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Résumé: L’objectif de cette thèse vise à d’identifier les principes sous-tendant la planifica-

tion des mouvements 3D du membre supérieur tout en tenant compte des différences inter-

individuelles régulièrement observées dans de nombreuses études récentes. L’identification des

principes généraux sous-tendant la planification des mouvements 3D du membre supérieur per-

met de valider la validité des approches computationnelles. Néanmoins, afin d’être complète toute

théorie doit être en mesure de tenir compte à la fois des sources et du rôle des différences interindi-

viduelles. À ce jour, les modèles computationnels du contrôle du mouvement humain ne tiennent

pas compte de l’existence de typologies sensorimotrices (par ailleurs validée empiriquement), et

sont encore moins capables de prédire les variables de contrôle qui leur sont associées. L’étude

approfond et la modélisation des différences interindividuelles constituent donc un défi majeur

pour la communauté scientifique afin de compléter les modèles computationnels actuels du con-

trôle des mouvements multiarticulés humains. Les travaux sur cette problématique permettront

de mieux comprendre si les sources de différences interindividuelles sont d’origine centrale ou

périphérique. Il s’agira de savoir par exemple si les paramètres anthropométriques (par exem-

ple la masse corporelle, la longueur des membres) affectent les trajectoires de déplacement, et

s’ils provoquent les différences entre les sujets, ou si au contraire les différences interindividuelles

proviennent de processus supérieur exécuté en interne par le cerveau pendant la planification du

mouvement. Dans cette optique, l’approche choisie dans le cadre de cette thèse combine des ex-

périences originales (précisément des tâches de pointage laissant le choix du point final libre) avec

des techniques de calcul avancées (ici des méthodes de contrôle optimal inverse numérique). Des

mouvements de pointage du bras sans position finale précisément prescrite sont examinés dans

différentes conditions de vitesse et/ou de masse afin de laisser émerger des stratégies motrices

variées et d’évaluer les éventuels principes de planification motrice sous-jacents. L’idée centrale

est de s’écarter du paradigme classique consistant à étudier des mouvements point-à-point (où

la cible est généralement indiquée par un point dans l’espace, par exemple une cible lumineuse)

et porte sur l’étude d’une tâche dans laquelle le choix du point final du mouvement est laissé

libre aux participants afin de faire surgir les différences interindividuelles ainsi que le processus de

sélection ou de décision motrice qui a conduit aux stratégies observées. Ce type de tâche permet

de mieux décoder les caractéristiques du contrôleur moteur humain. Les résultats empiriques sont

ensuite modélisés et interprétés grâce au contrôle optimal inverse dont l’hypothèse associée est

que les trajectoires expérimentales découlent de la minimisation d’une certaine fonction de coût

qui est éventuellement composite. Cette approche combinée vise à révéler les principes ou règles



qui gouvernent le processus de planification de ce type de mouvement des membres supérieurs et

d’établir un lien entre les paramètres pertinents du geste, les fonctions de coûts et les caractéris-

tiques individuelles.

Les résultats montrent que les sujets produisent des stratégies motrices différentes aux niveaux

cinématique et dynamique en fonction de la façcon dont ils s’adaptent aux changements de vitesse

et/ou de masse. Dans l’ensemble, ces changements ont des effets significatifs sur les trajectoires

de la main (par exemple l’emplacement des points finaux choisis par les sujets) et les commandes

motrices (notamment sur l’utilisation des couples d’interaction). Pourtant, certains sujets présen-

taient des dépendances plus exacerbées que d’autres qui ne variaient que peu leur stratégiede

pointage par rapport aux changements de vitesse ou de masse induits par la tâche. L’investigation

par contrôle optimal inverse a montré que ces résultats pouvaient être expliqués par une optimi-

sation d’un coût composite mélangeant essentiellement des variables cinématique et dynamique

durant la phase de planification motrice. Un tel modèle composite surpassait les prédictions des

modèles séparés soit cinématique soit dynamique dans la prédiction de l’évolution des caractéris-

tiques importantes du mouvement et des différences interindividuelles. En outre, il a permis de

réconcilier des résultats controversés débattus dans des études antérieures en montrant que des

comportements adaptatifs divergents peuvent émerger en fonction du poids des fonctions de coût

élémentaires qui composent la fonction de coût totale. Dans l’ensemble, nos résultats suggèrent

que la planification motrice des mouvements 3D non-contraints du bras mêle nécessairement des

variables cinématiques et cinétiques, et que ce compromis semble être idiosyncrasique et ainsi

conduire à des différences interindividuelles subtiles.
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Abstract: The purpose of this thesis is to identify principles that could guide the planning of 3D

upper-limb movements for different individuals. To this aim, the chosen approach combines novel

experiments (namely, a “free reach-endpoint" motor task) with advanced computational techniques

(here numerical inverse optimal control). Arm pointing movements without a prescribed final

hand position are examined under different conditions of speed or load in order to let emerge

various motor control strategies and assess the possible underlying motor planning principles.

A core idea is to depart from classical point-to-point reaching paradigms (where the target is

generally a dot, e.g. a spotlight target) to study a task in which the endpoint is left free to the

participants in order to emphasize inter-individual differences as well as the selection process and

motor decision that led to the observed strategies. This paradigm thus allows to better decipher the

characteristics of the human motor controller. Empirical results are then modeled and interpreted

in the inverse optimal control framework, hypothesizing that empirical arm trajectories derive from

the minimization of a certain, possibly composite, cost function. This combined approach aims

at revealing which principle or rule conceivably drives the planning process of these unrestrained

upper-limb movements and to establish a link between relevant motion parameters, cost functions

and inter-individual peculiarities.

The results show that subjects produced different motor strategies at both kinematic and dynamic

levels depending on how they adapted to speed and/or load variations. Overall, significant motor

adaptation of hand trajectories (e.g. location of reach endpoints) and motor commands (e.g. use

of interaction torque) were found. Yet, some subjects exhibited stronger dependences than others

who varied only little their reach strategies with respect to task-induced speed or load changes.

When investigated from the optimal control viewpoint, these results could be accounted for by a

composite cost essentially weighting kinematic and dynamic variables differentially at the motor

planning stage. Such a composite model outperformed separate kinematic and dynamic ones in

predicting the evolution of many important motion features and in explaining inter individual

differences. Moreover, it allowed reconciling controversial findings of previous studies by showing

that divergent adaptive behaviors can emerge depending on the weights of the elementary cost

that may compose the total cost function. In sum, the present results suggest that motor planning

of unrestrained3D arm movements necessarily mixes kinematic and kinetic variables and that this

trade-off may be idiosyncratic and lead to subtle inter individual differences.
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Chapter 1. Introduction

1.1 Problem statements

Since a long time, researchers have been trying to answer the following fundamental ques-
tion: how does the central nervous system (CNS) control voluntary limb movements? So
far, it has remained impossible to fully answer this question and provide a generic model ac-
counting for the large variety of possible human movements. Historically, researchers have
started to study simple movements with few degrees of freedom, such as single-joint arm
rotations or planar arm movements with elbow and shoulder rotations (Flash and Hogan,
1985; Gottlieb et al., 1988, 1989b,a). They tried to identify motor invariants that would
remain similar across tasks or individuals with the aim to better understand how our move-
ments are controlled. Researchers succeeded by showing for instance that hand trajectories
were almost straight and velocity profiles systematically bell-shaped (JF Soechting, 1981;
Soechting et al., 1995; Morasso, 1981; Flash and Hogan, 1985; Atkeson and Hollerbach,
1985; Ostry et al., 1987; Flanders et al., 1996). However, when studying unrestrained 3D
motions with many more degrees of freedom, relatively large inter-individual differences
can be observed (Berthoz, 1991; J, 1991; Isableu et al., 2003; Bernardin et al., 2005; Isableu
and Vuillerme, 2006) and it has been proven that, in many tasks, subjects may diverge
from the above “straight" or “bell-shaped" motion characteristics (Nagasaki, 1989; Papax-
anthis et al., 1998, 2003). This is exemplified by the work of Isableu et al. (2009) which
showed that humans tend to exploit the minimum inertia principal axis (denoted by e3)
in a subject-specific way during a 3D cyclical arm rotation task. The findings were in-
terpreted as consequences of different strategies resulting from idiosyncratic sensorimotor
preferences. In particular, the brain may coordinate the interaction torque with respect
to the net torque and the muscle torque in various ways, which could be at the origin of
such differences. The results are intriguing and motivate the demand for a deeper study
of the role of e3 or interaction torque in unrestrained arm movement as well as a clearer
explanation of the nature of the observed inter-individual differences.

In order to model human movement planning, several motor control theories have been
proposed (internal model theories vs equilibrium point theory). Lately, the optimal control
theory seems to be the most promising and effective tool for investigating the above issues
in a normative way (Wolpert et al., 1995b; Todorov, 2004). In optimal control theory,
human movements are assumed to originate from a minimization principle just as the
physical motion of objects results from a least action principle as expressed by Lagrangian
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1.2. Thesis objectives

mechanics. Here, what would be the biological “Lagrangian" minimized by the CNS is
what is sought for. The rationale of this approach is that the CNS is implicitly assumed
to trigger trajectories that are (or tend to be) minimizers of a certain optimality criteria
when planning limb movement. Put simply, the goal is to understand the variables the
brain cares about when planning movements. In this vein, there have been controversial
ideas among researchers: some argued for kinematic-based criteria (Hollerbach and Flash,
1982; Atkeson and Hollerbach, 1985; Sainburg et al., 1995; Bastian et al., 1996; Sainburg et
al., 1999; Gribble and Ostry, 1999) while other supported dynamic/energetic-based ones
(Dounskaia et al., 2002; Debicki et al., 2010, 2011; Hore et al., 2005, 2011). Therefore,
whether the brain controls movement based on kinematic or dynamic/energetic variables
still remains elusive despite considerable research efforts. If both views appear to be partly
true and the answers may be task-dependent, it is then possible that the brain encodes both
variables during the motor planning stage. This idea found supports in the works of Berret
et al. (2011a,b) who showed that 2D vertical movements starting from different initial
positions and executed at a relatively fast pace could be accounted for by a composite cost
mixing the angle jerk (i.e. a kinematic variable) and the absolute work (i.e. an energetic
variable). However, it remained unclear whether these results would extend to 3D motion
and whether a single composite cost could explain movements executed at different speeds
at once. Thus, it was necessary to investigate the composite cost hypothesis during 3D
motion at different speeds of movement as well as to identify whether this composite cost
could account for the exploitation of rotation around e3 axis, for the role of the interaction
torque and for the inter-individual differences mentioned above. This thesis work merges
those two previous experimental and computational approaches to improve our knowledge
about how free 3D arm movements are planned.

1.2 Thesis objectives

The overall purpose of this thesis is to identify hypothetical principles that may guide
movement planning of 3D multijoint unconstrained arm movements for different individu-
als. To this aim, the approach will combine novel experiments (free arm pointing task) with
advanced computational techniques (numerical inverse optimal control). Free arm move-
ments will be examined under different conditions of speed or load in order to let emerge
various motor control strategies and assess their adaptiveness to new task conditions. A

3



Chapter 1. Introduction

core idea is to depart from classical point-to-point reaching paradigms (where the target
is generally a dot, e.g. a spotlight target) to study a task in which the endpoint is left
free to the participants. This increases the freedom and thus emphasizes inter-individual
differences as well as the choice or decision of the underlying motor strategy, allowing
better deciphering the characteristics of the motor controller. These empirical results will
then be interpreted in the (inverse) optimal control framework, hypothesizing that the
recorded arm trajectories derive from the minimization of a certain, possibly composite,
cost function. This combined approach aims at revealing which principle/rule conceivably
drives the planning process of unrestrained upper limb movements and to establish a link
between relevant motion parameters and cost functions.

1.3 Thesis outline

The structure of this dissertation is organized to answer the essential questions mentioned
above.

In chapter 2, the main objective is to provide the theoretical background that will serve
as reference to the experiments and topics covered in the remaining chapters. This chapter
is divided into 2 major parts as follows:

• Part 1: Computational motor control theories

• Part 2: Biomechanical modelling

In chapter 3, the original contribution of the present thesis will be introduced and
divided into two sections, each of which will try to find the answer to the specific critical
matters as follows:

• 1st section: we test the composite nature of the cost function during motor planning
of 3D arm pointing movement and establish its link with rotation axis such as e3.

• 2nd section: we examine the role of interaction torque during a free 3D arm pointing
task and related it to the composite nature of motor planning examined above.

In chapter 4, a general discussion about the present thesis results is given.
The reader can find the lists of tables and figures at the end of the thesis.
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2.1. Internal models

Motor control is a complex process by which humans use their brain to activate and
coordinate the muscles and limbs to perform some purposive movements. This process in-
volves the coordination of varieties of sensory and motor data which in general are highly
redundant, nonlinear and noise-affected, making it quite challenging for the motor con-
troller to accurately and reliably execute actions. In spite of those apparent difficulties,
the central nervous system (CNS) is nonetheless able to find a relevant solution in a few
hundred milliseconds to accomplish the motor task. In order to interpret what poten-
tially takes place during such process and what motivates the resultant motor strategies,
researchers have proposed several different motor control theories. Here, we will describe
two influential and complementary theories: The first theory proposes a formalism to ex-
plain how motor commands and sensorimotor transformations are internally coordinated
inside the brain in order to correct and generate a certain desired motion. The second
theory is based on a assertion that our movements are actually optimal and that the se-
lected movement among all the possible ones minimizes certain optimal criteria. We will
throroughly describe the latter theory on which all of our works have bee based. It has to
be noted that other theories exist such as equilibrium point or dynamical system theories,
but they make quite distinct assumptions and therefore they will not be detailed here.

2.1 Internal models

Internal models are neural processes which play an important role in motor control as they
allow the CNS to mimic the sensorimotor behaviours of the controlled system. Indeed,
the concept of internal models seems appealing to develop a motor control theory but
their concrete existence in the brain is still under debate in the neuroscience community.
Whatever the neural representation they have, the formalisms associated with the internal
models all come from the automatic and control theory and seem at least adequate to
study the issue of planning and controlling human movement (for reviews, see Wolpert
and Ghahramani (2000))

In general, the internal models could be classified into two different types: forward and
inverse, each type of model serving a different purpose (Fig. 2.1). The forward internal
models permit estimating the next state (e.g. position and velocity) or sensory feedback
given the current state and the motor command whereas the inverse internal models allow
determining the motor command required to achieve desired changes in the state.

9



Chapter 2. Theoretical background

Figure 2.1. The sensorimotor loop can be divided into three stages. These three are
represented in the CNS as the inverse model, the forward dynamic model and the forward
sensory model, respectively Wolpert and Ghahramani (2000).

2.1.1 Forward internal models

Forward internal models of motor control are predictive internal models. They allow the
motor control system to predict the outcome of a specific action by taking into account the
available perceptual information and the motor command that causes the action. Specifi-
cally, they permit the brain to internally simulate the consequences of the planned action
without the need to actually execute the motion. Those models are often described as a
functional block within the brain to which the input data is the copy of the motor com-
mand signal from the CNS to the periphery (efference copy) and the output data is the
estimated sensory feedback (called corollary discharge). This estimated sensory informa-
tion is then compared with the actual sensory information coming from sensory receptors in
the peripheral nervous system (afference). Their discrepancy informs the CNS the extent
to which the the expected action agrees with the actual external action such that the CNS

10



2.1. Internal models

can anticipate, update or cancel sensorimotor errors during a movement. In some cases,
the forward internal models have been used to predict the next state of the arm dynamics
given the input motor commands.
Evidence for the existence of forward internal models inside the brain mainly comes from
studies of motor adaptation. For example, Wolpert et al. (1995b) studied a sensorimotor
integration task in which subjects carried out arm movements involving the use of null,
assistive and resistive force field in the dark after initially viewing their arm in light. At the
end of the movements, the subjects were then asked to estimate the final position of their
hand (which had been still hiding from view). The bias between the actual and estimated
location was found consistently overestimated with respect to the moved distance. This re-
sult was then fully explained with the model of sensorimotor integration process which was
actually a combination of two different processes (Fig. 2.2). The first one is a feed-forward
process, using the motor command and the current state estimate, combining with the
forward model of arm dynamics, to predict the next state. The second one is a feedback
process, based on the difference between the predicted and the actual sensory feedback and
the Kalman filter model to correct the estimated state obtained in the feed-forward step.
This feed-forward-based process successfully accounted for the observed results, indicating
the necessity of the internal model to estimate the final arm configuration.
The neurobiological concept of forward internal models has also been successfully applied
to a large number of robot control problems. For instance, Johannes Schrder-Schetelig
(2010) used the efference copy of motor commands and combined them with a forward in-
ternal model to predict the expected self-generated acceleration of a robot during walking.
This predicted acceleration was compared with the actually measured one, and was then
to update the controller such that walking stabilization was considerably improved.

11



Chapter 2. Theoretical background

Figure 2.2. Internal sensorimotor integration model proposed by Wolpert et al. (1995b)

2.1.2 Inverse internal models

In contrast to the forward internal models, the inverse internal models enable the motor
control system to predict necessary motor commands to achieve certain desired trajectories
and sensory consequences. As such, the inverse internal models are important in motor
control and often function as a basic module of open-loop control systems.

Again, motor adaptation studies have been used to prove the existence of inverse in-
ternal models. For example, by studying a goal-directed reaching movement perturbed
by a force field, Shadmehr and Mussa-Ivaldi (1994) found that the participants gradually
adapted their motor controller to compensate the dynamic perturbation in order to pre-
serve some typical movement characteristics such as bell-shaped velocity profiles, straight
line hand paths and smooth/continuous movements. However, when the perturbation was
removed, the participants showed after-effects resulting in perturbed movement trajecto-
ries in a direction opposite to the one induced by the pertubation. This finding provided
evidence for the existence of a predefined plan (an inverse model) that the motor control
system might use to estimate the necessary motor commands to cancel or counteract the
perturbation of the external forces and to preserve the characteristics of the normal move-
ment. Moreover, the after-effect exhibited by the motor control system indicated that such
inverse model could be modified through a training process (Fig 2.3).

12



2.2. Optimal control models

Figure 2.3. Experimental evidence for the existence of the internal inverse models. Panel
A shows the trajectories without the perturbations; Panel B shows the initial perturbations
that cause large movement variations; Panel C shows the trajectories with the perturba-
tions after learning sessions and panel D shows the after effects of the trajectories when
the perturbations are removed (Shadmehr and Mussa-Ivaldi, 1994).

2.2 Optimal control models

The optimal control approach hypothesizes that humans execute movements that are opti-
mal with respect to certain optimal criteria. This approach is theoretically and practically
appealling regarding to other classes of models (Todorov, 2004). (i) Theoretically, this
approach is based on the natural observation that sensorimotor control is a process that is
continuously repeated and updated to improve behavioural performance (across evolution
and life time). Thus, even if a performance is not exactly optimal, it could be considered
good enough with optimality as limit case. (ii) Practically, optimal control makes it pos-

13



Chapter 2. Theoretical background

sible to efficiently and easily solve the sensorimotor control problem without requirements
of directly describing the kinematics and the dynamics of the motion as other alternative
models may do. Indeed, the optimal control approach describes the motor system be-
haviour in terms of a global measure called a cost function. This global measure attributes
a cost to a movement and the optimal movement is the one that minimises the cost. By
specifying a cost, optimal control theory allows to predict an infinity of movements in a
concise and elegant way.

In the literature, several cost functions have been proposed by different researchers and
they could be classified into two different types: the objective and the subjective costs.
The major difference between these costs relates to how they depend on the task specifi-
cation. Indeed, objective costs are imposed by the task itself and could take various forms
depending on the exact purpose of the task (e.g. maximize the precision or the accuracy
of reaching, jump hight, etc). In constrast, subjective costs usually reflect objectives of
the sensorimotor control system itself and are mainly related to the physical structure of
the body. These costs are fundamental to resolve all the task redundancy and select a pre-
ferred motor strategy. Throughout the thesis work, we focus on examining the subjective
costs only as interesting findings regarding how the brain plans movement can be found
here. In terms of subjective costs, we can list here several cost functions such as hand jerk
(Flash and Hogan, 1985), angle jerk (Wada et al., 2001), angle acceleration (Ben-Itzhak
and Karniel, 2008), torque change (Uno et al., 1989; Nakano et al., 1999), torque(Nelson,
1983), geodesic (Biess et al., 2007), energy (Nishii and Murakami, 2002; Berret et al., 2008),
effort (Todorov and Jordan, 2002; Guigon et al., 2007). Each of them has been proved use-
ful and relevant as it often replicates at least some experimental observations. In summary,
they can be grouped into three main categories: kinematic, energetic and dynamic. Their
detailed formulation will be described below.

2.2.1 Kinematic costs

Generally, kinematic costs are formulated based on the geometric variables of a sensori-
motor system such as the hand (or finger) position in the Cartesian space or the angular
displacement in the joint space and their respective time derivatives. As such, there ex-
isted several kinematic costs, each of which has been proved to successfully account for
movements executed at a certain extent. Here, we will describe in detail the minimum jerk

14



2.2. Optimal control models

cost as a representative element of this class. The idea of jerk cost originally comes from an
observation that human movements have the fundamental characteristics of smoothness;
i.e, small tremors (Flash and Hogan, 1985). Producing very low level of hand shaking,
for instance, could be a target of the CNS to increase the accuracy at the level of the
end-effector and/or to protect the joints and the tendons. Thus, the jerk cost aims at
producing smooth movements in the Cartesian space. The mathematical formulation of
this cost is hence described as follows:

CHandJerk =
1

2

T∫
0

(
d3x

dt3

)2

+

(
d3y

dt3

)2

dt (2.1)

where T is the movement duration and (x, y) denotes the position of the end-effector (e.g.
fingertip or hand) along the two respective coordinates at time t. Obviously, this equation
is purely kinematical: it depends neither on the dynamic properties of the system nor on
the environment.

The solution of the above equation is relatively simple. In Flash and Hogan (1985), the
problem was directly solved by using the Euler-Lagrange equations and the trajectories
minimizing the cost are as follows: x(t) = x0 + (x0 − xf )(15t4 − 6t5 − 10t3)

y(t) = y0 + (y0 − yf )(15t4 − 6t5 − 10t3)
(2.2)

where (x0, y0) and (xf , yf ) are the initial and final coordinates of the end-effector, respec-
tively. Note that this is the solution for movements starting and ending at zero speed and
acceleration.

Here, the found solution has successfully predicted certain empirical observations (Flash
and Hogan, 1985) showing that point-to-point reaching movements were approximately
straight with bell-shaped tangential velocity profiles. This model thus suggested a kine-
matic planning of movement in the Cartesian space with some advantages because the
end-effector trajectory could be easily found without specific knowledge of the arm dy-
namics. Moreover, the stipulation of the cost could easily be generalized into three spatial
dimensions by simply taking the sum of squared jerk along each dimension which is equiv-
alent to three independent minimizations. Consequently, the resulting trajectories all take
the form of Equation 2.2 for each dimension and predict the straight movements for the
end-effector in 3D with symmetric velocity profiles.
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Chapter 2. Theoretical background

Besides advantages, the minimum jerk cost in Cartesian space, also known as hand
jerk cost, has some limitations. The arguments for such limitations are twofolds: (i) The
prediction of the hand jerk cost is mostly about the path movement of the end-effector; i.e.
the highest level of the sensorimotor control system; thus it does not reveal any prediction
about what could happen in the joint space or even at the lower level (muscle level) of the
control system. (ii) When the subject’s arm is hidden from his/her view, what the brain
actually monitors is based on the sensory feedback/perception which is measured and sent
to the brain by joint receptors. Therefore, the emerging idea is that the real aim of the
CNS is probably to produce smooth movements in the joint space, and that the observation
of smooth hand path in Cartesian space is just the consequence of what is planned in the
joint space. Wada et al. (2001) thus extended the concept of hand jerk cost into the joint
space by replacing the third derivatives of hand trajectories by those of joint angles. The
equation of the minimum jerk in the joint space hence becomes:

CAngleJerk =

T∫
0

∑
i

(
d3θi
dt3

)2

dt (2.3)

where i denotes the ith joint angle. Their respective solutions all take the same form
as in Equation 2.2.

The minimum-jerk model has been proved to play an important role in general. One
example is to use the minimum jerk model to explain the two-thirds power law, which
stipulates that the hand angular velocity during drawing or scribbling relates with the
path curvature as a power of 2/3 (Paolo Viviani, 1995). Recently, by examining a novel
bar reaching task from different initial arm postures (Berret et al., 2011a) these authors
showed that the angle jerk cost contributed the most to the composite cost which replicated
at best the experimental reaching behaviours.

2.2.2 Dynamic costs

Dynamic costs are formulated based on the dynamics of the sensorimotor control system
where parameters of interest are often forces or torques acting on joints and their respective
time-derivatives. Like the kinematic costs, the dynamic costs were also shown to account
well for some empirical data. Here, it is useful to distinguish the dynamic costs from the
kinematic costs. The critical difference between two costs is associated with the inverse dy-
namic process which is generally assumed to exist in the motor system. Indeed, kinematic
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costs allow determining easily the optimal trajectories either in the intrinsic (joint) or the
extrinsic (Cartesian) space without knowledge of the arm dynamics. Yet, in order to ex-
ecute movements following the specified optimal trajectories, an inverse dynamics process
is still required to estimate necessary torques/forces that would cause the desired trajec-
tories. In contrast, dynamic cost functions do not require such inverse dynamics process.
However, solving the optimal problem for the dynamic costs is often more challenging than
for the kinematic costs and usually requires more complex numerical methods.

In the literature, several dynamic costs have been proposed by researchers. Their
definition could be based on different dynamic variables such as torque, torque change,
muscle tension or motor command, etc. Here, we will mainly describe the torque change
cost and considered it as a representative element of the dynamic class of costs.

The torque change model has been first proposed by Uno et al. (1989), arguing that
minimally changing the joint torque could protect the musculoskeletal system and produce
smooth movements in torque space. The mathematical formulation of the cost is described
as follows:

CTorqueChange =

T∫
0

∑
i

(
dτi
dt

)2

dt (2.4)

where T is the duration movement, dτi/dt is the rate of change of torque at the ith

joint. Applying this criteria to horizontal movements of a bi-articular arm, Uno et al.
(1989) found that the determined optimal trajectories accounted quite well for numerous
empirical observations such as the curved hand path (observed as the subject moved his
stretching arm from the side direction to the final position in front of the body) that the
kinematic costs could not explain since the hand path predicted by the kinematic costs is
always a straight line.

2.2.3 Energetic costs

At the interface between the kinematic and the dynamic costs are energetic costs which
try to measure the actual energy expenditure of movements. Like the kinematic- and the
dynamic-based models, several cost functions have been proposed in this catergory such
as the absolute work (Berret et al., 2008; Gauthier et al., 2010), the peak work (Soechting
et al., 1995) and the geodesic (Biess et al., 2007). While it is usually hard to get an
account of the metabolic energy consumed by different trajectories, the mechanical energy
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expenditure can be well evaluated. Here, we will mostly consider the absolute work of
musle torques as a representative element of the energetic class of models.

The concept of the absolute work cost has been proposed by Berret et al. (2008) and
supported by the inactivation principle emerging during the motor control process. Ac-
cording to this principle, minimizing a term similar to the absolute work predicts a brief
simultaneous inactivation of agonistic and antagonistic muscles acting on each single joint
near the time of peak velocity, for fast enough reaches. This cost function was also im-
portant to replicate other typical features of movements such as the hand trajectory, hand
velocity profile or final arm postures. The mathematical formulation of the cost is described
as follows:

CAbsoluteWork =

∫ T

0

∑
i

|θ̇iτi|dt (2.5)

where T is the movement duration, θ̇i is angle velocity and τi is the muscle torque acting on
the joint ith . Unlike the kinematic and the dynamic models, solving the optimal problem
of absolute work cost is quite challenging because of its non-smoothness around zero due
to the absolute function. In order to avoid this difficulty, in numerical analyses, a term
similar to the absolute work was used and defined as

CAbsoluteWork =

∫ T

0

∑
i

tanh(α|θ̇iτi|)|θ̇iτi|dt (2.6)

where the parameter α quantifies discrepancy between the smooth approximation function
and the real absolute work. The smaller the value of α, the higher the discrepancy. Through
the thesis work, α was set equal to 10.

2.3 Direct optimal control

The goal of direct optimal control is to find a control variable and its corresponding con-
trolled variables (e.g. a set of states such as positions and velocities) that minimize a given
cost function while sastifying certain constraints. Conceptually, the direct optimal control
can be stated as follows:

Direct optimal control will determine optimal state variables x(t) ∈ Rnx , an optimal
control u(t) ∈ Rnu , possibly an initial time (t0) and/or final time (tf ) and an optimal cost
on that time interval that minimizes the following cost function:

L =h(x(tf ), tf ) +
∫ tf
t0
g(x(t), u(t), t)dt
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where h measures the cost value at the final time/states and g measures the infinites-
imal cost value at any time t. The solution to this problem is subjected to the dynamic
constraints:

dx
dt

= fd(x(t), u(t), t)

and the inequality/equality path constraints

pmin ≤ fp(x(t), u(t), t) ≤ pmax

and some event constraints

emin ≤ fe(x(t0), t0, x(tf ), tf ) ≤ emax

The function h, g, fd, fp, fe are defined by the following mappings:

h : Rnx ×R→ R,

g : Rnx ×Rnu ×R→ R,

fd : Rnx ×Rnu ×R→ Rnx ,

fp : Rnx ×Rnu ×R→ Rnp ,

fe : Rnx ×R×Rnx ×R→ Rne ,

The set of control variables which sastifies the control constraints during the time
[t0, tf ] is called the set of admissible controls; whereas the set of state variables sastifying
the state constraints is called the set of admissible states. Thus the purpose of the direct
optimal control is to find among the admissible controls and states a control u = u? and a
corresponding state x = x?, connecting a source point xt0 to a final point xtf on the time
interval [t0, tf ] and yielding a minimal value of the cost L.

The optimal control theory can be formulated in two different ways: the discrete time
(where the time makes jumps according to a sampling frequency) and the continuous time
formulations. Consequently, separate computation techniques have been proposed to solve
the direct optimal control problem for each of these formulations.

In the discrete case, the first method developed in the 1950s in the United State is
known under the name “dynamic programming” and is proposed by Bellman (1957). This
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method is based on the following idea: the choice of optimal control in the future is inde-
pendent of the choice of the optimal control in the past, which led to the present state. In
the continuous case, the same principle can be generalized in the form of the equations of
Hamilton-Jacobi-Bellman (HJB) which generally converts the optimal control problem to
solving nonlinear partial differential equations of second-order. Meanwhile, in the Soviet
Union and in line with the calculus of variations and the multiplier method of Lagrange,
Lev Pontryagin and his colleagues developed the Maximum Principle (PMP) to give a pow-
erful formalism for solving a wide range of problems. PMP provides necessary optimality
conditions, while HJB equations give sufficient conditions of optimality. These methods
are very powerful but their use is often limited to low-dimensional systems. Because of the
curse of dimensionality or the difficulty of implementing shooting methods from PMP for-
malism, researchers often use more numerical approaches, especially when they deal with
complex systems and non-quadratic cost functions. In practice, one common methods to
solve the continuous optimal control problem is called direct transcription. The rationale
is that the continuous variables will be represented (or approximated) by discrete variables
into N subintervals (denoted as {t0, t1,...,tN}). Thus, continuous time variables are replaced
by piece-wise constant functions. Eventually, this discretization allows one to convert the
optimal control problem to a constrained non-linear programming problem, for which ef-
ficient numerical tools exist including for high-dimensional problems with thousands of
variables.

Applying the direct optimal control to the study of neural movement control can be
useful as it allows searching for the best theoritical trajectory for a specific criterion chosen a
priori by the researcher. This simulated trajectory is then compared with the experimental
data that allows verifying whether model or cost function replicates the real motor strategy.
Thus, it permits assessing the possibility that the brain may use such criterion during motor
planning stage. However, the limitation of direct optimal control is that the criterion
must be always "guessed" by the researcher and even if a criterion is found to fit some
data reasonably well, it does not prevent other criteria to perform equally well (or even
better). Therefore, direct optimal control is useful to test the validity of criterion but does
not resolve the question of why human trajectories have such a shape as other untested
cost function might also reproduce the motion data. Understanding which variables are
really critical for motor planning would require testing a bunch of cost functions. Recently,
evidence showed that the brain possibly optimizes a combination of several different criteria
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with different weights during the control of human movement. In order to determine these
weights, we must employ another approach (generally considered as much more difficult)
which is described hereafter.

2.4 Inverse optimal control

Unlike direct optimal control, the cost function is considered to be unknown and becomes
what is sought for in case of inverse optimal control; instead, what we start from is the
knowledge of presumed optimal state trajectories (via empirical motion data). This means
that the optimal solution is known (also approximately) but the cost function underlying
the resultant solution is unknown. Actually, inverse problems are commonly faced in the
scientific fields, in particular in neural movement control where the principles according to
which the brain may plan movement must be uncovered. In such cases, inverse optimal
control allows automatically inferring the cost function by directly using the recorded data
as one of its input information.

However inverse optimal control is an ill-posed problem in general, which means it may
have no unique solution. To be more tractable, inverse optimal control usually assums that
the cost function takes the form of a combination of different criteria which are weighted
differently. This combination is also called composite cost (denoted by C(α) here). Then,
the purpose of inverse optimal control is to find the weights that make the simulated
trajectories as close as possible to the real /measured ones. Let us denote the simulated
and measured trajectories are X?

α and Xmeas, respectively. Then the formulation of inverse
optimal control can be stated as a “bi-level” problem with two loops (Mombaur et al., 2009;
Berret et al., 2011a):

Outer loop minimizeα Φ(X?
α,X

meas),

↑↓
Inner loop whereX?

α is the optimal solution corresponding to the value α that

yields aminimal value of composite cost C(α)

(2.7)

The outer loop function Φ is a measure of the discrepancy between simualted and
measured trajectories. Thus far, what metric we should use to compare simulated and
real motion data is still under debate. It is likely that reproducing the geometry of the
trajectory is required before looking at the velocities, accelerations or torques. Yet, different
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functions could be used here. A conservative measure is for instance the maximal deviation
from a simulated trajectory to the real path. The composite cost function C(α) is usually
assumed to be composition of elementary costs Ci and takes the following form:

C (α) =
n∑
i=1

αiCi (2.8)

The parameter α = (αi)1≤i≤n is referred to as the weighting vector whose elements are
non-negative. Thus, the purpose of outer loop is to adjust α = (αi)1≤i≤n and finally find
its optimal value α? = (α?i )1≤i≤n that has the simulated X?

α? respectively closest to the
recorded Xmeas.

Other difficulties are associated with numerical inverse optimal control such as time
of the computations, robustness of the optimization steps etc. Inverse optimal control
nevertheless allows testing an infinity of cost functions while only a couple are tested when
doing direct optimal control. The possibility to test a great number of cost functions in an
automated way is one of the most interesting property of inverse optimal control.
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Biomechanical modelling
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2.5. Anatomical background

2.5 Anatomical background

2.5.1 Anatomical structures

The anatomical structure of the upper-limb composes of three segments: the upper arm,
the forearm and the hand (Fig. 2.4). The upper arm is connected with the trunk through
the shoulder girdle which consists of the clavicle and the scapula. Horizontally located on
the anterir and upper part of the thorax, the clavicle is a long bone that serves as strut
between the scapula and the sternum. Being flat, even and non-symmetrical triangular
bone, the scapula locates on the upper and posterior part of the thorax leading to the
glenohumeral joint. The glenohumeral joint is a ball and socket joint with three degrees
of freedom involving the articulation between the scapula and the humeral head. The
humerus itself is a long, non-symmetrical bone that connects the scapula and the forearm
bones. The humerus is connected to the forearm through the synovial elbow hinge joint.
The two long bones of the forearm, the radius and the ulna, form the radioulnar joint. The
latter is on the lateral side and represents the mobile part (corresponding to pronation and
supination) of the forearm whereas the former is on the medial side and is relatively fixed.
The hand is divided in three parts, the carpus, the metacarpus and the phalanges. The
carpus contains eight bones connecting the hand to the forearm that forms the radiocarpal
joint or the wrist joint. The mobility of the individual carpal bones increases the freedom of
movements of the wrist. The metacarpi are the bones of the palm. The phalanges consist
of fourteen phalanx bones of the fingers, together with the metacarpi bones, forming the
skeleton of the fingers.

2.5.2 Anatomical landmarks

Here, we use a set of anatomical landmarks which has been proposed by the International
Society of Biomechanics (ISB) (Wu et al., 2005) and defined as follows (Table 2.1).
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Figure 2.4. Anatomical model of the human upper body (Hansen, 2013).

Anatomical landmarks
Thorax C7 Processus Spinosus (spinous process) of the 7th cervical vertebra

T10 Processus Spinosus (spinal process) of the 10th thoracic vertebra
IJ Deepest point of Incisura Jugularis (suprasternal notch)
PX Processus Xiphoideus (xiphoid process), most caudal point on the sternum

Clavicle SC Most ventral point on the sternoclavicular joint
AC Most dorsal point on the acromioclavicular joint (shared with the scapula)

Scapula TS Trigonum Spinae Scapulae (root of the spine), the midpoint of the triangular
surface on the medial border of the scapula in line with the scapular spine

AI Angulus Inferior (inferior angle), most caudal point of the scapula
AA Angulus Acromial is (acromial angle), most laterodorsal point of the scapula
PC Most ventral point of processus coracoideus

Humerus GH Glenohumeral rotation center, estimated by regression or motion recordings
EL Most caudal point on lateral epicondyle
EM Most caudal point on medial epicondyle

Forearm RS Most caudal–lateral point on the radial styloid
US Most caudal–medial point on the ulnar styloid

Table 2.1. Anatomical landmarks
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The real locations of these anatomical landmarks on the relative bones are virtually
displayed in Figure 2.5.

Figure 2.5. Body landmarks of the thorax, clavicle, scapula and humerus (Wu et al.,
2005).

2.6 Kinematic model of the arm

2.6.1 Upper-body segment coordinate systems

The next section is dedicated to the definition of a segment coordinate systems (SCS) in
accordance with the recommendations of the ISB for a human upper-body. More specif-
ically, for each segment of interest, we will define a specific segmental coordinate (origin
and three Euclidean axes) based on the anatomical landmarks that almost rigidly attach
to and move along with the segment. The details will be described as follows.

Trunk coordinate system:
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OT The origin coincident with the IJ
YT The line connecting the midpoint of PX and T10 and the midpoint of

IJ and C7, pointing upward.
ZT The line perpendicular to the plane formed by IJ, C7, and the midpoint of

PX and T10, pointing to the right
XT The common line perpendicular to the ZT and YT axis, pointing forwards

Table 2.2. Trunk coordinate definition

Humerus coordinate system:

OA The origin coincident with the GH
YA The line connecting GH and the midpoint of EL and EM, pointing to GH
ZA The line perpendicular to the plane formed by YA and YF (see forearm coordinate

definition just below) pointing to the right
XA The common line perpendicular to the ZA and YA axis, pointing forward

Table 2.3. Humerus coordinate definition

Forearm coordinate system:

OF The origin coincident with the midpoint of EL and EM
YF The line connecting the midpoint of US and RS and the midpoint of EL and EM,

pointing to proximally
XF The line perpendicular to the plane through US, RS, and the midpoint of

EL and EM, pointing forward
ZF The common line perpendicular to the XF and YF axis, pointing to the right

Table 2.4. Forearm coordinate definition

Hand coordinate:

OH The origin is located at the midpoint of US and RS
YH The line parallel to the long shaft of the ulna from OH to intersect with the cen-

ter of the dome of the ulnar head
XH The line perpendicular to the plane containing YH and the line connecting US to

RS, pointing forward
ZH The common line perpendicular to the XH and YH axis, to the right.

Table 2.5. Hand coordinate definition
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2.6. Kinematic model of the arm

Following these definitions, the segment coordinate systems of the upper right limb
could be illustrated as in Figure 2.6.

2.6.2 Rotational model of upper-limb joints

Because we mainly study motions of the upper-limb while constraining motion of other
parts, in the following paragraphs, we will only describe in details the rotational model of
the upper-limb joints (i.e. shoulder, elbow and wrist joints).

Shoulder joint model. Although most of researchers agree that the motion of shoul-
der joint can be considered as consisting of three degrees of freedom (DoF), the specific
rotational order of these DoFs is still under debate as different orders will lead to different
estimated joint angle values. Indeed, many available rotational orders have been proposed
such as the X-Y-Z order in Cardan angles or Y-X-Y order in Euler angles. Here we choose
the Euler angle order as it permits the joint angles to remain as close as possible to the
clinical definitions of joint and segmental motions. According to this choice and in accor-
dance with the ISB recommendation (Wu et al., 2005), the first rotation will be executed
around the Yg axis of global coordinate (this global coordinate is actually coincident with
the trunk coordinate in our consideration). The corresponding movement is the inter-
nal/external motion. It is also called “plane of elevation” because it indicates in which
plane the subsequent movement called “elevation/depression” ( corresponding to 2nd DoF)
is executed. This latter motion is executed around the XA axis of the humerus coordinate
model rigidly attached to the humerus segment as mentioned above. Finally, the 3rd DoF
corresponds to the humerus axial rotation (namely, ulnar/radial rotation) and is executed
around the YA axis of the humerus coordinate. (See Fig. 2.6 for a visual illustration)

Elbow joint model. Less complex than the shoulder joint, the elbow joint has only two
DoFs. Its first DoF corresponds to “flexion – extension” motion around the ZA axis of the
humerus coordinate model, followed by its 2nd DoF “pronation - supination” around the
YF axis of the forearm coordinate model rigidly attached to the arm.

Wrist joint model. Finally, the wrist has two DoFs: “radio-ulnar deviation” around XF

axis of the forearm coordinate followed by “flexion-extension” around ZH rigidly attached
to the hand.
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Figure 2.6. The segment coordinate model and the joint model of the upper right limb

2.6.3 Inverse kinematic calculation

2.6.3.1 Measuring human movements

Measuring human movements Over the last centuries, techniques allowing to mea-
sure human locomotion have been always developed and improved. At very early times,
Weber brothers (1836) reported one of the first quantitative studies evaluating the tem-
poral and distance parameters during human locomotion. Some years later, Marey (1873)
and Muybridge (1878) were among the first to quantify patterns of human movement by
using photographic techniques that turned out to successfully reveal a flight phase dur-
ing the running stride in the horse gallop. More recently, instrumentation and computer
technologies have provided new opportunities for the advancement of the study of human
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locomotion including goniometers, accelerometers (Chung and Ng, 2012), inertia based
and electromagnetic sensors (Lee and Park, 2011), active and passive optical motion cap-
ture systems (Maletsky et al., 2007; Richards, 1999) and even markerless optical motion
capture devices (Ceseracciu et al., 2011), as well as ultrasound motion capture devices
(Malmström et al., 2003). Nowadays, the most common method for accurately capturing
three-dimensional human movement is to attach a set of markers, fixtures or sensors to the
body segments, then use a number of high speed cameras to trace/record the movement of
these attached points. The use of markers, for instance, is typical to infer the underlying
relative position/orientation of two adjacent segments with the goal of precisely defining
the movement of the joint. However, the accuracy of motion capture systems strongly
depends on the number of camera, the size and quality of used marker, the distance from
the camera to the marker, the quality of calibration, the calibration volume, the camera
resolution and external infrared disturbances (Maletsky et al., 2007; Windolf et al., 2008;
Chung and Ng, 2012; Richards, 1999). Furthermre, putting markers on the human body
often leads to soft-tissue artifacts (STA) between skin-mounted markers and the under-
lying bones (Cappozzo et al., 1996). Using bone pins may avoid the occurrence of STA
(Reinschmidt et al., 1997; Benoit et al., 2006), but the feasibility of drilling pins in the
bone of subjects to quantify joint and bone motions remains questionable.

Depending on the complexity and the detail of analyses, the choice of movement mea-
surement device is important and usually dependent on the application and the budget. In
our current study, we used an optical motion capture system consisting of eight-high-speed
cameras (Vicon motion system Inc. Oxford, UK). The laboratory setup of the system is
displayed as in Figure 2.7. The optoelectronic cameras are usually arranged along a circle
around the subject.

Marker Set. In the current work, the set of ten anatomical markers described above was
attached to the participants according to the following anatomical landmarks: 7th cervical
vertebrae (C7), 10th thoracic vertebrae (T10), jugular notch where the clavicles meet the
sternum (CLAV), xiphoid process of the sternum (STRN), right acromio-clavicular joint
(RSHO, LSHO), lateral and medial epicondyle elbow (RELB, RELM), wrist bar thumb
and wrist side and the hand (RWRA, RWRB) and the hand place on the dorsum of the
hand just below the head of the second metacarpal (RFIN) and the tip of the index finger
(FRI1).
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Figure 2.7. A motion capture system composing of eight cameras (Hansen, 2013).

Figure 2.8. A set of marker used in the current work for the upper body (Hansen, 2013).

32



2.6. Kinematic model of the arm

2.6.3.2 Joint angle calculations

Here we use an inverse kinematic approach to calculate the limb’s joint angles with respect
to specific limb posture. To this aim, we first link the limb’s SCS as mentioned above with
the set of markers that allows estimating such SCS based on the measured 3D position of
markers. Depending on the determined coordinates, a set of rotation matrices standing for
the rotational transformation from the global to the segmental coordinates is calculated in
accordance with the chosen Euler rotational order. The obtained results are then used to
infer another set of rotation matrices between two adjacent segments. This latter set of
matrices in turn allows extracting the limb’s relative joint angle displacements. The detail
of process will be described as follows.

First, according to the biomechanical model of the upper-limb, the SCS and the order
of rotational axes are summarized based on the marker set as described in Table 2.6.
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Segment Coordinate /Rotation definitions Rotation Sequence
(based on markers)

Trunk Origin : CLAV
Yt : midpoint of [STRN-T10] → midpoint of

[CLAV-C7]
Xt: midpoint of [STR-T10] → CLAV 2 midpoint of

[STRN-T10] → C7
Zt : Xt2 Yt

Arm Origin : Rotation Center of the Shoulder (RHUO) Y-X-Y
Ya : midpoint of [RELM-RELB] → Rotation Center of

the shoulder
Za : Ya2Yf
Xa : Ya2Za.
Rotation

a1 : Internal/external
a2 : Elevation/depression

a3: Axial rotation ulnar/radial

Forearm Origin : RHUP Z-X-Y
Yf : RRAO → midpoint of [RELB-RELM]
Xf : RRAO → RELM 2 RRAO → RELB

Zf : Xf2Yf
Rotation

a1 : Flexion/ extension
a2: Pronation/ Supination

Hand Origin : RRAO. Y-X-Z
Yh : RFIN → midpoint of [RWRA-RWRB]
Xh : RFIN → RWRA 2 RFIN → RWRB

Zh : Xh2Yh
Rotation

a1 :Abduction / Adduction
a2 : Flexion/ Hyper-extension

Table 2.6. The segment coordinate system based on the marker set and the order of
rotational axes

Based on the above definition, we then calculate the coordinates for each segment with
respect to the global coordinate system. We define the rotation matrices which represent
the rotational transformation from the global to the segmental coordinates as follows:
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R01= R_trunk From global coordinate to trunk coordinate

R02= R_upperarm From global coordinate to upper arm coordinate

R03= R_forearm From global coordinate to forearm coordinate

R04=R_hand From global coordinate to hand coordinate

We then define R12, R23, R34 as the rotation matrices describing the transformation
from the trunk’s coordinate to the upper arm’s, from the upper arm’s coordinate to the
forearm’s and finally from the forearm’s coordinate to the hand’s, respectively. Then, the
rotation matrices from the global to the segmental coordinate could be rewritten as:

R02 = R01R12

R03 = R02R23

R04 = R03R34

(2.9)

by multiplying both left and right sides of these above equations with R−1
01 , R

−1
02 , R

−1
03

respectively. We obtain:

R12 = R−1
01 R02

R23 = R−1
02 R03

R34 = R−1
03 R04

(2.10)

As such, the displacement of joint angles could be easily extracted by using the inverse
Euler rotation transformation as follows :

• At shoulder : rotation order YXY

AngleSx = − arccos(R12(2, 2);

AngleSy1 = arctan 2
(

R12(1,2)
sin(AngleSx )

, R12(3,2)
sin(AngleSx )

)
AngleSy2 = arctan 2

(
R12(2,1)

sin(AngleSx )
, −R12(2,3)

sin(AngleSx )

)
• At elbow : rotation order ZXY

AngleEx = − arcsin((R23(3, 2));

AngleEy = arctan 2
(
−R23(3,1)

cos(AngleEx )
, R23(3,3)

cos(AngleEx )

)
AngleEz = arctan 2

(
−R23(1,2)

cos(AngleEx )
, R23(2,2)

cos(AngleEx )

)
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• At wrist : rotation order YXZ

AngleWx = π
2
sign (arcsin(−R34(2, 3))) + arcsin(−R34(2, 3))

AngleWy = arctan 2 (R34(1, 3), R34(3, 3))

AngleWz = arctan 2 (R34(2, 1), R34(2, 2))

It is noteworthy that there are only two real DoFs at elbow and wrist. Therefore, the
AngleEx and AngleWy are actually equal to zero.

2.7 Dynamic model of the arm

Derivation of the dynamic model of human upper-limb plays an important role for the anal-
ysis of 3D movement and the interpretation of possible principles underlying sensorimotor
control system. Having relatively accurate description of the arm’s dynamics and efficient
computational methods is especially important for the simulation processes as several cost
functions (being tested in the current work) require intensive evaluation of the arm’s dy-
namics. Moreover, the computation of forces and torques required for the execution of
upper-limb motion provides insights about the properties of the motor command. The
following paragraphs are thus dedicated to describe the dynamic model of the right upper-
limb. We first introduce a method allowing to estimate the segment inertial parameters of
the limb, then briefly describe some existing approaches permitting to calculate necessary
forces/ torques associated with given kinematics.

2.7.1 Segment inertial parameter estimations

2.7.1.1 Moment of inertia/Inertia tensor

The term “moment of inertia” was first introduced by Leonhard Euler in his book titled
“Theoria motus corporum solidorum seu rigidorum” in 1765. Just like mass (inertia) plays
a role in the linear kinetics, moment of inertia plays a role in the rotational kinetics -
both characterize the resistance of a body to changes in its motion. It is defined based on
the mass elements of an object and the squared distance from these mass elements to the
rotation axis. The moment of inertia thus depends on how mass is distributed around the
axis of rotation and will vary depending on the chosen axis.
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For a point-like mass, the moment of inertia about a certain axis is given by d2m, where
d is the distance to the axis, and m is the mass. For an extended body, the moment of
inertia (or inertia matrix) is just the sum of all the small pieces of mass multiplied by the
square of their distances from the axis. In general, in a 3D examination, the inertia matrix
of a rigid body expressed in a Cartesian coordinate XYZ is of the form:

I =


Ixx −Iyx −Izx
−Ixy Iyy −Izy
−Ixz −Iyz Izz

 (2.11)

where the diagonal matrix elements Ixx, Iyy, Izz are calculated by the following
equation :

Ixx =
∫∫∫

(y2 + z2) dm

Iyy =
∫∫∫

(x2 + z2) dm

Izz =
∫∫∫

(x2 + y2) dm

(2.12)

which subsequently represent the moment of inertia with respect to the X, Y and Z
axes. The non-diagonal matrix elements, also called products of inertia, are calculated by
the following relationship :

Ixy =
∫∫∫

xydm

Iyz =
∫∫∫

yzdm

Izx =
∫∫∫

zxdm

(2.13)

which reflect mutual impacts between the three major rotation axes (X, Y, Z). When
the product elements obtain non-zero values, applying torques on a certain rotation axis
(e.g. X axis) will cause rotational motions around the other axes (i.e. Y and Z axes).

The inertia matrix varies depending on the chosen rotation axes as well as the reference
frame wherein it is calculated. It is shown that in a body-fixed frame (frame rigidly attached
to the moving object), the inertia matrix is a constant real symmetric matrix. Thus, there
exists an unique eigen decomposition into the product of a rotation matrix E and a diagonal
matrix D, given by:

I = EDET (2.14)

where,
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D =


I1 0 0

0 I2 0

0 0 I3

, and E = {e1, e2, e3} .

The unit eigenvectors e1, e2, e3 define three principal (orthogonal) axes of the object
while I1, I2, I3 define the principal moment of inertia of the object around the three axes
respectively (there are the eigen values of I). Interestingly, one of the characteristics of
principal axes is that torques acting on these axes are independent of each other.

2.7.1.2 Human body segment inertial parameters (BSIP)

Calculating BSIP as mass, center of mass (denoted by CoM) and inertia tensor has been
shown to be very important for clinical and biomechanical research (Rao et al., 2006; Pai,
2010). The measure of such parameters are obligedly required whenever reseachers analyse
the dynamical aspect of human motion. Thus, an efficient method that allows estimating
accurately these parameters will considerly improve the accuracy of the dynamical analysis
results (e.g. joint forces/ torques) which are often estimated through an inverse dynamic
calculation(Pearsall and Costigan, 1999). In the literature, three main BSIP estimation
methods exist which are the regression-based, the geometric and the dynamic estimation
approach. The firt method uses scaling functions based on numerous anthropometric mea-
surements from cadaver studies (Dempster, 1955; Chandler et al., 1975). This method is
limited by the measurement techniques and the sample population but quite convenient
and timesaving as it allows estimating BSIP through total body mass and segment length
(Dumas et al., 2007). The second method is based on either numerous anthropometric
measurements Hanavan Jr. (1964) or body scanning methods (e.g. 3D scanner, IRM or
Xray absorptionmetry). This method allows estimating personalized 3D BSIP (Cheng et
al., 2000; Ganley and Powers, 2004; Mungiole and Martin, 1990) but consumes time and
subjects must be exposed to radiation. The third method originates from the robotic field
and it is based on human body mechanical models for which parameters are tuned to match
kinematic and dynamic recorded data. The BSIP are identified based on the fact that the
dynamics of the human system can be written using the Newton-Euler formalism (Venture
et al., 2009b,a). This approach however is rather new, and the methods have yet not been
validated against other methods.

38



2.7. Dynamic model of the arm

Chosen BSIP estimation technique The estimation of the BSIP throughout the
current work is based on the scaling functions proposed by Dumas et al. (2007). The
scaling functions adjust the data of McConville et al. (1980) and of Young et al. (1983)
and are expressed directly in the conventional SCS. This method is easy to apply and the
subjects are not exposed to radiation kept for a long period time in the laboratory.

2.7.1.3 segment inertial estimation

Following Dumas’suggestion, one can estimate the upper-limb segmental mass of a specific
participant, given the total weight of body and the appropriate scaling factors (Table. 2.7)

Segment Gender mass (%)
Upper arm M 2.4

F 2.2
Forearm M 1.7

F 1.3
Hand M 0.6

F 0.5

Table 2.7. Scaling factors for the weight of each segment of upper limb (Dumas et al.,
2007)

Again, one can estimate the CoM of each limb’s segment with respect to its respective
SCS (the coordinate is defined compatible with ISB recommendation as mentioned above),
given the length of segments and the scaling factors (Table. 2.8)

Segment Gender X(%) Y(%) Z(%)
Arm M 1.7 -45.2 -2.6

F -7.3 -45.4 -2.8
Forearm M 1 -41.7 1.4

F 2.1 -41.1 1.9
Hand M 3.5 -35.7 3.2

F 3.3 -32.7 2.1

Table 2.8. Scaling factors for the position of the CoM of each segment in percent of each
segment’s length, measured experimentally (Dumas et al., 2007)

Thus, the segmental CoM can be defined by using the following equation :

CoMi = Li [X(%) Y (%) Z(%)]T
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Segment Gender rxx(%) ryy(%) rzz(%) rxy(%) rxz(%) ryz(%)
Arm M 31 14 32 6 5 2

F 33 17 33 3 5(i) 14
Forearm M 28 11 27 3 2 8(i)

F 26 14 25 10 4 13(i)
Hand M 26 16 24 9 7 8(i)

F 41 45 36 15(i) 0 0

Table 2.9. Scaling factors for the inertia tensor (Dumas et al., 2007)
where i denotes negative product of inertia.

where Li are the length of upper arm, forearm and hand, respectively.

In order to estimate the inertia tensor of each segment with respect to the SCS, the
scaling factors (also called radii of gyration) are given in the Table 2.9.

Given these scalings, the inertia tensor of each segment can be estimated by the fol-
lowing equations :

Ijk = mi(rjkLi)
2

where mi is the mass of each segment, Li is the length of each segment and rjk is the
scaling factors given in Table 2.9.

2.7.2 Torque calculations

2.7.2.1 Denavit-Hartenberg convention

Denavit-Hartenberg description In order to describe homogeneous transformations
for a mechanical system consisting of serial links and joints, a systematic method is required
to define the relative position and orientation of two consecutive links. In general, one can
chose an arbitrary frame as long as it is attached to the link that it is referred to. However,
it is more convenient to set up some rules (Denavit–Hartenberg convention) for definitions
of the link frames. Let consider an example of two links as displayed in Figure 2.9.
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Figure 2.9. Illustration of Devavit-Hartenbeg principle

Let axis zi−1 denotes the axis of the joint connecting Link i -1 to Link i; the so-called
Denavit-Hartenberg convention (DH) is adopted to define link Frame i as follows :

• Choose axis zi along the axis of Joint i + 1

• Locate the origin Oi at the intersection of axis zi with the common normal to axes
zi−1 and zi . Also, locate O

′
i at the intersection of the common normal with axis zi−1

• Choose axis xi along the common normal to axes zi−1 and zi with direction from
Joint i to Joint i +1

• Choose axis yi so as to complete a right-handed frame.

Once the link frames have been established, the position and orientation of frame i with
respect to frame i - 1 are completely specified by the following parameters:

• ai distance between Oi and Oi−1

• di coordinate of Oi along zi−1,

• αi angle between axes zi−1 and zi about axis xi to be taken positive when rotation is
made counter-clockwise,

• θi angle between axes xi−1 and xi about axis zi−1 to be taken positive when rotation
is made counter-clockwise.

41



Chapter 2. Theoretical background

Two of the four parameters (ai and αi) are always constant and depend only on the
geometry of connection between consecutive joints established by Link i. At this point,
it is possible to express the coordinate transformation between Frame i and Frame i - 1
according to the following steps:

• Choose a frame aligned with Frame i - 1.
• Rotate it by θi about axis zi−1 and translate the chosen frame by di along axis zi−1;

this sequence aligns the current frame with Frame i and is described by the homogeneous
transformation matrix

Ai−1
i′ =


cθi −sθi 0 0

sθi cθi 0 0

0 0 1 di

0 0 0 1


where cθi stands for cos (θi), sθi stands for sin (θi)

• Translate the frame aligned with Frame i by ai along axis xi and rotate it by αi

about axis xi; this sequence aligns the current frame with Frame i and is described by the
homogeneous transformation matrix

Ai
′

i =


1 0 0 ai

0 cαi −sαi 0

0 sαi cαi 0

0 0 0 1


The resulting coordinate transformation is obtained by post multiplication of the single

transformations as

Ai−1
i = Ai−1

i′ Ai
′

i =


cθi −sθicαi sθisαi aicθi

sθi cθicαi −cθisαi aisθi

0 sαi cαi di

0 0 0 1

 (2.15)

D-H table of the upper-limb. Following the D-H convention, the CSC of the upper-
limb is re-described as a manipulator of 7 DoFs connected to each other by consecutive
links. Here, a special consideration is taken regarding the length of these links. Indeed, for
two DoFs located at the same joint (e.g. three DoFs coupled at the shoulder), the length
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of the link will be set equal to zero. However, when it connects two DoFs located at two
different joints (e.g. the link connects the 3rd DoF at shoulder to 1st DoF at elbow), the
length of the link is estimated equal to the length of the associated segment.

The order of rotation sequences directly influences the results of the joint angle cal-
culation (Senk and Chèze, 2006). To remain consistent with previous work, we chose to
configure the limb model following the recommendations of the ISB (Wu et al., 2005).

As such, the coordinate defined for each DoF with respect to its link and rotation axis
is illustrated in Figure 2.10

Figure 2.10. Coordinate systems of the upper arm based on D-H description

The respective D-H parameters are then listed in Table 2.10 as follows:

43



Chapter 2. Theoretical background

Segment Rotation sequence Angles θ d a α Offset
Arm YXY Internal/External θ1 0 0 π/2 π/2

Elevation/Depression θ2 0 0 -π /2 0
Axial/Rotation θ3 -L0 0 π/2 -π /2

Forearm ZXY Flexion/Extension θ4 0 0 -π /2 0
Pronation/Supination θ5 -L1 0 π/2 π/2

Hand YXZ Abduction/Adduction θ6 0 0 -π /2 π/2
Flexion/Extension θ7 0 -L2 0 0

Table 2.10. Denavit-Hartenberg parameters associated with each DOF of the model

The column parameters θ values correspond to each of the joint angles expressed in
radians. L0, L1, L2 are the length of upper arm, forearm and hand, respectively. The
column “Offsets” has been added in the biomechanical model to indicate what is the arm
posture when all angles are equal to zero and are corresponding to the anatomical reference
position for which the ISB coordinates are also defined. Thus it is noteworthy that it is
always possible to convert the angles expressed in the D-H to the ISB (or vice versa) by
simply adding (or substracting) the Offset to the angles.

2.7.2.2 Euler-Lagrange formulation

Euler-Lagrange formulation allows deriving the dynamic model of a manipulator based on
determining its kinetic energy and potential energy (Bruno Siciliano, 2009). With Euler-
Lagrange formulation, the dynamical equation of motion can be derived in a systematic
way independently of the reference coordinate frame. Once a set of variables (in the case
of human upper-limb are θi, i=1,...,7), also termed generalized coordinates, are chosen,
which effectively describe the configuration of a 7-DoF manipulator, the Lagrangian of the
mechanical system can be defined as a function of the generalized coordinates:

L = T − U

where T and U denote the total kinetic energy and potential energy of the system, respec-
tively.

The Euler-Lagrange equation is then expressed by:

d

dt

(
δL
δθ̇

)T
−
(
δL
δθ

)T
= ξ (2.16)
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where θ = [θ1, .., θ7], ξ is a vector of the generalized forces associated with the vector of
the generalized coordinates θ.

it is relatively easy to determine the total kinetic and potential energy of the system.
We can thus solve the Euler-Lagrange equation (Eq. 2.16) and it is well-known that the
solution is of the following form:

τ = M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) +R(θ, θ̇) (2.17)

where τ is the actuation torques; M(θ) is the mass matrix; C(θ, θ̇)θ̇ stands for the Coriolis
torque elements; g(θ) denotes the gravity torque; R reflects frictional and viscous or elastic
torques created by all soft tissues. For most of studies, the term R is neglected and assumed
to be negligible compared to the other torques. A dot above a variable stands for its time
derivative.

2.7.2.3 Newton-Euler formulation

Unlike Lagrange formulation, Newton-Euler formulation is based on a balance of all the
forces acting on the link of the manipulator. This leads to a set of equations whose
structure allows a recursive type of solution, a forward recursion relative to the propagation
of velocities and accelerations and a backward recursion for the propagation of forces and
moments along the structure. The Newton-Euler formulation can be briefly described as
follows (its details could be found in (Bruno Siciliano, 2009)).

Let consider the link i of a n-DoFs manipulator connected to its adjacent link by joint
i and joint i+1 as displayed in Figure 2.11. We define the following parameters :
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Figure 2.11. Characterization of Link i for Newton-Euler formulation(Bruno Siciliano,
2009)

• mi: mass of augmented link,
• Ii: inertia tensor of augmented link with respect to center of mass,
• ri−1,Ci: vector from origin Oi−1 of Frame ith − 1 to centre of mass Ci,
• ri,Ci: vector from origin Oi of Frame ith to centre of mass Ci,
• ri−1,i: vector from origin Oi−1 of Frame ith − 1 to origin Oi of Frame ith ,
• ṗCi: linear velocity of center of mass Ci,
• ṗi: linear velocity of origin of Frame ith ,
• ωi: angular velocity of link,
• p̈Ci: linear acceleration of center of mass Ci,
• p̈i: linear acceleration of origin Oi of Frame ith ,
• ω̇i: angular acceleration of link,
• g0: gravity acceleration.
For forces and torques:
• fi: force exerted by Link ith − 1 on Link ith ,
• −fi+1: force exerted by Link ith + 1 on Link ith ,
• µi: moment exerted by Link ith− 1 on Link ith with respect to origin of Frame ith -1,
• −µi+1: moment exerted by Link ith + 1 on Link ith with respect to origin of Frame

ith .
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Then, the Newton equation for the translational motion of the center of mass can be
written as :

fi − fi+1 +mig0 = mip̈Ci

The Euler equation for the rotational motion of the link (referring moments to the
center of mass) can be written as :

µi + fi × ri−1,Ci
− µi+1 − fi+1 × ri,Ci

=
d

dt
(Iiωi)

Solving the two equations gives us the two recursive solutions, one is for link acceleration
calculation and another is for torque/force calculation. Their concrete equations are of the
following form :

• For forward recursion calculation

ωii = Ri−1T
i (ωi−1

i−1 + θ̇iz0)

where z0 =
[

0 0 1
]T

and Ri−1
i is the rotation matrix from frame i-1 to frame i, ωii is

the angular velocity of link i (the lower subcript) expressed in frame i (the upper subcript).
The meaning of lower and upper subscripts are similar for the following equations.

ω̇ii = Ri−1T
i (ω̇i−1

i−1 + θ̈iz0 + θ̇iω
i−1
i−1 × z0)

p̈iCi
= Ri−1T

i p̈i−1
i−1 + ω̇ii × rii−1,i + ωii × (ωii × rii−1,i)

p̈iCi
= p̈ii + ω̇ii × rii,Ci

+ ωii × (ωii × rii,Ci
)

• For inverse recursion calculation

f ii = Ri
i+1f

i+1
i+1

µii = −f ii × (rii−1,i + rii,Ci
) +Ri

i+1µ
i+1
i+1 +Ri

i+1f
i+1
i+1 × rii,Ci

+ I ii ω̇
i
i + ωii × (I iiω

i
i) + ωii × (I iiω

i
i)

τi = µiTi R
i−1T
i z0 + Fviθ̇i + Fsisgn(θ̇i)
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where τi denotes the generalized forces/torques resulting at the joint ith referred to the
current Frame ith on Link ith

The calculation process of Newton-Euler formulation can be illustrated in Figure 2.12

Figure 2.12. Algorithm of Newton-Euler method(Bruno Siciliano, 2009)

for which there exist two different phases:

• Phase 1 : The angle velocity, angle acceleration of a certain link are calculated based
on the values of angle velocity, angle acceleration of the previous link. This calculation
process begins at the link zeros (usually referred as a base) and go on up to link n (in the
case of present human upper-limb model, n=7)

• Phase 2 : Based on the angle velocity, angle acceleration calculated in Phase 1, the
torques/forces are calculated inversely from the end-effector to the link 1. In the graph,
the fn+1/ un+1 represents the interaction force/torque between the end-effector and the
environment. For the free movement of end-effector, this force/torque is equal to zero
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2.7.2.4 Roy Featherstone’s formulation

In the Newton-Euler formulation mentioned above, the dynamics of a rigid body is calcu-
lated based on 3D vectors. Consequently, two separate processes (namely equations) are
demanded to formulate its dynamics (Eq. 2.18)

f = mac and τC = Iω̇ + ω × Iω (2.18)

The first expresses the relationship between the force applied to the body and the
linear acceleration of its center of mass. The second expresses the relationship between the
torque applied to the body, referred to its center of mass, and the rate of change of angular
momentum.

In order to improve the performance of this conventional formulation, Roy Featherstone
(Featherstone and Orin, 2000) has proposed the ideas of using 6D vector instead of two
separate 3D vectors. As such, the three DoFs of linear sliding motion with the three DoFs
of rotational motion are combined to form a spatial velocity vector of six dimensions

DO = {dOx, dOy, dOz, dx, dy, dz} ⊂M6

ϑ̂O =



ωx

ωy

ωz

ϑOx

ϑOy

ϑOz


=

[
ω

ϑO

]

ϑ̂O = ωxdOx + ωydOy + ωzdOz + ϑOxdx + ϑOydy + ϑOzdz

and force and torque are combined to form a spatial force vector.
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ξO = {ex, ey, ez, eOx, eOy, eOz} ⊂ F 6

f̂
O

=



τOx

τOy

τOz

fx

fy

fz


=

[
τO

f

]

f̂
O

= τOxex + τOyey + τOzez + fxex + fyey + fzez

Consequently, at the same time, we can simultaneously compute the linear and rota-
tional acceleration during the kinematics process or simultaneously compute the force and
torque during the dynamics process. Indeed, the performance of Roy Featherstone for-
mulation is actually compared with that of conventional Newton-Euler formulation when
calculating the necessary forces/torques given the linear/rotational acceleration. The re-
sult showed that both methods give the same result but the former is nearly 10 times faster
than the latter in our case.

2.8 Parameters of interest: rotation axis caculations

2.8.1 Shoulder-Elbow rotation axis (SE)

The shoulder-elbow axis is geometrically defined as a vector connecting the shoulder joint
to the elbow joint. This vector varies with the movement and can be calculated based on
the homogeneous transformation. The rationale is that: because the base (namely, global)
coordinate (i.e. O0xyz) is rigidly attached to the center of the shoulder joint position while
the coordinate O3xyz is rigidly attached to the center of the elbow joint (Fig 2.10), the
shoulder-elbow axis could be determined by Cartesian position of the origin O3 in the
O0xyz coordinate. In addition, to be compatible with the subsequent analyses when being
compared with other rotation axes, the O3’s coordinates are eventually normalized by the
length of Euclidean line O0O3. As such the shoulder-elbow rotation axis is quantified as
an unit vector (bi-point) whose origin locates at O0 (i.e. shoulder joint) and direction
passes through the origin point O3 (i.e. elbow joint). Supposed that the homogeneous
transformation from O0xyz to O3xyz is of the following form:
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HO0O3 = HO0O1HO1O2HO2O3 =

[
RO0O3 PO0O3

0 1

]

Then SE axis corresponds to PO0O3

|PO0O3 |

2.8.2 Minimum principal rotation axis (e3)

It is noteworthy that at every time step of the movement, the limb (composing of three
elements: upper arm, forearm and hand) can be treated as a rigid body. Consequently,
there always exists three perpendicular axes, so-called principal rotation axes, around
which the inertia tensor is a constant real diagonal matrix. Among these three axes, the
minimal principal axis (e3) is defined as the one for which the moment of inertia obtains
the smallest value. Practically, to determine this axis, several steps involving the limb
inertia computation need to be implemented.

Based on Dumas’s proposal, one could estimate the inertia tensor of each segment (i.e.
upper arm, forearm, hand) with respect to CoM in the relative SCS (ISB-based coordinate)
(Fig 2.6), given the segment length and the total weight of subjects. However, in order to
sum up them as the inertia tensor of the whole upper-limb, these segment inertia matrices
all need to be evaluated into the same frame, namely reference frame. To this goal, there
are two different approachess that could be employed. First, one could continue relying
on the ISB frames and use the respective Euler rotation matrixes to compute all necessary
tranformation with respect to the reference frame as being described in Isableu et al. (2009).
However, in order to be consistent with our simulation work wherein the kinematics and
the dynamics of upper limb both are calculated through the D-H convention, we prefer
another approach that will initially convert the segment inertia tensors in ISB frames to
D-H ones and then use the homogeneous transformations to convert the inertia matrix
between frames. In this method, the base frame O0xyz of the DH-based coordinate system
( Fig. 2.10) is chosen as the reference frame. The detail of this process is described in what
follows.

2.8.2.1 Inertia tensors and CoMs: From ISB- to DH-based frames

Inertia tensors in DH-based frames. We first convert the segment inertia tensors of
upper arm, forearm and hand in the ISB-based frames to the DH-based frames. To this
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aim, we suppose that the inertia tensors of upper arm, forearm and hand estimated in the
ISB-based frames referred to the CoM would be CoMIISBa , CoMIISBf and CoMIISBh and that
the rotation matrices transforming the ISB-based frames to the DH-based frames (O3xyz,
O5xyz and O7xyz) are RaO3

, RfO5
and RhO7

, respectively. Then the inertia tensors referred
to the CoM expressed in the O3xyz, O5xyz and O7xyz will be of the following forms:

CoMIO3
a = RT

aO3

CoMIISBa RaO3

CoMIO5
f = RT

fO5

CoMIISBf RfO5

CoMIO7
h = RT

hO7

CoMIISBh RhO7

where the rotational matrices are determined as below:

RaO3
=


1 0 0

0 1 0

0 0 1



RfO5
=


0 0 1

0 1 0

−1 0 0



RhO7
=


0 −1 0

1 0 0

0 0 1


CoMs in DH-based frames. Similarly to inertia tensor conversion, the CoMs of limb
segments defined in the ISB-based frames need to be converted to the DH-based frames.
We suppose that the CoMs of upper arm, forearm and hand in the ISB-based frames would
be CoM ISB

a , CoM ISB
f , CoM ISB

h , respectively. Then the CoMs expressed in the O3xyz,
O5xyz and O7xyz will be of the following forms:

[
CoMO3

a

1

]
= HaO3

[
CoM ISB

a

1

]
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[
CoMO5

f

1

]
= HfO5

[
CoM ISB

f

1

]
[
CoMO7

h

1

]
= HhO7

[
CoM ISB

h

1

]
where,

HaO3
=

[
RaO3

0

0 1

]
TaO3

and TaO3
=


1 0 0 0

0 1 0 L0

0 0 1 0

0 0 0 1



HfO5
=

[
RfO5

0

0 1

]
TfO5

and TfO5
=


1 0 0 0

0 1 0 L1

0 0 1 0

0 0 0 1



HhO7
=

[
RfO7

0

0 1

]
TfO7

and TfO7
=


1 0 0 L2

0 1 0 0

0 0 1 0

0 0 0 1


2.8.2.2 Inertia tensors and CoMs in the base frame

Based on the previous calculation, we obtain the CoMs and inertia tensors of limb segments
expressed in their respective DH-based local frames (i.e. O3xyz, O5xyz, O7xyz). These
local CoMs and inertia tensors all still need to be converted to the base frame (i.e. O0xyz),
and then using the Huygens-Steiner theorem to evaluate the resulting tensors with respect
to the shoulder joint center(i.e. O0).

CoMs in the base frame. We suppose that the homogeneous transformation between
O0 to Oi (i = 1..7) will be of the form :

HO0Oi
=

[
RO0Oi

PO0Oi

0 1

]

53



Chapter 2. Theoretical background

Then, the CoMs of limb segments (i.e. upper arm, forearm, hand) can be expressed in
the base frame by the following equations (the superscript G on the right side of a vector
denotes the fact that the vector is expressed in the base frame):[

CoMG
a

1

]
= HO0O3

[
CoMO3

a

1

]
[
CoMG

f

1

]
= HO0O5

[
CoMO5

f

1

]
[
CoMG

h

1

]
= HO0O7

[
CoMO7

h

1

]

Inertia tensors expressed in the base frame with respect to CoM. Again, the
local inertia tensors of upper arm, forearm and hand with respect to CoM could be ex-
pressed in the base frame by multiplying them with the respective rotational matrix as
follows:

CoMIGa = RO0O3
CoMIO3

a RT
O0O3

CoMIGf = RO0O5

CoMIO5
f RT

O0O5

CoMIGh = RO0O7

CoMIO7
h RT

O0O7

The resulting matrices represent the inertia tensors of upper arm, forearm and hand
with respect to their CoM expressed in the base frame.

Inertia tensors with respect to the shoulder joint center expressed in the base

frame. Using the generalized Huygens theorem, the segment inertia matrices are eval-
uated at the shoulder joint center. To do this, the following equation is used for each
segment:

SHIGi = CoMIGi +


mi(

GCoM2
iy + GCoM2

iz) −mi
GCoMix

GCoMiy −mi
GCoMiz

GCoMix

−mi
GCoMix

GCoMiy mi(
GCoM2

ix + GCoM2
iz) −mi

GCoMiy
GCoMiz

−mi
GCoMiz

GCoMix −mi
GCoMiy

GCoMiz mi(
GCoM2

ix + GCoM2
iy)



54



2.8. Parameters of interest: rotation axis caculations

where,
SHIGi is the inertia tensor of segment i with respect to the shoulder expressed in the

base frame.
CoMIGi is the inertia tensor of segment i with respect to CoM expressed in the base

frame.
mi is mass of segment i[
GCoMix

GCoMiy
GCoMiz

]T are the coordinates of CoMG
i expressed in the base frame

i stands for a, f, h corresponding to upper arm, forearm and hand.
Then, the inertia tensor of whole limb expressed in the base frame with respect the

shoulder joint center is of the following form:

SHIGlimb = SHIGa + SHIGf + SHIGh

Here, we carry out the eigen decomposition of SHIGLimb into the product of a rotation
matrix R and a diagonal matrix D such that:

SHIGLimb = RDRT

where,

D =


I1 0 0

0 I2 0

0 0 I3

, and R = {e1, e2, e3}. Supposed that I1 > I2 > I3 , then the

eigenvector e3 is the minimum principal rotation axis that we are interested in.
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Chapter 3. Thesis contribution

3.1 Introduction

This chapter will present the original contribution of the thesis. The results are devided
into two sections, each of which aims at solving a specific goal of thesis as follows:

• We first examine the nature of variables underlying the planning of unrestrained 3D
arm reaching. To this aim, we consider a discrete arm reaching task performed at
three different speeds starting from an “L-shaped” initial arm posture. Within the
optimal control framework, we uncover which optimality criterion explains at best
the empirical data. We test whether a weighted combination of kinematic, energetic
and dynamic cost functions is necessary to account for all the critical features of
experimental results.

• The second section aims at investigating the mechanisms that the brain might use to
control the dynamical interaction generated during the limb’s motion. More specif-
ically, we question whether the brain exploits or compensates interaction torque to
assist/resist the movement. To this aim, we examine the effects of speed/load varia-
tions upon the chosen arm trajectories during free arm movements. The findings are
then examined in the framework of optimal control. We test whether the compensa-
tion versus exploitation controversy might be tightly linked with the optimization of
a trade-off between kinematic and dynamic cost functions.
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3.2 On the nature of motor planning during arm

pointing task
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On the nature of motor planning variables during arm
pointing movement: compositeness and speed

dependence

Van Hoan Vu, Brice Isableu, Bastien Berret

This article is published in Neuroscience 328, April 2016

Abstract

The purpose of this study was to investigate the nature of the variables and rules

underlying the planning of unrestrained 3D arm reaching. To identify whether the

brain uses kinematic, dynamic and energetic values in an isolated manner or combines

them in a flexible way, we examined the effects of speed variations upon the chosen

arm trajectories during free arm movements. Within the optimal control framework,

we uncovered which (possibly composite) optimality criterion underlay at best the

empirical data. Fifteen participants were asked to perform free-endpoint reaching

movements from a specific arm configuration at slow, normal and fast speeds. Ex-

perimental results revealed that prominent features of observed motor behaviors were

significantly speed-dependent, such as the chosen reach endpoint and the final arm

posture. Nevertheless, participants exhibited different arm trajectories and various

degrees of speed dependence of their reaching behavior. These inter-individual differ-

ences were addressed using a numerical inverse optimal control methodology. Simula-

tion results revealed that a weighted combination of kinematic, energetic and dynamic

cost functions was required to account for all the critical features of the participants’

behavior. Furthermore, no evidence for the existence of a speed-dependent tuning

of these weights was found, thereby suggesting subject-specific but speed-invariant
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weightings of kinematic, energetic and dynamic variables during the motor planning

process of free arm movements. This suggested that the inter-individual difference

of arm trajectories and speed dependence was not only due to anthropometric sin-

gularities but also to critical differences in the composition of the subjective cost

function.

Introduction

Understanding how the brain controls 3D arm movement is a long standing issue in mo-
tor neuroscience. The complexity of the musculoskeletal system is such that the accurate
achievement of athletic tasks but also of the most basic daily life activity constitutes a
challenging problem. In particular, the anisotropic distribution of mass, gravity, and in-
teraction torques acting on all degrees of freedom make the upper-limb dynamics highly
nonlinear but the brain seemingly overcomes those difficulties effortlessly. Coping with
such a complexity requires efficient control strategies and, therefore, the central nervous
system (CNS) might internally represent or monitor some critical variables to implicitly
value skilled movements such as baseball pitching, overarm throwing or just placing a
cup of coffee on a table. What is the exact nature of these variables and computational
rules underlying the selection of one trajectory among the infinity of possible trajecto-
ries, and whether cells in the motor cortex encode dynamic, kinematic separately or a
combination rule of such variables during movement planning remain questionable even
though the issue was extensively investigated in neurophysiological studies (Georgopoulos
et al., 1982; Kalaska et al., 1989; Mussa-Ivaldi, 1988). In general, tackling this problem
is tricky because kinematic and kinetic quantities are tightly linked by the equations of
motion and many sensorimotor transformations, through internal models (Wolpert et al.,
1995b; Kawato et al., 1987), may occur within the CNS before a goal-directed movement
is eventually triggered. This question was nonetheless addressed in many behavioral and
computational studies, but whether the control of upper-limb motion relies more upon
geometrical properties pertaining to the position of body segments and joint angles (i.e.
kinematic variables) or upon mechanical properties pertaining to the mass distribution and
torques (i.e. dynamic variables) is still a matter of debate (Darling and Hondzinski, 1999;
Pagano and Turvey, 1995; Wolpert et al., 1995a; Soechting and Flanders, 1998). Isableu
et al. (2009) showed that, during a cyclical upper-limb rotation task with a flexed arm
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(“L-shaped”), subjects exhibited spontaneous changes of rotation axis, switching from a
geometrical one (Shoulder-Elbow axis, SE, a kinematic-related parameter) to an inertial
one (minimum principal inertia axis, e3, a dynamic-related parameter) when executing the
task at a larger speed. Hence, this suggested that the variables represented by the brain
to control unrestrained 3D arm movement might combine both kinematic and dynamic
parameters and that, importantly, their interplay may depend on speed.

Interestingly, the optimal control framework precisely makes hypotheses about the vari-
ables potentially represented by the brain during motor control (Todorov, 2004). Therefore,
the question of which variables are the subject of motor planning can be rephrased in a
normative way as follows: what is the nature of the optimality criterion underlying tra-
jectory formation? (see Soechting and Flanders, 1998). In this context, some researchers
have argued for kinematic-oriented motor planning (in either extrinsic or intrinsic space)
where the nonlinearities of the motion dynamics are just compensated for or suppressed by
the brain to preserve limb’s stability (Hollerbach and Flash, 1982; Atkeson and Hollerbach,
1985; Bastian et al., 1996; Sainburg et al., 1995, 1999; Gribble and Ostry, 1999). The main
advantage of using a kinematic-based motor control would be to simplify control and allow
the brain (re)using a common motor pattern to perform movements at various speeds (i.e.
“scaling law”). This approach found some experimental support in the literature (Gribble
et al., 1998; Atkeson and Hollerbach, 1985). According to this view, speed-independent
arm trajectories should be observed (and were actually observed to some extent in several
arm reaching studies, e.g. Atkeson and Hollerbach, 1985; Gribble et al., 1998). Other au-
thors have instead argued for dynamic-oriented motor planning where the mechanical limb
properties are taken into account and exploited to the greatest extent possible (Dounskaia
et al., 2002; Debicki et al., 2010, 2011; Hore et al., 2005, 2011). The advantage would
be to utilize all the non-muscular torques originating from the nonlinearities of the limb’s
dynamics for producing least effort movements and somehow reducing the overall amount
of muscle torque (or its mechanical work) to a minimum (Sainburg and Kalakanis, 2000;
Galloway and Koshland, 2002; Dounskaia et al., 2002; Berret et al., 2008; Hirashima et al.,
2007; Gaveau et al., 2011b, 2014). In Wolpert et al. (1995a), the authors directly addressed
the issue about whether the brain controls movement in kinematic or dynamic coordinates
for visually-guided movements. They showed that the planning of constrained planar arm
reaches was associated with the optimization of a kinematic cost function (i.e. Cartesian
jerk) in order to perceive straight endpoint displacements on a screen. However it is known
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that unrestrained or 3D movements may have very different characteristics(Desmurget et
al., 1997; Gielen, 2009) and whether the control of free arm movements also relies more
upon kinematic rather than upon dynamic variables remained unclear. For 3D arm move-
ments, evidence was found for a dynamic level of planning as the final arm posture was
shown to depend on the initial arm posture in a way that could not be accounted for by any
kinematic optimality criterion (Soechting et al., 1995). However, the effect of speed onto
the final posture selection, which is a crucial assessment to distinguish between kinematic
and dynamic strategies, has not been addressed in that study but experimental studies
later revealed an invariance of the final whole-arm configuration with respect to motion
velocity (Nishikawa et al., 1999) despite the fact that dynamic motor planning may po-
tentially involve trajectory modifications with respect to speed because of the complex
velocity and acceleration dependent musculoskeletal dynamics.

To reconcile all these findings, the idea of composite cost functions relying upon kine-
matic, energetic and dynamic variables emerged as a possible avenue. Using inverse optimal
control techniques for unveiling optimality criteria and/or rule from experimental trajec-
tories (Mombaur et al., 2009; Berret et al., 2011a) and the free reach-endpoint paradigm
for better discriminating between candidate cost functions (Berret et al., 2011b,a, 2014),
it was shown that vertical movements starting from different initial positions and executed
at a relatively fast pace could be accounted for by a composite cost mixing the angle jerk
(i.e. a kinematic variable) and the absolute work (i.e. an energetic variable). However, it
remained unclear whether these results would extend to 3D motion and whether a single
composite cost could explain movements executed at different speeds. This question is also
critical in regards to the understanding of self-paced movements where a cost of time may
also combine with trajectory costs and the extent to which the latter varies according to
speed instructions is a related open question (see Shadmehr et al., 2010; Shadmehr, 2010;
Berret and Jean, 2016).

Here we combined a specific motor task with an inverse optimal control methodology
to address the above questions. First, we considered free 3D arm movements without a
prescribed reach endpoint (the hand could freely move in 3D), which differs from classical
point-to-point reaching paradigms; namely we considered a planar target. Thus, partici-
pants were free to choose any final finger position on the target plane while only caring
about the vertical error (i.e. the task goal). Considering a 4-dof arm, the subjects were
thus left with three angles to choose at the movement end. A real life example of this
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laboratory experiment would be that of placing a cup on an empty table or pushing a
door for opening it. Furthermore, we varied the instructed speed to emphasize differences
between kinematic versus dynamic control strategies or combination of them and used in-
verse optimal control techniques to identify the elementary components of the cost function
among kinematic, energetic and dynamic quantities as well as their relative weights and
speed dependence.
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Experimental Procedures

Experimental task

Participants

Fifteen healthy subjects (7 women and 8 men) voluntarily agreed to participate in the
experiment. Written informed consent was obtained from each participant in the study
as required by the Helsinki declaration and the EA 4042 local Ethics Committee. All of
them were right-handed, free of sensory, perceptual and motor disorder, aged 27± 4 years,
weighted 66± 8 kg and 167± 6 cm tall. All the participants were naive to the purpose of
the experiment.

Free endpoint motor task

The motor task is illustrated in Figure 3.9. A small solid stick serving as a reference
position for the initial fingertip position was attached to a vertical slider bar, allowing
the experimenter to adjust appropriately the height of this reference point relative to
the arm’s length of each participant. A uniform horizontal surface, made of a thin and
soft block of foam, served as a target throughout this experiment. It was positioned on
a table just below the participant’s chest. On the wall in front of the participants, a
yellow marker was positioned to fix gaze in a predefined direction (looking straight ahead).
Gaze was constrained in order to reduce the influence of visuomotor processing during
arm movement control and to limit possible inter-trial and inter-individual fluctuations
due to eye motion and eye-head-hand coordination. Participants sat comfortably on a
chair with their back tighten upright against the chair’s splash to freeze motion of other
body parts during the execution of arm movement. The initial arm configuration was
setup such that the shoulder-elbow axis was approximately abducted to the horizontal
while the flexion-extension elbow angle was actively held at 90 degrees and the fingertip
was kept strictly to the reference position. Participants were free to rotate their shoulder
and elbow in 3D space during the motion, but their wrist rotation was constrained by
two lightweight bars attached to the distal part of the forearm and the proximal part of
hand. One of the two bars also froze the movement of the index finger. Such constraints
allowed to approximate the forearm and the hand as a single rigid body and to simplify the
whole-arm model by reducing the actual arm’s degrees-of-freedom (DoF) from seven to five
(three at shoulder and two at elbow). In practice, only the first four DoFs were relevant
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because the elbow pronation/supination rotation showed negligible displacements in this
study and was irrelevant to the pointing task under consideration (fingertip end-effector).
We therefore considered a 4-DoF arm model in this study. Note that with a 4-DoF arm
and a planar target, the task is redundant: for a given admissible fingertip position of
the target plane (which is chosen by the subject himself), three joint angles can be freely
adjusted. If we had use a dot as a target, only one angle could have been selected for
the prescribed reach endpoint. Hence the main originality of the present protocol is to let
subjects solve the “where to go” problem as well as the “how to go there” problem at once,
which is a common situation (e.g. putting a cup of coffee on an empty table is an analog
of such a laboratory experiment).

During the experiment, participants were instructed to move their fingertip from the
initial configuration to the destination (i.e. a uniform planar target, with no prescribed
reach endpoint) by performing a smooth, one-shot movement while looking at the eyes
reference marker. They were required to point to the planar surface with their fingertip
and stop their motion right onto the surface but without hitting it. No instruction was
given to the participants regarding the final position of the fingertip on the planar surface.
As such, all reach endpoints were equi-efficient regarding task achievement but conceivably
not equi-efficient regarding the subjective values associated with the actual arm trajectory
leading to the chosen reach endpoint (see also Berret et al., 2011b,a, 2014 for related
studies). Here and throughout the paper, subjective costs (i.e. costs not imposed by the
task but related to the subject or body) will be contrasted with objective costs that are
imposed by the task itself (e.g. pointing error) (Knill et al., 2011; Berret et al., 2011b).

For the purpose of this study, three different speeds were examined: slow (S), com-
fortable/natural (N) and fast (F). Before each trial, participants were verbally instructed
to move at one specific speed. Speed instruction was randomized across trials in order to
prevent habituation and memorization effects (especially regarding the endpoint reached
in the previous trial). Velocity constraints were hypothesized to reveal the nature of the
planning variables used in such 3D movements, and the free reach-endpoint paradigm was
used to emphasize the possible differences of arm trajectories as a function of the instructed
speed.

Prior to the experiment, participants were trained to become familiar with the task.
They were told to move their arm toward the target while the experimenter verified that
all the task instructions had been well understood. The training process consisted of 20

66



3.2. On the nature of motor planning during arm pointing task

trials on average and at the end all the participants had the capability of executing their
movement while satisfying the experimental instructions, which were as follows: (i) place
consistently the fingertip at the initial reference position while keeping the same initial “L-
shaped” arm posture, (ii) try to stop the movement right onto the horizontal target surface,
by minimizing errors along the vertical axis, (iii) look at the reference marker during the
whole movement execution and (iv) mark a clear difference of motion speed based upon
the verbal instruction given by the experimenter at the beginning of trial.

For each participant, 15 trials were recorded per speed. Thus, a total number of 675
trials (15 trials x 3 speeds x 15 participants) were recorded and used for subsequent an-
alyzes in the study. During the experiment, participants were allowed to rest in order to
minimize fatigue effects. The duration of the experiment was approximately 45 minutes
per participant.

Data collection and processing

Materials

An optical motion capture system consisting of eight high-speed cameras was used to record
the arm motion at a frequency of 250Hz (Vicon motion system Inc. Oxford, UK). A set
of plug-in-gait markers was attached to the participant body. Precisely, thirteen markers
were placed at well-defined anatomical locations on the dominant arm and the other parts
of the body, namely: seventh cervical vertebrae, 10th thoracic vertebrae, clavicle, sternum,
right and left acromion, lateral and medial humeral epicondyles, ulnar and radial styloids,
2nd and 5th metacarpal heads and 1st fingertip.
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Figure 3.1. Illustration of the experimental paradigm. Fixed initial arm position and
horizontal target plane were tested, thereby defining a free reach-endpoint motor task. The
reach endpoint was one prominent movement parameter. Two other relevant movement
parameters (rotation axis displacements, SE and e3) are depicted. Gaze direction was
controlled during the movement as indicated by the arrow. Note that any possible path
leading to any location onto the surface was possible regarding task achievement. The
task was thus redundant (3 free joint angles for most endpoint locations) and 3D as the
arm could freely move in 3D space without any constraint, except that of reaching the
target plane at various instructed speeds (slow, normal and fast, denoted by S, N and F
respectively).

Motion analysis

All the analyzes were performed with custom software written in Matlab (Mathworks,
Natick, MA) from the recorded three-dimensional position of the markers. The recorded
positional data were first smoothed using a 2nd-order Butterworth low-pass filter with
cut-off frequency at 10Hz and then processed to compute other kinematic and dynamic
parameters, as described hereafter.

Kinematic-level analysis Hand kinematics. For every recorded trial, the position of
the fingertip marker was numerically differentiated to obtain the corresponding velocity
profile. Based on this velocity profile, the movement duration (MD) was estimated by
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the time window where the velocity magnitude was above 5% of the peak velocity. Other
kinematic parameters relevant to the purpose of the present study were then computed and
analyzed to check for differences in hand kinematics with respect to the instructed speed,
as follows: the reach endpoint location in 3D (RE, described by its Cartesian coordinates
X, Y and Z with respect to a frame whose origin is located at the shoulder joint), the
peak velocity (PV), accuracy and precision along the vertical axis (denoted by Za and
Zp, respectively). In practice, Za was defined based on the distance from the final finger
position to the planar target and Zp was defined as the standard deviation of the vertical RE
coordinates. They were used to verify constant and variable errors along the vertical axis.
Note that, in the present task, Xa and Ya were undefined as the task did not impose any
final fingertip position in the plane. Finally, Xp and Yp were analyzed via 95% confidence
ellipses showing the distributions of RE within the target plane.

Joint kinematics.. The 4-DoF arm configuration was computed from the recorded motion
data. To this aim, we employed the method previously described in Isableu et al. (2009).
Briefly, this method considered the 3D arm as an articulated chain of rigid bodies connected
by joints. Then, a local segment coordinate system was calculated based on the measured
3D position of the markers in a way that was consistent with the International Society of
Biomechanics (ISB) recommendation (Wu et al., 2005). From the resulting coordinates,
rotation matrices converting a specific coordinate to its parent coordinate were computed
in accordance with the rotation orders, which allowed angles to remain as close as possible
to the clinical definition of joint and segment motion. Based on these calculated rotation
matrices, the values of (Euler) rotation angles (internal/external, elevation/depression,
ulnar/radial at shoulder and extension/flexion at elbow) were easily inferred. Again, the
joint velocities and accelerations were obtained by numerically time-series differentiating
the angular displacements.

Dynamic-level analysis Inverse dynamic analysis was used to estimate the muscle
torques underlying the observed motion kinematics. A dynamical model of the arm was
required to infer these movement parameters. As mentioned above, the arm was viewed
as the combination of rigid bodies connected by series of revolute joints. If such a model
can be easily established for planar systems (e.g. Berret et al., 2011a), the task is more
tedious in 3D especially when computational efficiency really matters. Thus, special con-
siderations were taken into account. Firstly, the series of arm rotation axes as well as
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the segment coordinates in Wu’s model (Wu et al., 2005) were re-approached within the
standard robotic point of view wherein the four rotation axes were re-described using De-
navitâĂŞHartenberg parameters. The same description could be found for instance in
Asfour and Dillmann (2003), where the robotic model of a humanoid arm was described.
From this formalism, many of the advanced tools developed in robotics could be applied to
calculate both forward or inverse kinematic and dynamic parameters. Secondly, another
crucial piece was the anthropometric parameters. The parameters reported in Dumas et
al. (2007) were used, providing us with an approximation of anthropometric values such
as mass, center of mass position and inertia matrix for each segment. These parameters
were adjusted for each participant given his/her total mass and the lengths of the body
segments (measured via motion capture).

From a classical application of Lagrange mechanics, the arm skeleton dynamics can be
expressed as follows:

τ =M(θ)θ̈ + C(θ, θ̇) + G(θ) +R(θ, θ̇), (3.1)

where τ is the muscle torque,M is the mass matrix (4x4 size here), C is the Coriolis and
centripetal torque, G is the gravitational torque. Note that computed in this way, the
muscle torque is actually affected by some term R(θ, θ̇) reflecting frictional and viscous
or elastic torques created by all soft tissues. In the current work, the latter term R
was neglected and assumed to be negligible compared to the other torques. The vector
θ = (θ1, · · · , θ4) denotes the four angles describing the arm’s configuration and a dot above
a variable stands for its time derivative.

We may subsequently define the muscle, net, interaction and gravitational torques as
follows:

τmus = τ,

τnet = diag
(
M(θ)

)
θ̈,

τint = −
[(
M(θ)− diag

(
M(θ)

) )
θ̈ + C(θ, θ̇)

]
,

τgra = −G(θ).

where diag
(
M(θ)

)
represents the diagonal matrix built from the diagonal terms of the

mass matrix. Then, equation 3.9 can be rewritten as follows:

τnet = τmus + τint + τgra, (3.2)
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which is similar to the description given in Yamasaki et al. (2008) and Sande de Souza
et al. (2009). In particular, this shows that the net torque at each joint is produced by a
combination of muscle torque, interaction torque and gravitational torque.

In practice, the above analytic formulas are quite long to evaluate explicitly and using
them is therefore computationally inefficient for intensive simulations. Hence we used a
recursive Newton-Euler algorithm to compute the arm dynamics in our simulations. State-
of-the-art algorithms for rigid body dynamics can be found in Featherstone and Orin (2000).
Actually, by replacing 3D vectors by 6D spatial vectors in the classical Newton-Euler
recursive algorithm, efficiency of the arm’s dynamics calculation could be largely improved
(for both direct and inverse dynamics). Computational efficiency was especially crucial in
the present study because optimal control methods involve very intensive computations
and numerous evaluations of the arm’s dynamics (see below). We actually checked that
both methods to calculate the dynamics (either based on Lagrangian or Newton-Euler
formalisms) gave the same result but the latter was about 10 times faster than the former
in our settings (note that a compiled version of the code provided by Featherstone and
Orin (2000) was eventually used for better efficiency).

Global motion parameters In this study, three indexes summarizing different aspects
of the overall arm motion were analyzed. Most of them were discussed in previous papers
(Isableu et al., 2009; Pagano and Turvey, 1995; Sainburg and Kalakanis, 2000; Riley and
Turvey, 2001), which is the reason why our analysis will rely upon them. The first param-
eter is the reach endpoint index (RE index); the second and third indexes respectively the
average deviation of the shoulder-elbow axis (SE index, i.e. kinematic parameters) and the
average deviation of the minimum inertia axis (e3 index, i.e. a kinetic parameter).
Antero-posterior reach endpoint position (RE index). The RE index was defined as the
final fingertip position on the planar target along the AP axis (XAP ) normalized by the
maximal distance that the participant could reach to without moving bending the trunk
(Dmax, corresponding to a fully-extended arm such that the fingertip was on the target
plane).

RE index =
XAP

Dmax

× 100. (3.3)

Minimum principal inertia axis deviation (e3 index). This dynamic parameter is based
on the minimum principal inertia axis (referred to as e3 in previous studies). A method
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to calculate the instantaneous e3 axis during a 4-DoF arm movement was described in
Isableu et al. (2009). Importantly, it is worth noting that e3 definition only relies on the
instantaneous whole-arm configuration and its anthropometric characteristics. At each
time step, the angle between the current e3 axis direction and its initial (t = 0) one, ae3(t),
was computed and the e3 index was calculated as in Eq. 3.4.

e3 index =
1

T

∫ T

0

|ae3(t)|dt. (3.4)

A strict rotation around e3 axis would thus indicate a strategy exploiting the iner-
tial properties of the arm (when viewed as a single “L-shaped” rigid body). Indeed, the
task could be performed by strictly rotating the arm around e3 axis, with no forearm
flexion/extension. Intuitively, such a strategy could facilitate the production of large an-
gular accelerations at equivalent muscle torque magnitude. For instance, rotating the arm
around the maximum principal inertia axis would lead to smaller acceleration for similar
muscle torque, which is just the result of the intrinsic inertial properties of an arm in such
a L-shape configuration. Moreover, rotating around e3 may be advantageous because the
angular momentum then becomes parallel to the angular velocity vector of the rigid body
and therefore a muscle torque around e3 only produces angular acceleration around e3
without inducing accelerations around other axis (i.e. interaction torques).
Shoulder-elbow deviation index (SE index). The SE index was defined as the mean integral
of the absolute shoulder-elbow axis deviation. At each time step, the angle between the
current shoulder-elbow axis direction and its initial (at t = 0) one, aSE(t), was computed
and the SE index was calculated as reported in Eq. 3.5:

SE index =
1

T

∫ T

0

|aSE(t)|dt (3.5)

where T was the total movement duration (obtained experimentally for each trial). A strict
rotation around this axis when performing the task was possible, yielding a SE index equal
to zero. In turn, this would indicate the use of a kinematic control strategy possibly aiming
at stabilizing the upper arm segment during the whole motion (Isableu et al., 2009).

Optimal control modeling and inverse optimal control method

In this section, we describe the optimal control methods and the numerical inverse optimal
control approach that we used. The method follows the works of Mombaur et al. (2009)
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and Berret et al. (2011a), and aims at accounting for the 3D arm motion from an optimal
control standpoint by finding the subjective costs underlying the experimental trajectories.
The control dynamics, denoted by noted (Σ), is formed of the skeletal dynamics given in
Eq. 3.9 and some basic muscle dynamics. Muscle dynamics was added here to account for
the smoothness of velocity and acceleration signals and was not assumed to be an accurate
model of the muscle-tendon complex. Therefore, we used a simple model accounting for
the low-pass filter property of muscles, as it is quite common in optimal control studies
(e.g. Uno et al., 1989; Guigon et al., 2007; Berret et al., 2011a). Precisely, we assumed that
the motor command (i.e. control signal) was simply the derivative of the muscle torque,
as follows:.

τ̇ = µ (3.6)

where the control µ can be thought as the overall motor input given to the muscle.

Solving an optimal control problem with non-linear dynamics and non-quadratic cost
functions is generally a difficult problem especially for problems with large dimensions (here
the state vector had 12 dimensions and the control vector had 4 dimensions). One could
however observe that the limb and muscle dynamics together form a fully-actuated control
system that is feedback linearizable. Therefore, it was possible to effectively change the
nonlinear control problem into a linear control problem by directly controlling the derivative
of the angular acceleration vector instead of the derivative of the muscle torque. This
mathematical change of control variable allowed us to replace Eq. 3.6 with the following
one:

...
θ = µ (3.7)

The muscle torque (and its derivative) could then be recovered via inverse dynamics
(see above). Even though we could control µ directly, we generally observed that such
approach yielded faster and more robust convergence during the numerical resolution of
the optimal control problems under consideration. The numerical difficulties were then left
to the possible non-quadraticity of the cost function.

In the literature, several cost functions were proposed by different authors. It is useful
to distinguish subjective and objective cost functions. Subjective costs differ from objective
ones in that the former reflect a subject’s decision/choice while the latter are imposed by
the task (e.g. accuracy). Here we focus on the identification of subjective costs only.
Various subjective cost functions were proven useful and relevant as it often replicated at
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least some experimental observations. Briefly, previously proposed cost functions may be
grouped into three main categories: kinematic, energetic and dynamic. All classes with
one relevant representative cost are listed in Table 3.4. Here we considered the minimum
angle jerk (Wada et al., 2001) to represent the kinematic cost family (we could have used
a minimum acceleration criterion (Ben-Itzhak and Karniel, 2008) but the predictions of
the two models only differed slightly). For the dynamic class, we considered the minimum
torque change model (Uno et al., 1989). We also tested the minimum torque model (Nelson,
1983) but we found that the torque change model was more relevant for the present motor
task. At last, at the interface between kinematic and dynamic variables are energetic costs
that measure actual energy expenditures associated with the movements. We chose the
minimum absolute work of muscle torques here (Berret et al., 2008; Gauthier et al., 2010;
Gaveau et al., 2014). The geodesic (Biess et al., 2007) or the minimum peak work model
(Soechting et al., 1995) are other models that could have been considered within this class
but their exact formulation is less easily integrable within a generic optimal control scheme,
which may be problematic for running inverse optimal control (see below).

Class Criterion Cost function References
Kinematic Angle jerk CKine =

∫ T
0

∑4
i=1

...
θ

2
i dt Wada et al. (2001)

Energetic Absolute work CEner =
∫ T

0

∑4
i=1 |θ̇iτi|dt Nishii and Murakami (2002); Berret et al. (2008)

Dynamic Torque change CDyna =
∫ T

0

∑4
i=1 τ̇

2
i dt Uno et al. (1989); Nakano et al. (1999)

Table 3.1. Cost functions considered in this article. Their overall class (kinematic,
energetic or dynamic), the chosen representative element of each class with its classical
name, the mathematical definition of the cost and the references which proposed them.

Although each of the above cost function was proved to be effective under specific con-
ditions, it is actually very difficult and likely impossible to identify a unique and generic
cost function that will account well for all possible human arm movements. It may thus
seem reasonable to widen the optimal control hypothesis and investigate the idea of com-
posite cost functions. In this vein, recent work (Berret et al., 2011a) showed that free arm
pointing movement could not be explained by any single cost among a variety of 7 possible
candidates but by the combination of mainly two of them, namely angle jerk and absolute
work optimality criteria. Based on these prior findings and because of the computational
load and complexity of the present 4-DoF arm model we restricted our analysis to the
combination of the three cost functions listed in Table 3.4, which we shortly refer to as
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3.2. On the nature of motor planning during arm pointing task

kinematic (Kine), energetic (Ener) and dynamic (Dyna) throughout the study. Thus, the
composite cost function may be written as:

C (α) = CKine + α1CEner + α2CDyna (3.8)

The triplet α = (1, α1, α2) uniquely determines the composite cost function. We will
refer to α as the weighting vector (whose elements are non-negative). The factor 1 in the
first component of the triplet is due to the fact that the composite cost can be normalized
(see Mombaur et al., 2009; Berret et al., 2011a). Our investigations showed that the
kinematic cost was relevant and necessarily present to account for the subject’s behavior.
Considering 3 costs (and thus having only 2 free parameters) also enabled convenient
visualization possibilities (see Results).

It is noteworthy that for each participant three different speeds (S, N, F) were studied
in the current work. In order to find the composite cost functions that best replicated
the recorded data, two solutions were available. Firstly, one could try to find a composite
cost corresponding for each speed, thereby assuming that task instructions could affect
the weights of the subjective cost. We thus termed this type of cost “speed-dependent
composite costs” and denoted it by SDComp. Alternatively, one could also try to find a
single composite cost accounting for all speeds at once. We termed this type of cost “speed-
independent composite cost” and denoted it by SIComp. These two possible hypotheses
make divergent assumptions regarding the flexibility of subjective costs with respect to
task instructions. The results of both SDComp and SIComp costs will be compared to
determine which one is the more plausible following Occam’s razor principle (for similar
accuracy, the most parsimonious model should be retained).
Optimal control problem (OCP). The OCP corresponding to the cost C(α) can be stated
as follows: Find an optimal control u?α and its corresponding optimal trajectory q?>α =

(θ>, θ̇
>
, θ̈
>

) of system (Σ), connecting a source point qs to a final point on the target
plane in time T and yielding a minimal value of the cost C(α) (then denoted by C?(α)).

To solve this problem, the Matlab software GPOPS (Rao et al., 2010) was used. This
method employs an orthogonal collocation technique to convert the continuous time OCP
into a nonlinear programming problem (NLP) with constraints. The well-established nu-
merical software SNOPT was used to solve the NLP problem. For each simulation, the
angular velocity and acceleration at initial and final times were set to zero since the par-
ticipants were required to start and stop their motion with a static state. The other
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parameters such as the initial angular configuration θ0 and the motion duration T were
directly estimated from the recorded data. The anthropometric parameters such as iner-
tia, mass, center of mass, segment length were customized for each participant, thereby
accounting for physical inter-individual differences.

Inverse optimal control (IOC). Inverse optimal control problem was stated as a bi-level
problem with an outer loop seeking for the α best fitting the recorded trajectories, and
an inner loop that finds the optimal trajectory for the current α (see also Mombaur et al.,
2009; Berret et al., 2011a for details).

Importantly, a function (or metric, denoted by Φ) to compare simulated and recorded
arm trajectories is needed. Here, we sought for a vector α allowing to replicate at best
the recorded four angles in the joint space. At the initial time, the simulated and recorded
angles (respectively denoted by q?α and qmeas) coincided perfectly, but differences typically
appeared during the course of motion. The function used to measure this discrepancy was
defined as the maximal deviation of the simulated angular displacements from the reference
ones (simply taken as the average experimental values observed for each speed condition).
Note that this metric was quite conservative as it involved the maximal deviation and
not the averaged one. Eventually, four deviations corresponding to the four joint angles
were obtained, which were averaged to get a single overall error in joint space, denoted by
EJoint(α). Different values of EJoint were obtained for different values of α1 and α2, hence
this error could be visualized using 3D plots (see Results).

Therefore, by definition, Φ(q?α,q
meas) = EJoint(α) for the SDComp case. For the

SIComp case, the metric was modified to minimize the error for all 3 speeds together (the
average was simply used). The purpose of the outer loop is to minimize this error (Φ) by
finding the bestα, that is, the best-fitting cost combination for replicating the experimental
data (for each speed separately for SDComp and for all speeds simultaneously for SIComp).

To solve this part of the problem, a method called CONDOR standing for Constrained,
Non linear, Direct, parallel optimization was used. A re-scaling method described in Berret
et al. (2011a) was also needed in the present work to improve the efficiency of the algorithm
(due to the different units and order of magnitudes of the costs). In addition, the value
of α or ᾱ was initialized with random non-negative values and 10 random restarts were
considered for each inverse optimal control problem and for each participant in order to
limit the issue of being stuck at a local minimum. The best α were eventually chosen as
the ones that made the function Φ as small as possible. In total applying this procedure
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to all the participants required solving 450 IOC problems (10 restarts × 3 speeds × 15
participants) for the SDComp case and 150 IOC problems (10 restarts × 15 participants)
for the SIComp case.

Cost contribution calculation. We used the formula originally described by Berret et al.
(2011a) to evaluate the contribution of each cost function to the total cost. Investigat-
ing cost contributions was interesting because the components of the vector α could not
be straightforward to interpret: the largest αi could potentially be of minor importance
with respect to trajectory fitting depending on the units or order of magnitudes of each
elementary cost.

Comparison between simulated and experimental trajectories Simulated and
experimental trajectories were compared in two ways: first, absolute errors were computed
and, second, relative errors linked to speed variations were estimated to assess how each
cost could predict the speed dependence of motor strategies.

Cartesian error of the finger trajectory. In order to estimate the accuracy of trajectory
reconstructions also in Cartesian space, we computed the maximal deviation between ex-
perimental and simulated 3D finger trajectories and this Cartesian error was denoted by
ECart.

Reach endpoint index error (ERE). The reach endpoint error measured the distance be-
tween the recorded RE index (REexp) (simply taken as the average experimental values
observed for each speed condition) and the simulated one (REsim) generated by either SD-
Comp or SIComp or each of the three elementary costs. The ERE values were computed
for each speed and each subject.

e3 index error (Ee3). Similarly to the ERE, the e3 index error measured the distance
between the recorded e3 index (e3exp) and the simulated one (e3sim).

RE or e3 slope errors (EK̄RE
or EK̄e3

). In order to evaluate whether simulated results were
able to replicate hypothetical speed-dependences of RE and e3 for each subject, we also
compared the experimental and simulated slopes resulting from a linear regression of each
parameter with respect to the instructed speed. To normalize slope values across subjects,
we did not use the value of K resulting from a regression against the real speeds of subjects
because it could differ substantially across them. Instead, we used the value K̄ obtained
when regressing against the instructed speed, i.e. S, N, and F labels. We then defined the
speed-dependence error as the absolute difference between K̄exp and K̄sim. The analysis
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was done for both RE and e3 parameters, thus leading to the definition of EK̄RE
and EK̄e3

for parameters RE and e3 respectively.

Statistical analyses

Repeated-measures one-way ANOVAs were performed to assess the effect of speed on rele-
vant movement parameters. The ANOVA’s sphericity assumption (using Mauchly test) was
checked, and p-values and degrees of freedom were corrected using estimates of sphericity
(Greenhouse-Geisser/Huynh-Feldt). Post-hoc tests were conducted with Bonferroni cor-
rections when appropriate (the chosen threshold was 0.05 and analyzes were conducted
using SPSS). We used quantile-quantile plots to visually check whether the data were nor-
mally distributed (qqplot Matlab function). Shapiro-Wilk’s test was used to quantify these
observations for the relevant parameters.

Results

Experimental observations

Inter-individual analysis Peak velocity and Movement duration. Repeated-measures
ANOVAs were used to statistically check that subjects yielded significant differences with
respect to the instructed speed. Recorded peak velocities were significantly different across
S, N and F speed conditions (F(2,28) = 74.8, p<0.001). This confirmed that the verbal
instruction of speed was effective. Post-hoc analyses showed that all speeds were sig-
nificantly distinct. Quantitative values are given in Table 3.5. The mean and standard
deviation across subjects for the S, N, and F conditions were 1.0±0.3m/s, 2.1±0.4m/s and
3.4±0.7m/s respectively. A similar statistical analysis performed on movement duration
showed similar results (F(2,28)=21.1, p<0.001).
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S N F
MD (s) 0.90±0.20 0.54±0.12 0.30±0.06

PV (m/s) 1.0±0.3 2.1±0.4 3.4±0.7
Shinternal/external(°) 10.4±7.9 11.9±8.8 12.6±8.5
Shelevation/depression(°) 10.1±6.4 10.4±6.0 10.4±6.2

Shulnar/radial(°) 92.6±15.8 94.8±15.8 96.2±15.2
Elextension/flexion(°) 27.2±8.3 25.7±9.1 24.1±9.0

RE index (%) 83.1±9.1 81.2±9.6 79.8±8.7
e3 index (°) 19.3±5.1 18.2±5.2 17.6±5.8
SE index (°) 7.6±3.9 8.1±3.5 8.3±3.3
Za(cm) 0.6±0.4 0.7±0.4 0.6±0.5
Zp(cm) 0.4±0.3 0.3±0.2 0.4±0.3

Table 3.2. Experimental movement parameters (mean±std across subjects).

Reach accuracy and precision. Although the task did not impose any particular point
to reach to, the subjects had to control the constant error along the vertical axis. One
objective of the task was thus to position the fingertip onto the target surface. Constant
errors along the vertical (Za) were relatively small and independent of the speed, indicating
that the final position constraint was fulfilled by all the participants. Regarding the variable
error along the Zp axis, they were of comparable magnitude with no speed effect. For
Xp and Yp, giving the distributions of reach endpoint in the target plane, analyses via
confidence ellipses were conducted (see below for the RE index).

Angular excursions. The four angle excursions (shoulder’s internal/external, elevation/depression,
ulnar/radial, elbow’s extension/flexion), averaged across subjects, are given in Table 3.5.
The magnitude of angular displacements tended to depend on the instructed speed. Pre-
cisely, when speed increased, the shoulder angles (internal/external angle, elevation/depression
angle, ulnar/radial angle) tended to increase while the elbow’s extension/flexion angle
tended to decrease. Repeated-measures ANOVAs did not show any significant effect of
speed for the two first shoulder angles (F(2,28)=2.3, p=0.139; F(2,28)=0.08, p=0.92) but
a significant effect was observed for the third shoulder and the elbow angles (F(2,28)=4.5,
p<0.05; F(2,28)=16.3, p<0.001, respectively). Regarding the magnitude of angular excur-
sions, it is interesting to note that although subjects could accomplish the task by simply ro-
tating their arm only about the shoulder ulnar/radial axis, all subjects actually chose more
complex joint displacements. Actually, while the movement was mainly achieved by rotat-
ing around the shoulder ulnar/radial axis (considered as a major axis), we also measured
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quite large displacements of elbow extension/flexion (about 1/3 of shoulder ulnar/radial
excursion), and non-negligible amounts of shoulder internal/external, elevation/depression
angular rotations. Therefore, the movement chosen by the subjects generally involved the
coordinated displacement of several joints in different proportions.

SE, e3 and RE indexes. The above observations were further analyzed in terms of the global
movement parameters described in the Materials and Methods. The mean±std values of
SE/e3/RE indexes across all the subject were reported in Table 3.5. In agreement with
the joint excursions, the SE index was relatively small for all speed conditions (7.6± 3.9°
for S; 8.1± 3.5° for N; 8.3± 3.3° for F), although it tended to slightly increase with respect
to speed. Repeated-measures ANOVAs did not reveal any significant differences for this
global movement parameter index (p=0.23). In contrast, both e3 and RE indexes tended
to decrease with respect to speed and obtained the values of 19.3 ± 5.1°, 18.2 ± 5.2°,
17.6 ± 5.8° and 83.1 ± 9.1%, 81.2 ± 9.6%, 79.8 ± 8.7% for S, N, F respectively. For those
parameters, repeated-measures ANOVAs revealed significant changes with respect to speed
(F(1.4,20.1)=7.4, p<0.01; F(2,28)=14.8, p<0.001 for e3 and RE indexes respectively). A
finer examination of RE and e3 indexes showed that some subjects exhibited more speed
dependencies than others, which is analyzed below.

Intra-individual analysis Reach endpoints. The distribution of reach endpoints pro-
jected onto the transverse plane is illustrated in Figure 3.2. The data of two representative
subjects were reported (S5 and S14 represent speed-sensitive subjects and speed-insensitive
subjects, respectively). A qualitative inspection revealed an effect of speed for S5 but not
in S14. Precisely, for S5, increase of speed was accompanied by reach endpoints that tended
to get closer to the shoulder location in the AP direction. Correlation analyzes performed
for the RE index confirmed these observations (Fig 3.3). Indeed, while the RE index for
S5 showed a significant negative correlation with respect to speed (R=-0.76, p<0.001),
the correlation for S14 was not significant (p=0.48). The data of individual subjects are
reported in Table 3.3 (R values, p values and K slopes are given).
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Figure 3.2. Reach endpoint positions of two subjects (S5 and S14) for the three different
speeds (S, N and F). The 95% confidence ellipses of reach endpoints in the S, N and F
speed conditions are drawn in thick, thin and dotted lines, respectively. Note that along
the antero-posterior (AP) axis, the distributions of finger positions of S14 remain relatively
constant regardless of movement speed while those of S5 tend to decrease when movement
speed increases.

e3 and SE indexes. The variations of e3 with respect to the movement speed for the two
typical subjects (S5 and S14) are shown in Figure 3.3 (bottom panel). Similarly to RE
indexes, it is visible that the e3 index was independent of speed for S14 (p=0.50) while it
clearly decreased with speed increments for S5 (R=-0.85, p<0.001). Regarding SE index
(not depicted), it was increasing according to speed for S5 while speed invariant for S14
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(values). The data of individual subjects are again reported in Table 3.3 (R values, p
values and K slopes are given).

Figure 3.3. Dependence of RE and e3 indexes on movement speed for the two subjects S5
(left) and S14 (right). For each examined index, linear correlation and regression lines (thin
black lines) were computed based on all recorded data (each dot of the graphs corresponds
to a single trial). For S14, RE and e3 indexes appear to be nearly independent of speed
variations while those of S5 decrease clearly when movement speed increases.

In summary, the above investigations revealed idiosyncratic behavioral strategies, with
some participants using speed-dependent reach endpoints and joint trajectories while others
conserved the same arm trajectories irrespective of speed instructions. Note that the use of
a pointing task with unconstrained reach endpoints was essential to uncover the existence
of speed-dependent strategies in some subjects. Next, to account for these experimental
observations, an inverse optimal control approach is presented, which aimed at identifying
the costs underlying the arm trajectories of each individual for every speed. This will
prove to be useful to explain the inter-individual divergences within a unique normative
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framework.
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Optimal control results

Reach endpoint location and rotation axis displacement as predicted by kine-

matic, energetic and dynamic elementary cost functions In order to provide pre-
liminary insights about the predictions of each elementary cost function for the present
pointing task, optimal control simulation results for a subject (here S5) are shown in Fig-
ure 3.4. The dependence of each single cost with respect to the required speed is also
emphasized. The left panel depicts the finger’s simulated movement paths while the right
panel displays the variation of two global parameters (RE and e3) with respect to three
speeds (S, N, F). It is noteworthy that the initialized parameters (such as the initial config-
uration of arm, movement durations, position of planar target) were imported directly from
recorded data and kept fixed during the simulation processes. Importantly, the simulated
results showed that each cost function produced different movement paths to the planar
target, leading to different RE locations. For a specific movement speed (e.g. N), the
kinematic cost would generate the farthest movement (i.e. more distant RE location with
respect to the vertical projection of shoulder position on the planar target). Between the
energetic/dynamic costs, the dynamic cost tended to produce the less distant RE index.
Furthermore, in terms of speed dependencies, the three costs made distinct predictions:
the kinematic cost did not depend on speed at all, in agreement with its theoretical founda-
tion. However, energetic and dynamic costs exhibited some dependence on speed in both
hand path curvatures and RE location. Visually, when the speed increased from S to F,
the energetic cost generated quite distinguishable movement paths (smallest RE location
at F speed) while the dynamic cost generated slightly different movements between speeds
(but the curvature noticeably decreased with respect to speed increments). A quantitative
analysis showed that the kinematic cost always produced constant RE/e3 indexes across
movement speed while the energetic/dynamic costs reduced RE or e3 indexes at high or low
rates when movements sped up. A finer examination of arm posture showed that the move-
ments generated by kinematic cost mainly involved rotation about the shoulder ulnar/radial
axis and negligible displacements about the other axes regardless of speed, accounting for
the low values of SE index for this cost. On the contrary, the energetic/dynamic costs
generated the movements that associated with all the rotational axes, yielding quite large
displacements around the shoulder internal/external, elevation/depression, elbow exten-
sion/flexion axes. Thus, one could conclude that the optimization of movement based
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on the sole kinematic cost could only account for speed-insensitive strategies while the
optimization of pure energetic/dynamic costs should produce speed-dependent arm trajec-
tories.

Figure 3.4. Movement parameters predicted by each elementary cost (kinematic, ener-
getic and dynamic) during the plane-reaching task at three different speeds (S, N and F).
Left. Movement paths of the fingertip start from the same position (black circle) but end
at different reach endpoints on the target surface. Right. Variation of RE and e3 indexes
with respect to speed. The kinematic cost generated speed-invariant trajectories (constant
movement path as well as RE and e3 indexes), whereas the dynamic and energetic costs
generated relatively small and large speed-dependent trajectories respectively. RE and e3
indexes varied accordingly for the two latter costs. These two costs exhibited some degree
of speed dependence because they both involved dynamic variables such as muscle torques
and the musculoskeletal dynamics was highly nonlinear.

Composite cost identification Overall fitting errors. Composite costs were fitted to
the data of each subject in order to uncover the optimality criteria underlying their exper-
imental behaviors. In order to evaluate the performance of composite costs, their perfor-
mance was systematically compared to what would be obtained using the three elementary
costs separately (Kine, Ener and Dyna). For composite costs, two competing hypothe-
ses were tested: speed-dependent vs. speed-independent composite costs (SDComp vs.
SIComp, respectively). The joint space and Cartesian space fitting errors (EJoint/ECart,
mean± std values across subjects) are reported in Figure 3.5. As expected, errors ob-
tained from the best-fitting composite costs were constantly smaller than for each of the
elementary costs. In joint space, the maximal angular deviations between simulated and
experimental displacements were 5.5 ± 3.2° and 6.6 ± 2.9° for SDComp and SIComp, re-
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spectively. Those values were nearly half smaller than those of Kine cost and much smaller
than those of Ener/Dyna costs. Repeated-measures ANOVAs indicated the significant dif-
ferences in EJoint between costs (F(2.6,116.5)=112.1, p<0.001). Post-hoc analysis revealed
that the EJoint of SDComp/SIComp were significantly smaller than those of three elemen-
tary costs but between the two composite costs there was no significant difference. Similar
results were observed for ECart. The maximal deviations of simulated 3D finger paths from
experimental ones were5.1±3.4 cm and 5.0±3.2 cm for SDComp and SIComp respectively,
while those of the three elementary costs were 8.9± 6.5 cm, 17.6± 9.2, and 20.4± 4.5 cm
for Kine, Ener and Dyna, respectively. Repeated-measures ANOVAs and Post-hoc anal-
ysis also showed significant differences in ECart between SDComp/SIComp and the three
elementary costs but no significant differences between SDComp and SIComp. The chosen
error was quite conservative given that it was based on maximal deviations. For the sake
of comparison, the average deviation for the SIComp cost was 2.6 ± 2.0 cm, suggesting
that average deviations were about half ECart in general. As such, this confirmed that
the composite costs were significantly better to improve the goodness of fit by producing
arm trajectories that matched quite accurately the recorded ones. Here, in order to vi-
sualize how well the simulated trajectories fit the empirical data, real and simulated arm
trajectories using the uncovered speed-independent composite cost are plotted in Figure
3.6.
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Figure 3.5. Reconstruction errors in joint space (EJoint) and Cartesian space (ECart) for
the best-fitting speed-dependent composite cost (SDComp) and speed-independent com-
posite cost (SIComp) as well as each of the three cost elements taken separately, for the
different speeds (S, N and F). Error values were averaged across subjects (with standard
errors indicated by error bars). Noticeably, in terms of both joint and Cartesian errors, the
composite costs (SDComp and SIComp) performed better than each elementary cost taken
alone (Kine, Ener and Dyna). Horizontal bars with stars indicate the results of post-hoc
analysis. One, two and three stars stand for p<0.05, p<0.01 and p<0.001 respectively.
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Figure 3.6. Simulated finger paths predicted from the best-fitting composite cost
(SIComp) and average experimental finger paths for subject S5. Left. 3D finger paths
for the three speeds for experimental (plain traces) and simulated (dotted lines) data.
Right. The zoomed-in projections of finger paths on the sagittal plane (top) and the trans-
verse plane (bottom) for the last part of the movement, in order to emphasize differences.
In general, fitting errors mainly arose from the discrepancy of trajectories along the ML
axis while along the AP axis (main axis of interest here), the simulated trajectories better
matched the recorded ones and clearly exhibited a speed dependence.

Absolute and relative predictions of RE and e3 indexes across speeds. We quantified
whether the identified composite costs could also replicate the movement parameters in-
vestigated above better than the elementary costs. The absolute reconstruction errors
ERE and Ee3 for all examined costs are depicted in Figure 3.7. In terms of ERE (top
left panel), a visual inspection revealed a quite large difference between the value of Dyna
cost with respective to the others, thus implying that the reach endpoints predicted by
such a dynamical criteria were quite far from the recorded ones regardless of the speed.
For the other costs, the two composite costs SDComp/SIComp obtained relatively smaller
values than Kine/Ener costs. Indeed, those values of these two costs were approximately
three times smaller than those of Kine cost and five times smaller than those of Ener
cost. Repeated-measures ANOVAs and Post-hoc analysis confirmed significant differences
of ERE between the two composite costs (SDComp/SIComp) and the three elementary
costs (Kine/Ener/Dyna) (F(2.8,121.5)=81.3, p<0.001), but no significant difference be-
tween SDComp and SIComp (p=1.0).
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Figure 3.7. Reconstruction errors for some relevant movement parameters (Ee3, ERE,
EK̄e3

, EK̄RE
) for the SDComp, SIComp costs and the three cost elements taken separately.

Error values were first averaged across speeds and then across subjects (with standard
errors indicated by error bars). Visual inspection reveals that in terms of both ERE and
Ee3 the dynamic cost performs quite poorly compared to the other costs. In terms of EK̄RE

and EK̄e3
, the energy cost overestimates the speed dependence of RE and e3 parameters.

Overall, the kinematic cost performs relatively well but the composite costs perform signif-
icantly better than the latter. Importantly, the kinematic cost is also unable to account for
any speed-dependence as it predicts constant movement parameters for all speeds. Finally,
no significant difference was found between the SDComp and SIComp.

A similar analysis was carried out for e3 index (Figure 3.7, bottom left panel). In agree-
ment with the above results, a large difference for Ee3 between Dyna cost and the others
were still observed. Between composite costs (SDComp/SIComp) and the two elementary
costs (Kine/Ener), the Ee3 differences were smaller (approximately two third of the values
for Kine/Ener costs). However, repeated-measures ANOVAs and Post-hoc analyzes still

90



3.2. On the nature of motor planning during arm pointing task

indicated significant differences for Ee3 between SDComp/SIComp and the three elemen-
tary costs (F(2.2,95.9)=17.7, p<0.001). Between the two composite costs, no significant
difference was observed (p=1.0).

In order to assess whether costs could reproduce the speed-dependence (or indepen-
dence) exhibited by each subject for e3 and RE indexes, the prediction of slopes given
in Table 3.3 was investigated. The right panels in Figure 3.7 shows the errors EK̄RE

and
EK̄e3

. In terms of RE index, it appeared that the Ener cost were quite large ( about 2 times
larger than Kine/Dyna and 3times larger than SDComp/SIComp), thus implying that the
Ener cost tended to overestimate the speed-dependence of arm trajectories across subjects.
Among the other costs tested, the Kine and Dyna costs obtained quite similar slope errors
but these values were larger than those of SDComp/SIComp. Repeated-measures ANOVAs
and Post-hoc analysis showed significant differences between the EK̄RE

of SDComp and
Kine/Ener/Dyna (F(2.4,33.8)=4.7, p<0.05) but no significant difference between SDComp
and SIComp (p=1.0). Similar observations were obtained for EK̄e3. Repeated-measures
ANOVAs and Post-hoc analysis showed a significant difference between SDComp/SIComp
and Ener cost (p<0.05). However, between SDComp/SIComp and Kine/Dyna, we did not
observe any significant distinctions. Between SDComp and SIComp, again no significant
difference was observed.

In summary, our results showed that only composite costs could reproduce both the
absolute and speed-relative behaviors of the 15 participants. Furthermore, no significant
gain was found when tuning the weights of the composite cost according motion speed
compared to the assumption of a speed-independent composite cost. But if each subject
relies upon an idiosyncratic composite cost function, a question remains about how to
explain the emergence of speed-dependent and speed-independent arm trajectories. This
issue is addressed hereafter.

Idiosyncrasy of composite costs On average, composite costs were α1 = 4.84× 103±
3.15 × 103 and α2 = 0.46 × 102 ± 0.43 × 102, but these weights varied across participants
and appeared to be crucial to account for the arm trajectories across speeds. For instance,
the coefficients characterizing the best-fitting composite cost for S5 was α=[1, 4.23×103,
0.43×102] and was α=[1, 2.71×103 , 0×102] for S14. To get a more representative account
of these costs, the contribution of each element was computed (see Materials and Methods).
This analysis revealed that the Kine cost contributed on average across speeds and subjects
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to 80±15% of the total cost while the Ener and Dyna costs were about 6±5% and 13±12%
respectively. Although small, the previous analyses suggested that these contributions of
energetic and dynamical costs were crucial to replicate the speed-dependences observed
several subjects. Yet, although they used a composite cost, some other subjects did not
exhibit speed-dependent behaviors.
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Figure 3.8. 3D plots of KRE, Ke3 and EJoint for the two typical subjects S5 (left) and
S14 (right) as a function of the weights of the composite cost C(α). In these graphs,
α1 and α2 where varied to visualize how the speed dependence as well as the error min-
imized during inverse optimal control varied according to the chosen weights. Remind
that C(α) = CKine + α1CEner + α2CDyna. The squares indicated on each 3D plot show
the position of the best-fitting speed-independent composite cost (SIComp) found during
inverse optimal control. S5 and S14 have different anthropometric characteristics. Interest-
ingly, by choosing appropriate α1 and α2 weights, subjects could exhibit different degree of
speed dependence (almost zero KRE/Ke3 or negative KRE/Ke3). For example, S14 could
have been speed dependent if he/she chose a different cost combination (but this was not
uncovered here because his/her trajectories were not compatible with such a cost function.
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To better understand the role of the weights onto the speed-dependence of arm trajec-
tories for each subject, we varied the energetic (α1) and dynamic (α2) coefficients of the
composite cost (C(α) = CKine +α1CEner +α2CDyna ) and evaluated the speed-dependence
of trajectories predicted from forward optimal control simulations. The resulting slopes
KRE, Ke3 and joint space fitting error EJoint (the minimized quantity during inverse opti-
mal control) for the two subjects S5 (left) and S14 (right) were computed and depicted in
Figure 3.8. It is noteworthy that these two subjects had different anthropometric parame-
ters, thus allowing to test whether anthropometric discrepancies could explain differences
in speed sensitivity at fixed composite cost. For both subjects, the patterns of KRE and
Ke3 were relatively similar but the speed-dependence of S5 appeared to be much larger in
terms of magnitudes. This implied that if both subjects had use the same composite cost,
S5 would intrinsically appear to be more speed-dependent than S14 just because of anthro-
pometric peculiarities. On the other hand, by changing the weights of the composite cost,
subject S5 had the possibility to be more or less speed-dependent. Similarly, subject S14
could be speed-dependent if increasing the weights of the energy and dynamic coefficients.
Nevertheless, this would have changed their arm trajectories (and the minimum in Ejoint
graphs) and this is why it was not found by the inverse optimal control algorithm in the
present data.

In summary, these 3D plots show that anthropometry partly explains why a given com-
posite costs may lead to differences in terms of speed dependence of behaviors. However,
the composition of composite costs was clearly idiosyncratic, thereby implying that differ-
ent arm trajectories also emerged across subjects because of differences in the weighting of
kinematic, energetic and dynamic variables.
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Discussion

In this work, we examined the nature of motor planning variables during free-endpoint arm
reaching task. Three-dimensional arm movements without a prescribed reach endpoint
location were investigated and how speed instructions affected the chosen arm trajectories
was measured. The experimental results showed that the reach endpoint (RE) and rotation
axis displacements (e3/SE) significantly varied with speed to an extent that depended on
individual factors. These idiosyncratic behaviors were accounted for in the framework of
optimal control as the outcome of the minimization of a cost weighting kinematic, energetic
and dynamic variables. The latter quantities were assumed to represent (a priori) internal
values guiding motor decision within the brain and were essentially found to be subject-
specific but speed independent. These results are discussed in more details hereafter.

Unrestrained 3D arm trajectories: speed dependence or

independence

Our findings revealed significant speed-related changes in both arm trajectories during the
free 3D arm movements under consideration, which contrasts with classical conclusions
drawn in point-to-point movement studies. Whether the brain controls movement using
speed-sensitive or speed-insensitive planning strategies is a long-standing issue in motor
control. The term speed-insensitive is used when prominent aspects of the motor strat-
egy (e.g. hand path, time-course of velocity or acceleration) remain invariant in spite
of speed differences and/or when simple scaling rules apply to the motor patterns. This
question has been extensively investigated for horizontal or vertical planar point-to-point
2D movements (Flash and Hogan, 1985; Ostry et al., 1987; Gordon et al., 1994; Soechting
and Lacquaniti, 1981; Soechting et al., 1995; Atkeson and Hollerbach, 1985; Flanders et
al., 1996). In those seminal studies, hand paths were generally considered as straight or
slightly curved and velocity profiles bell-shaped regardless of motion speed, as if a scaling
law applied to an unique movement pattern. Finer analyzes however revealed that the
timing of velocity profiles was significantly affected by the speed at which movements were
executed (Papaxanthis et al., 1998, 2003; Nagasaki, 1989), in agreement with the well-
known fact that deceleration duration increases when maximal accuracy and speed are
together required, such as in Fitts’-like experiments (Woodworth, 1899; Elliott et al., 2001;
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Fitts, 1954; MacKenzie and Iberall, 1994). Even in those such settings, however, the shape
of hand paths was widely accepted to be speed-invariant. Further studies extended planar
point-to-point reaching paradigms to the 3D case to better tackle the speed-dependence
question and lead to the conclusion that, given an initial arm posture and a final target
position, neither the final arm posture nor the hand path curvature depended significantly
on movement speed (Nishikawa et al., 1999; Zhang and Chaffin, 1999). This lack of sig-
nificant differences may have been due to the specification of a precise target to reach to,
which could have limited the expression or the finding of speed-dependent arm trajecto-
ries. Indeed our protocol defined looser task constraints in terms of the final hand position,
which may be the reason why the reach endpoint as well as certain joint displacements
depended significantly on the motion speed. Dealing with tasks involving undefined reach
endpoints is nevertheless ecological and occurs in many tasks. For example catching a ball
(e.g. Cesqui et al., 2012) is a task involving an infinity of possible reach endpoints along
the ball’s trajectory. The existence of differences between constrained and unconstrained
tasks was already noticed in Desmurget et al. (1997). The speed dependence found here
for discrete movements is also consistent with what Isableu et al. (2009) observed during
a cyclical yet comparable arm movement task in which a similar speed-dependent tuning
of motor strategy was observed for some subjects. To account for the experimental arm
trajectories, we had recourse to inverse optimal control as it makes hypotheses about the
nature of the variables possibly relevant to motor planning.

Motor planning variables: kinematic, energetic, dynamic or

composite

The above issue about the speed dependence of motor strategies is actually tightly linked
with the nature of hypothetical cost functions involved in motor planning, as already
noticed in Soechting and Flanders (1998). The former problem actually gains at being
rephrased within the normative framework of optimal control as it simplifies both its for-
mulation and analysis. Indeed, analyzing the subjects’ behavior in terms of cost functions
instead of a bunch of 3D arm trajectories can be seen as a dimensionality reduction since
a cost function summarizes the spatiotemporal characteristics of an infinity of joint trajec-
tories at once (see Berniker and Kording, 2015). In the optimal control context, the issue
of kinematic versus dynamic motor planning has been the topic of several investigations
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(Wolpert et al., 1995a; Flanagan and Rao, 1995; Soechting et al., 1995; Soechting and
Flanders, 1998; Vetter et al., 2002; Hermens and Gielen, 2004). Here, solely optimizing
an energetic or a dynamic criterion was not adequate for replicating the basic features
of arm trajectories: the reach endpoints and the final postures were just too discrepant
with the data (see Fig. 3.7). In contrast, optimizing a kinematic cost performed quite
well at a first sight. Accordingly, it was found to be the primary cost accounting for the
arm displacement of subjects and the dominant humeral rotations. Rotations around the
humeral axis (i.e. SE axis) were interpreted in Soechting et al. (1995) as cues of a planning
of energetically efficient arm trajectories but the present task shows that strictly rotating
around the humeral axis was not energetically optimal (at least when energy expenditure
is measured by the absolute work of muscle torques and not as the peak of positive work
as in Soechting et al., 1995). The kinematic cost was however not appropriate if one con-
siders the speed-dependence of behaviors. Indeed, such a kinematic cost predicts invariant
patterns of joint trajectories when speed varies. Hence, speed does not affect hand path
in such models, which was not compatible with the behavior of most participants. From
a computational standpoint, kinematic models may be appealing as they do not require
new inverse internal model to extract adequate motor commands matching a wide range of
velocities. Indeed, taking gravitational and frictional torques apart, the structure of rigid
body dynamics is such that movements of different speeds can be generated from a single
torque pattern τ despite the non-linearity of the arm dynamics by means of a simple scaling
law of the type τ̃(t) = r2τ(rt) (see Hollerbach and Flash, 1982 for details). More generally,
any strategy relying on such a spatiotemporal rescaling of a reference torque pattern (be
it initially based upon kinematic, kinetic or any composite optimality criteria) would yield
the same hand paths and final postures. Even though experimental evidence was provided
for a separation between tonic versus speed-related phasic muscle activity during point-to-
point motor tasks (Flanders and Herrmann, 1992; Flanders et al., 1996), the fact that the
reach endpoints or other parameters depended significantly upon speed in our data made
impossible such a basic scaling principle. The systematic and consistent speed-dependent
changes of arm trajectories observed in the present study rather supported the existence
of a composite cost underlying the formation of arm trajectories for the range of speeds
under consideration. Furthermore, geometric models such as the geodesic model (Biess et
al., 2007) would not be able to account for these experimental findings as they hypothesize
a decoupling between the geometric and temporal properties of movement, which is at
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odds with our experimental findings. Therefore, taken together, our findings revealed the
composite nature of the cost function underlying arm movement. These findings extended
those found for planar motion in Berret et al. (2011a). Other studies using a different
motor task (landing after a vertical jump) reached very similar conclusions about the com-
bination of energetic/dynamic criteria with other factors such as comfort or smoothness
(Zelik and Kuo, 2012; Skinner et al., 2015).

Flexibility of the composite optimality criterion

Within the theory of composite cost functions, there exist intriguing questions pertaining
to the degree of flexibility of the combinations. In particular, whether speed affects or
not the way elementary costs are weighted was an open question. If results indicate that
kinematic, energetic and dynamic costs must be combined to fit the data to the greatest
possible extent, the relative relevance of each of these quantities may differ as their order of
magnitude also vary with speed. It could be possible that at large speeds, limiting angular
jerk because more important than minimizing energy expenditure. In Berret et al. (2011a),
arm trajectories starting from several initial postures were studied and a single composite
cost was assumed to account for movements starting from all positions at once. However,
the study only considered a single movement pace, namely a quick speed. Thus, whether a
single combination of costs would also be valid for movements performed at various speeds
was uncertain even though, within the composite cost hypothesis, understanding the extent
to which the weights depend on external or internal factors seems crucial. The question
is also relevant when attempting to predict the pace of natural movements (Shadmehr,
2010; Shadmehr et al., 2010; Berret and Jean, 2016). In these works, a cost of time was
assumed to be combined with trajectory costs (i.e. the subjective costs studied here)
and other objective costs. How speed instructions affect such mixtures of costs is not
clear especially if the exact nature of the trajectory costs changes with speed instructions.
When instructed a subject to move fast or slow, which weights are exactly modified is
hard to identify in general. Here we addressed this problem (without considering the cost
of time as it does not matter when movement time is taken directly from experimental
data as we did here) and assessed whether the weights depended or not on the instructed
speed. Our results supported the fact that the speed dependence of arm trajectories of
each participant could be accounted for by a unique composite cost (i.e. with invariant
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weights). Indeed, no significant gain was found when tuning the weights according to the
instructed speed. This is especially if one considers the addition of new fitting parameters
when doing so. Following Occam’s razor principle, we could not retain the more complex
model consisting of adjusting the weights according to movement speed. While we cannot
exclude that the weights of objective costs such as accuracy or precision did not change
when speed increased because we did not model sensorimotor noise, our conclusions only
concern the subjective optimality criterion. Simulations conducted within the stochastic
optimal control framework would be required to address such questions (Todorov, 2006),
but the numerical tools are not as advanced as in the deterministic settings and therefore
treating the stochastic case was not considered. We cannot exclude neither the existence
of other subjective costs (there is infinity of movement-related costs and other costs less
quantifiable such as discomfort, pain, gracefulness etc.) but the present findings nonetheless
argued for a subject-specific composite nature of motor planning variables. It could still be
argued that the participants exhibiting the strongest speed dependences of arm trajectories
simply suffered from inaccurate sensorimotor control, which would just be emphasized at
large speeds. However, the consistency of speed-related fluctuations across trials for these
participants tends to disagree with this hypothesis. Moreover, the CNS is known to have
good capabilities to predict and anticipate interaction torques (Gribble and Ostry, 1999)
and the inertial anisotropy of the human arm (Gordon et al., 1994; van Beers et al., 2004)
during motor planning as well as gravity (Berret et al., 2008; Gaveau et al., 2011a, 2014).
Therefore, rather than interpreting their behaviors as the realization of inefficient motor
control, we instead interpret them as the outcome of efficient motor control, which may be
the signature of a composite cost proper to each individual.

Inter-individual differences

Interesting inter-individual differences were pointed out throughout the study, especially
with respect to speed instruction. Motivated by applications in neuro-rehabilitation, neuro-
prosthetics and related areas, the study of inter-individual differences has developed as a
hot topic of research in recent years. Many researchers tried to find whether idiosyncrasy
arises from a peripheral or central origin and tried to elaborate on principles that could
account for them. In this vein, initial assumptions were related to a different involvement
and exploitation of frames of reference (e.g. visual versus kinaesthetic) and to changes
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from one frame of reference to another with respect to execution speed (Pozzo et al.,
1991; Bernardin et al., 2005; Isableu et al., 2003). Recently, Isableu et al. (2009) pro-
vided evidence of individual differences in a task where cyclical 3D arm movements were
experimented. These authors showed that different subjects moved preferentially around
different rotation axes: some participants always rotated their arm around the geometrical
articular axis (termed as “kinematicians”) or around the minimum inertia axis regardless
of speed (termed as “dynamicians”) while other switched from the geometrical to the min-
imum inertia axis when movement speed increased. It was proposed that these rotational
axis preferences could originate from prior sensorimotor strategies experienced by the sub-
jects. These strategies indeed allowed subjects to differentially exploit the dynamical arm
properties and the passive torques (e.g. interaction or gravity torques) in order to min-
imize the inertial resistance as well as the muscle torque input to the movement. It is
however hard to separate differences due to anthropomorphic or peripheral specificity from
those arising from different motor planning principles. The current results thus extend
these previous findings for a discrete task and refined them within the context of optimal
control. In particular, our results further showed that the subject-specific motor strate-
gies actually correspond to different subjective composite costs. In fact, optimal control
simulations take into account the anthropometric characteristics of each participant and
if differences between subjects could be explained by such body-related peculiarities then
the same composite cost function would have been identified using inverse optimal control.
Since different subjects appeared to weight very differently the cost elements, our results
rather argue in favor of divergences in the central representation of movement and the
subjective values actually attributed to the motor task (smoothness, mechanical energy,
muscle torques...). The importance of individual factors when the task constraints are
loose, as during such a free-endpoint reaching task, was already pointed out by Cesqui et
al. (2012) in a ball catching task. In this task, equally successful yet very different motor
solutions were adopted by subjects. We showed that such different solutions were not fully
due to musculoskeletal discrepancies across participants but may rather reflect different
subjective costs that can operate vicariously. More precisely here our results revealed that
the subjects who presented relatively invariant trajectories generally relied upon a kine-
matic objective or a combination of kinematic and a small amount of energetic objectives
regardless of speed (Fig. 3.8), while other participants who presented a change of tra-
jectories often relied upon a combination of kinematic, energetic and dynamic objectives.
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Depending on the composite cost chosen, varying the anthropometric characteristics could
change the degree of speed-dependence of an individual. On the other hand, for fixed an-
thropometric characteristics, the relative weights defining the composite cost were critical
to explain the degree of speed-dependence of each participant, which proved that inter-
invididual differences were not only due to anthropometric divergences but also to central
factors. These factors may be encoded and traded-off through the cortex-basal ganglia
network (e.g. Scott, 2004; Turner and Desmurget, 2010 for reviews) where these variables
shaping arm movement trajectories would be valued and might guide motor planning in
terms of objective and subjective costs or rewards.

Research limitations

One could wonder whether the reconstruction errors we obtained are small enough to
conclude that the composite cost really constitutes a high-level representation of motor
planning objectives. It is indeed undeniable that there might still exist a more universal
cost accounting better for the present experimental data. Finding such a ubiquitous cost
function would be appealing for motor control but what would be its nature and shape
is still an open question. Thus far, the existing literature has reported the relevance of
several cost functions in the exact same way that neurophysiological studies have reported
cortical representation of a large variety of movement-related parameters ranging from
kinematic (spatial or nonspatial) to dynamic or muscular. Therefore, assuming composite
cost functions is a solution compatible with previous findings that may moreover reconcile
prior computational and empirical studies. Within this composite cost hypothesis, knowing
which elementary cost should be included may nevertheless be tricky as candidate costs are
numerous. The situation is even more complex with regards to the number of DoFs of the
system. Precisely, any cost such as the angle jerk is intrinsically composite since different
weights could be attributed to different DoFs. In general, researchers have assumed that
all those weights are equal to one (including in the present study) for the sake of simplicity
but one can easily imagine that such weights actually vary across DoFs. Throughout our
analyses, we thus conducted supplementary tests to evaluate whether reconstruction error
could be improved by (i) adding other elementary costs or (ii) tuning the weights of the
kinematic, energetic and dynamic costs for each DoF separately. To test (i) we added costs
such as acceleration, geodesic and muscle torque as in Berret et al. (2011a). In this case,
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the best-fitting speed-independent composite cost yielded maximal Cartesian deviations
(i.e.ECart values) of 4.3± 2.6 cm, which is not much smaller than when dealing with three
costs as we did in our study. Hence the three costs we retained in the current study
were quite relevant to account for the present data. This was confirmed when looking
at (ii). When we allowed optimization of the weights associated to each DoF separately
we found ECart values of 3.1 ± 2.1 cm. Compared to the 5 cm in our main results, the
improvement seems notable even though this approach required 11 variables to be adjusted
during the inverse optimal control process (instead of 2 otherwise). This finding suggests
that a fine tuning of the weight at each DoF would allow a better replication of the real
arm trajectories. However, this approach would drastically complicate the analysis unless
one groups the weights according to the underlying type of cost, i.e. kinematic, energetic
and dynamic, as we eventually did here. As such, these considerations show that our main
conclusions about the compositeness and speed-dependence of optimality criteria would
not differ if choosing slightly different modeling approaches.
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3.3 Compensation/Exploitation of interaction torque

and its links to cost function
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Abstract

The study aimed at investigating the extent to which the brain adaptively ex-

ploits or compensates interaction torque (IT) during movement control as a func-

tion of velocity and load constraints. Participants performed free end-point reaching

movements at slow, neutral and fast speeds and with/without load attached to the

forearm. Experimental results indicated that IT overall contributed to net torque

(NT) to assist the movement and that such contribution increased with limb iner-

tia and instructed speed. We interpreted these results within the (inverse) optimal

control framework, assuming that the empirical arm trajectories derive from the min-

imization of a certain, possibly composite, cost function. Results indicated that a mix

of kinematic, energetic and dynamic costs was necessary to replicate the participants’

adaptive behavior at both kinematic and dynamic levels. Furthermore, the larger

contribution of IT to NT was associated with an overall decrease of the kinematic

cost contribution and an increase of its dynamic/energetic counterparts. Altogether,

these results suggest that the adaptive use of IT might be tightly linked to the op-

timization of a composite cost which implicitly favors more the kinematic or kinetic

aspects of movement depending on load and speed.
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Introduction

Human movement control is a complex process partly due to the non-linearity induced by
the pluri-articulated nature of the skeletal system. Motion in the body structure leads to
the emergence of interaction torque (IT) between segments (e.g. action of the forearm onto
the upper-arm) but also within a segment (e.g. among the 3 main degrees of freedom of
the shoulder joint for the upper-arm in 3D). Such coupled nonlinear dynamics implies that
motion at one degree of freedom (DoF) may induce significant motion at the other ones.
This property requires the central nervous system (CNS) to rely on effective computational
and neural principles for accurately controlling movement even for simple daily living tasks
such as putting a cup of tea on your desk while reading those lines. Coping with IT is
therefore a critical issue for the CNS and adaptively using it may contribute to motor
efficiency by lowering the amount of muscle torque (MT) required to achieve a given task.
In contrast, its inadequate use or inefficient exploitation may amplify sensorimotor noise
throughout the kinematic chain or lead to greater energy expenditure. Interestingly, a large
body of evidence has suggested that the CNS has ability to estimate and anticipate IT via
internal models of the limbs’ dynamics (e.g. Ghez and Sainburg, 1995) (but see (Buhrmann
and Di Paolo, 2014) for an alternative view based on equilibrium-point theory). In this
study, we will rely on the internal model hypothesis and hypothesize that the CNS has
some form of knowledge about IT at the motor planning stage. In this view, we may devise
two extreme options. On the one hand, the “compensation” hypothesis assumes that IT
is canceled itself out during motor planning (Hollerbach and Flash, 1982; Sainburg et al.,
1995, 1999; Bastian et al., 1996; Gribble and Ostry, 1999; Simoneau et al., 2013). On
the other hand, the “exploitation” hypothesis assumes the brain can actually utilize IT to
generate motion at other DoFs without dedicated muscle effort at those DoFs (Sainburg
and Kalakanis, 2000; Hirashima et al., 2003, 2007; Dounskaia et al., 2002; Dounskaia, 2005;
Debicki et al., 2010, 2011; Hore et al., 2011; Asmussen et al., 2014). The solution used by
the brain may also lie in-between. Arguably, the extent to which the CNS actually exploits
IT should be reflected in the adaptability of arm trajectories with respect to speed and
load changes as IT strongly depends on such factors. Hence the purpose of this study was
twofold: (i) evaluate whether the CNS adaptively exploits (or systematically compensates)
IT during unrestrained 3D arm movements, and (ii) identify normative principles that may
account for how the CNS copes with IT during motor planning.
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To this aim, we investigated a free 3D arm pointing task and modelled it using optimal
control theory. The rationale of our approach was as follows. First, to let emerge motor
strategies revealing IT exploitation or compensation strategies, subjects were asked to
perform movement without a prescribed reach endpoint. Precisely, we considered 3D arm
pointing movements to a planar target. This laboratory task can be thought as similar to
pushing a door to open it or throwing a ball to a target (since the ball can be released at any
point in space to achieve the task) or the cup of tea example fiven above: in all these tasks,
there is no unique final hand position to achieve the task (Berret et al., 2011b, 2014). It is
worth noting that the present task still imposed accuracy constraints forcing participants to
spatially control their end-effector along the vertical direction in order to reach the goal (i.e.
the plane here) but, importantly, it gave more freedom to the participants than if a target
point was assumed instead. Therefore, participants still had to take into account IT during
planning or execution to achieve the task just as in classical point-to-point reaching tasks.
Considering 3D motion was also critical as the nature of IT strongly differs between 2D
and 3D movements (IT only exists between segments in 2D due to parallel rotation axes).
Second, to better characterize the role of IT, we varied both the inertia (addition of a load
to the forearm) and the speed (slow/fast verbal instructions) as the shape and magnitude
of IT critically depends on those factors. We predicted that, if IT is exploited (even
partially), the inter/within-segment ITs should contribute more significantly to trajectory
formation and torque profiles when inertia and/or motion speed are large. Alternatively,
if IT is compensated, such modifications should have no effect on the arm trajectories,
except that the MTs should be adjusted to cancel the larger ITs. Third, we aimed at
accounting for the empirical pointing strategies via inverse optimal control with composite
cost functions (Gielen, 2009; Berret et al., 2011a; Vu et al., 2016). Optimal control theory
is an appealing framework to apprehend human motion as it points out possible high-level
principles underlying arm movement formation in a concise and normative way (?Todorov,
2004; Berniker and Kording, 2015). Here, kinematic costs are typically associated with a
“compensation” strategy because they ignore IT during motor planning while energetic and
dynamic costs conceivably fall within the “exploitation” category as they take into account
IT at the planning stage. To the best of our knowledge, it is the first time that the role
of IT on 3D human motion is interpreted from the (inverse) optimal control viewpoint.
We hypothesized that any adaptive compensation/exploitation trade-off of IT could be
associated to the minimization of composite cost mixing kinematic, dynamic or energetic
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quantities.

Materials and Methods

Ten right-handed subjects (5 men) agreed to participate in the study. All of them were
healthy and ignorant of the goal of the scientific work. Age, weight and height (mean±std)
were 27±5 years, 67±10 kg and 168±7.8 cm, respectively. All subjects were made aware
of the protocol and written inform consents were obtained before the study. Experimental
protocol and procedures were approved by the Univ. Paris-Sud EA 4532 local Ethics
Committee and carried out according to the ethical guidelines conforming to the Revised
Helsinki Declaration of 2000.

Experimental task

In the present study, we used a “manifold reaching” paradigm quite similar to the experi-
ment described in the work of (Vu et al., 2016). Briefly, participants sat comfortably on a
chair and were asked to perform pointing movements with their right (dominant) upper-
limb to an horizontal planar target (Fig. 3.9). Participants were asked to stop their motion
when their index fingertip was onto the target but without striking it. They started from
an initial “L-shape” arm configuration where the elbow was approximately flexed at 90
degrees with an upper arm abducted to the horizontal and aligned with the mediolateral
direction; this starting posture was realized in practice by asking the participants to put
their fingertip at a reference point whose position was adjustable in space. In this way, the
initial arm joint configuration was kept similar across participants. Free rotations at the
shoulder and elbow joints were allowed while the wrist joint was constrained by a light bar
to freeze its motion and simplify subsequent modeling. The trunk was fixed and attached
to the chair. The planar target consisted of an horizontal foam-made surface positioned
just below the participant’s chest on a table (about 17.5 cm below the shoulder on aver-
age). Participants could reach anywhere on the surface without moving the shoulder and
the maximal distance they could reach to was limited by their arm’s length and shoul-
der’s height with respect to the planar target. The size of the foam-made surface was 40
cm in the ML axis and 65 cm in the AP axis and placed to the right hemibody. During
movement execution, participants were asked to gaze a reference point placed straight on
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the wall in front of them. Importantly, no specific instruction about the reach endpoint
was given in this task and the participants were free to choose their preferred final hand
position as long as it lay on the planar target. As such, the task was redundant because
an infinity of reach endpoints were compatible with task achievement as well as an infinity
of final joint configurations. Here the goal of the task was to control the fingertip error
along the vertical axis and it mostly involved four degrees of freedom (DoF) of the arm:
three at the shoulder joint and one at the elbow joint (the elbow pronation/supination was
neglected because of its minor role in a pointing task). Therefore, the set of permissible
joint configurations lay on a 3-D manifold (4 joint angles minus 1 equation for the plane
constraint).

For the purpose of this study, three speed conditions and two load conditions were
investigated. We used a block design for the load. The three speeds, slow, natural and
fast and denoted by S, N and F respectively, were randomized across trials to prevent
habituation and memorization effects when subjects switched from one speed to another.
Load conditions were counterbalanced across subjects. At the beginning of each trial,
participants were verbally instructed about the imposed speed by the experimenter (and
no feedback was given about their actual speed except if their speed was clearly erroneous).
We first recorded a block of 45 trials without load attached to the participant’s forearm
(no-load condition, 15 trials per speed). In the second block of 45 trials, we attached a
load approximately to the center of mass of the forearm (load condition). The load was
a thick-walled cylindrical tube whose inner/outer radius was adjustable with respect to
the subject’s forearm size. The tube’s mass was set equal to 0.4, 0.6 or 0.8kg, depending
on the weight of the subjects whose values were smaller than 56kg, between 56-65kg or
larger than 65kg, respectively. These individual settings were introduced to adjust the arm
dynamics modification to the participant’s actual weight. Before the experimenter started
to record, participants trained for 30 trials familiarize with the pointing task (both no-
and with- load conditions). During this process, their performance was visually checked by
the experimenter who made sure that the initial arm postures were consistent across trials,
that the gaze was directed towards the requested location during movement execution, that
speed differences were clearly marked (i.e. S, N and F) and, finally, that subjects stopped
their one-shot movements accurately enough on the planar target. Note that adaptation to
a load has been previously shown to be very fast in reaching studies (a couple of trials (?)
and hence these training trials were assumed to be enough for the participants to reach a
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stable level of performance before the true experimental recordings began. In summary, for
each participant, 15 trials were tested per experimental condition (no-load/load, S/N/F
speeds), such that 90 trials were recorded and analyzed per participant. In total, 900 trials
were therefore analyzed in this study.

Data Recording

The motion kinematics was recorded at a frequency of 500Hz by using a 8-camera optical
motion capture system (Vicon Inc. Oxford, UK). A total of 13 plug-in-gait markers were
attached to specific anatomical locations on the dominant arm and other parts of the body
as follows: seventh cervical vertebrae, 10th thoracic vertebrae, clavicle, sternum, right
and left acromion, lateral and medial humeral epicondyles, ulnar and radial styloids, 2nd
and 5th metacarpal heads and 1st finger tip. Noise was filtered out from the recorded
positions of the markers by using a 2nd-order Butterworth low-pass filter at 10Hz. These
3D positions were then analyzed at kinematic and dynamic levels using a custom-written
software in Matlab (Mathworks, Natick, MA), as detailed in the sequel.

Kinematic analysis

Hand kinematics. For each trial, the 3D positions of the fingertip marker were numerically
differentiated to obtain the endpoint velocity profile. Based on this velocity profile, the
movement duration was estimated as the largest time interval where the velocity is above
5% of its maximal value. Other hand kinematic parameters relevant to the purpose of
the present study (e.g. reach endpoint, curvature, vertical accuracy/precision errors) were
then calculated, as follows:

• Index of path curvature (Cur). The index Cur was computed as Cur = DmaxâĄĎDisp
where Dmax is the maximal deviation of the finger from the straight line connecting
the initial to the final finger position during the movement and Disp is the length of
the latter Euclidean distance.

• Reach endpoint (RE). The RE was defined as the 3D coordinates of the fingertip
position at the end of the reach, namely the anteroposterior (AP, X axis), mediolateral
(ML, Y axis) and vertical (Vert, Z axis) coordinates relative to a frame centered at
the shoulder joint. In the present study, the Z-coordinate of the RE was used to
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quantify accuracy and precision of the pointing movement (as the target plane was
defined by an equation Z=constant). In contrast, the X- and Y- coordinates of the
fingertip were freely chosen by the participants, and therefore, were used to assess the
reaching strategy selected by the subjects and not pointing errors. When relevant, a
normalized RE position along the AP axis (REAP ) was used in the analyses. It was
defined as the ratio between the AP coordinate of the RE and its maximum possible
value (attained when the subject fully extended the arm, without moving the trunk).

• Vertical accuracy/precision error calculations (Za and Zp indexes). The constant
error (Za) was defined as the averaged distance from the final fingertip position to
its vertical projection on the planar target, while the variable error (Zp) was defined
as the standard deviation of reach endpoint positions in the vertical direction across
trials, within one experimental condition. The examination of Za and Zp allowed
verifying the extent to which subjects stopped their movements in the vicinity of the
target plane as required.

Joint kinematics. The joint kinematics (e.g. angular displacements, velocities and accel-
erations) was estimated based on a method previously described in (Isableu et al., 2009)
and (Vu et al., 2016). Local coordinate systems was built from the markers in agreement
with the guidelines of the international society of biomechanics (ISB). From the relative
orientation of the coordinate systems, rotation matrices and then Euler angles (namely
internal/external, elevation/depression, ulnar/radial at shoulder and extension/flexion at
elbow) were calculated. At last, the joint speeds and accelerations were evualiated via
numerical differentiations.

Dynamic analysis

In order to examine the effect of load and speed on the dynamics of the reaching behavior,
a dynamic model of the arm was introduced to allow estimating the muscle, net, interaction
and gravity torques. The dynamic model used has also been described in prior works (e.g.
Vu et al., 2016).

As it is usual, the arm dynamics was described by the following equation:

τ =M(θ)θ̈ + C(θ, θ̇) + G(θ) +R(θ, θ̇), (3.9)
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where τ denotes the muscle torque,M the inertia matrix (4x4 here), C the Coriolis/centripetal
torque, and G the gravity torque vector. The term R(θ, θ̇) reflects the residual torques
created by soft tissues, which affect muscle torque in practice. Here we assumed that R
was small compared to the other torques and we thus ignored it in the present modeling.
The vector θ = (θ1, · · · , θ4)> describes the arm’s configuration and time derivatives are
indicated with a dot (or multiple dots) throughout the paper.

For the purpose of this article, let us define the following quantities:

τmus = τ

τnet = diag
(
M(θ)

)
θ̈

τint = Tacc + Tvel, with Tacc = −
[(
M(θ)− diag

(
M(θ)

) )
θ̈
]
, Tvel = −C(θ, θ̇)

τgra = −G(θ)

(3.10)
where diag

(
M(θ)

)
is the diagonal matrix built from the diagonal terms of the mass matrix.

Then, equation 3.9 can be compactly written as

τnet = τmus + τint + τgra, (3.11)

which is similar to the description given in (Yamasaki et al., 2008) and (Sande de Souza
et al., 2009).

To simulate this dynamics in practice, we employed the Featherstone-Newton-Euler
algorithm, which is the state-of-the-art of rigid body algorithms(Featherstone and Orin,
2000). Having efficient algorithms is crucial, not for performing inverse dynamics and
recovering experimental torque profiles, but for running inverse and direct optimal control
simulations as they involve numerous evaluations of the system dynamics.

Direct and Inverse optimal control

We conducted direct and inverse optimal control investigations along the lines of (Berret
et al., 2011a) and (Vu et al., 2016). Briefly, this approach involves the definition of a cost
function that usually depends on the set of control variables (denoted here by u, chosen
to be the derivative of joint accelerations, i.e. jerk) and the set of controlled variables
describing the state of the musculoskeletal system (such as joint angles, velocities and
accelerations, denoted by x). As such, the definition of the considered optimal control
problems is as follows:
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Direct optimal control (DOC). The direct optimal control problem corresponding to the
cost C(u,x) can be formalized as follows: Find the optimal control u and its associated
trajectory x satisfying the dynamical system equation, connecting an initial resting arm
posture to a terminal one such that the endpoint lies on the planar target in time T and
yielding a minimal value of the cost C(u,x).

We examined three cost functions representing the three main classes of existing costs
(i.e. kinematic-oriented, energy-oriented and dynamic-oriented respectively, see Table 3.4).
Namely, we considered the integral of squared angle jerk (kinematic cost), the work of
absolute values of muscle torques (energetic cost) and the integral of squared torque change
(dynamic cost). This selection was based on the fact that these three costs were all found
relevant in previous arm reaching studies (Wada et al., 2001; Nishii and Murakami, 2002;
Berret et al., 2008; Uno et al., 1989; Nakano et al., 1999). We could also have included
other optimality criteria based on angle acceleration or muscle torque but the acceleration
cost yielded the same joint path as the angle jerk and the muscle torque predicted irrelevant
hand path trajectory for the current task (see (Berret et al., 2011a) for more details). For
the sake of simplicity and clarity, we thus assumed that the cost function accounting for
the experimental trajectories could be a composition of the three elementary costs defined
above, as follows:

Cα (u,x) =
3∑
i=1

αiCi(u,x) (3.12)

where Ci(u,x) (i = [1, 2, 3]) are defined precisely in Table 3.4. The vector α = (αi)1≤i≤3 is
referred to as the tuning vector whose elements verify αi ≥ 0. The process of searching a
best-fitting composite cost is called inverse optimal control and is summarized below (more
details can be found in (Berret et al., 2011a; Mombaur et al., 2009; Vu et al., 2016)). Note
that only two parameters were actually free in the above IOC roblem due to normalization
(the solution of Cα (u,x) is the same than λCα (u,x) for any positive λ).

Criterion Cost function References
Kinematic(Angle jerk) C1 = CKine =

∫ T
0

∑4
i=1

...
θ

2
i dt (Wada et al., 2001)

Energetic(Absolute work) C2 = CEner =
∫ T

0

∑4
i=1 |θ̇iτi|dt (Nishii and Murakami, 2002; Berret et al., 2008)

Dynamic(Torque change) C3 = CDyna =
∫ T

0

∑4
i=1 τ̇

2
i dt (Uno et al., 1989; Nakano et al., 1999)

Table 3.4. Definition and references for the cost functions used in the current study.
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Inverse optimal control (IOC). The inverse optimal control problem is stated here as a
Âń bi-level Âż optimization. The lower level simply solves a DOC problem for a given vector
α and serves to obtain optimal simulated arm trajectories θ?α. The higher level aims at
finding the optimal vector α? = (α?i )1≤i≤3 that yields the minimal value of an error function
comparing the experimental trajectories θmeas with the optimal simulated ones. This
function was denoted by Φ and was defined as Φ(θ?α,θ

meas) = maxt mins ||θ?α(t)−θmeas(s)||.
It captures the maximum deviation from the simulated joint displacements (which depend
on the components of α) to the experimental path in joint space. We will refer to this as
EJoint, which can be expressed in degrees.

In practice, we used the Matlab-based software called GPOPS to solve the DOC (lower
level). For the higher level and IOC, a derivative-free method called CONDOR was used.
For both DOC/IOC processes, the initial/final angle velocities and angle accelerations
were set to zeros while the initial arm posture (i.e. four initial examined angles) and the
movement duration (T ) were imported from the motion capture data.

Cost contribution (in %). We used the formula αiCi/
∑3

j=1 αjCj to evaluate the contri-
bution of cost i to the total cost (Berret et al., 2011a) (costs are evaluated for the optimal
solution). Looking at cost contributions may be useful because elements of the vector α
are not always easy to interpret: the cost associated with the largest αi might play a minor
role on trajectory formation depending on the order of magnitude of the other elements of
the composite cost. Note that from this definition, the 3 cost contributions sum to 100%.

Interaction torque analysis

Local and global interaction torque indexes

Formulas to assess the contribution (either positive/negative) of IT to NT have been estab-
lished in previous works but they were mainly designed for 2-DoF planar arms (Sainburg
and Kalakanis, 2000; Yamasaki et al., 2008). Here, the 4-DoF arm model required some
modifications and extensions of those formulas. A drawback of previous approaches was
that they were designed for individual DoFs, making it difficult to get a concise picture
of the overall interaction torque contribution for such a system with more DoFs. Here we
wanted to compare the 4 interaction torques and evaluate their involvement in the forma-
tion of reach strategies. Therefore, we defined two complementary indexes. The first one,
called âĂĲlocal IT indexâĂİ and referred to as IT lj allowed analyzing the contribution of
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IT to NT at each DoF relatively to the others wherein the subscript j refers to the four
DoFs under consideration. The second one, called âĂĲglobal IT indexâĂİ and referred
to as IT g, allowed revealing the overall contribution of IT to NT. Precisely, the formulas
were as follows:

IT g =
4∑
j=1

IT lj ; (3.13)

IT lj =
sj max t|τnet,j(t)|∑4
i=1 max t|τnet,i(t)|

; (3.14)

where, sj =

∫ T
0

sgn
(
τint,j(t)τnet,j(t)

)
|τint,j(t)|dt∫ T

0
|τnet,j(t)|dt

for j = 1..4 (3.15)

where sgn is the standard signum function.

The rationale was twofold: i) contribution of IT to the movement at each DoF was
assumed to be revealed by the amount of time during which IT contributed to the cor-
responding NT modulated by the absolute magnitude of this IT and normalized by the
magnitude of the NT and ii) the role of IT at a prominent DoF for the movement under
consideration is more important than at other DoFs. In practice, we first adopted the
equation proposed by (Sainburg and Kalakanis, 2000) and (Yamasaki et al., 2008) to cal-
culate a sub-index (denoted as sj, for DoF j), which is given in Eq 3.15. These resulting
sub-indexes were then combined with the maximal value of NT at each DoF to yield the
local IT index for DoF j (i.e. IT lj) as illustrated in Eq 3.14. By taking into account the
magnitude of the corresponding NT, the IT lj index allowed comparing the contribution of
IT to NT between different DoFs. The global interaction torque index (i.e. IT g) was then
defined as a sum of the local IT l indexes of all 4 DoFs involved into movement as illustrated
in Eq 3.13. The resultant value reflected the extent to which the IT overall acted with the
NT to assist movements (i.e. globally supporting the motion if the obtained IT g value was
positive) or against the NT to resist movements (i.e. globally opposing the motion if the
obtained IT g value was negative).

Binned interaction torque indexes

In the previous formula, the contribution of IT to NT was computed from the whole move-
ment duration (from the movement onset t0 to the movement end tf ). However, because IT
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depends on speed, these contribution indexes could also depend on the movement phase. In
order to evaluate this, we split the whole time window into four consecutive intervals (i.e.
4 bins) and quantified the IT index for each bin separately (using IT g formula restricted
to that bin). Precisely, these four bins were defined from the acceleration profile of finger
tip as follows: the 1st interval was specified by the time period starting from t0 to the
instant when the fingertip acceleration obtained its maximal value (denoted by tmax); the
2nd bin was defined from tmax to the time when the fingertip acceleration canceled itself
out (crossing the horizontal axis; denoted by tzer); the 3rd interval was estimated from tzer

to the instant when the fingertip acceleration reached its minimal value (denoted as tmin);
finally, the 4th interval was the remaining part of the movement, measured from tmin to
the end of the motion tf .

Tacc versus Tvel examination

As noticeable from Eq 3.10, IT is actually composed of two different components (Tacc and
Tvel) whose formulas are based on angular acceleration and velocity variables, respectively.
Therefore, it is interesting to assess whether the motor controller exploited separately these
two components to assist or resist the movement. To this aim, we relied upon IT g formula
but restricted IT to either its velocity or acceleration component. Precisely, in Eq 3.15,
we replaced the total IT torque τint by its elements (Tacc and Tvel) to get the respective sj
values before applying Eq 3.14 and Eq 3.13 to obtain the desired indexes.

Comparison between simulated and experimental movement strategies Carte-
sian error (ECart). In order to evaluate the simulated arm trajectories in Cartesian space,
the 3D trajectory of the fingertip was analyzed. More precisely, the Cartesian error was es-
timated as the maximal deviation from the simulated finger trajectory to its experimental
path and denoted by ECart (this is the Cartesian analog of EJoint).

Absolute IT index error (EIT ). In order to evaluate the extent to which the simulated
trajectories accounted for IT indexes, the absolute IT index error was computed. It was
denoted by EIT and defined as the mean absolute difference between simulated and exper-
imental IT indexes across all speed and load conditions (IT g). It was computed for each
subject separately.

Relative IT index error: load- and speed-related errors (EKload
and EKspeed

). To assess
the extent to which the simulated results could reproduce the load and speed variations of
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IT index, we compared empirical and simulated slopes of linear regressions of IT indexes
(IT g) against the load and speed. For the load condition, the slope Kload was computed
based on a linear regression of IT g values against the load variable whose values were
taken equal to zero and the real weight of attached load with respect to the no-load/load
conditions for every subject. For the speed condition, the slope Kspeed was calculated
separately for each load condition and resulted from linear regressions of IT g values against
the speed variable whose values (corresponding to S, N, F speeds) were imported directly
from the recorded data (simply taken as the maximal value of recorded velocity profile) for
each subject.

Statistical analyses

Two-way repeated-measures ANOVAs were used to test the effects of load and speed on
certain pertinent movement parameters. Moreover, in order to assess the predictive per-
formance of each cost function with respect to the others, one-way repeated-measures
ANOVAs were also used when relevant. Post-hoc analyses were conducted with Bonferroni
corrections when relevant and a 5% threshold was selected in all cases to reject the null
hypotheses. Shapiro-Wilk’s statisticswas used to evaluate normality for the parameters
under investigation. We used SPSS to perform all statistical analyses.

Results

Kinematic analysis

Hand kinematics

The hand kinematics is depicted in Figure 3.10 (top panel) for the participant shown in
Figure 3.9. Classical patterns seen in point-to-point reaching movements were observed.
The movement was mainly along the AP and vertical directions, with typical sigmoidal
patterns, and the velocity was bell-shaped for all speeds. Although the reach endpoint
was not imposed in this task, we thus observed quite classical hand kinematic patterns. A
quantitative analysis across subjects is given hereafter.
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Figure 3.9. Illustration of the experimental paradigm. Fixed initial arm position and
horizontal target plane were tested, therefore defining a free reach-endpoint motor task.
A 4-DoF model of arm was examined (3 DoFs at the shoulder and 1 DoF at the elbow).
Three speed and two load conditions were tested. At the two bottom panels displayed the
arm posture at the initial time with no load (left) and with a load (right) approximately
attached to the center of mass of the forearm. The average fingertip trajectories of a
representative subject were drawn in thick, thin and dotted lines for the three speeds
(slow, natural, fast, denoted by S, N, F) respectively. The two top panels display the reach
endpoint positions across trials for this subject for the three speed condition , and no-load
(left) and load (right) conditions. The 95% confidence ellipses of the reach endpoints are
drawn. Note that along the antero-posterior (AP axis), the position of reach endpoint
positions tended to get closer to the shoulder position when movement speed increased or
when the load was attached to the forearm.

Movement duration (MD). Movement durations for the two experimental blocks (i.e.
no-load and with-load), averaged across all subjects, are presented in Table 3.5. For the
former block, the values (mean±std) corresponding to the three speed conditions (i.e.
S, N, F) were respectively 0.85±0.15, 0.49±0.07, 0.32±0.06s. Those values were respec-
tively 0.84±0.14, 0.52±0.08, 0.35±0.07s for the latter block. Two-way repeated measures
ANOVAs showed no speed×load interaction for MD (p=0.55). However, significant dif-
ferences were found across speed conditions (p<0.001, F(2,18)=101.1, η2

p=0.91), but not
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between load conditions (p=0.13). This result, therefore, implied that the speed-related
requirements (i.e. distinguishable within each load condition but consistent between two
load conditions) were fulfilled by all subjects during the experiment.

No load With load
S N F S N F

MD (s) 0.85±0.15 0.49±0.07 0.32±0.06 0.84±0.14 0.52±0.08 0.35±0.07
Shinternal/external (°) 11.3±6.6 12.5±6.3 14.1±6.3 11.2±5.5 12.7±5.8 12.2±6.2
Shelevation/depression (°) 10.3±7.0 11.4±6.3 11.8±6.5 9.9±5.3 10.6±5.2 11.2±5.2

Shulnar/radial (°) 96.4±16.1 98.8±15.9 100.5±16.1 97.0±15.1 99.5±14.9 101.7±16.1
Elextension/flexion (°) 14.7±8.6 14.6±7.6 14.7±6.9 13.1±8.6 12.4±8.7 12.9±8.2

REAP (%) 76.3±7.9 74.2±9.3 73.6±9.3 74.4±8.2 72.0±8.9 71.3±9.6
Cur 0.18±0.03 0.17±0.03 0.16±0.03 0.18±0.03 0.17±0.03 0.16±0.04

Za (cm) 0.8±0.7 0.7±0.7 0.6±0.4 0.7±0.6 0.6±0.6 0.6±0.5
Zp (cm) 0.7±0.2 0.8±0.3 0.9±0.5 0.7±0.2 0.8±0.3 0.8±0.3

Table 3.5. Main kinematic movement parameters (mean±std across subjects) for the
three speed (S, N, F) and two load (no load, with load) conditions.

Finger accuracy and precision errors (Za and Zp). The finger constant and variable
errors along the vertical axis (Za for accuracy and Zp for precision) were averaged across all
subjects and displayed in Table 3.5. It is noteworthy that the pointing accuracy along the
horizontal axes (AP and ML) were not examined because no prescribed reach endpoint was
introduced regarding to the final position of the fingertip on the horizontal plane. Therefore
there was no constant error in this plane. Regarding the goal of the task (thus along the
vertical axis), Zp values slightly increased while Za values slightly decreased as movement
speed increased, regardless of the load condition. However, two-way repeated measures
ANOVAs analyses showed no significant load×speed interaction or load/speed variation
for Za error (ploadxspeed=0.13, pload=0.83, pspeed = 0.46) and for Zp error (ploadxspeed=0.37,
pload=0.44, pspeed = 0.08), thus indicating equal accuracy/precision achievement despite
different speed/load movement conditions. In order to evaluate whether the change of
speed/load conditions affected the shape of arm trajectories, the following analyses focuses
on other relevant and classical kinematic parameters.
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Figure 3.10. Hand, joint and torque profiles for the represenative subject of Fig. 3.9.
For the hand kinematics, displacements along the AP, ML and vertical axes are depicted
as well as the Cartesian hand velocity (average and standard deviation as a shaded area)
for the 3 speeds and two load conditions (black is for no-load and red for with-load). For
the joint kinematics, the angular displacements for the 4 degrees of freddom are depicted.
For the joint torques, we depicted the net torque acting at each degree of freedom.

119



Chapter 3. Thesis contribution

Reach endpoint analyses. One main variable of the task is the reach endpoint location.
We first qualitatively examined the effect of speed and load variations on the reach end-
point position. To this aim, the projection of reach endpoints onto the transversal plane
(composed of ML and AP axes) is presented in the top panels of Figure 3.9 for the rep-
resentative subject. A visual inspection suggests that the distribution of reach endpoints
(displayed as 95% confidence ellipses) varies with respect to the different speed and load
conditions. Specifically, the subject executed movement trajectories whose endpoint got
closer to the shoulder’s vertical projection along the AP axis when movement sped up. A
similar shift of the reach endpoint toward the shoulder location was observed when adding
a load to the forearm. Similar analyses were systematically conducted for all subjects.
The normalized reach endpoint index (REAP , see Materials and Methods for its defini-
tion), averaged across all subjects is displayed in Table 3.5. Results showed that the reach
endpoint index systematically decreased when movement speed increased and when the
load was attached to the arm. This index was [76.3±7.9%, 74.2±9.3%, 73.6±9.3%] for
the no-load condition and [74.4±8.2%, 72.0±8.9%, 71.3±9.6%] for the with-load condi-
tion, respectively. Two-way repeated measures ANOVAs showed no significant speed×load
interaction (p=0.83) but a significant change of REAP with respect to speed (p<0.001,
F(2,18)=12.2, η2

p=0.57) and load (p<0.05, F(1,9)=5.2, η2
p=0.36) changes. This analysis

proved that the final hand position, which was freely chosen in this task, changed as a
function of speed and load across subjects: subjects tended to point closer to their body
when speed or forearm inertia increased.

Curvature index analysis. The averaged curvature indexes are reported in Table 3.5
for the load and speed conditions. For the no-load condition, the index obtained values of
0.18±0.03, 0.17±0.03, 0.16±0.03 for the S, N and F speeds respectively. These values were
equal to 0.18±0.03, 0.17±0.03, 0.16±0.04 respectively for the load condition. Two-way
repeated measures ANOVAs revealed no significant speed×load interaction (p=0.07) and
no significant effect of load (p=0.78) but a significant change of curvature index under speed
variations (p<0.001, F(2,18)=13.3, η2

p=0.59). Therefore, hand paths tended to become
straighter with speed increments.

Joint kinematics

Like the hand kinematics, the joint kinematics was also illustrated for the representative
subject in Figure 3.10 (middle panel). It is visible that the movements were executed maily

120



3.3. Compensation/Exploitation of interaction torque and its links to cost function

around the shoulder ulnar/radial axis while smaller displacements were observed for the
other remaining axes. The magnitude of these angular displacements were analyzed for all
subjects and the results are displayed in Table 3.5. Two-way repeated measures ANOVAs
showed no significant speed×load interaction and no significant effect of load and speed for
shoulder internal/external, elevation/depression, elbow extension/flexion but a significant
change for the shoulder ulnar/radial angle under speed variations (p<0.001, F(2,18)=27.8,
η2
p=0.81). The extent of the rotations around this major axis for the task depended on
speed but not load.

In summary, the speed and load dependencies of the reach endpoint and curvature
indexes suggested that the CNS may adapt its motor control strategy to best suit the new
task constraints. In order to better uncover the possible causes underlying this adaptation,
an analysis at the dynamic level is performed hereafter.

Dynamic analysis

Qualitative analysis of torque profiles For the sake of illustration, net torque (NT)
profiles are shown in Figure 3.10 for all conditions of speed and load (bottom panels) for
the representative subject. The four torque profiles corresponding to the internal/external,
elevation/depression, ulnar/radial DoFs of the shoulder and the extension/flexion DoF of
the elbow are depicted. Overall, net torque profiles marked clear differences with respect to
load or speed variations. The magnitude of net torques typically increased when the load
was added or when speed was augmented by a verbal instruction. The patterns were similar
to that of an acceleration in most cases, except for the elbow extension/flexion in fast
speed. In terms of magnitude, the torques at the elbow joint appeared to be considerably
smaller than those produced at the shoulder joint. Within the shoulder joint itself, the
torque profiles of the three coupled DoFs were quite complex. Although kinematic analyses
showed less involvement of shoulder internal/external and elevation/depression axes in the
formation of arm trajectories compared to the shoulder ulnar/radial axis (Tab 3.5), one
could however observe quite large torques at the two former axes. Maximum magnitude
was about 10 N.m and measured at fast speed (F).
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Figure 3.11. Torque profiles (averaged across trials) of the representative subject at
N speed for the no-load (top panel) and load (bottom panel) conditions. From left to
right, the four torque profiles are for the shoulder internal/external, elevation/depression,
ulnar/radial and elbow extension/flexion DoFs, respectively. The dynamic muscle torque
(defined as muscle torque deprived of gravity torque, denoted by dMT), interaction torque
(denoted by IT) and net torque (denoted by NT) are plotted.
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For a more detailed analysis of the composition of net torques, a focus on normal speed
(N) is presented in Figure 3.11 in the two experimental load conditions (no-load/with-
load) and for the same representative subject. Other speeds are not illustrated here for
clarity but the effect of speed will be treated in the subsequent quantitative and statistical
analyses. Specifically, at the prominent axis for the task (i.e. shoulder ulnar/radial), the
dynamic muscle torque (defined as muscle torque without the gravity component, denoted
as dMT) and the interaction torque (IT) both contributed to the net torque (NT) in the
same direction, thus producing quite large NT here. On the contrary, for the other axes
(e.g. shoulder internal/external and elevation/depression), the dMT was most of the time
opposed to both IT and NT; meanwhile, IT was observed to vary in the same direction
with the NT.

A finer examination however revealed few factors that may be responsible for the
speed/load-dependent arm kinematics found above. Indeed, in terms of magnitude, while
the maximal value of NT at the shoulder ulnar/radial axis in the load condition was pretty
similar to that of the no-load condition (~4Nm), the difference in the NT for the two
load conditions was much larger at the shoulder internal/external and elevation/depression
axes. Interestingly, it is noteworthy that the motion of the internal/external and eleva-
tion/depression DoFs of the shoulder joint should have high impacts on the location of
the final reach endpoint within the planar target (and maybe curvature too). Therefore,
these differences on mean torque profiles, especially at the first two shoulder rotation axes,
could possibly account for the speed/load-dependent changes of reach endpoint/curvature
observed above.
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Figure 3.12. Global interaction torque indexes (IT g), averaged across all subjects, and
displayed for the three speed and two load conditions (with standard errors indicated by
error bars). It is visible that the IT g index increased whenever movements sped up or a
load was attached to the arm. In addition, its values were always positive, thus indicating
that the IT positively contributed to the NT to some extent. Note that horizontal bars
with stars indicate the results of post-hoc analysis for the speed condition. One, two, three
stars stand for p<0.05, p<0.01 and p<0.001 respectively.

Interestingly, note that the magnitude of IT increased clearly with the addition of
the load (as expected) and that it reached quite large compared to the other torques
(dMT, NT). Moreover, IT appeared to vary systematically in the same direction than NT
(i.e. assisting the motion), thereby explaining what dMT were relatively small in general.
Therefore, from these plots, it seems possible that the CNS may take into account the
presence of IT to facilitate and assist movement. In order to clarify this hypothesis, we
next quantitatively examined the impact of IT on NT in terms of IT g and IT l indexes
(see Materials and Methods for their definitions), which are indexes designed to assess the
degree of contribution of IT to NT.

Torque profile quantitative analyses

Global interaction torque index (IT g). The IT g indexes, averaged across all subjects for
both speed/load experimental conditions, are shown in Figure 3.12. In terms of load ef-
fect, it is visible that the IT g indexes were larger in the load condition than in the no-load
condition, regardless of motion speed. Precisely, the IT g indexes shifted from [0.51±0.21,
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0.73±0.19, 0.80±0.16] for the no-load condition to [0.64±0.22, 0.85±0.13, 0.95±0.12] for
the load condition with respect to S, N, F speeds, respectively. In terms of speed effect,
the IT g indexes of both load conditions increased whenever the movement was sped up.
Two-way repeated measures ANOVAs on IT g yielded no significant speed×load interac-
tion (p=0.56) but significant effects of load (p<0.001, F(1,9)=89.1, η2

p=0.90) and speed
(p<0.001, F(2,18)=41.2, η2

p=0.86), indicating that IT were exploited to a greater extent
whenever the load and the movement speed were increased. Moreover, it is noteworthy
that IT g values were always positive (>0.5) while they could theoretically be negative as
well. Altogether, these results implied that in general IT assisted the movement and that,
importantly, this contribution of IT to the movement was strengthened with load or speed
augmentations (which increase overall IT magnitudes).

Figure 3.13. Local interaction torque indexes (IT l), averaged across all the subjects,
displayed for the three speed and two load conditions. From left to right: IT l of elbow
extension/flexion, shoulder ulnar/radial, elevation/depression, internal/external, respec-
tively. Noticeably, compared with shoulder-related DoFs, the IT l indexes at the elbow
extension/flexion were considerably smaller. Between the three DoFs at the shoulder, the
IT l indexes of shoulder ulnar/radial were smaller than the others. Statistical analyses
showed significant effects of speed/load on the IT l index for these three DoFs, as indicated
by horizontal bars

Interaction torque contribution characteristics Spatial investigation: local inter-
action torque indexes (IT l). In order to better understand the mechanism the CNS may
rely on to adaptively use IT at different DoFs, we investigated the local IT contribution
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index (IT l) for every rotation axis involved in the limb’s movement. The averaged IT l

indexes for both load and speed conditions are given in Figure 3.13. Like IT g index,
we observed that the IT l index was also speed and load dependent. Indeed, for most
DoFs (except the elbow extension/flexion axis), two-way repeated measures ANOVAs on
IT l indexes showed no significant speed × load interaction but a significant increase of
IT l (puln/rad<0.01, Fuln/rad(1,9)=19.2, η2

p=0.68; pele/dep<0.001, Fele/dep(1,9)=20.2, η2
p=0.69;

pint/ext<0.001, Fint/ext(1,9)=41.4, η2
p=0.82) when the load was attached to the arm or

when the movement sped up (puln/rad<0.001, Fuln/rad(2,18)=11.6, η2
p=0.56; pele/dep<0.001,

Fele/dep(2,18)=30.7, η2
p=0.77; pint/ext<0.001, Fint/ext(2,18)=14.9, η2

p=0.62).Finer analysis
showed that IT was utilized to assist movement at several DoFs but to different extents. In-
deed, for the two load conditions, the IT indexes of elbow extension/flexion axis were always
smaller than those of shoulder-related ones. Between the three coupled rotation axes of the
shoulder joint, the IT indexes of shoulder internal/external and elevation/depression axes
were considerably larger than those of shoulder ulnar/radial axis irrespective of speed/load
conditions. Given that these three axes belong to a same joint, these results revealed the
complexity of IT contribution.

Figure 3.14. Bin analysis of interaction torque exploitation. From left to right: average
interaction torque indexes (across subjects) for bin1, bin2, bin3 and bin4 respectively. Note
that these four bins were defined by dividing movement duration into a series of 4 intervals
based on the acceleration profile (see Methods). Note that IT index values were smaller
for bins 1 and 4, while it was larger for middle bins (2 and 3). For each bin, statistical
significance of post-hoc tests is reported.
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Temporal investigation: interaction torque index analysis across bins. The binned global
IT indexes, averaged across all subjects, are illustrated in Figure 3.14. It is visible that
the pattern of IT indexes over the four bins for the two load conditions remains relatively
consistent across all movement speed conditions. At normal speed (N) for example, the IT
indexes of four bins clearly changed in a manner that is reminiscent of the bell shape of
the hand velocity profile. Indeed, when the subjects started or terminated motion (bin1 or
bin4), the IT index obtained the relatively small values of [0.50±0.31, 0.59±0.18] for the
no-load condition and of [0.68±0.20, 0.59±0.22] for the load condition. Around the peak
of velocity (i.e. bin2 or bin3), the IT index increased considerably and reached [0.96±0.2,
0.87±0.19] for the no-load and [1.07±0.11, 0.99±0.08] for the load conditions respectively.
This may not be a surprise given that IT magnitude depends on speed and accelerations,
which are greater during the course of a reaching movement than near the initiation or
termination phases. A main effect of speed on IT index was also present for each of the four
bins. Two-way repeated measures ANOVAs on IT index showed no significant speed×load
interaction but a significant effect of speed for all bins (pbin1<0.001, Fbin1(2,18)=13.1,
η2
p=0.59; pbin2<0.001, Fbin2(2,18)=20.1, η2

p=0.69; pbin3<0.001, Fbin3(2,18)=12.2, η2
p=0.57

and pbin4<0.001, Fbin4(2,18)=11.1, η2
p=0.55). In terms of load effect, the binned IT in-

dexes were generally consistent with the above results. Indeed, the IT indexes in the load
condition were always significantly larger than those in the no-load condition for the first
three bins (pbin1<0.001, Fbin1(1,9)=39.6, η2

p=0.81; pbin2<0.01, Fbin2(1,9)=18.2, η2
p=0.66;

pbin3<0.01, Fbin3(1,9)=13.6, η2
p=0.60) but no significant difference was found for the fourth

bin (pbin4=0.13).
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Figure 3.15. Component analysis of interaction torque exploitation. The IT indexes,
averaged across subjects, are displayed for the three speed and two load conditions for
the two components of IT. Left : velocity-related component (ITvel); Right : acceleration-
related component (ITacc). It is visible that ITacc was always greater than ITvel. Statistical
analyses showed significant effects of speed and load on the IT index for both IT compo-
nents.

Nature of interaction torque: velocity- versus acceleration-based IT index. The averaged
IT indexes across all subjects taken separately for the two interaction torque components
(Tacc and Tvel) are reported in Figure 3.15 (see the Materials and Methods section for
their definitions). Overall, the IT indexes of the two torque components were quite simi-
lar, suggesting that IT originating from velocities and accelerations are both used during
the movement. Indeed, both IT indexes increased whenever movement speed increased.
In terms of load effect, we also observed an upward shift of IT index for both Tacc and
Tvel. Two-way repeated measures ANOVAs showed no significant speed×load interac-
tion (pTacc = 0.85, pTvel = 0.48) but significant main effects of speed/load conditions for
both Tacc (pspeed<0.001, Fspeed(2,18)=14.9, η2

p=0.62; pload<0.001, Fload(1,9)=95.4, η2
p=0.91)

and Tvel (pspeed<0.001, Fspeed(2,18)=34.3, η2
p=0.79; pload<0.001, Fload (1,9)=21.9, η2

p=0.71).
Finer analysis revealed that the IT indexes of Tacc were always larger than those of Tvel
regardless of speed/load conditions but their difference remained approximately constant
with respect to the change of speed/load. Nonetheless, it is remarkable that the IT indexes
of both Tacc and Tvel were always positive, thereby implying that in all cases both Tacc and
Tvel contributed positively to NT and that, overall, IT assisted the movement.
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In summary, the above empirical results revealed a significant effect of speed and load
on both the kinematics and dynamics of the motor behaviors during the free 3D arm
pointing movements we considered here. This effect seems to originate from the unequal
influence of IT on NT when speed or/and load are modified. Next, to interpret and propose
principles to explain the above kinematic and kinetic adaption of reach strategies to load
and speed variations, inverse optimal control simulation results are presented. Inverse
optimal control is dedicated to automatically characterize the cost with respect to which
empirical trajectories are optimal. In other words, this is done to characterize the best-
fitting composite cost for the experimental motion data under investigation.

Optimal control results

Arm kinematics predicted by composite and elementary costs

We applied direct optimal control (DOC) separately to the three elementary cost functions
under consideration (see Table 3.4) for all subjects to check whether each of them could
account for the experimental observations. These simulated optimal trajectories were used
to compute errors in terms of angular displacements (EJoint) and Cartesian displacements
(ECart), which were then used as reference values for comparisons with the performance
of the composite cost obtained from the inverse optimal control (IOC) procedure, as illus-
trated in Figure 3.16. The Cartesian error ECart of the composite and kinematic costs were
equal to 5.5±3.2cm and 6.2±3.4cm respectively. These errors were clearly smaller than
those of the dynamic cost (ECart= 11.4±5.3cm) and even much smaller than those of the
energetic cost (ECart= 15.5±4.7cm). Repeated measures one-way ANOVAs showed signif-
icant differences between the composite/kinematic costs and the dynamic/energetic costs
(p<0.001, F(3,177)=79.6, η2

p=0.57) but no significant difference between the kinematic and
composite cost (p=1.0) when pooling all experimental conditions together. Similar conclu-
sions were reached for the joint space errors (EJoint). Like the Cartesian errors, the angular
errors (EJoint) of the composite and kinematic costs were quite small compared to those
of the dynamic/energetic costs. Repeated measures one-way ANOVAs for EJoint errors
also showed significant differences between the composite/kinematic costs and the dy-
namic/energetic costs (p<0.001, F(3,177)=125.8, η2

p=0.68) but the difference between the
kinematic and composite cost was not significant (p=1.0). Altogether, one can conclude
that both composite and kinematic costs performed better than the dynamic/energetic
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costs at replicating the main kinematic features of the recorded data. Therefore, pure en-
ergetic and dynamic costs can be ruled out as they are clearly unable to predict accurately
some basic features of the task (e.g. hand path), and the composite and kinematic costs
appear as the only candidates to account for the experimental trajectories at this point.
In order to distinguish between these two costs, we further examined their performances
in dynamic space. In particular, we investigated whether the IT index and its speed/load
dependencies were replicated by such models.

Figure 3.16. Reconstruction errors in joint space (EJoint, left panel) and Cartesian space
(ECart, right panel) for the best-fitting composite cost and each of the three cost elements
taken separately. Error values were averaged across speeds, loads and then across subjects
(with standard errors indicated by error bars). Noticeably, in terms of both joint and
Cartesian errors, the composite (Comp) and kinematic (Kine) costs performed better than
the dynamic (Dyna) and energetic (Ener) costs.

Arm dynamics predicted by composite and kinematic costs

For the sake of illustration, the dynamic strategies predicted by the identified composite
and kinematic costs at normal speed (N) are shown in Figure 3.17 in the no-load condition
for the representative subject. It is visible that the two costs predicted quite different
toque profiles if one considers the interplay between torques. Indeed, for the kinematic
cost, large magnitudes of dMTs were required mainly to cancel out the perturbations
caused by ITs, especially at the first two DoFs (i.e. shoulder internal/external and shoulder
elevation/depression, about 3Nm). Moreover, it happened that IT was opposed to NT,
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especially for the 2nd DoF. On the other hand, for the composite cost, smaller dMTs were
required to perform the task and, clearly, this was achieved by letting IT contribute to NT
on certain time periods. To assess the consistency of this observation, we further quantified
their performance in terms of IT index as presented below.

We first calculated the absolute reconstruction error of IT index (EIT ) for both com-
posite and kinematic costs. Their EIT value was averaged across speeds, loads and then
across subjects and displayed in the right panel of Figure 3.18. Importantly, the composite
cost predicted the IT index much better than the kinematic costs. Indeed, the (mean±std)
EIT values of the composite cost were equal to 0.18±0.16, nearly eight times smaller than
those of the kinematic cost (EIT=1.49±0.53). Given that the empirical IT indexes (IT g)
always obtained positive values larger than 0.5, the predicted IT index of the kinematic
cost was considerably discrepant from the recorded data. Indeed, the kinematic cost ex-
hibited such large EIT errors because it often produced trajectories whose IT indexes were
negative (opposite to the real ones) irrespective of speed/load conditions. Repeated mea-
sures one-way ANOVAs for EIT showed significant difference between the composite cost
and the kinematic cost (p<0.001, F(1,59)=420, η2

p=0.87).
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Figure 3.17. Torque profiles predicted by the identified composite cost (top panels) and
the kinematic cost (bottom panels) for a representative subject at N speed and in no load
condition. It is visible that the composite cost tends to let ITs contribute to NTs in order
to get smaller dMTs while it is the opposite for the kinematic cost.
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Furthermore, we tested if the composite cost better reproduced the speed/load depen-
dencies of IT indexes than the kinematic cost. To this aim, the prediction of slope obtained
from a linear regression of IT index against speed/load variables was investigated. The left
and middle panels of Figure 3.18 show the errors EKspeed

and EKload
. In terms of speed effect,

it is visible that the optimization of a composite cost predicted the speed-dependent change
of IT indexes better than the kinematic cost. Indeed, the EKspeed

error was 0.13±0.09 for
the composite cost , which was nearly twice smaller than for the kinematic cost (EKspeed

=
0.25±0.15). Repeated measures one-way ANOVAs for EKspeed

showed significant difference
between the composite and kinematic costs (p<0.01, F(1,19)=8.8, η2

p=0.32). In terms of
load effect, the difference between the composite and kinematic cost was even larger. Com-
pared with the composite cost, the kinematic cost replicated quite poorly load-dependent
variations (EKload

=0.61±0.38, i.e. nearly seven times larger than the error for the composite
cost). Again, repeated measures one-way ANOVAs for EKload

revealed that the composite
and kinematic costs differed significantly (p<0.001, F(1,9)=20.7, η2

p=0.67). Overall, our
results therefore revealed that the composite cost could capture reasonably well both the
adaptive kinematic and dynamic characteristics of the reach strategies while the kinematic
cost clearly failed to explain the reach strategies in torque space.
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Figure 3.18. Reconstruction errors for some relevant parameters (EIT ,EKspeed,EKmass)
for the composite and kinematic costs. Error values were averaged across speeds, loads
and then across subjects for EIT while averaged only across subjects for EKspeed/EKmass.
Noticeably, in terms of EIT and EKspeed/EKmass errors, the composite cost performed
much better than the kinematic cost, yielding to a conclusion that only composite cost
could predict relatively well the IT index and its speed/mass dependencies as observed in
the experimental movement.

Cost contribution evaluation

In order to assess how each elementary cost contributed to the total (composite) cost ac-
cording to speed and load changes, we estimated the influence of each of the kinematic,
dynamic and energetic components (see Materials and Methods) and the results are re-
ported in Figure 3.19. Here, we display only results of the kinematic and dynamic costs
since the three cost contributions sum to 100% by definition. Overall, the contribution
of the kinematic cost was largely dominant. Specifically, the average contribution (across
speed and load conditions and subjects) of the kinematic cost was about 67 ± 14% while
those of energetic and dynamic elements were 16 ± 11% and 17 ± 18% respectively. This
result thus confirmed the important role played by the kinematic cost during the motor
planning process, which is consistent with its role for replicating the kinematics of the arm
pointing movements.
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Figure 3.19. Cost contribution analyses. The contribution of elementary cost to the
composite cost, averaged across all the subjects, is reported for the three speed and two
load conditions. Left : cost contribution of kinematic cost;Right : cost contribution of
dynamic cost. It is visible that the contribution of kinematic cost tended to decreased
while those of dynamic cost increased with respect to the increase of movement speed and
load.

Further analyses showed that the contribution of each cost with respect to the compos-
ite cost varied whenever movements sped up or a load was attached to the forearm (even
if the combination weights were fixed). Particularly, the kinematic contribution tended
to decrease while the energetic and dynamic contributions increased. Indeed, when the
speed increased from slow to natural and then to fast, the kinematic contribution reduced
on average by [4%, 7%] while the energetic and dynamic contribution increased amount
of [0.5%, 1%] and [3.5%, 6%] respectively. Two-way repeated measures ANOVAs yielded
no significant speed×load interaction (pkine= 0.73; pener= 0.09; pdyna= 0.39) but a sig-
nificant effect of load (pkine<0.05 , Fkine(1,9)=5.9, η2

p=0.39; pener<0.05 , Fener(1,9)=6.8,
η2
p=0.43; pdyna<0.01 , Fdyna(1,9)=13.9, η2

p=0.60) and speed (pkine<0.001 , Fkine(2,18)=12.6,
η2
p=0.58; pener<0.05, Fener(2,18)=2.9, η2

p=0.25; pdyna<0.01 , Fdyna(2,18)=9.3, η2
p=0.51) on

the contribution values for all variables.

In summary, these results show that the CNS may largely rely upon a kinematic cost
to plan motion kinematics but that dynamic/energetic cost elements are crucial to account
for the kinetics of the reach strategies and their adaptation to speed and load variations.
This interpretation is confirmed by a reduction of the kinematic cost contribution which
is gradually replaced by a larger contribution of its dynamic and energetic counterparts as
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speed and/or load increase.

Discussion

In the current work, we examined the extent to which the brain adaptively exploits or
compensates the interaction torque (IT) to assist or resist human arm movements and
analyzed where this could originate from. To this aim, a free 3D arm pointing task (without
predefined reach endpoint) was investigated while varying both limb inertia and movement
speed, two factors that are known to influence IT. The experimental results showed that
IT partly contributed to net torque (NT) thereby assisting the movement and that such
contribution increased with limb inertia and movement speed. This finding might either be
due to a lack of explicit compensation for IT or be a purposive goal of the CNS in order to
exploit IT whenever it is sensible. This question was tackled by assuming that the observed
trajectories were optimal with respect to a certain optimality criterion, and results showed
that the present empirical observations were overall compatible with a composite cost
trading-off kinematic, energetic and dynamic variables and not by any of these costs taken
individually. Moreover, the increment of IT-to-NT contribution index was associated with
a decreased contribution of the kinematic cost to the composite cost. This may shed new
light on the origin of the adaptive use of IT, which might be related to the optimization of
a trade-off between motion smoothness (i.e. kinematic) and effort (i.e.energetic/dynamic)
that inherently reshapes the kinematic and kinetic aspects of a movement depending on
speed/load constraints. These results are discussed in details hereafter.

Load and speed dependent use of interaction torque

Both load and speed was varied in this study in order to clarify the role of IT in motion
planning. Indeed, IT critically depends on limb’s inertia and speed characteristics. So if
IT is an integral part of motion planning, some relevant motion parameters should vary
significantly with respect to load/speed variations during the considered free pointing task.
In the literature, several studies varied loads to examine the extent to which the brain tunes
motor planning according to inertial properties. This was done in a series of works which
have shown that motion kinematic parameters such as movement paths, endpoint variabil-
ity and normalized velocity profiles were load-independent (Atkeson and Hollerbach, 1985;
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Bock, 1990; Papaxanthis et al., 1998; Hatzitaki and McKinley, 2001; Bagesteiro and Sain-
burg, 2003). These findings thus argued for a load compensation strategy since no effect
of load on the arm trajectories was observed. However, this compensation strategy was
questioned by other studies (Pagano and Turvey, 1995; Riley and Turvey, 2001; Bernardin
et al., 2005) showing that the kinaesthetic perception of limb’s position was significantly
affected by rotational inertia variables such as the minimum inertia principal axis. There-
fore, the brain seems to take into account not only the load but also the specific distribution
of the masses involved in rotational movements and might therefore use it during motor
control. This latter idea found support in recent studies which showed significant effects
of the racket polar moment of inertia on the limb movement strategy when examining
tennis serve (Rogowski et al., 2009, 2014). However, these studies were either limited to
the analysis of the kinematic aspect of motor tasks or only concentrated on analyzing the
effect of load on muscle torque (MT) while the effect of load on IT was not thoroughly
examined, especially regarding to the contribution of IT to other torques (e.g. NT or MT).
In the present work, using a quantitative approach to estimate the contribution of IT to NT
allowed us to establish a more direct link between the limb inertia and the selected motor
command defining the muscle patterns driving the arm. Interestingly, our results revealed
that the brain purposely let IT increasingly contribute to NT to assist the movement when
the limb inertia was increased via the addition of a load on the forearm.

Similar to the load effect, our results showed a significant effect of speed regarding
the role of IT in the control of free arm pointing. Quantitative analyses showed that IT
contributed more to NT such that IT assisted the movement more when the movement
sped up. This finding was interesting given that IT magnitude is also known to increase
drastically with speed, which was already shown to lead to IT utilization strategies in
throwing tasks (Debicki et al., 2010, 2011; Hore et al., 2005, 2011; Hirashima et al., 2003,
2007). Further examination of IT at different phases of the movement (Fig. 3.14) showed
that the contribution of IT to the movement was the highest around the peak of velocity.
This finding was coherent with the work of (Asmussen et al., 2014) where the effect of
IT was proved to vary with different temporal phases of the movement during a catching
task. Additionally, the IT indexes related to accelerations (Tacc) and velocities (Tvel) both
increased with respect to the movement speed. This finding actually confirms the work of
(Hollerbach and Flash, 1982) which showed that the IT velocity terms have the same order
of magnitude than the IT acceleration terms for a large range of movement speeds.
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We next addressed the question of what principles or rules account for such an adaptive
speed/load dependent use of IT. Namely, is it due to a lack of explicit compensation for
IT or a goal purposely planned by the CNS in order to exploit IT? In the subsequent
paragraph, we discuss why the brain could both compensate for and exploit IT, and why
discriminating between compensation and exploitation of IT is sometimes a challenging
task.

Compensation or exploitation of interaction torques, or both?

In the literature, the role of IT (being compensated or exploited) has long been debated and
our study may help to disentangle some controversial interpretations. The compensation of
IT has been proposed to account for the invariant aspects of certain movement kinematic
parameters such as straight hand paths and bell-shaped speed profiles and extensively
investigated in several studies of multi-joint limb movement focusing on planar point-to-
point reaching tasks (Hollerbach and Flash, 1982; Sainburg et al., 1995, 1999; Bastian et
al., 1996; Buhrmann and Di Paolo, 2014; Gribble and Ostry, 1999). These studies argued
that the explicit compensation of IT could remove the non-linearity and noise-related er-
rors caused by IT in control signals, thereby contributing to stabilize and smooth out the
movement. This hypothesis is actually compatible with the kinematic-based motor plan-
ning principles such as the well-known minimum jerk (Atkeson and Hollerbach, 1985) as it
allows using a simple “scaling law" to accommodate various movement speeds (Hollerbach
and Flash, 1982). The common aspect of these studies is that the experimental setup was
designed for planar motion involving quite a small number of DoFs (usually 2), and usually
constrained the arm motion (e.g. via a manipulandum) and imposed a specific predefined
reference point as a target, which may have affected their control strategies (Desmurget
et al., 1997). In some studies, the setup could even lead subjects to freeze themselves
the motion at specific DoFs. This was the case in the work of (Sainburg et al., 1995)
where the same elbow excursion was always required whereas shoulder excursion could
vary, or by the work of (Gribble and Ostry, 1999) where the experimental setup allowed
accomplishing the task by only rotating around 1 DoF while keeping the motion state at
another DoF either stationary or unchanged. As such, these protocols might have induced
an IT compensation strategy in the sense that it was somewhat necessary to guarantee the
task requirements. Nonetheless, it demonstrated clearly that the brain has the ability to
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estimate and accurately compensate for IT when relevant for the task.

On the other hand, when examining more complex movement tasks (usually involving
more than 3 DoFs) and without predefined final configuration of the limb (e.g. overthrow-
ing task (Hirashima et al., 2003, 2007; Debicki et al., 2010, 2011; Timmann et al., 2008)),
some authors have rather argued for the exploitation of IT to assist the movement. Inter-
estingly, this latter idea allowed to explain many experimental observations. For instance,
(Timmann et al., 2008) showed that the inability to exploit the passive inter-segmental
interaction forces was associated with the poor ability to throw fast balls in cerebellar
and unskilled subject. In a cyclical arm rotation task, (Isableu et al., 2009) showed that
different rotation axes were chosen by different subjects, which was interpreted as different
levels of IT exploitation depending on individual sensorimotor characteristics (more visual
or proprioceptive). These findings were actually generalized into the hierarchical control
hypothesis (Hirashima et al., 2003, 2007) or the leading joint hypothesis Dounskaia, 2005
that stressed the role of shoulder as a fundamental motion generator at other joints, via
inter-segmental interaction acting at distal joints. Common to all these studies was the
optimization of performance, which was a clear task objective (e.g. throw a ball at maximal
speed will require a subject to effectively coordinate torques to gain more acceleration),
and the freedom offered by the motor task (relatively weak spatial constraints).

The above discussion emphasizes a possible link between the role of IT and the require-
ments of the task. It suggests that (i) the brain can compensate or exploit IT depending
on the characteristics of the task and (ii) compensation or exploitation may not be a mere
property of the motor controller; instead, it could be the consequences of higher processes
within the brain that are related to the subjective and objective goals of the movement.
Therefore, if the compensation versus exploitation debate seems to have a task-dependent
origin, difficulties also arose because the answer could only be about a “partial exploita-
tion” or “partial compensation” in general. Indeed, what is not full compensation can be
seen as partial exploitation and vice-versa. In most existing studies which supported the
compensation of IT (Hollerbach and Flash, 1982; Sainburg et al., 1995, 1999; Bastian et
al., 1996; Buhrmann and Di Paolo, 2014; Gribble and Ostry, 1999), subjects failed to per-
fectly counterbalance the effect of IT. It was then argued that this was due to the lack of
explicit compensation of IT, or to a partial compensation of IT (Gribble and Ostry, 1999).
In fact, there was still a small contribution of IT to NT. Similarly, in studies supporting
IT exploitation, IT was never observed to contribute completely to NT, meaning that a
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part of IT was actually canceled out by MT. In other words, the joints (often distal) were
not entirely moved by IT, likely because such perfect exploitation would have driven the
system to states incompatible with the task achievement or have yielded to undesired arm
kinematics (e.g. more jerky trajectories). Therefore, it seems tricky to conclude whether
the brain plans to partially compensate or partially exploit IT, but what is undeniable is
that the brain elaborates motor commands such that IT contributes to NT whenever it is
possible and relevant for the task. We discuss below how this relative exploitation versus
compensation strategies may arise during motor planning.

Motor planning: a trade-off between kinematic and kinetic factors

The above issue about IT compensation/exploitation is in fact strongly related to the na-
ture of hypothetical cost functions underlying motor planning. At a theoretical level, it is
clear that the optimization of a kinematic cost would produce maximally smooth move-
ments that account for the case of a full compensation of IT. In contrast, the optimization
of dynamic or energetic costs would minimize the magnitude or the work of MT which will
result in IT exploitation, to the greatest possible extent. In other words, this will improve
the efficiency of the motor controller with respect to motion effort. Therefore, the ques-
tion of whether the brain exploits or compensates IT during movement planning can be
reapproached in optimal control theory by comparing between kinematic versus dynamic
or energetic cost functions. Indeed, kinematic cost functions cannot exploit IT while cost
functions involving torque-related variables can exploit IT. In this vein, assessing whether
human movement is planned in terms of kinematic or dynamic/energetic variables has been
tested in several studies (Wolpert et al., 1995a; Flanagan and Rao, 1995; Soechting et al.,
1995; Soechting and Flanders, 1998; Vetter et al., 2002; Hermens and Gielen, 2004). Here,
optimizing only energetic or dynamic criteria lead to discrepant arm trajectories in terms
of joint and Cartesian displacements, in which case it made no sense to further investigate
what happened in torque space. In contrast, maximizing smoothness in joint space (angel
jerk, i.e. kinematic cost) was remarkably efficient to fit the angular and Cartesian displace-
ments but it failed to describe accurately the movement in torque space. The only model
that could explain both kinematic and kinetic aspects of the reach strategies, and their
speed/load dependences, was the composite optimality criterion mixing variables of differ-
ent nature. This composite cost idea was already advanced and investigated differently in
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previous studies (Gielen, 2009; Berret et al., 2011a; Vu et al., 2016).

Interestingly, the effectiveness of a composite cost mixing these criteria to replicate the
experimental data may help to understand why the reach strategies planned by the brain
were as observed, in particular for what concerns ITs. For instance, one could wonder
why the brain did not let IT drive the movement more extensively (e.g. at the 1st and
2nd DoF of the shoulder joint). Indeed, less MT would be required at these DoFs, which
may be dynamically more efficient. However, in this case the arm trajectory would have
been very different from the empirical one, possibly quite jerky, and the existence of large
IT might even be harmful for the anatomical arm structure. One could also wonder why
the brain did not try to cancel out all ITs to gain movement smoothness and stability
but also to simplify motor planning. In that case, the brain should totally compensate
or even “overcompensate” for ITs, that is, having both NT and MT opposed to IT at a
given DoF. However, the big disadvantage would be that large muscle torques are required
to do so. Therefore, although motor planning could be simplified by neglecting IT effects
and subsequently canceling them out during motor execution, the dynamic efficiency of
the movement would simply be non-optimal. Reconciling all the advantages and disad-
vantages of these two extreme strategies, the empirical and simulation results indicated
that the brain may choose an mixed motor planning principle combining both kinematic
and kinetic variables whose relative contributions to the control strategy may be differ-
entially revealed by the task demands. This composite cost may automatically yield the
adaptive IT compensation/exploitation trade-offs described in the present study, although
it required the introduction of two additional free parameters for each subject to capture
the adaptive use of IT (see below).

Limitations

At this point, it worth stressing some limitations of the present work. First, the superiority
of the composite cost over the kinematic cost requires 2 additional parameters for each
participant. Therefore, it is questionable whether the improvement in the fitting is large
enough to justify these additional tuning parameters. To clarify this point, we computed
Akaike information criterion (AIC) according to the formula AIC = n log(RSS/n) + 2k

where n is the number of samples, RSS is the residual sum of squares for the predicted
variable and k is the number of parameters plus one (?). An optimal control model predicts
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a whole movement and, therefore, many parameters can be extracted and used to compare
simulated and experimental trajectories. Here we used a kinematic measure (RE index)
and a dynamic measure (IT index) to assess the two models. AIC for the kinematic
and composite cost models were respectively 27.0 ± 3.9 and 26.6 ± 3.1 for the joint space
error. This means that there was no need for a composite cost function to account for
the experimental joint kinematics. At this level of analysis, using a composite cost was
likely overfitting. Yet, when looking at the predictions in dynamic space (via IT index),
AIC were 6.7 ± 1.0 and −15.2 ± 2.5 for the kinematic and composite costs respectively.
At this level of analysis, using a composite cost with adjustable paraeters became well
justified. These considerations emphasize a key question in motor control: what metric
or parameters should we use to compare simulated and experimental data in general? If
researchers would probably agree that the kinematics should first be predicted before the
dynamics, it is conceivable that a good model should explain motion in both spaces at
once.

Second, one should also stress that our formalism might overestimate the role of the
kinematic cost in motor planning. Indeed, we used deterministic optimal control in which
a feedforward motor plan is completely established before movement is executed. This
complete planning of the trajectory is not strictly required by the optimal feedback con-
trol (OFC) formalism that assumes a feedback control law whose characteristics moreover
depend on the signal-dependent noise present in the nervous system (Todorov and Jordan,
2002). In a similar task with redundant targets, we have shown in an earlier study that
OFC was especially useful to account for intertrial variability via the minimum interven-
tion principle (Berret et al., 2011b) (which should explain ellipses in Fig. 3.9). However,
when looking at average behaviors, a determistic modelling was overall consistent with such
models (Berret et al., 2011a). Signal-dependent noise may nevertheless reshape the mean
optimal trajectories to some extent. This could affect the kinematic model that requires
large MT in this deterministic setting. With signal-depedent noise and a variance cost
on the endpoint it is conceivable that such large MT would be penalyzed as they would
increase motor variability. But variability increases with “effort” as noise is multiplicative,
which is related to the size of motor command (e.g. torque change in our modeling). There-
fore, a kinematic and variance cost would be reminiscent of the composite cost investigated
in the present deterministic framework.
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4.1 Conclusions

4.1.1 Speed and load dependence of arm trajectories

The research described in the present dissertation aims at identifying the planning princi-
ples during the 3D non-constraint limb movements under different conditions of speed or
load. To achieve this goal, we studied a free reach endpoint task starting from a L-shaped
arm posture toward an horizontal plane at slow (S), natural (N) and fast (F) speeds and
with or without load attached to the forearm.

For the speed effect, our experimental results showed that the subjects exhibited differ-
ent motor strategies depending on the instructed speeds. These results supported certain
findings (Fitts, 1954; Papaxanthis et al., 1998; MacKenzie and Iberall, 1994; Elliott et al.,
2001; Isableu et al., 2003, 2009) while diverging from the other ones (Flash and Hogan,
1985; Ostry et al., 1987; Gordon et al., 1994; Soechting and Lacquaniti, 1981; Soechting
et al., 1995; Flanders et al., 1996). More specifically, in the latter studies, researchers
found that several prominent aspects of motor strategies such as the hand path, the final
hand variability or the final arm posture were globally independent with respect to speed
variations. However, in the former studies, researchers revealed certain evidence of speed
dependence of the arm movements. What caused these different conclusions? Interestingly,
one could observe that in most of the studies showing no effect of speed, the motor tasks
were mainly designed to be executable in either vertical or horizontal plane and usually
assigned a single spot for the target. As such, the tasks were generally considered as 2D
point-to-point movements involving motion of few DoFs (normally 2 or 3 DoFs) in the joint
space while the target position was specified by two coordinates in the Cartesian space.
Consequently, certain features of the motor strategy were possibly induced by the sensori-
motor transformations which causally limited the variability of the motor command. On
the contrary, when the task constraints were reduced, the arm trajectories was reported
to be changed according to the speed of movement. This was exemplified by the work of
Isableu et al. (2009) who studied a cyclic arm rotation involving a 3D free arm motion and
found clear evidence for a switch of rotation axes from a geometric to an inertia-related
one when the movement speed increased from S to F. In the present studies, we extended
this motor task to the case of discrete movement in a paradigm which did not prompt any
specific endpoint to reach to. As such, the experimental setup offered the external task
redundancy which provided the subjects with freedom to decide the “where to go” and
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the “how to go there” by themselves and allowed the motor controller exhibiting various
characteristics to the greatest possible extent. Consequently, our studies revealed quite
interesting speed-dependent variations of the motor command, for example in terms of
interaction torque contributions which were apparent on the hand paths. Thus it sug-
gested a tangible link between speed-dependence of arm trajectories and the constraint
at the level of the motor task: the looser the constraint of the task, the more visible the
speed-dependence of hand paths.

Similarly to the speed effect, our studies showed significant effect of load on motor
commands in a way that led to significant hand path modifications. Specifically, we ob-
served different motor strategies (e.g. final reach endpoint, coordination of torques) with
respect to different conditions of load. This load-dependent finding was in constrast with
the results of some studies (Atkeson and Hollerbach, 1985; Bock, 1990; Papaxanthis et
al., 1998; Hatzitaki and McKinley, 2001; Bagesteiro and Sainburg, 2003) while supporting
other studies (Pagano and Turvey, 1995; Riley and Turvey, 2001; Bernardin et al., 2005;
Rogowski et al., 2009, 2014). Indeed, in the former studies, researchers argued for the
load-independence of arm trajectories where the disturbance introduced by the load was
supposedly compensated. However, this argument has been questioned by the latter stud-
ies which have shown the significant influence of attached load on the limb trajectories (in
motion state) or limb kinaesthetic perception (in stationary state). In the present work,
using a quantitative approach to estimate the effect of load, especially at dynamic level, our
results revealed that the brain purposefully modified its sensorimotor controller to assist
the movement when the limb inertia increased via the addition of a load.

Therefore, these results suggest that interesting findings can be found by considering
tasks in which the constraints imposed by the experimenter are reduced. This is by the
way a situation that occurs in daily life as most motor tasks do not impose where to go,
how to get there and with what pace and so on. Letting participants to make such motor
decisions allows to get useful insights about the properties of the motor command triggered
after movement planning.

4.1.2 Inter-individual differences

In the present dissertation, our results also provided interesting evidence of inter-individual
differences. When examinning the effect of speed, for instance, analyses showed that differ-
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ent subjects exhibited various degrees of speed-dependence of their motor strategy (small
dependence for some subjects vs strong dependence for the others). Indeed, inter-individual
differences have been emerging as a hot topic of research and intensively studied by re-
searchers in recent years. In this vein, it could be listed here the work of some researchers
such as Pozzo et al. (1991); Bernardin et al. (2005); Isableu et al. (2003). However, in these
studies, inter-individual differences were mostly examined at the kinematic level (the low-
est level of motor control) and thus they lacked an explicit explanation for such differences.
In the work of Isableu et al. (2009) where the dynamic analyses (a higher-level of motor
control) were conducted, the authors found that there existed a relevant link between the
inter-individual differences and the coordination of the interaction torque, the joint muscle
torque, the gravitational torque with respect to the net torque. Yet, it could not point out
which principle may be internally used to control such coordination. In the present studies,
we try to interpret the inter-individual difference issue at the neural level of motor control.
We hypothesize that the motor planning may be tightly linked with the optimization of
composite of certain kinematic-, energetic- or dynamic-oriented variables and that some
subjects should rely more heavily on kinematics (kinematicians) while others should rely
more heavily on dynamics cost functions (dynamicians) (Isableu et al., 2009, 2010). Inter-
estingly, our results showed that the inter-individual differences between subjects were not
fully due to their anthropometric differences but rather reflected the different strategies
that the subjects may use to weight each variable differently inside the composite cost. Ac-
cording to this view, depending on the chosen composite cost, varying the anthropometric
characteristics could change the degree of speed-dependence of an individual. On the other
hand, for fixed anthropometric characteristics, the relative weights defining the composite
cost were critical to explain the degree of speed-dependence of each participant. Thus, if
two subjects have similar anthropometric parameters, it is still possible that one subject is
speed-sensitive while another is speed-insensitive if their brain weighted the combination
of cost (kinematic, energy, dynamic) differently during the motor planning processes.

Finer analyses of the contribution of each element to the composite cost (measured
in percent) allowed interpreting more clearly the origin of the inter-individual differences.
The results showed that the contributions of kinematic and energetic/dynamic costs are
unequal and subject-dependent. Indeed, the subjects who showed the speed-insensitive
kinematics tended to use more kinematic variables but less energetic/dynamic variables
during the motor planning than the others who showed the speed-sensitive kinematics
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regardless of movement conditions of speed/load. Thus it would be coherent to expect
that there must exist a relevant link between the cost contribution (its absolute values)
and the kinematical paramerter of interest (e.g. RE, e3). However, the linear regression
results over the subjects participated in our first experiment (Section 3.2) revealed that no
or quite weak significance was obtained between these indexes (showed on the left panels
of Figure 4.1). Nonetheless, when examining the cost contribution changes with respect to
speed variation, this means, the relative changes (defined as subtraction) of these indexes
were used corresponding to the shift of speed from S to N, S to F and N to F, an interesting
result was gained (showed on the right panels of Figure 4.1). Particularly, we obtained a
significant linear regression across all subjects. These results implied that at a specific pace
of movement (e.g. S), different subjects may plan different contributions for different costs
depending on their anthropomethic characteristics and/or their preferential motor control
strategies but when the movement speed changed from S to F, there existed a certain
rule governing over all subjects, that is, the brain purposefully adjusted the contribution
of elementary cost by increasing the contribution of energetic/dynamic elements while
decreasing the contribution of kinematic ones.
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Figure 4.1. Linear correlation analysis between kinematic cost contributions and each
examined movement parameter (e3 and RE) for 15 subjects participated in our 1st exper-
iment. On the left panels are absolute values. On the right panels are relative values (i.e.
changes of the values when comparing different speeds) and emphasized by the symbol
∆. It is visible that the linear correlation results are considerably improved as the rela-
tive values is examined, indicating a quite strong link between the e3/RE indexes and the
kinematic contribution: with the increased kinematic contribution, the e3 and RE indexes
increase.
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4.1.3 Compensation versus exploitation of passive source of

movement

Our results shed new light on the controversy regarding the idea of whether the brain
should exploit or compensate for interaction torque (IT). Indeed, this issue has been a
long-standing debate between researchers. Some researchers argued for the compensation
of IT in favor of smooth and stabilized movement (Hollerbach and Flash, 1982; Sainburg
et al., 1995, 1999; Bastian et al., 1996; Gribble and Ostry, 1999) while others argued for
the exploitation of IT to assist the movement (Sainburg and Kalakanis, 2000; Hirashima
et al., 2003, 2007; Dounskaia et al., 2002; Dounskaia, 2005; Debicki et al., 2010, 2011; Hore
et al., 2011; Asmussen et al., 2014; Wang and Dounskaia, 2015; Dounskaia and Shimansky,
2016). In order to reconcile these different ideas, we proposed two hypotheses, which are:
(i) the brain could have ability to both compensate and exploit IT and (ii) compensation
or exploitation of IT might be task-dependent. If such hypotheses are correct, on which
principles the brain might rely to establish such a trade-off between compensation and
exploitation of IT?

In section 3.4, we found evidence to confirm these hypotheses. Indeed, trying to distin-
guish the compensation from the exploitation of IT is not necessary because it is natural
that what is not compensation is exploitation. In fact, in the earlier studies, whatever
the brain compensated or exploited the IT, we have never observed a complete compensa-
tion of IT or a total 100% exploitation of IT. Therefore, it is relatively hard to definitely
conclude whether the brain plans to partially compensate or partially exploit IT but it
is undeniable that the brain purposefully let IT increasingly contribute to the net torque
to assist movement when possible and relevant for the task. Therefore, we come back to
the question raised above: which variables/rules drive the integration of IT into the motor
command?

Using the optimal control approach to simulate the recorded motor commands, our
results show that the compensation and exploitation issue could be tightly linked to a
trade-off between smoothness and effort of movement. This trade-off is in turn spec-
ified by a combination of elementary variables (kinematic, energetic/dynamic) possibly
encoded inside the brain during the motor planning process. This mechanism could be
explained more clearly as follows: For the tasks which supported the compensation of IT,
a kinematic variable would be dominant at the motor planning level while the presence of
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energetic/dynamic variables would be more negligible. Consequently, the optimization of
kinematic cost would produce a smooth and stabilized movement by mostly canceling out
the dynamical effects of IT. On the contrary, for other tasks (e.g. throwing ball) where the
exploitation of IT was put forward, a kinematic variable could still highly contribute to
the motor planning process to obtain a smooth/natural movement but the participation of
energetic/dynamic variables could be significantly increased. This increase of the weight
of energetic/dynamic elements would let the brain use IT as much as possible to assist the
movement and produce economic arm trajectories.

Here a more general question is emerging: should the brain treat the other passive
torques (defined as all other torques involving into movement except net torque, e.g. gravity
torque) in the same way as with IT? It is not easy to obtain a clear answer. In fact, like IT,
the possibility to compensate for the gravity torque is quite well-known among the robotic
community wherein the gravity torque is usually compensated in order to simplify the
control algorithm. However, it is more complex in the studies of human motor control as
different researchers argue for opposite ideas: some researchers support the compensation
hypothesis while others for the exploitation hypothesis of GT. Indeed, the former idea
has been dominant for a long time as it permits cancelling out the impact of GT on
arm trajectories and using a "scaling law" to produce the same movements at various
speeds (Atkeson and Hollerbach, 1985; Bock, 1990; Papaxanthis et al., 1998; Hatzitaki and
McKinley, 2001; Bagesteiro and Sainburg, 2003). However, this idea is recently questioned
by other reseachers who have found evidence that the brain exploits GT to assist movement
to a certain extent (Pagano and Turvey, 1995; Riley and Turvey, 2001; Bernardin et al.,
2005). Particularly, in Gaveau and Papaxanthis (2011), the authors uncovered that during
a vertical pointing task (the effect of GT is the most relevant in a vertical plane), the
GT was integrated into the motor planning which led to different arm kinematics for
upward and downward movements. In Gaveau et al. (2014), the author further revealed
that the CNS optimizes gravity mechanical effects on the moving limbs depending on
the direction of movement and magnitude of GT. Moreover, this gravity effect is only
accounted for by a composite of the minimum absolute work and jerk costs (Berret et
al., 2008). Here, the similarity of the results obtained for IT and GT thus suggests that
the brain possibly takes into account all the passive torques and tries to exploit them to
assist the movement whenever this exploitation is relevant for the task. Exploiting the
forces coming from the body motion itself or from the environment would then be a global
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objective of the motor system as it would allow to reduce the overall effort associated
with movements. Such considerations to generate economic yet smooth movements could
originate from evolution and development during life. Although the gain may be small
for a single movement, the savings accumulated over time could be significant and would
constitute a key characteristics of human sensorimotor control.

4.1.4 Necessity of composite cost

According to which cost function (variables) human trajectories are optimal is a long-
standing issue in motor neuroscience. In this vein, some researchers argued for the kinematic-
oriented motor planning where the non-linearities of the motion dynamics were just com-
pensated for or suppressed by the brain to preserve limb’s stability (Hollerbach and Flash,
1982; Atkeson and Hollerbach, 1985; Bastian et al., 1996; Sainburg et al., 1995, 1999; Grib-
ble and Ostry, 1999). On the contrary, other researchers argued for the energy/dynamic-
based motor planning where the mechanical limb properties were taken into account and
exploited to the greatest extent possible (Dounskaia et al., 2002; Debicki et al., 2010, 2011;
Hore et al., 2005, 2011; Berret et al., 2008; Wada et al., 2001; Uno et al., 1989; Nakano et
al., 1999). To reconcile all these controversial findings, the idea of composite cost functions
relying upon kinematic, energetic and dynamic variables emerged as a possible avenue.
However, it was only until 2011 that the evidence for the existence of composite cost was
first found. By examining a 2D vertical reaching-to-plane task from different initial posi-
tions at a relatively fast space, Berret et al. (2011a) has shown that only combination of
angle jerk and absolute work costs could account for recorded arm reaching trajectories.
Yet, it remained unclear whether these results would extend to 3D motion?

Interestingly, our results provided answers to the above question, confirming that the
3D recorded arm trajectory was an outcome of optimization of a cost possibly weight-
ing kinematic, energetic and dynamic variables. Here, questions about the flexibility of
composite cost under different conditions of movement speed subsequently emerged. For
instance, is an unique composite cost sufficient to account for the arm trajectories at differ-
ent speed? Or must the brain modify the weight of each element inside the composite cost
when the movement speed changes? If so, which principle might the brain use to tune the
compositin of the cost? In this vein, our results indicated that an unique cost was possible
to explain movements executed at different speed for each subject and that the subjective
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cost was not necessarily modified according to speed constraints.

More importantly, our results prove that the idea of composite cost might be a new
solution to reconcile many controversial conclusions in the earlier studies. Actually, motor
planning has been shown to be a complex process and seems to be task-dependent such
that researchers could obtain contradictory results. In the literature, such controversies
could be observed quite often, involved all aspects of arm movements from the lowest to
highest level analyses of motor control. For instance, if one focuses on the effect of speed on
arm movement, one can find a conclusion of speed dependence in some researches (Flash
and Hogan, 1985; Ostry et al., 1987; Gordon et al., 1994; Soechting and Lacquaniti, 1981;
Soechting et al., 1995; Flanders et al., 1996) and the opposite idea in the other (Woodworth,
1899; Fitts, 1954; Papaxanthis et al., 1998; MacKenzie and Iberall, 1994; Elliott et al., 2001;
Isableu et al., 2009; Vu et al., 2016). Again, if one focuses on torque pattern at a dynamic
level, one can find some studies arguing for the compensation of certain torques of interest
(e.g. IT, gravity torque (Hollerbach and Flash, 1982; Sainburg et al., 1995, 1999; Bastian
et al., 1996; Gribble and Ostry, 1999; Papaxanthis et al., 1998)) but also other studies
arguing for the exploitation of these torques (Sainburg and Kalakanis, 2000; Hirashima
et al., 2007; Dounskaia et al., 2002; Dounskaia, 2005; Debicki et al., 2010, 2011; Wang
and Dounskaia, 2015; Dounskaia and Shimansky, 2016). The interesting thing is that all
these studies reached their conclusion using specific tasks and methods. This means that
the brain seems to possess all these alternative planning strategies, but depending on the
circumstance of the motor task, authors would observe certain characteristics and not the
other. Thus, the resulting question is of how can we explain for such different behaviors in
a common and generic framework?

Interestingly, in terms of cost function, optimizing separately single cost could allow to
account for certain characteristics of movement but is not sufficient to reconcile the con-
troversial aspects of movement. For instance, the speed-independence, the compensation
of IT and possibly of GT could be accounted for by the kinematic-oriented planning while
the opposite behaviors (i.e. speed-dependence, exploitation of IT, GT) could be accounted
for by the energetic/dynamic-oriented planning or simply lead energetic/dynamic cost to
emerge (they could be only a consequence). Indeed, the same kind of results were obtained
in the present studies across participants. Actually, in section 3.2, the results showed that
kinematic cost could account for trajectories executed by the speed-insensitive subjects
but failed for the speed-sensitive subjects. On the other hand, the energetic/dynamic
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costs predicted better the speed-dependent modification of motor strajectories but the
simulated trajectories were too far from the real ones to be plausible optimality criteria.
Similar results were observed in section 3.3 where we examined nature of the motor com-
mand in torque space. Again, the kinematic cost could only replicate well the trajectories
of hand paths but totally failed to predict what really happens in terms of coordination
of torques. On the contrary, the dynamic cost predicted quite well the coordination of
torques but could not reconstruct the real trajectories. Thus, none of the single cost could
both extreme behaviors observed in motor control studies. However, in terms of the com-
posite cost where the weighting factors are mostly subject-dependent, we have been able
to explain both speed-dependent and speed-independent characteristics observed among
different subjects. We were also able to show that IT exploitation was linked to a trade-off
between kinematic and energetic/dynamic costs. Thus, the idea of composite cost may
be a useful means to reconcile prior conflicting studies which attemped to uncover the
principles underlying arm movement planning.

4.2 Limitations

4.2.1 Technological limitations

The fact that the markers of motion capture system attached on the subject’s body could
move with the skin might prevent us from reconstructing exactly the displacement of joints.
Indeed, in an ideal case, the extraction of the marker position should reflect explicitly the
rotation of the joint. However, in practice, it is rare to achieve the ideal case because of
the slide of skin effect where we attached the marker on. Such effect of skin’s slide might
be small at each joint motion evaluation but can accumulate to cause a large effect to the
end-effector in the Cartesian space.

Besides the impact of marker’s position, our studies were also affected by the number
of camera. Indeed, we used 8 cameras to track 12 markers attached at different position
on the trunk and the right upper limb of subjects. Statistical analyses showed that we had
to reject in total about 10 % of data because the cameras lost data of certain markers at
certain moments during the limb movement.
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4.2.2 BSIP estimation

The estimation of BSIP is quite crucial in the present studies, especially in the computation
of the rotation axes (e3) and in the analyses of inverse dynamics. Here, we used a regression
methods based on the scaling functions proposed by Dumas et al. (2007). Although this
method is easy to apply, it has a few downsides since the BSIP are not individualized very
precisely and are scaled for specific ethnic populations.

4.2.3 Simulation limitations

In the present dissertation, we use a numerical optimal control methodology to simulate the
motor commands. Although this method allows us to explain many empirical observations,
it still has some limitations.

In general, it is not easy to implement an optimal control program as it requires re-
searchers to have multidisciplinary knowledge. Actually, an optimal control program con-
sists of two main parts, which are the optimal control calculation and the kinematic/dynamic
estimation of the system under consideration. For the former part, there are different soft-
wares to approximate the continuous-time optimal control problem as sparse nonlinear
programming problem. Here, we used a Matlab-based software called GPOPS as it is rel-
atively user-friendly and more importantly it allows us inheriting certain works of other
researchers in our group. However, the slow running speed of Matlab caused quite a lot
of troubles in the current studies because Matlab was quite time-consuming in the kine-
matic/dynamic calculation of limb model of large DoFs (4 DoFs in our cases). Indeed, if
we calculated necessary torques for the simulation process directly in Matlab, the optimal
control program might take hours to find out the optimal solution corresponding to the
minimization of a specific cost function. In case of inverse optimal control where we in-
ferred the cost based on the recorded data, it even took more time, up to days/weeks, to
gain its final solution. Obviously, such program was inefficient and quite hard to debug
and parametrized. In order to solve this problem, we calculated the kinematic/dynamic
processes outside of Matlab environment based on the classical Newton-Euler method by
compiling a mex-file that allowed us to carry out all computations in C programing lan-
guage. This step considerably improved the speed of the inverse optimal control program
but it was still not fast enough. Fortunately, the problem was finally made tractable in
terms of running speed when we used the Featherstone-based method. Briefly, this method
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is based on Newton-Euler methodology but its computation is carried out in space of 6
dimensions at one instead of 3 conventional dimensions. However, it required some efforts
to understand and adapt this method to our specific model and to use it with mex files.
Overall, this shows that several difficulties may arise when modeling high-dimensional sys-
tems and that development efforts must be done to make those methods usable in practice.
It is thus important to have access to state-of-the-art methods and toolboxes to run such
simulations. But with the development of robotics, increasingly more software packages
are proposed and this time-consuming step is going to be simplified in coming years.

Secondly, due to the limit of time, in the present studies, only effect of subjective
cost was examined. Although the results showed the important part of subjective costs to
explain for the observed motor strategies, it was impossible to reject the role of other factors
associated with the objective of the motor task which is usually related to the goal of task
such as minimizing the time of movement or maximizing the speed/acceceleration of hand
at the moment of ball release in a ball -throwing task. The examination of such objective
costs is especially crucial as a lot of evidence showed task-dependent characteristics of
motor planning. Furthermore, the existing fitting error between the recorded mtion and
the simulated one could reflect the fact that only modelling subjective cost is not enough to
fully account for the real arm trajectories of subjects. This means that besides subjective
cost there must be contribution of other cost to the motor planning. Finding out these costs
will allow us to have a deeper understanding of principle that the brain might use to plan
motion. In particular, when instructed a subject to adapt his/her speed, we introduce a
new task constraint. While a natural movement pace can emerge from subjective criteria,
urging someone to move fast or slow may introduce additional objective costs that we
should or could take into account (move slow may mean to penalize large velocities in an
objective cost).

4.3 Perspectives

This project aimed at identifying and simulating 3D multi-joint non-constrained move-
ments of the upper limb. In the present studies, our results may be pretty task-dependent
as only one type of arm motion was examined, although we varied speed and load condi-
tions to better decipher the principles guiding motor planning. However, similar tools and
analyses could be extended to:
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• Other studies, especially to the existing behavioral studies, describing motor control
characteristics without an explicit explanation of what may happen at the motor
planning level. The application of optimal control to such studies will provide re-
searchers with a better insight of what internally happen within the brain.

• The examination of the role of objective costs with respect to the subjective costs.
This might be an interesting work which can reveal a potential trade-off between the
objective and subjective costs during the motor planning process.

• Assessing the role of vision (gaze) in the achievement of movement as it is undeniable
that vision plays an important role in sensorimotor control. By associating a cost
function with vision (via a final cost related to gaze direction for example), an analysis
of cost contribution may allow us to quantify the contribution of vision to movement
planning in tasks where no final hand location is imposed to the subject (such as
when putting an object on a table, the object could be placed in plenty of locations).

• Finding the biological evidence for the existence of composite cost via the electromyo-
graphy(EMG) or the electroencephalography (EEG) will strengthen the validity of
the result found in the current thesis.

Finally, porting these findings and methods to other fields and populations (e.g. in athletic
subjects, in patients with altered or with motorized prosthetic devices) could be interest-
ing to optimize performance in sport, imagine better rehabilitation protocols and develop
biological control loops that are compatible with human motion when a subject and an
artificial device of moving together toward a common goal.
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