec leurs contrôle respectifs alors que des lysats
de cerveaux issus de souris KO pour la PrP présentent une diminution de cette activité
PI3-K par rapport aux lysats de souris WT (Vassallo et al. 2005). Les différents résultats
obtenus suggèrent également que la PrPc, suite à sa liaison au cuivre, pourrait agir sur la
voie de signalisation PI3-K/Akt et ainsi favoriser la survie des cellules sujettes au stress.
Suite à sa liaison au récepteur transmembranaire Frizzled et à la protéine LRP (Low-density lipoprotein receptor- Related Protein), Wnt permet le recrute Dishevelled ainsi que du complexe de destruction (CK1α : casein kinase 1α ; Axin ; GSK3β : glycogen synthase kinase 3β ; adenomatosis polyposis coli ; PP2A : protein phosphatase 2A). Ainsi « inhibé » ce complexe ne peut plus participer à la dégradation de la β-catéline qui peut ensuite être dirigée vers le noyau pour activer la transcription de différents gènes (Cleurs & Nusse 2012). La voie de signalisation Wnt-β-catéline joue un rôle dans de nombreux processus cellulaires et des modifications de cette voie seraient impliquées dans différents cancers et maladies neurodégénératives (Bayod et al. 2015), (Hsu 2014), (Berwick & Harvey 2012), (Dun et al. 2012).

La PrPc semblerait également intervenir dans cette voie de signalisation Wnt/β-catéline. En effet, il a été montré dans les cellules épithéliales de l’intestin, que la PrPc interagirait avec β-catéline et TCF7L2 (transcription factor 7-like 2) qui sont en aval de la voie Wnt et qu’elle favoriserait leur activité transcriptionnelle (Bensier et al. 2015).

Par ailleurs, la voie Wnt/β-catéline semble être perturbée dans les maladies à prions. La neurotoxicité du peptide 106-126 de la PrP (qui potentiellement mime celle de la PrPsc), dans les cellules de neuroblastome humain SH-SY5Y, est inhibée par le facteur HIF-1α (hypoxia inducible factor 1α) et la mélatonine via l’activation de la voie Wnt/β-catéline (Jeong et al. 2014), (Jeong & Park 2013). De plus, des souris infectées par la tremblante (139-1 et ME7) présentent différentes perturbations de la voie Wnt/β-catéline :

- augmentation des taux de β-catéline phosphorylée
- diminution des taux de cycline D1 (gène ciblés par la voie Wnt)
- diminution des taux de GSK-3β phosphorylée donc une activité augmentée de celle-ci
- augmentation de Dickkopf-1 (DKK-1) : antagoniste de Wnt

suggérant un perte de fonction de la PrPc dans la voie de signalisation Wnt/β-catéline lors des maladies à prions (Sun 2015).

L’interaction de la PrPc avec la β-catéline serait également impliquée dans la transition épithelio-mésenchymateuse (EMT). En effet, les niveaux de PrPc augmentent considérablement durant cette transition et l’absence de PrPc dans une lignée cellulaire...
issue de glande mammaire conduirait à une EMT incomplète (Mehrabian 2015). La PrP_C, via son interaction avec la β-caténine, régulerait la transcription du gène ST8SIA2 codant pour la polysialytransferase et agirait par conséquence sur la polysialylation de NCAM1 (neural cell adhesion molecule 1), impliquée dans l’EMT.

2. **Rôle de la PrP_C dans la neuroprotection et la survie cellulaire**

De nombreuses études suggèrent que la PrP_C jouerait un rôle cytoprotecteur notamment via une activité anti-apoptotique. En effet, la surexpression de la PrP_C empêcherait l’apparition de différents stimuli apoptotiques, dans différentes lignées cellulaires de Mammifères encore dans des cultures de neurones (Li & Harris 2005), (Kuwahara et al. 1999).

La PrP_C a par ailleurs été indentifiée par double-hybride comme un partenaire de Bcl2 et empêcherait la mort cellulaire induite par Bax en inhibant son changement conformationnel (qui a lieu lors de son activation) (Roucou et al. 2005), (Kurschner & Morgan 1995), (Kurschner & Morgan 1996). Il a également été montré que des similitudes de séquence existent entre la région des octapeptides de la PrP_C et le domaine homologue de Bcl2 (BH2). L’interaction de Bcl-2 avec Bax serait favorisée par le domaine BH2 de Bcl2 et permettrait ainsi l’inhibition de l’apoptose induite par Bax (Yin et al. 1994) d’où l’hypothèse que la PrP_C agirait comme un membre de la famille des protéines Bcl-2 pour inhiber l’action de Bax comme cela a été observé dans les cultures primaires de neurones humains (Roucou et al. 2003). Il a ensuite été montré dans les levures Saccharomyces cerevisiae, que la PrP_C n’avait besoin d’aucun membre de la famille Bcl-2 pour prévenir de la mort cellulaire induite par Bax (Bounhar et al. 2006).

Néanmoins, des mutations dans les répétitions d’octapeptides ou encore la conversion de la PrP_C en PrP_{Sc}, provoquent une perte de la fonction neuroprotectrice de la PrP_C. En effet, des cultures primaires de neurones humains avec une protéine PrP_C modifiée (délétion de 4 répétitions d’octapeptides, mutations familiales D178N et T183A) présentent une diminution de l’effet neuroprotecteur de la PrP_C contre Bax (Bounhar et al. 2001). De plus, des souris transgéniques KO-Bax dans lesquelles on surexprime une PrP tronquée, PrPΔ32–134, présentent une diminution de l’apoptose dans les cellules
granulaires cérébelleuses et un retard dans le développement de la pathologie (Shmerling et al. 1998), (Li 2007).

Par ailleurs, il a été montré que le fragment N1 de la PrP\(^\text{C}\) aurait un rôle neuroprotecteur puisque l’ajout d’un fragment N1 recombinant, dans des cellules HEK293 ou des cultures primaires de neurones, permet une inhibition de l’apoptose induite par la staurosporine via la modulation de la transcription et de l’activité de p53. Le fragment N1 diminue les effets apoptotique provoqués par une privation de glucose et d’oxygène dans les cultures primaires de ganglion rétinien de rat et diminue les effets de l’ischémie dans la rétine de rat (Guillot-Sestier et al. 2009).

3. **Rôle de la PrP\(^\text{C}\) dans la formation des neurites et des synapses**

Si la PrP\(^\text{C}\) est ubiquitaire, elle est majoritairement exprimée dans le cerveau ce qui plaide en faveur d’un rôle important dans cette structure (Laine et al. 2001) chez l’adulte mais aussi lors du développement. Elle est en effet largement détectée dans le SNC des bovins à 27 et 39 jours de développement (Peralta et al. 2011). Son expression augmente également dans les le SNC et SNP au cours du développement chez la souris (Manson, West et al. 1992) ainsi qu’au cours de la différenciation neuronale (Mouillet-Richard et al. 1999). Ce qui suggère un rôle de la PrP\(^\text{C}\) dans le développement et en particulier dans la différenciation neuronale. Certains travaux l’impliquent même dans la biologie des cellules souches neurale foetale et adulte (Steele, Emsley et al. 2006). Par ailleurs, la PrP\(^\text{C}\) est présente principalement à la surface neuronale, au niveau des corps cellulaires, le long des axones, ou encore au niveau des synapses. La PrP\(^\text{C}\) est également observée dans les endosomes tardifs et parfois dans le cytosol de certains neurones de l’hippocampe ou du néocortex (Moya, Sales et al. 2000), (Mironov et al. 2003). Ces observations suggèrent ainsi un rôle de la PrP\(^\text{C}\) dans la neuritogenèse et la synaptogenèse.

a) **Implication dans la neuritogenèse**
Suite à l’activation de récepteurs membranaires en réponse à des signaux extracellulaires, la neuritogenèse permet la formation des dendrites et des axones nécessaires à l’intégration et la transmission des signaux par les cellules neuronales.

La PrPc jouerait un rôle important dans ce processus puisque l’ajout d’une protéine PrPc recombinante de Hamster dans des cultures de neurones hippocampaux fetaux de Rat favorise la croissance des neurones et la différenciation des dendrites ainsi que la formation de contacts synaptiques (Kanaani et al. 2005). De plus, l’ajout de la protéine PrP dans des cultures de précursores neuro-épithéliaux issus de souris KO-PrP (PrP(0/0)ML) facilite la différenciation neuronale et la neuritogenèse (Barenco et al. 2009).

Par ailleurs, le niveau d’expression de la PrPc dans les cellules N2a, influence également l’initiation de la neuritogenèse et l’élongation des neurites (Watanabe et al. 2012). De plus, les cellules hippocampales issues de souris KO-PrP présentent des neurites plus courtes que les cellules issues de souris WT (Kuwahara, Takeuchi et al. 1999). De même, l’inhibition de l’expression de la PrPc pendant l’induction de la différenciation des cellules 1C11 (ignée cellulaire neuro-ectodermal) perturbe le bourgeonnement initial des neurites, effet contrecarré par la réintroduction de la PrPc (Loubet et al. 2012).

Comme nous l’avons vu précédemment, la PrP est impliquée dans différentes voies de signalisation. Concernant le processus de neuritogenèse, sa localisation membranaire et en particulier dans les rafts lipidiques lui permet d’interagir avec de nombreux partenaires impliqués dans la neuritogenèse tels que des molécules de l’adhésion cellulaire (CAM), des composants de la matrice extracellulaire ou encore des ligands solubles (STI1, NGF). Par exemple :

- La PrPc interagit avec NCAM à la surface des neurones provoquant le recrutement de NCAM dans les rafts lipidiques et ainsi régule l’activation de la Fyn kinase, impliquée dans la neuritogenèse NCAM-dépendante (Santuccione et al. 2005).

- L’interaction avec la protéine STI1 induirait deux signaux parallèles permettant l’activation des voies cAMP/PKA et ERK pour limiter l’apoptose et induire la neuritogenèse par activation de la voie MAPK (Lopes et al. 2005).

La PrPc semble donc être un élément majeur pour la croissance neuronale mais également dans la suite du processus de différenciation, à savoir dans la formation et le fonctionnement des synapses.
b) Implication dans la synaptogenèse

La PrP^C a été décrite en microscopie électronique au sein des boutons synaptiques à la fois au niveau pré- et post-synaptique (Herms et al. 1999), (Sales et al. 1998), (Moya, Sales et al. 2000) suggérant que la PrP^C pourrait être impliquée dans la structure, la formation et le fonctionnement des synapses (Chen et al. 2003), (Santuccione, Sytnyk et al. 2005).

En effet, la PrP^C semblerait avoir un rôle régulateur dans la formation des synapses puisque l’incubation de cultures de neurones hippocampaux fœtaux de rat avec une protéine PrP^C recombinante de Hamster induit une augmentation de la formation et du nombre de contacts synaptiques (Kanaani, Prusiner et al. 2005). De plus, des tranches d’hippocampe issues de souris PrPKO présentent une diminution de l’activité des récepteurs GABA_A et une altération de la post-hyperpolarisation et de la potentialisation à long terme confortant ainsi l’importance de la PrP^C dans le fonctionnement des synapses et la modulation de l’excitabilité neuronale (Collinge, Whittington et al. 1994), (Collinge, Sidle et al. 1996). Cet effet est également observé dans des souris avec délétion de la PrP^C après la naissance (système Cre-loxP), effet contrecarré par la réintroduction de l’expression de la PrP (Mallucci, Ratte et al. 2002).

Les souris PrP^{0/0} présentent également d’autres anomalies neurobiologiques qui confirmeraient la participation de la PrP^C dans la formation et le fonctionnement des synapses comme par exemple des altérations de l’organisation des fibres nerveuses (Colling et al. 1997), du rythme circadien (Tobler, Gaus et al. 1996) ainsi que des déficiences dans l’apprentissage spatial (Criado et al. 2005).

4. Rôle de la PrP^C dans la biologie des cellules souches

Plusieurs publications ont depuis montré un rôle important de la PrP^C dans la biologie des cellules souches : dans la prolifération, la différenciation ou encore le maintien des progéniteurs.

a) Rôle dans la prolifération
Un rôle de la PrPC dans l’auto-renouvellement des cellules souches hématopoïétiques (HSC) a été mis en évidence dans des souris adultes (Zhang, Steele et al. 2006). En effet, si le même nombre de HSC a été observé dans les souris Prnp null et dans les souris sauvages, des expériences de transplantation en série après irradiation des souris montrent un apauvrissement du pool de progéniteur lorsqu’il s’agit des souris KO pour la PrP. Ceci suggère que les HSC issues de la moelle osseuse des souris Prnp null présentent une altération de leur capacité d’auto-renouvellement (Zhang, Steele et al. 2006) et donc un rôle de la PrP dans l’auto-renouvellement des HSC.

La PrPC semble également avoir un rôle dans l’auto-renouvellement des cellules souches neurales foetales puisque le nombre de neurosphères secondaires (regroupement hétérogène de cellules souches et de cellules en différenciation) obtenues à partir de neurosphères primaires issues de souris KO-PrP, récupérées à E14, est plus faible qu’avec celles issues de souris WT (Santos, Silva et al. 2011).

Un des candidats ligands de la PrPC qui serait impliqué dans cet auto-renouvellement serait la protéine STI-1. L’ajout d’une protéine STI1 recombinante provoque en effet une augmentation dose-dépendante du nombre de neurosphères dans les cultures Prnp+/+ (Santos, Silva et al. 2011). Cette augmentation du nombre de neurosphères issue du couplage PrPC-STI1 est en revanche bien due à une augmentation de la prolifération et non pas à une augmentation de la survie ou une diminution de la mort cellulaire comme cela pourrait être envisagé si l’on considère que la PrPC à un rôle dans la survie cellulaire. De même, le blocage de la protéine STI1 par un anticorps anti-STI1 entraîne une baisse du nombre de neurosphères dans les cultures Prnp+/+ contrairement aux cultures Prnp0/0 confirmant l’importance du couplage PrPC -STI1.

Dans le SNC adulte, deux zones de neurogénèse adulte ont été décrites (Eriksson et al. 1998). Elles contiennent des cellules souches neurales multipotentes. Il s’agit du Gyrus Denté (DG) et la Zone Sous-Ventriculaire (SVZ) des parois des ventricules latéraux. Des expériences d’incorporation de BrdU chez des souris KO-PrP, surexprimant la PrPC (OE-PrP) ou WT, ont permis d’évaluer l’effet de la PrPC dans la prolifération des cellules dans ces deux régions neurogéniques (Steele, Emsley et al. 2006). La surexpression de la PrPC dans la SVZ entraîne une augmentation du nombre de cellules prolifératives par rapport aux souris KO-PrP et WT. Dans le DG, les souris OE-PrP et WT ont plus de cellules en
prolifération, mais à des niveaux équivalents alors que l’inhibition de la PrPC entraîne une diminution de la prolifération.

Dans les cellules souches embryonnaires humaines placées en milieu de différenciation, l’ajout d’une forme recombinante de la PrPC avec une conformation monomérique α-hélicale (α-rPrP), entraîne le maintien de cellules en prolifération (Lee & Baskakov 2010). L’effet de la PrPC sur le maintien de l’activité proliférative des CSEh serait principalement efficace lorsque la PrP recombinante est ajouté lors des stades précoces de la différenciation. La PrPC permettrait aux CSEh de garder un statut indifférencié et une activité proliférative importante et ce de façon dose dépendante. En effet, la modification de l’expression de la PrPC par l’ajout de vecteurs lentiviraux inductibles (inhibition : shRNA-PrPC et surexpression : HuPrPC), dans des cultures de CSEh placées dans un milieu de différenciation, provoque une baisse/hausse du nombre de cellules en phase S respectivement (Lee & Baskakov 2013). Par conséquent, une plus haute activité proliférative est observée avec le plus haut niveau de PrPC alors que l’activité proliférative la plus faible est observée quand la PrPC est inhibée.

\textit{b) Rôle dans la différenciation}

L’expression de la PrPC augmente au cours de la différenciation des cellules souches embryonnaires murines (Peralta, Huckle et al. 2011) et humaines (Lee & Baskakov 2010) de façon corrélée avec la diminution d’Oct3/4, marqueur de pluripotence des cellules souches embryonnaires. Cette observation a conduit certaines équipes à étudier le rôle de la PrPC dans la différenciation des cellules souches embryonnaires.

Les cellules souches embryonnaires murines (mESC) peuvent être différenciées en corps embryoïdes (EB) qui contiennent les 3 feuilles embryonnaires. Dans les ESC issues de souris KO-PrP, le nombre d’EB formés est plus faible qu’à partir des souris WT. L’absence de la PrP provoque également un maintien de l’expression de Nanog ou d’Oct3/4 même après 7 et 13 jours de différenciation suggérant un maintien de cellules pluripotentes et un rôle de la PrPC dans la différenciation des CSEh (Miranda \textit{et al.} 2011), (Miranda \textit{et al.} 2013). Les auteurs ont mis en évidence la formation de deux types de corps embryoïdes à partir des mESC KO-PrP : des KO-EB similaires aux WT-EB et des
KO-EB persistant dans la culture, même après plus de 80 jours de différenciation, et exprimant des acteurs du maintien de la pluripotence tels que Gp130 et Stat3. Ce type de corps embryoides est appelé PGC-like KO EB du fait de l’expression des marqueurs des PGC (primordial germ cell) tels que Bmp4, Stella ou encore Dazl.

Au cours de la différenciation des ESC de souris Wt en EB, les expressions des messagers de la PrP et de Nanog présentent toutes deux un pic d’expression à J5 de différenciation suggérant un lien entre ces deux protéines. En effet, l’expression de Nanog est nettement diminuée dans les EB issues des souris KO-PrP. De plus, un traitement avec l’anticorps anti-PrP sha31 (pour inactiver les signaux émis par la PrPc) dans les Wt-EB à 5 jours de différenciation (sur 8 jours) provoque une inhibition de Nanog confirmant l’importance de la PrPc dans le maintien de l’expression du gène Nanog à ce stade de la différenciation.

En revanche, la transduction des mESC avec un lentivirus shRNA anti-PrP provoque une diminution de l’expression de Nestin (marqueur des précurseurs neuraux) au cours de la différenciation (Peralta, Huckle et al. 2011). De plus, des expériences d’immunofluorescence ont permis de montrer la présence de la PrPc et de la Nestin dans les mêmes cellules. Ces résultats suggèrent donc une association spatiale et temporelle entre la PrPc et la Nestin et un rôle de la PrPc dans la différenciation des cellules souches embryonnaires en précurseurs neuraux.

Par ailleurs, des études sur des précurseurs neuraux issus de souris KO-PrP, OE-PrP et Wt à E13,5 ont montré que les taux de PrPc sont positivement corrélés à la différenciation des précurseurs neuraux multipotents en neurones, astrocytes et oligodendrocyes après retrait des facteurs de croissance (Steele, Emsley et al. 2006). De plus, la PrPc favorise la différenciation neuronale puisque les précurseurs neuraux issus de souris OE-PrP conduisent à un nombre plus important de neurones matures par rapport aux précurseurs Wt. Au contraire, les précurseurs neuraux issus des souris KO-PrP se différencient moins vite après le retrait des facteurs de croissance du milieu de culture.

Dans les ESC humaines, le rôle de la PrPc dans la différenciation a également été évalué. Une première étude a mis en évidence que l’expression de la PrPc était augmentée lors de la différenciation spontanée des CSEh (Lee & Baskakov 2010). Pour approfondir le
rôle de la PrPC dans cette différenciation, les auteurs ont utilisé des lentivirus permettant l'expression inducible d'un siRNA-PrPC ou de la PrPC humaine (HuPrPC) (Lee & Baskakov 2013). La surexpression de la PrPC dans des CSEh, maintenues dans leur milieu d’amplification classique entraîne une diminution de l’expression du gène de pluripotence Oct3/4, une diminution de la phase S au profit de la phase G1 dans le cycle cellulaire et l’apparition des marqueurs des trois feuillots embryonnaires (Brachyury, Tyrosine Hydroxylase (TH), Alpha fétotprotéine, protéine associée à la croissance 43 (GAP43) confirmant une diminution de la prolifération au profit d’une différenciation spontanée des cellules souches.

Au contraire, lorsque les CSEh sont placées dans un milieu de différenciation (permettant la formation des EB), la surexpression de la PrPC via l’ajout d’une protéine recombinante (Lee & Baskakov 2010) ou d’un lentivirus (Lee & Baskakov 2013) provoque la prolifération des cellules en train de se différencier et retardé, voire inhibe la différenciation.

En revanche, l’inhibition de la PrPC dans les CSEh entraîne une baisse de la proportion des cellules en phase S donc une baisse de la prolifération. Les CSEh transfectées avec le vecteur shRNA-PrPC présentent également des niveaux d’expression plus faible de la tyrosine hydroxylase, de la synaptophysine et de GAP43 suggérant un retard de la différenciation neuronale (Lee & Baskakov 2013), (Lee & Baskakov 2014). Cela ne favorise pas pour autant un autre feuillet puisque les niveaux d’expression de Brachyury (marqueur mésodermal) et de l’AFP (marqueur endodermal) ne sont pas modifiés (Lee & Baskakov 2013). Cette inhibition retarde également la différenciation en oligodendrocytes et en astrocytes (Lee & Baskakov 2014). Des expériences d’extinction de la PrPC à différents points de la différenciation (J0/J5/J10/J15) et pendant des durées variables (0/5/10/15 jours) (Lee & Baskakov 2014) montrent que les niveaux d’expression de la PrPC seraient plus importants pour les stades précoces de différenciation.

Ces résultats suggèrent qu’un niveau minimal de PrPC serait nécessaire pour une bonne différenciation des CSEh puisque son absence ou sa surexpression semblent être inhibitrice pour la différenciation.

E. La protéine prion : implication dans les maladies à prions
La PrP^c semble, comme nous venons de le voir, exercer un rôle important dans de nombreux processus cellulaires. Elle est l’élément indispensable pour le développement d’une maladie à prions puisque les souris Prnp-KO inoculées par voie intracérébrale avec des prions murins ne présentent pas d’accumulation de PrP^{Sc} ni de lésions caractéristiques de la maladie à prions (Bueeler et al. 1993), (Sailer et al. 1994). La réintroduction du gène Prnp par transgénèse chez les souris KO est quant à elle suffisante pour restorer les capacités des souris à être infectées. Aussi, de nombreuses questions gravitent autour du gain et/ou perte de fonction lorsque la PrP^c est convertie en PrP^{Sc} pouvant expliquer les phénomènes de neurodégénérescences. Je ne rentrerais cependant pas dans les aspects neurodégénératifs qui sont multiples.

1. **Structure et caractéristiques biochimiques de la PrP^{Sc}**

La PrP^{Sc} et la PrP^c sont codées par le même gène et un seul transcrit existe permettant ainsi d’exclure l’épissage alternatif comme explication pour la présence de PrP^{Sc} (Basler, Oesch et al. 1986). La différence entre les deux protéines repose donc essentiellement sur leur structure tridimensionnelle (Figure 15).

![Image 15](image15)

Figure 15 : Evolution de la représentation des structures tertiaires de la PrP^c et de la PrP^{Sc}.

- Structure tertiaire de la PrP^c (Riek, Hornemann et al. 1996)
- Structure tertiaire de la PrP^{Sc} (Huang et al. 1996)
- Modèle de la β hélice (Wille et al. 2002), (Cervia et al. 2006)
- Représentation des trimères de PrP^{Sc} (Govaerts et al. 2004)

En effet, la PrP^{Sc} est enrichie en feuilles beta contrairement à la PrP^c qui elle est plus riche en hélice alpha (Cohen et al. 1994), (Huang, Prusiner et al. 1996). La structure tridimensionnelle est mal connue en raison de la difficulté pour obtenir une quantité suffisante de PrP^{Sc} purifiée et non agrégée.

De plus, des études de diffraction aux rayons X ou en microscopie électronique réalisées sur la PrP ou sur la PrP27-30 (fragment de 27 à 30 kDa obtenu après action par la
protéïnase K) ont permis de proposer un modèle en hélice beta pour la PrPSc (Wille, Michelitsch et al. 2002). Dans ce modèle, la PrPSc serait constituée de feuillets beta parallèles associées en hélice et ces monomères de PrPSc pourraient ensuite s’associer en trimères qui, eux-mêmes pourraient se lier par liaisons hydrogènes pour former les fibrilles (Govaerts, Wille et al. 2004), (Riesner 2003), (Wille, Michelitsch et al. 2002). Cette modification de structure permet à la PrPSc d’acquérir de nouvelles propriétés physico-chimiques lui permettant de se distinguer de la PrPc. Ces principales caractéristiques sont regroupées dans le tableau suivant :

<table>
<thead>
<tr>
<th>PrPc</th>
<th>PrPsc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soluble</td>
<td>Hydrophobe</td>
</tr>
<tr>
<td>Peu agrégable</td>
<td>Agrégabilité et polymérisation</td>
</tr>
<tr>
<td>Pas d’amyloïdes</td>
<td>Amyloïdes</td>
</tr>
<tr>
<td>Digestion complète par les protéases</td>
<td>Digestion partielle par les protéases</td>
</tr>
<tr>
<td>Soluble et détruite par les détergents</td>
<td>Insoluble</td>
</tr>
<tr>
<td>Localisation membranaire principalement</td>
<td>Localisation intra-cytoplasmique dans les lysosomes, dans le neuropile, extracellulaire dans les plaques, surface cellulaire</td>
</tr>
<tr>
<td>Turnover intracellulaire rapide</td>
<td>Synthèse lente et stable</td>
</tr>
<tr>
<td>Demi-vie courte (3 à 6h)</td>
<td>Demi-vie supérieure à 24h</td>
</tr>
<tr>
<td>Destruction facile par des agents physico-chimiques</td>
<td>Forte résistance aux agents physico-chimiques</td>
</tr>
<tr>
<td>Présente dans toutes les cellules de l’organisme</td>
<td>Présente principalement dans le SNC, les organes lymphoïdes et quelques cas dans le muscle</td>
</tr>
<tr>
<td>Conformation spatiale riche en hélice alpha</td>
<td>Conformation spatiale riche en feuillets beta</td>
</tr>
</tbody>
</table>

Tableau 1 : Comparaison des caractéristiques biochimiques de la PrPc et de la PrPsc.

La PrPsc est insoluble dans les détergents ce qui entraîne son agrégation sous forme de fibrilles amyloïdes extrêmement infectieuses appelées SAF (Scrapie Associated Fibrils) ou Prion rods (Prusiner 1998), (Silveira et al. 2005). Elle est également partiellement résistante à la digestion par les protéases et en particulier la protéinase K. La PK est une endopeptidase à sérine de 29kDa dont le pH de fonctionnement optimal est compris...
entre 7,5 et 12 et qui présente une spécificité pour les résidus aliphatiques, aromatiques et hydrophobes. La PrPC peut être complètement dégradée par la PK (Oesch, Westaway et al. 1985) alors que la résistance partielle de la PrPSc conduit à la formation d’un fragment de 27 à 30 kDa suivant son état de glycosylation (Figure 16). Cette action de la PK est couramment utilisée afin de différencier la PrPC de la PrPSc, en Western-blot (WB) et en ELISA.

![Figure 16 : Profil électrophorétique de la PrPC et de la PrPSc](image)

- Puit 1 : Les 3 formes glycosylées de la PrPC
- Puit 2 : La PrPC est entièrement dégradée par la protéinase K
- Puit 3 : Les 3 formes de glycosylées de la PrPSc
- Puit 4 : La PrPSc est partiellement résistante à la protéinase K générant un fragment de 27 à 33 kDa

2. Les différents mécanismes de conversion

Il existe plusieurs modèles décrivant le processus de transconformation de la protéine prion. Dans tous les cas, la présence de la PrPC est nécessaire pour permettre l’apparition de la maladie puisque les souris déficientes pour le gène Prnp sont résistantes à l’infection (Bueler, Aguzzi et al. 1993).

a) Le modèle de nucléation-polymérisation (Figure 17)

Dans ce modèle, les protéines PrPC et PrPSc sont en équilibre thermodynamique réversible et favorable à la forme PrPC en situation physiologique normale (Jarrett et al. 1993). La PrPC est exprimée de façon ubiquitinaire et est ensuite convertie. La conversion isolée en PrPSc ne serait pas suffisante pour devenir infectieuse et ne représenterait qu’une forme mineure et transitoire. Dans ces conditions, les protéines PrPSc
monomériques interagiraient les unes avec les autres pour former des noyaux amyloïdes très organisés et de plus en plus gros. Ces fibrilles finiraient ensuite par se fragmenter, produisant ainsi des particules hautement infectieuses pouvant à leur tour recruter de nouveaux monomères de PrPSc (Zou & Gambetti 2005).

Figure 17 : Modèle de nucléation-polymérisation. La PrPc et la PrPSc sont dans un état d'équilibre thermodynamique réversible très favorable à la forme PrPc. La formation d’un noyau stable de PrPSc permet le déplacement de l’équilibre en faveur de la PrPSc. L’agrégation des monomères de PrPSc permet la formation de fibrilles capables de se fragmenter en particules infectieuses. D’après (Aguzzi & Polymenidou 2004).

b) Le modèle auto-catalytique (Figure 18)

Contrairement au modèle précédent, ce modèle repose sur le fait que la PrPc ne peut pas se transconformer naturellement en PrPSc en raison d’une barrière énergétique trop importante. Un contact entre la PrPc endogène et la PrPSc exogène serait nécessaire pour la conversion. La propagation des prions s’établirait suite à la formation d’un hétérodimère PrPc-PrPSc (Cohen, Pan et al. 1994), (Prusiner et al. 1990). La PrPSc imposerait sa conformation à la PrPc qui deviendrait à son tour riche en feuilles β. L’homodimère ainsi généré pourrait ensuite :

- se dissocier en monomères aptes à convertir la PrPc en PrPSc, provoquant ainsi une réaction en chaîne
- soit s’agréger pour former des fibrilles (Griffiths 1967), (Zou & Gambetti 2005)

Les molécules de PrPSc s’accumulereraient alors lentement dans le cerveau jusqu’à atteindre un point critique correspondant à l’apparition des premiers symptômes de l’ESST.
Figure 18 : Modèle auto-catalytique. Selon ce modèle, la conversion de la PrPC en PrPSc n’est possible que par l’établissement d’un hétérodimère PrPC-PrPSc. La PrPSc imposerait sa conformation à la PrPC formant alors un homodimère capable de s’agréger pour former des fibrilles. D’après (Aguzzi & Polymenidou 2004).

c) **Le modèle de nucléation assistée (Figure 19)**

Dans ce modèle plus récent, l’événement principal serait la formation d’un état structural intermédiaire (PrP*) entre la PrPC et la PrPSc favorisé par l’interaction de la PrPC avec un cofacteur de conversion non identifié appelé « protéine X » (Soto et al. 2006), (Kaneko et al. 1997b), (Telling et al. 1995). Ce changement structural entraînerait l’exposition des séquences hydrophobes et permettrait à la protéine d’adopter une conformation en feuilles β. Dans ce modèle, la PrPSc n’existerait qu’à l’état oligomérique et résulterait d’un contact entre plusieurs PrP*. De plus, l’oligomère PrPSc serait capable d’incorporer des PrP* pour les convertir en PrPSc.

Figure 19 : Modèle de nucléation assistée. Selon ce modèle, la PrPC serait convertie en PrP* (état intermédiaire) grâce à l’interaction avec un facteur de conversion. La conformation intermédiaire préparerait la PrP à subir des changements structuraux importants menant à la formation de PrPSc. D’après (Abid & Soto 2006).
3. Les sites de conversion

L'action de la PrPC pour l'initiation de la maladie implique que les sites de conversion soient également des sites, où la PrPC est présente (Moudjou et al. 2001) (*Figure 20*). Les deux protéines sont présentes dans la membrane plasmique et en particulier au niveau des rafts lipidiques, premier lieu de contact entre la PrPC et la PrPSc (Kaneko et al. 1997a), (Taraboulos et al. 1995). De plus, l'ancrage dans la membrane serait également indispensable à la transconformation puisque des expériences de déplétion en cholestérol des rafts lipidiques ont conduit à l'inhibition de la formation de PrPSc tout en ne modifiant pas la localisation de la PrPC (Taraboulos, Scott et al. 1995), (Sarnataro et al. 2002).

Au cours de son métabolisme, la PrPC traverse de nombreux compartiments cellulaires qui sont autant de sites potentiels de contact avec la PrPSc.

En effet, il a été montré que les deux protéines cohabitent dans d'autres compartiments tels que les endosomes (lieu de recyclage de la protéine prion) ou encore dans le réticulum endoplasmique (Borchelt et al. 1992), (Beranger et al. 2002), (Campana, Sarnataro et al. 2005), (Godsave et al. 2008).

Figure 20 : Les différents lieux potentiels de conversion. D'après (Campana, Sarnataro et al. 2005).
4. **La PrPSc et la notion de souches**

L’existence de différentes souches de prions est un aspect difficile à expliquer puisque l’agent pathogène des ESST est de nature protéique. Cela a longtemps remis en cause l’hypothèse « prion » de S. Prusiner en suggérant que le support des variations de souches devait dépendre d’un acide nucléique, par analogie aux souches de micro-organismes présentant des spécificités d’hôte et de virulence dépendantes de leur génotype.

Lorsqu’un isolat d’EST est inoculé en série sur une même lignée de souris, la période d’incubation diminue progressivement contrairement à l’efficacité de transmission qui, elle, augmente. Ainsi, après plusieurs passages en série d’un isolat (3/4 passages), la durée d’incubation et le profil lésionnel (détermination des niveaux de vacuolisation dans des zones précises du cerveau) se stabilisent et deviennent les deux paramètres quantifiables qui permettent classiquement de caractériser une souche (Bruce & Fraser 1991). En effet, chaque souche possède des caractéristiques qui lui sont propres et qui restent les mêmes lors de la transmission dans un même hôte. Une souche de prion peut être définie par :

- le temps d’incubation de la maladie qu’elle induit chez l’hôte
- les lésions cérébrales et les symptômes associés à chaque souche
- la distribution et les caractéristiques physico-chimiques spécifiques à la PrPSc de chaque souche.

Par ailleurs, une maladie à prions peut être associée à différentes souches (Polymenidou et al. 2005), (Beringue, Villette et al. 2008), (Li et al. 2010). Actuellement, l’hypothèse émise pour expliquer l’existence de nombreuses souches de prions à partir d’une même protéine repose sur une variabilité conformationnelle de la structure tertiaire de la PrPSc et de l’organisation des oligomères (Moudjou 2010), (Colby et al. 2009), (Chien & Weissman 2001). La PrPSc est ainsi qualifiée de protéine à géométrie variable (Figure 21). Néanmoins la relation hôte pathogène semble également être importante et cruciale dans cette notion de souche puisqu’une nouvelle souche peut émerger après des passages sur des espèces différentes.
Figure 21 : Modèle représentant le mécanisme de transmission de la PrPc par variabilité conformationnelle pouvant expliquer l'existence de différentes souches de prions. D’après (Moudjou 2010).

5. La notion de Barrière d’Espèce (Figure 22)

Les prions peuvent, comme d’autres agents pathogènes, se transmettre d’une espèce à une autre et devenir un risque pour l’Homme comme dans le cas de la transmission de l’ESB à l’homme par l’alimentation conduisant au variant de la maladie de Creutzfeldt-Jakob. Cette capacité des prions est limitée par le phénomène de « barrière d’espèce » (Pattison 1965). En effet, lorsque l’on inocule des prions d’une espèce à une autr espèce, plusieurs phénomènes peuvent se produire comme par exemple : aucune transmission, transmission faible, transmission réussie mais avec des caractéristiques différentes de la souche originelle. Les homologies de séquence entre les PrP de l’espèce donneuse et l’espèce receveuse sont en partie déterminantes dans cette barrière d’espèce ou de transmission mais de nombreux autres facteurs vont entrer en jeu pour abaisser cette barrière de transmission comme par exemple une facilitation à l’amplification via les organes lymphoides (Beringue et al. 2012). Si plusieurs passages sur une nouvelle espèce hôte permettent d’augmenter l’efficacité de transmission et la diminution de la
période d'incubation de la maladie jusqu'à devenir stable ce qui reflète une adaptation du prion à son nouvel hôte et permet d'établir et caractériser une souche (Fraser 1976), la simple introduction dans des souris transgénique de la séquence de la PrP de hamster, bovine, ovine ou humaine suffit pour rendre les souris plus sensibles à des prions de hamster ou d'origine bovine, ovine ou humaine respectivement. Toutefois, cette notion de barrière d'espèce semble dépendre également de facteurs spécifiques liés à l'hôte et à la souche elle-même.

Figure 22 : Transmission interspécifique des prions. Représentation des différents phénomènes observés après transmission expérimentale entre deux espèces. D'après (Beringue, Vilotte et al. 2008).
II. La Protéine APP et la Maladie d'Alzheimer

A. La Maladie d’Alzheimer

La Maladie d'Alzheimer est une affection neurodégénérative qui se caractérise par une détérioration progressive du système nerveux central. C’est la forme de démence la plus répandue dans la population et on estime qu'elle affecte 46 millions de personnes à travers le monde (Alzheimer’s disease International 2015). Selon l’OMS, ce chiffre pourrait atteindre 66 millions d’ici 2025 avec le vieillissement de la population. La maladie d’Alzheimer représente donc un enjeu majeur de santé publique pour les décennies à venir.

![Figure 23: Impact global de la démence. D’après World Alzheimer report 2015, Alzheimer’s Disease International.](image)

La maladie d'Alzheimer est la plus fréquente des démences chez les patients de plus de 65 ans. L’incidence de la maladie augmente exponentiellement avec l’âge : de 4/1000 entre 60 et 65 ans à plus de 100/1000 à plus de 90 ans.
Figure 24 : Incidence de la Maladie d’Alzheimer au niveau mondial.
Incidence pour 1000 personnes en fonction de groupes d’âge.

Selon l’Organisation Mondiale de la Santé, il y avait environ 20 millions de personnes atteintes en 2010 et l’incidence de la maladie devrait doubler d’ici 2025 en raison du vieillissement de la population. En France, 860 000 personnes seraient touchées avec environ 225 000 nouveaux cas chaque année. L’espérance de vie après le début de la maladie varie entre 8 et 10 ans mais il arrive que cela dure jusqu’à 20 ans. De plus la méta-analyse de données européennes EURODEM a mis en évidence une prévalence de 6,4% pour les démences et de 4,4% pour la démence d’Alzheimer.

1. L’historique

A travers les siècles, de nombreux cas d’altérations de la santé mentale et de la personnalité, avec l’âge ont été décrits, et les personnes concernées étaient souvent considérées comme atteintes de folie. La naissance de la psychiatrie et l’apparition du terme de démence (« de » : hors de et « mens » : esprit) à la fin du XVIIIème siècle ont permis de considérer les déments comme des malades. C’est également à cette époque que le diagnostic de démence fut associé aux notions de chronicité et d’ incurabilité. A la fin du XIXème siècle, P. Blocq et G. Marinesco (Blocq 1892) observent pour la première fois les plaques séniles chez un patient épileptique et c’est ensuite E. Redlich qui associa ces plaques séniles à la démence (Redlich 1898).

Au début du XXème siècle, Aloïs Alzheimer, psychiatre et microscopiste allemand, examina une patiente de 51 ans présentant des troubles de la mémoire, du comportement et de la compréhension ainsi que des hallucinations et des difficultés pour les actes de la vie quotidienne. Après la mort de sa patiente quelques années plus tard, A. Alzheimer examina son cerveau au niveau histologique et décrivit la présence de plaques séniles à l’extérieur des neurones, déjà décrites chez des patients âgés, ainsi que d’amas de fibrilles à l’intérieur des neurones appelés enchevêtement neurofibrillaires.
De nos jours, l’observation des plaques séniles et des amas fibrillaires lors de l’autopsie du cerveau est toujours le seul moyen pour un diagnostic de certitude de la maladie d’Alzheimer. La découverte des lésions a ouvert tout un nouveau champ de recherche et a notamment permis d’en apprendre d’avantage sur la nature et la formation de ces lésions et sur la maladie elle-même.

Les plaques séniles sont constituées majoritairement d’un peptide beta-amyloïde (Aβ) de 42 acides aminés, naturellement produit dans le cerveau et qui, dans les cas pathologiques, s’accumule progressivement et de manière irréversible pour former des plaques séniles désormais appelée plaques amyloïdes (Glenner & Wong 1984), (Selkoe 1997). La protéine Tau (tubulin associated unit) est la protéine que l’on retrouve dans les amas neurofibrillaires, sous une forme hyperphosphorylée. Elle est, de façon physiologique, impliquée dans le maintien de l’organisation des microtubules et peut être diversement phosphorylée. Dans les conditions pathologiques, lorsqu’elle est hyperphosphorylée sur certains résidus, sa fonction de maintien des microtubules est altérée et elle s’accumule sous forme d’amas neurofibrillaires (Grundke-Iqbal et al. 1986). Ces deux types de lésions sont à l’origine des pertes neuronales et synaptiques progressives conduisant aux pertes de fonctions associées aux régions cérébrales atteintes dans le cerveau des malades (Smale et al. 1995). Les premiers symptômes observés sont des « petits » oubliés et des changements d’humeur passant souvent inaperçus dans un premier temps. Des troubles de l’orientation, de la concentration apparaissent ensuite finissant par atteindre les fonctions vitales de l’organisme conduisant au décès du patient.

Malgré les progrès réalisés depuis plus de 100 ans, l’étiologie exacte de la maladie reste encore inconnue, ni les causes ni les facteurs responsables de l’initiation de la maladie n’ont été éclaircis. Plusieurs hypothèses soutiennent le rôle des plaques et des enchevêtrements dans la neurodégénérescence mais les mécanismes impliqués restent globalement méconnus.
Figure 25 : Découverte de la maladie d'Alzheimer et lésions pathologiques.

A: Dr Aloïs Alzheimer
B : Auguste Deter : première patiente de A. Alzheimer
C: Schémas originaux des études histologies du Dr Alzheimer montrant la présence de lésions intracellulaires (enchevêtrements).
D: Enchevêtrements neurofibrillaires visualisés avec des nouvelles techniques de coloration et d’observation.
E: Schémas originaux des études histologiques du Dr Alzheimer montrant la présence de corps circulaires à allure fibrillaire avec un noyau dense (plaques).
F: Visualisation contemporaine, par coloration au rouge Congo, d’une plaque amyloïde (sénile). La région dense centrale est principalement constituée de peptides Aβ42 insolubles.

2. **Les Formes de la Maladie d'Alzheimer**

La maladie d'Alzheimer existe sous deux formes : la forme génétique et la forme sporadique. Elles présentent toutes les deux les mêmes lésions et symptômes caractéristiques de la maladie mais ont une origine différente puisque l'hérédité est mise en cause dans les formes familiales.

 a) Les formes sporadiques

Les formes sporadiques de la maladie sont les plus courantes et représentent plus de
90% des cas. Elles sont caractérisées par un développement tardif de la maladie avec une apparition chez des individus de plus de 60 ans (Morris 1999). On ne connaît pas l’origine exacte de ces formes mais plusieurs facteurs sont à risque pour le développement de la maladie d’Alzheimer.

(1) L’âge

Comme cité précédemment, le risque de développer la maladie augmente considérablement avec l’âge et ce de façon proportionnelle. La fréquence de la maladie est de 1% entre 65 et 69 ans et double chaque 6 ans pour atteindre plus de 50% après 90 ans (Morris 1999), (Puglielli et al. 2003). La maladie d’Alzheimer a pour cette raison, longtemps été considérée comme étant un processus normal du vieillissement. Cependant, cette hypothèse est erronée car toutes les personnes âgées ne développent pas la maladie.

(2) L’allèle ApoE4

L’ApoE appartient à la famille des apolipoprotéines impliquée dans le transport du cholestérol et le métabolisme des lipoprotéines. Dans le CNS, cette protéine est exprimée majoritairement par les astrocytes (Fujita 1999) et les cellules épendymaires, et interviendrait dans la croissance et la régénération des neurones durant le développement du cerveau.

La présence de l’allèle ε4 de l’ApoE est un facteur de risque génétique aggravant pour la forme sporadique de la maladie d’Alzheimer (Schmechel et al. 1993), (Wisniewski et al. 1994) et agirait comme un modulateur de l’âge de développement de la maladie. En effet, les personnes homozygotes E4/E4 ont une probabilité de 50 à 90% de développer
la maladie contre 40% pour les individus hétérozygotes alors que ce chiffre tombe en
dessous des 20% pour la population générale. Néanmoins, être porteur de deux allèles
e4 n’est pas suffisant pour développer la maladie d’Alzheimer puisque seulement 15%
des malades sont homozygotes E4/E4 (Tanzi & Bertram 2005). Par ailleurs, l’allèle ε2
aurait un effet protecteur dans la susceptibilité de développer la pathologie (Strittmatter
et al. 1993), (Sleegers et al. 2009).
En conditions physiologiques, l’ApoE est donc exprimée dans les astrocytes. En
revanche, en conditions pathologiques, l’expression de l’ApoE est fortement augmentée
dans les astrocytes et les neurones hippocampaux et est même retrouvée dans quelques
cellules microgliales (Xu et al. 2006). Ceci a notamment été observé dans des
expériences in vivo, de lésions cérébrales induites par l’acide kainique suggérant un rôle
de l’ApoE dans la réponse aux lésions cérébrales observées dans les maladies
neurodégénératives (Xu, Bernardo et al. 2006).
En particulier, l’ApoE4 pourrait participer au développement de la maladie d’Alzheimer
mais son implication n’est pas suffisante pour expliquer les différents cas de la maladie.
En effet, les maladies neurodégénératives sont caractérisées par des lésions neuronales
souvent dues à une stimulation excessive des récepteurs au glutamate (Meldrum &
Garthwaite 1990), (Lipton & Rosenberg 1994). Afin de voir l’effet des différentes ApoE
sur ces lésions, Buttini et al. ont utilisé un traitement à l’acide kainique des souris
transgéniques ApoE/+ exprimant une ApoE humaine (ApoE3 ou ApoE4) (Buttini et al.
1999). L’ajout d’acide kainique dans les souris Wt ou ApoE provoque des pertes
significatives des dendrites MAP2 positives, des terminaisons pré-synaptiques
synaptophysine positives et des neurofilaments des axones hippocampaux. Ces effets
sont pratiquement tous abolis lors de l’expression de l’ApoE3, suggérant un rôle
protecteur de l’ApoE3 sur la neurodégénérescence induite par excitotoxicité, mais au
contraire aucun effet de l’ApoE4.
De plus, l’ApoE3 permet également de restaurer complètement les altérations de
bourgeonnement des fibres moussues dans le gyrus denté observées dans les souris KO-
ApoE (Teter et al. 1999). Ainsi, l’ApoE3 serait plutôt protectrice en réponse aux lésions
cérébrales contrairement à l’ApoE4.
(3) Les autres facteurs de risques : les facteurs environnementaux

Plusieurs études ont mis en évidence une prévalence de démence plus élevée chez les femmes (Zhou et al. 2006), (Letenneur et al. 1999), (Graves et al. 1996), (Corso, Campo et al. 1992), (Bachman et al. 1992) sans en connaître la cause exacte.

Une alimentation de type méditerranéen (Burgener et al. 2008), (Peters 2009) ou la pratique d’une activité physique permettraient de prévenir l’apparition de la pathologie. Plusieurs études auprès de sujets de plus de 65 ans, ont également montré un effet bénéfique d’une pratique sportive régulière sur l’évolution du déclin cognitif (Yaffe et al. 2001), (Weuve et al. 2004). De plus, l’activité physique a été associée à une augmentation et une préservation des structures hippocampiques et du cortex entorhinal chez le rongeur WT (Stranahan et al. 2007).

D’autres maladies pourraient également être associées aux démences et en particulier à la maladie d’Alzheimer comme l’hypertension artérielle (Skoog et al. 1996), (Launer et al. 2000), (Kivipelto et al. 2001), le diabète (Ott et al. 1996), (Xu et al. 2004), le surpoids (Gustafson et al. 2003) ou encore les accidents vasculaires cérébraux (AVC) (Tatemichi et al. 1994), (Henon et al. 2001), (Desmond et al. 2002), (Altieri et al. 2004).

Par ailleurs, le niveau d’éducation est souvent associé à un risque majeur de développer la pathologie, le risque étant d’autant plus élevé que le niveau d’éducation est bas (Sulkava & Erkinjuntti 1985), (Stern et al. 1994), (Ott et al. 1995). Il semblerait donc que des activités physiques et sociales variées comme le jardinage, les voyages, la lecture ... aient un rôle protecteur des fonctions cognitives (Holtzman et al. 2004), (Fabrigoule et al. 1995). Par contre, les activités moins stimulantes comme la télévision seraient associées à un risque accru d’altération cognitive.

Depuis la découverte de l’impact des pesticides dans la maladie de Parkinson (Hatcher et al. 2008), des recherches ont également exploré le rôle de pesticides dans la maladie
d’Alzheimer et il semblerait que l’exposition à ces derniers augmenterait le risque de développer la pathologie (Hayden et al. 2010).

b) Les formes génétiques

Contrairement aux formes sporadiques, les formes génétiques de la maladie d’Alzheimer sont caractérisées par des mutations sur des gènes clés comme APP, PSEN1/2… Les formes génétiques sont très rares, 5 à 10 % des cas observés, mais sont généralement plus précoces et plus agressives (Blennow et al. 2006), (Campion et al. 1999). En effet, des cas extrêmement précoces ont pu être observés chez des patients de 30 ans (Portet et al. 2003). Le mode de transmission autosomique dominant de la maladie a été mis en évidence par l’étude de certaines familles (Lowenberg 1934), (St George-Hyslop 1990) et de nombreuses mutations ont été décrites suite à l’analyse génétique de plusieurs individus au sein des familles touchées.

Le premier gène a été découverte sur le chromosome 21 et a été identifié comme étant le gène codant la Protéine Précurseur de l’Amyloïde (APP) (St George-Hyslop et al. 1987), (St George-Hyslop, Tanzi et al. 1987). Actuellement plus de 50 modifications de l’APP ont été référencées comme responsables de formes familiales de la MA (Wallon et al. 2012).

Figure 26 : Représentation des mutations sur la séquence protéique de l’APP.

Présénilines appartiennent au complexe de la γ-sécrétase avec la Nicastrine, l’APH-1 (anterior pharynx-defective 1) et la PEN-2 (presenilin enhancer 2), et sont associées à des formes génétiques de la maladie d’Alzheimer. Il existe actuellement plus de 200 mutations de PSEN 1 et environ 50 de PSEN 2 responsables de formes familiales (Figures 27 et 28). Les mutations de la PSEN 1 sont les plus agressives puisque les symptômes apparaissent entre 30 et 50 ans, plutôt vers 45 ans pour les mutations de la PSEN 2.

Les mutations dans le gène de la PSEN1 sont donc les principales causes d’apparition précoce de la maladie d’Alzheimer et représentent environ 70% des cas alors que les mutations dans le gène de la PSEN2 sont plus rares, 5% des cas environ. Presque toutes les mutations des PSEN1/2 sont des mutations ponctuelles conduisant à la production d’une protéine anormale. Ainsi, la perte de fonction de la préséniline pourrait favoriser la surproduction des peptides Ab1-42 et l’apparition des altérations de la mémoire. (Shen & Kelleher 2007), (Somavarapu & Kepp 2016).

Figure 27 : Représentation des mutations sur la séquence protéique de PSEN1.
Les mutations sont nommées à partir de l’isoforme 1 de 467 acides aminés. Les mutations sont représentées en rouge si elles sont pathogènes, en vert si non pathogènes, en jaune si elles sont « protectrices » et en bleu quand l’effet n’est pas connu.
Figure 28 : Représentation des mutations sur la séquence protéique de PSEN2.
Les mutations sont nommées à partir de l’isoforme 1 de 448 acides aminés. Les mutations sont représentées en rouge si elles sont pathogènes, en vert si non pathogènes, en jaune si elles sont « protéctrices » et en bleu quand l’effet n’est pas connu.

Une première mutation dans le gène PEN-2 sur le chromosome 19 a été identifiée mais son implication dans la physiopathologie reste encore obscure (Sala Frigerio et al. 2005).
Pour les trois autres gènes, l’implication dans la pathologie est plus claire, les protéines mutées modifiaient le clivage protéolytique de l’APP favorisant ainsi la production des peptides Aβ neurotoxiques retrouvés dans les plaques séniles.

Figure 29 : Distribution des mutations responsables des formes génétiques de la MA en France. D’après (Guyant-Marechal et al. 2009).
En résumé :

Figure 30 : Représentation des différents facteurs pouvant participer à la production physiologiques des peptides Aβ et à l’apparition d’une démence de type Maladie d’Alzheimer. PS : présénile. D’après Maladie d’Alzheimer : Enjeux scientifiques, médicaux et sociétaux 2007.

3. Critères diagnostiques

A l’heure actuelle, il n’existe aucun diagnostic définitif ante-mortem de la maladie d’Alzheimer puisque seule l’analyse du cerveau lors de l’autopsie permet d’avoir un diagnostic de certitude. Face à un tableau clinique regroupant tous les critères d’une démence, le neurologue peut établir un diagnostic présomptif pour la maladie d’Alzheimer mais doit d’abord vérifier l’absence d’autres causes telles que des tumeurs ou encore des carences. Si les résultats s’avèrent tous négatifs, le médecin dispose d’un panel de tests lui permettant de discriminer une maladie d’Alzheimer d’une autre maladie neurodégénérative. Il peut ainsi se baser la combinaison d’un bilan neuropsychologique et de l’étude de signes spécifiques par différentes techniques.
Le bilan neuropsychologique se fait lorsque les patients présentent des signes cliniques spécifiques de la démence : perte fréquente de la mémoire, difficulté dans les actes de la vie quotidienne, désorientations temporaires, troubles du langage et du comportement ou encore des difficultés pour reconnaître les personnes. Ce bilan repose sur plusieurs tests (Test MMSE, Test IADL, Test de l’horloge...) qui permettent d’évaluer les capacités du patient en terme de mémoire, de langage, de lecture, d’écriture, de compréhension, d’attention ou encore de concentration et ainsi de déterminer le stade de la maladie dans lequel le patient se situe.

Figure 31: Représentation schématique de l’évolution naturelle de la maladie d’Alzheimer basée sur le test MMSE. D’après http://www.gagnerdutempssuralzheimer.be/bienvenue.php.

Les résultats des tests neuropsychologiques sont d’autant plus valables s’ils sont corrélés à des données paracliniques comme l’étude des biomarqueurs dans le liquide céphalo-rachidien (LCR) ou l’analyse par imagerie.

- Imageries cérébrales
Les patients atteints de la maladie d’Alzheimer présentent fréquemment une atrophie du lobe temporal, observable par IRM (imagerie en résonance magnétique) et permettant de différencier ces patients des sujets sains avec une spécificité supérieure à 85% (de Leon 1997), (Jack et al. 2002). D’autres techniques d’imageries peuvent également être utilisées comme la TEP (Tomographie par Emission de Positons) ou TEMP (Tomographie par Emission Mono Photonique).

- Les biomarqueurs du LCR

Dans le liquide céphalo-rachidien, deux biomarqueurs de la maladie d’Alzheimer sont reconnus grâce à une spécificité et une sensibilité de 80% au minimum : le peptide Aβ42 constituant des plaques séniles et la protéine tau constituant des enchevêtrements neurofibrillaires. Chez les patients atteints d’Alzheimer, la protéine Tau totale augmente
dans le LCR contrairement au peptide Aβ1-42 dont la concentration diminue (spécificité 90%/90% et sensibilité 81%/86% respectivement) (Blennow & Vanmechelen 2003). Notre laboratoire est spécialisé dans l’étude des biomarqueurs de la maladie d’Alzheimer dans le LCR. En effet, les INNOTESTS® de Fujirebio sont utilisés en routine pour la détection des biomarqueurs de la MA dans le LCR de patients afin de conforter le diagnostic présomptif. Les INNOTESTS sont des Tests ELISA qui permettent :
 - la détection des six isoformes de la protéine Tau (total Tau) grâce aux anticorps BT2 et HT7 (INNOTEST® hTau Ag)
 - la détection de Tau phosphorylée (PhosphoTau) sur la Thréonine 181 grâce à l’anticorps HT270 (INNOTEST® phosphoTau (181-P))
 - la détection des peptides beta-amyloïdes 1-42 (Aβ 1-42) grâce à l’anticorps 3D6 (INNOTEST®β-amyloid (1-42)).
(Andreasen et al. 2001), (Blennow et al. 1995), (Schoonenboom et al. 2004).

En conditions physiologiques, les concentrations en hTau total et en phosphoTau sont inférieures à 450 pg/ml et 60 pg/ml respectivement et la concentration en Aβ 1-42 est supérieure à 500 pg/ml. L’étude combinée de ces trois marqueurs est plus sensible et plus spécifique (96% ; 94% respectivement) pour le diagnostic de la MA que chaque marqueur isolé (Blennow, de Leon et al. 2006), (Formichi et al. 2006). Ils permettent également de prédire l’évolution, dans 5ans, d’un trouble cognitif léger (MCI) vers la MA. Si les trois biomarqueurs sont normaux, il n'y aura pas d'évolution vers une MA par contre si au moins 2 facteurs sont perturbés, une évolution vers la MA se fera dans les 5 années à venir. L'étude des biomarqueurs dans le LCR permet donc de conforter le diagnostic présomptif de la MA en étroite corrélation avec les résultats en imagerie et le bilan neuropsychologique. L'analyse des biomarqueurs dans le LCR nécessite la réalisation d'une ponction lombaire, méthode invasive et douloureuse pour le patient, poussant la recherche de ces biomarqueurs ou de nouveaux dans d'autres liquides biologiques (sang, urines, salive...) (Apostolova et al. 2015) (Haihao Zhu 2013), (Fiandaca et al. 2015).

Une fois le diagnostique établi, une prise en charge pluridisciplinaire faisant appel à différents professionnels (neurologue, psychologue, gériatre ...) est préconisée pour les patients. Cette prise en charge s'accompagne d'autres interventions comme l'orthophonie ou la stimulation cognitive et éventuellement d'un traitement
médicamenteux qui permettraient d’améliorer le quotidien des patients et de limiter au maximum la progression de la maladie.

Les patients atteints de la maladie d’Alzheimer présentent, en général, un déficit en acétylcholine et une hyperactivité du système glutamatergique et en particulier des récepteurs au glutamate, NMDA. Les traitements de la maladie d’Alzheimer sont donc de deux types :

- Des inhibiteurs de la cholinestérase permettant d’augmenter la concentration en acétylcholine (ARICEPT® = Donépizil, EXELON® = Rivastigmine, REMINYL® = Galantamine)
- Un antagoniste des récepteurs NMDA permettant d’augmenter les effets de la L-dopa, des agonistes dopaminergiques et des anticholinergiques (EBIXA® = Mémantine)

Ces médicaments peuvent également être accompagnés de neuroleptiques notamment dans le cas où le patient présente de l’agitation ou de l’agressivité. Ils ont également de nombreux effets secondaires et peuvent entraîner des interactions médicamenteuses expliquant pourquoi ils doivent être contrôlés et pourquoi le bénéfice/risque doit être évalué régulièrement.

4. Les lésions caractéristiques

Les lésions de la maladie d’Alzheimer sont de deux types : les plaques séniles et les dégénérescence neurofibrillaires.

a) Les plaques séniles

Les plaques séniles sont sphériques, extracellulaires et de 30 à 100 micromètres de diamètre. Elles sont composées de peptides Aβ agrégés au centre et en périphérie des prolongements nerveux et de cellules microgliales. C’est en 1984 que G. Glenner identifia le peptide des plaques séniles grâce à leur infiltration dans les vaisseaux qui entourent le cerveau. Il le nomma peptide Aβ : A pour amyloïde et β pour la structure secondaire en feuilllets bêta (Glenner & Wong 1984).
Les peptides Aβ sont naturellement présents dans le cerveau et proviennent du clivage protéolytique de la protéine APP. Nous verrons plus en détail ce processus mais brièvement, des clivages successifs de l'APP par la beta- puis la gamma-sécrétase permettent la production de peptides Aβ de 38 à 43 acides aminés. Le peptide Aβ1-40 est l'isoforme majoritaire (90%). Le peptide Aβ1-42 est l'isoforme la plus amyloïdogénique puisque dans la maladie d'Alzheimer, il forme des oligomères neurotoxiques et s'agrègent facilement en plaques séniles. Dans les plaques séniles, les peptides Aβ adoptent une conformation en feuillets beta plissés.

Le peptide Aβ peut, selon les conditions, être agrégé, dégradé ou transféré vers la circulation sanguine et la maladie d'Alzheimer pourrait être liée à un déséquilibre entre la production et la dégradation des peptides Aβ.

b) Les enchevêtements neurofibrillaires

Les secondes lésions sont constituées d’une accumulation de fibrilles à l’intérieur des neurones. Elles ont été découvertes par Robert Terry dans les années 1960. Les enchevêtements neurofibrillaires ont depuis été caractérisés de façon plus précise. Ils sont constitués par la protéine Tau, protéine hydrophile qui s’associe aux
microtubules au sein du cytosquelette (Brion et al. 1985), (Delacourte 1993), (Grundke-Iqbal, Iqbal et al. 1986). Il existe six isoformes de la protéine Tau dans le cerveau comportant chacune 3 ou 4 domaines de liaison aux microtubules. Etant chargée positivement, Tau se lie à la tubuline chargée négativement permettant ainsi de stabiliser les microtubules et de faciliter le transport axonal.

Dans la maladie d'Alzheimer, la protéine tau est anormalement phosphorylée ce qui diminue son affinité pour les microtubules entraînant une perturbation de la stabilité et du fonctionnement des microtubules (Bramblett et al. 1993). La protéine Tau hyperphosphorylée devient insoluble et s’agrège en fibrilles qui elles-mêmes s’associent pour former les enchevêtements neurofibrillaires (Barghorn & Mandelkow 2002).

Figure 34 : Les enchevêtements neurofibrillaires : localisation et structure. A l’intérieur d’un neurone sain, la protéine Tau s’associe aux microtubules afin de favoriser leur maintien et leur fonction. A l’intérieur d’un neurone atteint, la protéine Tau hyperphosphorylée s’accumulent et s’agrègent en filaments hélicoïdaux appariés puis en enchevêtements neurofibrillaires. Les protéines Tau ne peuvent donc plus assurer leur fonction de maintien des microtubules perturbant ainsi le transport axonal. La perte de fonction et l’agrégation de la protéine Tau conduit in fine à la mort des neurones. D’après https://www.nia.nih.gov/alzheimers/scientific-images.
En résumé :

Figure 35 : Les biomarqueurs de la maladie d'Alzheimer : les plaques amyloïdes et les enchevêtrements neurofibrillaires. D’après https://www.nia.nih.gov/alzheimers/scientific-images.

c) Localisation des Lésions

Les lésions se trouvent dans des régions particulières du cerveau comme le cortex, lieu où s’élaborent les fonctions intellectuelles comme la parole, la mémoire, la reconnaissance des sons, mots, lettres, pouvant ainsi expliquer les symptômes observés chez les patients.

Dans le cerveau, la répartition est différente en fonction des deux types de lésions. Ces différences sont principalement visibles au début de la maladie du fait du nombre limité de lésions qui évoluent ensuite selon deux règles :

- une fois présentes, les lésions régressent peu voire pas du tout et demeurent jusqu’à la mort de l’individu
- les lésions évoluent toujours selon le même scénario (Braak & Braak 1991).
Le cortex cérébral, et en particulier l’isocortex, est le principal site de prédilection pour les dépôts amyloïdes qui peuvent varier en taille et en forme. Dans les stades précoces de la maladie, ils existent des variations interindividuelles alors qu’aux stades plus avancés, les dépôts amyloïdes sont caractérisés par une distribution relativement constante. Ces constats ont amené les auteurs à définir trois stades pour l’évolution des dépôts :

- Stade A : les dépôts amyloïdes sont de faible densité et localisés dans l’isocortex mais sont absents de l’hippocampe.
- Stade B : Les dépôts amyloïdes sont désormais de densités moyennes et sont présents dans la majorité des aires isocorticales. Des petits dépôts commencent à apparaître au niveau de l’hippocampe.
- Stade C : À ce stade, les dépôts amyloïdes sont denses et recouvrent la quasi-totalité de l’isocortex. L’hippocampe ne présente pas plus de dépôts qu’au stade B.

Les enchevêtrements neurofibrillaires présentent, eux, un profil de distribution commun et très caractéristique avec peu de variations interindividuelles. Leur évolution est décrite en six étapes généralement regroupées deux à deux.

- Stades I-II : Ces stades sont caractérisés principalement par des affections des neurones de la région trans-entorhinale et quelques enchevêtrements dans l’hippocampe.
- Stades V-VI : Les régions touchées dans les stades précédents le restent et les lésions s’accentuent.

5. **Les modèles expérimentaux de la maladie**

Bien que les lésions caractéristiques de la maladie d’Alzheimer soient connues, leurs causes et leurs liens avec les symptômes observés chez les patients sont autant de questions qu’il reste à résoudre. La MA représentant un enjeu majeur de santé publique,
de nombreux efforts ont été réalisés pour mettre au point des modèles expérimentaux qui sont plus que nécessaires pour la compréhension de la maladie.

a) Les modèles animaux

(1) Les modèles non-Mammifères

Drosophila melanogaster est également utilisée comme modèle d’étude pour de nombreuses pathologies en raison de leur accessibilité aisée (vitesse de reproduction, génétique simple, visualisation directe des effets...).

Ces différents modèles sont très simples d’utilisation au quotidien et sont de bons modèles pour l’étude des voies moléculaires de la maladie d’Alzheimer mais aussi pour le screening de nouveaux traitements. Néanmoins, leur simplicité peut aussi être un défaut pour être un bon modèle de la pathologie car ils ne peuvent refléter la grande complexité retrouvée dans le cerveau de l’homme. Aussi, des modèles Mammifères sont utilisés pour comprendre les mécanismes de la maladie.

(2) Les modèles Mammifères

La plupart des études sur la Maladie d’Alzheimer sont réalisées sur des modèles murins selon deux démarches expérimentales: l’injection de peptides Aβ dans le cerveau ou la
modification génétique des animaux (Schaeffer et al. 2011), (Eriksen & Janus 2007), (Koechling et al. 2010).

Depuis la découverte des gènes impliqués dans les formes génétiques de la maladie d’Alzheimer, de nombreuses lignées de souris transgéniques pour ces différents gènes et leurs mutations multiples ont été générées contenant des mutations dans la protéine APP, les présénilines ou encore PEN-2, ont été utilisées pour comprendre les effets des mutations sur le développement et les conséquences de la maladie. Ces souris présentent de nombreux dépôts amyloïdes dans le cerveau mais aucune dégénérescence neurofibrillaire. L’introduction chez l’animal du gène humain codant la protéine tau entraîne son accumulation intra-neuronale et l’apparition de dégénérescences neurofibrillaires. Par la suite, des souris triple-transgéniques pour les trois gènes de l’APP, de la Préséniline et de Tau ont été générées et présentent les deux types de lésions caractéristiques de la maladie d’Alzheimer (Oddo et al. 2003). Afin d’avoir un modèle développant plus rapidement les lésions de la MA, des souris transgéniques possédant 5 mutations ont été créées. Elles regroupent donc trois mutations de l’APP : APPswe (K670N/M671L), APP florida (I716V) et APP london (V717L) ; et deux mutations de la PS1 : M146L et L286V (Oakley et al. 2006).

Ces modèles ont été très utiles pour comprendre la maladie sauf qu’ils ne reflètent qu’un très faible pourcentage des malades puisqu’ils sont basés sur les mutations des formes génétiques. En effet, les formes sporadiques majoritaires n’ont pas de cause génétique et leur étude requiert la mise en place d’autres modèles. On peut également se poser la question de la pertinence physiologique de ces souris avec de nombreuses modifications. De plus, elles portent des insertions multiples qui peuvent entrainer des modifications d’autres gènes et ainsi ne plus être très représentatives de la pathologie.

Les primates non-humains constituaient un bon modèle d’étude des maladies neurodégénératives sauf que ces animaux, même très âgés, ne présentent pas forcément toutes les caractéristiques de la maladie d’Alzheimer. Ces animaux ont une espérance de vie de 20 à 30 ans et demandent des conditions d’hébergement et de manipulation particulières représentant autant de difficultés pour une étude de la pathologie. Néanmoins, le microcèbe murin, primate lémurien de petite taille, est utilisé pour l’étude de la maladie d’Alzheimer. Ces animaux ont une longévité de 8 à 12 ans en captivité et présentent un vieillissement cérébral comparable à celui de l’homme et pour un certain nombre d’entre eux, les lésions caractéristiques de la pathologie (Dhenain et al. 2003).

Si les modèles animaux sont très importants, leur simplicité pour certain ou leur complexité pour d’autre, ne permettent pas d’accéder à certaines données mécanistiques. C’est pourquoi des modèles cellulaires expérimentaux ont également été développés.

<table>
<thead>
<tr>
<th>Models</th>
<th>Recent reviews</th>
<th>Hypothosis/Strategy</th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Eukaryotes</td>
<td></td>
<td>Aβ and tau</td>
<td>Easy genetic manipulations</td>
<td>Brain anatomy and genetics evolutionary distinct from human</td>
</tr>
<tr>
<td>C. elegans</td>
<td>38–40</td>
<td>Transgenic expression of human pathogenic APP or tau gene variants or knockout of gene orthologs</td>
<td>Short life cycle and simple anatomy</td>
<td></td>
</tr>
<tr>
<td>D. melanogaster</td>
<td>41, 46–48</td>
<td></td>
<td>Low maintenance costs</td>
<td></td>
</tr>
<tr>
<td>Danio rerio</td>
<td></td>
<td></td>
<td>Detectable molecular, physiological, and behavioral changes upon expression of the transgenes</td>
<td></td>
</tr>
<tr>
<td>Mammals:</td>
<td></td>
<td></td>
<td>Suitable for high throughput drug screening</td>
<td></td>
</tr>
<tr>
<td>Mus musculus</td>
<td>5, 56–59, 62</td>
<td>Aβ and tau</td>
<td>Brain anatomy and behavior close to human</td>
<td>Insufficient recapitulation of human brain pathology</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>Transgenic expression of mutated human genes encoding APP/PS1, tau</td>
<td>Available transgenic technologies</td>
<td>(no tau pathology in APP/PS1 transgenic mice; side effects in triple transgenic mice APP/PS1/transtau)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Altered expression of β-secretase or neprilysin genes</td>
<td>Possible neurophysiological tests</td>
<td>Non-human genetic background</td>
</tr>
<tr>
<td>M. canis</td>
<td>108–111</td>
<td>Other key pathologies</td>
<td>Possible analyses of changes other than related directly caused by Aβ and tau, such as neuroinflammation, or impairment in blood brain barrier</td>
<td>Non-human genetic background</td>
</tr>
<tr>
<td>O. ovis (sheep)</td>
<td>114, 115, 121</td>
<td>Hypertension/insulin resistance of gene encoding neutralizing anti-NGF antibody</td>
<td>Possible analyses of changes other than related directly caused by Aβ and tau, such as neuroinflammation, or impairment in blood brain barrier</td>
<td>Non-human genetic background</td>
</tr>
<tr>
<td>O. cuniculus</td>
<td>123, 133, 126</td>
<td>Aging/natural animals</td>
<td>Spontaneous neuropathological AD hallmark in the old age (Aβ plaques and NFTs)</td>
<td>Long period of pathology development</td>
</tr>
</tbody>
</table>

Table 4 : Présentation des principaux modèles animaux de la maladie d’Alzheimer. D’après (Wojda & Kuznicki 2013).

b) Les modèles cellulaires
Les neurones à partir de cerveaux de patients décédés de la maladie d’Alzheimer constituent un des modèles cellulaires. Ces cellules permettent des analyses directes des effets de la pathologie seulement elles présentent des limites. En effet, comme il s’agit de prélèvements post-mortem, leur obtention est difficile donc très rare, leur utilisation doit être le plus rapide possible et enfin, ils ne permettent pas non plus de comprendre les étapes de la maladie puisqu’il s’agit de prélèvements réalisés au stade terminal de la maladie (Piras et al. 2016), (Lue et al. 2015), (Ciarlo et al. 2013).

Au niveau périphérique, les plaquettes, les lymphocytes ou encore les fibroblastes, qui peuvent facilement être isolés, peuvent constitués des outils cellulaires intéressants pour étudier le métabolisme de l’APP et des présénilines puisque les cellules expriment ces protéines. Cependant, les résultats obtenus nécessitent d’être confirmés, par la suite, dans des modèles neuronaux (Casoli et al. 2008), (Kassner et al. 2008), (Arendt 2012), (Magrone et al. 2012).

Depuis la découverte des cellules souches pluripotentes (cellules souches embryonnaires) et des cellules souches neurales, de nombreuses études se sont basées sur ces cellules pour étudier les maladies neurodégénératives et en particulier la maladie d’Alzheimer.

Les cellules souches embryonnaires humaines sont largement utilisées pour étudier les maladies neurodégénératives puisqu’elles sont dotées de propriété d’auto-renouvellement, permettant de les amplifier sur de nombreux passages, et surtout de propriété de pluripotence. Elles peuvent ainsi être différenciées dans tous les tissus de l’organisme et en particulier dans tous les types cellulaires du cerveau (neurones, astrocytes, microglie…). Les CSEh peuvent ainsi être utilisées comme outils pour étudier différents aspects de la maladie d’Alzheimer :

- le rôle basal de l’APP et des produits issus de son clivage
- le rôle d’une ou plusieurs mutations de l’APP
- le rôle de la surexpression ou l’inhibition de l’APP...

(Lindvall & Kokaia 2010), (Porayette et al. 2009), (Freude et al. 2011).

Malgré leurs atouts indéniables, les CSEh sont difficiles à obtenir car leur utilisation est soumise à l’obtention d’une autorisation de protocole de Recherche, d’importation et de conservation auprès de l’agence de biomédecine qui contrôle le stockage, la culture et
l’utilisation des ESC humaines en France. Les autres pays ont leur propre réglementation mais elle est tout aussi complexe qu’en France.

De nombreuses équipes utilisent également les cellules souches neurales (NSC) qui sont capables de se différencier en neurones, oligodendrocytes et astrocytes. Elles ont notamment été utilisées pour étudier l’effet de l’ajout de peptides Aβ sur le fonctionnement des cellules ou encore sur la différenciation et pour modéliser les formes génétiques de la (Zhongling et al. 2009), (Taupin 2009), (Kwak et al. 2006), (Heo et al. 2007), (Sugaya & Merchant 2008). Par exemple la lignée cellulaire ReN (NSC humaines vendues par Millipore) a été transduite avec des lentivirus hébergeant des gènes mutés de l’APP et/ou de présénilines (Choi et al. 2014). Ces cellules présentent une surexpression des peptides Aβ et constituent un nouveau modèle pour étudier différents aspects de la MA puisque leur différenciation en 3D, sur 6-12 semaines, permet également de mettre en évidence l’apparition de plaques séniles et d’enchevêtrements neurofibrillaires.

Avec la découverte des cellules souches pluripotentes induites (iPSC) ces dernières années, il est possible de modéliser de nombreuses maladies. Les iPSC sont obtenues à partir de la reprogrammation de fibroblastes issus d’une biopsie de la peau d’un patient. Cette reprogrammation est réalisée en faisant exprimer un cocktail de facteurs de transcription induisant le retour à l’état indifférencié des cellules avec les propriétés de cellule souche pluripotente (Takahashi & Yamanaka 2006). Tout comme les CSEh, les iPSC sont capables d’auto-renouvellement et de différenciation, notamment en neurones. Cette nouvelle technologie a permis la génération de cellules patients-sépécificques qui peuvent être cultivées et différenciées et qui représentent donc un nouveau moyen de modéliser la maladie d’Alzheimer. Pour la première fois, ces cellules permettent d’étudier les formes sporadiques de la maladie en plus des formes génétiques et représentent donc autant de possibilité pour découvrir des facteurs communs, de nouveaux marqueurs de la pathologie, les mécanismes moléculaires sous-jacents à l’agrégation, aux clivages et à la dégradation (Robinton & Daley 2012), (Israel et al. 2012), (Yagi et al. 2011), (Kondo et al. 2013).
Table 5 : Résumé des principales lignées iPSC modèles de la Maladie d'Alzheimer. D’après (Sproul 2015).

B. La protéine précurseur de l’amyloïde APP

1. Le gène de l’APP

Comme nous l’avons déjà cité précédemment, la maladie d’Alzheimer est caractérisée par la présence de plaques séniles constituées de l’agrégation de peptides Ab. Ces peptides proviennent du clivage de la protéine précurseur de l’amyloïde ou APP.

La protéine APP est codée par le gène APP, situé sur le chromosome 21 chez l’Homme (Tanzi et al. 1987) (Figure 36 A), et qui a une séquence complète de plus de 300 kilobases (Hattori et al. 1997). Ce gène est composé de 18 exons dont les 16ème et le 17ème code pour le peptide Aβ (Yoshikai et al. 1990) et conduit à la formation d’une glycoprotéine transmembranaire exprimée ubiquitirement chez l’homme et très conservée au cours de l’évolution (Goate et al. 1991), (Goldgaber et al. 1987).

Après épissage alternatif, il existe 10 isoformes différentes de l’APP, de 695 à 770 acides aminés avec trois isoformes majoritaires APP695, APP751 et APP770 (Figure 36 B). Les isoformes APP751 et APP770 sont exprimées dans la plupart des tissus et contiennent un domaine de 56 acides aminés appelé Kunitz Protease Inhibitor (KPI) dans leur partie
extracellulaire. L’APP695 ne possède pas ce domaine KPI et chez le rat, elle est fortement exprimée dans les neurones (Kang & Muller-Hill 1990), (Ponte et al. 1988).

L’APP appartient à une famille de protéines transmembranaires, incluant les APP-like protein 1 (APLP1) et 2 (APLP2) chez les Mammifères (Wasco et al. 1992), (Wasco et al. 1993), (Sprecher et al. 1993) mais le domaine Aβ n’est observé que dans la protéine APP (Sandbrink et al. 1994). Cependant, ces différentes protéines partagent des motifs très conservés au sein du long domaine extracellulaire et dans la petite région cytoplasmique (Gralle & Ferreira 2007), (Coulson et al. 2000) (Figure 36 C).

Des études sur des souris KO pour l’APP suggèrent une redondance entre les différents homologues probablement exercée par des domaines communs autres que le domaine Aβ. Les souris KO-APP sont viables et fertiles, elles présentent simplement des modifications mineures telles que des pertes de poids, des altérations de l’exploration, de l’apprentissage ou encore de la potentialisation à long terme suggérant un rôle de l’APP dans le fonctionnement des cellules neuronales (Zheng et al. 1995), (Dawson et al. 1999), (Muller et al. 1994). L’expression du fragment sécrété sAPPα est suffisant pour restaurer le phénotype normal des souris (Ring et al. 2007). Les souris KO-APLP1 et KO-APLP2 sont également viables alors que les souris doubles KO-APP/APLP2 ; APLP1/APLP2 et triples KO-APP/APLP1/APLP2 montrent une létalité post-natale mais sans anomalies morphologiques majeures (Heber et al. 2000), (von Koch et al. 1997), (Herms et al. 2004). En revanche, les souris doubles KO-APP/APLP1 sont viables suggérant que l’APLP2 est essentielle quand l’APP et/ou l’APLP1 sont absentes (Figure 36 D).
Figure 36 : Le gène de l’APP.

- Chromosome 21 porteur du gène de l’APP (Stavljenic-Rukavina 2004))
- Structure schématique des différentes isoformes de l’APP : APP 770, APP 751 et APP 695 (Fukuchi et al. 1998).

2. Structures Primaire et Secondaire de la protéine APP

La protéine APP est composée d’une grande partie extracellulaire et d’une petite partie cytoplasmique (Figure 37).
Les différents domaines de la région extracellulaires sont décrits ci-après :

- Le peptide signal permettant l’adressage de la protéine à la membrane du Réticulum endoplasmique où il sera clivé.
- Le domaine HPBD1 (Heparin binding domain 1) peut se lier à l’héparine, à la fibuline qui est une protéine de la matrice extracellulaire et au peptide Aβ (Mok et al. 1997), (Van Nostrand et al. 2002). Ce domaine contient également 12 résidus cystéines suggérant la formation de ponts disulfures (Daigle & Li 1993). Des études par cristallographie ont d’ailleurs montré la présence de 3 ponts disulfures conduisant à une structure tertiaire riche en feuillets beta (Rossjohn et al. 1999).

- Le domaine CuBD (Copper Binding Domain) comme son nom l’indique est capable de lier les ions cuivre Cu2+ (Hesse et al. 1994), (Multhaup et al. 1996). Ce domaine contient également des cystéines permettant ainsi la formation de 3 autres ponts disulfures comme observés par RMN ou cristallographie (Barnham et al. 2003), (Kong et al. 2007).

- Un domaine similaire au domaine inhibiteur des protéases de type Kunitz, le domaine KPI a été découvert (Ponte, Gonzalez-DeWhitt et al. 1988), (Tanzi et al. 1988) et fut le premier fragment cristallisé de l’APP. Il est retrouvé uniquement dans les isoformes: APP751 et APP770 (Hynes et al. 1990) qui sont capables de se lier aux LRP protéine reliée au récepteur des LDL (Low density lipoprotein) conduisant ainsi à l’internalisation de l’APP (Kounnas et al. 1995).

- Le domaine HPBD2 (Heparin Binding Domain 2) est un domaine en hélice très conservé au cours de l’évolution (Multhaup et al., 1994) permettant la liaison à l’héparine (Mok, Sberna et al. 1997), au collagène (Beher et al. 1996) et à la laminine (Narindrasorasak et al. 1992). Ce domaine serait composé d’une longue hélice-α et de deux faisceaux d’hélices aux extrémités (Gralle & Ferreira 2007) et
contiendrait des sites de N- et O-glycosylation participant également à la structure secondaire de la protéine APP (Pahlsson & Spitalnik 1996).

- Dans la région centrale de l’APP, on retrouve ensuite le domaine RC (Random Coil) qui est spécifique aux Vertébrés (Daigle & Li 1993) et rapidement dégradé par les protéases in vitro suggérant une conformation non structurée ou l’absence de structure secondaire pour cette région (Gralle et al. 2002), (Sandbrink, Masters et al. 1994). Ce domaine ne semble pas avoir de ligand mais sa localisation proche du domaine Aβ et des différents sites de clivage pourrait lui conférer un rôle pour la liaison et le fonctionnement des sécrétases.

- Le domaine Aβ est constitué de 40 à 42 acides aminés et s’étend jusque dans la région transmembranaire. Cette région contient les différents sites de clivage de l’APP par les sécrétases dont nous verrons le fonctionnement en détail par la suite.

La région restante est composée de la partie C-Terminale cytosolique de l’APP incluant le domaine AICD (APP intracellular domain) et un motif très conservé YENPTY qui serait impliqué dans le trafic intracellulaire de l’APP (Turner et al. 2003). Ce domaine C-terminal possède également différents sites possibles de phosphorylation (Lee 2003). Via sa liaison à Fe65, une protéine adaptatrice contenant deux domaines d’interaction protéine-protéine, le domaine AICD pourrait être impliqué dans la formation d’un complexe Tau-Fe65-APP ce qui suggèreraient une interaction entre les différents acteurs de la MA (Barbato et al. 2005).
Figure 37 : Schéma de la composition structurale de la protéine APP 770. D’après (Zhou et al. 2011).

3. Métabolisme de l’APP

a) Biosynthèse et Trafic cellulaire de l’APP (Figure 38)

L’APP est principalement localisée dans les membranes de plusieurs compartiments cellulaires comme le réticulum endoplasmique (RE), le Golgi ou encore dans les membranes mitochondriales, endosomales et lysosomales (Kinoshita et al. 2003), (Xu et al. 1995), (Mizuguchi et al. 1992), (Caporaso et al. 1994).

Pour atteindre ses différentes destinations, l’APP serait transportée dans des vésicules sécrétrices dérivées du TGN (réseau Trans-Golgien) (Greenfield et al. 1999). En effet, après sa synthèse dans le réticulum endoplasmique rugueux, la protéine APP est transportée vers la membrane du RE grâce à son peptide signal, peptide qui sera clivé après l’insertion de l’APP dans la membrane. Au cours de son transfert vers la membrane plasmique, l’APP peut subir de nombreuses modifications post-
traductionnelles lors de son passage dans le Golgi ou dans le TGN : N- ou O-glycosylation, sulfatation des tyrosines, sialysation ou encore la phosphorylation de plusieurs résidus (Turner, O'Connor et al. 2003). Après la fusion des vésicules avec la membrane, l'APP se retrouve attachée à la membrane où elle peut subir des clivages protéolytiques.

La présence de l'APP à la membrane plasmique est de l’ordre de quelques minutes (Koo & Squazzo 1994) et peut être ensuite internalisée dans les endosomes précoces et soit recyclée vers le Golgi ou la membrane plasmique ou dégradée dans la voie de dégradation endosomale/lysosomale (Caporaso, Takei et al. 1994), (Thinakaran & Koo 2008), (Turner, O'Connor et al. 2003), (Haass et al. 1992).

L’APP à la membrane peut également s’homo-oligomériser ou se dimériser et pourrait participer au transfert d’informations après la liaison de ligands ou suite à des changements environnementaux (Chen et al. 2006), (Lu et al. 2003a), (Van Nostrand, Melchior et al. 2002). Le peptide Aβ pourrait également favoriser la multimérisation de l’APP à la membrane plasmique en se liant à son domaine N-Terminal. Cette liaison pourrait représenter un autre mécanisme par lequel le peptide Aβ contribuerait à la perte des synapses et la mort cellulaire des neurones observée dans la maladie d’Alzheimer (Van Nostrand, Melchior et al. 2002).

Figure 38 : Trafic intracellulaire de l’APP. D’après (Thinakaran & Koo 2008).
Les molécules d’APP naissantes (tiret noir) deviennent matures via leur passage à travers la voie constitutive de sécrétion (Etape 1). Dès que l’APP atteint la surface cellulaire, elle est rapidement internalisée (Etape 2) et par la suite transportée de nouveau vers la surface cellulaire via les compartiments d’endocytose ou de recyclage (Etape 3) ou dégradée dans le lysosome. Le processus non-amylodogénique se produit principalement à la surface cellulaire, où les α-sécrétases sont présentes. Le processus amyloïdologénique implique le transit par les organites d’endocytose, où l’APP rencontre les β- et les γ-sécrétases.

b) Clivages protéolytiques de l’APP

La protéine peut subir différents clivages protéolytiques conduisant à la production de nombreux fragments, qui auraient tous un rôle propre.

![Schéma de la composition structurale de la protéine APP 770 avec les principaux sites de clivage protéolytique de l’APP](image)

Figure 39 : Schéma de la composition structurale de la protéine APP 770 avec les principaux sites de clivage protéolytique de l’APP. D’après (Zhou, Chan et al. 2011).

1. **Clivage par l’α-sécrétase (Figure 40)**

Le clivage de l’APP par l’α-sécrétase se situe entre les résidus Lys 16 et Leu 17 du domaine Aβ empêchant ainsi la formation des peptides Aβ. Ce clivage permet la
libération d’un long fragment soluble appelé sAPPα et un petit fragment C-Terminal CTF83 ou αCTF.
Il a été montré que ce clivage de l’APP nécessitait la présence de l’APP à la membrane et la formation d’une structure α-hélicale et que l’α-sécrétase serait une endoprotéase attachée à la membrane (Sisodia 1992). Outre son attachement à la membrane, il a également été montré en système acellulaire, que l’α-sécrétase serait une metalloendopeptidase intégralement membranaire (Roberts et al. 1994). Ce système acellulaire a également permis d’étudier l’activité α-sécrétase et il a été montré qu’un traitement avec le phorbol-ester stimulerait la sécrétion de la région N-Terminale de l’APP (Caporaso et al. 1992), (Gillespie et al. 1992).
Trois membres de la famille des ADAM (A Disintegrin And Metalloprotease) : ADAM9, ADAM10, ADAM17 (appelé aussi TACE = tumor necrosis factor-α converting enzyme), apparaissent comme des α-sécrétases potentielles dont ADAM 10 serait la principale sécrétase (Koike et al. 1999), (Lammich et al. 1999), (Slack et al. 2001), (Kuhn et al. 2010). Ces trois métalloprotéases sont également des protéines transmembranaires de type I, tout comme l’APP, et seraient impliquées dans le clivage de nombreuses protéines autres que l’APP. Plusieurs études sur des cellules dérivées de souris KO pour ces trois métalloprotéases, ou après utilisation de RNAi (ARN interférence) ou d’inhibiteurs, ont d’ailleurs permis de montrer une diminution du clivage de l’APP mais celui-ci n’est jamais complètement supprimé (Buxbaum et al. 1998), (Blacker et al. 2002), (Weskamp et al. 2002), (Asai et al. 2003), (Allinson et al. 2004), (Taylor, Parkin et al. 2009) suggérant une action commune des trois métalloprotéases pour l’activité α-sécrétase et que l’absence d’une ADAM serait compensée par les deux autres.
Cependant, avec l’utilisation d’un nouvel anticorps spécifique du site de clivage par l’ α-sécrétase, Kuhn PH et al (Kuhn, Wang et al. 2010) ont montré une suppression complète du clivage α de l’APP dans différentes lignées cellulaires et dans des cultures de neurones primaires murins dont l’expression de l’ADAM 10 est éteinte par RNAi. En revanche, les autres protéases ne sont pas capables de compenser cette inhibition du clivage ni de le provoquer par elle-même. Cela a été confirmé in vivo puisque l’inhibition de l’ADAM 10 dans des neurones murins, grâce à un système KO_ADAM10 inductible, provoque une abolition de la production de sAPPα (Jorissen et al. 2010).
Il est également intéressant de noter que les patients atteints de la maladie d’Alzheimer présentent une diminution de l’activité α-sécrétase dans le cortex temporal ainsi qu’une
diminution des fragments sAPPα dans le LCR et dans les plaquettes qui peuvent être
corrélées à une diminution drastique de l’ADAM 10 (Colciaghi et al. 2002), (Tyler et al.
2002).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig40.png}
\caption{Clivage de l’APP par l’α-sécrétase.}
\end{figure}

(2) Clivage par la β-sécrétase (Figure 41)

La génération des peptides Aβ nécessite en premier lieu le clivage de l’APP par une β-
sécrétase. Ce clivage de l’APP permet la libération d’un long fragment soluble sAPPβ et
d’un petit fragment C-Terinal CTF99 ou βCTF. Le site de clivage par la β-sécrétase est
situé juste à la jonction entre le domaine RC et le domaine Aβ.

Plusieurs équipes ont montré que BACE1 (β-site APP cleaving enzyme) qui est une
aspartyl-protéase transmembranaire de type I, serait la plus commune des β-sécrétases
(Thinakaran & Koo 2008), (Kogel et al. 2012b), (Zhang et al. 2011). Le clivage par BACE
est parfois dirigé vers un site alternatif de clivage, appelé β’, situé au niveau du résidu
L’affinité principale de BACE1 pour l’un ou l’autre des deux sites n’est pas connue mais il
a été montré que des mutations dans le site Glu11 entraînerait une augmentation de la
production des peptides Aβ1-40 et un facteur de risque pour la maladie d’Alzheimer
(Rajendran & Annaert 2012).
Plusieurs modifications du large précurseur pro-BACE1 (phosphorylation, glycosylation, clivage...) permettent la production d'une protéine BACE1 mature (Walter et al. 2001), (Bennett et al. 2000). Pour un fonctionnement optimal, BACE1 doit se trouver dans un environnement acide tel que le Golgi, les endosomes ou les lysosomes (Ben Halima & Rajendran 2011), (Huse et al. 2000), (Huse et al. 2002). L’expression de BACE1 est également retrouvé à la surface cellulaire et est particulièrement élevée dans les neurones (Kogel, Deller et al. 2012b).

BACE1 semble être un élément majeur pour la production des peptides Aβ et donc dans l’établissement de la pathologie. En effet, des souris KO-BACE1 ne présentent pas d’anomalies phénotypiques sévères ni de niveaux détectables de peptides Aβ (Luo et al. 2001). Par ailleurs, les souris surexprimant l’APP humaine (Tg2576(+)) dans lesquelles BACE1 est inhibée présentent une restauration des déficits de mémoire corrélée avec une diminution importante des peptides Aβ40 et 42 (Ohno et al. 2004). De plus, Ohno and al. (Ohno et al. 2007) ont montré que le croisement de souris KO-BACE1 avec les souris 5XFAD (APP KM670/671NL (Swedish), APP I716V (Florida), APP V717I (London), PSEN1 M146L, PSEN1 L286V) provoque une diminution de la production et des dépôts de peptides Aβ et permet aussi de prévenir la perte neuronale dans les régions cérébrales principalement touchées dans ce modèle murin.

BACE2 est un homologue de BACE1 et des hypothèses selon lesquelles BACE2 pourrait participer à la production des peptides Aβ via un β-clivage de l’APP ont été proposées. BACE2 est exprimée dans le cerveau mais son taux reste tout de même plus faible que celui de BACE1 dans les neurones (Hussain et al. 2000), (Bennett, Denis et al. 2000). Des études ont montré que BACE2 possèderait une activité β-sécrétase pour le clivage de l’APP sauvage et de l’APPswe mais BACE2 serait plus efficace au niveau d’autres sites présents dans le domaine Aβ (Farzan et al. 2000), (Yan et al. 2001). En effet, des cultures de neurones issus de souris KO-BACE2, transduites avec un vecteur contenant l’APP, ne présentent pas de diminution des peptides Aβ (Domínguez et al. 2005) et au contraire la co-surexpression de BACE2 et d’APP n’entraîne pas d’augmentation de la concentration cérébrales des peptides Aβ comme attendue si BACE2 possédait une activité β-sécrétase (Azkona et al. 2010). D’autres études ont depuis montré une activité de BACE2 dans le

Ces résultats suggèrent que BACE1 serait le principal acteur dans la production des peptides Aβ mais sans totalement exclure une participation de BACE2 (Zhang, Thompson et al. 2011), (Ahmed et al. 2010).

En plus des deux enzymes BACE, la cathepsine B serait également impliquée dans le β-clivage de l’APP. En effet, le blocage sélectif de la cathepsine B, par un inhibiteur, dans des vésicules sécrétoires de cellules neuronales, diminue la concentration des peptides Aβ extracellulaires (Hook et al. 2005). Ces résultats ont été confirmés in vivo dans des souris KO-Cathepsine B et exprimant l’APP humaine. En effet, ces souris présentent une diminution des niveaux des peptides Aβ1-40 et Aβ1-42 et du fragment CTFβ (Hook et al. 2009). Le rôle de la cathepsine B dans le clivage en β a également été observé dans des cultures primaires de neurones d’hippocampe puisque la diminution de la cathepsine B par un inhibiteur ou par un siRNA provoque une diminution des peptides Aβ de manière équivalente à une absence d’expression de BACE1 (Klein et al. 2009).

Figure 41 : Clivage de l’APP par la β-sécrétase.

(3) Clivage par la γ-sécrétase (Figure 42)
Après les clivages par l’α-sécrétase ou la β-sécrétase, les deux fragments de l’APP CTF83 et CTF99 respectivement sont encore attachés à la membrane et peuvent subir un nouveau clivage par le complexe de la γ-sécrétase. Ce deuxième clivage permet la libération de petits fragments N-Terminaux P3 et Aβ, selon si le clivage est en α ou en β respectivement. Dans les deux cas, un fragment C-Terminal appelé AICD est libéré dans l’espèce intracellulaire et pourrait ensuite moduler la transcription de gènes cibles via son interaction avec d’autres protéines (Haass 2004); (Chow et al. 2010).

Figure 42 : Clivage de l’APP par la γ-sécrétase

Plusieurs sites de clivage par la γ-sécrétase sont possibles au niveau des résidus acides aminés de l’APP permettant ainsi la génération de peptides Aβ de différentes tailles. Les sites de clivage au niveau des résidus 711 et 713 permettent notamment la production des peptides Aβ40, forme majoritaire et Aβ42, forme la plus amyloïdégénique.

Le complexe de la γ-sécrétase est constitué d’au moins 4 composants distincts : une préséniline (PS1 ou PS2), la nicastrine, APH-1 (anterior pharynx-defective-1) et PEN-2 (presenilin enhancer 2) (Kimberly et al. 2003), (Takasugi et al. 2003), (Li et al. 2009). Les étapes de la formation du complexe de la γ-sécrétase sont les suivantes. La nicastrine et l’Aph-1 forme un complexe stable (Shirotani et al. 2004), (Kimberly, LaVoie et al. 2003). Ensuite, la PS vient se lier à ce complexe (Takasugi, Tomita et al. 2003) et enfin PEN-2 s’associe à ce trio permettant la formation d’un complexe mature (LaVoie et

Le complexe γ-sécrétase est donc très important pour la production des peptides Aβ et par conséquent dans l’étiologie de la maladie d’Alzheimer puisque les nombreuses mutations existantes dans les présénilines retrouvées dans les formes génétiques de la pathologie ont en général pour effet de décaler le clivage de la position 711 à 713 augmentant ainsi la production des peptides Aβ42 (Citron et al. 1997), (De Strooper, Saftig et al. 1998).

Figure 43 : L’architecture du complexe de la γ-sécrétase. D’après (Li, Wolfe et al. 2009).
PS : Préséniline, NCT : nicastrine.

(4) Clivage par la η-sécrétase

Récemment, Willem M. et al. ont montré la présence de nouveaux fragments de l’APP dont les poids moléculaires diffèrent des fragments connus (CTF-α/β, Aβ ...) suggérant l’existence d’une nouvelle voie protéolytique (Willem et al. 2015). Par analogie avec les autres clivages connus, les auteurs ont nommé ce nouveau clivage : clivage en η de l’APP permettant la génération des fragments sAPPη et CTFη (Figure 44). Ils ont également
montré que le fragment CTf\(\eta\) peut être clivé par la \(\alpha\)- ou la \(\beta\)-sécrétase entrainant ainsi la libération des peptides A\(\eta\)-\(\alpha\) et A\(\eta\)-\(\beta\) respectivement. Ce clivage par la \(\eta\)-sécrétase est bien physiologique puisque des fragments A\(\eta\) ont été retrouvés dans le cerveau de souris et dans le LCR humain de patients sains et de patients porteurs de la mutation APPswedish.

Le clivage en \(\eta\) semble se produire au niveau des acides aminés 504-505 de l’APP (selon la séquence de l’APP695) et serait réalisé par des métalloprotéases de la matrice attachées à la membrane comme MT1-MMP ou MT5-MMP. En effet ces deux métalloprotéases permettent in vitro, la génération de fragments de poids moléculaires compatibles avec une activité \(\eta\)-sécrétase (Higashi & Miyazaki 2003), (Ahmad et al. 2006) et la surexpression de la MT5-MMP dans les cellules N2a provoque une augmentation des peptides A\(\eta\)-\(\alpha\). De plus, les souris KO-MT5-MMP présentent une diminution des peptides A\(\eta\)-\(\alpha\) confirmant un rôle de la métalloprotéase dans le clivage en \(\eta\).

Par ailleurs, l’extinction de BACE1 (par un inhibiteur) dans différents types cellulaires (neurones primaires de souris, neurones dérivés des CSEh H9, lignées cellulaires CHO, 70A2) ou dans les souris KO-BACE1 entraîne une augmentation de la production des fragments CTf\(\eta\) et A\(\eta\)-\(\alpha\). De plus, l’administration d’un inhibiteur de BACE1 à des souris APPPS1-21 (porteuses de deux mutations de l’APP et d’une mutation de la PS1, Radde R. 2006) provoque également une augmentation des fragments CTf\(\eta\) et A\(\eta\)-\(\alpha\) et une diminution des LTP au niveau de l’hippocampe. Cette dernière observation a également pu être mise en évidence lors de l’ajout de peptides A\(\eta\)-\(\alpha\) sur des coupes d’hippocampe de souris suggérant une implication d’A\(\eta\)-\(\alpha\) dans le déficit de LTP observé lors du blocage de l’activité \(\beta\)-sécrétase.

De plus, les neurites dystrophiques de souris APPPS1-21 ou de patients atteints de MA, observés à proximité des plaques séniles, présentent une accumulation de CTf\(\eta\) et de la \(\eta\)-sécrétase (Sekine-Aizawa et al. 2001).

Ces observations confortent non seulement l’existence d’un nouveau processus protéolytique de l’APP mais aussi un rôle potentiel de celui-ci dans la pathologie. En effet, les peptides A\(\beta\) stimuleraient la \(\eta\)-sécrétase qui deviendrait ainsi un sous-effecteur dans la cascade amyloïde (Sekine-Aizawa, Hama et al. 2001).
Figure 44 : Représentation schématique du clivage en η de l’APP (encadré rouge). D’après (Willem, Tahirovic et al. 2015).
Comparaison avec la voie amyloïdégénique (encadré bleu).

(5) Clivage par les Caspases

Les caspases pourraient également intervenir dans le clivage de l’APP. Ce clivage, situé dans le domaine cytoplasmique de l’APP, se déroule lors de l’apoptose et entrainerait une production élevée de peptide Aβ (Gervais et al. 1999). Il permet la libération d’un fragment C31 contenant les 31 derniers acides aminés de l’APP, qui peut ensuite être clivé par la γ-sécrétase permettant cette fois, la production du fragment Jcasp (Park et al. 2009), (Gervais, Xu et al. 1999), (Bredesen 2009). La caspase 3 serait principalement impliquée dans ce clivage de l’APP puisque son niveau d’expression est élevé dans les neurones apoptotiques des cerveaux atteints par la MA et le fragment issu de son clivage colocalise avec Aβ dans les plaques séniles (Gervais, Xu et al. 1999). Cependant, l’impact de ce clivage sur le processus amyloïdégénique de l’APP est très discuté.
Lu DC et al. (Lu et al. 2003b) ont notamment montré dans des cultures cellulaires, que le clivage de l’APP par les caspases est induit par les peptides Aβ et que le fragment C31 ainsi obtenu participerait à la mort cellulaire par apoptose associé aux peptides Aβ. De plus, des souris modèles pour la MA et portant une mutation au niveau de l’Asp 664, empêchant ainsi le clivage par les caspases, ne présentent pas les anomalies comportementales ni physiologiques observées dans les souris sans mutation (Galvan et al. 2006). En revanche, Soriano et al. (Soriano et al. 2001) ont montré que le clivage de l’APP par les caspases provoque une diminution de la sécrétion des peptides Aβ et que le masquage du site de clivage ou l’activation des caspases n’entraînent pas de modifications des niveaux d’Aβ suggérant ici, plutôt un rôle indirect de ce clivage sur l’amyloïdogenèse.

(6) Les voies amyloïdogénique et non-amyloïdogénique

Les différents clivages de l’APP conduisent à l’établissement de deux voies protéolytiques majeures. La voie non-amyloïdogénique correspond aux clivages par l’α-puis la γ-sécérétase de l’APP entrainant la formation des fragments sAPPα, P3 et AICD et empêchant ainsi la formation des peptides amyloïdes. La voie amyloïdogénique, comme son nom l’indique, est la voie responsable de la production des peptides Aβ suite au clivage par la β- puis la γ-sécérétase de la protéine APP. Cette voie entraîne également la formation des fragments sAPPβ, AICD et des différents peptides Aβ. Les formes prépondérantes sont Aβ40 et Aβ42 et sont toutes deux impliquées dans la maladie d’Alzheimer (Kuo et al. 1996), (Naslund et al. 1994). L’isoforme Aβ42 a des propriétés d’insolubilité et d’oligomérisation qui font que cette forme est la plus neurotoxique et s’avère être le constituant majeur des plaques séniles (Jarrett, Berger et al. 1993), (Roher et al. 1993).
Figure 45 : Les voies non-amyloïdogénique et amyloïdogénique pour le clivage de l’APP.

Ces deux voies permettent la libération de fragments solubles (sAPPα et sAPPβ) et de peptides amyloïdes insolubles (Aβ 1-40, Aβ1-42, Aβn- 40 et Aβn-42). Ces fragments passent dans le LCR où ils peuvent être dosés.

Les peptides Aβ peuvent s’assembler selon deux voies. La première voie mène à des fibrilles insolubles puis à la formation des plaques. La seconde voie mène à des oligomères solubles, assez petits pour entrer dans les synapses et qui sont supposés être l’espèce la plus toxique dans la maladie d’Alzheimer (Schnabel 2011).
c) L’hypothèse de la cascade amyloïde

L’hypothèse de la « cascade amyloïde » repose sur l’idée que le peptide Aβ est le facteur initial déclenchant le reste de la cascade d’événements menant à la maladie d’Alzheimer (Hardy & Allsop 1991). Il y aurait un dysfonctionnement dans le processus protéolytique de l’APP ce qui provoquerait une modification de la balance entre la production et la dégradation des peptides Aβ. Cette accumulation progressive d’Aβ initierait des changements au niveau de la réponse inflammatoire, des enchevêtrements neurofibrillaires et des dommages oxydatifs, causant finalement la perte neuronale (Selkoe 2005). L’isoforme Aβ42 serait la principale concernée puisqu’elle agrège plus facilement. Cette agrégation conduit à la formation d’oligomères toxiques puis de fibrilles, constituants majeurs des plaques séniles retrouvées chez les patients Alzheimer.

De nombreux faits corrèlent avec cette hypothèse :

- Les mutations dans l’APP, les présénilines ou PEN-2, observées dans les formes génétiques de la maladie provoquent toutes une augmentation de la production des peptides Aβ.
- Le facteur de risque ApoE4 serait un co-facteur de l’amyloïdogenèse en entraînant une diminution de la dégradation des peptides amyloïdes.
- Les plaques amyloïdes sont retrouvées dans le cerveau des patients atteints par la maladie d’Alzheimer

Figure 47 : La cascade Amyloïde. D’après (Hardy 2002).
La séquence des événements conduisant à la maladie d’Alzheimer selon l’hypothèse de la cascade amyloïde. La flèche courbe indique que les oligomères d’Aβ peuvent directement blesser les synapses et les neurites des neurones du cerveau, en plus de l’activation de la microglie et les astrocytes.

Cette hypothèse a été contestée car certains faits ne sont pas cohérents avec la cascade amyloïde et car elle n’explique pas la dynamique de la formation des plaques ni la sévérité des déficits cognitifs observés. Par ailleurs, l’existence de cas de malades sans dépôts amyloïdes ou au contraire des personnes présentant des dépôts mais sans trouble de mémoire contredit la théorie de la cascade.
Ces observations entraînent donc l’émergence d’autres hypothèses comme celle de Karl Herrup qui parle désormais d’un cycle amyloïde plutôt que d’une cascade (Herrup 2010) où l’augmentation d’Aβ n’est plus le point initial de la maladie. En effet, dans cette hypothèse, l’apparition d’un déclin cognitif lié à l’âge pourrait évoluer en maladie d’Alzheimer sous l’effet d’un déclencheur appelé « Alzheimer Disease specific injury » (AVC, stress, diabète, facteurs de risque ...) via une réponse immunitaire stimulant la production des peptides Aβ qui eux-mêmes agissent sur les réponses immunitaires. Comme la protéine ApoE serait impliquée dans la dégradation des peptides Aβ, elle pourrait ainsi limiter l’accumulation de ces peptides.

Figure 48 : L’hypothèse du cycle amyloïde. D’après (Herrup 2010).

4. Fonctions de l’APP

La protéine APP est très conservée au sein de différentes espèces suggérant une ou des fonctions importantes dans de nombreux processus physiologiques tels que la neuroprotection, la plasticité synaptique, la signalisation, la prolifération et la différenciation cellulaire.

a) Rôle dans la Neuroprotection
De nombreuses études ont mis en évidence un rôle de l’APP et en particulier du fragment soluble sAPPα dans la neuroprotection contre différentes atteintes (privation de glucose, stress oxydatif, lésions cérébrales...).

Mattson et al. (Mattson et al. 1993) ont notamment montré qu’un prétraitement avec les formes sécrétées de l’APP695 ou de l’APP751 (sAPP) avant une privation de glucose, dans des cultures cellulaires issues de l’hippocampe ou du septum de rat ou des neurones du cortex humain (13-15 semaines de gestation), induit une nette augmentation de la survie neuronale suggérant un effet protecteur des sAPP. L’équipe de Mattson a également mis en évidence dans les neurones de l’hippocampe de rat, un effet protecteur des sAPP et en particulier du fragment sAPPα contre la neurotoxicité induite par le glutamate ou les peptides Aβ (Mattson, Cheng et al. 1993), (Goodman & Mattson 1994), (Furukawa et al. 1996).

Par ailleurs, sAPPα protégerait les cellules PC12 de rat contre la mort cellulaire induite par l’époxomicine ou une irradiation aux UV, principalement via l’inhibition de la voie pro-apoptotique c-Jun N-terminal Kinases (JNK) et l’activation de la voie PI3K/Akt (Copanaki et al. 2010). Ils ont également montré un effet protecteur de sAPPα contre le stress proteasomal, induit par l’époxomicine, dans des coupes d’hippocampe de souris.

Par ailleurs, la surexpression de l’APP humaine dans des souris transgéniques protège les neurones contre l’excitotoxicité induite par l’injection de kainate ou de gp120 (protéine du VIH) (Mucke et al. 1996), (Masliah et al. 1997) et des études sur des souris

La protéine APP jouerait un rôle suite à un traumatisme cérébral puisqu’il a été montré qu’elle était surexprimée, à la fois dans les Mammifères et la Drosophile, après un tel traumatisme (Murakami, Yamaki et al. 1998), (Ramirez, Heslop et al. 2001), (Van den Heuvel, Blumbergs et al. 1999), (Leyssen, Ayaz et al. 2005) et que l’injection au niveau
de ces blessures du fragment sAPPα chez le rat était bénéfique sur les capacités cognitives et motrices (Thornton, Vink et al. 2006), (Corrigan, Pham et al. 2011). De plus, la surexpression de l’APP dans des souris transgéniques permet une résistance à l’excitotoxicité induite par la kainate ou dans des formes chroniques (Mucke, Abraham et al. 1996), (Masliah, Westland et al. 1997), (Steinbach et al. 1998).

b) Rôle au niveau de la synapse

La protéine APP est présente dans les structures synaptiques mais son rôle exact dans la synaptogenèse est peu connu (Koo et al. 1990). Il a été montré une co-expression de l’APP et de la synaptophysine dans les cerveaux humain et murin suggérant un rôle de l’APP dans l’activité synaptique et des perturbations potentielles des synapses lorsque l’APP est clivée en Aβ pendant l’évolution de la pathologie (Schubert et al. 1991). L’étude du développement de la vision chez le Hamster a également permis de mettre en évidence une augmentation de l’APP et du fragment sAPP en fin de synaptogenèse puis une baisse lorsque les connexions sont bien établies suggérant un rôle précoce de l’APP (Moya et al. 1994).

De plus, l’ajout de sAPP dans des cultures cellulaires issues de Xénope provoque à la fois une baisse de la fréquence des courants synaptiques spontanés (SSC) et une hausse de
l’amplitude des courants synaptiques évoqués (ESC) (Morimoto et al. 1998). Les SSC seraient régulés par le fragment C-terminal de l’APP tandis que les ESC le seraient par le fragment N-terminal suggérant ainsi un rôle dual de l’APP dans la modulation de l’activité synaptique.

Plus récemment, il a été montré qu’une diminution de l’expression de l’APP grâce à un siRNA provoquerait une diminution de l’activité synaptique (Herard et al. 2006). Wang Z. et al. (Wang et al. 2009) ont également montré que l’inactivation de l’APP, que ce soit dans les neurones pré-synaptiques ou dans les muscles post-synaptiques, provoquerait des perturbations du fonctionnement synaptique alors que l’expression de l’APP, par transduction, dans des cellules HEK293 en co-culture avec des neurones primaires permettrait, quant à elle, d’améliorer la synaptogenèse.

Ces résultats in vivo et in vitro suggèrent que l’APP pourrait être considérée comme une nouvelle molécule synaptique et que la perturbation de son métabolisme dans la MA pourrait mener à une baisse de l’efficacité synaptique et ainsi à la perte synaptique.

c) **Rôle dans la Croissance des Neurites**

De nombreuses études convergent vers ce rôle dans la neuritogénèse et ont montré que l’addition du fragment sAPPα favoriserait la croissance neuritique dans différents types cellulaires : des neurones hippocampaux ou des neurones dérivés de NSC de souris (Young-Pearse et al. 2008), (Gakhar-Koppole et al. 2008) ; des neurones primaires ou des explants embryonnaires de rat (Araki et al. 1991 {Ohsawa, 1995 #1723} ou encore dans les cellules PC12 (Milward et al. 1992), (Wallace et al. 1997). Le fragment soluble sAPLP2 serait également capable de favoriser la croissance des neurites suggérant une certaine redondance entre les membres de la famille APP pour cette fonction (Gakhar-Koppole, Hundeshagen et al. 2008)

Par ailleurs, la localisation de l’APP à la membrane favoriserait sa liaison avec de nombreux partenaires et en particulier des composants de la matrice extracellulaire.
Cette liaison participerait ensuite à la fonction de l’APP dans la neuritogenèse et serait dépendant de sa liaison à l’héparine puisque des mutations dans le domaine HBD1 bloque l’effet de l’APP sur la croissance des neurites. La présence de plusieurs domaines de liaison à l’héparine au sein de l’APP suggère également que cette dernière pourrait se lier à plus d’un type de glycosaminoglycane (Clarris et al. 1997).

d) Rôle sur la Mémoire et la Potentialisation à Long Terme

En plus de ses fonctions dans le développement cérébral, l’APP aurait également un rôle plus tardif dans le fonctionnement cérébral et en particulier dans la mémorisation et la potentialisation à long terme (LTP). En effet, il a été montré que l’administration intraventriculaire des fragments sAPP (sAPP695 et sAPP751) favoriserait la mémorisation et bloquerait les déficits de mémoire induits par la scopolamine (Meziane et al. 1998). Les effets des sAPP sont identiques, quelle que soit l’isoforme, suggérant que le domaine KPI n’aurait pas de rôle dans cette fonction de l’APP contrairement à la région des résidus 319-335 de l’APP (Roch et al. 1994). De plus, le sAPPα augmenterait la potentialisation à long terme induite par une stimulation à haute fréquence dans des coupes d’hippocampe de rat (Ishida et al. 1997).

Au contraire, les souris KO-APP présentent avec l’âge, des déficits de LTP dans l’hippocampe et des déficits dans les fonctions cognitives suggérant un rôle de l’APP dans le maintien des fonctions cérébrales (Seabrook et al. 1999), (Dawson, Seabrook et al. 1999). De plus, les souris KO-APP présentent également des déficits d’apprentissage mais cela ne serait pas médiiée par une perte de neurones ou de boutons pré-synaptiques puisqu’aucune différence n’a été observée dans leur nombre (Phinney et al. 1999). En revanche, l’expression des domaines sAPPα ou C-Terminal de l’APP permet une restauration des perturbations de l’apprentissage spatial et de la LTP observés dans les souris KO-APP (Ring, Weyer et al. 2007). Néanmoins, des souris transgéniques exprimant les mutations génétiques APP Swedish et APP India, présentent une diminution de la LTP dans la région CA1 de l’hippocampe et dans le gyrus denté qui serait liée à la réduction du ratio NMDA (N-methyl-D-aspartate) sur AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolopropropionic acid) suggérant qu’une expression trop élevée de la protéine APP serait au contraire défavorable pour la mémorisation et la
LTP en particulier (Tozzi et al. 2015).

Ces résultats suggèrent un rôle néfaste des peptides Aβ sur la mémorisation et la LTP contrairement à l’APP totale et aux fragments sAPP.

e) Apoptose

La protéine APP a principalement des effets sur la survie cellulaire mais certains fragments issus de son clivage peuvent être, eux, considérés comme pro-apoptotiques. Nikolaev A. et al. ont notamment montré que l’APP et le récepteur DR6 (Death Receptor 6) permettent l’activation d’un programme de mort programmée caspase-dépendant (Nikolaev et al. 2009). Plus particulièrement, ce serait un fragment N-Terminal de l’APP (N-APP) issus du clivage de sAPPβ qui activerait DR6 et également la caspase 6 et contribuerait ainsi à la mort cellulaire observée dans la pathologie AD. Le rôle de ce fragment N-APP est peu connu dans le cerveau adulte mais l’hypothèse serait qu’avec l’âge, le clivage en β serait favorisé au détriment du clivage en α et des effets protecteurs de ces produits clivés, notamment sAPPα (Kogel, Deller et al. 2012b). De plus, le clivage de l’APP par les caspases (caspase 3 principalement) se déroulerait lors de l’apoptose et entraînerait une production élevée de peptide Aβ (Gervais, Xu et al. 1999). En effet, la caspase 3 est fortement exprimée dans les neurones apoptotiques de cerveaux atteints de la MA. Les peptides Aβ pourraient également activer des gènes pro-apoptotiques comme Bax ou p53 et participer ainsi à la mort neuronale observée lors de la MA. En effet, l’ajout d’un inhibiteur de p53 permet de protéger les neurones hippocampaux de souris contre la mort cellulaire induite par ischémie ou par les peptides Aβ (Culumsee et al. 2001). De plus, l’ajout des peptides Aβ1-42 dans les cellules PC12 provoque une
diminution de la viabilité des cellules et de l’expression de Bcl-2 (facteur anti-apoptotique) et au contraire une augmentation de l’expression de Bax (facteur pro-apoptotique) suggérant un effet pro-apoptotique des peptides Aβ (Yang et al. 2015). D’autres protéines pro-apoptotiques sont également impliquées puisque par exemple, l’ajout des peptides Aβ1-42 dans les cellules PC12 entraîne une augmentation de AIF (Apoptosis-Inducing Factor) et des protéines Sirt 3/4/5 (des déacétylases mitochondriales) puis l’activation des caspases (Cieslik et al. 2015). Les auteurs ont également montré que la mort neuronale induite par les peptides Aβ serait non seulement médiée par p53 mais aussi par une inhibition des Kinases Sphyngosines (SphKs), impliquées dans de nombreux processus cellulaires comme la survie.

Par ailleurs, le fragment AICD obtenu après clivage par la γ-sécrétase ce quel que soit le clivage α ou β sur l’APP, serait également impliqué dans l’induction de l’apoptose puisque l’augmentation de sa production dans différents types cellulaires (cellules HeLa ou cellules de neurogliome humain H4) provoque une mort cellulaire (Passer et al. 2000), (Kinoshita et al. 2002), (Chang & Suh 2010).

Par analogie avec le fragment NICD (Notch IntraCellular Domain) issu du clivage de la protéine Notch, le fragment AICD pourrait se lier à de nombreux co-facteurs impliqués dans la régulation de la transcription tels que Fe65, Tip60 ou encore p53 ce qui provoquerait sa stabilisation et son transfert vers le noyau (Muller et al. 2008), (Kinoshita, Whelan et al. 2002), (Ma et al. 2008). Des publications suggèrent également que le fragment AICD induirait l’apoptose des cellules en activant la GSK3β (Glycogen synthase kinase 3β) (Ryan & Pimphikar 2005), (Kim et al. 2009), (Kim et al. 2003) et p53 (Ozaki et al. 2006), (Nakayama et al. 2008). De plus, des souris exprimant Fe65 et AICD présentent avec l’âge, une dégénérescence neuronale et une hyperphosphorylation de Tau et l’ajout d’un inhibiteur de GSK-3β (lithium) suffirait à restaurer les anomalies comportementales observées dans ces animaux (Ghosal et al. 2009). En revanche, en conditions physiologiques, le fragment sAPPα inhiberait la GSK-3β via l’activation de la voie PI3K/Akt (Jimenez et al. 2011).

Par ailleurs, le fragment AICD pourrait inhiber l’expression du gène anti-apoptotique Apol/clusterin, gène de susceptibilité pour la maladie d’Alzheimer, et stimuler l’apoptose induite par le stress du réticulum (Muller, Meyer et al. 2008), (Kogel et al. 2012a).
Ces effets pro-apoptotiques de certains fragments de l’APP pourraient expliquer, en partie, la mort cellulaire observée dans la maladie d’Alzheimer.

\(f) \quad \textbf{Rôle dans la Signalisation Cellulaire} \)

La protéine APP semble intervenir dans de nombreuses voies de signalisation et en particulier les voies de signalisation impliquées dans la survie, la prolifération ou l’apoptose.

Comme nous l’avons vu précédemment, le fragment sAPPα inhiberait la GSK-3β. Cette inhibition se ferait via son interaction avec les récepteurs à l’insuline et à l’IGF1 (Insulin-like growth factor 1) provoquant ainsi l’activation de la voie PI3K/Akt et l’inhibition de la GSK-3β (Jimenez, Torres et al. 2011). Il a également été montré, dans des cultures de neurones hippocampaux, que le fragment sAPPα activerait la voie PI3K/Akt et la phosphorylation des kinases ERK1 et ERK2 (Cheng et al. 2002). De plus, Venezia V. et al. ont montré que la protéine APP phosphorylée (Tyr 682) ou son fragment C-Terminal, pouvait intégrer avec les protéines adaptatrices Grb2, Abl et Shc (Venezia et al. 2006). Ces différentes interactions permettraient ainsi l’activation de voies de survie telles que la voie ERK ou la voie PI3K/Akt.

Greenberg et al. ont également montré que l’ajout du fragment sAPP dans des cultures de cellules PC12 stimulait les MAP Kinases (mitogen-activated protein kinases) via la voie Ras ce qui provoquerait la phosphorylation de la protéine Tau suggérant un lien entre la phosphorylation de Tau et le fragment sAPP (Greenberg SM 1994 Secreted beta-amyloid precursor protein stimulates mitogen-activated protein kinase and enhances tau phosphorylation). L’activation des MAPK par le fragment sAPP impliquerait la région N-Terminale de l’APP riche en cystéines et nécessiterait également la présence de ponts disulfures (Greenberg et al. 1994).

L’APP agirait également sur la voie c-Jun/JNK (c-Jun N-Termininal Kinase), une des principales voies de signalisation activée lors de stress, dans le vieillissement cérébral et dans différentes maladies neurodégénératives (Bozyczko-Coyne et al. 2002). L’APP et en particulier le fragment sAPPα, permettraient de bloquer l’activation de la voie JNK pour contrecarrer la mort cellulaire induite par différents stress cytotoxiques (Copanaki, Chang et al. 2010), (Kogel et al. 2005). En effet, des cellules PC12 exprimant l’APP
humaine présentent une diminution de l’expression de c-Jun et de son effecteur SPARC (secreted protein acidic cysteine-rich) et une baisse de l’activité basale de la JNK contrairement à l’expression de l’APPswedish (Kogel, Schomburg et al. 2005). Cet effet de l’APP sur la voie JNK a également pu être observé avec l’ajout d’inhibiteurs de la voie JNK.

L’APP interagit donc avec de nombreux acteurs des voies de signalisation impliquées dans les principaux processus cellulaires. Sa modification et/ou l’augmentation de la production des peptides Aβ au détriment de l’APP entière ou du fragment sAPPα pourraient expliquer en partie la mort cellulaire observée dans la maladie d’Alzheimer.

\[g) \quad \textbf{Implication dans la biologie des cellules souches} \]

La protéine APP et ses fragments dérivés ont de nombreuses fonctions à travers les principaux processus cellulaires et il semblerait qu’elle soit aussi impliquée dans la prolifération et la différenciation des cellules et en particulier des cellules souches. En effet, l’APP et ses résidus de clivage sont retrouvés à la fois dans les cellules souches embryonnaires, les corps embryoïdes, les précurseurs neuraux ou encore dans les neurones (Porayette, Gallego et al. 2009). Tous les acteurs des différents clivages de l’APP tels que BACE1, ADAM10, les Présénilines ou encore la Nicastrine, sont exprimés dans ces différents types cellulaires.

\[(1) \quad \text{La prolifération des cellules souches} \]

La protéine APP est exprimée dans les cellules souches embryonnaires et les résidus peptidiques comme les peptides Aβ1-40 et Aβ1-42 y sont produits. La présence de ces peptides diminue lors de la différenciation des cellules souches embryonnaires humaines en précurseurs neuraux suggérant une régulation de la production des Aβ endogènes au cours de l’induction neurale (Porayette, Gallego et al. 2009). L’ajout de fibrilles issues des peptides Aβ1-40 et Aβ1-42 synthétiques, dans des cultures de CSEh pendant 5 jours provoque une augmentation de la prolifération des cellules qui n’est pas retrouvée lors de l’utilisation du peptide inverse Aβ40-1 ou de fibrilles Aβ1-42 de rat.

L’utilisation d’inhibiteurs des β- et γ-sécrétases, provoquant une baisse de la production des peptides Aβ, conduit à une diminution de la prolifération des CSEh qui peut être retrouvée par l’ajout de fibrilles, confirmant leur rôle dans la prolifération. Par contre, l’ajout du fragment sAPPα dans les cultures de CSEh entraîne une importante baisse de la prolifération et une induction de la différenciation en précurseurs neuraux.

Les peptides Aβ semblent être importants pour la prolifération des cellules souches embryonnaires seulement leur présence diminue fortement dans les précurseurs neuraux suggérant peut être un rôle différent dans ce type cellulaire. En effet, un traitement avec différentes concentrations de peptides Aβ1-42 pré-agrégés dans des cultures de neurospores humaines provoque une nette diminution de la prolifération des cellules suggérant un effet inhibiteur des peptides Aβ sur la prolifération des précurseurs neuraux (Haughey et al. 2002).

Néanmoins, dans des neurospores issues de la zone subventriculaire de souris adultes, l’ajout de peptides Aβ sous différents stades d’agrégation et à différentes concentrations a des effets variables sur la prolifération (Heo, Chang et al. 2007). De même, des faibles concentrations de peptides Aβ provoquent une augmentation de la prolifération des neurospores que ce soit sous forme monomérique, fibrillaire ou principalement sous forme oligomérique suggérant un rôle de ces peptides dans la prolifération des cellules souches neurales adultes. Au contraire, des concentrations sub-létales de peptides Aβ dans les 3 formes provoquent elles, une forte diminution de la prolifération et semblent donc neurotoxiques.

Dans les cellules souches neurales humaines, l’ajout d’oligomères Aβ1-42 semble quant à lui inhiber la prolifération (Lee & Baskakov 2013). Par ailleurs, l’ajout de peptides Aβ dans des cultures de cellules souches neurales issues d’hippocampe de souris ou de striatum de rat (Lopez-Toledano & Shelanski 2004) provoquent une augmentation du
nombre de neurones qui n’est pas liée à une augmentation de la prolifération. En effet, le pourcentage de cellules BrdU positives est sensiblement identique que ce soit avec ou sans peptides Aβ, suggérant plutôt un rôle des peptides Aβ dans la différenciation neuronale.

Le fragment sAPPα semble être important pour la prolifération des cellules souches neurales. En effet, l’ajout de la sAPP695, forme sécrétée de l’APP695 humaine produite dans la levure, dans des cultures de cellules souches neurales issues de néocortex de rat provoque une augmentation de la prolifération (Ohsawa *et al.* 1999). De même, l’ajout de formes sécrétées de l’APP, sAPP695 et sAPP770, provoque une augmentation de la prolifération des cellules souches neurales. Cette augmentation est très importante avec le fragment sAPP770 (Hayashi *et al.* 1994). sAPPα semblerait agir en potentialisant l’effet de l’EGF sur la prolifération comme cela a été montré dans le cas des neuroblastes adultes de la zone sub-ventriculaire *in vivo et in vitro* (Caille *et al.* 2004).

Par ailleurs, les souris double transgéniques, pour la protéine mutée APPswe et la protéine normale humaine PSEN1, présentent des dépôts de peptides Aβ dans l’hippocampe et le cortex cérébral (Borchelt *et al.* 1996). La prolifération est diminuée dans des souris transgéniques qui surexprime l’APP (Borchelt, Thinakaran *et al.* 1996) comme l’indique l’expérience consistant à injecter du BrdU, 5 fois par jour, dans ces souris qui montrent une diminution de la prolifération des précurseurs neuraux dans le gyrus denté 1 jour après l’injection tout comme à 12 jours par rapport aux souris contrôles (Haughey, Nath *et al.* 2002).

L’effet de l’APP sur la prolifération des cellules souches est donc variable en fonction du type de cellules souches, de la concentration protéique ou encore du stade d’agrégation.

(2) La différenciation des cellules souches

Dans les cellules souches embryonnaires humaines, les peptides Aβ semblent jouer un rôle dans la prolifération des cellules donc le clivage dit « amyloidogénique » de l’APP serait plutôt favorable à la prolifération (Porayette, Gallego *et al.* 2009).
Les peptides Aβ diminuant au cours de la différenciation des CSEh en prémérisateurs neuraux alors que l’expression de l'ADAM 10 mature augmente, suggérant donc que le clivage « non-amyloïdogenique » de l’APP serait plutôt important pour la différenciation. En effet, des cultures de CSEh traitées avec un inhibiteur de la β-sécrétase présentent une augmentation d’environ 3 fois de l’expression de Nestin (marqueur des prémérisateurs neuraux) corrélée avec une diminution de l’expression d’Oct3/4 (marqueur de pluripotence des CSEh) (Porayette, Gallego et al. 2009).

Néanmoins, le traitement des CSEh avec le fragment sAPPα ne modifie pas l’expression d’Oct3/4, de Nestin, de GFAP (marqueur des astrocytes) ou de l’α-fétotéine (marqueur précoce de l’endoderme) suggérant que malgré son implication dans la différenciation des CSEh, sAPPα n’est pas suffisant pour la différenciation neurale à ce stade précoce (Porayette, Gallego et al. 2009). Au contraire, Freude et al. ont montré que la surexpression de la protéine APP dans les CSEh provoque une différenciation spontanée des cellules avec une diminution de l’expression de marqueurs de pluripotence Oct3/4 et SSEA4 (Freude, Penjwini et al. 2011). La différenciation des CSEh est principalement neurale (augmentation de l’expression de plusieurs marqueurs neuraux tels que Nestin, GFAP, TuJ1) mais aussi les différenciations mésodermique et endodermique dans une moindre mesure. De plus, le traitement des CSEh avec des fragments solubles recombinants, provoque une augmentation dose-dépendante du nombre de cellules Nestin positives dans les deux cas et plus particulièrement avec sAPPβ (Freude, Penjwini et al. 2011). L’ajout de l’anticorps 22C11, qui permet le blocage de l’activité des sAPP, entraîne une inhibition de la différenciation neurale confirmant le rôle des fragments soluble pour l’induction neurale (Freude, Penjwini et al. 2011).

La protéine APP est importante pour la différenciation des CSEh en prémérisateurs neuraux mais semble également jouer un rôle dans la différenciation plus spécialisée et en particulier la différenciation neuronale à partir des NSC.

En effet, l’ajout d’une protéine sAPP695 recombinante dans des cultures de NSC humaines provoque une augmentation dose-dépendante de la migration et de la différenciation cellulaires (Kwak, Brannen et al. 2006). Cet effet de l’APP sur la différenciation des hNSC est inhibé lors de l’ajout de l’anticorps 22C11 dans la culture confirmant l’importance de l’APP pour la différenciation des NSC. Le fragment soluble sAPP à faible concentration favorise à la fois la gliogénèse et la neurogénèse alors que
des concentrations plus élevées favorisent seulement la gliogenèse (Kwak, Brannen et al. 2006).

Par ailleurs, une protéine APP normale dans l'environnement cellulaire semble indispensable pour la différenciation des NSC in vivo puisque la transplantation des hNSC dans le cerveau de souris KO-APP présentent des défauts de migration et de différenciation (Kwak, Brannen et al. 2006) et les souris transgéniques pour la protéine APP (APPswe) présentent elles une diminution de la neurogenèse dans le gyrus denté et dans l'hippocampe (Haughey, Nath et al. 2002).

Le rôle des peptides Aβ est, quant à lui, plutôt controversé. D'une part, l'ajout de peptides Aβ1-42 oligomériques ou agrégés dans des cultures de NSC murines provoquent une augmentation du nombre de neurones (Heo, Chang et al. 2007), (Lopez-Toledano & Shelanski 2004). D'autre part, l'ajout de peptides Aβ1-42 dans des neurosphères humaines provoque une diminution de la migration cellulaire et de la différenciation neuronale puisque le nombre de cellules NeuN positives (marqueur neuronal) diminue avec l'augmentation de la concentration d'Aβ (Haughey, Nath et al. 2002). Enfin, dans des cultures de précurseurs neuraux d'hippocampe de rat, l'ajout de peptides Aβ25-35 ne modifie pas la différenciation des cellules mais interviendrait plutôt sur la viabilité de ces dernières (Eucher et al. 2007).

Le fragment AICD favoriserait quant à lui l'inhibition de la différenciation des cellules. Son association avec la protéine Fe65 lui permettrait d'être transporter dans le noyau et de modifier l'expression de gènes impliqués dans la neurogenèse (Zhou, Chan et al. 2011).

Il reste là encore de nombreuses incertitudes et controverses puisque l'implication de la protéine APP dans la différenciation varie en fonction du type cellulaire, s'il s'agit de la protéine APP entière ou d'un de ces fragments, de sa concentration ou là encore de son niveau d'agrégation.
III. Les interactions entre les protéine PrPc et APP

A. Les points communs

Ces dernières années, outre le fait que les maladies à prions et la maladie d’Alzheimer sont deux protéinopathies caractérisées par l’accumulation de protéines qui agrègent, des dépôts amyloïdes et une mort neuronale, plusieurs publications ont mis en évidence de nombreuses similitudes et interactions entre deux des protéines impliquées dans ces maladies, la PrPc et l’APP. La PrPc et l’APP présentent ainsi des interactions, des voies de signalisation et des processus protéolytiques similaires.

Le clivage par une α-sécrétase des protéines PrPc et APP, notamment par des membres de la famille des ADAM (8, 9, 10, 17 (TACE)) est réalisé de sorte à libérer des peptides non toxiques sAPPα et CTFα pour l’APP et N1 et C1 pour la PrPc. La coupure ayant lieu dans le domaine 106-126 de la PrPc, le fragment N1 ne pourra plus être converti en PrPSc.

Ces deux protéines peuvent également subir un β-clivage qui produit les peptides sAPPβ et βCTF pour l’APP et N2 et C2 pour la PrPc. Pour l’APP, le clivage par la β-sécrétase en βCTF, ensuite clivé par la γ-sécrétase permet la formation des peptides Aβ responsables des plaques amyloïdes. Bien que présent dans des cerveaux normaux, le peptide C2, obtenu à partir de la PrPc, est en revanche abondant dans les cerveaux atteints de Prion où il est d’ailleurs résistant à la protéinase K (Checler & Vincent 2002), (Aguzzi, Sigurdson et al. 2008), (Chen, Teplow et al. 1995). Dans les deux cas, la région amyloïdogénique et toxique est préservée par le clivage en β.

![Figure 49: Schémas des processus protéolytiques communs entre la PrPc et l’APP.](image)

A : Clivages de la PrPc
B : Clivages de l’APP
La présence de PrPc et APP dans les rafts lipidiques semble également jouée un rôle important pour la fonction de ces protéines. Les rafts lipidiques sont des domaines de la membrane plasmique enrichis en cholestérol, glycosphingolipides, sphingomyéline et protéines acylées. Les rafts lipidiques sont caractérisés par leur insolubilité à certains détergents et par leur implication dans de nombreux processus biologiques tels que la signalisation transmembranaire, le trafic intracellulaire... Les rafts lipidiques semblent être un site clé pour le clivage en β puisqu'une perturbation de la structure des rafts lipidiques entraîne une diminution de la production des peptides Aβ. À l'inverse, le remplacement des domaines cytosolique et transmembranaire de BACE par une ancre-GPI (adressant donc BACE dans les rafts), provoque une augmentation de la sécrétion du fragment sAPPβ et des peptides Aβ. De même, la dépletion du cholestérol qui a pour but de perturber les rafts lipidiques provoque une diminution de la formation de la protéine PrPsc suggérant donc un rôle critique des rafts lipidiques pour la conversion de la PrPc en PrPsc.

Les protéines PrPc et APP ont donc non seulement de nombreux points communs mais depuis plusieurs années, des publications ont mis en évidence de réelles interactions et relations entre ces deux protéines. En particulier, deux phénomènes ont été décrits : la protéine PrPc serait un régulateur du clivage de la protéine APP (Parkin et al. 2007), (Pietri et al. 2014), (Pietri et al. 2013) et la PrPc agirait comme un récepteur pour les peptides Aβ à la surface neuronale (Lauren, J. Journal of Alzheimer’s disease 38, 227-244, 2014 ; (Lauren, Gimbel et al. 2009).

B. PrPc : un régulateur du clivage de l’APP

La protéine prion cellulaire serait un régulateur négatif du clivage en β de l’APP permettant ainsi un contrôle de la production des peptides Aβ.
En effet, la transfection du pIRESneo contenant la PrP_C murine et du pIREShyg contenant l’APP695 dans des cellules neuronales SH-SY5Y (triple sous-clonage de la lignée SK-N-SH issue de la biopsie de la moelle épinière d’une patiente atteinte d’un neuroblastome) provoque une nette diminution du fragment sAPPβ et par conséquent des peptides Aβ1-40 et Aβ1-42 mais aucun effet sur le fragment sAPPα (Parkin, Watt et al. 2007). De même, la transfection du pIRESneo contenant la PrP_C murine dans les cellules HEK293 provoque également une diminution de plus de 80% des peptides Aβ1-40 et Aβ1-42 (Griffiths et al. 2011).

En revanche, lorsque la PrP_C est inhibée dans des cellules N2a, HEK293 ou dans des cerveaux de souris KO-PrP, une augmentation du fragment sAPPβ et des peptides Aβ1-40 et Aβ1-42 est observée (Griffiths, Whitehouse et al. 2011), (Parkin, Watt et al. 2007). Par conséquent, la PrP_C participerait à la régulation du clivage de l’APP par la β-sécrétase et donc au contrôle de la production du fragment sAPPβ et des peptides Aβ. Ainsi, des petites modifications de la PrP_C pourrait affecter le processus protéolytique de l’APP, de façon subtile au départ puis de façon plus importante sur le long-terme ce qui pourrait provoquer une accumulation des peptides Aβ et ensuite mener au développement de la maladie d’Alzheimer.

La PrP_C semblerait agir sur le clivage β de l’APP en interagissant directement avec le pro-domaine (résidus 22-45) de BACE1 (β-site APP cleaving enzyme 1) d’une part et en favorisant la localisation de BACE1 dans le réseau trans-golgien au détriment de la surface cellulaire ou des endosomes d’autre part, lieux favorables au clivage de l’APP (Griffiths, Whitehouse et al. 2011).

La PrP_C agirait également sur le processus protéolytique de l’APP via son action sur la protéine Dab1 puisqu’il a été montré que cette dernière interagirait avec le domaine C-Terminal YENPTY de l’APP (Trommsdorff et al. 1998). Dab1 (mouse disabled 1) est une protéine adaptatrice qui peut être phosphorylée par des membres de la famille des tyrosines kinases Src (SFK). Elle participerait à la régulation du trafic intracellulaire et au processus protéolytique de l’APP. L’exposition de cultures primaires de neurones murins au fragment (106-126) de la protéine PrP_C humaine provoque une phosphorylation plus importante de Dab1 favorisant ainsi sa dégradation (Gavin et al. 2008). Les auteurs ont également observé une diminution de l’activité de BACE1 et donc des taux de fragments sAPPβ et des peptides Aβ. Ces effets ont également été observés
lors de l’absence de Dab1 dans des souris transgéniques Dab1−/−. La PrPC régulerait ainsi le clivage en β de l’APP en favorisant la dégradation de Dab1 et en maintenant la protéine APP à l’intérieur de la cellule.

Dans les maladies à prions, la conversion de la PrPC en PrPSc semble au contraire favoriser la production des peptides Aβ. En effet, des souris infectées avec les souches de prions 79A et 87V présentent une augmentation des peptides Aβ1-40 et Aβ1-42 (Parkin, Watt et al. 2007). De plus, des cellules 1C11 infectées par les souches de prions 22L ou Fukuoka présentent une augmentation de la phosphorylation et l’internalisation de TACE (Tumor necrosis factor αconverting enzyme) médiée par la protéine PDK1 (3-phosphoinositide-dependent kinase 1). La présence de TACE à la surface cellulaire est réduite ce qui diminuerait le clivage en α de l’APP et de la PrP et participerait ainsi à l’augmentation des peptides Aβ (Pietri, Dakowski et al. 2013).

Par ailleurs, la conversion de la PrPC en PrPSc provoquerait aussi une diminution de l’activité de la métalloprotéase MMP-9 (Pradines et al. 2013). Comme la MMP-9 semble contribuer à l’augmentation de la production des sAPPα (Fragkouli et al. 2012) et qu’elle semble participer à la dégradation des peptides Aβ (De Strooper 2010), son inhibition favoriserait ainsi la production et l’accumulation des peptides Aβ (Hernandez-Rapp et al. 2014).

Même si l’hypothèse d’une régulation du clivage de l’APP par la PrPC est bien admise au sein de la communauté scientifique, le rôle de la PrPC sur BACE1 reste controversé. En effet, McHugh et al. n’ont pu mettre en évidence d’interaction directe entre la PrPC et BACE1 lors d’expériences d’immunopräcipitation sur des homogénats de cerveaux de souris Wt ou surexprimant la PrPC (Tg20) (McHugh et al. 2012). Cependant, la surexpression de la PrPC murine dans les cellules N2a ou SH-SY5Y provoque une diminution de l’activité de BACE1 confirmant les observations des précédentes publications. Les auteurs ont également montré que la surexpression de la PrPC dans les cellules N2a provoque une augmentation du fragment AICD donc du clivage de l’APP. Comme le fragment AICD est produit quelle que soit la nature du processus protéolytique de l’APP, cette observation ne permet pas de conclure sur l’implication de la PrPC sur l’un ou l’autre des clivages.
C. PrPc : un récepteur pour les peptides Aβ

En plus d’un rôle de régulateur du clivage de l’APP, la PrPc pourrait également être un récepteur pour les oligomères Aβ à la surface neuronale.
Il a d’abord été montré que les oligomères Aβ1-42 sont capables de se lier à des neurones hippocampaux de rats et aux cellules COS-7 (lignée de cellules rénales de singe) exprimant la PrPc (Lauren, Gimbel et al. 2009). L’interaction entre la PrPc et les peptides Aβ serait directe mais la PrPc ne serait pas la seule protéine à la surface capable de lier les peptides Aβ puisque le nombre de liaison diminue seulement de moitié dans des cultures de neurones issus de souris Prnp−/−. De plus, l’utilisation de différentes délétions dans la protéine PrPc a permis de montrer que la région acides aminés 95-105 serait impliquée dans la liaison de la PrPc avec les oligomères Aβ. Cette observation a ensuite été confirmée avec l’utilisation de l’anticorps 6D11 (spécifique de la région acides aminés 93-109) qui provoque un blocage de la liaison.
D’autres équipes ont également confirmé l’interaction de la protéine PrPc avec les oligomères Aβ participant ainsi à la toxicité induite par ces derniers lors de la MA (Freir et al. 2011), (You, Tsutsui et al. 2012), (Chen et al. 2010). Par ailleurs, la liaison des oligomère Aβ à la PrPc des neurones post-synaptiques permettrait l’activation de la kinase Fyn et la phosphorylation des récepteurs NMDA provoquant ainsi des perturbations des fonctions synaptiques (Um et al. 2012). Ce complexe PrPc-Fyn participerait également à la phosphorylation de Tau puisque l’utilisation de l’anticorps 6D11 qui inhibe la liaison des oligomères à la PrP empêcherait l’activation de Fyn et l’hyperphosphorylation de Tau (Larson et al. 2012). De plus, la protéine PrPc participerait également au désassemblage des fibrilles d’Aβ mais la conséquence de cette activité est encore discutée puisque d’une part cela favoriserait la génération d’oligomères Aβ, suggérant un rôle de la PrPc dans la toxicité des Aβ (Younan et al. 2013), et d’autre part, le fragment soluble N1 de la PrPc inhiberait la fibrillogenèse des peptides Aβ1-42 suggérant plutôt un rôle protecteur de la PrPc contre la toxicité induite par les Aβ (Nieznanski et al. 2012), (Guillot-Sestier et al. 2012).

La PrPc semblerait également participer aux effets néfastes des oligomères Aβ notamment en ce qui concerne les altérations des LTP. En effet, il est connu que l’ajout d’oligomères Aβ solubles dans le cerveau de rat ou dans des coupes de cerveaux de

L’équipe de Strittmatter a ensuite utilisé le croisement des souris double-transgéniques APPswe et PSen1ΔE9 avec des souris transgéniques Prnp−/− pour examiner la participation de la PrPc dans les phénotypes de la MA (Gimbel et al. 2010). Ils ont ainsi montré que l’absence de la PrPc ne provoque pas d’altérations supplémentaires du métabolisme de la protéine APP dans ce modèle de souris MA. En revanche, son absence permet d’éviter les déficits synaptiques, d’apprentissage et de mémoire observés dans les souris APPswe et PSen1ΔE9 et également d’améliorer la survie des animaux suggérant un rôle de la PrPc dans les déficits cognitifs observés lors de la pathologie.

Cependant, d’autres auteurs ne retrouvent pas l’implication de la PrPc dans ces phénomènes. En effet, Kessels HW et al. n’ont pas réussi à reproduire les résultats de Laurén J. à savoir l’effet de la PrPc pour médier les défauts synaptiques induits par les oligomères Aβ1-42 (Kessels et al. 2010). L’équipe de Rial et al., a également mis en évidence que la surexpression de la PrP dans les souris transgéniques Tg20 permettait de prévenir les déficits d’apprentissage et de mémoire ainsi que la mort neuronales induits par l’injection de peptides Aβ1-40 (Rial et al. 2012). De plus, dans un modèle expérimental où les oligomères Aβ1-42 induisent des déficits de mémoire significatifs seulement dans les quelques jours après le traitement et ce de manière réversible puisqu’ils disparaissent avec le temps, les oligomères Aβ seraient bien responsables des déficits cognitifs observés dans la maladie d’Alzheimer mais indépendamment de l’expression de la PrPc (Balducci et al. 2010).

La protéine APP semblerait à son tour jouer un rôle régulateur sur la PrPc en modulant son expression. En particulier, le fragment AICD obtenu après le clivage de l’APP par la γ-sécrétase, se lierait à Tip60 et Fe65, ce qui permettrait sa translocation dans le noyau (Zhou, Chan et al. 2011), (Cao & Sudhof 2001) et pourrait ainsi agir comme un régulateur de l’expression de nombreux gènes (Muller, Meyer et al. 2008) et favoriserait
notamment la transcription de la PrP^C (Vincent et al. 2009) et de p53 (Alves da Costa et al. 2006). Ainsi, p53 pourrait être l’intermédiaire dans la régulation de la PrP^C par le fragment AICD puisque le promoteur de la PrP possèderait un site de liaison potentiel à p53 (el-Deiry et al. 1992). En effet, la déplétion de p53 dans des cultures de MEF provoque une diminution des taux d’ARNm et de protéine PrP^C mais cet effet sur la PrP^C peut être restauré par la transfection de p53.

Les principales interactions entre les protéines PrP^C et APP sont résumées dans le schéma suivant, d’après (Kellett & Hooper 2009).

En condition physiologique :
- Les Taux de peptides Aβ sont gardés à des valeurs standards grâce à :
 - L’inhibition de BACE1 par la PrP^C
 - Une régulation des Taux de PrP^e par le fragment AICD

En condition pathologique (Maladie Alzheimer) :
- Haute des Taux d’Aβ : augmentation de la production et/ou diminution de la dégradation
 - Augmentation des oligomères Aβ qui deviendraient toxiques via leur interaction avec la PrP^e
 - La PrP^e ne pourrait plus réguler BACE1 entrainant une hausse du clivage de l’APP et ainsi :
 - Une augmentation des peptides Aβ qui pourraient s’agréger et se lier à la PrP^e
 - Une augmentation du fragment AICD qui via p53 provoquerait une augmentation de la transcription de la PrP^e et ainsi son recrutement par les oligomères Aβ
IV. Les Cellules Souches

Les cellules souches sont des cellules indifférenciées retrouvées chez l’embryon, le fœtus ou l’adulte et qui possèdent deux propriétés essentielles : la capacité d’auto-renouvellement et de différenciation en un ou de multiples types cellulaires selon leur nature. Ces caractéristiques les rendent attractives pour de nombreux domaines de recherche comme le vieillissement, la thérapie cellulaire, les maladies génétiques...

En particulier, les cellules souches embryonnaires (ESC), en raison de leur capacité à se différencier dans tous les différents tissus de l’organisme, peuvent être utilisées pour la réparation de tissus ou d’organes, pour l’étude des phénomènes physiologiques lors du développement ou dans une pathologie donnée ou encore le screening de nouvelles drogues thérapeutiques.

De manière plus spécifique, les cellules souches pluripotentes induites issues d’individus porteurs de maladies peu communes pourraient être utilisées pour étudier la physiologie de la pathologie et les traitements potentiels. Toutes ces applications diverses et variées attribuées aux cellules souches font d’elles un modèle plus que prometteur en recherches fondamentale et clinique.

A. Les cellules souches

1. Historique

Le concept de cellules souches n’est pas récent et a d’abord été décrit dans les domaines de l’hématologie et de l’oncologie. En effet, LA Ranvier évoquait en 1875 la notion d’une cellule « initiale » commune à toutes les lignées de l’organisme lors de l’étude du développement embryonnaire de poulet. C’est ensuite A. Maksimov qui proposa le terme de cellules souches en 1908 (Kumar et al. 2010). Il faut ensuite attendre les années 1960 pour avoir la preuve de l’existence de cellules souches dans la moelle osseuse de souris (Becker et al. 1963), (Siminovitch et al. 1963) et 1978 pour la découverte des cellules souches hématopoïétiques dans le sang de cordon.

Des lors, les avancées dans le domaine se sont révélées plus importantes puisque la première lignée de cellules de carcinome embryonnaires murines à été dérivée en 1964.
(Kleinsmith & Pierce 1964). Les auteurs ont notamment découvert qu'une seule de ces cellules était capable de produire des nouvelles cellules embryonnaires mais aussi des cellules différenciées. Ces cellules embryonnaires se sont révélées par la suite très similaires des cellules pluripotentes de la masse cellulaire interne (MCI) et ont longtemps été utilisées comme modèle pour l'étude du développement embryonnaire (Jacob 1978), (Martin 1980). La première lignée de cellules souches embryonnaires dérivée de la MCI d'un blastocyste murin a été dérivée par MJ Evans ce qui lui a valu de recevoir le prix Nobel de Médecine en 2007 (Martin 1981), (Evans & Kaufman 1981). JA. Thomson a ensuite décrit la dérivation de ESC de primate non-humain puis de ESC humaines permettant à son auteur d'obtenir la récompense de McEwen en 2013 (Thomson et al. 1995), (Thomson et al. 1998). De nombreux progrès ont ensuite été réalisés dans le développement des méthodes de culture des ESC comme la composition du milieu de culture, l'utilisation d'un tapis nourricier ou d'une matrice... Les ESC ont été très utilisées en recherche et le sont encore mais leur utilisation, pour les CSEh, est très encadrée et la découverte des cellules souches pluripotentes induites tend à faire pencher la balance en leur faveur mais ne peuvent, selon les études, pas forcément les remplacer.
2. Propriétés

L'auto-renouvellement désigne la capacité d'une cellule à se diviser et à produire des cellules identiques à elle-même, on parle alors de division symétrique puisque les deux cellules dites «filles» sont identiques à la cellule «mère» avec les mêmes caractéristiques.

La différenciation représente la possibilité de la cellule à se différencier dans une multitude de cellules spécialisées pour une ou plusieurs fonctions de l'organisme. La différenciation des cellules souches est dépendante des signaux environnementaux et permet l'obtention d'une cellule fonctionnelle selon des conditions précises.

![Figure 51 : Représentation schématique des propriétés spécifiques des cellules souches.](image)

3. Classification

Lors de leur différenciation, les cellules souches se spécialisent de plus en plus et peuvent ainsi être classées selon leur potentiel de différenciation. On distingue ainsi les cellules souches totipotentes, pluripotentes, multipotentes et unipotentes.
Les **Cellules Souches Totipotentes**
Elles peuvent produire toutes les lignées cellulaires et permettent ainsi le développement d'un individu complet. Les cellules souches totipotentes sont donc capables de se différencier dans l'ensemble des tissus embryonnaires et extra-embryonnaires (placenta, cordon). Les cellules de l'embryon, issues du stade zygote ou stade 8 cellules, sont des cellules souches totipotentes.

Figure 52: Classification des cellules souches selon leur potentiel de différenciation. D'après http://www.etiskraad.dk/etiske-temaer/stamceller/undervisning-til-gymnasieskolen/stamceller/sygdomsbehandling.

Figure 53 : Représentation des premières étapes du développement d'un embryo avec la présence des cellules souches totipotentes lors des premières divisions. D'après http://biologiedelapeau.fr/spip.php?article60.
Les Cellules Souches Pluripotentes
Elles peuvent produire toutes les cellules des tissus de l’organisme hormis les annexes embryonnaires et ne permettent plus de donner un individu entier. Les cellules souches pluripotentes sont issues des cellules souches totipotentes et sont capables de se différencier dans les trois feuillets embryonnaires : mésoderme, endoderme et ectoderme, à l’origine de tous les tissus humains adultes. Les cellules souches pluripotentes proviennent de la masse cellulaire interne du blastocyste (6ème et 7ème jour).

Figure 54 : Représentation des premières étapes du développement d’un embryon avec la présence des cellules souches pluripotentes du stade Morula au stade Blastocyste. D’après http://biologiedelauple.fr/spip.php?article60.

Figure 55: Représentation des possibilités de différenciation des cellules souches pluripotentes vers les trois feuillets embryonnaires donnant toutes les cellules des tissus de l’organisme.
Les Cellules Souches Multipotentes
Elles peuvent produire les différentes cellules d’un tissu ou d’un feuillet donné par rapport à leur localisation. En effet, les cellules souches hématopoïétiques multipotentes par exemple, peuvent se différencier dans différentes cellules (globules rouges, plaquettes, lymphocytes...) mais ne peuvent pas se différencier en cellules neurales. Les cellules souches multipotentes ont donc une capacité de différenciation limitée mais ont conservé leur capacité d’auto-renouvellement. Elles sont présentes au cours du développement et dans tout l’organisme adulte.

Figure 56 : Représentation des possibilités de différenciation des cellules souches multipotentes.

A : La capacité de différenciation est restreinte au feuillet ou au tissu dans lequel les cellules sont localisées.

B : Différenciation des cellules souches hématopoïétiques à partir de la moelle épinière.

Les Cellules Souches unipotentes
Elles se différencient dans un seul type cellulaire mais sont toujours capables de s’auto-renouveler (myoblastes, kératinocytes, neuroblastes...). Elles sont présentes dans les tissus adultes et fœtaux mais restent toutefois peu nombreuses.
Figure 57 : Représentation de la possibilité de différenciation restreinte des cellules souches unipotentes. Exemple des neuroblastes.

Les cellules souches peuvent également être distinguées selon leur origine. On distingue notamment :
 - les cellules souches embryonnaires (ESC)
 - les cellules souches fœtales
 - les cellules souches adultes
 - les cellules souches de sang de cordon
 - les cellules souches pluripotentes induites (iPSC).

Les cellules souches embryonnaires
Les cellules souches embryonnaires (ESC) sont des cellules pluripotentes obtenues à partir de la MCI du blastocyste issu de l’ovocyte fécondé et qui peuvent donner un individu entier. Chez l’homme, elles proviennent d’embryons surnuméraires issus de fécondation in vitro (FIV) et ne faisant plus l’objet d’un projet parental. Les ESC sont capables de se différencier dans tous les types cellulaires et présentent une prolifération infinie en culture, propriétés vraiment intéressantes pour la recherche et la clinique.

Les cellules souches fœtales
Ce sont des cellules multipotentes, obtenues à partir d’un fœtus généralement issus d’une interruption volontaire de grossesse (IVG). À ce stade du développement, les cellules ne sont plus embryonnaires et sont dites multipotentes puisque déjà en partie orientée vers un tissu particulier.
Les **cellules souches du sang de cordon**

Après la naissance, le sang de cordon omblical peut être utilisé pour récupérer des cellules souches hématopoïétiques à l’origine de toutes les cellules impliquées dans l’hématopoïèse permettant la formation des cellules lymphoïdes progénitrices et des cellules myéloïdes progénitrices.

Les **cellules souches adultes**

Ce sont des cellules maintenues indifférenciées, présentes dans les tissus et organes de l’enfant et de l’adulte (moelle osseuse, cœur, cerveau, peau...). Les cellules souches adultes participent au renouvellement constant des cellules des tissus de l’organisme et représentent ainsi un réservoir de cellules souches pour la réparation des tissus endommagés. La plupart des cellules souches adultes sont multipotentes et sont nommées selon leurs tissus d’origine comme par exemple les cellules souches mésenchymateuses, les cellules souches épidermiques, les cellules souches neurales adultes...

Par ailleurs, les cellules souches adultes peuvent être intéressantes pour la médecine régénétratrice dans le cas de greffes autologues puisqu’elles sont ainsi moins tumorigéniques et moins immunogènes pour le patient et posent également moins de problèmes bioéthiques. Elles sont cependant pour certaines, très difficile à obtenir.

Les **cellules souches pluripotentes induites** (iPSC)

Elles sont issues de la reprogrammation de cellules différenciées (en général des fibroblastes, des kératinocytes et récemment des PBMC (peripheral blood mononuclear cells) grâce à l’expression d’un cocktail de gènes. Les cocktails les plus utilisés sont les suivants:

- Sox2, KLF4, Oct3/4 et c-myc (Takahashi et al. 2007)
- Oct4, Sox2, Nanog et Lin28 (Yu et al. 2007)

Forcer ainsi l’expression de gènes de pluripotence pousse les cellules à retrouver leur capacité d’auto-renouvellement et de différenciation de façon identique aux cellules souches embryonnaires. La découverte des iPSC a ouvert de nouvelles perspectives pour la recherche et la clinique puisqu’elles permettent de s’affranchir des contraintes éthiques et d’obtention des cellules souches embryonnaires, humaines notamment. Elles représentent également la possibilité d’obtenir un modèle d’étude des différentes
pathologies et même d’envisager la création de thérapies ciblées selon l’origine de la maladie (génétique, sporadique, infectieuse...).

B. Les cellules souches embryonnaires humaines (CSEh)

1. **Dérivation et culture**

Pour obtenir des lignées de CSEh, il faut des conditions de culture permettant de maintenir la pluripotence des cellules alors que cet état est transitoire lors du développement embryonnaire (Evans & Kaufman 1981), (Martin 1981). Les premiers protocoles de dérivation des CSEh se sont inspirés de ceux utilisés pour les ESC de souris (Thomson, Itskovitz-Eldor et al. 1998).

Le principe de la dérivation consiste à prélever la MCI d’un blastocyste et de la mettre en culture. Pour cela, il est d’abord nécessaire d’éliminer la zone pellucide entourant l’embryon, généralement grâce à un traitement enzymatique. Ensuite, le trophectoderme est séparé de la MCI qui, ainsi isolée, peut être mise en culture sur des cellules nourricières dans un milieu contenant du sésrum et des facteurs de croissance. Ce sont en général des fibroblastes embryonnaires murins (MEF) ou humains (HEF) dont la croissance a été inactivée par une irradiation ou un traitement à la Mitomycine C afin d’empêcher leur prolifération tout en préservant leur activité sécrétrice. Les cellules de la MCI vont ensuite proliférer et après quelques jours, des colonies vont émerger. Ces colonies sont ensuite repiquées sur un nouveau tapis nourricier permettant ainsi l’établissement d’une nouvelle lignée de CSEh qui pourra être amplifiée sur de nombreux passages (>100) tout en maintenant un phénotype et un caryotype stable (Fluckiger et al. 2003), (Amit et al. 2000).

Les conditions de culture ont ensuite évoluées afin de s’affranchir de tout composant d’origine animale. En effet, des protocoles utilisent d’autres tapis nourriciers tels que des cellules souches mésenchymateuses ou des kératinocytes humains (Peiffer et al. 2008), (Amit et al. 2003) ou au contraire des matrices permettant de s’affranchir d’un tapis nourricier (laminine, fibronectine, matrigel, geltrex...) ou encore l’utilisation de sésrum de synthèse.
Figure 58 : Méthode de Dérivation des CSEh. Les lignées de CSEh sont établies à partir d’embryons surnuméraires issus de FIV qui ne font plus l’objet d’un projet parental. Au stade de développement précoce « blastocyste », la MCI est prélevée et mise en culture sur une couche de cellules nourricières. D’après http://stemcells.nih.gov/info/scireport/pages/appendixC.aspx (© 2001 Terese Winslow, Caitlin Duckwall).

Figure 59 : Photographie en contraste de phase d’une colonie de CSEh H9.
2. Propriétés

a) Auto-renouvellement

Les CSEh sont capables de s’auto-renouveler et peuvent donc être cultivées « à l’infini » grâce à des conditions de culture maîtrisées qui favorisent un maintien d’un phénotype et d’un caryotype normal. De plus, l’ajout de bFGF (basic Fibroblast Growth Factor) dans la culture permet également de favoriser le maintien des cellules en prolifération et d’empêcher leur entrée en différenciation. Par ailleurs, les CSEh possèdent une phase G1 du cycle cellulaire très courte ce qui leur permet une entrée en division plus rapide et par conséquent une multiplication accélérée.

Figure 60 : Représentation schématique de l’auto-renouvellement des CSEh.

b) Pluripotence

Les CSEh appartiennent au groupe des cellules souches pluripotentes. Elles ont donc la capacité de se différencier dans les 3 feuillets embryonnaires et ainsi permettre l’obtention de cellules de plus en plus spécialisées.
Figure 61 : Représentation schématique de la pluripotence des CSEh.

c) Tératomes

Lorsqu’on injecte des cellules souches embryonnaires humaines (environ 1 million de cellules) en sous-cutané ou dans les testicules, dans des souris immunodéficientes, il se forme en quelques semaines un tératome permettant ainsi de vérifier la capacité de pluripotence des cellules (Lensch et al. 2007), (Muller et al. 2010). Les tératomes observés chez l’Homme, sont des tumeurs bénignes composées de cellules retrouvées dans les trois feuillets embryonnaires. Les tératomes obtenus chez les souris immunodéficientes ressemblent à ceux observés chez l’Homme mais semblent moins matures du fait de la courte période de formation en comparaison des années nécessaires pour leur formation chez l’Homme.

d) Corps Embryoïdes

La formation de corps embryoïdes (EB) in vitro, permet également de vérifier la pluripotence des CSEh. En effet, les EB sont des sphères constituées de cellules contribuant aux trois feuillets embryonnaires (Martin & Evans 1975). La méthode la plus utilisée pour obtenir des EB consiste à placer les CSEh en suspension dans le milieu pour CSE mais sans facteur de croissance bFGF. Cette méthode préconise également l’utilisation d’une boîte de culture à faible attachement et l’absence de matrice nourricière. En un temps limité (quelques heures à quelques jours), les CSEh s’agrègent
puis forment des EB qui peuvent ensuite être analysés par différentes techniques afin de vérifier que les cellules se sont bien engagées dans les trois feuillots embryonnaires.

\textbf{e) Les marqueurs caractéristiques des CSEh}

1) Les marqueurs de pluripotence

2) Les marqueurs de surface

3) Les marqueurs intracellulaires

Plusieurs marqueurs intracellulaires sont également utilisés pour vérifier le statut des CSEh (Tondeur, Assou \textit{et al.} 2008). Ce sont principalement des composants cellulaires comme :

- des facteurs de transcription : FoxD3 (Forkhead box D3) ou Rex1 (RNA exonuclease 1)
- des facteurs de croissance : FGF4 (fibroblast growth factor)
- des témoins de l’activité télomérasique : TRF1 ou TFR2 (telomeric repeat binding factor)

C. Les Cellules Souches Neurales (NSC)

Dans le cadre de mon projet de thèse, je me suis focalisée sur l’induction neurale, dans le feuillet ectodermique, des cellules souches embryonnaires humaines permettant l’obtention des cellules souches neurales puis de cellules plus spécialisées : Neurones, Astrocytes et Oligodendrocytes.

![Cellulles Souches Neurales (NSC)](image)

Figure 62 : Représentation schématique de la différenciation des CSEh en NSC puis en cellules spécialisées : Neurone, Astrocyte et Oligodendrocyte myélinisant.

Les cellules souches neurales sont obtenues lors de l’induction neurale des cellules souches embryonnaires. La majorité des protocoles d’induction neurale ont été mis au point sur les cellules souches embryonnaires de souris puis au fil des années ils ont été adaptés aux ESC humaines.

Il existe donc de nombreuses variations au sein de ces protocoles selon si les cellules sont :
- induites et cultivées en co-culture: par exemple avec des cellules stromales MS5, S2 (Perrier et al. 2004) ou PA6 (Kawasaki et al. 2000).
- induites et cultivées en monocouche (Ying et al. 2003).
- induites et cultivées en suspension: par la formation de corps embryoides ou de neurosphères (Lee et al. 2000), (Benninger, Marino et al. 2000), (Nat et al. 2007).

Les milieux d’induction neurale sont également variés (Carpenter et al. 2001), (Wiles & Johansson 1999), (Li et al. 1998), (Conti et al. 2005), (Nat, Nilbratt et al. 2007):
- Milieu de culture des ESC avec acide rétinoïque
- Milieu N2
- Milieux N2 et Neurobasal avec suppléments neuralisant tels que le B27 ou le G5 avec des variations de concentration et de dosage en fonction des laboratoires, des fournisseurs
- Milieu avec inhibition de la voie TGF, de la voie Smad, de la Noggin...
- La présence du facteur bFGF

Après plusieurs jours d’induction, les cellules neuroépithéliales ainsi induites sont ensuite placées en condition adhérante sur différents supports (gélatine, polyornithine laminine, fibronectine, matrigel...) pour former des rosettes puis des cellules souches neurales. À ce stade, les cellules peuvent être maintenues et amplifiées dans un milieu N2 avec facteurs de croissance bFGF et EGF qui semblent importants pour le maintien du caractère multipotent des NSC (Axell et al. 2009), (Conti, Pollard et al. 2005).

Au fur et à mesure de l’induction, l’expression des gènes de pluri potent comme Oct4 ou Nanog va diminuer pour finalement s’éteindre et l’expression des gènes caractéristiques des NSC vont eux augmenter : notamment Nestin et Pax6. Ensuite, la modification du milieu de culture des NSC comme par exemple avec le retrait des facteurs de croissance permet la différenciation des cellules souches neurales en neurones et astrocytes alors que l’ajout de différents facteurs (BMP4, BDNF, sérum, B27…) permet d’orienter la différenciation vers l’une ou l’autre des cellules spécialisées et également d’obtenir en culture des neurones particuliers tels que les neurones dopaminergiques, les motoneurones, les neurones gabaergiques voire la corticogenèse entière (Ding & Schultz 2004), (Barberi et al. 2003), (Chambers et al. 2009); (Perrier, Tabar et al. 2004), (Espuny-Camacho et al. 2013).
Objectifs de la thèse

Concernant l’APP, tout comme la PrPc, elle agirait lors de la prolifération et de la différenciation de différentes cellules souches : NSC, CSEh, mESC. En effet, l’ajout de peptides Aβ fibrillaires dans des cultures de CSEh augmente leur prolifération alors que ces derniers diminuent lors de la différenciation (Porayette, Gallego et al. 2009). De plus, l’ajout d’une APP recombinante sur des NSC humaines entraîne une différenciation dose-dépendante (Kwak, Brannen et al. 2006) et la surexpression de l’APP dans des cultures de CSEh entraîne elle, une différenciation neuronale accélérée (Freude, Penjwini et al. 2011).

Si la PrP et l’APP partagent des fonctions communes, plusieurs publications montrent que la PrPc régule négativement le clivage de l’APP en Aβ (Parkin, Watt et al. 2007) et

Dans ce contexte, mon objectif de thèse visait à comprendre le rôle de la PrP, de l’APP et leurs interactions dans la biologie des cellules souches embryonnaires humaines et des cellules souches neurales. En effet, une meilleure compréhension des interactions PrP et APP apparaît désormais indispensable pour pouvoir démanteler les mécanismes physiopathologiques moléculaires de la maladie d’Alzheimer.

La première partie de ce projet de thèse repose sur l’établissement d’un référentiel d’expression des protéines PrP, APP et ses produits clivage au cours de l’induction neurale des cellules souches embryonnaires humaines en cellules souches neurales puis de la différenciation de ces cellules souches neurales en neurones, astrocytes ou un mix des deux populations.

La deuxième partie de ce projet consiste en la modulation de l’expression de la protéine PrPc (inhibition ou surexpression) pour en déterminer l’impact sur la prolifération et la différenciation des cellules souches embryonnaires et neurales et également d’étudier l’impact d’une telle modulation sur l’expression et le clivage de la protéine APP.
Figure 63 : Représentation schématique des objectifs de la thèse.
Etude du rôle des protéines PrPc et APP dans la Biologie des Cellules Souches et étude des interactions entre ces deux protéines.
Préambule
Le projet de thèse vise à comprendre le rôle de la PrP et en particulier l’impact de son expression sur l’APP et ses dérivés lors de l’induction neurale de cellules souches embryonnaires (CSEh) en cellules souches neurales (hNSC) et dans la biologie des hNSC obtenues à partir des CSEh (prolifération, différenciation neuronale, survie).
Avant toute chose, il est important de rappeler qu’il y a eu un certain nombre d’étapes de mise au point et d’optimisations afin de pouvoir mener à bien le projet. C’est pourquoi j’ai choisi de ne pas faire une partie matériel et méthode séparée et de présenter la méthode (en italique) au fur et à mesure dans la partie résultats car une grande partie des résultats concerne cette mise au point.
De même, pour une meilleure compréhension du déroulement de la thèse j’ai choisi de présenter en préambule une description globale de la démarche expérimentale qui permet de comprendre les choix, les difficultés, les contraintes expérimentales rencontrées et les réorientations réalisées au cours de ma thèse (Figure 64).

Méthode

1. **Induction : hESC → NSC**

![Diagramme d’induction hESC → NSC](image)

2. **Différenciation : NSC → enrichissement en Neurones**

Astrocytes

Neurones et Astrocytes

![Diagramme de différenciation NSC → enrichissement en Neurones](image)

Figure 64 : Représentation de la démarche expérimentale suivie pendant ma thèse.
Induction neurale des CSEh en NSC

Pour ce projet nous avons utilisé les lignées de CSEh H1 et H9 pour lesquelles le laboratoire dispose d’une autorisation de l’Agence de la Biomédecine (depuis 2005).

Pour l’induction neurale, nous avons testé deux protocoles celui de Y. Benninger (Benninger, Marino et al. 2000) qui est un protocole initialement décrit sur des CSE de souris et qui permet en 8 jours d’obtenir des NSC. Il avait déjà été testé au laboratoire et avait permis d’obtenir des NSC à partir des CSE de souris et à partir de CSEh. Dans ce protocole, le milieu d’induction conduit à la formation de neurosphères en suspension puis des figures de « rosettes » constituées de NSC. Si chez la souris l’induction est courte (8 jours) elle semble plus longue pour les cellules humaines c’est pourquoi nous l’avons testé sur 30 jours.

Le second protocole, celui de P. Vanderhaeghen (Espinuy-Camacho, Michelsen et al. 2013) a été établi pour mimer la corticogenèse. Dans ce protocole, les cellules restent en monocouche et il faut compter environ 72 jours pour obtenir des neurones corticaux. Ce sont les étapes précoces de ce protocole qui nous intéressent puisqu’il passe par un stade où la culture est enrichie en NSC entre 13 et 30 jours d’induction/différenciation. Les tests et optimisations d’induction ont donc été effectués sur 30 jours au cours desquels 6-7 points de cinétique ont été réalisés pour des analyses (4-6-12-15-18-24-30) afin de déterminer le moment où la culture est la plus riche en NSC et pouvoir les isoler et les amplifier pour la seconde partie du projet concernant les hNSC et leur différenciation neuronale.

Une optimisation de ces protocoles a ainsi été nécessaire (densité de départ, méthodes de fixation des cellules pour améliorer la détection de la PrP et de l’APP) ainsi que la détermination des conditions d’analyse de l’expression de la PrP, de l’APP et ses résidus clivés (Aβ, sAPPα/β) nécessitant la récolte du surnageant de culture (pour détecter les peptides sécrétées en ELISA Multiplexe), des lysats cellulaires (pour les détections des protéines par WB ou ELISA), l’extraction des ARN. Les NSC ont été caractérisées par immunofluorescence ou RT-qPCR afin de vérifier l’expression de marqueurs de NSC (Nestin, Sox1...) et la disparition des marqueurs des CSEh (Oct4, Nanog).
Le protocole de P. Vanderhaeghen s'est avéré plus difficile à reproduire dans nos mains et nous avons opté pour poursuivre l'étude de l'induction neurale selon le protocole de Y. Benninger.

En parallèle, des mises au point de transductions lentivirales ont là encore été réalisées sur les CSEh afin de trouver les conditions optimales : densité cellulaire, taille des supports d'ensemencement ou MOI de lentivirus afin d'avoir une transduction efficace tout en limitant la cytotoxicité. Ces étapes constituaient un prérequis pour pouvoir par la suite obtenir des cellules dans lesquelles la PrP serait surexprimée ou inhibée et évaluer l'impact de ces modulations sur l'induction des CSEh en hNSC et sur les résidus de clivage de l'APP.

Différenciations à partir des hNSC

Différentes lignées de hNSC obtenues selon les 2 protocoles d'induction neurale (Benninger, Marino et al. 2000) (Espin-Camacho, Michelsen et al. 2013) ont été amplifiées puis différenciées en neurones et/ou astrocytes. Les cellules ont été caractérisées notamment par immunofluorescence et RT-qPCR pour l'expression des principaux marqueurs astrocytaires (GFAP) et neuronaux (βIII-tubuline, Doublecortine, Synaptophysine) et la disparition progressive des marqueurs de NSC. Là encore nous avons établi des conditions précises, de densité cellulaire ainsi que les points des analyses cinétiques de nos différents paramètres (expression de la PrP, quantité minimale de cellules pour effectuer des analyses en qPCR, ELISA et IF), tout au long de la différenciation. Nous avons également pu suivre l'évolution des peptides dérivés de l'APP (Aβ, sAPPα/β).

En parallèle, nous avons utilisé deux des lignées de hNSC obtenues à partir des CSEh H1 et H9 pour déterminer les meilleures conditions de transductions lentivirales des hNSC. Cette étape a été cruciale car il a fallu amplifier les hNSC obtenues selon les 2 protocoles et c'est à ce moment-là que nous nous sommes aperçus qu'au fur et à mesure de la culture, les hNSC se maintenaient mal en culture et qu'elles prenaient même une allure de cellules « Mésenchymateuses-like ». Plusieurs hypothèses ont été proposées pour expliquer cela :
1. Nous avions dérivé une population mixte de cellules avec des NSC et des cellules de type mésenchymateuses et au fur et à mesure des passages, nous avons privilégié la population mésenchymateuse
2. Les NSC ne se maintiennent pas en culture sur trop de passages
3. Les paramètres de densité d’ensemencement, la rythmicité des passages ont pu « appauvrir » nos cultures et privilégié des cellules qui au départ étaient moins présentes

De nombreux paramètres étaient donc à tester (densité cellulaire, nettoyage des cellules pour éliminer les cellules dont la morphologie n’est pas de type NSC, le milieu de culture des NSC). En parallèle de tous ces tests, pour comprendre et contourner notre problème de culture, nous nous sommes procurés des cellules souches neurales H9NSC, obtenues par la compagnie Gibco à partir de CSEh H9, qui nous ont été très utiles pour non seulement définir un vrai référentiel pour valider nos hNSC, mais aussi dans la suite du projet pour la mise au point de la transduction lentivirale puis dans l’étude de la différenciation neuronale. Nous avons cependant par la suite pu obtenir nos propres hNSC stables, mais la finalisation de la caractérisation des cellules hNSC stables nouvellement dérivées au laboratoire a été trop longue pour pouvoir les utiliser dans la fenêtre de temps qu’il nous restait dans le cadre de mon financement de thèse. C’est pourquoi les résultats présentés pour la différenciation ont été obtenus avec des H9NSC commerciales et non celles que nous avons pu finalement dériver et caractériser.

Mise en place du schéma expérimental au cours de l’induction neurale et de la différenciation des CSEh/NSC

Pour chacun des protocoles d’induction neurale à partir des CSEh et pour chacune des différenciations réalisées à partir des CSEh/NSC (astrocytaire, neuronale et mixte) nous avons défini des points de cinétique tous les 5 jours pour réaliser des analyses de différents paramètres (Figure 65) dans :

1. Le surnageant de culture pour les dérivés peptidiques de l’APP : Aβ et sAPPα/β (figure 65-A/B) et pour la PrP par MSD et ELISA (Figure 65-C)
2. Les lysats cellulaires (Figure 65-A) pour des analyses de la PrP et APP par Western Blot, ELISA, MSD
3. Les fixations de cellules pour des analyses en IF

Figure 65 : Différentes analyses de l’APP et de la PrP prévues pour chaque point d’arrêt (tous les 5 jours sur 30 jours sur les lysats cellulaires et sur les surnageants) pour les dosages, expression et détection.

1. Pour chaque point d’arrêt :
 1. Récupération du surnageant, centrifugation et conservation à -80°C → ELISA, MSD
 2. Fixations des cellules ensemencées sur lamelle de verre (PFA 4%, Ethanol 70%) → IF
 3. puits 1 : on compte les cellules puis on réalise une extraction des ARN → qPCR
 4. puits 2 : deuxième extraction des ARN → qPCR
 5. puits 3 et 4 : lyse des cellules (tampon de lyse Triton 0,5%) → Western Blot, ELISA, MSD
Résultats
I. **Induction neurale**

Le laboratoire dans lequel s’est déroulé mon projet de thèse est spécialisé dans les cellules souches et les maladies neurodégénératives et en particulier les maladies à prions. Les cellules souches sont utilisées pour d’une part comprendre leur rôle endogène dans la physiopathologie et pour, d’autre part, le développement de thérapies génique et cellulaire. Dans ce dernier contexte, plusieurs protocoles d’induction neurale de cellules souches embryonnaires murines (mESC) avaient été testés puis adaptés pour la thérapie cellulaire. En effet, ces protocoles permettaient d’obtenir des cellules souches neurales (NSC) qu’il est ensuite possible de greffer.

Le laboratoire a ensuite décidé de transposer cette approche aux cellules souches embryonnaires humaines (CSEh). Pour cela, plusieurs protocoles d’induction neurale des CSEh avaient été testés et adaptés. Cependant, certains protocoles entraînaient la réapparition de cellules souches embryonnaires après induction et amplification des NSC obtenues. Néanmoins, un protocole adapté de celui de Y. Benninger a été retenu pour sa bonne reproductibilité et également par ce qu’il n’entraînait pas de réapparition de CSE (Benninger, Marino et al. 2000). Ce protocole étant donc bien maîtrisé au laboratoire, nous avons donc décidé de l’utiliser pour mon projet de recherche. Nous avons également voulu tester un second protocole, basé sur la reproduction de la corticogenèse en culture : le protocole de P. Vanderhaeghen qui venait d’être publié pour les CSEh (Espinny-Camacho, Michelsen et al. 2013).

A. **Les cellules souches embryonnaires humaines**
En France, les cellules souches embryonnaires humaines sont soumises à autorisation par l’agence de la Biomédecine. Le laboratoire a obtenu l’autorisation par l’agence de la Biomédecine pour l’importation, la culture et le stockage de ces cellules depuis 2005. Les deux lignées de cellules souches embryonnaires humaines utilisées initialement dans ce projet sont la lignée H9 (46 XX) et H1 (46 XY) obtenues de WiCell® Research Institute (USA).

1. **M&M : Les CSEh sont cultivées selon les recommandations du fournisseur à savoir l’utilisation d’un millieu KO DMEM supplémenté avec un sérum de remplacement KO Sérum, des Acides Aminés non Essentiels, de la L-Glutamine, du bétamercaptoéthanol, de la Pénicilline et de la Streptomycine et le facteur de croissance bFGF à 8ng/ml final. Les CSEh sont cultivées sur un tapis de cellules nourricières : des fibroblastes embryonnaires murins (MEF), préalablement amplifiés dans un milieu DMEM supplémenté avec du sérum de veau, des Acides Aminés non Essentiels, de la L-Glutamine, du bétamercaptoéthanol, de la Pénicilline et de la Streptomycine et inactivés par un traitement à la Mitomycine. Les cellules sont changées tous les jours et passées mécaniquement.**

Pour la culture des CSEh, l’Agence de la Biomédecine impose une formation au préalable pour la culture des CSEh et une traçabilité précise au quotidien. Nous devons donc vérifier régulièremment le caryotype, l’expression des marqueurs de surface et de pluripotence. Pour cela, le laboratoire a mis en place un tableau de suivi des CSEh au quotidien contenant toutes les informations du passage des cellules à leur devenir avec un code couleur pour chaque expérience.
Figure 66 : Tableau mis au point au laboratoire pour le suivi des CSEh au quotidien

Suite au déménagement de l’équipe de l’IGH (Montpellier) à l’IRB (Montpellier), une demande d’autorisation de transfert des cellules souches à WiCell et à l’Agence de Biomédecine a été demandée. Cela a entrainer un délai pour l’utilisation des CSEh pour mon projet de thèse car l’autorisation a été acceptée après visite des nouveaux locaux en Avril 2013. Le transfert a ensuite été effectif en mai 2013, date à laquelle a commencé ma formation pour la culture des CSEh et leur utilisation pour mon projet.

1. Expression des gènes d’intérêts des CSEh

 a) Par Immunofluorescence

Pour la traçabilité, nous devons vérifier le maintien de l’expression des gènes de pluripotence et des marqueurs de CSEh tels que OCT4, Sox2 ou Nanog et des molécules de surface comme Tra1-60 ou SSEA4, spécifiques des CSEh. Nous avons également
réalisé le marquage d’autres protéines qui seront exprimées au cours de l’induction neurale et de la différenciation neuronale afin d’avoir un référentiel de comparaison par la suite. On observe notamment une faible expression de Pax6 mais aucun immunomarquage de marqueurs de cellules plus différenciées comme Nestin, MAP2, βIII-Tubuline, GFAP, Doublecortine (DCX) ou encore Synaptophysine.

![Immunomarquages des CSEh H9](image)

Figure 67 : Exemple d’immunomarquages des CSEh H9 : Oct4, Tra1-60, SSEA4, Nanog, Sox2, Pax6, Nestin-MAP2, βIII-Tubuline-DCX et GFAP-Synaptophysine.

- **M&M :** Les cellules sont fixées avec du PFA 4% ou à l’éthanol 70%. Les cellules sont rincées trois fois avec du DPBS puis perméabilisées trois fois avec 0,1% TRITON X100 dans du DPBS pendant 10 minutes à température ambiante (TA). Les cellules sont ensuite lavées dans du PBS-BSA 0,2% également 3 fois de suite. Un blocage d’1 heure à TA est ensuite réalisé et est suivi d’une incubation avec l’anticorps primaire dans du PBS-BSA 0,2% toute la nuit. Les anticorps primaires utilisés sont le rabbit
anti-Nestin (1:1000, Millipore), le rabbit anti-GFAP (1:300, Dako), le mouse anti-β-III Tubuline (1:500, Covance), le mouse anti-MAP2 (1:500, Sigma), le mouse anti-SSEA4 (1/300, Millipore), le mouse anti-Tra1-60 (1/300, Millipore), le mouse anti-synaptophysine (1:500, Millipore), le rabbit anti-doublecortine (1:500, AbCam), le mouse anti-PSA-NCAM (1:500, Millipore), le rabbit anti-GFP (1:300, Cliniscience), le rabbit anti-Oct4 (1:500, Santa-Cruz), le anti-Sox2 (1:300, Euromedex), le anti-Pax6 (1/300, Millipore) et le anti-Nanog (1/100, R&D). Le lendemain, les cellules sont rincées 3 fois 10 minutes au PBS-BSA 0,2% puis incubées avec l’anticorps secondaire de type Alexa fluor 488 Goat anti-Rabbit ou Alexa fluor 555 Goat anti-Mouse IgG d’Invitrogen, à la dilution 1:7000 pendant une heure à TA à l’abri de la lumière. De nouveaux, 3 rinçages de 5 minutes au PBS-BSA 0,2% sont réalisés puis les noyaux sont marqués grâce à une incubation de 5 minutes avec du Hoechst 33258 (Calbiochem). Les cellules sont ensuite rincées deux fois avec du PBS et deux fois avec de l’eau avant de procéder au montage des lames avec du FluorSafe (Calbiochem).

b) Par qPCR

De la même manière que pour les immunomarquages, l’utilisation des techniques de qPCR nous a permis de contrôler l’expression des gènes spécifiques des CSeh et d’autres gènes plutôt exprimés dans des NSC issues des CSeh H1, les H1NSC, que nous avions au laboratoire pour la mise au point de nos caractérisation. On constate notamment, que Nanog et Oct4 sont largement exprimés dans les CSeh et que leur expression est totalement absente dans cette lignée H1NSC. Les gènes plus spécifiques des NSC, comme Nestin et Pax6, ne sont quant à eux que très faiblement exprimés dans les CSeh.
M&M : Les ARN (0.5µg à 1µg) sont réverse transcrits et les cDNA sont amplifiés par réaction en chaîne par la Polymérase (PCR) quantitative selon les recommandations du fournisseur (Applied Biosystems). Pour la PCR quantitative, 2ml (d’une dilution à 1 : 4) de l’ADN simple brin sont ajoutés à 10ml d’un mélange réactionnel contenant 2.5mM de chaque primer et 5ml de 2x LightCycler 480 SYBR Green I Master mix (Roche). L’ADN est amplifié pendant 50 cycles avec une température d’hybridation à 62°C en utilisant le système de détection Light Cycler 480 (Roche) et les valeurs sont normalisées par rapport à l’expression de la GAPDH (défini comme variant le moins dans nos différents types cellulaires après avoir comparé avec d’autres gènes de ménage comme l’actine) pour chaque échantillon en utilisant la formule suivante : EDeltaCt testedprimer/EDeltaCt GAPDH (E = 10^{-1/slope}), DeltaCt = Ct control - Ct unknown, où E correspond à l’efficacité de la réaction de PCR. La valeur E est obtenue à l’aide d’une courbe standard qui varie en fonction des primers utilisés.

Afin de comprendre le rôle de la PrP dans la biologie des cellules souches au cours de l’induction neurale et de la différenciation neurale nous avons choisi d’utiliser deux protocoles d’induction et de différenciation neurale. Le premier est le protocole mis au point au laboratoire et qui permet d’obtenir des cellules souches neurales (CSEh/NSC) sans voir de CSEh réapparaître dans la culture après plusieurs passages (Benninger,
Nous allons détailler ces deux protocoles plus précisément dans les sous parties C et D ci-après.

B. L’induction neurale selon le protocole adapté de Y. Benninger

1. Description du protocole d’induction neurale de Y. Benninger

Dans ce protocole d’induction neurale, la formation des cellules souches neurales se fait par l’intermédiaire de la formation de neurosphères en 8 à 12 jours dans un milieu Neurobasal + B27 et G5, deux suppléments favorisant la différenciation neurectodermique. Les cellules sont ensuite adaptées en monocouche dans le même milieu. Au cours de cette induction, les cellules se mettent à exprimer la Nestin et Pax6. À ce stade, les précurseurs neuraux peuvent être maintenus et amplifiés dans un milieu N2 supplémenté en facteurs de croissance bFGF (basic Fibroblast Growth Factor) et EGF (Epidermal Growth Factor).

✓ M&M : Le protocole de formation des neurosphères est le suivant : les cellules CSEh subconfluentes sont dissociées avec de la trypsin puis centrifugées (5 minutes à 1000rpm et +20°C). Le culot cellulaire est repris délicatement et mis en suspension dans des boîtes de pétri non adhérentes de 35mm avec un milieu de différenciation sans sérum. Le milieu est constitué de Neurobasal (1X Gibco) supplémenté en B27G5 : B27 (50X Gibco) et G5 (100X Gibco), contenant de l’insuline, de la transferrine, du sélénite, de la biotine, de l’hydrocortisone, du bFGF (20ng/ml), de l’EGF (20ng/ml) et de la glutamine, permettant l’induction neurale. 1,4.10⁶ cellules sont ensemencées par boîte et placées dans l’incubateur. Le milieu est renouvelé tous les deux jours par sédimentation des neurosphères dans un tube Falcon 15ml. Dans ces conditions, les CSEh forment des neurosphères en suspension, enrichies en précurseurs neuraux Nestin positifs qui sont récoltés entre J8 et J12.
2. **Mise au point du protocole de Y. Benninger**

Dans les précédents projets de recherche au sein du laboratoire, des mises au point avaient été réalisées pour l’adaptation du protocole de Y. Benninger à l’induction neurale des CSE humaines. Dans ce projet, des mises au point supplémentaires ont été nécessaires pour avoir suffisamment de cellules pour réaliser toutes les analyses ou encore pour déterminer la durée et le nombre de points d’arrêt au cours de l’induction.

a) Détermination de la meilleure technique de dissociation des CSEh

L’objectif de cette partie est de trouver la meilleure technique de dissociation des CSEh du tapis nourricier tout en les préservant en clusters pour favoriser la génération des neurosphères.

Nous avons donc comparé trois techniques :

1. Manuelle : technique la moins agressive mais peu réalisable lors de la mise en différenciation d’un très grand nombre de cellules
2. Trypsine EDTA (au 1/10ème) : plus facilement réalisable pour une grande quantité de cellules mais entraîne l’apparition d’un trop grand nombre de CSEh unicellulaire incompatible avec la formation de neurosphères
3. Collagénase IV : bonne dissociation des CSEh du tapis nourricier sans dissociation au sein de la colonie elle-même

Le **traitement à la collagénase IV** est donc le plus adéquat. Il sera suivi par un **morcellement des colonies** avec l’extrémité d’une pipette de 5ml ce qui permettra aux neurosphères de se former plus facilement.

b) Détermination de la densité initiale de CSEh

Différentes densités d’ensemencement des cellules CSEh ont été testées de 1.10^4 à 2.10^5 c/cm², pour l’obtention d’une quantité satisfaisante de neurosphères tout en permettant le maintien des cellules sur la même surface, tout au long de la différenciation.

La **densité optimale de mise en culture des CSEh** est de $3,85.10^4$ c/cm².
c) Détermination de la durée et du nombre de points d’arrêt

Au départ, nous avions opté pour une induction neurale sur 30 jours afin d’observer à quel moment les NSC humaines apparaissaient par rapport au NSC murines (J8- J10). Dans le cas des CSEh, les hNSC commencent à apparaître à partir de J12, jour où l’on place les neurosphères en condition adhérrente.

Entre 0 et 30 jours d’induction neurale, nous avons testé différents points d’arrêt à J4, J6, J9, J12, J15, J18, J24 et J30 au cours desquels les analyses d’expression de différents marqueurs des NSC et des protéines PrPc et APP ont été réalisées. Afin de permettre l’établissement d’un référentiel correct de l’expression de ces protéines tout en limitant l’utilisation de quantité astronomique de cellules, nous avons opté pour 6 points de contrôle : J0, J6, J12, J18, J24 et J30.

✓ M&M : En résumé, les CSEh sont dissociées du tapis de MEF par un traitement à la collagénase IV et mises en suspension à 3,85. 10^4 c/cm2 dans des boîtes de pétri de 35mm, dans un milieu de type Neurobasal avec suppléments B27 et G5. Dès le lendemain, les neurosphères commencent à se former puis à J12, elles sont transférées sur des boîtes traitées avec de la Poly-Ornithine/Laminine toujours dans le même milieu. Les neurosphères sont ensemencées en monocouche afin de permettre la génération des rosettes constituées de NSC. Pour les analyses, l’induction neurale se poursuit jusqu’à 30 jours avec 6 arrêts (J0/J6/J12/J18/J24/J30). À différents moments de l’induction (J12, J18, J24 et J30), les NSC formées ont également été récupérées pour être maintenues et amplifiées dans un milieu N2 avec facteurs de croissance EGF et bFGF (20mg/ml, 20mg/ml).

Un schéma récapitulatif des différentes étapes du protocole adapté de Y. Benninger est représenté ci-dessous.
Figure 69 : Description des différentes étapes du protocole d’induction neurale adapté de Y. Benninger.

3. Caractérisation des cellules au cours de l’induction neurale

Nous avons utilisé des techniques de qPCR et d’immunomarquages pour caractériser les cellules au cours de l’induction neurale et les NSC dérivées. Que ce soit avec les CSEh H9 ou H1, les cellules en fin d’induction neurale n’expriment plus Nanog et OCT4, marqueurs spécifiques des CSEh, ce qui confirme que les cellules se sont bien différenciées (Figure 70-a). Nous avons ensuite étudié l’expression de Nestin, marqueur principal des NSC. Grâce aux différents points d’arrêts effectués au long de cette différenciation neurale, on peut aisément observer l’augmentation progressive de l’expression de Nestin dans les cellules (Figure 70-b/c). De plus, nous avons également observé une augmentation de l’expression de Pax6 confirmant aussi le caractère cellules souches neurales de nos cellules (Figure 70-c). On remarque également sur les immunofluorescences que certaines cellules en fin d’induction expriment MAP2, marqueur de neurones, donc plus tardif suggérant qu’au delà de 18 jours, les cellules s’engagent dans la voie neuronale (Figure 70-b).
Figure 70 : Caractérisation des cellules en cours de l'induction neurale selon le protocole de Y. Benninger.

A : Expression des marqueurs spécifiques des CSEh, Nanog et OCT4 dans les CSEh et dans les NSC Benninger à J12.

B : Evolution de la Nestin lors de l'induction neurale : exemple dans les CSEh H9 à J0 puis à différents points de l'induction (J6, J12, J18 et J24).

c : Expression de gènes spécifiques de cellules différenciées : Nestin, Pax6 dans les CSEh et dans les NSC Benninger à J12.

✓ M&M : Les cellules sont fixées avec du PFA 4% aux différents points d'arrêts (J6, J12, J18, J24 et J30). Les étapes de l'immunomarquage sont identiques à celles décrites précédemment.

✓ M&M : Les étapes de la qPCR sont identiques à celles décrites précédemment.

Les expériences de qPCR nous permettent également d'observer l'évolution de l'expression des différents gènes tout le long de l'induction neurale. On constate...
notamment que les expressions d’Oct4 et de Nanog s’éteignent rapidement au cours de l’induction ce qui est cohérent avec une perte de l’état dit « souche pluripotent » des cellules. Les expressions de Sox1 et de la βIII-Tubuline sont bien augmentées dans les cellules en cours de la différenciation par rapport aux CSEh mais restent relativement constantes tout au long de l’induction. Toutefois il s’agit là de l’expression au niveau ARN messager et la protéine βIII-Tubuline n’est pas détectée en immunofluorescence dans les CSEh et est très faiblement détectable et seulement au niveau réticulo-golgien (donc au cours de sa synthèse et lors de ses modifications post-traductionnelles) dans les NSC. L’expression de Nestin est elle aussi, relativement constante au cours de l’induction avec tout de même un pic d’expression à J12. De même, Pax6 présente un pic d’expression à J12 puis une diminution progressive jusqu’à J30 alors que les neurones ont déjà commencé à se mettre en place. Dans le même temps, on constate une augmentation progressive de la Doublecortine (DCX). Ces résultats suggèrent qu’il y a un pic de cellules souches neurales à J12 et qu’en poursuivant, les cellules continuent à se différencier plus vers le stade neuroblaste (DCX) et jeunes neurones (βIII-Tubuline) (Figure 71).
Figure 71 : qPCR des principaux gènes au cours de l'induction neurale selon le protocole adapté de Y. Benninger.

Exemple de l'expression d'Oct4 (A), de Nanog (B), de Sox1 (C), de la βIII-Tubuline (D), de Nestin (E), de Pax6 (F) et de Doublecortine (G) au cours de deux inductions neurales à partir des CSEh H9 : H9B27G5-4 (en bleu) et H9B27G5-5 (en jaune). Les contrôles : CSEh H9 sont en rouge et les H9NSC fournies par GIBCO et servant de référence NSC sont en vert. Analyse de triplicats de qPCR.
Nous avons ainsi obtenu plusieurs lignées de NSC (Tableau 2) grâce à ce protocole d’induction neurale et celles-ci ont été nommées en fonction de la lignée CSEh utilisée, du protocole, du numéro de l’expérience et du jour de leur adaptation en milieu de prolifération. Par exemple, la lignée NSC H1B27G5-8-J18 correspond à des NSC dérivées à partir des CSEh H1, selon le protocole adapté de Y. Benningter (utilisant le B27G5), lors de la 8ème expérience et sélectionnées au 18ème jour d’induction neurale (Figure 72-b).

<table>
<thead>
<tr>
<th>Nom</th>
<th>Protocole</th>
<th>Lignée CSEh</th>
<th>N° Expérimentation</th>
<th>Jour d’adaptation en N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H9B27G5-2-J25</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>2</td>
<td>J25</td>
</tr>
<tr>
<td>H9B27G5-3</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>3</td>
<td>X</td>
</tr>
<tr>
<td>H9B27G5-4-J12</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>4</td>
<td>J12</td>
</tr>
<tr>
<td>H9B27G5-4-J15</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>4</td>
<td>J15</td>
</tr>
<tr>
<td>H9B27G5-4-J18</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>4</td>
<td>J18</td>
</tr>
<tr>
<td>H9B27G5-4-J22</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>4</td>
<td>J22</td>
</tr>
<tr>
<td>H9B27G5-4-J24</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>4</td>
<td>J24</td>
</tr>
<tr>
<td>H9B27G5-4-J30</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>4</td>
<td>J30</td>
</tr>
<tr>
<td>H9B27G5-5-J12</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>5</td>
<td>J12</td>
</tr>
<tr>
<td>H9B27G5-5-J15</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>5</td>
<td>J15</td>
</tr>
<tr>
<td>H9B27G5-5-J18</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>5</td>
<td>J18</td>
</tr>
<tr>
<td>H9B27G5-5-J22</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>5</td>
<td>J22</td>
</tr>
<tr>
<td>H9B27G5-5-J24</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>5</td>
<td>J24</td>
</tr>
<tr>
<td>H9B27G5-5-J30</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>5</td>
<td>J30</td>
</tr>
<tr>
<td>H9B27G5-6-J18</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>6</td>
<td>J18</td>
</tr>
<tr>
<td>H9B27G5-6-J22</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>6</td>
<td>J22</td>
</tr>
<tr>
<td>H9B27G5-6-J24</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>6</td>
<td>J24</td>
</tr>
<tr>
<td>H9B27G5-6-J30</td>
<td>Y. Benninger</td>
<td>H9</td>
<td>6</td>
<td>J30</td>
</tr>
<tr>
<td>H1B27G5-1-J25</td>
<td>Y. Benningter</td>
<td>H1</td>
<td>1</td>
<td>J25</td>
</tr>
<tr>
<td>H1B27G5-4-J25</td>
<td>Y. Benningter</td>
<td>H1</td>
<td>4</td>
<td>J25</td>
</tr>
<tr>
<td>H1B27G5-5-J25</td>
<td>Y. Benningter</td>
<td>H1</td>
<td>5</td>
<td>J25</td>
</tr>
<tr>
<td>H1B27G5-6</td>
<td>Y. Benningter</td>
<td>H1</td>
<td>6</td>
<td>X</td>
</tr>
<tr>
<td>H1B27G5-7</td>
<td>Y. Benningter</td>
<td>H1</td>
<td>7</td>
<td>X</td>
</tr>
<tr>
<td>H1B27G5-8-J18</td>
<td>Y. Benningter</td>
<td>H1</td>
<td>8</td>
<td>J18</td>
</tr>
<tr>
<td>H1B27G5-8-J24</td>
<td>Y. Benningter</td>
<td>H1</td>
<td>8</td>
<td>J24</td>
</tr>
<tr>
<td>H1B27G5-8-J30</td>
<td>Y. Benningter</td>
<td>H1</td>
<td>8</td>
<td>J30</td>
</tr>
</tbody>
</table>

Tableau 2 : Répertoire des différentes lignées de NSC produites à partir du protocole adapté de Y. Benningter.
Les 4 principales lignées retenues, de part leurs morphologies proches des NSC et leurs caractéristiques, pour la suite des expérimentations, sont répertoriées dans la Figure 72.

Figure 72 : Les 4 principales lignées retenues pour les différenciations, obtenues à partir du protocole d'induction neurale adapté de Y. Benninger.

Lignées de NSC obtenues à partir du protocole adapté de Y. Benninger : à partir des CSEh H9 (a, d), des CSEh H1 (b, c), expérimentations 2 (d), 4 (c), 6 (a) ou 8 (d) et sélectionnées à J18 (b), J22 (a) ou J25 (c, d) d'induction.

C. L'induction neurale selon le protocole de Vanderhaeghen

1. **Description du protocole d'induction neurale de Vanderhaeghen**

Le protocole établis par l’équipe de P. Vanderhaeghen permet de mimer la corticogenèse en culture (Espuny-Camacho, Michelsen et al. 2013). Il permet, en une vingtaine de jours, d'obtenir des cellules souches neurales puis après 72 jours, la formation des différentes couches corticales avec le même ordre d’apparition que pendant le développement embryonnaire.
Figure 73 : Représentation des différentes étapes du protocole de P. Vanderhaeghen (Espuny-Camacho, Michelsen et al. 2013).

✓ M&M : Le protocole décrit dans cette étude est le suivant : 2 jours avant le début de la différenciation, les cellules souches embryonnaires humaines sont dissociées par un traitement avec la Stem-Pro Accutase et ensemencées sur des boîtes avec matrigel ou poly-Lysine/laminine à faible densité (5000-10000 cellules/cm²). Les cellules sont cultivées dans du milieu CSEh conditionné par les MEF (Mouse embryonic Fibroblast), sur lesquelles sont d’ordinaire cultivées les CSEh, et supplémenté avec du ROCK inhibitor qui favorise la survie des cellules isolées. À J0, le milieu est changé pour un milieu DMEM/F12+Glutamax (Nat Protoc 2009 Generation of cortical neurons from mouse embryonic stem cells. Gaspard N, Bouschet T, Herpoel A, Naeije G, van den Ameele J, Vanderhaeghen P) supplémenté avec du N2 et du B27 (qui permet une orientation neuronale des cellules) et de la Noggin (qui favorise l’induction neurale en inhibant BMP4, impliquée dans les autres feuillets
embryonnaires). Le milieu est changé tous les deux jours. À J16, la Noggin est enlevée du milieu. Dans la suite du protocole, les cellules sont dissociées à J24 et réensemencées sur poly-Lysine/laminine dans du milieu DMEM/F12+Glutamax avec suppléments N2 et B27 et ROCK inhibitor. 5 à 7 jours après la dissociation, la moitié du milieu est remplacé par du milieu Neurobasal avec supplément B27 et glutamine et ensuite il est changé tous les 5 à 7 jours.

2. **Mises au point du protocole de Vanderhaeghen**

Dans ce protocole, la partie induction neurale se situe entre J0 et J20, période où les cellules co-expriment Nestin et Pax6, et qui permet ainsi l’identification de cellules souches neurales. Cependant, comme ce protocole n’a pas été initialement développé en tant que protocole d’induction neurale, nous avons dû faire des mises au point notamment pour la densité des cellules à ensemencer au départ.

a) Détermination de la densité initiale de CSEh

Le protocole de Vanderhaeghen suggère une densité entre 5000 et 10.000 cellules/cm². Un premier essai a donc été réalisé sur les CSEh H9 avec 5000 cellules par cm², densité minimale préconisée par l’auteur mais qui s’est avéré insuffisante pour obtenir une quantité satisfaisante de cellules différenciées. Un deuxième essai sur les CSEh H9 a donc été réalisé avec différentes densités de cellules allant de 10.000 à 200.000 cellules par cm² (1.10⁴ ; 2.10⁴ ; 1.10⁵ ; 2.10⁵). Toutes les densités ont permis l’obtention de précurseurs neuraux mais un maintien des CSEh sur une plus longue durée est observé avec les plus fortes densités.
La densité **10.000 cellules par cm²** a été sélectionnée pour la suite des expérimentations.

b) Détermination de la durée et du nombre de points d’arrêts
Selon les observations des auteurs, les précurseurs neuraux apparaissent progressivement entre le dixième et le vingtième jour de différenciation in vitro. Nous avons donc réalisé plusieurs analyses à différents moments dans cette fourchette de temps nous permettant de définir **une induction neurale de 18 jours** avec des points d’arrêt à **J0, J10 et J18**.

c) Adaptation des précurseurs pour amplification

Comme expliqué ci-dessus, les précurseurs neuraux apparaissent entre le 10ème et le 20ème jour de différenciation. Nos propres observations nous ont permis de déterminer que l’apparition des cellules morphologiquement proches des précurseurs neuraux se situait entre J13 et J18 donc nous avons récupéré les cellules à J13 et J18 afin de les placer en milieu d’amplification de NSC, N2 + EGF/bFGF

✓ **M&M :** Pour nos propres expérimentations, le protocole adapté est le suivant : à J-2, les CSEh sont dissociées du tapis de MEF par un traitement à la Stem-Pro Accutase et ensemencées à 10000 cellules/cm², sur des boîtes 35mm avec PLO-L, dans un milieu CSEh conditionné par les MEF + ROCK inhibitor. À J0, passage en DMEM/F12+Glutamax avec suppléments N2 et B27 + Noggin (16j). Pour les analyses, l’induction neurale se poursuivra jusqu’à 18 jours avec 3 arrêts (J0/J10/J18). En parallèle, à J13 et J18, des cellules ont également été récupérées pour être maintenues et amplifiées dans un milieu N2 avec facteurs de croissance EGF et bFGF

Un schéma récapitulatif des différentes étapes du protocole adapté de P. Vanderhaeghen est représenté ci-dessous
Figure 74 : Description des différentes étapes du protocole d’induction neurale adapté du protocole de P. Vanderhaeghen.

3. Caractérisation des cellules au cours de l’induction neurale

A la fin de l’induction neurale, la culture apparaît morphologiquement majoritairement constituée de cellules souches neurales. Afin de vérifier qu’au cours de ce protocole les cellules passent bien par un stade NSC, nous avons utilisé des techniques de qPCR et d’immunomarquages pour les caractériser.

Nous avons d’abord vérifié qu’au cours de la différenciation, les cellules perdaient progressivement l’expression des marqueurs des CSEh. L’induction neurale des CSEh H1 et H9 selon le protocole adapté de P. Vanderhaeghen permet effectivement la perte d’expression de Nanog et Oct4 dans les cellules à J18 (Figure 75-A).

Nous avons ensuite étudié l’expression de Nestin, qui est considéré comme un marqueur principal des NSC. Lors de l’induction neurale, les cellules deviennent fortement positives pour Nestin (Figure 75-B/C). Dans les cellules maintenues en prolifération en N2 + EGF/bFGF, on observe également la présence de cellules un peu plus différenciées qui expriment Doublecortine (DCX), βIII-Tubuline ou MAP2 (Figure 75-C) suggérant un engagement spontané faible en neuroblastes et jeunes neurones.
Figure 75 : Caractérisation des cellules dérivées à partir des CSEh selon le protocole de P. Vanderhaeghen.

A : Expression des marqueurs spécifiques des CSEh : Nanog et OCT4, dans les CSEh et dans les NSC VDH à J20. Les analyses correspondent à des triplicats techniques mais sont le reflet de plusieurs expériences.

B : Evolution de la Nestin lors de l’induction neurale : exemple dans les CSEh H9 puis dans les deux lignées obtenues à partir des CSEh H1 et H9, à J10 et J18.

C : Expression de gènes spécifiques de cellules différenciées : Nestin, MAP2, βIII-Tubuline et Doublecortine, dans les CSEh et dans les NSC VDH à J20. Les analyses correspondent à des triplicats techniques mais sont le reflet de plusieurs expériences.

✓ M&M : Les étapes de la qPCR sont ceux décrits précédemment.

Comme pour l’induction neurale selon le protocole adapté de Y. Benninger, nous avons réalisé des expériences de qPCR pour observer l’évolution de l’expression des différents gènes tout le long de l’induction neurale selon le protocole de P. Vanderhaeghen. On
constate notamment que l’expression d’Oct4 et de Nanog est bien éteinte dans les cellules au cours de l'induction ce qui est cohérent avec une différenciation des cellules. L'expression de Sox2 est nettement diminuée dans les cellules en différenciation par rapport aux CSEh mais ce gène reste tout de même exprimé dans les cellules souches neurales en formation. Les expressions de Sox1, Pax6 et Doublecortine augmentent au cours de l'induction neurale avec une forte expression à J18. Ces résultats sont cohérents avec une différenciation des CSEh en cellules souches neurales (Figure 76).

Figure 76: qPCR des principaux gènes au cours de l’induction neurale selon le protocole adapté de P. Vanderhaeghen.

Exemple de l’expression d’Oct4 (A), de Nanog (B), de Sox2 (C), de Sox1 (D), de Pax6 (E) et de Doublecortine (F) au cours de l’induction neurale à partir des CSEh H1 : H1VDH (en jaune). Les contrôles : CSEh H1 sont en rouge. qPCR réalisée en triplicats.
Nous avons ainsi obtenu plusieurs lignées de NSC grâce au protocole d'induction neurale adapté de P. Vanderhaeghen (Tableau 3) et celles-ci ont été nommées en fonction de la lignée CSEh utilisée, du protocole, du numéro de l'expérience et du jour de leur adaptation en milieu de prolifération. Par exemple, la lignée NSC H1VDH-1-J18 correspond aux NSC dérivées à partir des CSEh H1, selon le protocole adapté de P. Vanderhaeghen (nommé VDH), lors de la 1ère expérience et sélectionnées au 18ème jour d’induction neurale (Figure 77-a).

<table>
<thead>
<tr>
<th>Nom</th>
<th>Protocole</th>
<th>Lignée CSEh</th>
<th>N° Expérimentation</th>
<th>Jour d'adaptation en N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H9VDH-1</td>
<td>P. Vanderhaeghen</td>
<td>H9</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>H9VDH-2-J17</td>
<td>P. Vanderhaeghen</td>
<td>H9</td>
<td>2</td>
<td>J17</td>
</tr>
<tr>
<td>H9VDH-2-J20</td>
<td>P. Vanderhaeghen</td>
<td>H9</td>
<td>2</td>
<td>J20</td>
</tr>
<tr>
<td>H9VDH-2-J21</td>
<td>P. Vanderhaeghen</td>
<td>H9</td>
<td>2</td>
<td>J21</td>
</tr>
<tr>
<td>H9VDH-3-J13</td>
<td>P. Vanderhaeghen</td>
<td>H9</td>
<td>3</td>
<td>J13</td>
</tr>
<tr>
<td>H9VDH-3-J15</td>
<td>P. Vanderhaeghen</td>
<td>H9</td>
<td>3</td>
<td>J15</td>
</tr>
<tr>
<td>H9VDH-3-J18</td>
<td>P. Vanderhaeghen</td>
<td>H9</td>
<td>3</td>
<td>J18</td>
</tr>
<tr>
<td>H9VDH-1-J13</td>
<td>P. Vanderhaeghen</td>
<td>H9</td>
<td>1</td>
<td>J13</td>
</tr>
<tr>
<td>H9VDH-1-J18</td>
<td>P. Vanderhaeghen</td>
<td>H9</td>
<td>1</td>
<td>J18</td>
</tr>
</tbody>
</table>

Tableau 3 : Répertoire des différentes lignées de NSC produites à partir du protocole adapté de P. Vanderhaeghen.

Les 2 principales lignées retenues, de part leurs morphologies proches des NSC et leurs caractéristiques, pour la suite des expérimentations, sont répertoriées dans la Figure 77.

Figure 77 : Les 2 principales lignées retenues pour les différenciations, obtenues à partir du protocole d'induction neurale adapté de P. Vanderhaeghen.

Lignée de NSC obtenue à partir du protocole adapté de P. Vanderhaeghen (VDH) : à partir des CSEh H1 (a), des CSEh H9 (b), expérimentations 1 (a) ou 3 (b) et sélectionnées à J18 (a, b) de d’induction.
D. Détection des protéines PrP^c et APP

1. Expression de la PrP^c

La détection de la PrP^c s’est faite par plusieurs méthodes : Immunomarquage, Western Blot, qPCR.

a) Par immunofluorescence

Nous avons réalisé des mises au point de la détection de la PrP^c dans les CSEh où elle est sensée être très faiblement exprimée et où les fixations classiques semblent rendre l’immunofluorescence difficile (Lee & Baskakov 2010) (Miranda, Pericuesta et al. 2011).

Plusieurs paramètres de l’immunomarquage ont été testés :
- Certaines publications préconisent une fixation à l’éthanol 70%, qui permettrait une meilleure pénétration des anticorps et ainsi une meilleure détection de la PrP^c dans les compartiments cellulaires, versus une fixation au paraformaldehyde (PFA) 4%
- Deux anticorps Saf anti-PrP^c (Scrapie Associated Fibrils) : Saf32 (anticorps de liaison au domaine octapeptide, acides aminés 79-92) et Saf61 (anticorps de liaison du domaine C-Ter, acides aminés 142-160)
- Traitements ou non avec 0,1% Triton X100, qui permet une meilleure pénétration des anticorps

La détection de la PrP^c est sensiblement améliorée avec une fixation à l’éthanol, une perméabilisation au Triton X100 et un marquage avec l’anticorps Saf61. Notamment, l’anticorps Saf61 permet un marquage uniforme de toutes les cellules de la colonie contrairement à l’anticorps Saf 32 qui marque uniquement les CSEh en périphérie de la colonie, c’est-à-dire les cellules qui auraient tendance à se différencier (Figure 78).
Figure 78 : Détermination des meilleurs paramètres pour le marquage de la PrP dans les CSEh (exemple sur les CSEh H9).

A : Représentation des régions reconnues par les anticorps SAF32 et SAF61

B : Mise au point de la méthode de Fixation : PFA4% versus à l’éthanol 70% (a, b) et de la perméabilisation au Triton X100 (0,1%, 3min) (c, d).

C : Comparaison des Anticorps anti-PrP Saf32 (a, b) et Saf 61 (c, d) : Cellules fixées à l’éthanol 70% avec traitement au Triton X100 (0,1%, 3min) : expression de la PrP seule en vert (b, d) ou avec le marquage des noyaux en bleu (Hoechst) (a, c).

L’encadré rouge représente l’ensemble des paramètres sélectionnés.
Dans les NSC obtenues à partir des deux protocoles d’induction neurale, de P. Vanderhaeghen et de Y. Benninger, l’expression de la PrP est beaucoup plus importante que dans les CSEh et se retrouve dans différents compartiments cellulaires (Figure 79).

![Figure 79: Détection par Immunofluorescence de la protéine PrP, dans les NSC obtenues avec les deux protocoles d’induction neurale sélectionnés. Exemple dans les CSEh et les H1NSC (protocole de Y. Benninger) et NSC H9VDH (protocole de P. Vanderhaeghen). Marquage anti-PrP Saf 61.](image)

b) Par qPCR

Des analyses de PCR quantitative ont permis d’évaluer l’expression du gène PRNP codant pour la PrPC. Ces analyses ont notamment permis de confirmer une faible expression de l’ARNm PRNP dans les CSEh (Figure 80). Cette expression augmente ensuite dans les précurseurs neuraux comme nous l’avons constaté par immunofluorescence. Toutefois, l’expression du gène PRNP varie en fonction de la lignée de NSC ce qui peut suggérer des stades de précurseurs différents.
Figure 80 : Détection par qPCR de l'ARNm PRNP codant pour la PrP.

A : expression au cours de deux inductions neurales selon le protocole de Y. Benninger, à partir des CSEh H9 : H9B27G5-4 (en bleu) et H9B27G5-5 (en jaune)

B : expression au cours de l'induction neurale selon le protocole de P. Vanderhaeghen, à partir des CSEh H1 : H1VDH (jaune)

C : expression dans les différentes NSC produites à partir des deux protocoles d'induction neurale. Les qPCR sont réalisées en triplicats. Les contrôles : CSEh H9 ou H1 sont en rouge et les H9NSC Gibco de référence sont en vert.

c) **Par Western Blot**

L'utilisation de la technique de Western Blot nous a ensuite permis d'observer l'expression des différentes glycoformes de la protéine PrP au cours de l'induction neurale selon les protocoles adaptés de P. Vanderhaeghen (Figure 81-A) ou de Y. Benninger (Figure 81-B), à partir des lignées de CSEh H1 et H9.
Figure 81 : Détection par Western Blot des isoformes de la protéine PrP.

Détection des différentes isoformes de la PrP (marquage Saf 32) dans les NSC obtenues à partir des lignées de CSEh H9 et H1, avec les deux protocoles d'induction neurale P. Vanderhaeghen (H9VDH-3 ; H1VDH-1) (A) ou de Y. Benninger (H9B27G5-4) (B). Dans tous les cas, les différentes glycoformes de la protéine sont observées. L'expression de la GAPDH est utilisée comme contrôle interne de l'analyse. Ctrl+ = contrôle positif.

✓ M&M : Western Blot : gel SDS page 10% acrylamide tampon MES Invitrogen. Migration 1 heure à 150V puis transfert sur membrane PVDF, au préalable réhydratée dans du méthanol, pendant 1 heure à 30V dans un tampon de transfert. Blocage sur la nuit à 4°C dans PBST 1X 5% lait. Anticorps primaire anti-PrP Saf32 (CEA Saclay) 1 : 500 à température ambiante pendant 1 heure (PBST 1% lait). Plusieurs rinçages d'au moins 5 minutes en PBST. Anticorps secondaire anti-mouse 1/10000 à température ambiante pendant 1 heure (PBST 1% lait). Plusieurs rinçages d'au moins 5 minutes dans PBST. Révélation en ECL pico ou ECL femto, puis lecture avec l’Imager Biorad.

2. Expression de l’APP et de ses dérivés de clivage

La détection des produits issus du clivage de l’APP (Aβ, sAPPα/β) s’est faite par ELISA multiplex (Technologie Mesoscale Discovery : MSD) et l’expression de l’APP par qPCR. Comme pour le gène codant la PrP, l’expression du gène codant pour l’APP est augmentée dans les cellules différenciées par rapport aux CSEh, que l’on regarde l’expression de toutes les isoformes de l’APP (APP Tot ; Figure 82-A/B) ou seulement celles contenant le domaine KPI (APP-KPI, Figure 82-C/D). En effet, l’expression de l’APP
et l’APP-KPI est augmentée à partir de J18 et ce quel que soit le protocole d’induction neurale considéré: adapté de Y. Benninger (Figure 82-A/C) ou de P. Vanderhaeghen (Figure 82-B/D). Les différentes lignées produites à partir des deux protocoles d’induction neurale expriment toutes le gène de l’APP mais avec des taux variables suivant la lignée observée (Figure 82-E).

Figure 82 : Détection par qPCR de l’ARNm codant pour l’APP et l’APP KPI.

Expression de toutes les isoformes de l’APP (APP Tot) (A) et de l’APP contenant uniquement le domaine KPI (C) au cours de deux inductions neurales selon le protocole de Y. Benninger, à partir des CSEh H9 : H9B27G5-4 (en bleu) et H9B27G5-5 (en jaune).

Expression de l’APP Tot (B) et de l’APP-KPI (D) au cours de l’induction neurale selon le protocole de P. Vanderhaeghen, à partir des CSEh H1 : H1VDH (jaune).

E : expression dans les différentes NSC produites à partir des deux protocoles d’induction neurale. Les qPCR sont réalisées en triplicats. Les contrôles : CSEh H9 ou H1 sont en rouge et les H9NSC de référence sont en vert.
Le laboratoire est également spécialisé dans l’analyse clinique de la détection des peptides Aβ et de Tau dans le LCR de patients pour le diagnostic de la maladie d’Alzheimer. Le laboratoire a notamment fait partie d’une étude comparative de différents kits ELISA de détection existants sur le marché et utilise également une nouvelle technologie, MesoScale Discovery (MSD) (Figure 83), qui permet une détection ultrasensible des peptides dérivés de l’APP par ELISA multiplex. Cette technique est basée sur une réaction de chimioluminescence, qui permet de détecter plusieurs protéines (jusqu’à 10) dans le même puits de plaque 96 puits.

Figure 83 : Représentation schématique du fonctionnement de la technologie MesoScaleDiscovery.

Chaque puits de la plaque 96 puits dispose de 1 à 10 spot(s) permettant la détection d’une protéine chacun.

Le premier kit MSD utilisé pour ce projet était un kit triplex pour la détection des peptides Aβ 1-38, 1-40 et 1-42. Un premier essai sur des surnageants de H1NSC produites avec le protocole adapté de Y. Benninger nous a permis de déterminer la possibilité ou non de détecter les différents peptides Aβ (Figure 84). Il s’avère que la forme majoritaire Aβ1-40 est détectable ce qui n’est pas toujours le cas pour les deux autres peptides (Aβ1-38 et Aβ1-42). L’analyse de la plaque ELISA MSD à partir de la gamme étalon, nous permet d’obtenir la concentration de chaque peptide, exprimée en pg/ml.
Figure 84 : Graphique représentant les concentrations des différents peptides Aβ détectées avec le kit Triplex Aβ MSD.

A : Rappel du processus protéolytique de l’APP permettant la formation des peptides Aβ

B : Exemple de concentrations réalisé sur les surnageants des cellules H1NSC (obtenues à partir des CSEh H1, selon le protocole adapté de Y. Benninger) à différents passages successifs. Les analyses MSD ont été réalisées en duplieats techniques.

Afin de s’assurer que la congélation/décongélation des échantillons n’avait pas d’impact sur la détection des peptides Aβ dans le surnageant, nous avons réalisé un test comparatif sur plusieurs aliquots du même surnageant, l’un jamais décongelé depuis sa préparation et l’autre décongelé deux fois (Figure 85). Le dosage ELISA multiplex MSD de ces deux surnageants ne présente pas de différence confirmant que la décongélation des échantillons n’altère pas la détection des peptides Aβ.

Figure 85 : Effet de la Décongélation sur la détection des peptides Aβ avec la technique ELISA MSD. Exemple de la détection du peptide Aβ-40 dans le surnageant des CSEh, à deux passages successifs. L’échantillon décongelé est noté d* en comparaison de l’échantillon non décongelé nd*. Il ne faut cependant pas tenir compte des niveaux entre le passage 8 et 9 qui sont très différents car les cellules n’étaient pas denses de la même façon au moment du prélèvement. Les analyses MSD ont été réalisées en duplieats techniques.
La décongélation n’étant pas la cause de la mauvaise détection des peptides minoritaires, nous avons également vérifié si un effet matrice ne pouvait pas intervenir ici. Nous avons réalisé des dilutions de nos échantillons dans le tampon du kit afin de savoir si cela pouvait permettre une meilleure détection des peptides amyloïdes (Figure 86). On constate que la dilution n’a aucun impact sur la détection des peptides suggérant que l’effet matrice n’intervient pas.

\[\text{Figure 86 : Effet de la dilution sur la détection des peptides } \text{Aβ avec la technique ELISA MSD.} \]

Exemple de la détection du peptide Aβ-40 dans le surnageant de NSC, obtenues avec le protocole adapté de Y. Benninger, dérivées à J16 (H1B27G5-J16) et à J20 (H9B27G5-J20) de l’induction neurale. Les échantillons dilués de moitié sont notés \(\frac{1}{2} \) en comparaison des échantillons purs. Pour les échantillons au \(\frac{1}{2} \) nous avons multiplié par 2 les résultats avant de les mettre sur le graphe. Les analyses MSD ont été réalisées en duplicats techniques.

Afin d’améliorer la détection des peptides amyloïdes et en particulier Aβ38 et Aβ42, nous avons testé différentes techniques de concentration des protéines. Les colonnes de concentration utilisées étaient: Vivaspin 500 3kDa, Vivaspin 500 10kDa, Vivaspin 500 100kDa, Vivaspin 4 5kDa, Nanosep 10kDa et Nanosep 30kDa.

Ces différentes colonnes permettent toutes d’augmenter la détection des peptides Aβ 1-40 grâce à un kit ELISA classique de détection de ce peptide. Dans les meilleurs des cas, à savoir avec les colonnes Vivaspin 500 3kDa et Vivaspin 4 5kDa, on observe jusqu’à un facteur 5 de concentration (Figure 87-A). Nous avons par la suite utilisé la colonne Vivaspin 500 3kDa pour concentrer différents surnageants de culture des lignées de NSC obtenues au laboratoire, surnageants que nous avons ensuite utilisés pour la détection des peptides Aβ avec le kit Triplex Aβ MSD (Figure 87-B/C). La colonne de concentration permet dans certains cas, la détection des peptides minoritaires mais l’augmentation du signal dû à la concentration des protéines, n’est pas identique pour tous les échantillons.
Figure 87 : Comparaison des techniques de concentration pour la détection du peptide Aβ 1-40. Exemple ici sur les surnageants des CSEh et des NSC obtenues avec les deux protocoles d'induction neurale (B27G5 et VDH).

A : comparaison des différentes colonnes de concentration sur la détection du peptide Aβ40 par ELISA classique.
B : Concentration brute en peptide Aβ40 détecté par dosage ELISA Triplex Aβ MSD
C : Concentration, tenant compte du facteur de concentration, en peptide Aβ40 détecté par dosage ELISA Triplex Aβ MSD

D' autres techniques de concentration des protéines contenues dans le surnageant ont ensuite été testées pour la détection des peptides Aβ : précipitation à l’éthanol, concentration au SpeedVac et MCX (Technique de concentration des protéines mise au point par P. Bros, doctorante au laboratoire) (Figure 88). Là encore, ces différentes techniques ont permis d’améliorer la détection des peptides minoritaires mais de nouveau la proportionnalité et la reproductibilité n’étaient pas respectées.
Figure 88 : Comparaison de différentes techniques de concentration des protéines.

Exemple de la détection du peptide Aβ40 dans le surnageant de 3 lignées de NSC à des passages successifs (obtenues à partir des CSEh H1, selon le protocole adapté de Y. Benninger).

A : Surnageants purs
B : Comparaison surnageants purs et méthode de concentration à l’éthanol (Eth)
C : Comparaison surnageants purs et méthode de concentration MCX
D : Comparaison surnageants purs et méthode de concentration SpeedVac (SV)

Les analyses MSD ont été réalisées en dupl icats techniques.

Après ces différents essais, aucune méthode de concentration ne sera finalement utilisée par la suite car aucune d’entre-elles ne permet d’avoir de proportionnalité identique entre les différents échantillons ou des résultats reproductibles. Dans la même période, un nouveau kit ultrasensible a été commercialisé par la société MSD permettant de dé tec ter d’infimes quantités de peptides Aβ, c’est ce kit que nous avons décidé d’utiliser par la suite, nommé V-Plex Aβ.

Un deuxième kit duplex sAPP a également été employé pour la détection des fragments solubles sAPPα et sAPPβ (Figure 89).
Figure 89 : Graphique représentant les concentrations des différents fragments solubles (sAPPα/β) détectés avec le kit Duplex sAPP MSD.

A : Rappel du processus protéolytique de l’APP permettant la formation des fragments solubles
B : Exemple de concentrations réalisées sur les surnageants des cellules NSC VDH H9 (obtenues à partir des CSEh H9, selon le protocole adapté de P. Vanderhaeghen) et des CSEh H9.

✓ M&M : MesoScaleDiscovery : kit duplex sAPPα/β ; kit Triplex Aβ38/40/42 ; kit V-Plex Aβ38/40/42. ELISA multiplex réalisé selon les recommandations du fournisseur.

Au travers des différentes inductions réalisées à partir des CSEh H1 et H9, le même profil d’expression des fragments solubles sAPP et des peptides Aβ est observé. Au départ, les différents peptides sont très faiblement produits puis on observe une nette augmentation de leur production entre J6 et J12 où la détection atteint un pic. Ce pic est corrélé au pic d’expression de Nestin donc la quantité de peptides sAPP et Aβ sécrétés dans le surnageant semble être liée à la proportion de NSC contenue dans la culture. Dans la suite de l’induction, l’expression des peptides diminue avec une légère hausse en fin de différenciation qui peut être due à un début de différenciation plus spécialisée des cellules en culture. À chaque induction neurale réalisée, avec les CSEh H1 ou H9, le profil d’expression reste globalement le même, même si selon la lignée, on a un décalage dans le pic de production à J6 pour les H9 et J12 pour les H1, selon le protocole de Benninger. Les dosages sont représentés par la concentration en pg par million de cellules en fonction des points d’arrêts au cours de l’induction (Figure 90). Nous avons pour cela, ramené la concentration obtenue en ELISA MSD par rapport à la quantité de cellules contenues dans l’échantillon analysé afin de pouvoir comparer les échantillons les uns par rapport aux autres.
Figure 90 : Expression des fragments solubles sAPP et des peptides Aβ dans le surnageant de culture par ELISA multiplex MSD. Exemple de résultats obtenus lors de l’induction neurale selon les protocoles adaptés de Y. Benninger (A) ou de P. Vanderhaeghen (B), à partir des CSEh H9 (a, b) ou H1 (c, d). Résultats obtenus à partir de triplicats techniques identiques.

a, c : Concentration des peptides Ab38, Ab40, Ab42 en pg/million de cellules.
b, d : Concentration des fragments sAPPα et sAPPβ en ng/million de cellules.

Les analyses MSD ont été réalisées en duplicats techniques.

Comme nous avons rencontré des difficultés de reproductibilité avec l’induction neurale selon le protocole adapté de P. Vanderhaeghen, nous n’avons pas utilisé les NSC obtenues à partir de ce protocole pour la suite des expérimentations.
II. Différenciation des NSC

Afin de poursuivre l'étude de l'impact de la protéine PrP sur la biologie des cellules souches et sur le clivage de l'APP, nous avons sélectionné les quatre types cellulaires qui gardaient la morphologie la plus proche des NSC (ainsi que l'expression de la Nestin) et nous avons également réalisé en parallèle trois différenciations à partir de ces lignées. Pour les trois protocoles de différenciation utilisés, les cellules sont ensemencées la veille en monocouche dans du milieu N2 avec facteurs de croissance bFGF et EGF et par différentes modifications du milieu de culture, nous sommes ensuite capables d'enrichir la population en Astrocytes, en Neurones ou un mixte des deux.

Figure 91 : Représentation schématique des différenciations utilisées.

A. Les protocoles de différenciation

1. Différenciation neuronale
Figure 92 : Description des différentes étapes du protocole de la différenciation neuronale (Adapté de Conti L., Smith A., 2005).

✔ M&M : Les cellules souches neurales sont ensemencées la veille à 2,5.10⁴ cellules/cm² dans le milieu Stem Pro NSC avec facteurs de croissance EGF et bFGF à 20ng/ml chacun, sur PLO-L. Le lendemain, les cellules sont passées dans le milieu de différenciation N2 + bFGF (20ng/ml) et ce pendant 7 jours avec changement de milieu tous les 2-3 jours. Du 7ᵉ au 14ᵉ jour, les cellules sont passées dans un milieu de culture mixte N2 / Neurobasal avec supplément B27 (1X). On diminue également de moitié la concentration de bFGF (10ng/ml) et on ajoute du BDNF (Brain derived neurotrophic factor) à 10ng/ml afin de favoriser la différenciation neuronale. Du 14ᵉ jour à la fin de la différenciation neuronale (30 jours), les cellules sont mises dans du Neurobasal seul avec supplément B27 et BDNF (10ng/ml). Tous les 2 jours, les milieux sont renouvelés.

2. Différenciation Astrocytaire

Figure 93 : Description des étapes du protocole de la différenciation astrocytaire.

✔ M&M : Les cellules souches neurales sont ensemencées la veille à 5.10⁴ cellules/cm², dans du milieu N2+EGF+bFGF à 20ng/ml chacun, sur PLO-L. Le lendemain, les cellules sont passées dans le milieu de différenciation N2 + 1% sérum (Lonza) et ce jusqu’à la fin de la différenciation (15 jours). Le milieu est changé tous les 2 jours.
3. Différenciation non orientée

![Diagram of differentiation process]

Figure 94: Description des étapes du protocole de la différenciation non orientée.

- **M&I**: Les NSC sont ensemencées à $2,5 \times 10^4$ c/cm² dans le milieu N2+EGFG+bFGF à 20ng/ml chacun, sur PLO-L. Le lendemain, les cellules sont passées dans un milieu N2 sans facteur de croissance pendant 30 jours. Le milieu est changé tous les 2 jours.

Au cours de ces trois différenciations, on réalise plusieurs points d’arrêts : 5 pour la différenciation neuronale (J0, J7, J15, J21 et J30) ; 4 pour la différenciation astrocytaire (J0, J5, J10, J15) et la différenciation non orientée (J0, J10, J20 et J30) ; au cours desquels on réalise les mêmes analyses que lors de l’induction neurale :

5. Le surnageant de culture pour les dérivés peptidiques de l’APP : Aβ et sAPPα/β (figure 65-A/B) et pour la PrP par MSD et ELISA (Figure 65-C)
6. Les lysats cellulaires (Figure 65-A) pour des analyses de la PrP et APP par Western Blot, ELISA, MSD
7. Les fixations de cellules pour des analyses en IF

Au cours des différenciations, les cellules ont tendance à se décoller du support malgré l’utilisation d’un coating de PLO-L. Il a donc été très difficile de maintenir les cellules jusqu’au terme.
B. Caractérisation des Cellules au cours des différenciations

Les cellules souches neurales sont Nestin positives et n'expriment quasiment pas les marqueurs de cellules plus matures, GFAP, MAP2 ou βIII-Tubuline (Figure 95–A). Dans les trois différenciations, une disparition progressive de la Nestin est observée ce qui est cohérent avec une différenciation des cellules.

Au cours de la différenciation neuronale, on observe une augmentation des marqueurs neuronaux tels que MAP2 et βIII-Tubuline confirmant l'engagement des cellules dans le lignage neuronal (Figure 95–B). Quelques cellules astrocytaires GFAP positives apparaissent en fin de différenciation.

Au cours de la différenciation astrocytaire, on observe bien une augmentation de l’expression de la GFAP, marqueur astrocytaire (Figure 95–C) mais, comme pour la différenciation neuronale, la population n'est pas totalement homogène puisque quelques cellules sont βIII-Tubuline positives.

Dans la différenciation non orientée, nous sommes bien en présence d’une population mixte de neurones et d’astrocytes puisqu'une partie des cellules deviennent GFAP positives, d’autres MAP2 positives et βIII-Tubuline positives (Figure 95–D).
Figure 95 : Exemple des trois différenciations réalisées sur la lignée H1B27G5-4-J25, obtenue à partir des CSEh H1 selon le protocole adapté de Y. Benninger.

On peut voir en vert à J0 (A), le marquage de la Nestin et très peu de cellules MAP2⁺, GFAP⁺ ou βIII-tubuline⁺. On peut également voir que le marquage de la Nestin (en vert) diminue au cours des trois différenciations. Par contre, on observe bien une augmentation de l’expression de MAP2 (en rouge) et βIII-tubuline (en rouge) au cours des 30 jours de différenciation neuronale (B) ; de GFAP (en vert) au cours de la différenciation astrocytaire (C) et de tous ces marqueurs dans la différenciation non orientée (D).
Afin de poursuivre la caractérisation des cellules au cours de ces différenciations, nous avons étudié l’expression de plusieurs gènes par qPCR. A titre d’exemple, la Figure 96 montre la diminution de la Nestin (Figure 96-A) quand on différencie en neurone et en astrocyte et montre l’augmentation de DCX (marqueurs des neuroblastes et jeunes neurones) quand on réalise la différenciation neuronale (Figure 96-B).

Figure 96 : Analyse par qPCR de différents gènes au cours des différenciations neuronale et astrocytaire des H1NSC obtenues à partir des CSEh H1 selon le protocole adapté de Y. Benninger.

Exemple de Nestin et Doublecortine. L’expression de Nestin (A) diminue au cours de la différenciation neuronale (violet) ou astrocytaire (bleu) contrairement à la DCX (B) qui augmente dans les cellules en différenciation neuronale. Les H1NSC contrôles (J0) sont représentées en vert.

C. Expression de la PrPc

Des analyses par qPCR nous ont permis d’observer une augmentation de l’expression du gène hPRNP codant pour la PrP pendant la différenciation astrocytaire (Figure 97-A) et neuronale (Figure 97-B) des NSC obtenues à partir des CSEh H1, selon le protocole adapté de Y. Benninger. L’expression du gène hPRNP est augmentée dans les cellules en différenciation astrocytaire par rapport aux NSC mais avec notamment des niveaux élevés à J5 et J15 et un niveau bas à J10 (Figure 97-A). L’expression de la protéine PrP est également augmentée au début de la différenciation neuronale puis semble se stabiliser par la suite (Figure 97-C). Nous avons également regardé le niveau d’expression de la PrP par immunofluorescence (Figure 97-D) et Western Blot (Figure 97-E). Celles-ci sont bien exprimées au cours de la différenciation neuronale mais ces techniques ne nous permettent pas d’observer des variations plus fines de l’expression.
Figure 97 : Expression de la PrP pendant la différenciation des NSC.

L’analyse de l’expression du gène hPRNP par qPCR (A, B) montre que celui-ci augmente au cours de la différenciation astrocytaire des H1NSC (A) et la différenciation neuronale des H9NSC (B). Toutefois, son expression est plus variable lors de la différenciation astrocytaire (A) avec une augmentation en début de différenciation suivie d’une nette baisse et d’un retour à une expression élevée. La protéine PrP est elle aussi augmentée dans les cellules au cours de la différenciation neuronale comme observée en ELISA PrP (C), par immunofluorescence de la PrP (marquage Saf 61, D) ou en Western Blot (E). Les NSC contrôles (J0) sont représentées en vert.
D. Expression de l’APP et ses produits clivés au cours de la différenciation des NSC

Nous avons étudié l’expression du gène codant pour l’APP pendant les différenciations astrocytaire (Figure 98-A) et neuronale (Figure 98-B). L’expression de l’APP est augmentée pendant la différenciation neuronale. Au cours de la différenciation astrocytaire, l’APP augmente à J5, diminue à J10 et varie peu à J15.

Nous avons ensuite étudié le clivage de l’APP avec l’observation de la production des fragments sAPPα/β (Figure 98-D) et des peptides Aβ (Figure 98-F/G/H). Au cours de la différenciation neuronale, la quantité de fragments solubles sAPPα/β sécrétés dans le surnageant augmente progressivement au cours de la différenciation (Figure 98-D).

Enfin, nous avons observé l’évolution de la production des peptides Aβ 38/40/42, pendant les trois différenciations (Figure 98-F/G/H). Le profil d’expression des peptides Aβ est sensiblement le même au cours des différenciations neuronale (Figure 98-F) et astrocytaire (Figure 98-G). En effet, dans les deux cas, on observe une diminution jusqu’à J21, J15 de différenciation respectivement, suivie d’une hausse à J30 pour la différenciation neuronale. En revanche, pour la différenciation non orientée, on observe une augmentation des peptides Aβ à J10 suivie d’une importante baisse voire même de l’absence de peptides à J20 (Figure 98-H).
Figure 98 : Expression de l’APP, des sAPP et Aβ au cours des trois différenciations des NSC.
L’expression du gène codant l’APP est augmentée dans les cellules H1NSC en différenciation astrocytaire (A) et dans les cellules H9NSC en différenciation neuronale (B) par rapport à celles en prolifération. Les NSC contrôles (J0) sont représentées en vert. La production des fragments sAPPα/β (C) au cours de la différenciation neuronale des H9NSC (D) augmente progressivement pendant la différenciation. La production des peptides Aβ (E) baisse les 15-20 premiers jours de différenciations astrocytaire (G) et neuronale (F) des H9NSC puis augmente en fin de différenciation neuronale. Dans le cas de la différenciation non orientée (H), les quantités de peptides Aβ sont augmentées à J10 pour devenir pratiquement nulle à J20.
III. Transduction des cellules souches

Afin de déterminer l’impact de la protéine PrPc sur la biologie des cellules souches ainsi que sur le clivage de la protéine APP, des modifications des niveaux d’expression de la PrP dans les cellules souches embryonnaires humaines et les cellules souches neurales ont été réalisées. Pour cela, nous avons utilisé des vecteurs lentiviraux dérivés du HIV (vecteurs tronoLab produits par la plate forme de vectorologie IGF, Montpellier) : le vecteur pWIG-HuPrP qui permet l’expression de la protéine PrPc humaine ainsi que l’expression de la GFP grâce à un signal de réinitiation de la transduction IRES, le vecteur pWPXL qui permet l’expression de la GFP et utilisé comme contrôle de transduction, le vecteur pAPM-shRNA-HuPrP qui permet l’inhibition du gène de la PrP et enfin le vecteur pAPM-shRNA-Luciférase (Pascal Leblanc, ENS-Lyon (Alais et al. 2012), (Gibbings et al. 2012)) comme contrôle de transduction pour le vecteur précédent. Les deux derniers vecteurs lentiviraux ne permettent pas d’expression de la GFP mais possèdent une cassette de résistance à la puromycine permettant ainsi la sélection des cellules transduites.

A. Transduction des CSEh

Initialement, nous pensions transduire les CSEh directement en colonies :

✓ M&M : La veille de la transduction, les cellules sont ensemencées de façon à avoir une confluence d’environ 80% le jour de la transduction. Trois MOI (Multiplicité d’infection : nombre d’unités infectieuses/cellules) ont été testées (10, 50 et 100) avec le vecteur hébergeant la GFP et les cellules transduites ont été identifiées grâce à la fluorescence de la GFP.

Si nous avons observé une transduction majoritaire dans les colonies de CSEh et non des MEF sur lesquelles les cellules sont cultivées, peu de cellules de la colonie sont transduites. L’efficacité étant relativement faible, il serait nécessaire de faire un sous-clonage de cluster de colonies et de sélectionner les colonies majoritairement GFP. Compte tenu des contraintes de culture des CSEh nous avons opté, pour cette partie du projet, pour une transduction lentivirale des CSEh au moment du lancement de
l’induction neurale et avons mis au point les conditions optimales pour celle-ci (Figure 99).

Figure 99 : Transductions lentivirales dans les CSEh. Vert / GFP ; noyaux en bleu / Hoechst

1. **Mises au point**

Les premiers essais de transduction ont été réalisés avec les lentivirus pWPXL-GFP et pWIG-HuPrP. Un ensemencement de 3,7. 10^5 cellules souches embryonnaires humaines dans une boîte de pétri de 35mm a été réalisé, densité identique utilisée au départ pour l’induction neurale selon le protocole de Y. Benninger, et différentes MOI (multiplicité d’infection) ont été testées : MOI 100 et MOI 60. Dans les deux cas, la transduction s’est révélée peu efficace donc des mises au point ont été nécessaire pour améliorer la transduction en offrant à la fois un meilleur contact entre les cellules en suspension au début de l’induction neurale et les lentivirus et également la possibilité de diminuer la quantité de lentivirus utilisés. En effet, les nombreux points d’analyse à réaliser représentaient une trop importante quantité de lentivirus (que nous avons fait produire à deux reprises par la plateforme de lentivirus de l’IGF au cours de ma thèse) si nous avions gardé cette densité.

a) **Densité et surface d’ensemencement**

Afin de trouver les meilleures conditions de densité de cellules tout en maintenant l’induction neurale possible, nous avons réalisé différents tests. Dans une plaque 48 puits, les CSEh sont ensemencées à $3,7.10^5$ / $1,46.10^5$ / $0,77.10^5$ cellules par puits.
Le lendemain, les cellules sont transférées dans des boites de surface différente :
- des puits 3,7.10^5 / 1,46. 10^5 / 0,77. 10^5 dans des puits d’une plaque 24 puits
- des puits 3,7. 10^5 / 1,46. 10^5 dans des puits d’une plaque 12 puits
- des puits 3,7. 10^5 dans des puits d’une plaque 6 puits

Figure 100 : Représentation schématique des mises au point pour la transduction des CSEh.

L’ensemencement à 0,77. 10^5 cellules par puits dans une plaque 48 puits et transfert en 24 puits le lendemain s’est révélé suffisant pour obtenir des neurosphères et des quantités suffisantes pour les différentes analyses à effectuer.

En effet, on remarque que l’expression d’Oct4 (Figure 101-A) diminue et que l’expression de Nestin (Figure 101-B) augmente dans les cellules en différenciation par rapport aux CSEh, et ce quelle que soit la densité cellulaire ou la surface d’ensemencement des cellules et est comparable à une densité en 35mm. De plus, l’ensemencement dans une surface plus petite permettrait de favoriser la mise en contact des cellules avec les lentivirus et ainsi d’améliorer l’efficacité de transduction.
Figure 101 : Analyses qPCR des cellules H9NSC à J12 de l'induction neurale en fonction de la densité et de la surface d'ensemencement.

L'expression d'Oct 4 (A) est diminuée à J12 de l'induction alors que l'expression de Nestin (B) est augmentée, et ce quelle que soit la densité ou la surface d'ensemencement. Les cellules sont ensemencées à 3.7×10^5 c (a, b, c) ; 1.46×10^5 c (d, e) et 0.77×10^5 c (f) et transférées en plaque 6 puits (bleu clair), 12 puits (bleu foncé) ou 24 puits (rose).

b) **MOI de Transduction pour les Lentivirus HIV-GFP et HIV-HuPrP**

Après avoir déterminé la densité de cellules à ensemencer, différentes MOI de lentivirus ont été testées : MOI 60 et MOI 100. Les cellules transduites avec les lentivirus GFP et HuPrP expriment la GFP ce qui nous permet d'évaluer l'efficacité de la transduction. La transduction est d'autant plus efficace que la quantité de lentivirus est importante mais avec une plus grande toxicité pour les cellules donc finalement nous avons opté pour une MOI de 60.
Figure 102 : Observation de l’efficacité de transduction, avec le lentivirus pWPXL-GFP, des CSEh H9 à J4 post-transduction. Photographies avec Evos (Ozyme).

a : cellules non transduites (Nt) : aucune cellule n’exprime la GFP (d).

b : cellules transduites avec le vecteur pWPXL-GFP à une MOI de 60 : les cellules transduites expriment la GFP (vert, e).

c : cellules transduites avec le vecteur pWPXL-GFP à une MOI de 100 : les cellules transduites expriment la GFP (vert, f).

✓ M&M : Lors du lancement de l’induction neurale, les CSEh sont ensemencées à 0,77. 10^5 cellules par puits de plaque 48 puits dans un volume final de 0,25ml de milieu B27G5. La transduction est ensuite réalisée au P3 avec des MOI 60 pour les lentivirus pWPXL-GFP et pWIG-HuPrP. Les cellules sont ensuite agitées à faible vitesse pendant 1h. A la fin de l’heure d’agitation, on complète à 0,5ml et les cellules sont placées dans l’incubateur 5%CO2 et 37°C. Le lendemain, les cellules sont transférées dans des puits de plaque 24 puits et la quantité de milieu de culture est doublée afin de diluer les lentivirus. A partir du deuxième jour, et ce jusqu’à la fin de l’induction, les cellules sont changées par centrifugation légère tous les deux jours avec 0,5ml de milieu B27G5.
c) Transduction avec les Lentivirus shRNA-Lu et shRNA-PrP

Pour les shRNA, différents volumes de lentivirus ont été testés : 1 / 0,5 / 0,2 µL. Ces lentivirus, produits par P. Leblanc à l’ENS de Lyon, n’étant pas titrés nous avons donc adapté les volumes de transduction selon les recommandations fournies par notre collaborateur (Alais, Soto-Rífo et al. 2012), (Gibbings, Leblanc et al. 2012). La transduction est d’autant plus efficace que la quantité de lentivirus est importante mais avec une plus grande toxicité pour les cellules donc finalement nous avons opté pour un volume de 0,5µL. Cependant, comme l’efficacité de transduction n’était pas assez forte, car plus de 80% des cellules mourraient lorsque nous mettions la puromycine au 2ème jour post-induction/transduction (0,01 / 0,05 / 0,1 / 0,25 / 0,5 / 0,75 / 1 / 1,25 / 1,5 / 1,75 et 2 µg/ml), nous avons tenté à plusieurs reprises de trouver les meilleurs conditions et meilleurs compromis (quantité de virus toxique/et efficacité de transduction) mais il n’a pas été possible de finaliser cette mise en place dans un délai compatible avec le processus de fin de thèse.

2. Caractérisation des cellules après transduction

Concernant l’impact de la surexpression de PrP, nous avons étudié l’effet d’une transduction à J0 des CSEh aux points J6 et J12 qui correspondaient aux pics de cellules Nestin positives et d’Aβ lors de nos études de mise au point d’induction neurale à partir des CSEh H9 selon le protocole adapté de Y. Benninger, et donc aux phases d’engagement dans les NSC.

Dans un premier temps, nous avons vérifié la bonne formation des neurosphères et évalué l’efficacité de transduction des cellules par observation de la fluorescence de la GFP. En effet, nous avons observé la formation des neurosphères dans tous les cas (Figure 103-A-a/b/b ; 103-B-a/b/c ; 103-C-a/b/c) et une expression de la GFP dans les cellules transduites avec les lentivirus pWPXL-GFP (GFP, Figure 103-B-d/e/f) et pWIG-HuPrP (PrP, Figure 103-C-d/e/f) contrairement aux cellules non transduites (Nt, Figure 103-A-d/e/f), synonyme d’une bonne efficacité de la transduction.
Figure 103 : Observation de l’efficacité de transduction des lentivirus pWPXL-GFP et pWIG-HuPrP à différents moments au cours de l’induction neurale des CSEh H9 selon le protocole adapté de Y. Benninger. Photographie avec Evos (Ozyme).

A : Observation des cellules non transduites (Nt) à J1 (a), J6 (b) et J12 (c) : aucune cellule n’exprime la GFP à J1 (d), J6 (e) et J12 (f)

B : Observation des cellules transduites avec le vecteur pWPXL-GFP (GFP) à une MOI de 60 à J1 (a), J6 (b) et J12 (c) : les cellules transduites expriment la GFP (vert) à J1 (d), J6 (e) et J12 (f)

C : Observations des cellules transduites avec le vecteur pWIG-HuPrP à une MOI de 60 à J1 (a), J6 (b) et J12 (c) : les cellules transduites expriment la GFP (vert) à J1 (d), J6 (e) et J12 (f).
Dans un deuxième temps, nous avons déterminé par immunofluorescence différentes protéines classiquement exprimées dans les cellules souches neurales ou les neuroblastes dans les cellules à J12 d’induction neurale transduites (pWPXL-GFP et pWIG-HuPrP) ou non (Nt) en comparaison des cellules CSEh H9 à J0. Comme attendu, l’expression de Nestin, principal marqueur des NSC, est bien augmentée dans toutes les cellules à J12 (Figure 104-A) par rapport aux CSEh H9. Nous avons également constaté une augmentation de l’expression de la GFAP (Figure 104-B) et de la βIII-Tubuline (Figure 104-B) dans les cellules en différenciation. Cependant, l’expression de MAP2 (Figure 104-A) et DCX (Figure 104-C) restent faibles et Synaptophysine (vésicules prē-synaptiques) (Figure 104-C) est absente dans les cellules en différenciation.
Figure 104 : Immunomarquages des CSEh H9 à J0 et des cellules transduites avec les lentivirus pWPXL-GFP (GFP), pWIG-HuPrP (PrP) ou non transduites (Nt), à J12 de l’induction neurale selon le protocole adapté de Y. Benninger.

Les expressions de Nestin (A), de GFAP (B) et de βIII-Tubuline (B) sont augmentées dans les cellules différenciées par rapport aux CSEh H9 contrôles. L’expression de MAP2 (A) et DCX (C) restent faibles et Synaptophysine est absente (C).

En parallèle, nous avons étudié l’expression par qPCR de nombreux gènes au cours de ces premières étapes d’induction neurale. Nous avons observé la diminution des marqueurs des CSEh : Oct4 (Figure 105-A) et Nanog (Figure 105-B) au cours de l’induction neurale ce qui est cohérent avec une différenciation des cellules. On observe toutefois des différences d’expression suivant le niveau d’expression de la PrP. En effet, l’expression de Nanog à J6 et d’Oct 4 à J12 (Figure 105-A-b) est légèrement maintenue dans les cellules surexprimant la PrP (en rouge) par rapport aux cellules contrôles exprimant la GFP (en vert). Cependant, ces niveaux d’expression reste semblables à ceux observés dans les cellules non transduites (en gris) suggérant un effet bénéfique de la PrP contre la toxicité induite par la transduction. L’expression de Sox2 (Figure 105-C) est augmentée à J6 puis très faible à J12 dans tous les cas. Comme pour Oct4 et Nanog,
l’expression de Sox2 est plus importante dans les cellules surexprimant la PrP à J6 que dans les cellules contrôles GFP ou dans les cellules non transduites. Il est toutefois difficile de savoir s’il s’agit plus d’un effet anti-apoptotique de la PrP ou d’une réelle augmentation de la différenciation.

Figure 105 : Analyses qPCR des cellules H9NSC transduites avec les lentivirus pWIG-HuPrP (PrP) et pWPXL-GFP (GFP) et non transduites (Nt), au cours de l’induction neurale.

L’expression d’Oct 4 (A) et de Nanog (B) est bien diminuée dans les cellules en cours d’induction neurale. La surexpression de la PrP semble agir contre la toxicité induite par la transduction. L’expression de Sox2 (C) augmente à J6 en début d’induction puis diminue à J12 et la surexpression de la PrP favorise son expression à J6. Les cellules sont soit transduites avec les lentivirus pWPXL-GFP (en vert) et pWIG-HuPrP (en rouge) ou non transduites (en gris). Les CSEh H9 et les H9NSC contrôles sont représentées respectivement en jaune et bleu. Analyse statistique t.test (unilatéral à variance égale ou inégale), p<0,01 : **, p<0,05 : * Les analyses statistiques des résultats de qPCR sont faites 2 à 2avec des échantillons provenant de 3 expériences indépendantes et réalisées en triplicats techniques.
L’expression de Nestin est nettement augmentée dans les cellules en différenciation par rapport aux CSEh (Figure 106-A). Nous avons également remarqué que la surexpression de la PrP entraînait une expression plus importante de Nestin, Sox1 (Figure 106-B) et Pax6 (Figure 106-C) en comparaison des cellules NT et GFP à J12, même si Pax6 reste plus faiblement exprimé dans les cellules en différenciation par rapport aux cellules H9NSC contrôles. Ces résultats suggèrent un effet potentialisateur de la PrP dans la différenciation des CSEh en NSC.

Nous avons cependant regardé si l’ajout de PrP jouait sur l’apparition des marqueurs présents dans les autres feuilles embryonnaires. même si nous avons utilisé un protocole d’induction de type neural. La surexpression de la PrP ne modifie pas l’expression de l’alpha smooth muscle actine (α-SMA) (Figure 105-D-a), marqueur du mésoderme et de l’alpha-fœtoprotéine (AFP), marqueur de l’endoderme (Figure 105-D-b). En revanche dans l’engagement neurectodermique, la surexpression de la PrP aurait tendance à empêcher la différenciation astrocytaire (Figure 105-D-c)
Figure 106 : Analyses qPCR des cellules H9NSC transduites avec les lentivirus pWIG-HuPrP (PrP) et pWPXL-GFP (GFP) et non transduites (Ni), au cours de l’induction neurale.

L’expression de Nestin (A) est très augmentée dans les cellules en cours d’induction neurale par rapport aux CSEh. La surexpression de la PrP favorise l’expression de la Nestin, Sox1 (B) et Pax6 (C) à J12 suggérant une augmentation du nombre de NSC produites. Ainsi, la surexpression de la PrP accélère la différenciation en NSC et en particulier la différenciation neuronale puisqu’elle provoque une diminution de l’expression de la GFAP (E-c) et ne modifie pas l’expression de l’AFP (E-b) ni de l’alpha-SMA (E-a). Les cellules sont soit transduites avec les lentivirus pWPXL-GFP (en vert) et pWIG-HuPrP (en rouge) ou non transduites (en gris). Les CSEh H9 et les H9NSC contrôles sont représentées respectivement en jaune et bleu. Analyse statistique t.test de Welch (unilateral à variance égale ou inégale), p<0,01 : **, p<0,05 : * Les analyses statistiques des résultats de qPCR sont faites 2 à 2 avec des échantillons provenant de 3 expériences indépendantes et réalisées en triplicats techniques.
3. **Expression de la PrP, de l’APP et de ses produits clivés**

Nous avons dans un premier temps, observé par immunofluorescence l’expression de la GFP et de la PrP au cours de l’induction neurale des CSEh H9 transduites, avec les lentivirus pWPXL-GFP (GFP) et pWIG-HuPrP (PrP), ou non transduites (Nt) (Figure 107). Ainsi, nous avons vérifié que la GFP était bien exprimée à J12 dans les cellules transduites avec les deux lentivirus (GFP J12, PrP J12), puisqu’ils permettent tous deux l’expression de la GFP, mais pas dans les cellules non transduites (Nt J12) ni dans les cellules contrôles CSEh H9 (J0). Dans un deuxième temps, nous avons étudié l’expression de la PrP dans les cellules à J12 en comparaison des CSEh H9 à J0. Comme attendu, la PrP est bien exprimée dans toutes les cellules (CSEh H9, Nt J12, GFP J12, PrP J12) mais elle l’est d’autant plus dans les cellules surexprimant la PrP (PrP J12).

![Image 1](image1.png)

Figure 107 : Observation par immunofluorescence de l’expression de la GFP et de la PrP au cours de l’induction neurale des CSEh H9 transduites ou non.

Les CSEh H9 contrôles correspondent au point J0 de l’induction comparées aux cellules à J12, transduites avec les lentivirus pWPXL-GFP (GFP) et pWIG-HuPrP (PrP) ou non transduites (Nt). Comme attendu, toutes les cellules expriment la PrP (en rouge) mais plus particulièrement les cellules surexprimant la PrP (PrP J12) et seules les cellules transduites expriment la GFP (en vert).
Nous avons ensuite étudié l’expression du gène codant pour la PrP endogène et l’expression de la protéine dans les cellules en cours d’induction neurale suite à leur transduction avec les lentivirus pWPXL-GFP et pWIG-HuPrP. L’expression du gène codant pour la PrP endogène (Figure 108-A) ainsi que la protéine PrP (Figure 108-B), augmentent dans les cellules en cours de différenciation comme nous l’avions observé au préalable pendant l’induction des cellules non transduites. L’expression de la protéine PrP est nettement augmentée dans les cellules transduites avec le lentivirus pWIG-HuPrP par rapport aux cellules contrôles confirmant la bonne efficacité de transduction (Figure 108-B). Cependant, la surexpression de la PrP provoque une légère diminution, toutefois significative, de l’expression de la PrP endogène suggérant l’existence d’une boucle de rétrocontrôle puisque la PrP va être exprimée par le transgène (Figure 108-A).

Nous avons ensuite étudié l’effet de la surexpression de la PrP sur l’expression et le clivage de l’APP (Figure 108-C/D). Durant cette première partie de l’induction neurale, on observe que l’expression de l’APP Tot et de l’APP-KPI est augmentée au cours de l’induction neurale par rapport aux CSEh. La surexpression de la PrP entraîne une très légère augmentation des messagers APP Tot (Figure 108-C) à J6 de l’induction, mais qui n’est pas maintenue plus à J12. On n’observe cependant pas d’effet de la surexpression de la PrP sur l’expression de l’APP-KPI (Figure 108-D).
Figure 108 : Analyses par qPCR de l’expression des gènes codant pour la PrP et les isoformes de l’APP au cours de l’induction neurale des cellules CSEh H9 non transduites et transduites avec les lentivirus pWPXL-GFP et pWIG-HuPrP.

L’expression du gène codant pour la PrP (A) augmente pendant l’induction neurale mais nous n’avons pas observé de différences. Comme nos primers sont dirigés contre des séquences contenues dans le messager issu de l’endogène, il semble que l’expression de l’endogène diminue car la PrP codées par le transgène à pris le relais (B). De même, l’expression des isoformes de l’APP Tot et APP-KPI sont augmentées par rapport aux CSEh mais aucun effet de la surexpression de la PrP n’est observé à J12. Les cellules sont soit transduites avec les lentivirus pWPXL-GFP (en vert) et pWIG-HuPrP (en rouge) ou non transduites (en gris). Les CSEh H9 et les H9NSC contrôles sont représentées respectivement en jaune et bleu. Analyses statistiques t.test (unilatéral à variance égale ou inégale), p<0,01 : **, p<0,05 : * Les analyses statistiques des résultats de qPCR sont faites avec des échantillons provenant de 3 expériences indépendantes et réalisées en triplicats techniques.
Nous avons ensuite étudié l’effet de la surexpression de la PrP sur les taux de fragments solubles sAPPα/β. La concentration (ng/million de cellules) de sAPPα (Figure 109-A) et sAPPβ (Figure 109-C) sont nettement diminuées entre J6 et J12, ce quels que soient les types cellulaires. A J6, les concentrations sont beaucoup plus importantes dans les cellules transduites avec les deux types de lentivirus (GFP/ PrP) par rapport aux cellules non transduites, suggérant une potentielle augmentation de la production ou du maintien de ces deux fragments provoquée par la transduction (Figure 109-F). Cependant, cette surexpression de PrP entraîne une plus forte augmentation des niveaux des sAPPα/β à J12 par rapport aux cellules contrôles surexprimant la GFP avec plus de 300% d’augmentation pour sAPPα (Figure 109-B) et 240% d’augmentation pour sAPPβ (Figure 109-D). Comme l’expression de l’APP en qPCR ne semble pas être modifiée par la surexpression de la PrP, il semblerait que les clivages en α et β soient réellement augmentés ou alors que la dégradation de ces fragments soit diminuée, suggérant qu’il en soit un rôle régulateur de la PrP sur les taux de sAPPα/β.

L’étude du ratio sAPPβ/sAPPα ne montre pas de réelles différences entre J6 et J12 ce quels que soient les types cellulaires, avec toutefois une légère tendance à diminuer (de 14%) lorsque la PrP est surexprimée à J12 mais qui n’est toutefois pas statistiquement significative (p value = 0,11 soit 11% de risque que l’hypothèse de diminution soit fausse ce qui est toutefois assez faible) (Figure 109-E).
Figure 109 : Analyse par ELISA MSD, de la production des fragments solubles sAPPα et sAPPβ au cours de l'induction neurale des CSEh H9 non transduites ou transduites avec les lentivirus pWPXL-GFP et pWIG-HuPrP.
La quantité de fragments sAPPα (A) et sAPPβ (C) est plus importante dans les cellules transduites que dans les cellules qui ne le sont pas à J6 et J12 de l'induction. À J6, les quantités des sAPP sont équivalentes entre les cellules surexprimant la GFP ou la PrP. Cependant, à J12, la surexpression de la PrP (D) favorise la production des deux fragments : 312% (B) pour sAPPα et 240% (D) pour sAPPβ. Le ratio sAPPβ/sAPPα (E) ne montre pas de différences entre les différents types cellules avec toutefois une tendance à diminuer quand la PrP est surexprimée (p=0,11%). Les cellules sont soit transduites avec les lentivirus pWPXL-GFP (en vert) et pWIG-HuPrP (en rouge) ou non transduites (en gris). Analyses statistiques t.test (unilateral à variance égale ou inégale), p<0,01 : **, p<0,05:* Les analyses statistiques des résultats de MSD sont faites avec des échantillons provenant de 3 expériences indépendantes et réalisées en duplicats techniques.
Nous avons également étudié les niveaux des peptides Aβ au cours de l’induction neurale dans le surnageant de culture. Les peptides Aβ 1-38 ne sont pas représentés car leurs concentrations restent en-dessous du seuil minimal de détection par ELISA MSD au cours de cette induction neurale. A J6, les concentrations en peptides Aβ 1-40 (Figure 110-A) et 42 (Figure 110-C) sont plus faibles dans les cellules transduites (GFP/PrP) que dans les cellules qui ne le sont pas. Il se peut que la transduction, en stressant les cellules, inhibe les voies de production des peptides ou alors favorise leur dégradation. Les quantités de peptides Aβ sont néanmoins équivalentes entre les cellules surexprimant la GFP ou la PrP même si il y a là encore une légère diminution des Aβ 40 et 42 (-25% et -18%) quand la PrP est surexprimée (qui n’est cependant pas significative (p value = 0.17) (Figure 110-B/D). A J12 de l’induction neurale, le niveau de peptides Aβ (40 et 42) est cette fois plus faible, de façon statistiquement significative (-62% et -69% respectivement, p value < 0.004), dans les cellules surexprimant la PrP par rapport à celles surexprimant la GFP. Comme la surexpression de la PrP (Figure 110-F) provoque une très légère augmentation de l’expression de l’APP (1,25x) à J6 et une expression équivalente à celle de la GFP à J12 (Figure 108-C/D) et que l’on a de façon indifférente une augmentation des sAPP (y compris sAPPβ), il est possible que la PrP ait également un rôle de régulateur négatif sur le clivage en γ de l’APP mais nos résultats à ce stade-là ne permettent pas non plus d’exclure un effet positif de la PrP sur la dégradation ou l’instabilité des Aβ.

Comme pour les fragments sAPP, le ratio Aβ42/Aβ40 reste équivalent entre les différentes lignées à J6 (Figure 110-E). Cependant, ce ratio est significativement plus faible dans les cellules surexprimant la PrP à J12, suggérant un effet négatif de la PrP dans le choix du clivage de la γ sécrétase en 42 ou là aussi sur une plus grande dégradation des Aβ42.
Figure 110 : Analyse par ELISA MSD, de la production des peptides Aβ 1-40 et 1-42 au cours de l'induction neurale des CSEh H9 non transduites ou transduites avec les lentivirus pWPXL-GFP et pWIG-HuPrP.

Les concentrations en peptides Aβ 1-40 (A) et Aβ 1-42 (C) sont plus faibles dans les cellules transduites que dans les cellules non transduites à J6. Les quantités de peptides Aβ sont équivalentes entre les cellules GFP et PrP avec toutefois une légère diminution quand la PrP est surexprimée (B, D, F). À J12, les quantités des peptides Aβ sont plus faibles dans les cellules surexprimant la PrP : -62% pour Aβ40 et -69% pour Aβ 42 (B, D). Le ratio Aβ42/Aβ40 (E) reste équivalent entre les différentes lignées à J6 mais est en revanche plus faible dans les cellules surexprimant la PrP à J12. Les cellules sont soit transduites avec les lentivirus pWPXL-GFP (en vert) et pWIG-HuPrP (en rouge) ou non transduites (en gris). Analyses statistiques t.test (unilatéral à variance égale ou inégale), p<0.01 : **, p<0.05 : * Les analyses statistiques des résultats de MSD sont faites avec des échantillons provenant de 3 expériences indépendantes et réalisées en replicats techniques.
B. Transduction des NSC

Les tous premiers essais de transduction ont été réalisés sur les NSC obtenues à partir des CSEh H9 et H1 selon le protocole d’induction neurale adapté de Y. Benninger. De la même manière que pour les CSEh, des mises au point ont été nécessaires pour optimiser la transduction des NSC.

1. Mises au point

Nous avons testé plusieurs conditions pour la transduction des NSC : densité cellulaire, MOI de transduction et billes de magnétotransduction.

Densité cellulaire :
Pour une transduction efficace des cellules en monocouche, il faut, la veille de la transduction, ensemencer les cellules de telle sorte qu’elles soient à 80% de confluence le jour J. Plusieurs densités ont été testées : de 1.10^4 et 2.10^5 cellules/cm² et l’ensemencement à 1.8.10^4 c/cm² a été sélectionné.

MOI/Volume de transduction :
Différentes MOI ont été testées pour les vecteurs pWPXL-GFP et pWIG-HuPrP : MOI 30, 60 et 100 (Figure 111-a, b, c). Nous avons évalué l’efficacité de transduction en faisant le ratio du nombre de cellules GFP sur le nombre total de cellules. Quel que soit le vecteur utilisé, les différentes MOI testées permettent d’obtenir au minimum 60% de cellules transduites. En effet, le lentivirus pWPXL-GFP permet une efficacité de transduction de 67,2 ; 76,2 et 75% pour les MOI 30, 60 et 100 respectivement. Le lentivirus pWIG-HuPrP permet quant à lui, un efficacité de transduction de 60,9 ; 64,1 et 57,6% pour les MOI 30, 60 et 100 respectivement. La MOI de 60 a été sélectionnée car elle permet dans tous les cas d’obtenir la meilleure efficacité de transduction tout en n’étant pas toxique pour les cellules.
Nous avons également testé différents volumes de lentivirus shRNA puisque rappelons-le, ces lentivirus ne sont pas titrés : 1µL ; 0,5µL ; 0,2µL ; 0,05µL et 0,01µL (Figure 111-d, e). Les plus grands volumes se sont avérés très toxiques pour nos cellules donc nous avons sélectionné le volume de 0,01µL.

Figure 111 : Observation de l’efficacité de transduction. Photographies avec Evos (Ozyme).

Exemple à J4 post-transduction sur les NSC obtenues à partir des CSEh H1, selon le protocole adapté de Y. Benninger.

* a : cellules non transduites (Nt) : aucune cellule n’exprime la GFP
* b : cellules transduites avec le vecteur pWPXL-GFP (MOI 30/60/100) : les cellules transduites expriment la GFP (vert)
* c : cellules transduites avec le vecteur pWIG-HuPrP (MOI 30/60/100) : les cellules transduites expriment la GFP (vert)
* d : cellules transduites avec le vecteur pAPM-shRNA-Luciférase (volumes 0,2/0,05/0,01)
* e : cellules transduites avec le vecteur pAPM-shRNA-PrP (volumes 0,2/0,05/0,01)

Billes de magnétophosphénsion :

Dans le but d’optimiser l’efficacité de la transduction, nous avons comparé la transduction avec le vecteur lentiviral hébergeant la GFP réalisée de façon
classique à de la magnétotransduction avec ce même vecteur. Cette dernière consiste à coater des billes magnétiques avec des lentivirus et ensuite incuber les boîtes de culture cellulaire sur une plaque aimantée de façon à mettre les billes et donc les virus en contact direct avec les cellules. Après observation des cellules quelques jours après la transduction, nous n’avons pas observé d’amélioration de la transduction. **Nous n’utiliserons donc pas cette méthode** pour la suite des expérimentations.

![Image de la comparaison entre sans et avec billes](sans_billes_avec_billes.png)

Figure 112 : Comparaison de l’efficacité de transduction classique et de magnétotransduction des NSC avec le vecteur lentiviral pWPXL-GFP à J2 post-transduction sur les NSC obtenues à partir des CSEh H9, selon le protocole adapté de Y. Benninger. Photographies avec Evos (Ozyme).

- **M&M :** Un mix contenant le volume nécessaire de lentivirus + 1uL de Viromag (billes magnétiques) qsp 10uL PBS est préparé pour chaque vecteur lentiviral et incubé entre 15 minutes à température ambiante. Le mix est ensuite ajouté dans le puits contenant les cellules et la plaque de culture est déposée pendant au minimum 15 minutes sur un plateau magnétique. La plaque est ensuite retirée du plateau magnétique et un volume de milieu de culture est ajouté. Les cellules sont ensuite placées dans l’incubateur à 37°C, 5% CO2.

Nous avons décidé de ne pas utiliser cette méthode pour la suite puisqu’elle n’apporte rien à l’efficacité de transduction. Le protocole décrit ci-dessous est donc celui que nous avons mis au point et choisi :

- **M&M :** Pour la transduction des NSC : la veille, les cellules sont ensemencées à 1,8.10⁴ c/cm² dans des puits de plaque 96 puits. Un puits supplémentaire est prévu pour mesurer la quantité exacte de cellules le jour de la transduction. Le lendemain, le puits supplémentaire est trypsiné et les cellules sont comptées afin de calculer le
volume nécessaire de lentivirus de façon à avoir une MOI de 60 pour les vecteurs pWPXL et pWIG-HuPrP et 0,01μL pour les vecteurs pAPM-shRNA-HuPrP et pAPM-shRNA-Luciférase. Le milieu de culture des cellules est changé (50μL) et on ajoute les lentivirus. On laisse 1h sous agitation à RT, on double le volume du milieu de culture et on place les cellules à l’incubateur 37°C, 5%CO2. Le lendemain, on double de nouveau le volume du milieu de culture, milieu qui sera changé tous les deux jours.

Au cours de ces différentes mises au point, nous nous sommes aperçus qu’il était difficile de maintenir les cellules transduites en culture notamment lors de la surexpression ou de l’inhibition de la PrP. Plusieurs hypothèses étaient alors possibles pour expliquer la perte des cellules au fur et à mesures des passages :
- l’augmentation de la PrP favoriserait la différenciation des cellules et leur maintien dans un milieu de prolifération pourrait entraîner une augmentation de l’apoptose
- au contraire, un niveau de PrP semblerait nécessaire pour la prolifération cellulaire donc la perte d’expression de la PrP, après transduction avec les lentivirus shRNA-HuPrP, pourrait provoquer une perte de la prolifération, une entrée en quiescence ou encore une différenciation précoce

Pour tester ces hypothèses, nous avons de nouveau transduit les cellules souches neurales, NSC H1B27G5-4 (obtenues à partir des CSEh H1 selon le protocole adapté de Y. Benninger) avec les 4 mêmes lentivirus dans un milieu de prolifération. Cinq jours après la transduction, nous avons observé l’efficacité de transduction par évaluation de la fluorescence de la GFP (81,2% pour le vecteur contrôle pWPXL-GFP et 58,7% pour le vecteur pWIG-HuPrP) et l’impact de la transduction sur la prolifération des cellules (grâce à l’incorporation d’EdU dans les cellules), sur la survie cellulaire (grâce à un test MTT) et sur l’apoptose (par mesure de l’activité des caspases 3 et 7). Les analyses effectuées en milieu de prolifération montraient que la surexpression de la PrP favoriserait la prolifération des cellules ainsi que la viabilité. Au contraire, l’absence de la PrP augmentait l’activité des caspases (Figure 113).
Figure 113 : Transduction des cellules CSEh/NSC. Photographies avec Evos (Ozyme).

A : J5 post-transduction :
1. (a) cellules non transduites : aucune cellule n’exprime la GFP
2. (b) cellules transduites avec le vecteur pWPXL : les cellules transduites expriment la GFP (vert)
3. (c) cellules transduites avec le vecteur pWIG-HuPrP : les cellules transduites expriment la GFP (vert)
4. (d) cellules transduites avec le vecteur shRNA-Luciférase
5. (e) cellules transduites avec le vecteur shRNA-PrP

B : Mesure de la prolifération cellulaire à J5

C : Mesure de l’apoptose via la mesure des caspases 3 et 7 à J5

D : Mesure de la viabilité cellulaire à J5
1. (a) viabilité des cellules transduites avec pWIG-HuPrP par rapport au contrôle pWPXL
2. (b) viabilité des cellules transduites avec shRNA-PrP par rapport au contrôle shRNA-Luciférase.
Cependant, au fur et à mesure de la culture des différentes lignées de NSC obtenues (sans transduction) et en parallèle de nos optimisations, nous nous sommes aperçus que les cellules se maintenaient mal en culture et qu'elles prenaient même une allure de cellules Mésenchymateuses. De même la lignée H1NSC, dérivée à l’IGH, qui nous servait de référence ne poussait quasiment plus après 25 passages. Plusieurs hypothèses ont été proposées pour expliquer cela :

- Nous avons dérivé une population mixte de cellules avec des NSC et des cellules de type mésenchymateuse et au fur et à mesure des passages nous avons privilégié la population mésenchymateuse.

- Les NSC ne se maintiennent pas en culture sur trop de passages.

- Les paramètres de densité d’ensemencement, la rythmicité des passages ont pu « appauvrir » nos cultures et privilégier des cellules qui au départ étaient moins présentes.

De nombreux paramètres étaient donc à tester (densité cellulaire, nettoyage des cellules pour éliminer les cellules dont la morphologie n’est pas de type NSC, milieu N2 de culture des NSC). En parallèle, après avoir discuté avec différents groupes et en se rapprochant d’un des ingénieurs de chez Gibco, travaillant sur l’induction neurale, nos constats ne semblaient pas aberrants et nous avons testé un de leur milieu (StemPro NSC (Gibco) + EGF + bFGF) un peu différent du nôtre (N2) pour cultiver les NSC issues de l’induction neurale en B27G5 à 12 et 14 jours. Il nous a aussi suggéré de nettoyer manuellement toutes les cellules qui ne prenaient pas une morphologie de type NSC. Le laboratoire a donc poursuivi ses efforts pour obtenir des NSC à partir de nos CSEh. Ces NSC sont stables et comparables (morphologie, expression des marqueurs de NSC...) à des H9NSC dérivées par Gibco (que nous avons achetées comme référence) avec un milieu proche du B27G5 (Figure 114). Cependant cela a été long et nous ne pouvions pas attendre la fin de l’obtention et de la caractérisation de nos propres cellules pour poursuivre mon projet de thèse. Aussi pour la suite nous avons utilisé les cellules H9NSC dérivées à partir des CSEh H9 chez Gibco.
Figure 114 : Expression des marqueurs de CSE et NSC dans les cellules H9NSC de Gibco. Exemple de l’expression d’Oct4, de Sox1, de Sox2 et de Nestin (d’après le fascicule Gibco sur les H9NSC).

Les Cellules H9NSC (Gibco) ont donc été transduites avec les 4 vecteurs lentiviraux : pWPXL qui permet l’expression de la GFP seule, utilisé comme contrôle de transduction, le vecteur pWIG-HuPrP qui permet l’expression de la PrP humaine et de la GFP, le vecteur pAPM-shRNA-HuPrP qui permet une inhibition de l’expression du gène de la PrP et le vecteur pAPM-Sh-Lu utilisé comme vecteur contrôle de transduction du précédent (Figure 115). Les mises au point initialement réalisées sur les lignées de NSC obtenues au laboratoire ont été conservées pour la transduction de ces cellules.

Figure 115 : Observation de l’efficacité de transduction des H9NSC Gibco à J4 post-transduction. Photographies avec Evos (Ozyme).

a : cellules non transduites (Nt) : aucune cellule n’exprime la GFP (f)
Les cellules sont transduites avec le vecteur pWPXL-GFP (b) ou le vecteur pWIG-HuPrP (c) : les cellules transduites expriment la GFP (vert ; g, h)
Les cellules sont transduites avec le vecteur pAPM-shRNA-Luciférase (d) ou le vecteur pAPM-shRNA-PrP (e) : les cellules n’expriment pas la GFP (vert ; i, j).
2. Surexpression de la PrP

Afin de vérifier l’efficacité de transduction des cellules H9NSC avec les lentivirus pWPXL-GFP et pWIG-HuPrP et de sélectionner seulement les cellules transduites, nous avons évalué l’expression de la GFP par immunofluorescence (Figure 116). Comme attendu, l’expression de la GFP est bien présente dans les cellules transduites contrairement aux cellules qui ne le sont pas (Nt).

![Figure 116 : Cellules H9NSC transduites.](Image)

Expression de la GFP dans les cellules Non transduites (Nt) et transduites avec les vecteurs lentiviraux pWPXL-GFP (GFP) et pWIG-HuPrP (PrP).

Nous avons déterminé le ratio cellules vertes sur cellules totales après comptage de cellules vertes / noyau dapi. Pour cela, nous avons réalisé une immunofluorescence avec un anticorps anti-GFP sur cellules fixées de façon à être certain de visualiser les cellules exprimant même faiblement la GFP. Cela nous a permis d’établir une efficacité de 65 et 80 % pour les cellules contrôle GFP et les cellules surexprimant la PrP, respectivement (Figure 117).

Nous avons également vérifié sur les mêmes cellules (en double marquage) l’expression de la PrP et avons observé une augmentation de la PrPc avec une localisation majoritairement membranaire. La protéine PrP est quant à elle difficile à visualisée dans les NSC non transduites et transduites avec le vecteur contrôle GFP (Figure 117).
Figure 117 : Expression de la GFP et de la PrP dans les cellules H9NSC transduites.

Expression de la GFP dans les cellules Non transduites (Nt) et transduites avec les vecteurs lentiviraux pWPXL-GFP (GFP) et pWIG-HuPrP (PrP). Marquage anti-GFP (Clinisciences) et anti-PrP Saf32 (CEA).

Nous avons également montré par Western-blot que dans les cellules surexprimant la PrP, celle-ci était présente sous ses trois isoformes glycosylées (Figure 118-A).

Les différentes isoformes de la PrPC sont nettement plus exprimées dans la lignée surexprimant la PrPC humaine (appelée PrP) que dans les lignées contrôles non transduite (appelée NT) et transduite avec le vecteur pWPXL-GFP (appelée GFP). Cette observation a été confirmée avec un ELISA-PrP (SPIBIO) où l’on peut voir une augmentation de l’expression de la protéine d’environ dix fois dans la lignée PrP (Figure 118-B).
Figure 118 : Expression de la PrP dans les cellules H9NSC non transduites (Nt) et transduites avec les vecteurs lentiviraux pWPXL-GFP (GFP) et pWIG-HuPrP (PrP).

Les analyses par Western Blot de la PrP (marquage Saf 32) puis de l’actine (gène de ménage) (A) ou par ELISA (B) nous ont permis de vérifier que l'expression de la PrP est bien augmentée dans les cellules la surexprimant (PrP, rouge) par rapport aux cellules contrôles surexprimant la GFP (GFP, vert) ou non transduites (Nt).

3. Inhibition de l’expression de la PrP

Concernant les cellules transduites avec les vecteurs hébergeant les shRNA-Lu (contrôle) et shRNA-PrP, comme les vecteurs contiennent une cassette de sélection contre la puromycine nous avons réalisé une sélection avec cet antibiotique.

Quelques optimisations ont de nouveau été nécessaires, mais nous avons pu obtenir des cellules avec une inhibition importante de la PrP (Figure 119). Lorsque les cellules transduites avec le shRNA-PrP sont sélectionnées avec la puromycine (shPrP2), l’expression de l’ARNm PRNP est nettement diminuée (environ 65%) par rapport aux cellules non sélectionnées (shPrP) (Figure 119-A). L’inhibition est importante mais n’est cependant pas totale, ce qui peut expliquer la présence de PrP résiduelle dans nos cellules en IF (Figure 119-B).

Ces résultats ont été confirmés par ELISA où l’on observe une diminution de plus de 16 fois de l’expression de la PrP dans la lignée transduite avec le shRNA-PrP par rapport à son contrôle (Figure 119-C).
Figure 119 : Expression de la PrP dans les cellules H9NSC non transduites (Nt) et transduites avec les vecteurs lentiviraux pAPM-shRNA-Luciférase (shLu) et pAPM-shRNA-HuPrP (shPrP) avant et après sélection à la puromycine (shLu2 et shPrP2 respectivement).

A : Expression de l'ARNm PRNP (qPCR) : on peut voir une nette diminution de la PrP dans les cellules shPrP2 après sélection à la puromycine (t-test, unilatéral, à variance égale ou inégale, p value <0,001)

B : Expression de la PrP par Immunofluorescence. Marquage anti-PrP Saf32

C : ELISA de la PrP

Les différentes transductions réalisées sur les H9NSC ont bien permis d'obtenir des cellules avec différents niveaux d'expression de la PrP. Nous pouvions donc ensuite étudier l'impact des modifications de l'expression de la PrPc sur la biologie des cellules souches neurales (prolifération, survie et différenciation) ainsi que sur le clivage de la protéine APP.
4. Caractérisation des cellules transduites

Nous avons dans un premier temps vérifié, par immunofluorescence, l’expression du gène de la Nestin qui est très fortement exprimé dans les NSC (Figure 120-A). Nous avons également analysé l’expression de marqueurs de différenciation afin de voir si notre population de cellules souches neurales était homogène ou si nous avions de façon récurrente de la différenciation spontanée en analysant par immunofluorescence MAP2 (marqueur neuronal ; Figure 120-A), βIII-Tubuline (marqueur précoce de neurones ; Figure 120-B) et GFAP (marqueur d’astrocyte ou glie radiaire ; Figure 120-B). Quel que soit le lentivirus utilisé, les cellules sont pour la plupart positives pour Nestin, même après plusieurs passages, ce qui est cohérent avec un état de précurseur neural. Les cellules restent, en grande majorité, négatives pour les marqueurs de différenciation : MAP2, βIII-Tubuline et GFAP. Les cellules positives pour ces marqueurs indiquent cependant qu’il y a un peu de différenciation spontanée dans nos cellules.
Figure 120 : Observation par immunofluorescence des gènes Nestin, MAP2, βIII-Tubuline et GFAP dans les cellules H9NSC (Gibco) transduites ou non.

A : Immunomarquage de Nestin et MAP2
B : Immunomarquage de GFAP et βIII-Tubuline

Nt : cellules non transduites ; GFP : cellules transduites avec le vecteur pWPXL-GFP ; PrP : cellules transduites avec le vecteur pWIG-HuPrP ; shLu : cellules transduites avec le vecteur pAPM-shRNA-Luciférase ; shPrP : cellules transduites avec le vecteur pAPM-shRNA-HuPrP.

Toutes les cellules expriment la Nestin (vert, A). En grande majorité, les cellules restent négatives pour MAP2 (rouge, A), GFAP (vert, B) et βIII-Tubuline (rouge, B).

a) Surexpression de la PrP

Afin d’évaluer l’impact de la surexpression de la PrP sur la biologie des cellules souches, nous avons évalué, par qPCR, l’expression de plusieurs gènes spécifiques des NSC ou des jeunes neurones dans les cellules transduites avec les lentivirus pWPXL-GFP et pWIG-HuPrP. Pour la majorité des gènes exprimés par les NSC, la surexpression de la protéine PrP ne semble pas provoquer de modification de leur expression. C’est le cas notamment
pour les gènes Nestin, Sox1, Sox2 ou encore Pax6 (Figure 120). Nous n’observons pas de différence d’expression des gènes précoces de différenciation neuronale : βIII-Tubuline et DCX (Figure 121).

Figure 121 : Analyses par qPCR de l’expression de différents gènes dans les cellules transduites avec les lentivirus pWPXL-GFP (GFP, vert) et pWIG-HuPrP (PrP, rouge).

La surexpression de la PrP (rouge) ne modifie pas l’expression des gènes spécifiques des NSC tels que Nestin, Sox1, Sox2 ou Pax6. Celle-ci n’entraîne pas non plus de modification de l’expression des marqueurs de jeunes neurones, βIII-Tubuline et DCX. Analyses statistiques t.test (unilateral à variance égale ou inégale), p<0,01 : **, p<0,05 : * Les analyses statistiques des résultats de qPCR sont faites avec des échantillons provenant de 3 expériences indépendantes et réalisées en triplicats ou quadruplats techniques.

b) Inhibition de l’expression de la PrP

Afin d’évaluer cette fois-ci l’impact de l’inhibition de la PrP sur la biologie des cellules souches, nous avons également évalué par qPCR, l’expression de Nestin, Sox1, Sox2 et
Pax6 (Figure 122). L’inhibition de la protéine PrP entraîne une nette diminution de l’expression de Nestin, Sox1 et Pax6 (p<0,001) ou encore de Sox2 (p<0,05). L’absence de la PrP provoque également une importante baisse de l’expression de DCX mais ne semble pas modifier celle de la βIII-Tubuline, même si on observe une légère diminution qui n’est toutefois pas significative.

Figure 122 : Analyses par qPCR de l’expression de différents gènes dans les cellules transduites avec les lentivirus pAPM-shRNA-Luciférase (shLu, bleu foncé) et pAPM-shRNA-HuPrP (shPrP, bleu clair).

L’absence de la PrP (bleu clair) provoque une importante inhibition de l’expression des gènes spécifiques des NSC tels que Nestin, Sox1, Sox2 ou Pax6. Celle-ci entraîne également une diminution de l’expression de DCX mais n’a pas d’impact sur l’expression de la βIII-Tubuline. Analyses statistiques t.test (unilatéral à variance égale ou inégale), p<0,01 : **, p<0,05 : * Les analyses statistiques des résultats de qPCR sont faites avec des échantillons provenant de 3 expériences indépendantes et réalisées en triplicats ou quadruplats techniques.
5. Impact de la modification d’expression du gène de la PrP sur l’APP et ses dérivés peptidiques dans les NSC en prolifération

Nous avons ensuite déterminé si les modifications de l’expression de la protéine PrP avait un impact sur l’expression ou le clivage de la protéine APP dans les cellules NSC. Les expériences de qPCR ont été réalisées de façon à évaluer l’expression de tous les messagers l’APP (APP) et des messagers contenant le domaine KPI (APP-KPI). De façon surprenante, quelle que soit la modification de l’expression de la PrP, une diminution de l’expression des messagers APP (APP) est observée. Cette diminution est de 20% lors de la surexpression (p<0,05) et de l’ordre de 40% lors de l’inhibition de la PrP. En revanche, aucune différence significative n’est retrouvée pour l’expression de la forme APP-KPI entre les cellules avec surexpression ou inhibition de la PrP et leurs contrôles.

![Figure 123 : Analyses par qPCR de l’expression des gènes codant pour toutes les isoformes de l’APP (APP) ou seulement celles contenant le domaine KPI (APP-KPI).](image)

Quelle que soit la modification de l’expression de la PrP (surexpression et inhibition), l’expression de l’APP (toutes les isoformes). Cependant, aucune modification de l’expression de l’APP contenant le domaine KPI n’est observée dans les cellules. Analyses statistiques t.test (unilateral à variance égale ou inégale), p<0,01 : **, p<0,05 : * Les analyses statistiques des résultats de qPCR sont faites avec des échantillons provenant de 3 expériences indépendantes et réalisées en triplicats ou quadruplats techniques.
En ce qui concerne les clivages en α et β de l’APP, nous avons réalisé des dosages en utilisant les techniques ELISA MSD pour les différents peptides sAPPα, sAPPβ et Aβ 38/40/42. On n’observe aucune différence significative lorsque les cellules sont en prolifération quand la PrP est surexprimée pour les peptides sAPPα, Aβ40 et Aβ42 (Figure 124). De même aucune différence concernant le ratio Aβ42/40 n’est observée. Pour les formes sAPPβ et Aβ38, nous sommes en dessous du seuil de détectabilité en MSD.

![Graphique](image)

Figure 124 : Analyse par ELISA MSD de la quantité des peptides issus du clivage de l’APP : sAPPα/β et Aβ 38/40/42 dans les H9NSC transduites avec les lentivirus pWPXL-GFP (vert) et pWIG-HuPrP (rouge), en prolifération.

Aucune modification des concentrations des différents peptides n’est observée lorsque la PrP est surexprimée (PrP). De même, le ratio Aβ42/40 n’est pas modifié par la surexpression de la PrP.

En revanche, une augmentation d’environ 40% des Aβ40 et Aβ42 est obtenue lorsque la PrP est inhibée. On n’observe toutefois pas de modification des ratios Aβ42/40 et sAPPβ/α, ni des fragments solubles sAPPα et sAPPβ lorsque la PrP est inhibée. Ici aussi, les peptides Aβ38 restent en-dessous du seuil de détectabilité.
Figure 125 : Analyse par ELISA MSD de la quantité des peptides issus du clivage de l’APP : sAPPα/β et Aβ 38/40/42 dans les H9NSC transduites avec les lentivirus pAPM-shRNA-Luciférase (bleu foncé) et pAPM-shRNA-HuPrP (bleu clair), en prolifération.

Une importante augmentation des peptides Aβ40 et Aβ42 est observée lorsque la PrP est inhibée (shPrP). Néanmoins, l’inhibition de la PrP n’entraîne pas de modification des fragments sAPPα et sAPPβ ni des ratios Aβ42/40 et sAPPβ/α.

6. Impact de la modification d’expression de la PrP sur la prolifération des NSC

Afin d’évaluer l’impact de la surexpression ou de l’inhibition de la PrP sur les propriétés de prolifération des NSC, nous avons réalisé des expériences d’incorporation d’EdU dans les H9NSC transduites ou non. Nous avons pour cela utilisé un kit Clickit®EDU (lifesciences) qui permet de visualisée en vert les cellules qui ont incorporé l’EDU (analogue du BrdU) parmi toutes les cellules marquées au Dapi. Nous n’avons pas observé de différences significatives pour les cellules surexprimant la PrP (Figure 126-A) mais une diminution de plus de 5% de la prolifération dans les cellules dans lesquelles l’expression de la PrP est diminuée (Figure 126-B). Comme chaque culture cellulaire est constituée d’une population hétérogène en termes de niveau d’expression de la PrP, nous avons pensé que les cellules poussaient peut-être plus rapidement ou moins rapidement en fonction de leur propre niveau d’expression de la PrP. Aussi, nous avons décidé de trier par FACS les cellules exprimant de forts taux de GFP (GFP High) et (PrP-GFP High) ce afin d’avoir un enrichissement maximal en cellules transduites et
exprimant des niveaux comparables de PrP pour les cellules surexprimant la PrP (Figure 127). Lorsque que l’on regarde la prolifération des cellules triées par FACS, on observe que la surexpression de la PrP entraine une augmentation de 15-20% de la prolifération (Figure 126-C).

![Figure 126](image)

*Figure 126 : Mesure de la prolifération cellulaire par incorporation EdU dans les cellules H9NSC non transduites (Nt, gris) ou transduites avec les 4 lentivirus : pWPXL-GFP (GFP, vert), pWIG-HuPrP (PrP, Rouge), pAPM-shRNA-Luciférase (shLu, bleu foncé) et pAPM-shRNA-HuPrP (shPrP, bleu clair). Lorsque les cellules ne sont pas triées, la surexpression de la PrP n’a pas d’impact sur la prolifération (A). En revanche, lorsque les cellules sont sélectionnées par la puromycine pour celles transduites avec les lentivirus shRNA (shLu, shPrP) (B) : l’inhibition de la PrP provoque une diminution de 5% de la prolifération alors que la surexpression de la PrP provoque une augmentation de 35% dans les cellules triées par FACS (C). Les données sont obtenues sur 3 expériences indépendantes pour lesquelles 10 champs ont été analysés. Les analyses ont été réalisées sur les moyennes des 10 champs des 3 expériences indépendantes T-Test (unilatéral, variance égale ou inégale). *= p<0,05, **= p<0,01.*
Figure 127 : Tri par FACS des cellules transduites avec les vecteurs pWPXL-GFP (GFP) et pWIG-HuPrP (PrP) exprimant des niveaux élevés de GFP.

Les cellules transduites avec une forte expression de la GFP (GFP High) ont été séparées par FACS : GFP-GFP High (A) et PrP-GFP High (B).

7. Impact de la modification de l'expression de la PrP sur ses capacités protectrices dans les cellules en prolifération

Comme la PrP est connue pour exercer un rôle neuroprotecteur, nous avons évalué ses capacité antitoxique et anti-apoptotiques grâce au kit ApoTox-Glo (Promega) qui permet de réaliser à la fois une mesure de la viabilité (grâce à une mesure de la fluorescence), de la cytotoxicité (par mesure de la fluorescence) et de l’activité des caspases 3 et 7 (par mesure de la luminescence).

- **M&M :** le kit ApoTox-Glo combine l’analyse de la viabilité, la cytotoxicité et l’apoptose dans le même puits. La viabilité et la toxicité sont déterminées par mesure de deux protéases différentes suite à l’ajout d’un seul réactif non-lytique contenant deux peptides substrats. Pour la viabilité, le peptide substrat fluorogène (GF-AFC Substrate) est utilisé. Il entre dans les cellules intactes où il est clivé pour générer un signal fluorescent proportionnel au nombre de cellules vivantes. Pour la cytotoxicité, le peptide substrat fluorogénique (bis-AAF-R110 Substrate) est utilisé. Il est relargué des cellules en train de mourir et ayant perdues leur intégrité membranaire. Il en résulte des mesures ratiométriques, inversement corrélées à la
viabilité des cellules et de la cytotoxicité. Le ratio de cellules mortes sur cellules viables est indépendant du nombre de cellules et peut être ainsi utilisé pour normaliser les données. Un deuxième réactif contenant un peptide substrat lumino génique (DEVD) pour les caspases 3/7 et la luciférase recombinante thermostable Ultra-Glo™ est ajouté. Le clivage du substrat par les caspases 3/7 libère la luciférase, qui est un substrat pour la luciférase, et génère de la luminescence. Cette dernière est mesurée par un luminomètre, corrèle avec l’activation des caspases 3/7 comme indicateur de l’apoptose.

Cependant, si l’analyse par fluorescence de la viabilité est compatible en termes de longueur d’onde avec la fluorescence de la GFP elle ne l’ai pas pour l’analyse de la cytotoxicité. Aussi, seule la viabilité et l’apoptose sont mesurables dans les cellules exprimant la GFP. Nous avons pu mesurer la cytotoxicité uniquement dans les cellules transduites avec les vecteurs shRNA.

✓ M&M : Pour réalisé ce test, 15000 cellules sont ensemencées la veille de l’expérience puis traitées avec 50ng/ml de staurosporine afin d’induire la mort cellulaire. Trois expériences indépendantes ont été réalisées avec un minimum de 5 à 8 puits indépendants traités à la staurosporine.

On n’observe aucune différence vis-à-vis de l’apoptose induite par la staurosporine dans les cellules surexprimant la PrP et les contrôles. En revanche l’inhibition ne serait-ce que partielle de PrP entraîne une augmentation de l’apoptose et de la cytotoxicité induite par la staurosporine. Ces résultats suggèrent que la surexpression de la PrP ne modifie pas la réponse cellulaire vis-à-vis de l’apoptose par rapport à une expression normale de PrP. Ces résultats montrent également qu’il faut un niveau minimum de PrP pour empêcher l’augmentation de l’apoptose (Figure 128-a/b).

a : Représentation de l’activité des caspases 3 et 7 (mesure par luminescence) par rapport à la viabilité (mesure par fluorescence à 400nm/505nm) : l’inhibition de la PrP provoque une augmentation significative des caspases 3 et 7 donc de l’apoptose. Résultats obtenus sur trois analyses indépendantes de la viabilité.

b : Représentation de la cytotoxicité (mesure par fluorescence à 485nm/520nm) par rapport à la viabilité : l’inhibition de la PrP entraîne également une nette augmentation de la cytotoxicité induite par la staurosporine.

3 expériences indépendantes ont été réalisées. 5 à 8 puits par types cellulaires ont été traités à la staurosporine dans chacune des expériences. T-Test par comparaison 2 à 2 (unilatéral, variance égale ou inégale) : *= p<0,05, **= p<0,001, ***= p<0,0001.
8. Impact de la modification d'expression de la PrP sur la différenciation neuronale des NSC

Afin d'étudier le rôle de la PrP dans la différenciation des NSC, nous avons réalisé des différenciations sur les H9NSC non transduites ou transduites avec les 4 lentivirus pWPXL-GFP, pWIG-HuPrP, pAPM-shRNA-Luciférase et pAPM-shRNA-HuPrP. Nous nous sommes uniquement concentrés sur l'analyse de la différenciation neuronale en raison du manque de temps dans le délai imparti de thèse. Les autres différenciations, bien que réalisées une fois, montrent que les cellules se différencient en Astrocytes et en Neurones et Astrocytes selon les deux autres types de différenciation.

Comme les différenciations durent 3 semaines nous avions d'abord commencé par amplifier les cellules de façon importante de sorte de pouvoir lancer dans une fenêtre de temps courte, les trois essais de différenciation neuronale indépendants pour lancer les différenciations. Les expériences de différenciation ont cependant été réalisées avec des cellules non encore triées, donc avec une population hétérogène.

a) Expression de la PrP

Avant de réaliser les différentes analyses sur les cellules transduites, nous avons en premier lieu, vérifié que ces dernières conservaient leur modification au cours de la différenciation neuronale. Pour les lignées transduites avec les vecteurs lentiviraux pWPXL-GFP et pWIG-HuPrP, nous avons vérifié le maintien de l'expression de la GFP au cours du temps par immunofluorescence. Nous avons notamment observé que l'expression de la GFP restait constante tout au long de la différenciation neuronale (Figure 129-A) ce qui par ailleurs justifiait d'utiliser des cellules non triées à cette époque. Nous avons également vérifié le maintien de l'inhibition de la PrP au cours de la différenciation par qPCR (Figure 129-B) et le maintien de la surexpression de la PrP par ELISA (Figure 129-C). Même si la PrP est encore exprimée dans les cellules transduites avec le vecteur shRNA-HuPrP (shPrP), on observe toujours une nette diminution de son
expression dans les cellules shRNA-shPrP par rapport à leur contrôle (cellules transduites avec le vecteur shRNA-Luciférase).

Figure 129 : Vérification du maintien des caractères modifiés par transduction au cours de la différenciation neuronale des H9NSC Gibco.

B : Analyse par qPCR de l’expression du gène codant pour la PrP. Les cellules transduites avec le vecteur shRNA-PrP(bleu clair), donc où la PrP est inhibée, présentent toujours une importante baisse de l’expression de l’ARN messager par rapport à leur contrôle (cellules transduites avec le vecteur shRNA-Luciférase, shLu, bleu foncé). Analyses statistiques t.test (unilatéral à variance égale ou inégale), p<0,01 : **, p<0,05 : *. Les analyses statistiques des résultats de qPCR sont faites avec des échantillons provenant de 3 expériences indépendantes et réalisées en triplicats ou quadruplats techniques.

C : Analyse par ELISA de l’expression de la PrP. Les cellules transduites avec le vecteur pWIG-HuPrP (rouge), donc où la PrP est surexprimée, présentent toujours une importante augmentation de l’expression de la PrP par rapport aux cellules contrôles surexprimant la GFP (vert) ou non transduites (Nt, gris). L’analyse est faite avec des échantillons provenant de 2 expériences indépendantes et réalisées en duplicats techniques.

Nous avons étudié ensuite l’impact de la modification de l’expression de la PrP sur la différenciation des cellules souches et sur le clivage de l’APP.
b) Impact sur la surexpression de la PrP

Nous avons étudié l’expression et la localisation de la PrPc par immunofluorescence. Nous avons observé que la PrPc était exprimée dans la majorité des cellules et que son expression était bien plus importante dans les cellules la surexprimant (HuPrP) que dans les contrôles (GFP), tout au long de la différenciation (Figure 130-A). Nous avons également observé que la PrPc se retrouvait à la surface cellulaire et notamment dans les prolongements neuronaux au fur et à mesure de la différenciation (Figure 130-B). Nous avons ensuite analysé l’expression des différentes isoformes de la protéine PrP par Western Blot (Figure 130-C). Nous avons notamment pu observer que toutes les isoformes de la PrP étaient exprimées dans les différentes lignées cellulaires au cours de la différenciation neuronale et que cette expression était bien nettement plus importante dans les cellules surexprimant la PrP.

Figure 130 : Expression de la PrP dans les H9NSC transduites avec les lecteurs lentiviraux pWIG-HuPrP (PrP, rouge), pWPXL-GFP (GFP, vert) et non transduites (NT), au cours de la différenciation neuronale.

A : Analyse par immunofluorescence de la PrP à J7 et J21 : la PrP est bien plus exprimée dans les cellules transduites avec le vecteur pWIG-HuPrP
B : Analyse par immunofluorescence de la PrP à J7 dans les cellules non transduites : la PrP est présente dans les prolongements.
C : Analyse par Western Blot (marquage Saf 32) des glycoformes de la PrP : toutes les glycoformes de la PrP sont exprimées dans les 3 lignées cellulaires. L’expression de la PrP est beaucoup plus forte dans les cellules la surexprimant que dans les cellules contrôles. L’expression de la GAPDH est utilisée comme contrôlé interne de l’analyse.
(1) Impact sur la différenciation neuronale

De J0 à J7 les cellules sont maintenues en milieu de prolifération contenant uniquement du bFGF de façon à enrichir la population en progéniteurs neuronaux (Conti, Pollard et al. 2005). Si on regarde uniquement les cellules contrôle GFP, il y a peu de différences d'expression de Sox1 et Nestin entre J0 et J7, en revanche Pax6 et Sox2 diminuent à J7 (Figure 131). Nestin, Sox2 et Pax6 continue d’être exprimées de façon constante alors que l’on observe une diminution de l’expression de Sox1 à J15 suivi d’une légère ré-augmentation à J21 ce qui suggère que, au cours de notre protocole de différenciation, (différenciation que nous n’avons pas pu maintenir au-delà de J21 car les cellules se décollaient alors que nous n’avions pas été confronté à ce phénomène lors des premières différenciations), les cellules continuent de maintenir l’expression de gène de cellules souches ou progéniteurs neuronaux jusqu’à J21.

Cela dit sans analyses supplémentaires (en WB et/ou IF) de ces marqueurs sauf pour Nestin que nous avons analysé en IF tout au long de la différenciation, on peut imaginer soit un maintien de cellules souches neurales (co-exprimant Sox1, Sox2 Pax6 et Nestin), soit une augmentation des cellules de la glie radiaire issue de la division asymétrique des NSC (exprimant Nestin, Sox2 et Pax6) ou des sous types neuronaux qui maintiennent une expression de Pax6. Néanmoins il s’agit là de la quantification des messagers et les résultats d’immunofluorescence de Nestin, par exemple, montrent qu’à expression équivalente au niveau des messagers entre J0 et J21, on a à J0 une majorité de cellules Nestin-positives alors qu’à J21 très peu de cellules, voire, pas du tout sont positives pour Nestin (Figure 132-A). Il faut aussi préciser qu’après J7, le milieu contient certes du B27 et du BDNF en vue de favoriser la différenciation neuronale et la survie, mais il contient, jusqu’à J15, encore un peu de bFGF ce qui pourrait expliquer la transcription de certains gènes dans certaines sous-populations cellulaires.

A l’inverse on voit une expression des messagers de la βIII-tubuline dès J0 (Figure 131), expression qui pourrait correspondre à de la différenciation spontanée, mais qui correspond cependant seulement à un faible marquage en immunofluorescence de la βIII-tubuline dans les cellules NSC (Figure 132-B). Ce marquage est faible et est surtout localisé au niveau du Réticulum-Golgi, comme si la cellule se préparait à réaliser sa différenciation neuronale en synthétisant les protéines dont elle aura besoin pour réaliser entre autres ses neurites (où la βIII-Tubuline est ensuite fortement exprimée à
J15 et J21). Son expression diminue entre J7 et J15 et ré-augmente lorsque l'on retire le bFGF. Là encore il ne s'agit que des ARN messagers et la protéine est quant à elle très fortement produite dans les cellules en différenciation au niveau des corps cellulaires, dendrites et neurones (Figure 131). La Doublecortine qui marque les neuroblastes et jeunes neurones n’est en revanche pas exprimée à J0 et son expression est augmentée tout au long de la différenciation sur 21 jours suggérant que nous sommes dans des étapes précoces de la différenciation neuronale.

Figure 131 : Analyse par qPCR des gènes spécifiques des NSC et des jeunes neurones dans les cellules transduites avec les lentivirus pWPXL-GFP (GFP, vert) et pWIG-HuPrP (PrP, rouge) au cours de la différenciation neuronale.

Les analyses de qPCR ont été faites à partir d'échantillons provenant de 3 expériences indépendantes et réalisées en triplicats ou quadruplats techniques.
Figure 132 : Analyse par immunofluorescence de l’expression de Nestin et de la βIII-Tubuline dans les cellules H9NSC transduites avec les lentivirus pWPXL-GFP (GFP) et pWIG-HuPrP (PrP) au cours de la différenciation neuronale. L’expression de Nestin (A) diminue au cours de la différenciation neuronale contrairement à celle de la βIII-Tubuline (B) qui augmente.
Concernant les conséquences de la surexpression de la PrPC sur l’expression de ces différents gènes, nous avons normalisé nos résultats de qPCR par rapport aux contrôles GFP car les résultats ont été obtenus sur 3 expériences indépendantes (Figure 133-A). Au cours de la différenciation neuronale, entre J0 et J7 il n’y a pas de différence entre les niveaux des messagers de Sox1, Nestin, βIII-Tubuline et DCX par rapport au contrôle quand on surexprime la PrP. En revanche, la PrP provoque une augmentation de Sox2 (environ 2 fois plus) et de Pax6 (1,6 fois plus), ce de façon statistiquement significative. Après J15, les cellules surexprimant la PrP présentent non seulement une augmentation de l’expression des principaux gènes spécifiques des NSC tels que Sox1, Sox2, Nestin ou encore Pax6 mais également de la βIII-Tubuline par rapport aux cellules contrôle (Figure 133-A). A J21, Nestin, Sox2 et Pax6 diminuent alors que DCX est plus fortement exprimée. Ces résultats tendent à montrer que dans les phases précoces de la différenciation jusqu’à J15, et malgré une différenciation neuronale importante (qPCR et IF de la βIII-Tubuline), on aurait, lorsque la PrPC est surexprimée, une régulation au niveau transcriptionnelle permettant d’augmenter (pas plus de 2 fois) l’expression de gènes de cellules souches (Sox2, Pax6, Sox1 et Nestin). Le retrait du bFGF ferait chuter ou revenir à une expression normale l’expression de ces gènes. En parallèle, la surexpression de PrP provoque une augmentation de l’expression de DCX à J21 et assurerait donc son rôle de pro-neurogénique après J15 soit une fois le bFGF totalement retiré. Les résultats obtenus pour Nestin à J0 et J7, pour βIII-Tubuline à J15 et DCX à J21 ont pu être également observés par immunofluorescence (Figure 133-B). Ces résultats confirment donc un rôle dual de la PrP dans la prolifération et dans la différenciation des cellules souches.
Figure 133 : Analyse par immunofluorescence et qPCR de l'expression des marqueurs des NSC et des jeunes neurones dans les cellules H9NSC transduites avec les lentivirus pWPXL-GFP (GFP, vert) et pWIG-HuPrP (PrP, rouge) au cours de la différenciation neuronale.

A : Analyse par qPCR de l'expression des gènes spécifiques des NSC et des jeunes neurones après normalisation par rapport au contrôle GFP. La surexpression de la PrP provoque une augmentation de l'expression de Sox2 et Pax6 à J7 et de tous les marqueurs de NSC et de la βIII-Tubuline à J15. A J21, la surexpression de la PrP provoque une diminution de l'expression de Nestin, Sox2 et Pax6 et provoque au contraire une augmentation de DCX. Les analyses statistiques des résultats de qPCR sont faites avec des échantillons provenant de 3 expériences indépendantes et réalisées en triplicats techniques, t.test (unilateral à variance égale ou inégale), p<0,01 : **, p<0,05 : *.

B : Analyse par immunofluorescence de l'expression de Nestin, βIII-Tubuline et DCX, au cours de la différenciation neuronale.
Nous avons ensuite étudié l'impact de la surexpression de la PrP sur le clivage de la protéine APP. Lorsque l'on regarde l'expression au niveau ARNm des différentes isoformes de la protéine APP (APP) et l'expression des isoformes contenant uniquement le domaine KPI (APP-KPI), des variations apparaissent lors de la surexpression de la PrP à J0 où on observe une très légère diminution de l’expression de l’APP (1,3 fois) et en fin de différenciation à J21 où on observe une augmentation de l’expression pour APP et APP-KPI (1,5 fois) même si les profils d'expression restent semblables dans les deux cas. De façon générale, les messagers de toutes les isoformes de l’APP (Figure 134-A) ont tendance à augmenter durant la différenciation neuronale contrairement aux formes contenant le domaine KPI (Figure 134-B). La surexpression de la PrP provoque à la fois une diminution de l’expression de l’APP dans les cellules en prolifération alors qu’elle la favorise en fin de différenciation neuronale. De même, la surexpression de la PrP favorise l’expression de l’APP contenant uniquement le domaine KPI en fin de différenciation suggérant un effet bénéfique de la PrP sur l’expression de l’APP dans les neurones en formation. Toutefois même si ces différences sont significatives, les variations sont faibles (entre 1,3 et 1,5 fois).

Figure 134 : Analyse par qPCR des différentes isoformes de l’APP (APP) ou seulement celles contenant le domaine KPI (APP-KPI), au cours de la différenciation neuronale des H9NSC transduites avec les lentivirus pWPXL-GFP (GFP, vert) et pWIG-HuPrP (PrP, rouge).
L’expression de l’APP (A) augmente pendant la différenciation neuronale contrairement aux formes ne contenant que le domaine KPI (B). La surexpression de la PrP provoque une augmentation de l’expression des différentes isoformes de l’APP en fin de différenciation. Les analyses statistiques des résultats de qPCR sont faites avec des échantillons provenant de 3 expériences indépendantes et réalisées en triplicats techniques, t.test (unilateral à variance égale ou inégale), p<0,01 : **, p<0,05 : *.
Nous avons également constaté que la surexpression de la protéine PrP provoquait à la fois une diminution des fragments solubles sAPPα à J7 (de 23%) et une augmentation (de 17%) à J21 de sAPPα (Figure 135). Par contre, aucune différence significative n’est observée pour les fragments solubles sAPPβ, même si on observe une diminution de 11% (non significative) des niveaux de sAPPβ ou pour le ratio sAPPβ/α. La PrP semblerait donc diminuer le taux de sAPPα (diminution du clivage ou augmentation de la dégradation) en début de différenciation donc dans les NSC et l’augmenter (augmentation du clivage et/ou diminution de la dégradation ou encore parce que l’expression de l’APP est augmentée à J21) en fin de différenciation dans les jeunes neurones.

Figure 135 : Analyse par ELISA MSD des concentrations de peptides sAPPα et sAPPβ au cours de la différenciation neuronale des H9NSC transduites avec les lentivirus pWPXL-GFP (GFP, vert) et pWIG-HuPrP (PrP, rouge). La surexpression de la PrP favorise à la fois la diminution des sAPPα en début de différenciation et l’augmentation de ces derniers en fin de différenciation. Cependant, elle n’entraîne pas de modification des sAPPβ ni du ratio global sAPPβ/α. N=3, les expériences ont été réalisées 3 fois et les analyses en duplicats et triplicats techniques. Analyse statistiques t-test (unilatéral, variance égale ou inégale).
De plus, nous avons également étudié les quantités de peptides Aβ 38/40/42 dans les cellules transduites en cours de différenciation neuronale. La surexpression de la PrP aurait tendance à faire diminuer les taux d’Aβ40 mais ce n’est significatif, d’un point de vue statistique, qu’à J7. Pour Aβ42 on observe une diminution statistiquement significative à J7 également (Figure 136) confirmant le rôle potentiel de la PrP dans la diminution des taux de peptides Aβ. Ces résultats expliquent également la tendance du ratio Aβ42/40 à augmenter au cours de la différenciation, augmentation qui n’est significative qu’à J15 et J21 (avec 16% et 10% d’augmentation). Si on n’observe pas de réelle variation des niveaux d’Aβ38, le ratio 38/40 est également augmenté en fin de différenciation quand la PrP est surexprimée.

![Graphes montrant les concentrations de peptides Aβ38/40/42 et les ratios Ab38/40 et Ab42/40 en fonction du temps et de la surexpression de la PrP.](image)

Figure 136 : Analyse par ELISA MSD des concentrations de peptides Aβ38/40/42 au cours de la différenciation neuronale des H9NSC transduites avec les lentivirus pWPXL-GFP (GFP, vert) et pWIG-HuPrP (PrP, rouge).

La surexpression de la PrP aurait tendance à diminuer les taux des peptides Aβ40 et 42 à J7 et augmenter le ratio Aβ42/40 à J15 et J21 (avec 16% et 10% d’augmentation). La surexpression de la PrP ne semble pas modifier les niveaux d’Aβ38 en revanche le ratio 38/40 est augmenté en fin de différenciation quand la PrP est surexprimée. N=3, les expériences ont été réalisées 3 fois et les analyses MSD en duplicats ou triplicats techniques. Analyse statistiques t-test (unilateral, variance égale ou inégale).
c) **Impact de l’inhibition de l’expression de la PrP**

Nous avons dans un premier temps, étudié la localisation de la PrP\(^C\) par immunofluorescence (Figure 137-A). Comme attendu, la PrP est difficilement détectable dans les cellules de la lignée shRNA-PrP. Nous avons également montré que l’expression de la PrP était bien diminuée dans les cellules shPrP et que celle-ci restait plus faible tout au long de la différenciation, à la fois par qPCR (Figure 137-B) et par ELISA PrP (Figure 137-C). On constate cependant que cette inhibition n’est pas totale mais que son expression (ARN messager et protéine) est significativement plus faible que dans les cellules contrôles et ce tout au long de la différenciation.

Figure 137 : Expression de la PrP dans les H9NSC transduites avec les vecteurs lentiviraux pAPM-shRNA-Luciférase (shLu, bleu foncé) et pAPM-shRNA-HuPrP (shPrP, bleu clair), au cours de la différenciation neuronale.

L’expression du messager de la PrP par qPCR (B) ou de la protéine par immunofluorescence (A) ou par ELISA (C) sont bien diminuées dans les cellules transduites avec le shRNA-HuPrP, ce de façon constante tout au long de la différenciation neuronale. Les analyses sont faites avec des échantillons provenant de 3 expériences indépendantes et réalisées en triplicats ou quadruplats techniques. Analyses statistiques t.test (unilateral à variance égale ou inégale), p<0,001 :***, p<0,01 :**, p<0,05 :*.
Au cours de la différenciation neuronale, les cellules dans lesquelles l'expression de la PrP est inhibée montrent une diminution de l'expression des principaux gènes spécifiques des NSC tels que Sox1, Sox2, Nestin ou encore Pax6 (Figure 138). Cependant les niveaux d'expression de Nestin, Pax6, Sox1 rejoignent presque ou totalement les niveaux de leurs contrôles au fur et à mesure de la différenciation. L'expression de la BIII-Tubuline reste semblable entre les cellules shPrP et leurs contrôles contrairement à la Doublecortine qui est nettement diminuée dans les cellules où la PrP est plus faiblement exprimée mais tend à rejoindre le niveau d'expression du contrôle en fin de différenciation ce qui semblerait indiquer un retard de différenciation neuronale. Pour autant, comme les ARNm de Sox1, Sox2 et Pax6 et Nestin ne sont pas surexprimés on pourrait imaginer une différenciation vers un autre lignage.

![Graphiques de différenciation neuronale](image)

Figure 138 : Analyse par qPCR des gènes spécifiques des NSC et des jeunes neurones dans les cellules transduites avec les lentivirus pAPM-shRNA-Luciférase (shLu, bleu foncé) et pAPM-shRNA-HuPrP (shPrP, bleu clair) au cours de la différenciation neuronale.

L'expression des marqueurs des NSC est plus faible dans les cellules où la PrP est inhibée et ce principalement pendant les 15 premiers jours de différenciation par rapport à leur contrôle. L'expression de la BIII-Tubuline reste elle semblable que la PrP soit présente ou non contrairement à l'expression de la DCX qui est fortement diminuée en l'absence de la PrP. Les analyses sont faites avec des échantillons provenant de 3 expériences indépendantes et réalisées en triplicats ou quadrupliques techniques. Analyses statistiques t.test (unilateral à variance égale ou inégale), p<0,01 : **, p<0,05 : *.
Au départ de la différenciation neuronale, les cellules transduites avec le shRNA-HuPrP sont très différentes de leurs contrôles (shLu). En effet, tous les gènes spécifiques des NSC sont diminués (Figure 139-A). Cette diminution se poursuit à J7 et J15 pour Nestin, Pax6 et DCX et à J21 pour Nestin et Sox2 suggérant un retard de différenciation neuronale puisque DCX est diminuée puis réa augmentée mais qu’il y a peut-être aussi une différenciation vers un autre lignage que nous n’avons pas étudié. La diminution de l’expression de Nestin dans les cellules shRNA-HuPrP pendant toute la différenciation neuronale a également été suivie par immunofluorescence et semble corroborer les résultats obtenus en qPCR (Figure 139-B).
Figure 139 : Analyse par immunofluorescence et qPCR de l’expression des marqueurs des NSC et des jeunes neurones dans les cellules H9NSC transduites, au cours de la différenciation neuronale.

A : Analyse par qPCR de l’expression des gènes spécifiques des NSC et des jeunes neurones.

B : Analyse par immunofluorescence de l’expression de Nestin au cours de la différenciation neuronale.

Les analyses sont faites avec des échantillons provenant de 3 expériences indépendantes et réalisées en triplicats ou quadruplicats techniques. Analyses statistiques t.test (unilateral à variance égale ou inégale), p<0,01 : **, p<0,05 : *.

Nous avons ensuite étudié l’impact de l’inhibition de la PrP sur l’expression et le clivage de la protéine APP lors de la différenciation neuronale des H9NSC transduites avec les vecteurs shRNA.

Nous avons d’abord analysé par qPCR l’expression d’APP total et APP-KPI au cours de la différenciation neuronale (Figure 140). Quelle que soit l’isoforme, l’absence de la PrP
provoque une diminution de l’expression de l’APP à J0, J15 et J21 contrairement à J7 où l’on observe une augmentation de l’expression.

**Figure 140 : Analyse par qPCR des différentes isoformes de l’APP (APP) ou seulement celles contenant le domaine KPI (APP-KPI), au cours de la différenciation neuronale des H9NSC transduites avec les lentivirus pAPM-shRNA-Luciférase (shLu, bleu foncé) et pAPM-shRNA-PrP (shPrP, bleu clair).

L’expression des messagers de l’APP (A) et de l’APP-KPI (B) est diminuée à J0, J15 et J21 quand la PrP est absente contrairement à J7 où elle est augmentée. Les analyses sont faites avec des échantillons provenant de 3 expériences indépendantes et réalisées en triplicats ou quadruplats techniques. Analyses statistiques t.test (unilateral à variance égale ou inégale), p<0,01 : **, p<0,05 : *.

Au cours de la différenciation neuronale, une diminution des quantités de fragments solubles sAPPα et sAPPβ est observée lorsque la PrP est inhibée jusqu’à 25% et >40% d’inhibition au cours de la différenciation neuronale (Figure 141). De plus, le ratio sAPPβ/α diminue également au cours de la différenciation neuronale. Ces résultats suggèrent que l’inhibition de la PrP entrainerait une diminution des taux de sAPPα et β soit en diminuant les clivages en α et β avec une plus forte inhibition du clivage en β, en augmentant la dégradation ou en diminuant l’expression d’APP.
Figure 141 : Analyse par ELISA MSD des concentrations de peptides sAPPα et sAPPβ au cours de la différenciation neuronale des H9NSC transduites avec les lentivirus pAPM-shRNA-Luciférase (shLu, bleu foncé) et pAPM-shRNA-PrP (shPrP, bleu clair).

L’inhibition de la PrP entraîne une diminution des fragments solubles sAPPα et sAPPβ (-25% et -40% respectivement) et du ratio sAPPβ/α. Les analyses sont faites avec des échantillons provenant de 3 expériences indépendantes et réalisées en triplicats ou quadruplats techniques. Analyses statistiques t.test (unilateral à variance égale ou inégale), p<0,001 :***, p<0,01 :**, p<0,05 :*.

En prolifération (J0), l’inhibition de la PrP provoque une augmentation des peptides Aβ 40 et 42 suggérant qu’à ce stade, la PrP régulait négativement les niveaux de ces peptides. En début de différenciation, l’absence de la PrP entraîne une diminution des peptides Aβ suivie par une nouvelle augmentation à J15 et de nouveau une diminution en fin de différenciation. Ainsi, la PrP pourrait agir sur le clivage en γ de l’APP puisque
son absence provoque une diminution des fragments sAPPβ mais une augmentation des peptides Aβ, à J0 et J15. Là encore il n’est pas non plus exclu que l’absence de PrP provoque une inhibition de la dégradation des peptides. Les ratios Aβ38/40 et Aβ42/40 restent relativement semblables quel que soit le niveau d’expression de la PrP sauf à J15 et J21 où l’on observe une légère augmentation des ratios Aβ42/40 et Aβ38/40 respectivement.

Figure 142 : Analyse par ELISA MSD des concentrations de peptides Aβ38/40/42 au cours de la différenciation neuronale des H9N2C transduites avec les lentivirus pAPM-shRNA-Luciférase (shLu, bleu foncé) et pAPM-shRNA-PrP (shPrP, bleu clair).

L’inhibition de la PrP favorise à la fois une augmentation des niveaux de peptides Aβ 40 et 42 à J0 et J15 et au contraire une diminution à J7 et J21 de la différenciation neuronale. Les ratios Aβ38/40 et Aβ42/40 restent relativement semblables sauf à J15 et J21 où ils baissent légèrement. Les analyses sont faites avec des échantillons provenant de 3 expériences indépendantes et réalisées en triplicats ou quadruplats techniques. Analyses statistiques t.test (unilateral à variance égale ou inégale), p<0,001 :***, p<0,01 :**, p<0,05 :*.
Discussion
L’objectif de ma thèse était d’étudier les protéines PrP et APP et les peptides dérivés, acteurs essentiels des Maladies à prions et de la Maladie d’Alzheimer respectivement, dans la biologie des cellules souches, que ce soit en prolifération ou durant leur différenciation ainsi que les potentielles interactions entre ces deux protéines.

Un des premiers axes de notre étude a été la mise au point de protocoles d’induction neuronale des cellules souches embryonnaires humaines en cellules souches neurales. Le laboratoire détient depuis 2005, l’autorisation de l’Agence de la Biomédecine pour la culture des CSE humaines. Deux lignées sont concernées par cette autorisation, les CSEh H1 et H9 que nous avons utilisées pour ce projet. Au laboratoire, plusieurs protocoles d’induction neuronale des CSE murines avaient été testés sur les CSE humaines dans le cadre d’un projet de thérapie cellulaire. Si certains protocoles entraînaient la réapparition de CSE, le protocole adapté en monocouche de Y. Benninger permettait quant à lui l’obtention des premières NSC en 12 jours pour les CSE humaines, de manière reproductible et sans réapparition de CSE (Benninger, Marino et al. 2000). Nous avons donc utilisé ce protocole mais des mises au point supplémentaires ont été nécessaires de façon à avoir des quantités suffisantes de NSC pour les différentes analyses nous permettant d’établir un référentiel de l’expression des protéines PrP, APP et des produits clivés de cette dernière. Ainsi, nous avons ensemencé les cellules à 3,8.10^4 c/cm² dans un milieu N2 plus suppléments B27 et G5 pendant 30 jours avec des arrêts à J0, J6, J12, J18, J24 et J30 pour les analyses. En parallèle, des NSC ont été récupérées à J12, J18, J24 et J30 pour être amplifiées dans un milieu N2 avec facteurs de croissance. Nous avons également adapté un second protocole, basé sur la reproduction de la corticogenèse en culture : le protocole de P. Vanderhaeghen qui venait d’être publié pour les CSEh (Espuny-Camacho, Michelsen et al. 2013). Ce protocole étant fait
pour l’obtention de neurones matures en 72 jours, des mises au point ont là encore été nécessaires afin de déterminer le stade où la culture est la plus enrichie en NSC. Dans ce protocole, les NSC apparaissent entre J0 et J20 donc nous avons réalisé l’induction neurale sur 18 jours avec des points d’arrêts à J0, J10 et J18 pour les différentes analyses. Comme pour le précédent protocole, nous avons récupéré en parallèle des NSC à J13 et J18 et les avons amplifiées dans un milieu N2 avec facteurs de croissance. Ainsi adaptés, ces deux protocoles d’induction neurale nous ont permis d’obtenir à partir de CSEh, des NSC qui sont positives pour les marqueurs caractéristiques des NSC tels que Nestin ou Pax6 mais bien négatives pour les marqueurs des CSEh comme Oct4 ou Nanog. Nous avons également pu différencier ces cellules en astrocytes et neurones de manière reproductible.

Afin d’établir un référentiel de l’expression des protéines PrP, APP, sAPPα/β et Aβ, et d’étudier les interactions entre ces différentes protéines, des mises au point ont été nécessaires pour permettre leur détection. En effet, la PrP est faiblement exprimée dans les CSEh donc nous avons montré que pour la détection de la PrPC par immunofluorescence, l’utilisation d’une fixation à l’éthanol et de l’anticorps Saf 61, couplée à un traitement au TritonX100, permettaient une meilleure détection de la PrP dans les CSEh. L’utilisation de cette méthode combinée à des analyses par qPCR, Western Blot et ELISA nous a permis d’étudier l’évolution de l’expression gène PRNP et de la protéine PrP au cours de l’induction neurale. Ainsi, comme nous l’avons déjà cité plus haut, nous avons observé à travers les différents protocoles de différenciation utilisés, que leurs expressions augmentaient au fur et à mesure et qu’elles sont plus importantes dans les NSC que dans les CSEh. De la même manière, nous avons montré que les différents ARN messagers de l’APP augmentaient dans les NSC et ce quel que soit le protocole d’induction neurale. L’expression de ces deux gènes augmente également au cours des différenciations neuronale et astrocytaire des NSC obtenues selon les deux protocoles. Pour la détection des peptides issus des clivages de l’APP, nous avons opté pour la méthode ELISA multiplex MesoScale Discovery qui permet la détection de plusieurs peptides dans le surnageant de culture, au sein du même puits d’analyse. Différentes mises au point ont été réalisées avec les premiers kits MSD utilisés car ceux-ci ne permettaient pas la détection des peptides minoritaires tels que les Aβ38 et Aβ42. Ainsi, différentes techniques de concentration des protéines, colonnes, éthanol,
SpeedVac, dans le surnageant de culture ont été testées afin d’améliorer la détection des peptides notamment les peptides minoritaires. Cependant, même si la plupart de ces différentes techniques permettaient d’améliorer considérablement la détection des peptides, aucune proportionnalité ni reproductibilité ne se sont avérées respectées.

Suite à la commercialisation par la société MSD de nouveaux kits de détection ultrasensible, nous avons abandonné ces différentes méthodes de concentration au profit de ces nouveaux kits. Ainsi, nous avons pu observer que l’expression des peptides sAPP et Aβ est faible dans les CSEh et que celle-ci est plus importante lors de l’induction neurale. Que quai soit le protocole d’induction neurale utilisé, nous avons observé une nette augmentation de l’expression des différents peptides clivés de l’APP entre J6 et J12 d’induction, augmentation corrélée à celle de l’expression de Nestin suggérant que la quantité de peptides sAPP et Aβ sécrétés dans le surnageant est liée à la proportion de NSC contenue dans la culture. La production de ces différents fragments diminue ensuite et augmente de nouveau lorsque les cellules sont plus engagées dans la voie neuronale vers J30. Si l’augmentation des niveaux de sAPP semble cohérente avec l’engagement vers la différenciation neurale on s’attendrait en revanche à une diminution des niveaux des peptides Aβ si on en croit les expériences de Porayette et al. (Porayette, Gallego et al. 2009) qui montrent que l’inhibition de la β-sécrétase dans les CSEh entraîne l’induction vers les NSC et qu’au contraire l’ajout d’Aβ monomérique maintient les cellules en prolifération. Cela dit nos données sont difficilement comparables car les critères de dosage sont différents puisque nous avons ramené la détection d’Aβ (en pg) par rapport à la quantité de cellules et non à la quantité de protéines comme cela a été fait dans l’article de P. Porayette. Nous avons cependant pu vérifier (non montré) qu’en ramenant les dosages d’Aβ aux quantités de protéines ou d’ARN, nos graphes étaient légèrement modifiés avec en effet une diminution à J6 et une augmentation vers un pic à J18 et non à J6-J12 quand les dosages sont exprimés en pg/million de cellules. Cependant les dosages ramenés en pg/million de cellules étant plus reproductibles, et reflétant uniquement le nombre de cellules indépendamment de leur phénotype (car il faut imaginer une mixture de différents types cellulaires) nous étaient apparus plus adéquats au début du projet. Avec le recul l’idéal aurait été de faire une étude comparative plus poussée en réalisant des dosages d’Aβ des surnageants ramenés aux quantités de cellules et ARN du puits correspondant au surnageant (ce que nous avons fait) et des dosages d’Aβ des surnageants ramenés aux protéines et ARN du puits correspondant.

Comme la transduction lentivirale des CSEh en colonie s’est révélée peu efficace, nous avons opté pour une transduction lentivirale des cellules souches au moment du lancement de l’induction neurale. Des mises au point ont tout de même été nécessaires pour optimiser la transduction des CSEh. Nous avons donc montré qu’une transduction de $0,77 \times 10^5$ CSEh dans un puits de plaque 48 puits avec une multiplicité d’infection de 60 était suffisante pour avoir une bonne efficacité de transduction des lentivirus pWIG-HuPrP et pWPXL-GFP. Concernant les expériences visant à inhiber l’expression de la PrP au cours de l’induction neurale, les lentivirus shRNA n’étant pas titrés, nous avons dû adapter les volumes de transduction selon les recommandations fournies par notre collaborateur mais nous n’avons pas pu finaliser les mises au point avant le délai de fin de thèse malgré plusieurs tentatives.

Pour l’étude de la surexpression de la PrP, après transduction avec les lentivirus pWIG-HuPrP et pWPXL-GFP des CSEh à J0, nous avons vérifié que les cellules étaient bien transduites et ce de façon stable, par observation de la GFP apportée par les vecteurs viraux. Nous avons ensuite montré que la protéine PrP était bien surexprimée dans les cellules transduites avec le lentivirus pWIG-HuPrP. L’expression de la PrP n’est toutefois augmentée que de 2 fois après 6 jours d’induction et de 3 à 4 fois après 12 jours d’induction neurale suggérant un enrichissement en cellules exprimant la PrP ou une surexpression de la PrP accrue en raison de l’expression de la PrP endogène qui augmenterait au cours de l’induction. On peut cependant exclure très vite cette dernière hypothèse car l’analyse des messagers de la PrP endogène par qRT-PCR montre une diminution dans les cellules transduites à J6 et J12. Cela pourrait en revanche s’expliquer par une prolifération supérieure des cellules ou alors une survie accrue des
cellules exprimant la PrP. Au niveau ARN messager, nous venons de le dire, la surexpression de la PrP via le transgène provoque une légère diminution de 20% de l’expression de la PrP endogène ce qui pourrait s’expliquer par l’existence d’une boucle de rétrocontrôle de l’expression de l’ARN messager de la PrP lorsque sa quantité est trop importante.

Certains travaux avaient déjà montré que la PrP favorisait la prolifération et le maintien du statut de pluripotence des cellules souches embryonnaires humaines (Lee & Baskakov 2010), (Miranda, Pericuesta et al. 2011). De notre côté, nous avons pu observer que la surexpression de la PrP permettait un léger maintien de l’expression des messagers de Nanog et d’Oct4 par rapport aux cellules contrôles surexprimant la GFP, cependant les niveaux d’expression restent similaires à ceux des cellules non transduites ce qui pourrait être dû à un effet protecteur de la PrP sur la toxicité induite par la transduction et/ou un effet sur le maintien de la pluripotence (notamment à J12 pour Oct4). En revanche, nous avons pu montrer que les expressions de Sox2 et Sox1 étaient plus importantes en début d’induction neurale (à J6), quand la PrP est surexprimée mais des expériences complémentaires seraient nécessaires pour savoir s’il s’agit réellement d’une augmentation de la différenciation des cellules ou plutôt d’un effet anti-apoptotique de la PrP qui maintiendrait plus les CSEh que dans les contrôles GFP. Nous avons également montré que la surexpression de la PrP favorisait l’expression des marqueurs de cellules souches neurales comme Nestin, Pax6 ou Sox1 à J12 (où il n’y a plus d’impact de la transduction) suggérant un rôle de la PrP dans la différenciation des CSEh en NSC comme d’autres auteurs l’avait déjà stipulé auparavant (Lee & Baskakov 2010), (Miranda, Pericuesta et al. 2011). Nous avons également observé en début d’induction neurale, que la surexpression de la PrP, en favorisant l’induction en cellules souches neurales n’a pas d’impact sur l’apparition des autres feuilles embryonnaires : le mésoderme et l’endoderme. On observe en revanche une diminution de l’expression de la GFAP (marqueur astrocytaire) suggérant qu’au sein du feuillet ectodermique la différenciation astrocytaire est altérée quand la PrP est surexprimée.

Concernant l’impact de la surexpression de la PrP sur l’APP et ses résidus de clivage dans notre modèle, comme la PrP semble jouer un rôle de régulateur du clivage par la β-sécrétase de l’APP (Parkin, 2007 #49), (Griffiths, Whitehouse et al. 2011), nous avons suivi l’expression de l’APP ainsi que les peptides issus du clivage de la protéine APP afin
de déterminer à quel moment se mettait en place cette régulation. Ainsi, nous avons montré que la surexpression de la PrP favorisait légèrement l’expression des messagers de l’APP en début d’induction neurale mais n’influénçait pas l’expression des isoformes de l’APP contenant le domaine KPI ce qui suggère un rôle de la PrP dans l’expression des isoformes sans domaine KPI telles que l’APP 695, majoritairement exprimée dans les neurones (Kang & Muller-Hill 1990), (Ponte, Gonzalez-DeWhitt et al. 1988).

Concernant les fragments sAPPα/β, nous avons observé en début d’induction, à J6, que les cellules transduites (avec les deux vecteurs) présentaient une augmentation de leurs niveaux par rapport aux cellules non transduites suggérant un effet de la transduction sur la production de ces fragments et/ou sur leur maintien puisque l’expression de l’APP n’est augmentée quand dans les cellules surexprimant la PrP. Ces résultats semblent cohérents puisque plusieurs études ont montré que l’APP et en particulier le fragment sAPPα exerçait un effet neuroprotecteur suite à une atteinte (stress, lésion...) (Mattson, Cheng et al. 1993), (Goodman & Mattson 1994), (Furukawa, Sopher et al. 1996), (Murakami, Yamaki et al. 1998). De plus, d’autres études ont montré que les fragments solubles favorisaient la différenciation neurale des CSEh (Porayette, Gallego et al. 2009), (Freude, Penjwini et al. 2011). Ainsi, l’augmentation des niveaux de fragments solubles pourrait d’une part limiter la toxicité induite par la transduction et d’autre part entraîner l’activation de certaines voies favorisant l’induction neurale des cellules et ainsi expliquer l’augmentation des marqueurs de NSC dans les cellules surexprimant la PrP. Nous avons également montré que la surexpression de la PrP provoquait une nette augmentation des niveaux des fragments solubles sAPPα/β à J12 de l’induction neurale sans modification de l’expression de son messager à ce stade. Nos résultats suggèrent un effet positif de la PrP sur les niveaux de sAPPα et β contrairement à ce qui avait été décrit précédemment pour sAPPβ (Parkin, 2007 #49), (Griffiths, Whitehouse et al. 2011). Afin de déterminer s’il s’agit d’une augmentation des clivages et/ou d’une diminution de la dégradation, il serait donc nécessaire d’étudier plus précisément l’activité des sécrétases et de réaliser des marquages métaboliques permettant de savoir si les produits clivés sont issus de protéines nouvellement synthétisées ou non.

Contrairement aux fragments solubles, nous avons montré que les niveaux de peptides Aβ40 et 42 sont plus faibles dans les cellules transduites que dans celles qui ne le sont pas à J6 d’induction neurale suggérant un effet de la transduction sur l’augmentation de la dégradation des peptides et/ou sur l’inhibition du clivage en γ. Cependant, si on
imagine que l’augmentation des peptides sAPPβ est due à une augmentation du clivage en β, alors la diminution des taux d’Aβ pourrait être due à une altération du clivage en γ. La surexpression de la PrP provoque une diminution supplémentaire des peptides Aβ par rapport aux cellules contrôles, diminution qui n’est cependant pas significative à ce stade. Néanmoins, nous avons montré qu’à J12 de l’induction neurale, la diminution des peptides Aβ était cette fois significative lors de la surexpression de la PrP. Comme à ce stade de l’induction la surexpression de la PrP n’entraîne pas de modification de l’expression de l’APP et une augmentation indifférente des deux fragments solubles, il est donc possible que la PrP ait un rôle de régulateur négatif du clivage en γ de l’APP. Ces résultats peuvent également suggérer un effet positif de la PrP sur la dégradation ou l’instabilité des Aβ. En effet, il a été montré que la perte de fonction de la PrP lorsque celle-ci est convertie en PrPSc provoquait une diminution de l’activité de la métalloprotéase MMP-9 (Pradines, Hernandez-Rapp et al. 2013). Comme la MMP-9 semble avoir une activité α-sécrétase (Fragkouli, Papatheodoropoulos et al. 2012) et aussi participer à la dégradation des peptides Aβ (De Strooper 2010), son inhibition favoriserait ainsi la production et l’accumulation des peptides Aβ (Hernandez-Rapp, Martin-Lanneree et al. 2014).

Ensuite, nous avons observé que le ratio des peptides Aβ42/Aβ40 devenait plus faible dans les cellules surexprimant la PrP à J12 suggérant une dégradation plus importante des peptides Aβ42 et/ou un rôle de la PrP dans le choix du clivage par la γ-sécrétase. En effet, il a été récemment montré que le clivage de l’APP par la γ-sécrétase peut se dérouler selon deux processus indépendants : soit elle réalise 4 cycles de clivages pour générer les peptides Aβ37 (Aβ49 → Aβ46 → Aβ43 → Aβ40) ou alors 3 cycles pour générer les peptides Aβ38 (Aβ48 → Aβ45 → Aβ42) (Bursavich et al. 2016). Ainsi, la surexpression de la PrP pourrait favoriser le clivage en 4 cycles plutôt qu’en 3 entraînant une diminution des peptides Aβ42.

Le second axe de notre étude a été la mise au point des différenciations spécialisées des NSC en Neurones et Astrocytes. Ainsi, quatre types cellulaires, obtenus à partir des deux lignées de CSeh et selon le protocole d’induction neurale adapté de Y. Benninger, ont été utilisées pour la différenciation non orientée permettant l’obtention d’une population mixte de Neurones et d’Astrocytes par simple retrait des facteurs de croissance du milieu de culture. Nous avons réalisé cette différenciation sur 30 jours avec des points
d’analyse à J0, J10, J20 et J30. Nous avons également pu enrichir la culture en l’une ou l’autre des populations par des modifications successives du milieu de culture. L’enrichissement en Astrocytes se fait par ajout de sérum pendant 15 jours avec 4 points d’analyse à J0, J5, J10 et J15. L’enrichissement en neurones se fait lui sur 30 jours avec 5 points d’analyse à J0, J7, J15, J21 et J30 mais nécessite plusieurs modifications du milieu de culture et l’ajout de différents suppléments neuralisant comme le B27 et le BDNF. Comme attendu, nous avons pu observer par immunofluorescence que l’expression importante de Nestin dans nos NSC disparaissait progressivement au cours de ces trois différenciations. À l’inverse, l’expression des marqueurs spécifiques des cellules différenciées est bien augmentée : GFAP pour les Astrocytes, DCX (neuroblastes et jeunes neurones), MAP2 et βIII-Tubuline pour les Neurones confirmant l’engagement des cellules vers la spécialisation imposée. Nous avons également confirmé le bon engagement des cellules par des analyses en qPCR des principaux gènes d’intérêts.

Nous avons ensuite montré que la surexpression de la PrP dans les H9NSC favorisait la prolifération (15-20%) des cellules souches neurales et que son inhibition entraînait une petite diminution (6-7%) de la prolifération comme le montrent les expériences d’incorporation d’EdU. Cela est en accord avec les observations de Steele et al., sur les NSC adultes et fœtales murines (Steele, Emsley et al. 2006). Nous avons confirmé dans les NSC que la PrP exerçait également un effet protecteur, puisque si l’augmentation de l’expression de la PrP ne protège pas forcément plus que des niveaux d’expression
normaux de PrP, en revanche son inhibition entraîne une susceptibilité accrue vis à vis d’un traitement à la staurosporine puisque les cellules sont moins viables, que la cytotoxicité due à la drogue est augmentée et que les cellules meurent plus par apoptose. Cela est là encore en accord avec la bibliographie sur le thème d’un rôle anti-apoptotique de la PrP (Li & Harris 2005), (Kuwahara, Takeuchi et al. 1999).

Nous avons ensuite étudié l’impact de la modification de la PrP sur la différenciation des NSC. Nous avons notamment observé un maintien ou augmentation de certains marqueurs de NSC (Nestin, Sox2, Pax6) lors de la surexpression de la PrP jusqu’à J15 de la différenciation et une augmentation de Doublecortine et de la βIII-Tubuline à J15 et J21 suggérant un rôle dual de la PrP dans le maintien et la différenciation des NSC. Le maintien de l’expression des gènes de NSC, lorsque la PrP est surexprimée, pourrait être lié à la présence de bFGF dans le milieu de culture jusqu’à J15 (Conti, Pollard et al. 2005). Son retrait par la suite pourrait ainsi expliquer la baisse ou le retour à une expression normale de ces gènes et l’augmentation de l’expression des gènes de différenciation. Nous avons également constaté que l’expression de ces différents gènes était globalement peu affectée par la surexpression de la PrP or les analyses ont été effectuées à partir de la différenciation des cellules non encore triées donc avec des niveaux de PrP variables. Sachant également que des seuils minimums de PrP seraient requis pour permettre telle ou telle voie de signalisation ou tel ou tel engagement cellulaire (Lee & Baskakov 2010), la présence d’une population hétérogène de cellules surexprimant plus ou moins la PrP lors du lancement de la différenciation, pourrait ainsi entraîner des effets opposés au sein de la même culture en fonction des niveaux d’expression de la PrP dans des cellules encore souches, glie radiaire ou progéniteurs et des cellules plus différenciées. En plus de l’absence de corrélation qui peut exister entre les ARN messagers et les protéines correspondantes, des niveaux différents de PrP entre les cellules pourrait expliquer que certains ARN messagers augmentent mais ne correspondraient qu’à des marquages très faibles ou seulement des marquages de sous-populations de cellules. En effet, nous avons pu constater par immunofluorescence, qu’à expression égale des ARN messagers de Nestin et βIII-tubuline entre J0 et J21, les cellules sont majoritairement Nestin positives à J0 puis ne sont que très faiblement marquées à J21 contrairement à la βIII-Tubuline. Une analyse quantitative des différentes populations en immunofluorescence avec des marqueurs spécifiques
pourraient être utile pour interpréter plus finement nos résultats. Nous pourrions également utiliser des cellules triées pour réévaluer nos résultats en fonction des niveau d’expression de la PrP. Pour cela lors du tri, nous avons gardé des population HuPrP-GFP et GFP High et Low. De façon à aborder les aspects plus mécanistiques, l’étude de voies de signalisation typiques telles que les voies Wnt/GSK3β/β-catenin, Notch à la charnière entre prolifération et différenciation pourrait également être intéressante à étudier dans notre modèle. Les voies connues comme étant régulée par la PrP comme les voies impliquant la kinase Fyn ou PDK1 impliquée dans la régulation de TACE et la réponse au stress ou encore l’apoptose pourraient également être évaluée au cours de la différenciation neuronale qui comme toute étape développementale génère non seulement des cellules différenciées mais également du stress oxydant et de l’apoptose. Lors de l’inhibition de la PrP, nous avons observé que tous les marqueurs de NSC et neuronaux étaient diminués au cours de la différenciation neuronale. En particulier, la Doublecortine est nettement diminuée dans les cellules où la PrP est plus faiblement exprimée mais tend à rejoindre le niveau d’expression du contrôle en fin de différenciation ce qui semblerait indiquer un retard de différenciation neuronale. Pour autant, comme les ARNm des marqueurs de NSC ne sont pas surexprimés on pourrait imaginer une différenciation vers un autre lignage. Des analyses complémentaires d’autres marqueurs, notamment des Astrocytes ou des oligodendrocytes, pourraient permettent de conclure quant à cette hypothèse.

Nous avons ensuite déterminé si les modifications de l’expression de la protéine PrP avaient un impact sur l’expression du messager de l’APP et sur les quantités des produits issus de son clivage, sAPPα/β et Aβ.

Etonnamment, lorsque les NSC sont en prolifération, l’expression de l’ARNm de l’APP diminue quelle que soit la modification de l’expression de la PrP. Cette diminution est de 20% lors de la surexpression et de 40% lors de l’inhibition suggérant un effet négatif de la PrP sur l’expression de l’APP lorsque son expression n’est pas à un niveau basal. En revanche, l’expression des isoformes de l’APP contenant le domaine KPI n’est pas affectée par le niveau d’expression de la PrP. Alors que la surexpression de la PrP n’entraîne pas de modification significative des quantités de peptides sAPPα/β et Aβ, nous avons constaté au contraire, que son inhibition provoquait une augmentation d’environ 40% des peptides Aβ. Cela est en accord avec les observations de H.H. Griffiths
et al. et E.T. Parkin et al., lors de l’inhibition de la PrP dans les cultures de cellules N2a et HEK293 ou dans les cerveaux de souris KO-PrP (Griffiths, Whitehouse et al. 2011), (Parkin, Watt et al. 2007). Néanmoins nous n’observons pas pour autant plus de sAPPβ dans les cellules en prolifération.

Comme nous l’avons décrit ci-dessus, l’expression de l’ARNm de l’APP est diminuée lorsque l’expression de la PrP est modifiée, dans les cellules en prolifération. Nous avons également montré que cette diminution est maintenue dans les cellules en différenciation neuronale lorsque la PrP est inhibée et est, au contraire, augmentée dans les cellules surexprimant la PrP suggérant ainsi un effet bénéfique de la PrP sur l’expression de l’APP dans les neurones. Ces observations suggèrent également un rôle différent de la PrP suivant si les cellules sont en prolifération ou en différenciation. Nous avons ensuite étudié l’impact de la surexpression de la PrP sur les quantités des produits issus du clivage de l’APP. Nous avons montré que la surexpression de la PrP provoquait une diminution des peptides sAPPα à J7 et une augmentation à J21 mais aucune modification des sAPPβ ni du ratio sAPPβ/sAPPα. Ainsi, la PrP semblerait diminuer les taux de sAPPα en début de différenciation et les augmenter dans les jeunes neurones. Des analyses complémentaires avec la mesure de l’activité de l’α-sécrétase, l’ajout d’inhibiteurs de sécrétase, d’inhibiteur du recyclage, du protéasome ou encore un marquage métabolique permettraient de confirmer s’il s’agit d’un rôle de la PrP sur le clivage de l’APP ou plutôt sur le recyclage et la dégradation des peptides sAPP. En parallèle, nous avons constaté que la surexpression de la PrP provoquait une diminution des peptides Aβ40 et Aβ42 à J7 de différenciation neuronale confirmant le rôle potentiel de la PrP dans la diminution des taux d’Aβ (Griffiths, Whitehouse et al. 2011), (Parkin, Watt et al. 2007). Là encore les voies de signalisation impliquant la PrP (Fyn-K, PDK1/TACE et régulation du clivage en α ; MMP9 et dégradation) ou l’interaction décrite dans la littérature de la PrP avec la βsecretase mériteraient d’être analyser. L’utilisation d’inhibiteurs des différentes sécrétases pourraient également nous être utile pour mieux comprendre nos résultats.

Nous avons également constaté que l’inhibition de la PrP provoquait une diminution des peptides sAPPα/β et du ratio sAPPβ/sAPPα au cours de la différenciation neuronale suggérant un effet positif de la PrP sur les taux de ces peptides soit en agissant sur les clivages en α et β, sur la dégradation des peptides ou sur l’expression de l’APP. Ces
observations sont en contradiction avec les résultats de Griffiths et al. qui montrent une augmentation des sAPPβ quand la PrP est inhibée (Griffiths, Whitehouse et al. 2011). Seulement cette étude a été réalisée sur des cultures de cellules HEK293 exprimant de façon stable l’APPwt, dans un milieu de prolifération contrairement à nos NSC qui sont en cours de différenciation. L’analyse de l’activité des sécrétases, de l’effet des inhibiteurs de sécrétase ou un marquage métabolique, permettrait là encore de mieux comprendre le rôle de la PrP lors de la différenciation neuronale et de voir à quel moment une éventuelle régulation de la βsecrétase par la PrP se met en place. Nous avons également observé que l’inhibition de la PrP provoquait une diminution des peptides Aß40 et Aß42 à J7 et J21 et une augmentation à J15 suggérant soit une diminution des clivages favorisant leur production soit une augmentation de leur dégradation.

Au cours du déroulement de ce projet de thèse, nous avons montré l’importance de la protéine PrP dans la biologie des cellules souches : de la prolifération à la différenciation des CSEH (Lee & Baskakov 2010) (Miranda et al. 2011) et des NSC (Santos, Silva et al. 2011), (Steele, Emsley et al. 2006) et ainsi observé le rôle bivalent de la PrP dans ces processus. Nous avons également pu observer l’impact de modulations d’expression de la PrP sur l’expression de l’APP, sur les niveaux des résidus peptidiques, qui peuvent être différents en de fonction des situations de prolifération ou différenciation.

Nos observations ouvrent sur de nombreux champs d’investigations complémentaires afin de déterminer s’il s’agit en plus de régulation d’expression, de régulation des clivages ou de dégradation des peptides sAPPα/β et Aß comme cela a déjà été décrit. En effet, la PrP semblerait bien joué un rôle dans la régulation des clivages de l’APP, notamment le β (Parkin et al. 2007), ou dans la dégradation (Hernandez-Rapp et al. 2014), (Pradines, Hernandez-Rapp et al. 2013) mais des études plus approfondies de chacun des clivages seraient nécessaires pour comprendre plus précisément l’impact de la PrP sur ces clivages. Des marquages métaboliques permettraient également
d'étudier le rôle de la PrP sur la synthèse et la dégradation de l'APP, des fragments sAPPα/β et des peptides Aβ. Par ailleurs, des analyses de la modulation de l'expression de l'APP couplées aux analyses de la PrP, permettraient également de comprendre le rôle de l'APP sur la PrP. Au delà d'une meilleure connaissance des interactions entre ces différentes protéines et de leurs effets sur la biologie des cellules souches, nos modèles pourraient favoriser l'émergence de nouvelles pistes thérapeutiques pour les maladies à prions et la maladie d'Alzheimer.
Références Bibliographiques

B

Brown, D. R. "Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity." 146, 104-112.

"Atypical BSE (BASE) transmitted from asymptomatic aging cattle to a primate."
PLoS One 3(8), e3017.

**Cronier, S., H. Laude & J. M. Peyrin (2004).* "Prions can infect primary cultured neurons and astrocytes and promote neuronal cell death." *Proc Natl Acad Sci USA* 101(33), 12271-12276.

**Cuille, J. C., P. L. (1938b).* "La tremblante du mouton est-elle determine par un virus filterable?" *C R Acad Sci* III 207, 1687-1688.

E

F

311

312

H

precursor protein family members [In Process Citation]." J Neurosci 20(21), 7951-7963.

K

L

Li, X. (1997). "HOP-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL-12 presenilin and to facilitate LIN-12 and GLP-1 signaling." *Proc Natl Acad Sci* 28(94), 12204-12209.

stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. " J Neurosci 25(49), 11330-11339.

M

N

Naslavsky, N., R. Stein, A. Yanai, G. Friedlander & A. Taraboulos (1997).

R

S

U

V

early postnatal lethality in APLP2/APP double KO mice." Neurobiol Aging 18(6), 661-669.

W

Z

