. Enn, une dernière contribution provient de défauts dans le cristal de STO qui sont nommées fautes d'empilement ou stacking faults (SF)

. Sro, c'est à dire qu'un plan SrO (010) a été ajouté

P. J. Curie and P. Curie, Developpment by pressure of polar electricity in hemihedral crystals with inclined faces, Bull. Soc. Min. de France, vol.3, p.90, 1880.

C. Jae and J. , Piezoelectric ceramics, 1971.

R. U. Waser and S. Tiedke, Polar Oxides : Properties, Characterization and Imaging, 2006.
DOI : 10.1002/3527604650

C. B. Schlom and . Eom, Enhancementof Ferroelectricity in Strained BaTiO 3 Thin Films, Science, vol.306, p.1005, 2004.

L. Mazet, Epitaxie par jets moléculaires de l'oxyde BaTiO 3 sur Si et Si 1-x Ge x : étude de la croissance, des propriétés structurales ou physicochimiques et de la ferroélectricité -applications à des dispositifs à eet de champ, 2016.

K. H. Goetz, D. Bimberg, H. Jurgensen, J. Selders, A. Solomonov et al., Optical and crystallographic properties and impurity incorpration of Ga x In 1-x As (0.44<x<0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition, J. Appl. Phys, vol.54, p.45434552, 1983.

P. Castera, D. Tulli, A. M. Gutierrez, and P. Sanchis, Inuence of BaTiO 3 ferroelectric orientation for electro-optic modulation on silicon, Opt. Express, vol.23, p.1533215342, 2015.

X. Hu, S. Cue, P. Rojo-romeo, and R. Orobtchouk, Modeling the anisotropic electro-optic interaction in hybrid silicon-ferroelectric optical modulator, Optics Express, vol.23, issue.2, p.16991714, 2015.
DOI : 10.1364/OE.23.001699

URL : https://hal.archives-ouvertes.fr/hal-01489430

S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell et al., A strong electro-optically active lead-free ferroelectric integrated on silicon, Nature Communications, vol.3, p.1671, 2013.
DOI : 10.1038/ncomms2695

URL : http://doi.org/10.1038/ncomms2695

L. Sánchez, S. Lechago, and P. Sanchis, Ultra-compact TE and TM pass polarizers based on vandium dioxide on silicon, Opt. Letters, vol.40, p.14521455, 2015.

L. Royer, Recherches expérimentales sur l'épitaxie ou orientation mutuelle de cristaux d'epsèces diérents, Bulletin de la Société française de Minéralogie et Cristallographie, p.7159, 1928.

L. Royer, De l'épitaxie ; quelques remarques sur les problèmes qu'elle soulève, Bulletin de la Société française de Minéralogie et Cristallographie, p.10041028, 1954.

I. Markov, Recent theoritical developments in epitaxy, Mat. Chem. Phys, vol.36, issue.1, 1993.

A. Dupré, Théorie mécanique de la chaleur, 1869.

A. Trampert and K. H. Ploog, Heteroepitaxy of Large-Mist Systems : Role of Coincidence Lattice, Cryst. Res. Technol, vol.35, p.793806, 2000.

I. N. Stranski, The theory of crystalline surfaces, Zeitschrift für Physikalische Chemie, p.259, 1928.

F. C. Frank and J. H. Van-der-merwe, One-Dimensional Dislocations, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol.198, p.205216, 1949.
DOI : 10.1098/rspa.1950.0057

A. Weber and M. Volmer, Keimbildung in übersättigten gebilden, Zeitschrift für Physikalische Chemie, p.277, 1926.

J. W. Matthews, A. E. Blakeslee, and S. Mader, Use of misfit strain to remove dislocations from epitaxial thin films, Thin Solid Films, vol.33, issue.2, p.253, 1976.
DOI : 10.1016/0040-6090(76)90085-7

J. W. Matthews and A. E. Blakeslee, Defects in epitaxial multilayers, J. Cryst. Growth, vol.27, p.118125, 1974.
DOI : 10.1016/0022-0248(76)90041-5

G. Saint-girons, J. Cheng, P. Regreny, L. Largeau, G. Patriarche et al., Accomodation at the interface of highly dissimilar semiconductor/oxide epitaxial systems, Phys. Rev. B, vol.80, issue.15, p.16, 2009.

K. Johnston, M. R. Castell, A. T. Paxton, and M. W. Finnis, reconstructions:???First-principles calculations of surface energy and atomic structure compared with scanning tunneling microscopy images, Physical Review B, vol.70, issue.8, p.85415, 2004.
DOI : 10.1103/PhysRevB.70.085415

A. A. Stekolnikov, J. Furthmüller, and F. Bechstedt, Absolute surface energies of group-IV semiconductors: Dependence on orientation and reconstruction, Physical Review B, vol.65, issue.11, p.115318, 2002.
DOI : 10.1103/PhysRevB.65.115318

X. Zhang, A. A. Demkov, H. Li, X. Hu, Y. Wei et al., interface, Physical Review B, vol.68, issue.12, p.125323, 2003.
DOI : 10.1103/PhysRevB.68.125323

URL : https://hal.archives-ouvertes.fr/hal-01497439

A. A. Demkov and A. B. Posadas, Integration of Functional Oxides with Semiconductors, 2014.
DOI : 10.1007/978-1-4614-9320-4

D. Shirley, Auger Energies Including Static Relaxation, Physical Review A, vol.7, issue.5, p.1520, 1973.
DOI : 10.1103/PhysRevA.7.1520

M. P. Seah and W. A. Dench, Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids, Surface and Interface Analysis, vol.9, issue.1, 1979.
DOI : 10.1002/sia.740010103

E. Sokolowski, C. Nordling, and K. Siegbahn, Chemical Shift Eect in Inner Electric Levels of Cu due to Oxidation, Phys. Rev, vol.110, issue.3, p.439444, 1958.

S. Hagström, C. Nordling, and K. Siegbahn, Electron spectroscopic determination of the chemical valence state, p.439444, 1964.

K. S. Kim and N. Winograd, Charge transfer shake-up satellites in X-ray photoelectron spectra of cations and anions of SrTiO3, TiO2 and Sc2O3, Chemical Physics Letters, vol.31, issue.2, p.312, 1975.
DOI : 10.1016/0009-2614(75)85028-7

L. Ley, R. Pollack, F. Mcfeely, S. Kowalczyk, and D. Shirley, Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy, Physical Review B, vol.9, issue.2, p.600, 1974.
DOI : 10.1103/PhysRevB.9.600

N. Bergeard, M. G. Silly, D. Krizmancic, C. Chauvet, M. Guzzo et al., Timed-resolved photoelectron spectroscopy using synchrotron radiation time structure, Journal of Synchrotron Radiation, vol.18, issue.2, p.245250, 2011.
DOI : 10.1107/s0909049510052301

W. Panofsky and M. Philips, Classical Electricity and Magnetism

D. T. Cromer and J. B. Mann, X-ray scattering factors computed from numerical Hartree???Fock wave functions, Acta Crystallographica Section A, vol.24, issue.2, p.321, 1968.
DOI : 10.1107/S0567739468000550

T. Tambo, T. Nakamura, K. Maeda, H. Ueba, and C. Tatsuyama, Films on Si(100)-2??1 with SrO Buffer Layer, Japanese Journal of Applied Physics, vol.37, issue.Part 1, No. 8, p.4454, 1998.
DOI : 10.1143/JJAP.37.4454

R. A. Mckee, F. J. Walker, and M. F. Chisholm, Crystalline Oxides on Silicon: The First Five Monolayers, Physical Review Letters, vol.81, issue.14, p.3014, 1998.
DOI : 10.1103/PhysRevLett.81.3014

R. A. Mckee, F. J. Walker, and M. F. Chisholm, Physical Structure and Inversion Charge at a Semiconductor Interface with a Crystalline Oxide, Science, vol.293, issue.5529, p.46871, 2001.
DOI : 10.1126/science.293.5529.468

R. A. Mckee, F. J. Walker, J. R. Conner, E. D. Specht, and D. E. Zelmon, Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon, Applied Physics Letters, vol.16, issue.7, p.782784, 1991.
DOI : 10.1103/PhysRevLett.62.2476

H. Schäfer, B. Eisenmann, and W. Müller, Zintl Phases: Transitions between Metallic and Ionic Bonding, Angewandte Chemie International Edition in English, vol.6, issue.9, p.694712, 1973.
DOI : 10.1002/anie.197306941

A. A. Demkov and X. Zhang, Theory of the Sr-induced reconstruction of the Si (001) surface, Journal of Applied Physics, vol.6, issue.10, p.103710, 2008.
DOI : 10.1107/S0567740872006053

Y. Wei, X. Hu, Y. Liang, D. Jordan, B. Craigo et al., Mechanism of cleaning Si(100) surface using Sr or SrO for the growth of crystalline SrTiO[sub 3] films, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.20, issue.4, p.1402, 2002.
DOI : 10.1116/1.1491547

G. Niu, G. Saint-girons, B. Vilquin, G. Delhaye, J. Maurice et al., Molecular beam epitaxy of SrTiO3 on Si (001): Early stages of the growth and strain relaxation, Applied Physics Letters, vol.95, issue.6, p.62902, 2009.
DOI : 10.1103/PhysRevLett.71.1411

URL : https://hal.archives-ouvertes.fr/hal-00663481

E. J. Tarsa, M. De-graef, D. R. Clarke, A. C. Gossard, and J. S. Speck, Growth and characterization of (111) and (001) oriented MgO films on (001) GaAs, Journal of Applied Physics, vol.182, issue.7, p.3276, 1993.
DOI : 10.1103/PhysRevB.44.3025

K. Nashimoto, D. K. Fork, and T. H. Geballe, thin films by pulsed laser deposition, Applied Physics Letters, vol.6, issue.22, p.1199, 1992.
DOI : 10.1016/0022-0248(78)90463-3

L. D. Chang, M. Z. Tseng, E. L. Hu, and D. K. Fork, thin film on GaAs, Epitaxial MgO buer layers for YBa 2 Cu 3 O 7-x thin lm on GaAs, p.1753, 1992.
DOI : 10.1063/1.107404

L. S. Hung, L. R. Zheng, and T. N. Blanton, Epitaxial growth of MgO on (100)GaAs using ultrahigh vacuum electron???beam evaporation, Applied Physics Letters, vol.221, issue.25, p.3029, 1992.
DOI : 10.1063/1.333084

M. Tonouchi, Y. Sakaguchi, and T. Kobayashi, Epitaxial growth of NbN on an ultrathin MgO/semiconductor system, Journal of Applied Physics, vol.25, issue.3, p.961, 1987.
DOI : 10.1063/1.337323

S. W. Robey, Interfacial reaction effects in the growth of MgO on GaAs(001) by reactive molecular beam epitaxy, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.16, issue.4, p.2423, 1998.
DOI : 10.1116/1.581413

M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation, Science, vol.283, issue.5409, p.1897, 1999.
DOI : 10.1126/science.283.5409.1897

M. Hong, Z. H. Lu, J. Kwo, A. R. Kortan, J. P. Mannaerts et al., Initial growth of Ga2O3(Gd2O3) on GaAs: Key to the attainment of a low interfacial density of states, Initial growth of Ga 2 O 3 (Gd 2 O 3 ) on GaAs : Key to the attainment of a low interfacial density of states, p.312, 2000.
DOI : 10.1103/PhysRevB.60.10913

K. Nishita, A. Koma, and K. Saiki, Growth of NiO films on various GaAs faces via electron bombardment evaporation, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.19, issue.5, p.2282, 2001.
DOI : 10.1116/1.1382878

M. Chen and . Wang, Epitaxial growth of TiO 2 thin lms by pulsed laser deposition on GaAs(001) substrates, J. Vac. Sci. Technol. A, vol.19, p.391, 2001.

J. H. Yum, T. Akyol, M. Lei, D. A. Ferrer, T. W. Hudnall et al., Electrical and physical characteristics for crystalline atomic layer deposited beryllium oxide thin film on Si and GaAs substrates, Electrical and physicla characteristics for crystalline atomic layer depositied beryllium oxide thin lm on Si and GaAs substrates, p.3091, 2012.
DOI : 10.1016/j.tsf.2011.11.053

Z. P. Wu, W. Huang, K. H. Wong, and J. H. Hao, Structural and dielectric properties of epitaxial SrTiO3 films grown directly on GaAs substrates by laser molecular beam epitaxy, Journal of Applied Physics, vol.104, issue.5, p.54103, 2008.
DOI : 10.1063/1.1581383

W. Huang, Z. P. Wu, and J. H. Hao, Electrical properties of ferroelectric BaTiO3 thin film on SrTiO3 buffered GaAs by laser molecular beam epitaxy, Applied Physics Letters, vol.94, issue.3, p.32905, 2009.
DOI : 10.1063/1.2871772

W. Huang, J. Y. Dai, and J. H. Hao, Structural and resistance switching properties of ZnO/SrTiO3/GaAs heterostructure grown by laser molecular beam epitaxy, Applied Physics Letters, vol.90, issue.16, p.162905, 2010.
DOI : 10.1109/TED.2002.804713

W. B. Chan, J. H. Wu, and . Hao, Heteroepitaxial growth and multiferroic properties of Mn-doped BiFeO 3 lms on SrTiO 3 buered III-V semiconductor GaAs, J. Appl. Phys, vol.114, p.94106, 2013.

Y. Liang, J. Kulik, T. C. Eschrich, R. Droopad, Z. Yu et al., Hetero-epitaxy of perovskite oxides on GaAs(001) by molecular beam epitaxy, Applied Physics Letters, vol.85, issue.7, p.1217, 2004.
DOI : 10.1116/1.575727

Y. Liang, J. Curless, and D. Mccready, Band alignment at epitaxial SrTiO3???GaAs(001) heterojunction, Applied Physics Letters, vol.86, issue.8, p.82905, 2005.
DOI : 10.1007/978-1-4684-3674-7

R. F. Klie, E. I. Altman, and Y. Liang, Atomic structure of epitaxial SrTiO3???GaAs(001) heterojunctions, Applied Physics Letters, vol.87, issue.14, p.143106, 2005.
DOI : 10.1116/1.584940

R. Contreras-guerrero, J. P. Veazey, J. Levy, and R. Droopad, deposited on GaAs, Properties of epitaxial BaTiO 3 deposited on GaAs, p.12907, 2013.
DOI : 10.1063/1.2348776

L. Louahadj, D. L. Bourdais, L. Largeau, G. Agnus, L. Mazet et al., Saint-Girons, Ferroelectric P b(Zr, T i)O 3 epitaxial layers on GaAs, Appl. Phys. Lett. J. Cryst. Growth, vol.103, issue.378, p.238, 2013.
DOI : 10.1063/1.4831738

J. Wang, X. S. Wu, and D. Bai, on GaAs, EPL (Europhysics Letters), vol.86, issue.4, p.46008, 2009.
DOI : 10.1209/0295-5075/86/46008

URL : https://hal.archives-ouvertes.fr/hal-00790437

W. G. Schmidt, III-V compound semiconductor (001) surfaces, Applied Physics A: Materials Science & Processing, vol.75, issue.1, p.8999, 2002.
DOI : 10.1007/s003390101058

A. V. Bakulin, S. E. Kulkova, S. V. Eremeev, and O. E. Tereshchenko, Ab-intio study of new Ga-rich GaAs(001) surface (4x4) reconstruction, Surface Science, vol.615, p.97102, 2013.

N. Aas, T. Pringle, and M. Bowker, Adsorption and decomposition of methanol on TiO2, SrTiO3 and SrO, Journal of the Chemical Society, Faraday Transactions, vol.90, issue.7, p.1015, 1994.
DOI : 10.1039/ft9949001015

S. O. Saied, J. L. Sullivan, T. Choudhury, and C. G. Pearce, A comparison of ion and fast atom beam reduction in TiO 2, Vacuum, vol.38, p.917922, 1988.

C. W. Wilmsen, Oxide layers on III???V compound semiconductors, Thin Solid Films, vol.39, p.217, 1976.
DOI : 10.1016/0040-6090(76)90628-3

R. Vasquez, X-ray photoelectron spectroscopy study of Sr and Ba compounds, Journal of Electron Spectroscopy and Related Phenomena, vol.56, issue.3, p.217, 1991.
DOI : 10.1016/0368-2048(91)85005-E

Q. Qiao, R. F. Klie, S. Ogut, and J. C. Idrobo, /GaAs heterointerfaces: An 80-kV atomic-resolution electron energy-loss spectroscopy study, Physical Review B, vol.85, issue.16, p.165406, 2012.
DOI : 10.1103/PhysRevB.85.165406

Y. Liu, J. Tedenac, X. Su, C. Colinet, and W. J. , An updated thermodynamic modeling of the Ga???Ti system, Calphad, vol.41, p.140149, 2013.
DOI : 10.1016/j.calphad.2013.02.003

C. W. Wilmsen, R. W. Kee, and K. M. Geib, Initial oxidation and oxide/semiconductor interface formation on GaAs, Journal of Vacuum Science and Technology, vol.16, issue.5, p.1434, 1979.
DOI : 10.1116/1.570216

M. Knin and C. R. Helms, Study of structure and properties of the Ti/GaAs interface, J. Vac. Sci. Technol. A, vol.5, p.1511, 1987.

K. B. Kim, M. Knin, R. Sinclair, and C. R. Helms, Interfacial reactions in the Ti/GaAs system, Interfacial reactions in the Ti/GaAs system, p.1473, 1988.
DOI : 10.1116/1.575728

A. M. Kolpak and S. Ismail-beigi, on silicon, Physical Review B, vol.83, issue.16, p.165318, 2011.
DOI : 10.1103/PhysRevB.83.165318

J. Q. He, C. L. Jia, V. Vaithyanathan, D. G. Schlom, J. Schubert et al., Interfacial reaction in the growth of epitaxial SrTiO3 thin films on (001) Si substrates, Journal of Applied Physics, vol.97, issue.10, p.104921, 2005.
DOI : 10.1143/JJAP.38.L1535

G. J. Norga, C. Marchiori, C. Rossel, A. Guiller, J. P. Locquet et al., Solid phase epitaxy of SrTiO3 on (Ba,Sr)O???Si(100): The relationship between oxygen stoichiometry and interface stability, The relationship between stoichiometrie and interface stability, p.84102, 2006.
DOI : 10.1063/1.1598274

L. V. Goncharova, D. G. Starodub, E. Garfunkel, T. Gustafsson, V. Vaithyanathan et al., Interface structure and thermal stability of epitaxial SrTiO3 thin films on Si (001), Interface structure and thermal stability of epitaxial SrTiO 3 thin lms on Si, p.14912, 2006.
DOI : 10.1016/j.jcrysgro.2004.10.064

G. Saint-girons, R. Bachelet, R. Moalla, B. Meunier, L. Louahadj et al., Epitaxy of SrT iO 3 on silicon : knitting machine mechanism, Chem. Matter, vol.28, issue.15, p.53475355, 2016.

J. H. Lee, G. Luo, I. C. Tung, S. H. Chang, Z. Luo et al., Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy, Nature Materials, vol.23, issue.9, p.879, 2014.
DOI : 10.1103/PhysRevB.78.104116

T. Kobayashi, R. Hashimoto, A. Chikamatsu, H. Kumigashira, M. Oshima et al., Sr surface segregation and water cleaning for atomically controlled srtio 3 (001) substrates studied by photoemission spectroscopy, J. Electron Spec. Rel. Phen, pp.144-147, 2005.
DOI : 10.1016/j.elspec.2005.01.167

M. Murata, K. Wakino, and T. Ikeda, X-ray photoelectron spectroscopic study of perovskite titanates and related compounds: An example of the effect of polarization on chemical shifts, Journal of Electron Spectroscopy and Related Phenomena, vol.6, issue.5, p.459, 1975.
DOI : 10.1016/0368-2048(75)80032-6

C. Yang, Y. Hirose, S. Nakao, and T. Hasegawa, TiO 2 thin lm crystallisation temperature lowered by Cu-induced solid phase crystallisation, Thin Solid Films, vol.553, p.1720, 2014.
DOI : 10.1016/j.tsf.2013.12.041

F. Hanzig, J. Hanzig, E. Mehner, E. Mehner, C. Richter et al., Crystallization dynamics and interface stability of strontium titanate thin lms on silicon, J. Appl. Cryst, vol.48, p.393400, 2015.

T. Ohnishi, K. Shibuya, T. Yamamoto, and M. Lippmaa, Defects and transport in complex oxide thin films, Journal of Applied Physics, vol.103, issue.10, p.103703, 2008.
DOI : 10.1016/S0169-4332(97)00720-4

R. Moalla, Couches minces pyroélectriques épitaxiées sur Si pour la récupération d'énergie thermique, 2016.

A. A. Talin, S. M. Smith, J. Voight, K. Finder, D. Eisenbeiser et al., Epitaxial PbZr.52Ti.48O3 films on SrTiO3/(001)Si substrates deposited by sol???gel method, Applied Physics Letters, vol.1, issue.6, p.1062, 2002.
DOI : 10.1143/JJAP.36.203

W. Gong, J. Li, X. Chu, Z. Gui, and L. Li, Single-crystal Nb-doped Pb(Zr,Ti)O 3 thin lms on Nb-doped SrTiO 3 wafers with dierent orientations, Appl. Phys. Lett, vol.85, p.17, 2004.
DOI : 10.1063/1.1807965

X. J. Meng, J. G. Chang, B. Li, S. L. Guo, H. J. Ye et al., Low-temperature preparation of highly (111) oriented PZT thin films by a modified sol???gel technique, Journal of Crystal Growth, vol.208, issue.1-4, pp.541-545, 2000.
DOI : 10.1016/S0022-0248(99)00420-0

J. Perez, P. M. Vilarinho, and A. L. Kholkin, High quality PbZr 0.52 Ti 0.48 O 3 lms prepared by modied sol-gel route at low temperature, Thin Solid Films, vol.449, p.2024, 2004.

F. Calame and P. Muralt, Growth and properties of gradient free sol-gel lead zirconate titanate thin films, Applied Physics Letters, vol.36, issue.6, p.62907, 2007.
DOI : 10.1117/12.271326

S. Yin, Integration of epitaxial piezoelectric thin lms on silicons, 2013.

Q. Liu, Optimization of Epitaxial Ferroelectric P b(Zr 0

G. Yi, Z. Wu, and M. Sayer, thin films by sol gel processing: Electrical, optical, and electro???optic properties, Journal of Applied Physics, vol.43, issue.5, p.2717, 1988.
DOI : 10.1063/1.1657458

S. S. Dana, K. F. Etzold, and J. Clabes, Crystallization of sol???gel derived lead zirconate titanate thin films, Journal of Applied Physics, vol.34, issue.8, p.4398, 1991.
DOI : 10.1111/j.1151-2916.1967.tb15061.x

C. J. Kim, D. S. Yoon, Z. Jiang, and K. No, Investigation of the drying temperature dependence of the orientation in sol-gel processed pzt thin lms, Journal of Materials Science, vol.32, issue.5, p.1213, 1997.
DOI : 10.1023/A:1018536002450

D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films, 1994.

R. Eason, Pulsed Laser Depositon of Thin Films : Applications-Led Growth of Functional Materials, 2007.

M. N. Ashfold, F. Claeyssens, G. M. Fuge, and S. J. Henley, Pulsed laser ablation and deposition of thin films, Chemical Society Reviews, vol.33, issue.1, p.23, 2004.
DOI : 10.1039/b207644f

L. Louahadj, Développement de l'épitaxie par jet moléculaire d'oxydes fonctionnels sur silicium, 2014.

C. Kwok and S. D. Desu, Transmission electron microscopy study of pzt thin lms, Ceramic Transistions, 1991.

Y. Z. Chen, J. Ma, and J. Zhang, Thermal analysis of the seeded lead zirconate titanate sol???gel system, Materials Letters, vol.57, issue.22-23, p.3392, 2003.
DOI : 10.1016/S0167-577X(03)00081-8

W. H. Rhodes and W. D. Kingery, Dislocation Dependence of Cationic Diffusion in SrTiO3, Journal of the American Ceramic Society, vol.3, issue.25, p.521, 1966.
DOI : 10.1103/PhysRev.79.1002.2

M. Chentir, H. Mtioka, Y. Ehara, K. Saito, S. Yokoyama et al., Changes of Crystal Structure and Electrical Properties with Film Thickness and Zr/(Zr+Ti) Ratio for Epitaxial Pb(Zr,Ti)O 3 Films Grown on (100)cSrRuO 3, 100)SrTiO 3 Substrates by Metalorganic Chemical Vapor Deposition -Characterization and Modeling, 2011.

A. F. Bower, Applied Mechanics of Solids, 2009.

D. Dimos, M. V. Raymond, R. W. Schwartz, H. N. Shareef, and C. H. Mueller, Tunability and Calculation of the Dielectric Constant of Capacitor Structures with Interdigital Electrodes, Journal of Electroceramics, vol.1, p.145153, 1997.

A. S. Abu-abed and R. G. Lindquist, Capacitive interdigital sensor with inhomogeneous nematic liquid crystal lm, Progress In Electromagnetics Research B, vol.7, p.7587, 2008.
DOI : 10.2528/pierb08022901

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.413.6544

W. I. Wang, Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si (100), Applied Physics Letters, vol.18, issue.12, p.1149, 1984.
DOI : 10.1063/1.1708117

R. Fischer, W. T. Masselink, J. Klem, T. Henderson, T. C. Mcglinn et al., Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy, Journal of Applied Physics, vol.67, issue.1, p.374, 1985.
DOI : 10.1063/1.321777

S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel et al., Gallium arsenide and other compound semiconductors on silicon, Journal of Applied Physics, vol.56, issue.7, p.31, 1990.
DOI : 10.1063/1.325040

D. J. Chadi, Atomic and Electronic Structures of Reconstructed Si(100) Surfaces, Physical Review Letters, vol.43, issue.1, p.43, 1979.
DOI : 10.1103/PhysRevLett.43.43

B. Voigtländer, T. Weber, P. Smilauer, and D. E. Wolf, Transition from Island Growth to Step-Flow Growth for Si/Si(100) Epitaxy, Physical Review Letters, vol.78, issue.11, p.2164, 1997.
DOI : 10.1103/PhysRevLett.78.2164

D. K. Biegelsen, F. A. Ponce, A. J. Smith, and J. C. Tramontana, Initial Stages of Epitaxial Growth of GaAs on (100) Silicon, MRS Proceedings, vol.2, p.1856, 1987.
DOI : 10.1103/PhysRevLett.55.533

R. Hull, A. Fischer-colbrie, S. J. Rosner, S. M. Koch, and J. S. Harris-jr, Effect of substrate surface structure on nucleation of GaAs on Si(100), Eect of the substrate surface structure on nucleation of GaAs on Si, p.1723, 1987.
DOI : 10.1016/0022-0248(87)90392-7

K. Akahori, G. Wang, K. Okumura, T. Soga, T. Jimbo et al., Improvement of the MOCVD-grown InGaP-on-Si towards higheciency solar cell application, Solar Energy Materials & Solar Cells, vol.66, p.593598, 2001.

J. M. Olson, M. M. Al-jassim, A. Kibbler, and K. M. Jones, MOCVD growth and characterization of GaP on Si, MOCVD growth and charcterization of GaP on Si, p.515, 1986.
DOI : 10.1016/0022-0248(86)90346-5

Y. Takagi, H. Yonezu, T. Kawai, K. Hayashida, K. Samonji et al., Suppression of threading dislocation generation in GaAs-on-Si with strained short-period superlattices, Journal of Crystal Growth, vol.150, p.677680, 1995.
DOI : 10.1016/0022-0248(95)80294-M

T. Tsuji, H. Yonezu, and N. Ohshima, Selective epitaxial growth of GaAs on Si with strained short-period superlattices by molecular beam epitaxy under atomic hydrogen irradiation, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, issue.3, p.1428, 2004.
DOI : 10.1116/1.1736634

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender et al., Site selectivite integration of iii-v materials on si for nanoscale logic and photonic devices, Cryst. Growth Des, vol.12, p.46964702, 2012.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling et al., Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001), Applied Physics Letters, vol.105, issue.6, p.62101, 2014.
DOI : 10.1063/1.99624

B. Z. Olshanetsky and A. A. Shklyaev, Leed studies of vicinal surfaces of silicon, Surface Science, vol.82, issue.2, p.445452, 1979.
DOI : 10.1016/0039-6028(79)90201-2

R. D. Bringans, D. K. Kiegelsen, and L. Swartz, Atomic-step rearrangement on Si(100) by interaction with arsenic and the implication for GaAs-on-Si epitaxy, Physical Review B, vol.44, issue.7, p.3054, 1991.
DOI : 10.1103/PhysRevB.44.3054

K. Eisenbeiser, R. Emrick, R. Droopad, Z. Yu, J. Finder et al., GaAs MESFETs fabricated on Si substrates using a SrTiO<sub>3</sub> buffer layer, IEEE Electron Device Letters, vol.23, issue.6, p.300, 2002.
DOI : 10.1109/LED.2002.1004215

L. Largeau, J. Cheng, P. Regreny, G. Patriarche, A. Benamrouche et al., Crystal orientation of GaAs islands grown on SrTiO3 (001) by molecular beam epitaxy, Applied Physics Letters, vol.95, issue.1, p.11907, 2009.
DOI : 10.1103/PhysRevB.70.085415

J. Cheng, A. Chettaoui, J. Penuelas, B. Gobaut, P. Regreny et al., Partial arsenic pressure and crystal orientation during the molecular beam epitaxy of GaAs on SrTiO3(001), Journal of Applied Physics, vol.107, issue.9, p.94902, 2010.
DOI : 10.1016/S0022-0248(01)02391-0

A. Demkov, H. Seo, X. Zhang, and J. Ramdani, Using Zintl-Klemm intermetallics in oxide-semiconductor heteroepitaxy, Applied Physics Letters, vol.37, issue.7, p.71602, 2012.
DOI : 10.1016/S0022-0248(02)02200-5

E. Zintl, J. Goubeau, and W. Dullenkopf, Metals and alloys. I. Saltlike compuounds and intermetallic phases of sodium in liquid amonia, Z. Phys. Chem, vol.154, p.146, 1931.

E. Zintl and A. Harder, Metals and alloys. II. Polyplumbides, polystannides and their transition into metal phases, Z. Phys. Chem, vol.154, p.4791, 1931.

E. Zintl and W. Dullenkopf, Metals and alloys. III. Polyantimonides, polybismuthides and their transformation into alloys, Z. Phys. Chem, vol.16, p.183194, 1931.

K. Bhatnagar, J. S. Rojas-ramirez, R. Contreras-guerrero, M. Caro, and R. Droopad, Heterointegretion of iii-v on silicon using a crystalline oxide buer layer, Journal of Crystal Growth, 2015.

S. Doniach and M. Sunjic, Many-electron singularity in X-ray photoemission and X-ray line spectra from metals, Journal of Physics C: Solid State Physics, vol.3, issue.2, p.285, 1970.
DOI : 10.1088/0022-3719/3/2/010