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Titre: Classification robuste sur ’espace des matrices de covariance.
Application a la texture et aux images de télédétection polarimétriques
Radar a Ouverture Synthétique

Résumé: Au cours de ces derniéres années, les matrices de covariance ont montré
leur intérét dans de nombreuses applications en traitement du signal et de I'image.
Les travaux présentés dans cette thése se concentrent sur l'utilisation de ces ma-
trices comme descripteurs pour la classification. Dans ce contexte, des algorithmes
robustes de classification sont proposés en développant les aspects suivants.

Tout d’abord, des estimateurs robustes de la matrice de covariance sont util-
isés afin de réduire l'impact des observations aberrantes. Puis, les distributions
Riemannienne Gaussienne et de Laplace. ainsi que leur extension au cas des mod-
eles de mélange, sont considérés pour la modélisation des matrices de covariance.
Les algorithmes de type k-moyennes et d’espérance-maximisation sont étendus au
cas Riemannien pour 'estimation de paramétres de ces lois : poids, centroides et
paramétres de dispersion. De plus, un nouvel estimateur du centroide est proposé
en s’appuyant sur la théorie des M-estimateurs : 'estimateur de Huber. En outre,
des descripteurs appelés vecteurs Riemannien de Fisher sont introduits afin de mod-
éliser les images non-stationnaires. Enfin, un test d’hypothése basé sur la distance
géodésique est introduit pour réguler la probabilité de fausse alarme du classifieur.
Toutes ces contributions sont validées en classification d’images de texture, de sig-
naux du cerveau, et d’images polarimétriques radar simulées et réelles.

Mots clés: Matrice de covariance, classification robuste, texture, espace Rieman-

nien
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Title: Robust Classification Methods on the Space of Covariance
Matrices. Application to Texture and Polarimetric Synthetic Aperture
Radar Image Classification

Abstract: In the recent years, covariance matrices have demonstrated their in-
terest in a wide variety of applications in signal and image processing. The work
presented in this thesis focuses on the use of covariance matrices as signatures for
robust classification. In this context, a robust classification workflow is proposed,
resulting in the following contributions.

First, robust covariance matrix estimators are used to reduce the impact of out-
lier observations, during the estimation process. Second, the Riemannian Gaussian
and Laplace distributions as well as their mixture model are considered to represent
the observed covariance matrices. The k-means and expectation maximization algo-
rithms are then extended to the Riemannian case to estimate their parameters, that
are the mixture’s weight. the central covariance matrix and the dispersion. Next,
a new centroid estimator, called the Huber’'s centroid. is introduced based on the
theory of M-estimators. Further on, a new local descriptor named the Riemannian
Fisher vector is introduced to model non-stationary images. Moreover, a statistical
hypothesis test is introduced based on the geodesic distance to regulate the clas-
sification false alarm rate. In the end. the proposed methods are evaluated in the
context of texture image classification, brain decoding, simulated and real PolSAR
image classification.

Keywords: Covariance matrix, robust classification, texture, Riemannian space
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Résumé Etendu

Contexte scientifique

Les travaux présentés dans cette thése concernent les méthodes de classification
robuste sur l'espace des matrices de covariance. Par conséquent. 'ensemble des
travaux présentés dans ce manuscrit ont été menés autour de deux concepts centraux:
« la géomeétrie des matrices de covariance » et « les algorithmes robustes » pour
Pestimation et la classification.

Motivation et objectifs

Au cours de ces derniéres années, les matrices de covariance ont montré leur intérét
dans des nombreuses applications en traitement du signal et de I'image, telles que
la détection de cibles en imagerie radar [Greco et al. 2014, Chen ef al. 2011, Yang
et al. 2010, Barbaresco et al. 2013], la segmentation d’images médicales [de Luis-
Garcia et al. 2011], la détection de visages [Robinson 2005], la détection de véhicules
[Mader & Reese 2012|, ou encore la classification [Formont et al. 2011, Barachant
et al. 2013, Said et al. 2015a, Faraki et al. 2015]. Dans le cas de la classification
des signaux ou des images, les matrices de covariance sont utilisées afin de carac-
tériser les dépendances spatiales. temporelles, spectrales. polarimétriques, etc. qui
peuvent exister dans ce type de données. Les travaux présentés dans cette thése se
concentrent sur la modélisation de l'information texturale et polarimétrique, alors
qu'une petite partie est consacrée a la classification de signaux MEG (magnéto-
encéphalographie).

En outre, des algorithmes robustes de classification sont proposés afin de réduire
I'influence des observations aberrantes sur la classification. L’apparition de ces ob-
servations peut étre expliquée par la variabilité intrinséque des données, par des
erreurs de mesure, par des erreurs de modélisation. etc. Indépendamment de leurs
origines, elles ont un impact négatif sur la classification, ce qui justifie la nécessité
d’'utiliser des algorithmes robustes.

En partant de ces observations, les objectifs de la thése sont les suivants :

e Le développement d’outils de modélisation et de classification adaptés a la
géométrie de ’espace des matrices de covariance.

e Le développement d'outils de modélisation et de classification robustes aux
données aberrantes.

e La validation des méthodes proposées en classification des images ou des sig-
naux.

e [’étude de I'influence du filtrage sur les performances de classification.
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Contributions

Les matrices de covariance sont des descripteurs importants pour la classification
des signaux et des images. Ainsi, dans cette thése, des méthodes de modélisation
adaptées a leur espace sont proposées et intégrées dans la classification. Le schéma
de classification proposé est présenté dans la Figure 1. Il consiste en plusieurs
étapes. Tout d’abord. des descripteurs, notamment des matrices de covariance,
sont extraits et modélisés dans l'espace Riemannien. A partir de ce moment, les
algorithmes de classification peuvent étre mis en place, ou des descripteurs locaux
peuvent étre considérés pour caractériser I'image, tels que les approches sac de mots
Riemanniens (BoRW) [Faraki et al. 2014], les vecteurs Riemanniens des descripteurs
agrégeés localement (R-VLAD) [Faraki et al. 2015], ou les vecteurs Riemanniens de
Fisher (RFV).

Signature

Traming set {estimated covariance matrices)

Chapler 3 |=—==
X1
Feature extraction | ILI 1
I I
5 o 5 | | Chaptar 4 Chaptor 6 Chaptor
6 1[5 [zl 1=
g B EEE Liata modeling
. — g ES 2 ﬂé% —=| | — in the Rismannian space —~| Parameler sstimation | —#=| Local fealure extraction
X m 52 55E w ! {RGD, RLD)
3 - zE [T
£ £ £ g g I I
: g 2 EE [ | L
- B | |
’ — ~
% (L] ~ i ian Fisher veclors
[p— \
Test image "'\9‘
P Classification
X - [ w ] - | Classification ‘ —p iamseon

Figure 1: Le schéma de classification.

Dans le schéma de classification, 'aspect robuste intervient a plusieurs niveaux.
Tout d’abord. une attention spéciale est donnée a l'estimation des matrices de covari-
ance, qui doit étre un processus robuste aux données aberrantes. En conséquence,
des estimateurs robustes de ces matrices sont utilisés afin de réduire 'impact des
observations aberrantes. Dans le contexte de la classification, la robustesse d'un al-
gorithme concerne aussi la régle de décision. Afin de réguler la probabilité de fausse
alarme du classifieur, il est possible de mettre en place un test d’hypothése. En
outre, la classification des matrices de covariance dans l'espace Riemannien implicque
la partition de 'ensemble de données dans des clusters. Cela nécessite 'estimation
du centroide de chaque cluster. A ce niveau, des algorithmes robustes aux ma-
trices de covariance aberrantes sont impératifs. Enfin. pour la caractérisation des
images non-stationnaires, les descripteurs globaux ne sont pas adaptés. Ainsi, des
descripteurs locaux sont considérés, tels que les BoRW, les RFV, ou les R-VLAD.

Tous les aspects énumérés ci-dessus sont détaillés dans ce manuscrit, entrainant
des contributions pour chaque étape du schéma de classification : extraction des
descripteurs. modélisation des données. estimation des paramétres, extraction des
descripteurs locaux et classification. Les contributions principales de la thése peu-
vent étre résumeées de la facon suivante :
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1. Extraction des descripteurs :

e [’utilisation d’estimateurs robustes de la matrice de covariance. L’objectif
de ces estimateurs est de réduire I'impact des données aberrantes sur la
modeélisation de 'information.

e [’introduction d'une méthode de filtrage basée sur la diffusion anisotrope
pour la réduction du bruit de speckle. L’objectif de cette étape est
d’étudier le potentiel du filtrage sur la classification des images Polarimétrique
Radar a Synthese d’Ouverture (PolSAR).

2. Modélisation des données :

e L’introduction de la distribution Riemannienne de Laplace. ainsi que
son extension au cas des modeéles de mélange pour la modélisation des
matrices de covariance.

e [’extension des algorithmes de type k-moyennes et d’espérance-maximisation
(EM) au cas Riemannien pour 'estimation des paramétres de la loi Rie-
mannienne de Laplace.

3. Estimation des parameétres :

e L’introduction du centroide de Huber. En s’appuyant sur la théorie des
M-estimateurs, le centroide de Huber est défini comme 1'estimateur de la
valeur centrale d'un ensemble de matrices de covariance.

e Le calcul automatique du parameétre régulant le compromis entre ro-
bustesse et efficacité du centroide de Huber. Afin de fixer ce parameétre,
un algorithme basé sur le concept de MAD (median absolute deviation)
est introduit.

4. Extraction de descripteurs locaux :

e La définition des descripteurs appelés vecteurs Riemanniens de Fisher
pour les distributions Riemannienne Gaussienne et de Laplace. Afin de
modéliser les images non-stationnaires, les vecteurs de Fisher sont éten-
dus au cas Riemannien en utilisant les densités de probabilité des lois
Riemanniennes Gaussienne et de Laplace.

e L’illustration du lien entre les vecteurs Riemanniens de Fisher et les
vecteurs Riemanniens des descripteurs agrégés localement (R-VLAD).
5. Classification :
e La définition dun test d’hypothése basé sur la distance géodésique pour
la régulation de la fausse alarme du classifieur.

e La validation de 'ensemble des méthodes proposées, dans le cadre de la
classification de textures, des signaux MEG, ainsi que des images PolSAR
simulées et réelles.
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Chacun de ces sujets est abordé dans un chapitre distinct de la thése, ce qui
donne la structure suivante pour le manuscrit.

Contenu de la thése

Chapitre 2 : Les textures dans le traitement d’images

Ce chapitre présente une introduction sur les textures et leur modélisation en traite-
ment d’images.

A partir de la complexité de ce concept, des définitions de I’état de Iart sont
présentées. ainsi que certaines méthodes pour l'extraction de l'information textu-
rale. Une classification de ces méthodes est réalisée en les regroupant en deux
classes : des méthodes basées sur I'analyse statistique de l'organisation spatiale
des niveaux de gris et des méthodes stochastiques. La premiére catégorie inclue
les matrices de co-occurrence des niveaux de gris [Haralick ef al. 1973], les fonc-
tions d’autocorrélation [Tuceryan & Jain 1993], les variogrammes [Matheron 1963,
Curran 1988], les motifs binaires locaux (Local Binary Patterns - LBP) [Ojala
et al. 1996, alors que la deuxiéme catégorie regroupe des méthodes basées sur le fil-
trage fréquentiel de I'image (le filtre de Gabor [Turner 1986, Jain & Farrokhnia 1991],
la décomposition en ondelettes [Mallat 1989]) et la modélisation de ces coefficients
extraits par des modéles probabilistes (la distribution Gaussienne généralisée [Do &
Vetterli 2002], la distribution Gamma [Mathiassen ef al. 2002], distribution Gaussi-
enne généralisée multivariée [Verdoolaege & Scheunders 2011], les processus sphérique-
ment invariant SIRV [Yao 1973,Gini & Greco 2002, Pascal et al. 2006, Vasile et al. 2010],
la théorie des copules [Kwitt et al. 2009, Lasmar & Berthoumieu 2014]).

Les travaux présentés dans cette thése se concentrent sur 'utilisation de la dis-
tribution Gaussienne multivariée de moyenne nulle pour caractériser les coefficients
de la décomposition en ondelettes. Ce choix a été basé sur les propriétés intéres-
santes de la distribution, notamment la forme explicite de la distance géodésique.
Cette distribution a un paramétre unique, qui est la matrice de covariance. Pour
décrire I'espace de ces matrices. des modeéles stochastiques ont été proposés dans
la littérature, tels que la distribution de Wishart [Wishart 1928], ou les modéles
de mélange d’échelle de Wishart [Lee et al. 1993, Freitas et al. 2003, Bombrun &
Beaulieu 2008, Bombrun et al. 2011a]. Bien que ces modéles puissent étre utilisés de
maniére efficace, ils ne prennent pas en compte la géométrie intrinséque des données.
Pour cela, les distributions Riemanniennes [Said ef al. 2015b, Hajri et al. 2016] sont
considérées dans cette thése.

Chapitre 3 : Classification robuste sur ’espace des matrices de co-
variance

Ce chapitre présente l'extraction des descripteurs afin de modéliser 'information
contenue dans les données et le développement d'un schéma de classification ro-
buste. La premiére étape dans le schéma proposé est représentée par l'extraction
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de Pinformation texturale en utilisant une décomposition multi-échelles de I'image.
Pour cela, la décomposition en ondelettes (W'T') est considérée [Do & Vetterli 2002].
En classification, le principe général réside dans la modélisation des coefficients de
détails par des densités de probabilités univariées [Do & Vetterli 2002], ou multivar-
iées [Bombrun et al. 2011b,Verdoolaege & Scheunders 2012, Kwitt & Uhl 2010,Stitou
et al. 2009]. Dans cette thése, la distribution Gaussienne multivariée de moyenne
nulle (MGD) est choisie et son parameétre, qui est la matrice de covariance, donne
la signature finale de l'image. Afin de mettre en place des algorithmes robustes,
le choix de l'estimateur de la matrice de covariance est trés important. Ainsi, la
classe des M-estimateurs [Huber 1964, Tyler 1987] ainsi que lestimateur du point
fixe [Tyler 1987], ont été introduit dans le contexte de Iestimation robuste, pour
fonctionner correctement en présence d’observations aberrantes dans le jeux de don-
nées (marquées en rouge dans la Figure 1). En outre, un nouveau test d’hypothése
basé sur la distance géodésique est mis en place afin d’obtenir la régulation de la
probabilité de fausse alarme du classifieur. La robustesse de ce classificateur est
validée sur des données synthétiques ainsi que sur des données PolSAR simulées et
réelles pour la classification de parcelles forestiéres.

Les expériences réalisées sur les données PolSAR ont eu plusieurs objectifs :
I'évaluation de la statistique du test proposé, Panalyse de I'influence des paramétres
d’acquisition (angle d’incidence, résolution spatiale, nombre de canaux polarimétriques)
sur la classification. et I'introduction de méthodes capable d’exploiter les dépen-
dances qui existent dans ces images (spatiale (S), polarimétrique (Polar)).

Le tablean 1 montre les performances de classification en termes de taux de
bonne classification pour les approches proposées.

Meéthode de classification | Taux de bonne classification
GLCM HV 86.6 - 5.6
MGD HH + WT + S 59.0+ 5.4
MGD Polar 84.0+44
MGD Polar + WT 81.8+4.0
MGD Polar + WT + S 63.5 +4.9

Tableau 1: Comparaison entre les algorithmes de classification pour les images SAR réelles
en bande L. Les matrices de covariance sont estimées ici par maximum de vraisemblance.

Par ailleurs, les images de télédétection ont un niveau de bruit élevé ce qui
représente le principal frein a leur utilisation. Ce bruit est pris en compte dans la
modélisation stochastique multi-échelles utilisée, mais une réduction préalable du
bruit, tout en préservant les caractéristiques géométriques des éléments texturaux,
constitue une alternative de nature a améliorer les performances de classification des
images polarimétriques SAR. Une méthode de filtrage basée sur les algorithmes de
diffusion anisotrope et sur les équations aux dérivées partielles (EDP) est également
proposée et validée sur des images PolSAR.

Le tableau 2 présente les performances de classification en termes de taux de
bonne classification pour l'utilisation d'un seul canal polarimétrique. Les résultats
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sont comparés avec des autres algorithmes de filtrage (Gaussien, Boxcar et SRAD)

et illustrent 'amélioration apportée par la méthode proposée.

Méthode de Image Image filtrée
classification originale
Gaussien Boxcar SRAD EDP
MGDHH + WT 4+ S | 57.94+6.15 | 63.00+4.09 | 62.28 +4.24 | 63.03 £5.14 | 65.47+2.99
MGDHV + WT 4+ S | 61.09+5.32 | 61.38+3.94 | 6288 +4.64 | 60.25 £6.05 | 64.47 £ 3.37
MGD VV + WT + § | 59.66 £4.68 | 60.944+5.66 | 65.50 +4.68 | 61.58 £5.20 | 65.91 +4.26

Tableau 2: Comparaison entre les performances de classification obtenues sur les images
SAR en bande L non filtrées et filtrées.

Chapitre 4 : Distributions Riemanniennes dans I’espace des matri-
ces de covariance

Ce chapitre est focalisé sur les distributions Riemanniennes pour la caractérisa-
tion de l'espace des matrices de covariance. Le chapitre commence avec une partie
théorique sur la géométrie Riemannienne et introduit les lois Riemanniennes Gaussi-
enne (RGD) [Said et al. 2015b] et de Laplace (RLD) [Hajri et al. 2016]. Ces den-
le centroide M et le
parameétre de dispersion o. Sachant que pour la distribution Gaussienne Rieman-

sités de probabilité sont caractérisées par deux parameétres :

nienne le centroide est donné par le centre de masse. ce modéle peut étre influencé
par les valeurs aberrantes. Pour résoudre ce probléme. la distribution Riemannienne
de Laplace est introduite, ayant la médiane Riemannienne comme valeur centrale.
Afin de caractériser la diversité intra-classe naturellement présente dans les don-
nées, ces modeéles sont généralisés au cas des modéles de mélange. L’estimation des
parameétres du modéle de mélange est réalisée en utilisant des algorithmes classiques
de type k-moyennes et d’espérance-maximisation étendus au cas Riemannien. Les
deux modeéles stochastiques sont comparés pour la classification de textures.

L’objectif de la partie expérimentale est d’analyser le comportement de ces mod-
éles (RGD, RLD, ainsi que la distribution de Wishart (WD) [Lee et al. 1999, Saint-
Jean & Nielsen 2013]) sur des données qui contiennent des valeurs aberrantes. Pour
ces tests, une version modifiée de la base de texture VisTex [Vis | est considérée.
Cette nouvelle base a été créée en ajoutant des patchs aberrants pour chacune de
ses 40 classes de textures. Un exemple de texture, un de ses patchs et un patch

aberrant sont montrés dans la Figure 2.

Les performances de classification sont présentées dans la Figure 3, sachant que
I'estimation de paramétres a été réalisée en utilisant 'algorithme EM. Le nombre de
clusters par classe a été fixé, ou calculé avec le critére d'information bayésien (BIC).
Les résultats obtenus ont montré que le mélange de RLDs combiné avec le critére
BIC pour l'estimation du nombre de clusters permet d’améliorer les performances
de classification.
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(a) (b) (¢)

Figure 2: (a) Exemple de texture de la base VisTex, (b) un de ses patchs et (¢) un patch
aberrant.
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Figure 3: Performances de classification.

Chapitre 5 : Méthode robuste d’estimation du centroide dans I’espace
des matrices de covariance

Ce chapitre porte sur I'étude de la robustesse des estimateurs du centroide d'un
ensemble de matrices de covariance. A ce niveau. des estimateurs robustes du cen-
troide sont essentiels afin de prendre en compte les valeurs aberrantes découlant de
la variabilité inhérente des données ou des mesures erronées. Ces observations aber-
rantes (représentées en vert dans la Figure 1) conduisent a des matrices de covariance
estimées "atypiques" (représentées aussi en vert dans la Figure 1) qui doivent étre
prise en compte par les estimateurs robustes du centroide. Dans la littérature, dif-
férents estimateurs ont été définis dans 'espace Riemannien. tels que le centre de
masse, la médiane, ou les approches de type « trimming ». Dans ce chapitre, une
nouvelle méthode pour 'estimation du centroide est proposée en s’appuyant sur la
théorie des M-estimateurs, et plus particuliérement sur la fonction de coiit de Hu-
ber. L’estimateur de Huber proposé représente un compromis entre lefficacité du
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centre de masse et la robustesse de la médiane. Ce compromis est contrdlé par le
parameétre scalaire de la fonction de cofit de Huber. Afin de fixer ce parameétre, un
algorithme basé sur le concept de MAD (median absolute deviation) est proposé.
Différentes expérimentations sur des données réelles et simulées sont présentées afin
d’évaluer les performances d’estimation de l'estimateur de Huber pour le centroide
M. Deux applications en classification d’images texturées et en classification des
signaux MEG sont proposées, illustrant I'intérét de Pestimateur proposé.

Par exemple, les résultats obtenus pour la classification de signaux MEG sont
montrés dans le tableau 3. Pour cette expérience, la base proposée pour la compéti-
tion « Biomag 2014 Decoding Challenge: Brain Decoding Across Subjects (DecMeg
2014)» |Dec | a été utilisée. L’objectif de ce test a été la prédiction d’un stimulus
montré a un sujet, en utilisant I'activité cérébral. La base de données a été constru-
ite en ayant comme stimulus des images représentant des visages et des faux visages.
En termes de traitement du signal, ceci revient a résoudre un probléme de classifi-
cation en deux classes. Dans ce contexte. la distribution Riemannienne Gaussienne
a été considérée pour la modélisation de données. et les résultats ont été comparés
avec la méthode MDM (minimum distance to mean) qui a remporté la compétition
en 2014 [Barachant 2014, Barachant ef al. 2012]. Les centroides ont été estimés en
utilisant le centre de masse (CM) [Karcher 1977, Nielsen & Bhatia 2012, Fiori 2009],
la médiane (Med) [Fletcher et al. 2009, Yang et al. 2010], 'estimateur de Huber
(Huber), et les méthodes de type « trimming » (Trim) [Uehara et al. 2016]. Avec
I'estimateur de Huber un gain a été obtenu lorsque le seuil est fixé a T = 0.2.
La valeur calculée automatiquement pour le seuil donne une idée sur son ordre
de grandeur. En ajustant cette valeur, de meilleures performances peuvent étre
obtenues.

Tableau 3: Classification des signaux du cerveau.

Estimateur || RGD | MDM
CM 73.845 74.106
Med 74.150 73.627

Huber T'= 0.2 75.109 | T74.847
Huber T'= 0.5 73.976 74.063
Huber T = auto 74.106 74.455
CM(Trim™®ea") 73.888 | 73.976
CM(Trim®™ed) 74.237 | 73.801
Med(Trim®e*®) || 74.542 | 74.412
Med(Trim®ed) 74.586 | 74.237

En outre. le potentiel des estimateurs robustes de la matrice de covariance et du
centroide d'un ensemble de matrices de covariance est analysé pour la classification.
Chapitre 6 : Vecteurs Riemanniens de Fisher

Ce chapitre présente une alternative a la classification basée sur des descripteurs
globaux détaillée dans les chapitres antérieurs. Parfois, ces descripteurs ne sont
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pas adaptés pour prendre en compte les informations contenues dans les signaux
ou les images. C’est par exemple le cas pour des signaux non-stationnaires. Pour
résoudre ce probléme. des méthodes de classification basées sur des descripteurs
locaux sont proposées dans ce chapitre. Ainsi, des approches de type sac de mots,
vecteurs de Fisher, ou vecteurs de descripteurs agrégés localement (VLAD) sont
considérés. Récemment, les approches sac de mots et VLAD ont été généralisées
au cas de descripteurs vivant sur une variété Riemannienne [Faraki et al. 2015].
Jusqu’a présent, les vecteurs de Fisher n’ont pas été généralisés de la méme maniére
dii au manque dun modéle probabiliste adapté aux descripteurs paramétriques.
Dans ce chapitre, grace au formalisme des lois Gaussiennes [Said et al. 2015b] et
de Laplace [Hajri et al. 2016] sur des variétés Riemanniennes, la définition de ces
descripteurs est proposée et les résultats obtenus sont validés sur des bases d’images
texturées.

Par exemple, le tableau 4 montre les performances de classification obtenues sur
la base VisTex en utilisant les descripteurs BoRW. RFV et R-VLAD. Les résultats
montrent que pour cette expérience, l'utilisation de la loi de Laplace Riemannienne
(RLD) apporte une petite amélioration en termes de taux de bonne classification.
Les gains les plus importants, d’environ 7% et 4%, sont marquées en bleu. En outre,

Iapproche RFV proposée conduit a de meilleures performances que les methodes de
I'état de Part: BoRW [Faraki et al. 2014] et R-VLAD [Faraki et al. 2015].

Tableau 4: Résultats de classification obtenus sur la base VisTex en termes de taux de
bonne classification.

Meéthode || Homosced. | Poids | RGD | RLD
BoRW non oul 87.22 £1.19 | 87.70 £ 1.75
BoRW non non 87.51 £ 0.92 | 88.10 £ 1.42
BoRW |Faraki ef al. 2014] oui non 87.20 &+ 1.55 | 87.69 &= 0.93
BoRW oui oul 76.67 £ 2.35 | 69.01 £ 5.39
RFV : w non oul 89.21 £ 0.94 | 90.11 £ 0.58
RFV: o non oul 81.42 £ 1.12 | 88.51 £ 0.87
RFV: M non oul 87.22 £ 1.15 | 87.71 £ 1.06
RFV:o,w non ol 81.80 £ 0.60 | 85.36 = 0.86
RFV: M, w non ol 88.13 £ 0.67 | 88.45 £ 0.79
RFV : M,o non ol 90.41 £ 0.86 | 91.07 £ 0.53
RFV : M,o,w non ol 89.93 £ 0.53 | 89.77 £ 1.13
R-VLAD [Faraki et al. 2015] oui non 87.94 + 0.58 | 87.38 £ 0.73

Chapitre 7 : Conclusions et perspectives

Ce chapitre synthétise les principales conclusions de cette thése et présente les per-
spectives pour les travaux futurs.

L’objectif principal de cette thése a concerné le développement d’algorithmes
de classification robustes, basés sur l'utilisation de matrices de covariance comme
descripteurs de I'information texturale.
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Dans ces travaux, les observations sont modélisées par une distribution Gaussi-
enne multivariée de moyenne nulle. Cette loi de probabilité a un paramétre unique
qui est la matrice de covariance et qui représente le descripteur utilisé en classifi-
cation. L’étape de classification peut étre implémentée en utilisant directement ces
matrices, ou en les modélisant dans l'espace ou vivent ces matrices de covariance
qui est une variété Riemannienne. Dans le premier cas, un test d’hypothése basé
sur la distance géodésique et Pestimateur du point fixe a été proposé afin d’obtenir
une régle de décision, qui permet de réguler la probabilité de fausse alarme. Dans
I'espace des matrices de covariance, les modéles de mélange de loi Riemanniennes
Gaussienne ou de Laplace peuvent étre considérées. Dans ce cas, I'ensemble de
données est caractérisé par une valeur centrale et un parameétre de dispersion pour
chaque mode du modéle de mélange. Ces paramétres peuvent étre estimés par des
algorithmes de type k-moyennes et d’espérance-maximisation. Le calcul de la valeur
centrale doit étre robuste aux données aberrantes. Ainsi, un algorithme basé sur la
théorie des M-estimateurs a été proposé.

En outre, des descripteurs locaux de type vecteurs de Fisher ont été généralisés
au cas des matrices de covariance qui vivent dans une variété Riemannienne.

Les algorithmes ont été validés pour la classification de textures, de signaux
MEG, d'images PolSAR simulées et réelles. Pour la derniére application, des algo-
rithmes de filtrage ont été introduit, afin de réduire le bruit de speckle inhérent aux
images radar, tout en préservant les structures présentes dans ces images.

Les travaux présentés dans cette thése ouvrent la voie a plusieurs perspectives
de travaux :

e La généralisation des méthodes proposées aux modeéles statistiques qui ne sont
pas Gaussiens. En effet, nous nous sommes intéressés ici uniquement a l'espace
des matrices de covariance. Comme exposé dans le chapitre 2, d’autres modéles
peuvent étre considérés pour décrire les observations comme les modeéles SIRV,
les MGGD. les copules, ... Une perspective serait donc d’étendre nos travaux
a ces modeéles:

e Dans cette these, la plupart des outils proposés (définition de lois sur des var-
iétés) n'est valable que pour des matrices de covariance réelles. Une piste a
explorer serait d’étendre ces travaux au cas des matrices de covariance com-
plexes:

e Le développement de lois sur des variétés Riemanniennes adaptés a l'espace
des matrices de covariance structurées (par exemple, matrices Toeplitz, bloc
Toeplitz, .. .);

e Dans les approches BoRW, R-VLAD et RFV, la répartition spatiale des patchs
n'a pas été prise en compte. Il pourrait étre intéressant d’exploiter cette
information pour améliorer les performances de classification. Pour cela, nous
pourrons proposer une approche similaire aux matrices de co-occurrences des
niveaux de gris utilisés classiquement en analyse de texture: les matrices de
co-occurrences des covariances.
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2 Chapter 1. Introduction

1.1 Scientific Context

The main topic of this thesis is the use of covariance matrices as signal and im-
age signatures for robust classification. Therefore, the entire work presented here
is built around two central concepts, that are "covariance matrices" and "robust
classification algorithms". The interest on these subjects is explained next.

1.1.1 Motivation and Objectives

In the recent years, covariance matrices have demonstrated their importance in a
wide variety of applications in signal and image processing, being related to ar-
ray processing [Ollila & Koivunen 2003], radar detection [Greco et al. 2014, Chen
et al. 2011, Yang et al. 2010, Barbaresco et al. 2013], medical image segmenta-
tion [de Luis-Garcia et al. 2011], face detection [Robinson 2005], vehicle detec-
tion [Mader & Reese 2012], or classification [Formont ef al. 2011, Barachant ef al. 2013,
Said et al. 2015a, Faraki et al. 2015a]. In the context of signal and image classifica-
tion, covariance matrices can be used to model different kinds of dependence, like
spatial, temporal, spectral, polarimetric dependence. etc. The work presented in this
thesis focuses almost entirely on texture and polarimetric information modeling. A
small part is dedicated to magnetoencephalography (MEG) data.

In addition, robust algorithms are desired in order to reduce the influence of
outliers on the classification results. The presence of outliers may be explained by
the inherent variability of data, by faulty measurements, by errors in the modeling
process, etc. Independent of their source, they have a negative impact on the final
results, motivating the need of robust algorithms.

Considering these aspects, this thesis has several objectives:

e To develop modeling and classification tools adapted to the particular geom-
etry of the space of covariance matrices.

e To develop modeling and classification tools robust to outliers.

e To evaluate the performance of the proposed methods on signal and image
classification.

e To study the impact of image filtering on classification results.

1.1.2 Contributions

Since covariance matrices are important features for signal and image classification,
appropriate methods able to deal with the properties of their space are introduced
and integrated into a classification workflow. The proposed workflow is presented
in Figure 1.1 and it contains the following steps. First, features or more precisely
covariance matrices are extracted and then, they are modeled on the Riemannian
manifold. Starting from this point, classification algorithms can be directly ap-
plied, or local feature based methods can be considered to encode the image, like
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bag of Riemannian words (BoRW) [Faraki et al. 2014], Riemannian Fisher vectors
(RFV), or Riemannian vectors of locally aggregated descriptors (R-VLAD) [Faraki
et al. 2015al.
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Figure 1.1: Classification workflow.

In this workflow, the idea of robustness appears at several levels. First, a special
care is required for the covariance matrix estimation process. More precisely, the
covariance matrix estimation has to be able to deal with the outlier values present in
the observations’ structure. Second. in the classification context, the robustness of
an algorithm concerns also the decision-making strategies during the classification
step. For that, a statistical hypothesis test can be considered to regulate the false
alarm rate. In addition. when modeled in the Riemannian space, the covariance
matrix classification implies the data’s partition into clusters, and therefore the
computation of some central values. At this stage, the centroid estimation has to be
robust to the possible aberrant covariance matrices. In the end, for non-stationary
images (such as local deformation), global descriptors are not adapted. Therefore,
local based descriptors should be considered. such as BoRW, R-VLAD and RFV.

All the previously mentioned aspects are addressed in this thesis, resulting in the
contributions listed and described below for each stage of the proposed workflow:
feature extraction, data modeling, parameter estimation, local feature extraction
and classification. The main contributions of this PhD thesis can be summarized as
follows:

Feature extraction:

e Use of robust covariance matrix estimators for information modeling. The
purpose of these estimators is to reduce the impact of the outlier observations,
during the information modeling process.

e [ntroduction of a directional diffusion based denoising method, for speckle
reduction. The objective of this step is to study the potential of filtering,
prior to the classification of Polarimetric Synthetic Aperture Radar (PolSAR)
images.
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Data modeling:

e Introduction of the Riemannian Laplace distribution along with the mixture
model for covariance matrix modeling.

e Extension of the k-means and expectation maximization algorithms for pa-
rameter estimation.

Parameter estimation:

e Introduction of the Huber’s centroid. Based on the theory of M-estimators,
the Huber’s centroid is defined to estimate the central element from a set of
N covariance matrices.

e Automatic computation of the Huber’s centroid parameter. The Huber’s cen-
troid has a unique parameter, that is the threshold value discriminating be-
tween normal and aberrant data. Based on the concept of median absolute
deviation (MAD) extended to the case of covariance matrices, a method to
automatically tune the threshold’s value is introduced.

Local feature extraction:

e Definition of the Riemannian Fisher vectors for the Riemannian Gaussian and
Laplace mixture models. To address the problem of non-stationary image
classification, the Fisher vectors are extended to the Riemannian case, based
on the Riemannian Gaussian and Laplace probability density functions.

e [llustration of the relation between the Riemannian Fisher vectors and the
Riemannian vectors of locally aggregated descriptors.

Classification:
e Definition of a statistical hypothesis test based on the geodesic distance to

regulate the false alarm rate.

e Evaluation of the proposed methods in the context of texture image classifi-
cation, brain decoding, simulated and real PolSAR image classification.

Further on, each of these topics is addressed in a distinct chapter, giving the
following structure for the present work.

1.2 Thesis Outline

The remainder of this thesis is structured as follows.

Chapter 2 represents an introduction on textures and their modeling in image
processing. Starting from the complexity of this concept, state-of-the-art definitions
are presented, along with some methods for transforming the textural information
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into descriptors. or features, used in computer vision. A classification of the feature
extraction methods is made, by grouping them into two categories: methods based
on descriptive statistics and methods based on stochastic modeling. Further on, a
special attention is given to covariance matrices and their ability to model textures
and more generally, images, or videos.

Chapter 3 deals with textural feature extraction and its integration into a robust
classification workflow. The first step in the proposed workflow consists in extracting
the textural information by means of a multiscale decomposition. For this purpose,
the wavelet decomposition is used. Once extracted, the wavelet coefficients are
modeled by multivariate distributions to capture the dependencies existing in the
image. More precisely, the zero-mean multivariate Gaussian distribution is used and
its parameter, that is the covariance matrix, gives the final texture’s signature. In
order to obtain robust classification algorithms, the choice of the covariance matrix
estimator is very important, knowing that the estimation process has to be able to
deal with the outlier values (marked by red squares in Figure 1.1) present in the
observations’ structure. Therefore, the fixed point estimator and the class of M-
estimators are studied. Further on, a hypothesis test based on the geodesic distance
is introduced to regulate the false alarm and its noise robustness and classification
efficiency are studied. The obtained statistic is applied next to PolSAR image classi-
fication. Several experiments are designed, to study the influence of the acquisition
parameters. In the end, the classification workflow is modified by introducing a
directional diffusion based filtering preprocessing stage to reduce the speckle noise
present in PolSAR data. This algorithm, based on the partial differential equation
formalism, is defined and applied for synthetic and real PolSAR data.

Chapter 4 focuses on the Riemannian distributions for modeling the space of
covariance matrices. This chapter begins with a short theoretical part on the Rie-
mannian geometry and then, it introduces the Riemannian Gaussian (RGD) and
Laplace (RLD) distributions. These distributions are characterized by two param-
eters: the central value, and the dispersion around it. Knowing that for the RGD
the central value is the Riemannian center of mass, the model may be influenced
by the outliers present in the data. To overcome this problem, the Riemannian
Laplace distribution. for which the centroid is the robust Riemannian median, is
introduced. For each distribution, several elements are detailed: the probability
density function, the mixture model and the parameter estimation methods. In the
end, the distributions are compared in the context of texture image classification,
where their purpose is to model the within-class diversity.

Chapter 5 follows the idea of studying the robustness of centroid estimation
methods for covariance matrices. At this point, robust centroid estimators are es-
sential to deal with outliers arising from the inherent variability of the data, or from
faulty measurements. These aberrant observations (marked in green in Figure 1.1)
give aberrant estimated covariance matrices (also marked in green in Figure 1.1)
that have to be identified by the robust estimators of central values. In this context,
the center of mass, the median and the geometric trimmed averages defined on the
Riemannian manifold are analyzed, by presenting their advantages and drawbacks.
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Next, a new centroid estimator is proposed, by using the Huber’s weight function.
This estimator is called the Huber’s centroid and it represents a trade-off between
the efficiency of the center of mass and the robustness of the median. This estima-
tor is defined starting from the theory of M-estimators and it has one parameter
to tune: a threshold that discriminates between outliers and normal data, control-
ling the estimator’s behavior. In addition, an algorithm for the computation of
this parameter is given, based on the concept of median absolute deviation that is
extended to covariance matrices. Further on, the theoretical part is validated on tex-
ture and magnetoencephalography data classification. In the end, the importance
of the robust estimators for covariance matrices, introduced in Chapter 3, and that
of the robust Huber’s estimators are discussed and illustrated in some classification
experiments.

Chapter 6 presents an alternative to the classification methods based on global
features, proposed in the previous chapters. Sometimes, global descriptors may not
be adapted to capture the information contained in signals, or images. For instance,
this is the case of non-stationary signals. To address this problem, classification
methods based on local descriptors are proposed in this chapter. Therefore, ap-
proaches like bag of words, vectors of locally aggregated descriptors, and the Fisher
vectors are considered. The first two descriptors have already been generalized for
covariance features that live in a Riemannian manifold [Faraki ef al. 2015b, Faraki
et al. 2014, Faraki et al. 2015a]. Until now, this extension has not yet been possible
for the Fisher vectors, due to the lack of some appropriate probabilistic generative
models. Based on the Riemannian Gaussian and Laplace distributions presented in
Chapter 4. the Riemannian Fisher vectors are defined in this chapter. In the end.
their potential is studied for texture image classification.

Chapter 7 synthesizes the main conclusions of this work and it presents some
perspectives.

1.3 PhD Context

The work presented in this thesis has been accomplished in the context of a co-
tutelle agreement between the University of Bordeaux, France and the Technical
University of Cluj-Napoca, Romania, making possible the interweaving of several
research tracks, such as texture image classification and directional diffusion based
image filtering.

In addition, this thesis has been integrated in an international research project
supported by the French Foreign Affairs and International Development Ministry
and by the Executive Agency for Higher Education, Research, Development and
Innovation Funding Romania, under the projects 32619VL and PNII Capacitati
779/27.06.2014.

Moreover, the thesis has been co-funded by the National Center for Scientific
Research (CNRS) and Bordeaux Sciences Agro.
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2.1 Textures in Image Analysis

Texture represents an important aspect in the visual perception, involved in the
characterization and identification of the objects around us.

In the recent years, this property has been extensively studied in image analysis
and several databases containing different texture samples have been created. Two
well known examples of texture databases are the VisTex and Outex databases,
illustrated in Figure 2.1 and Figure 2.2.

Figure 2.2: Qutex TC000 13 texture database.

From the human point of view, the word "texture" has both a tactile and a visual

"

interpretation. Adjectives like "fine", "coarse", "rough", "smooth", "regular", "ir-

regular", "metallic", "wooden", ete. are frequently used to describe textures, being
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very hard to translate into some mathematical models. Therefore, many different
definitions are available in the computer vision community, trying to capture all the
complexity of this concept. In the following, some of these definitions are given.

2.1.1 Definition of Textures

One of the first definitions for textures has been given by Julesz, based on the
psychophysics of texture perception [Julesz 1962]. In his work, he claimed that
textures can be discriminated by means of first and second order spatial statistics.
Later on, he gave some counter-examples for its own theory, by building textures
that are different, but with the same second order statistics [Julesz et al. 1978].
Thus, he developed another definition, lying on the concept of textons [Julesz 1981,
Julesz 1986].

Moreover, according to Haralick, texture is one of the three fundamental pattern
elements used in human interpretation of images, along with spectral and contextual
features [Haralick et al. 1973]. In his opinion, the texture refers to the spatial
distribution of gray tones, being an important characteristic of all surfaces.

On the other hand, Tamura has evaluated textures through six properties [Tamura
et al. 1978]: coarseness, contrast, directionality, line-likeness, regularity and rough-
ness, while Amadasun considered features as busyness, complexity and texture
strength [Amadasun & King 1989]. Starting from their works, Rao has identified
the smallest set of features that are able to discriminate between textures, that are
repetition, orientation and complexity [Rao & Lohse 1993].

In conclusion, even though textures are easily identified and classified by human
beings, they do not have a unique definition that can be used in computer vision
applications. In order to capture all the wide variety of information lying in textures,
different types of descriptors have been proposed in the literature. In the following,
some of the employed methods are presented.

2.1.2 Textural Features Extraction
2.1.2.1 Methods Based on Descriptive Statistics

These methods define the texture by means of the spatial distribution of the con-
tained gray values and they include the gray level co-occurrence matrices [Haral-
ick et al. 1973], the autocorrelation features [Tuceryan & Jain 1993] and the vari-
ograms [Matheron 1963, Curran 1988], the local binary patterns [Ojala et al. 1996],
etc.

Gray level co-occurrence matrices (GLCM) have been introduced first in [Har-
alick et al. 1973] based on the assumption that for a grayscale image, the textural
information lies "in the overall spatial relationship that the gray tones in the image
have to one another". This spatial dependence is expressed by means of a matrix
containing the relative frequencies of occurrences of two gray tones for two neigh-
boring pixels. In this case, two pixels are neighbors in terms of a predefined distance
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d and direction a. Excepting the image bordering pixels, eight nearest neighbors
and four angle values are usually considered, as represented in Figure 2.3.

90°
135° 45°

b <

|
I

6 7 8
|

Figure 2.3: The eight angular nearest neighbors of a pixel.

In practice, in order to reduce the size of the GLCM for an image, a quantization
step is required first.

Let I be an image of size W x H and @ the number of quantization levels. In this
case, the GLCM will be a @ x @ matrix. Each element (¢,7), ¢,7 =0,...,Q — 1 of
this matrix represents the number of times gray tones 7 and j have been neighbors in
image I, in terms of distance d and angle a. Mathematically, this can be expressed
as:

GLCM g y(i,J) = , (2.1)

0, otherwise

ii{l, if I(z,y)=4and I(zx +dz,y+dy) =7

where dz and dy are the distances according to & and vy, i is the gray level of the
current pixel and 7 is the gray level of the neighboring one. To cancel the influence
of the image’s size, the obtained matrix is normalized by the number of pixels in 1.

Further on, starting from the GLCM, a set of 14 textural descriptors can be
extracted, expressing image properties like homogeneity and contrast, or measuring
the complexity and the nature of gray level transitions [Haralick et al. 1973]. In
the following, some of these descriptors are detailed, knowing that F;; denotes the
probability of occurrence of neighboring gray levels ¢ and j, that is the element (4, 5)
of the normalized GLCM:

e The homogeneity is given by:
P
Z Z 1+ (:J_ ')2 : (2'2)
i g J
For homogeneous regions, this descriptor will have relative great values, while

small values will indicate heterogeneous regions.

e The entropy measures the randomness, or the degree of irregularity existing
in the image and it is defined as:

Y > P Py (2.3)
i j
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Homogeneous regions are characterized by high entropy values, while the het-
erogeneous, or irregular regions have low entropy.

e The correlation measures the linear dependence of gray tones and it is defined
as:

i —pi)(J — 1)
>y, U] (24)
~ 4 Jo2o?
where pi. pj o; and o are the means and the standard deviations of the
marginal distributions associated with each normalized element P, ;.

Autocorrelation features are measures of the texture’s regularity and coarse-
ness [Tuceryan & Jain 1993]. For instance, coarse textures are characterized by
values that slowly drops off. On the other hand, for regular textures, peaks and
valleys should be observed in the function’s graphical representation.

Variograms are methods used to characterize the spatial dependence between
pixels, based on the definition of the semivariogram function, introduced first in [Math-
eron 1963].
For an image I, the semivariogram function - is given by:
1 N

W) = 555 > [ (@e) = I(wi + d))?, (2.5)
i=1

where d is the distance between two pixels, N is the number of pixels separated by
distance d and I(z;), respectively I(z;+d) are the intensities of pixels z; and z; +d.

Next, the variogram is obtained as being 27v(d) and it measures the dissimilarity
between spatially separated pixels [Curran 1988]. More precisely, large values of y(d)
indicate less similar pixels. To describe the pixel’s correlation, several parameters
can be extracted, like the support, lag, sill, range, nugget variance and spatially
dependent structural variance.

Local binary patterns (LBP) have been proposed in [Ojala ef al 1996] as a
particular case of the texture descriptors introduced in [Wang & He 1990]. In order
to obtain the LBP for an image I, spatial neighborhoods of 3 x 3 are extracted
for each pixel and a binary sequence is obtained, as follows. First, a comparison is
made between the neighborhood’s central pixel and each of its 8 neighbors. If the
intensity of the central value is smaller than the value of its neighbor, an element
equaling 1 is considered for the binary vector, and 0 otherwise. In the end, an 8-digit
binary number is obtained, that is usually converted to decimal. By considering all
the decimal numbers obtained from the entire image, a histogram is computed, in
order to measure the frequency of occurrence of each number. The method has
been generalized in [Ojala et al. 2002] for different types of neighborhoods and an
efficient approach for gray scale and rotation invariant texture classification has been
developed.
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2.1.2.2 Methods Based on Stochastic Models

These methods imply the characterization of the textural information by using
stochastic models. In order to apply them, two steps are needed. First, the textures
are analyzed using the multiscale, or the multiresolution representation and then,
the obtained coefficients are modeled by means of statistical tools. These two steps
are detailed in the following.

1) Texture analysis

Multiscale, or multiresolution approaches, have been developed based on the study
of human visual perception. The research carried out in this direction has shown
that the human brain is capable to perform a multiscale analysis of images [Tamura
et al. 1978, Landy & Graham 2004]. In this context, the Fourier transform [George-
son 1979, the Gabor filters [Turner 1986, Jain & Farrokhnia 1991], the wavelet trans-
form [Mallat 1989], the curvelets [Candes & Donoho 1999, Boubchir e al. 2010], ete.
can be used for capturing the textural information.

Gabor filters have been introduced in [Maréelja 1980] as models for the simple
cells in the visual cortex, showing their importance in image analysis. Mathemati-
cally, the following definitions can be formulated.

First, in the spatial domain, the Gabor function g(z,y) is given by a sinusoidal
plane wave of frequency fy and phase ¢. modulated by a Gaussian envelope and it
is expressed as [Jain & Farrokhnia 1991]:

.’122 2
9(z,y) = exp { -3 ( - %) } cos(2mfoz + ), (2.6)

2 \ o2 2
where oz and oy are the standard deviation of the Gaussian envelope along the x
and y axis. Moreover, in the frequency domain, considering the phase ¢ = 0, the
function g(z,y) in (2.6) becomes:

o= ({3 (S22 Lo {3 ()i, 2) ),

(2.7)
where w and v are the horizontal and vertical spatial frequencies, oy = 1/(2mo)
and o, = 1/(2moy) are the corresponding standard deviations and A = 2700,

Starting from these functions, filter banks can be built and used for image de-
composition at different levels and orientations. The obtained images characterize
the textural information at these resolutions and orientations and they represent the
features used further in applications like image retrieval [Manjunath & Ma 1996],
segmentation [Jain & Farrokhnia 1991], texture discrimination [Turner 1986], etc.

Wavelet decomposition has been introduced in [Mallat 1989] and it represents
another approach for multiresolution image processing. By using this technique,
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the image is decomposed in orthogonal and independent subbands, obtained by
considering some basis functions, defined as:

Yap = %w (m - b) : (2.8)

with a and b being the scale and the location parameters. For an image f(z,y), the

wavelet decomposition is performed as:

Cij = [:o f(m,y)%%b (m;61 y;b) , (2.9)

where ¢; j are the wavelet coefficients.

In practice, for image decomposition, filter banks of low pass filters (L) and high
pass filters (H) are applied along the rows and columns. As a result, four subbands
are obtained by combining the two filters. These subbands consist in the image
approximation (LL), horizontal (LH), vertical (HL) and diagonal (HH) coefficients.
The decomposition is a recursive process and for the next level, the LL subband is
used. In addition, a downsampling by a factor of two is considered at each level.

In order to obtain this type of image decomposition, discrete wavelet functions,
such as Haar [Haar 1910] and Daubechies [Daubechies 1992] wavelets can be em-
ployed.

In the end, the coefficients in each wavelet subband can be described by using

statistical models, as shown in Figure 2.4.

—=  p(X1,1]61,1)

—»  p(X1,0/61,0)

—=  p(Xs0]8s.0)

o
o
0 —  p(Xs1]8s1)
o

Figure 2.4: Wavelet subbands statistical modeling.



14 Chapter 2. Textures in Image Processing

2) Stochastic modeling

Once that the texture analysis is accomplished and the textural information is
extracted, the filtered elements can be statistically modeled. to obtain the final
texture signature. Recently, many statistical models have been proposed. These
approaches include the univariate generalized Gaussian distributions [Do & Vet-
terli 2002], Gamma distributions [Mathiassen et al. 2002] and Bessel K forms [Sri-
vastava et al. 2002] that will be detailed next.

Generalized Gaussian distributions (GGD) have been proposed in [Do & Vet-
terli 2002] for modeling the marginal density of the wavelet coefficients in a particular
subband. The probability density function describing this model is:

= 7‘8 exp § — E ’
p(z]a, B) = ook (1) p{ ( - ) } (2.10)

B

where I'(-) is the Gamma function, « is the scale parameter and S is the shape
parameter. By means of the maximum-likelihood principle, these two parameters
can be estimated, giving in the end, the texture’s signature. In the same work, the
GGD model along with the Kullback-Leibler divergence, as similarity measure, have
been successfully used in the context of image retrieval.

Gamma distributions have been considered in [Mathiassen ef al. 2002] to model
features extracted using Gabor filters for texture image classification.

Bessel K forms (BKF) represent another probability model, proposed in [Sri-
vastava et al. 2002] for characterizing the output of bandpass filters used in target
recognition.

Even though all these univariate models have been successfully used for modeling fil-
tered coefficients, they cannot take into account all the information lying in signals,
like the spatial, or spectral dependencies. In order to alleviate this problem, multi-
variate models have been proposed, including the multivariate Bessel K form distri-
butions [Boubchir et al. 2010], copula based distributions [Kwitt et al. 2009, Lasmar
& Berthoumieu 2014], or the family of multivariate elliptical distributions. This
latter, contains the multivariate generalized Gaussian distributions [Verdoolaege &
Scheunders 2011], the spherically invariant random vectors [Yao 1973|, and multi-
variate Gaussian distributions, as particular cases.

Multivariate Bessel K form distributions are an extension of the BKFs and
they have been introduced in [Boubchir ef al. 2010] to capture the between-scale and
within-scale dependencies between image detail coefficients in wavelet and curvelet
domain.
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Copula based distributions have been used to model the wavelet coefficients of
multichannel images. For instance, in [Kwitt et al. 2009] a model based on the two-
parameter Weibull distributions and on the multivariate Student-t copula has been
developed and applied to texture retrieval, by using the Kullback-Leibler divergence,
as similarity measure. Moreover, in [Lasmar & Berthoumieu 2014] Gaussian copula
multivariate models have been presented and used for texture image retrieval.

Multivariate generalized Gaussian distributions (MGGD) have been consid-
ered in [Verdoolaege & Scheunders 2011, Pascal ef al. 2013] to describe the wavelet
coefficients extracted from multicomponent images, such as color, or multispectral
images. By means of MGGDs, the correlation between spectral bands in the wavelet
domain has been modeled, showing significant classification improvements with re-
spect to univariate GGDs.

Spherically invariant random vectors (SIRV) have been introduced for the
first time in [Yao 1973] and then studied in [Gini & Greco 2002, Pascal et al. 2006,
Vasile et al. 2010], in the context of radar applications. In this case, the observed
vector k is obtained by multiplying the square root of the parameter 7 with the
complex. circular Gaussian random vector z, of zero mean and covariance matrix

M:
k = /72, (2.11)

where 7 and z are independent. It yields that the observed vector k is characterized
by the following probability density function:

pre(k) = /ﬂ "~ pa(|rM)p, (r)dr, (2.12)

where pg(-) is the probability density function of the multivariate Gaussian distri-
bution.

Multivariate Gaussian distributions represent a particular case of the multi-
variate models introduced above and they are the density model used further in this
thesis.

In our case, the textural information is extracted by means of multiscale ap-
proaches. Therefore, each image is filtered using the Daubechies db4 transform.
Next, each wavelet subband is statistically modeled by zero-mean multivariate Gaus-
sian distributions (MGDs). This choice has been made based on the fact that this
probability density function has desirable properties. More precisely, the geodesic
distance, which is the similarity measure considered in this work, has a closed form
for the MGD. This is not the case for other distributions, like the SIRV model,
for which the geodesic distance can only be approximated. For example, a linear
approximation of the geodesics has been considered in [Bombrun et al. 2011b] for
the multivariate Student-t distribution. On the other hand, the adaptation of the
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proposed approach to more complex models is taken into consideration for future
work.

Let X = {x1,...,xn} be a set of N independent and identically distributed
random vectors of dimension m. issued from a zero-mean multivariate Gaussian
distribution. The probability density function describing the set is the following:

p(x|M) — JXTM—IX) . (2.13)

1
——exp (
Vv (2m)m M| 2
For this model, the parameter vector @ represented in Figure 2.4 is the covariance
matrix M, which gives the final texture signature.

In the following, the importance of covariance matrices in signal and image pro-
cessing will be detailed.

2.2 Covariance Matrices as Signal and Image Descrip-
tors

2.2.1 Importance in Image Analysis

Covariance matrices are used in a wide variety of applications in signal and im-
age processing, including array processing [Ollila & Koivunen 2003], radar detec-
tion [Greco et al. 2014,Chen et al. 2011, Yang et al. 2010, Barbaresco et al. 2013, Ma-
hot et al. 2013], medical image segmentation [de Luis-Garcia et al. 2011], face detec-
tion [Robinson 2005], vehicle detection [Mader & Reese 2012], etc. Another research
direction concerns the signal and image classification, where covariance matrices
can be used to model different kinds of dependence, like spatial, temporal, spec-
tral, polarimetric dependence, etc [Formont et al. 2011, Barachant et al. 2013, Said
et al. 2015a, Faraki et al. 2015a].

Being elements in the space P, of m xm real symmetric and positive definite ma-
trices, several distributions have been proposed to model them, such as the Wishart
distribution [Wishart 1928|, those issued from the so-called product model [Lee
et al. 1993, Freitas et al. 2003, Bombrun & Beaulieu 2008, Bombrun et al. 2011a] and
those inspired from a geometric point of view: the Riemannian distributions [Said
et al. 2015b, Hajri et al. 2016], ete.

2.2.2 Statistical Models for the Space of Covariance Matrices

Wishart distribution (WD) has been introduced in [Wishart 1928] and it rep-
resents the multidimensional version of the x? distribution.

Let M be an m xm symmetric and positive definite matrix having a Wishart dis-
tribution with n degrees of freedom. The probability density function characterizing
it is defined as:

n—m—1

|M]| exp{ — itr (S7IM) }

— , (2.14)
2 (8|3 T (3)

p(M]n,S) =
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where |-| denotes the matrix determinant, I'y,( ) is the multivariate Gamma func-
tion, S is the scale matrix and n > m.

This distribution has been used in applications like motion retrieval [Saint-Jean
& Nielsen 2013], or to model complex-valued data, in the context of polarimetric
image classification [Lee et al. 1999]. On the other hand, this model is no longer
appropriate for images which do not fulfill the assumption of homogeneity, such as
the high resolution PolSAR images. A solution to this problem is to use the product
model based distributions, that are detailed next.

Distributions issued from the scalar product models consist in express-
ing the observed covariance matrix M, of textured regions, as being obtained by
multiplying the scalar parameter 7 by the scatter matrix 3:

M =13, (2.15)

where 7 and X are independent and the scatter matrix X follows a complex Wishart
distribution. To be identifiable. a normalization constraint should be imposed on
the model. In practice, the trace of the scatter matrix ¥ is generally imposed to
be equal to m. Some others normalizations can be considered, such as imposing a
condition on the determinant of the scatter matrix, or imposing that the mean of
T is equal to 1. Moreover, the probability density function of the covariance matrix
M is given by:

pm(M) = \Am;g:rE(M|1"E)p-r (1)dr. (2.16)

Depending on the choice of py(7), different models can be obtained, such as the
K [Lee et al. 1993], GO [Freitas et al. 2003], KummerU [Bombrun & Beaulieu 2008],
M and W [Bombrun et al. 2011a] distributions. For these models, 7 follows respec-
tively the Gamma, Inverse Gamma, Fisher, Beta and Inverse Beta distributions.

Even though these models can be efficiently used, they do not take into consid-
eration the intrinsic geometry of the data. In order to address this problem, a new
class of distributions have been proposed in the literature, that are introduced in
the following.

Riemannian distributions have been recently proposed to model the within-
class variability of images. First, inspired by the conventional multivariate Gaussian
distribution, the Riemannian Gaussian distribution (RGD) has been introduced
in [Said ef al. 2015b]. In this case, the probability density function is given by:

(2.17)

p (M|M, o) = exP{_M}?

202

where d(-) is not the classical Mahalanobis distance, but the intrinsic distance on
the manifold of covariance matrices. This probability density function is charac-
terized by two parameters, its central element M and its dispersion o around this
central element. For this model, the maximum likelihood estimator (MLE) of the
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central value corresponds to the Riemannian center of mass. While being efficient to
model the mean element, this latter is easily influenced by the presence of aberrant
data [Bishop 2007, Afsari 2011, Formont et al. 2013]. To overcome this problem, we
have introduced a generative model for which the MLE of the central element is
the Riemannian median, called the Riemannian Laplace distribution (RLD) [Hajri
et al. 2016]. Both RGD and RLD are detailed in Chapter 4 and used for signal and
texture image classification.

2.3 Conclusions

In this chapter, state-of-the-art methods concerning the extraction of the textural
information and the covariance matrix modeling have been presented.

First, classical textural features based on descriptive statistics have been briefly
presented. These descriptors include the gray level co-occurrence matrices, the
autocorrelation features, the variograms, or the local binary patterns.

Second, feature extraction methods based on statistical modeling have been de-
scribed. These approaches imply the texture analysis at different scales and orien-
tations and the characterization of the obtain information by stochastic modeling.
In this context, the Gabor filters and the wavelet decomposition have been detailed.,
along with some univariate and multivariate statistical models.

Further on, the methods used in this thesis have been introduced. More pre-
cisely, in this work, the textural information is captured by means of the wavelet
decomposition and the extracted coefficients are modeled by zero-mean multivari-
ate Gaussian distributions. This process has been illustrated by a general diagram
shown in Figure 2.4. Moreover, the parameter of the considered distribution is the
covariance matrix. This matrix is an element in the space Py, of m xm real symmet-
ric and positive definite matrices which motivates the need of appropriate modeling
distributions. In order to respect the geometry of this space, the Riemannian dis-
tributions have been chosen for this thesis.

In the following chapters. the classification workflow introduced in Figure 1.1 is
resumed and each block of this diagram is detailed in a distinct part.
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3.1 Introduction

In the classification context, the image processing workflow consists in two steps:
feature extraction. and classification.

Various kinds of features can be used for image processing. such as texture,
spectral information, polarimetric dependence, etc. One strategy to obtain relevant
features is the multiscale image decomposition. This approach has been found to be
successful for many image processing applications including filtering [Donoho 1995],
segmentation [Aujol et al. 2003], or classification [Do & Vetterli 2002].

First of all, during the feature extraction stage, the image is decomposed into
a set of wavelet subbands, each of them being modeled by a probability density
function with a specific parameter vector. For each subband, the estimated param-
eter vector composes the signature of the image. Then, during the classification
stage, a similarity measure based on a probabilistic metric is computed between the
signature vectors.

Simple but effective methods have been proposed to characterize wavelet detail
statistics based on univariate models, such as the generalized Gaussian distribu-
tion [Do & Vetterli 2002]. Nonetheless, they do not take into account the dependen-
cies existing in the image. To overcome this difficulty, multivariate distributions,
including elliptical models [Bombrun et al. 2011b, Verdoolaege & Scheunders 2012]
and copula based approaches [Kwitt & Uhl 2010, Stitou et al. 2009], have been
proposed to model the spatial and spectral dependencies in the images. Once the
feature vectors are computed for each texture image, a distance (or at least a di-
vergence) is calculated in order to measure the degree of similarity between two
images. A well-known choice is the Kullback-Leibler (KL) divergence |[Kullback &
Leibler 1951], or its symmetric version: the Jeffreys divergence [Jeffreys 1946]. Re-
cently, some authors have proposed to consider the geodesic distance (GD), which
has shown superior retrieval rate, compared to the KL divergence [Verdoolaege &
Scheunders 2012].

Starting from this general framework, the purpose of this chapter is to introduce
a robust classification workflow. For that. the concept of robustness is addressed at
different levels. First, it can be considered during the modeling step when covariance
matrices are estimated for each image. Second, the robustness can be investigated
during the decision rule of the classifier. Third, for the proposed application of Po-
larimetric Synthetic Aperture Radar (PolSAR) image classification, a preprocessing
filtering step consisting in speckle reduction is introduced to reduce the influence of
outliers in the estimation and classification performances. The proposed workflow is
illustrated in Figure 3.1, where the colored blocks show the steps where the proposed
classification method brings some changes. The main contributions of this chapter
are detailed hereafter.

As mentioned earlier, in Chapter 2, the wavelet coefficients are modeled in this
thesis by using the zero-mean multivariate Gaussian distribution (MGD). This prob-
ability density function is characterized by the covariance matrix, which represents
the final data signature. In order to estimate this parameter, different methods are
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Figure 3.1: Classification workflow for robust image classification on the space of covari-
ance matrices,

proposed in the literature, like the sample covariance matrix (SCM), the fixed point
estimator (FP), also known as the Tyler’s estimator [Tyler 1987], the class of M-
estimators [Huber 1964, T'yler 1987, etc. At this step, robust estimation algorithms
are needed to deal with the possible existing noise or image artifacts. An example is
presented in Figure 3.1, where X = {X4,..., Xj} is a set of observations. For each
observation, the data points are represented by gray circles, while the outliers are
identified by red squares. In this case, the robust covariance matrix estimator has
to be able to reduce the impact of outliers in the estimation process. As a result,
the robust image signature is obtained, which will be used during the classification
process.

In a classification or texture retrieval experiment. a nearest neighbor classifier
is frequently considered. In such case, a test image, denoted by X; in Figure 3.1,
is labeled to the class of the closest training image, but nothing tells that the test
image is well classified, especially for noisy datasets. A hypothesis test should be
performed to regulate the false alarm rate. Inspired from previous works on the
KL divergence [Kupperman 1957] and on the family of (h, ¢) divergences [Salicru
et al. 1994, Nascimento et al. 2010], a new statistical hypothesis test based on the
geodesic distance is introduced in this chapter [llea et al. 2015b, llea et al. 2015¢, llea
et al. 2015a]. The advantage of using the geodesic distance lies in its property of
being a distance measure, which is symmetric and respects the triangle inequality.

The main application of the robust classification approaches introduced in this
chapter is represented by the classification of PolSAR data. These images are charac-
terized by a multiplicative noise, called speckle, which makes difficult their analysis.
Therefore, in order to improve the algorithm’s robustness, a preprocessing step is
added, consisting in the speckle reduction. To this aim, a directional diffusion filter
is proposed [Lerebes ef al. 2015, Terebes et al. 2016], based on the partial differential
equation formalism. Some experiments are carried out to evaluate the influence of
the filtering step on the classification accuracy.

The chapter is structured as follows. Section 3.2 details the covariance matrix
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estimation process, by analyzing some of the state-of-the-art estimators. Section 3.3
introduces the proposed statistical hypothesis test based on the geodesic distance.
First, the test is defined in a general context and then, it is applied to zero-mean
multivariate Gaussian distributions MGD for the SCM covariance matrix estimator.
Further on. it is used for the case of the robust FP estimator. In addition, its
performance is analyzed in terms of efficiency and noise robustness on simulated
data. Some comparisons with the SCM estimator are also carried out. Section 3.4
introduces an application for the classification of maritime pine forests, based on
simulated and real PolSAR images. Section 3.5 introduces the directional diffusion
based filtering used for PolSAR image denosing and the influence of the filtering
step on the classification performance is evaluated. Conclusions and future work
are finally reported in Section 3.6.

3.2 Covariance Matrices and Estimation Methods

Zero-mean MGDs are characterized by their covariance matrix. In the context
of parametric classification methods, this matrix needs to be estimated. In or-
der to obtain robust classification algorithms, robust estimators are desired. In
the following, state-of-the-art covariance matrix estimators are presented for a set
X = {x1,...,xXn, } of N independent and identically distributed random variables
(vectors) x according to an MGD.

3.2.1 Sample Covariance Matrix

The sample covariance matriz (SCM), or the empirical covariance matrix, is one of
the most common estimators as it represents the solution of the maximum likelihood
(ML) estimator for zero-mean Gaussian distribution. In this case, the SCM estima-

tor Mgeoas of the covariance matrix M, characterizing X, is given by the following
equation:

N
- 1
Mscm = N ZX;’X?, (3.1)

i=1

where ()T denotes the transpose operator. In [Anderson 1984] the properties of
this estimator have been analyzed and it has been shown that SCM is an unbiased
estimate, but it has a major drawback: it is not robust to outliers.

3.2.2 Normalized Sample Covariance Matrix

The normalized sample covariance matriz (NSCM) may represent a solution to the
non robustness problem. In this case, the estimated covariance matrix Myscoum is
given by:

XX
T
X

s

- (3.2)

Mnyscm =

2|3
X

N
i=1
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where m is the dimension of vectors x. However, this estimator has two major
drawbacks: it is biased and nonconsistent [Pascal et al. 2008].

3.2.3 Fixed Point Estimator

The fized point estimator (FP), also known as the Tyler’s estimator [T'yler 1987],
is another possible choice to solve the non robustness problem. In this case, the
estimated covariance matrix M is obtained by means of a recursive algorithms as
the solution of [Gini & Greco 2002, Pascal et al. 2008|:

1 N x,ixT
M1 == Y~ (3.3)
N ; X?NIit Xi

with it being the iteration.

In practice, this recursive algorithm can be initialized with the identity matrix
and it converges in about 10 iterations [Conte ef al. 2002, Pascal et al. 2008, Vasile
et al. 2010].

The FP estimator has a unique solution M up to a scale factor. For any positive
scalar ¢ # 0, if M is a solution of (3.3). then ¢M is also a solution of (3.3). In the
following, the covariance matrix is normalized such that:

tr(M) = m, (3.4)

where tr(-) is the trace operator and m is the vector’s dimension. This FP esti-
mator can be interpreted as the ML estimate of the normalized covariance matrix
for a Gaussian scale mixture model, where the multipliers 7; are assumed to be un-
known deterministic parameters [Gini & Greco 2002]. Let us recall that a Gaussian
scale mixture model admits the stochastic representation x = 1/7z where 7 is a
scalar random variable called multiplier (7 € Rt) and z is an independent Gaussian
random vector with zero-mean and covariance matrix M.

In [Pascal et al. 2008], the properties of FP estimator have been analyzed. In
particular, the FP provides a unique solution of (3.3) and it is an unbiased and
consistent estimate. Moreover, the FP estimate follows asymptotically a Wishart
distribution behavior, with Nﬁlﬂ degrees of freedom.

3.2.4 Robust M-estimators

The family of M-estimators covers some other possible robust covariance matrix
estimators.

3.2.4.1 Definition

The M-estimators have been introduced in the context of robust theory to tackle the
presence of outliers in the dataset or errors in the model. For zero-mean observations,
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the M-estimator of the covariance matrix is defined as the solution of [Huber 1964,
Tyler 1987]:

N
1 ~r_
M = N ;:1 u(xTi-M lx,;) xixTi. (3.5)

where u(-) is a positive-valued function, which gives a weight to each observation
x; in the computation of the covariance matrix. Obviously the weight function
u( -) should decrease to zero to ensure that outliers have a smaller contribution to
the covariance matrix estimation than other observations. In addition, the weight
function u( - ) has to fulfill the conditions expressed in [Maronna 1976]:

1. u(t) is non-negative, non-increasing and continuous for ¢ > 0;
2. ¥(t) = tu(t) is bounded and K = sup;q ¥(2) :

3. ¥(t) is non-decreasing, and strictly increasing in the interval where ¥(t) < K;

4. there exists a > 0 such that for every hyperplane H, p(H) <1 — % —a. where

p(-) is the dataset’s empirical distribution.

These conditions have been analyzed for the real case in [Maronna 1976] and gen-
eralized to complex-valued data in [Ollila & Koivunen 2003].

The family of M-estimators has been extensively studied and it has been found
that it is a generalization of covariance matrix ML estimates for the family of ellip-
tical distributions.

Depending on the weight function, various covariance matrix estimators can
be defined. For example, if u(t) = 1, all the observations have the same weight,
resulting in the sample covariance matrix (SCM) estimator. Moreover, if u(t) = 1/¢,
the fixed point (FP) estimator [Tyler 1987], is obtained. It has to be mentioned that
even though the SCM and the FP estimators have expressions similar to (3.5), they
do not belong to the family of M-estimators, because they do not satisfy some of
the conditions defined in [Maronna 1976]. More precisely:

e for the SCM: the upper limit of () = tu(t) is infinite;
e for the FP: the weight function u(-) is not defined when ¢ = 0.

More interesting, the Huber’s estimator [Huber 1964] offers a trade-off between
the SCM and the FP. This estimator will be detailed in the following.

3.2.4.2 Huber’s Estimator

A possible choice for the weight function u(-) in (3.5) is:

u (t) = min (1, %) : (3.6)
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which gives the Huber’s estimator [Huber 1964]. In this expression, T is a prede-
fined threshold value that controls the influence of outliers. If the quadratic term
t = X,{M_IX@ is smaller than T, the Huber’s function u(t) is constant, otherwise
u(t) will start to decrease. Tuning the parameter T allows to adjust the behavior
of the Huber estimator between the SCM and the FP estimator. The properties
of this estimator have been analyzed in the literature and used in the context of
array processing [Ollila & Koivunen 2003], or the estimation of the directions of
arrival [Mahot et al. 2013].

3.3 Hypothesis Test for Robust Classification

The hypothesis test represents a decision-making strategy founded on the statistical
significance of a result. More precisely, a result is considered to be significant if the
probability to obtain it by chance is small with respect to a predefined threshold
value.

In practice, the hypothesis tests are used for testing a statement about a popu-
lation, based on some data measured from a sample [Moon & Stirling 2000]. For in-
stance, in the case of a binary problem, two statements are defined: the null hypothe-
sis Hp and the alternative hypothesis Hy. The two hypotheses are disjoint, Hy being
the negation of Hy. The test’s goal is to reject Hy, meaning that Hy is supposed to
be true. In order to implement such a test, several steps are needed [Ruch 2012]:

e definition of the null hypothesis Hp that has to be rejected:;

definition of a discriminant measure between Hg and H;, called statistic;

definition of a probability distribution for the considered statistic under Ho;

e definition of a threshold value for the statistic’s probability distribution, called
significance level and denoted by «;

computation of the sample’s statistic value and p-value;

making the decision.

Next, these steps will be followed to propose a robust statistical test for classifi-
cation, on the space of covariance matrices. The purpose of this test is to regulate
the false alarm rate during the decision making stage.

3.3.1 Definition

Let X; = {x%,...,x}vl} and X5 = {X%,...,X?\b} be two sets of N7 and N5 inde-
pendent and identically distributed random variables (vectors) x according to the
parametric models p(x|f;) and p(x|62). Let 6 and 3 be the maximum likelihood
(ML) estimates computed on these sets. In a classification problem, the aim is to
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determine if X; and X, are issued from the same parametric model. Therefore, let
consider the following hypothesis test:

Hy : 61 = 0s;
3.7
{ H] : 91 7é 92, ( )

where, the hypothesis Hp states that Xy and Xy are elements of the same class, if
their parameters are identical.

Considering the regularity conditions discussed in [Salicru et al. 1994], it has

been proved in [Kupperman 1957, Salicru et al. 1994, Nascimento et al. 2010] that
under the null hypothesis Hp and for sample sizes Ny, No — oo, the test statistic
S. defined further, follows a chi-square distribution:
3(91,92) % (91,92) m XDF? (38)
where the degree of freedom DF' is equal to the dimension of the parameter space. In
addition, v is a constant depending on the considered similarity measure 4(-). For
instance, v = 1 for the KL divergence [Nascimento et al. 2010]. This hypothesis test
has been first introduced in [Kupperman 1957] for 4(-) being the KL divergence
and further generalized in [Salicru et al. 1994] for the class of (h, ¢) divergences.
In this chapter, this test is extended to the Rao’s geodesic distance, which is the
shortest path in the parametric manifold. Indeed, under the null hypothesis Hy,
distributions are lying infinitesimally close on the probabilistic manifold and in such
case the KL divergence equals half of the squared geodesic distance (GD). Hence,
when 6, = 05, the test statistic becomes:

Sap(61,6,) = (61,6,), (3.9)

with d( - ) being the geodesic distance and it is asymptoti(:ally chi-square distributed
with DF' degrees of freedom for sufficiently large values of Ny and Ns. Note that
under Hp. the distribution of the statistic Sgp is independent of #; and 6s.

3.3.2 Application to Zero-Mean Multivariate Gaussian Distribu-
tions

In the following, X; and X3 are issued from two independent zero-mean multivariate
Gaussian distributions (MGDs) having the parameter vectors represented by the
covariance matrices My and Mjy. The probability density function describing these
sets has been introduced in Chapter 2 and it is recalled in the following:

p(x|M ! TM_IX) : (3.10)

1
) = ———=exp (
Vv (2m)"mM] 2
where m is the vector’s x dimension and (-)T is the transpose operator.
Considering zero-mean MGDs, the earlier mentioned similarity measures be-
tween the two estimated covariance matrices M; and My have the following defini-
tions:
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e Kullback-Leibler divergence [Kullback & Leibler 1951]:

. 1 .. M
K LN, M) = !tr(MglMl) —m—In :Ml:] (3.11)
2

where m is the dimension of the vector space, and tr(-) is the trace operator;

e Rao’s geodesic distance [James 1973]:

1

N 1 2

d(M;,M;) = [5 Z(ln)\g)2] , (3.12)
T

where Ml and M2 are the SCM estimators of the covariance matrices M,

and My, A;, ¢ = 1...m are the eigenvalues of M2_1M1 and m is the size of

covariance matrices. More details on this similarity measures can be found in

Section 4.2.2.

In this case, the null hypothesis My = My can be rejected at a level a if:

Pr(x}hp > Sep(Mi, My)) < a. (3.13)
Here, knowing that real-valued covariance matrices are considered, the degree of
freedom is:
1
DF = Lm; ). (3.14)

where m is the dimension of the covariance matrix. The rejection of Hy is illustrated
in Figure 3.2.a.

Further on, some simulation results are displayed to evaluate the potential of
the proposed statistical hypothesis test on a simulated dataset. The sets X; and
X are generated as N1 and N independent and identically distributed random
vectors distributed according to a zero-mean MGD, having the covariance matrix of
the form:

M(i, 5) = pl= for i, 5 € [1,m]. (3.15)
For each set Xy and Xy, the covariance matrix is estimated according to the max-
imum likelihood principle by using the SCM estimates. The significance level « is
set to 0.05 and 10* Monte Carlo iterations are considered. Figure 3.2.b draws the
evolution of the estimated p-value as a function of the dataset size (N; = No = N
in this experiment) for the SCM estimate with p = 0.5.

In this figure, the solid line corresponds to the geodesic distance, while the dashed
line corresponds to the Kullback-Leibler divergence. As expected, the estimated p-
value converges to the significance level a for sufficiently large N. The simulation
results have shown that the dataset should contain at least 50 observations to ensure
that the statistic follows a chi-squared distribution under the null hypothesis Hyp,
when using the SCM estimate. In addition, it can be observed that the convergence
is faster for the geodesic distance than for the Kullback-Leibler divergence. In the
following, only the geodesic distance will be considered.

In the next part, this hypothesis test is used in the case of robust covariance
matrix estimators, more precisely, in the case of the fixed point estimator.
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Figure 3.2: (a) Rejection of the null hypothesis and (b) convergence of the estimated
p-value as a function of the dataset size, when the SCM estimator is used (Source: |llea

et al. 2015b| ©[ 2015] IEEE).

3.3.3 Application to Robust Estimators
3.3.3.1 Classification Efficiency

The proposed hypothesis test based on the statistic Sgp is used further for im-
plementing a two-class classification algorithm for simulated data. The experiment
consists in defining two independent and identically distributed random sets of vec-
tors Xy and Xs of size Ny and N distributed according to two MGDs and having
the covariance matrices M and Ms. A third dataset X; of size N; and covariance
matrix M has been defined in the same manner. The objective of the implemented
algorithm is to classify X4 in one of the two available groups, by choosing the one
with the most similar covariance matrix. In this experiment, it is considered that X;
should be of class 2, by generating it using the same parameters as for X5. Under
these assumptions, the hypothesis test consists in verifying if the distribution of X;

has the same parameter vector as the one of Xo, or in other words, if Xy is of class
2.

Figure 3.3 presents the influence of the estimation algorithm and the influence of
datasets’ size on the classification performance. The simulations are carried out for a
3-dimensional dataset (m = 3) with N7 = 100, 1000 and 10000 and N5 = N; = 1000.
Several values are tested for the covariance matrix M (p2 and p¢ ranging from 0.1
to 0.7, while p; is fixed to 0.1). Each time, M is estimated by the SCM (dashed
lines) and FP (solid lines) algorithms. 10* Monte Carlo iterations are performed to
compute average performances.

As observed, the best performances are obtained for the SCM estimate compared
to the FP one, illustrating the efficiency of this former. This observation is natural
since the experiment has been carried out in a purely Gaussian context. The next
experiment is designed in order to analyze the robustness by considering some noisy
data.
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Figure 3.3: Correct classification rate of X; in class 2 by using the Sgp with the
SCM and FP estimates, if N3 = 100, 1000, 10000, and N = N; = 1000 (Source: |llea
et al. 2015b| © [2015] IEEE).

3.3.3.2 Noise Robustness

The performances of the SCM and FP estimates are now compared in terms of
noise robustness for the statistic Sgp. Thus, two datasets X3 and X are generated
as independent and identically distributed random vectors distributed according to
a zero-mean MGD of covariance matrix M. The set Xs is next corrupted by an
independent additive white Gaussian noise of covariance matrix 0Ly, 02 being the
noise variance and I, is the identity matrix.

The significance level a is set to 0.05 and several values are tested for the covari-
ance matrix M (p = 0.25, 0.5, and 0.75). 10® Monte Carlo iterations are considered
to estimate the classification rate and the results are displayed in Figure. 3.4.

The dashed and solid lines correspond to the SCM and FP estimates. Clearly,
the FP estimator is much more robust than the SCM, especially for smaller values
of p.

In this chapter, a new statistical hypothesis test for robust image classification has
been introduced. First, the proposed statistical hypothesis test has been defined,
based on the geodesic distance. Next, its properties have been analyzed in the case
of the zero-mean multivariate Gaussian distribution, by studying its asymptotic dis-
tribution under the null hypothesis Hyp. In the end, the performance of the proposed
classifier has been addressed by analyzing its noise robustness and comparisons have
been made for the SCM and FP estimators. Further on. the statistic Sgp. involved
in the definition of this test, will be applied to PolSAR image classification.
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Figure 3.4: Evolution of the performances of Sgp as a function of the noise variance o2

by using the SCM and FP estimate for various covariance matrices: p = 0.25, 0.5, 0.75 and
m = 3 (Source: |llea et al. 2015b| ©) [2015] IEEE).

3.4 Application to PolSAR Image Classification
The experiments, carried out in this section, have several purposes:

e First, the proposed similarity measure Sgp is applied to simulated and real

PolSAR image classification. In order to obtain the simulated dataset, a Pol-
SAR scenes simulator [Williams 2006] is used.

e Second, the influence of the acquisition parameters (incidence angle, spatial
resolution, number of polarimetric channels) on classification accuracy is ana-
lyzed by considering several simulated databases.

e Third, different strategies are proposed in order to model the dependencies
(spatial, polarimetric) present in PolSAR images.

3.4.1 Database
3.4.1.1 Simulated L-band PolSAR Images

The simulated dataset is created by using the PolSARproSim software [Williams 2006].
This software provides fully polarized simulated SAR images of forest, displaying
properties consistent with real SAR imagery [Williams 2006]. Images are obtained
by specifying various acquisition parameters such as the platform altitude, the inci-
dence angle, the frequency, the azimuth and slant range resolutions, and some forest
stand properties, including the stand area and density, the tree species and their
mean height.

For this study, pine tree forests of 5, 6, 12, 15, 21, 25 and 32 years old are
simulated. This age range has been chosen in order to mimic the real dataset
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available for this test (see Section 3.4.1.2). The platform altitude is set to 3580
meters, corresponding to an airborne system, while the frequency is fixed at 1.3
GHz (L-band). In order to find the best airborne configuration, two experiments
are considered. In the first case, the incidence angle is chosen to be 45° and the
influence of the spatial resolution on classification performance is evaluated. Five
datasets are simulated at a resolution of 0.5, 1, 2, 3 and 5 meters. In the second
case, the image resolution is fixed to 0.5 meters and several incidence angles are
tested: 25°, 35°, 45° and 55°.

In both cases, the stand density (D) and the mean tree height (H) are set
according to the desired stand age, as mentioned in Table 3.1.

Stand age a (years) | 5 6 12 15 21 25 32
Mean tree height H (m) 55 6.5 11.6 13.7 173 192 21.9
Stand density D (stems/ha) | 1200 1200 800 800 400 400 300

Table 3.1: Maritime pine stand density D (stems/ha) and mean tree height H (m) as a
function of stand age (years) (Source: |llea et al. 2015¢| © [2015] IEEE).

The values of the stand density are chosen to be equal to those given by the Cen-
tre Régional de la Propriété Forestiére Aquitaine, for maritime pine forests [CRP 2008],
while the mean tree height H is obtained by using the Maugé theoretical model given
by [Maugé 1987]:

H = H,,0.(1 — 0.96%), (3.16)

where Hp,qr = 30 meters is the maximum height and a is the stand age.

By using these numerical values, a database of 350 images is created for each
experiment and structured in 4 classes, according to the stand age:

e 15t class: less than 10 years (Figure 3.5.a);
e 279 class: between 10 and 20 years (Figure 3.5.b):
e 3™ class: between 20 and 30 years (Figure 3.5.c);

e 4" class: over 30 years (Figure 3.5.d).

3.4.1.2 Real L-band PolSAR Image

The real L-band PolSAR data displayed in Figure 3.6 consists in one fully polari-
metric image (1 meter resolution) acquired on the Nezer maritime pine forest in
France, during an ONERA RAMSES campaign in 2004. From this image, 62 forest
stands between 5 and 48 years old are identified and grouped in 4 classes, as it has
been done for the simulated images.
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Figure 3.5: Examples of L-band pine forest images of: (a) 5, (b) 15, (¢) 21 and (d) 32 years
old simulated with PolSARproSim software for an incidence angle of 45° and a resolution
of 1 meter (Source: [llea et al. 2015¢| © [2015] IEEE).

(¢) ()

Figure 3.6: (a) Real L-band SAR image and examples of pine forest stands of: (b) 5, (c)
15, (d) 21 and (e) 32 years old (Source: |llea et al. 2015¢| © [2015] IEEE).

3.4.2 Methodology

Polarimetric images contain complex values. As a result, each pixel (z,y) in image
I is a complex number having a real part Re(z,y) and an imaginary one I'm(z,y):

I(z,y) = Re(z,y) + ¢ x Im(z,y), (3.17)

where ¢ is the imaginary unit.
For PolSAR image classification, real-valued images can be used. In order to
obtained them. the dB transform is applied:

Iip(x,y) = 10 x logyq ([I(z,y)|), (3.18)

where log,o( -) is the logarithm with base 10, and |I(z,y)| = \/Re(z,y)? + Im(z,y)?
is the number’s modulus.
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Further on, classification algorithms based on single polarized real-valued images
are considered and compared to new proposed approaches, carried out on polari-
metric complex-valued images. The proposed classification methods have to capture
both the textural and polarimetric information present in PolSAR images. Several
strategies for modeling these images and hence, obtaining the corresponding feature
vectors are presented next [llea et al. 2015b, Ilea et al. 2015¢, Llea et al. 2015al.

3.4.2.1 GLCM

The first method consists in computing the gray level co-occurrence matrix (GLCM),
as presented in Chapter 2, for a single polarized real-valued image.

The GLCMs are computed on the image transformed in dB and quantified with
32 gray levels. The number of quantization levels is chosen by taking into consider-
ation the image size. In a Cartesian coordinate system, the GLCMs are functions
of two parameters: the distance d between neighboring pixels and the direction a.
For this study, d varies between 1 and 15, and a = {0°,45°,90°,135°}. The Haral-
ick textural descriptors homogeneity, entropy, and correlation [Haralick et al. 1973]
along with the mean of the gray levels in the initial image are extracted and averaged
in the four directions to reduce the sensitivity to the stand’s orientation [Regniers
et al. 2015a]. This workflow is illustrated in Figure 3.7.

-_’-_b- _b-_.‘ e

Homogeneity Entropy Correlation Mean of IdB

Figure 3.7: GLCM model for a single polarization image.

Later on, in the experimental part, only the channel giving the best results is
considered. According to our tests, the amplitude of the HV channel is chosen and
the method is denoted by GLCM HYV.

Next, the proposed classification methods are detailed.

3.4.2.2 MGD Model for a Single Polarization Image

The first approach uses single polarized real-valued images just like the GLCM based
algorithm. In this case, the image is transformed in dB and decomposed by using
a Daubechies 4 (db4) wavelet transform (W'T'), with 2 scales and 3 orientations in
order to capture the textural information.

Let S and O be respectively the number of scales and orientations of the wavelet
decomposition. Since the subbands of the wavelet decomposition are assumed inde-
pendent, the square geodesic distance between two images I and I3 can be expressed
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as a function of the square geodesic distance computed on each subband as:

S5 0O
dQ(IlaIQ) = szg(MI,S,O:\M2,S,O) (3-19)

g=1 o0=1

where Ml,g,o corresponds to the maximum likelihood estimate of IM; for the subband
at scale s and orientation o.

Next, a 3 x 3 neighborhood is extracted for each pixel in each subband, capturing
the spatial information. Once obtained, the neighborhood’s elements are stacked to
form a vector with 9 elements. The set of all vectors is then modeled by zero-mean
MGDs. The parameter of this distribution, that is the covariance matrix NAI.. is
estimated by the SCM, or the FP algorithms. The entire process is represented in
Figure 3.8.
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Figure 3.8: MGD model for a single polarization image.

For the experimental part, only the channel giving the best results is considered.
In this case, according to our tests, the amplitude of the HH channel is chosen.
The method is denoted by MGD HH + WT + S, where WT states for the wavelet
transform and S denotes the spatial dependence.

When multiple polarimetric channels are available, the polarimetric dependency
can be also exploited, as follows [llea et al. 2015¢].

3.4.2.3 MGD Model for a Three Polarization Image

The HH, HV and VV polarization images are merged into a 3-dimensional array,
with each pixel being a complex number. By using this structure, the polarimetric
information lying in PolSAR images can be used. Three different algorithms are
developed based on:
e the polarimetric dependence (denoted MGD Polar): the complex 3-dimensional
array is modeled by the MGD. For each pixel, the complex information con-
tained in the three polarimetric channels is extracted and organized in a vector
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with 3 elements. The set of all vectors characterizes the cross-channel depen-
dence and it is modeled by the MGD. As a results, a 3 x 3 covariance matrix
is estimated by using the SCM, or the FP algorithms. This workflow is syn-
thesized in Figure 3.9.
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Figure 3.9: Polarimetric dependence.

e the polarimetric dependence and the wavelet decomposition (denoted MGD Po-
lar + WT): the complex 3-dimensional array is filtered using the db4 wavelet
transform with 2 scales and 3 orientations. For each pixel in each subband,
the information contained into the three polarimetric channels is extracted
and modeled by the MGD. Thus, a 3 x 3 covariance matrix is estimated by
using the SCM, or the FP algorithms. The entire algorithm is illustrated in
Figure 3.10.
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Figure 3.10: Polarimetric dependence and the wavelet decomposition.

e the polarimetric and spatial dependence, along with the wavelet decomposition
(denoted MGD Polar + WT + S): the complex 3-dimensional array is decom-
posed using the db4 wavelet transform having 2 scales and 3 orientations. For
each pixel in each subband, a spatial dependence given by a 3 x3 neighborhood
is considered. The 27 extracted elements are structured in a vector and the
set of all vectors is modeled by the MGD, as shown in Figure 3.11. A 27 x 27
covariance matrix is then estimated with the SCM, or the FP estimator.



36 Chapter 3. Robust Classification Workflow on the Space of Covariance Matrices

H. W
- HH )

HY = Re + i"Im

HH = Re +i'lm /

Figure 3.11: Polarimetric and spatial dependence, along with wavelet decomposition.

3.4.3 Results

In the context of a supervised classification approach, the database is randomly
divided into a training and a testing set by a cross-validation procedure. The parti-
tioning algorithm is repeated 100 times and, for each iteration, half of the database
is used for training, while the other half is used for testing. Once the feature vectors
are extracted for all the images, a similarity measure between testing and training
images is computed by using the Mahalanobis distance for the GLCM algorithm
and the statistic Sgp, defined in Section 3.3.1, for the others. All the previously
described algorithms are tested and the retrieval performance is evaluated by means
of the overall accuracy computed for a k-nearest neighbor classifier (k-NN), with k
set to 5.

In the following, the classification performances obtained on both simulated and
real SAR images are presented.

3.4.3.1 Simulated L-band SAR Images

As mentioned in Section 3.4.1.1, two types of experiments are performed on sim-
ulated data, in order to study the impact of the acquisition parameters on the
classification. The considered experiments are designed to find out the best air-
borne configuration (resolution, incidence angle, number of polarimetric channels)
for maritime pine classification according to the stand age. In addition, the relation
between the number of polarimetric channels, resolution and classification perfor-
mance is also studied. In other words, the trade-off between having a single high
resolution SAR image, or a low resolution PolSAR image with two, or three channels
is addressed.

Influence of the image resolution
First, the influence of the image resolution is tested. For this experiment, the
incidence angle is fixed to 45° and the image resolution varies from 0.5m to 5m.
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Figure 3.12 draws the influence of distance d to find its best value for the GLCM
method. It can be seen that distances between 1 and 5 pixels give the best results.
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Figure 3.12: Influence of distance d in GLCM on classification accuracy for different
spatial resolution (HV channel) (Source: [llea et al. 2015¢| ©) [2015] IEEE).

Next, Figure 3.13 shows a comparison between the GLCM algorithm and the
statistical based approaches, knowing that each time, the polarization with the
best performance is retained. In addition, both SCM (Figure 3.13.a) and FP (Fig-
ure 3.13.b) estimators are used. By analyzing these results it can be noticed that
for simulated data it is better to have one very high resolution polarization channel
(99 + 1% for MGD HH + WT + S at 0.5 meters) than a low resolution fully po-
larimetric SAR image (85 +4.5% for MGD Polar at 5 meters). For this example,
a significant gain of about 14 points is observed. Further on, for high resolution
images, the FP estimate improves the classification results over the SCM estimate.
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Figure 3.13: Influence of the spatial resolution on classification accuracy for simulated
L-band SAR images with incidence angles of 45°, knowing that (a) the SCM and (b) the
FP methods are used for the covariance matrix estimation.
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Influence of the incidence angle

Second, the influence of the incidence angle is analyzed. For this experiment,
the image resolution is fixed to 0.5m and several incidence angles are considered.
Like in the previous case, tests are performed to find the appropriate distance d
for the GLCM algorithm and the results are shown in Figure 3.14. The best clas-
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Figure 3.14: Influence of distance d in GLCM on classification accuracy for different
incidence angles (HV channel).

sification rates are retained and compared in Figure 3.15 with those given by the
statistical based methods. In addition, both the SCM (Figure 3.15.a) and the FP
(Figure 3.15.b) estimators are used. As it can be seen, the GLCM HV is influ-
enced by the incidence angle, while some small changes can be spotted for the other
methods.
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Figure 3.15: Influence of the incidence angle on classification accuracy for simulated L-
band SAR images having a resolution of 0.5 meter, knowing that (a) the SCM and (b) the
FP methods are used for the covariance matrix estimation.
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3.4.3.2 Real L-band SAR Images

Even though PolSARproSim provides a fair level of realism, significant differences
can be observed between simulated (Figure 3.5) and real data (Figure 3.6). Those
differences are the results of various phenomena, such as forest management prac-
tices (thinning operations, plantation density) and natural hazards (storm damages),
yielding to some within-class diversity. Hence, as displayed in Table 3.2, classifica-
tion results on real SAR images are lower than those shown in Section 3.4.3.1 on
synthetic dataset. Similar to the case of simulated images with a resolution of 3
and 5m, the best results are given for GLCM HV (86.6 + 5.6%) and MGD Polar
(84.0 + 4.4%) methods. Based on the fact that for these resolutions, the SCM and
FP estimator perform very similar, only the results obtained by using the SCM have
been reported.

Classification method | Overall accuracy
GLCM HV 86.6 5.6
MGD HH + WT + S 59.0+£5.4
MGD Polar 84.0+4.4
MGD Polar + WT 81.8+4.0
MGD Polar + WT + S 63.5+4.9

Table 3.2: Comparison between the classification algorithms for real L-band SAR. images,
knowing that the SCM method is used for the covariance matrix estimation.

3.4.3.3 Results Synthesis

To synthesize the results reported in this section, the following conclusions can
be expressed concerning the acquisition parameters. For high resolution images,
the link between the forest structure variables (stand age and density, tree height,
diameter of tree crown, etc) and the image texture can be exploited. On the other
hand, for low resolution images, the textural information is no more visible, but the
polarimetric information can be useful in classification. These observations have
been confirmed by the experiments performed on simulated data. In this case, the
results have shown that it is better to have one very high resolution polarization
channel than a low resolution fully polarimetric SAR image. Due to the presence
of within-class diversity, this observation can be slightly modified for real PolSAR
data.

3.5 Influence of a PDE Based Filtering on PolSAR Im-
age Classification

3.5.1 SAR Images and Speckle Noise

SAR images are characterized by a granular noise pattern, called speckle. This noise
is due to the roughness of the analyzed surface with respect to the radar wavelength.
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More precisely, in order to obtain SAR images, the target region is illuminated with
microwave pulses and the returned signal is recorded. This echo consists of the
reflected waves corresponding to the scatterer elements contained in a resolution
cell. Since the location of scatterers varies, the received waves are coherent in
frequency, but not in phase, causing a pixel-to-pixel variation in intensity, known as
the speckle [Lee & Pottier 2009].

From the image processing point of view, this type of noise makes it difficult to
analyze SAR images, having a negative impact on the accuracy of image segmen-
tation, or classification [Lee & Pottier 2009]. In order to develop efficient methods
to deal with the speckle, its statistical properties have to be taken into account.
Therefore, in [Lee 1980] it has been shown that the speckle can be described in
terms of a multiplicative noise model:

I(z,y) = R(z,y) x N(z,y), (3.20)

where I(-) is the acquired SAR image, R(-) is the noise free reflectance, N(-) is
the noise and (z,y) is the considered pixel. In the same work, he proposed the use
of the local mean and local variance, for image filtering. This method has been
extended next, in [Lee 1981], by using the local gradient information. Being defined
on a sliding window, these methods may be influenced by the window’s size and
form. In [Vasile et al. 2006], another approach, has been introduced. By using the
region growing algorithm, the authors proposed the construction of adaptive neigh-
borhoods for the averaging process. Different filtering methods, based on non-local
means [Zhong et al. 2014, Deledalle et al. 2015], or on partial differential equation [ Yu
& Acton 2002] have been also used for image filtering.

The advantage of partial differential equation (PDE) based algorithms lies in
the possibility of defining adaptive diffusion functions. These functions allow both
smoothing and edge preservation, or even edge enhancement. Therefore, in the
following, a PDE based algorithm, more precisely the one introduced in [Terebes
et al. 2015, Terebes et al. 2016], will be considered for PolSAR image denoising.

3.5.2 Noise Removal Algorithm Using Directional Diffusion

In [Terebes et al. 2015, Terebes et al. 2016], we propose a new directional diffusion
method for speckle filtering, based on the multiplicative gradient for edge detec-
tion [Mora et al. 2012|. This filtering technique is a PDE based approach, that
iteratively regularizes the PolSAR images, by updating their values at each position
on a discrete two-dimensional grid.

3.5.2.1 Model

In order to develop the mathematical model of the proposed filtering algorithm, the
input vector C is first introduced:

C=[HH|* 2HV|> |VV|]], (3.21)
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where |-| represents the modulus, while HH, HV and V'V are the three complex-
valued channels available for PolSAR data. It has to be mentioned that this method
can be applied on all the elements in the polarimetric covariance matrix.

Next, starting from C, the span of the PolSAR data is computed, serving as the
support for the construction of the multiplicative gradient. For a given iteration t,
the span is expressed, at the spatial position (z,y) as:

3
S(z,y,t) =Y Ci(x,y,1), (3.22)
i=1

with C; being the elements of vector C. For simplification, S(z,y,t) is denoted
further by S. With this notation and based on the procedure presented in [Terebes
et al. 2015], the norm of the multiplicative gradient |V;S|| can be approximated.
The approximation is performed considering that the span S has been spatially
discretized on an equally sampled grid, resulting that [Mora et al. 2012]:

IV,S|| = exp | 1/In? Smitn) | g2 (Smati) ) (3.23)
Sm,n Sm,n

where m and n are points on the discrete grid and In(-) is the natural logarithm.

In practice, a smoothed version of the expression in (3.23) is used, by convolving
S with the Gaussian kernel G4 of standard deviation o. The use of |V4(Gy * S)||
is motivated by the need of a noise robust operator.

Further on, the PDE based filter is defined by smoothing along two axes u and
v that captures the geometry of all the polarimetric channels. These two axes are
obtained starting from the structure tensor proposed in [Di Zenzo 1986] by using
the elements Cj of C:

3
Gp* Y VG (VC)T, (3.24)
i=1
where G, is a Gaussian kernel function of standard deviation p. More precisely. u
and v are the eigenvectors of the structure tensor, corresponding to its smallest and
largest eigenvalues.
In the end. the PDE based filter can be expressed as:

aC;
ot

where g” and g* are the diffusion, or smoothing, functions. In order to have an adap-

= % l9” (IV5(Go * S)II) Ci,] + % (6" ([Vn(Gy * 9)|)) Cid] , (3.25)

tive smoothing along u and still preserving the information along v, these functions
are chosen as proposed in [Tsiotsios & Petrou 2013]:

g°(s) = exp {_ (Ki)Z} (3.26)

g“(s) = o (3.27)

and
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with K, and K, being the diffusion thresholds along the v and u axes. In addition,
for each element Cj the directional derivatives along v and u are defined:

oC;

C;, = 5 (3.28)
and -
. i

Ci, = B (3.29)

Due to the use of two different smoothing functions, small-scale coherent struc-
tures can appear in the evolving image. These artifacts can be reduced by incor-
porating the orientation noise in the proposed PDE. Therefore, for each pixel, the
orientation given by the structure tensor in (3.24) is modeled by a random process
having the following m-periodic probability density function:

1 (0 — 0m)?
p(ﬂlgm;o'a) 0.8 mo'g exp { — T"?}? (33[])

where 0 € [—%, %] O is the variable’s mean given by the eigenvector corresponding
to the smallest eigenvalue of the structured tensor in (3.24) and oy is the variable’s
standard deviation defined as:

A1 — Ag
op—a1-21"22) 3.31
) ( Alm) (3.31)

where A; and Ag are the largest and smallest eigenvalues of the structure tensor.
a represents the maximum variance of the distribution modeling the orientation
estimation process and it is measured in degrees.

3.5.2.2 Numerical Approximation

The continuous model given in (3.25) can be numerically approximated by using a
spatial and a temporal discretization. For the spatial discretization, the image is
assumed to be represented on a discrete grid, equally sampled on the directions of
w and v. In addition, for the temporal discretization, uniformly distributed discrete
moments are considered. As a result, the continuous function C(z,y,t) is trans-
formed into its discretized version C(mh,nh,adt), where m and n are the discrete
spatial coordinates, h is the distance between two neighboring points, dt is the time
discretization step and a is the number of iteration needed to obtain the scale ¢. For
the experimental part, h is considered to be 1 and dt is set to 0.2.
Based on these observations, the following differences are introduced:

DE(Cy) = +(Cippyy, — Ci (3.32)

mEln m,n)

and

‘D’t:i:(ci) = :l:(cim‘nj:l - C?"m,n)i‘ (333)

where the values corresponding to (m £ 1,n) and (m,n + 1) are obtained by means
of biquadratic interpolations |Terebes et al. 2004].
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In the end, the expression in (3.25) can be approximated by:

ac;

= " (IIVy (Go %) [|) D (Ci) — ¢“ (IIVy (Go % S)||) Dy (i)
+¢° (IVS (Go % 8) ) D (C) — ¢° (IVY (Go +S) ) Dy (Ci),  (3.34)

ot

where for h = 1;

IVE (G w8 | = 192G *S)mstn + 19 (Co +S) -
9 (G +8) | = [V1Co #ntn + V0 Co 2 Dl 55
73 (G w8) | = IV2.Co 2 Dt + 190G *S)lma (5
195 (G0 = 170G *lmass + V0 G #S)llma (5

3.5.2.3 Parameters

This PDE based filtering method has several parameters that are detailed next:

the standard deviation o: characterizes the Gaussian kernel G, used for regu-
larization. In practice, the best results have been obtained for values between
0.5 and 1;

the standard deviation p: characterizes the Gaussian kernel G, and it rep-
resents the size of the structure tensor. Values between 1 and 3 have been
considered in practice;

the diffusion threshold K,: characterizes the diffusion along v at each itera-
tion, it depends on the time and the spatial position. In practice it has been
computed as a predefined percentage S of the integral value associated to the
histogram of (3.23). Typically, 8 takes values between 0.5 and 1;

the diffusion threshold K,: characterizes the diffusion along w. Its value is
related to Ky, by considering that Ky, = vK,, with v > 1;

the standard deviation oyp: is a parameter of the probability density function
in (3.30) and it is related to parameter a, as expressed in (3.31). This param-
eter represents the maximum variance of the orientation estimation process
and its values are expressed in degrees. In practice, high values give efficiently
restored homogeneous regions, but on the other hand, they can degrade the
filter’s performance on edges. The best results have been obtained for values
between 10 and 50.

3.5.2.4 Evaluation

The noise removal algorithm has been tested on both simulated and real PolSAR

data,

in order to evaluate its performances.
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For the first experiment, a synthetic image with Wishart noise has been consid-
ered. This image has been created by using the NL-SAR toolbox [Del | and it is
shown in Figure 3.16.a. along with the results of several filtering algorithms. Fig-

(d) ()

Figure 3.16: Filtering results for a synthetic image: (a) original noisy image, and the
filtered images by using (b) the boxcar filter, (¢) the SRAD filter |[Yu & Acton 2002],
(d) the NLSAR filter |Deledalle et al. 2015|, (e) the proposed method (Source: |Terebes
et al. 2016] © [2015] IEEE).
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ure 3.16.b presents the image obtained by using the boxcar filter and it can be seen
that the high frequency content has been eliminated. Figure 3.16.c represents the
result given by the SRAD filter [Yu & Acton 2002|, which preserves the edges, but
it is less efficient for homogeneous regions. Figure 3.16.d shows the results of the
NL-SAR filter [Deledalle ef al. 2015], while Figure 3.16.e contains the results of the
proposed method. This last image has been obtained for p = 2.5, 0 = 0.5. The
observation scale has been set to 150 iterations and dt = 0.2, § = 0.5, v = 2 and
op = 40°

For the second experiment, the Niigata Pi-SAR dataset provided by the Pol-
SARpro software [Pol | has been considered. This image is shown in Figure 3.17.a.
Several filters have been used to remove the noise and the results are reported
for comparison: the refined Lee filter [Lee 1981] in Figure 3.17.b, the IDAN ap-
proach [Vasile et al. 2006] in Figure 3.17.c, the non local means based filter [Zhong
et al. 2014] in Figure 3.17.d and the proposed method in Figure 3.17.e. The last
image has been obtained for p = 2.5, ¢ = 0.5. In addition, the observation scale has
been set to 15 iterations and dt = 0.2, 8 =0.7, v = 3.

For the third experiment, the real PolSAR image, presented in Figure 3.6 has
been considered. A zoom on this image is shown in Figure 3.18.a and several filtering
algorithms have been compared: the Gaussian filter (Figure 3.18.b), the boxcar filter
(Figure 3.18.¢), an extension of the SRAD filter for PolSAR images (Figure 3.18.d)
and the proposed method (Figure 3.18.e).

The parameters of the proposed method are the following. First, the size of the
structure tensor pis set to 2.5. In addition, the standard deviation o of the Gaussian
kernel used for regularization is computed based on a linear decreasing function, as
mentioned in [Whitaker 1993]. The observation scale is set to 5 iterations, dt = 0.2,
B =0.25 and v = 1.25.

By analyzing the simulated and real images produced by the proposed method it
can be noticed that this filtering algorithm is capable to preserve the high frequency
information on edges and textures.

In the next section, the PDE based filtering method is evaluated in the context
of PolSAR image classification.

3.5.3 Classification Results

In the following, some of the experiments described in Section 3.4 are repeated on
filtered images. The purpose of the performed tests is to study the influence of
filtering on the classification.

The classification workflow consists in several steps. First, the amplitude image
of each polarization is filtered using the PDE based approach. Next, the covariance
matrices are estimated using the SCM algorithm and the MGD model for a single
polarization image, introduced in Section 3.4.2.2, is considered.

The tests are carried out on the real L-band SAR image database and the results
are reported in Table 3.3. The classification performances are compared to those
obtained for no filtered data, but also with those obtained for other filters, namely



46 Chapter 3. Robust Classification Workflow on the Space of Covariance Matrices

Figure 3.17: Filtering results for the Niigata Pi-SAR PolSAR dataset: (a) original noisy
image and the filtered images obtained by using (b) the refined Lee filter [Lee 1981], (c) the
IDAN filter |Vasile et al. 2006], (d) the non local means based filter |Zhong et al. 2014], (e)
the proposed method (Source: |Terebes et al. 2016] © [2015] IEEE).

the Gaussian filter. the boxcar filter and the SRAD filter. The parameters for all
the filters are the same as the ones used to obtain the images in Figure 3.18.

Classification method Original Filtered database
database
G aussian Boxcar SRAD PDE
MGDHH + WT 4+ S | 57.94+6.15 | 63.00+4.09 | 62.28 +4.24 | 63.03 £5.14 | 65.47+2.99
MGDHV + WT + S | 61.09+5.32 | 61.38+3.94 | 62.88 +4.64 | 60.25+6.05 | 64.47+3.37
MGD VV + WT 4+ S | 59.66 +4.68 | 60.94+5.66 | 65.50+4.68 | 61.58 +5.20 | 65.91 +4.26

Table 3.3: Comparison hetween the
and filtered real L-band SAR images.

classification

performances obtained on non-filtered

In addition, it has to be mentioned that the classification results obtained for

the original database are slightly different from the results reported in Table 3.2.
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Figure 3.18: Filtering results for the real PolSAR dataset. Zoom on the (a) original noisy
image and on the filtered images obtained by using (b) the Gaussian filter with o =1, (c)
the boxcar filter of size 5 x 5, (d) an extension of the SRAD filter for PolSAR images, with
5 iterations and dt = 0.2, (e) the proposed method.
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This difference is explained by the fact that the training and testing datasets are
not the same for the two experiments.

For these parameter choices, it can be noticed that the classification results are
improved by filtering the PolSAR image by using the proposed directional diffusion
method. Therefore, the PDE based speckle denoising demonstrates its importance
as a preprocessing step in the classification workflow.

3.6 Conclusions and Perspectives

3.6.1 Conclusions

In this chapter. a classification algorithm on the space of covariance matrices has
been introduced. Several aspects have been addressed.

First, the choice of an appropriate descriptor that takes into account most of the
information contained in the images has been discussed. For this purpose, multiscale
approaches have been considered. As a result, the images have been decomposed
into a set of wavelet subbands.

Second, a distribution capable to model the previously extracted coefficients has
been searched. At this point, the use of the zero-mean multivariate Gaussian distri-
bution has been considered to capture the dependencies existing in images, such as
textural, or polarimetric dependencies. This model is characterized by its parame-
ter, which is the covariance matrix. By estimating it, the image signature has been
obtained. Knowing that robust classification methods are desired, the covariance
matrix estimator had to be a robust one. Therefore, a comparison between the
sample covariance matrix and the fixed point estimator, also known as the Tyler’s
estimator, has been carried out in terms of robustness to outliers.

Third, the idea of having a robust decision making strategy for the classification
has been addressed. To solve this problem, a statistical hypothesis test has been
proposed, based on the geodesic distance. At the beginning, the test has been used
along with the MGD model and the SCM estimator. Next, it has been applied to
the robust FP estimator and its classification efficiency and noise robustness have
been studied.

Further on, the introduced statistic, called Sgp. has been applied to PolSAR
image classification, on both simulated and real data, illustrating the potential of
the proposed classifier. The experiments performed on simulated data have been
designed in order to find the best airborne configuration for maritime pine classifi-
cation according to the stand age. In this context, the results have shown that it is
better to have one very high resolution polarization channel than a low resolution
fully polarimetric SAR image. Due to the presence of within-class diversity, those
conclusions are slightly modified on real PolSAR data.

In the end, a preprocessing step has been added for PolSAR data. This step
consists in filtering the speckle that characterizes this type of images, without de-
stroying the textural content. For this purpose, a partial differential equation based
algorithm has been proposed. The mathematical formalism and its numerical ap-
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proximation have been given. The algorithm’s results have been qualitatively evalu-
ated on both synthetic and real data. In addition, it has been tested in the context
of image classification, showing an improvement of performances.

3.6.2 Perspectives

Further work will include:

e The extension of the hypothesis test to the case of robust estimators: in Sec-
tion 3.3.1, a hypothesis test has been introduced, based on the geodesic dis-
tance. The statistic Sgp used in the test’s definition, has been studied and it
has been shown that for the ML estimator of the covariance matrix, it follows
a xHp distribution, under Hyg. DF denotes the number of freedom degrees
and it is equal to the dimension of the parameter space. The hypothesis test
has been applied next to the FP estimator, knowing that the statistic’s dis-
tribution under Hg has been empirically computed. In order to obtain the
theoretical distribution of the test statistic for robust estimators, the number
of freedom degrees has to be readjusted, which represents the subject of on
going work.

e The development of an automatic method to tune the parameters of the PDE
based filter: in Section 3.5, a PDE based filtering method has been introduced.
This method, has several parameters that have to be specified. In the reported
results, these parameters have been tuned case by case, in order to obtain
the best results. Future work will address the development of an automatic
method to determine the best filter parameters.
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4.1 Introduction

Many works have been dedicated in the literature for the statistical modelling of
covariance matrices. Due to its mathematical tractability, the Wishart distribution
is certainly the most largely used model in the literature [Wishart 1928, Good-
man 1963]. Nevertheless, this model assumes Gaussian statistics for the observa-
tions which may not be realistic in practice. More advanced models have hence been
proposed based on the so-called scalar product model. These compound models in-
clude the KC [Lee et al. 1993], G° [Freitas et al. 2003] and KummerU [Bombrun &
Beaulieu 2008] distributions. They have shown promising results notably for the
classification of high resolution polarimetric SAR images. Inspired from clustering
approaches on Riemannian manifolds [Barachant et al. 2013, Nielsen 2013], there is
another way to model covariance matrices. By considering Rao’s distance on the
manifold of covariance matrices, there is a canonical way to define the mean or
barycentre of several covariance matrices in this manifold. Based on this concept,
the Riemannian Gaussian distribution (RGD) has been introduced to model the
statistical variability of real covariance matrices [Said et al. 2015b].

This probability density function is characterized by two parameters, its central
element and its dispersion around this central element. For this model, the maximum
likelihood estimator (MLE) of the central value corresponds to the Riemannian
center of mass. While being efficient to model the mean element, this estimator is
easily influenced by the presence of aberrant data [Bishop 2007, Afsari 2011, Formont
et al. 2013]. In practice, outliers may arise from faulty measurements, or they
may be explained by the inherent variability of data. To overcome this problem, a
robust estimator of the central element can be considered, such as the Riemannian
median [Yang 2010, Barbaresco et al. 2013, Fletcher et al. 2009]. Therefore, we
have introduced in [Hajri ef al. 2016] the Riemannian Laplace distribution (RLD),
a generative model for which the MLE of the central element is the Riemannian
median. This distribution depends also on two parameters: the central value and
the dispersion.

In this chapter, the RGD and the RLD are defined and they are used, in the
context of texture image classification. In order to model the within-class diversity,
the mixtures of RGDs or RLDs, can be considered. In this case, a new parameter
appears that is the mixture’s weight. The entire classification workflow is shown in
Figure 4.1 and it consists in several steps.

First, starting from the initial database, the covariance matrices representing
the image signature are extracted, during the feature extraction stage. This step
has been already detailed in Chapter 3. Knowing that supervised classification
algorithms are applied, the dataset is divided into two subsets. One of them is
used for training, and the other one for testing. Next, the elements in the train-
ing set are modeled on the Riemannian manifold by mixtures of RGDs, or RLDs,
and the parameters characterizing each image class (the central value, the disper-
sion and the mixture’s weight) are estimated by using algorithms like k-means, or
expectation-maximization (EM). To obtain the estimated values, these two well-
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Figure 4.1: Classification workflow based on Riemannian distribution modeling on the
space of covariance matrices.

known clustering methods are adapted for working on the Riemannian manifold.
Details on the demanded modifications will be provided later in this chapter. In
the end, the classification is performed, by assigning each test observation to the
closest training set in terms of a predefined criterion. For this purpose, the classical
linear discriminant analysis and quadratic discriminant analysis are generalized to
the case of covariance matrices.

The chapter is structured as follows. Section 4.2 introduces some theoretical
elements concerning the Riemannian geometry on the manifold of covariance ma-
trices. Section 4.3 and Section 4.4 define respectively the Riemannian Gaussian
distribution and the Riemannian Laplace distribution. In addition, the parameter
estimation process is detailed. Moreover, the mixture models are described and
both the k-means and EM algorithms are detailed for these Riemannian distribu-
tions. These algorithms demand the definition of the number of mixture models,
or clusters. In order to automatically compute the appropriate value, the Bayesian
Information Criterion (BIC) is considered. In Section 4.5, the RGD and RLD are
compared for texture image classification and the influence of outliers is analyzed.
In the end. Section 4.6 reports some conclusions and perspectives.

4.2 Riemannian Geometry on the Manifold of Covari-
ance Matrices

4.2.1 The Space of Symmetric Positive Definite Matrices

Let Pm, be the space of all m x m symmetric and positive definite matrices M €

R™ ™ satisfying the following conditions:

M-MT =0 (4.1)
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and
xTMx > 0, (4.2)

¥x € R™ and x # 0.

In practice, the space P can be represented, for instance, by the space of
structure tensors [Rosu et al. 2016], diffusion tensors [Fletcher & Joshi 2007, Pennec
et al. 2006], or even non-degenerate covariance matrices [Said et al. 2015b].

4.2.2 Riemannian Geodesic Distance

The ideas of similarity and distance in the space Py, can be expressed by means of
the Rao’s distance, or geodesic distance. The geodesic distance between two points
M; and M3 on the manifold is given by the length of the shortest curve connecting
the two points [Terras 1988, Helgason 2001].

Mathematically, this definition can be stated as follows [Said ef al. 2015a]. Let
d: Pm X Pm — Ry be the geodesic distance, My, My € Py, and ¢: [0,1] — P
a differentiable curve, with ¢(0) = M; and ¢(1) = Ms. Thus, the length of curve ¢,
denoted by L(c) is computed as:

L(c):/;‘

and the geodesic distance d(Mi,M3) is the infimum of L(c) with respect to all
differentiable curves ¢. Based on the properties of this metric, it has been shown

dc
—||dt 4.3
o (4.3)

that the unique curve v fulfilling this condition is:
1 1 _1\t 1
A(t) = M? (M; MM, ) M2, (4.4)

called the geodesic connecting WM; and My, In the end, the geodesic distance be-
comes [James 1973]:
_1 _1y72
d*(My, M) = tr|log (M; 2MoM; ?) | = 3 (in )2, (4.5)

i

with A;, ¢ =1,...,m being the eigenvalues of MQ_IMl. This equation is equivalent
to the one introduced in (3.12). For simplicity, the constant equaling % in (3.12)
will be omitted. since this constant can be transferred to the dispersion parameter
of the Riemannian distributions.

4.2.3 Riemannian Exponential Mapping and Riemannian Loga-
rithm Mapping

The Riemannian exponential mapping and Riemannian logarithm mapping are two
operators that make possible the transition between a point on the manifold M; €
P, and the tangent space at that point Tyy,. This space contains the vectors V'
that are tangent to all posible curves passing through Mj, as shown in Figure 4.2.
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Tangent space Tms

Figure 4.2: Illustration of the tangent space Ty, at point My € Pp,.

More precisely, the Riemannian exponential mapping for a point My € P,, and
the tangent vector V' is given by [Higham 2008, Fletcher et al. 2009]:

1 _1 _1 1
M, = Expyy, (V) = M? exp (Ml 2V M, 2)Mf, (4.6)

where exp( ) is the matrix exponential. By this transformation, the tangent vector
V can be mapped on the manifold.

Further on, the inverse of the Riemannian exponential mapping is the Rieman-
nian logarithm mapping. Between two points My, My € P, this operator is given
by [Higham 2008, Fletcher et al. 2009]:

1 _1 _1 1
V = Logyy, (My) = M? log (M1 M, M, 2)M12, (4.7)

where log(-) is the matrix logarithm. In practice, this operation gives the tangent
vector V', by transforming the geodesic 7 in a straight line in the tangent space.
In addition, the geodesic’s length between M; and My is equal to the norm of the
tangent vector V.

By using all these theoretical aspects concerning the space Pp,, the Riemannian
distributions are introduced next.

4.3 Riemannian Gaussian Distributions

4.3.1 Definition

The probability density function of the Riemannian Gaussian distribution (RGD)

with respect to the Riemannian volume element, in the space Pp, of m x m real.

symmetric and positive definite matrices, has been introduced in [Said et al. 2015b]

as:

d?(M, M) }
1

- 1
p (M|M, 0') = ——exp {— 552

7 (4.8)
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where M € P,, is the central value and o € R is the dispersion parameter. d(-)
is the Riemannian distance given in (4.5) and Z(o) is a normalization factor inde-
pendent of M. The computation of this factor is detailed next.

4.3.2 Normalization Factor

4.3.2.1 Definition

The normalization factor Z(o) has the following expression [Said et al. 2015a]:

Z(0) = / exp {—M}dv(M}, (4.9)

202

where dv(M) is the Riemannian volume element. For the special case, of m = 2
this factor has a close form [Said et al. 2015a]:

Z(0) = (2m)*/% 62 exp(c?/4) exf(c /2), (4.10)

where erf(-) is the error function, defined as [Lebedev & Silverman 1972]:

erf(t}:£ exp(—z?)dz. (4.11)

For larger matrices, that is for M € Pp, m > 2, the values of Z(o) can be
computed by using the Monte Carlo integration technique. Starting from (4.9), it
has been shown in [Said et al. 2015b] that the normalization factor has the general

expression:
Z(0) = qm ¥ I [] sink Iri =il g (4.12)
o) =dqm Lep g LS 5 r1...drm, :
i<j
where |r| = (r? +... + rﬁl)% and g, is given by:
m2
1 2 m(m—1)

=— — 4.13
Il Tin() (4.13)

Fm(-) is the multivariate Gamma function [Muirhead 1982] defined as:

Tim(y) =7 5 f[r (y + 11) , (4.14)

i=1 2

and I'(-) is the Gamma function.

4.3.2.2 Numerical Computation of Z (o)

In practice, the evaluation of the expression in (4.12) is done by sampling r from a
zero-mean multivariate Gaussian distribution of covariance matrix o2l

1 xTx
2 - - 415
p (x|o Im) = (2?1.)% e exp { 553 }, (4.15)
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with I, being the identity matrix of size m x m. Therefore, the normalization factor

in (4.12) becomes:

Z(0)=(2m)20™E |gm Hsinh {w} , (4.16)

i<j

where E[-] denotes the expectation with respect to the zero-mean multivariate
Gaussian distribution and gy, is given in (4.13). In [Zanini et al. 2016] it has been
shown that the Monte Carlo integration may lead to instability problems for large
values of m. To solve this problem, the authors of have proposed to smooth the
results by means of cubic spline functions. In the end, tables containing the values of
Z (o) can be built. Some examples are shown in Figure 4.3, where the normalization
factor is plotted for three dimensions of covariance matrices m = 3. 5 and 10 and o

varying from 0 to 0.7.

100
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(o

Figure 4.3: Normalization factor Z(o) as a function of dispersion o for different matrix

S1ZeS.

Besides the normalization factor, in the expression of the RGD, there are also
two parameters: the central value and the dispersion. The algorithms to estimate

them are presented in the next section.

4.3.3 Parameter Estimation

The RGD’s parameters, the central value and the dispersion, can be estimated
through the maximum likelihood estimation (MLE), as follows.

Let M = {Mp}n=1:~ be a set of N independent and identically distributed
(i.i.d.) samples according to a Riemannian Gaussian distribution of central value
M and dispersion o. First, the MLE of the central value M is the Riemannian
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center of mass M, obtained by minimizing the cost function:

N
four (M) = 3 (M, My), (4.17)
n=1

where d(-) is the geodesic distance [James 1973] introduced in (4.5). Details on
the computational algorithm can be found further, in Section 5.2.1. Next, the MLE
estimate & of dispersion o is given by the solution of:

o x 27 (0) = fou (M), (118
o

with Z (o) being the normalization factor. In practice, for m = 2 the dispersion
equation is solved by a conventional Newton-Raphson algorithm [Said ef al. 2015al.
If m > 2, the expression in (4.18) is evaluated by means of Monte Carlo integration.
In this case, a table containing the values of %Z (o) has to be built. The same
steps as for the computation of Z(o) are followed. First, the derivative of Z (o) with
respect to o is expressed:

4 g = /p ) COLM) {_M}dv(w

do o3 202
r|? r|? . TP —Tj
:qu/leg—Lexp{—%} gsmh{%} dry...dry, (4.19)

1
where |r| = (r? + ...+ 72)2 and gn, is given in (4.13). Next, vector r is sampled
from a multivariate Gaussian distribution and the final expression is achieved:

d m % oo [ 1w —
%Z(U) =(2m)20™ E |gm 5 Hsmh {T . (4.20)

i<j

with E[-] being the expectation with respect to the zero-mean multivariate Gaussian
distribution of covariance matrix o2 I,.

4.3.4 Mixture Model for RGDs

Earlier in this section, the RGDs have been introduced in (4.8). Their definition
has been also generalized for mixture models.

Let M = {Mp}n=1.n, with M,, € Py, be a sample of N ii.d observations
modeled by a mixture of K Riemannian Gaussian distributions. Starting from (4.8),
the probability density function for a mixture of K RGDs can be defined as [Said
et al. 2015b]:

p(M|f) = Z wg P (M|Mk, O'k) , (4.21)
k=1

where 6 = {(wg, My, 0k)1<k<k } is the parameter vector. wy, are positive weights,
with ZkK=1 w =1 and p (M|My, 0%) is given by (4.8).
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For each component k = 1,..., K. the parameters 0 = {(ﬁrk,Mk,&k)lngK}
can be estimated by using several algorithms, like k-means, or the expectation max-
imization. These estimation methods are detailed next.

4.3.4.1 Parameters Estimation by Using the K-means Algorithm

The simplest estimation method implies the computation of centroids M, of clus-
ters cg, k = 1,..., K by using the intrinsic k-means algorithm on the Riemannian
manifold [Faraki et al. 2015a]. Thus, for each cluster ¢, the cost function

N,
fom(My) = Nik Z d? (M, My,) (4.22)
n=1

has to be minimized, where Mg, € ¢k, n =1,..., N and Ny is the cardinal of c.
The minimizer of the cost function defined in (4.22) is known to be the Riemannian
centre of mass of ¢;. The estimation procedure is repeated for a fixed number of
iterations Npgg, or until its convergence, that is until the values remain almost
stable for successive iterations.

Next, once that centroids My, are determined, for each cluster ¢, the estimated
dispersion parameter g is obtained as the solution of:

d -
o % RZ(%) = fom (Mg), (4.23)

where Z (o}) is the normalization factor for the k™™ mixture. As mentioned earlier,
this latter is solved by a conventional Newton-Raphson algorithm [Said et al. 2015a]
for m = 2 and by using the Monte Carlo integration, if m > 2.
Finally, the estimated weights @0 are given by:
N
K N
> k=1 Vi

All the estimation procedure is synthesized in Algorithm 1.

Wk (4.24)

4.3.4.2 Parameters Estimation by Using the Expectation-Maximization
Algorithm

The second approach for the estimation of parameters § = {(wk,Mk,ok)lngK}
implies the use of the expectation-maximization algorithm (EM), introduced in [Said
et al. 2015a] for mixtures of RGDs. In their work, the EM algorithm has been
extended to the Riemannian case, as follows.

First, two quantities are defined for each mixture component k, k=1,...,K:

@i X p(My| My, o%)

wk(M 19) = —
M YK @ x p(Ma| M, 0%)

(4.25)
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and

N
nk(0) = wie(My). (4.26)
n=1

Next, the estimated parameters 0 = {(ﬁk,l\_/lk,&k)lgkgff} are iteratively up-
dated based on the current value of :

e The mixture weight @y, is given by:

. ni(9)

> k=1 7k(0)
e The central value ﬁk is computed as:
—— N -~
M, = a,rgminZwk(Mn,ﬂ)d2(M, M,,); (4.28)
M n=1
e The dispersion &y, is obtained as:
N - -
Gr = ®(ni'(0)) x Y wi(Mpy, 6)d*(My, My), (4.29)
n=1

where ® is the inverse function of o s o3 x % log Z (o).

It has to be mentioned that the order of the above steps has to be respected to
obtain the estimated parameters, i.e. convergence is ensured.

Similar to the k-means algorithm, the estimation procedure is repeated for a
fixed number of iterations Npge. or until the values remain almost stable for suc-
cessive iterations, that is the algorithm’s convergence. The estimation procedure is
synthesized in Algorithm 2.

4.3.4.3 Bayesian Information Criterion

The k-means and EM algorithms are implemented based on a predefined parameter,
that is the number of mixture components K. In order to circumvent this drawback.,
the Bayesian Information criterion (BIC) can be used. In [Prendes et al. 2015], the
authors considered another method, that is a Bayesian non parametric approach
through a Dirichlet process mixture (DPM) model to estimate the mumber of com-
ponents in the mixture model. In the following, the BIC will de considered. This
criterion has been introduced in [Schwarz 1978|, and it represents a method to au-
tomatically find the best value of K for fitting the data.

Let M = {My}p—1.n, with My, € Pp,, be a sample of N i.i.d observations mod-
eled by a mixture of K Riemannian Gaussian distributions, where K is unknown.
By using the BIC, the estimated value K is obtained according to:

K = arg min BIC(K), (4.30)
K
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Algorithm 1 K-means estimation algorithm for mixtures of K RGDs
Input: My,..., Mpy. K, Nnpax
for k=1:K do
Initialize M}, randomly.
forn=1:N do
Assign My, to its closest centroid Mp.

end for
end for
it = 1.
repeat
for k=1: K do
Estimate M}, according to (4.22).
end for
forn=1:N do
Assign M, to its closest centroid My,

B e B R Al v

— = = =
[l

end for

it =1t 4+ 1.

. until (convergence) or (it > Npax)
cfork=1:K do

Estimate o} according to (4.23).

T R
S W e e o

Estimate wy according to (4.24).
: end for e
. Output: 6 = {(@k, Mg, 0k)1<k<K }

[ S
b =

Algorithm 2 Expectation-maximization estimation algorithm for mixtures of K
RGDs

I: Input: My,..., My. K. Npax

2. for k=1:K do

3 Initialize o with %

4 Initialize My randomly.

5: Initialize o} with the solution of (4.23).
6: end for

7. it = 1.

8: repeat

9: for k=1:K do

10: Estimate wo according to (4.27).
11: Estimate M}, according to (4.28).
12: Estimate o} according to (4.29).
13: end for

14: it =1t + 1.
15: until (convergence) or (it > Npax)

16: Qutput: 6 = {(&k, M, 68)1<k<k }
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where

BIC(K) = —LL + % x DF x log(N). (4.31)

In the previous expression, LL is the log-likelihood given by:

N K
LL = log {Z Zorp(Mp | My, &k)} , (4.32)

n=1 k=1

where (o, Mk,&k)lgkgM are obtained by using the k-means, or the EM algorithm
described earlier in this section, assuming that the exact dimension is K. Moreover,
DF is the number of degrees of freedom of the statistical model defined as:

m(m + 1)

DF =K x 5

LK+ (K —1). (4.33)

m(m+1)
2

In this expression, K x corresponds to the number of freedom degrees as-

sociated to (Mk)lgkgK-. K corresponds to (6y)1<k<x and K — 1 corresponds to
(@k)1<k<k). knowing that Zf:] @ = 1.

4.4 Riemannian Laplace Distributions

As mentioned earlier, in Section 4.3.3, the RGD’s central value is represented by
the center of mass. The main drawback of this estimator is the fact that it is
easily influenced by the presence of aberrant data [Bishop 2007, Afsari 2011, For-
mont ef al. 2013]. To overcome this problem, we have recently introduced in [Hajri
et al. 2016] a generative model for which the MLE of the central element is the
Riemannian median. In other words, in order to enhance the model’s robustness,
the Ls norm characterizing the RGD is replaced by the L; norm, giving the new
distribution. This new model is called the Riemannian Laplace distribution and it
is detailed next.

4.4.1 Definition

The development of this new distribution on the space Pp, has been motivated by the
need of a probabilistic model that is robust in the presence of outliers. Therefore,
inspired from the well-known Laplace distribution on R. we have introduced the
Riemannian Laplace distribution (RLD) in [Hajri et al. 2016] on the space Pp of
m X m real, symmetric and positive definite matrices. The probability density
function of the RLD with respect to the Riemannian volume element is defined as:

p(M|M, 0) = C(la) em{—%’zm}, (4.34)

where M € Py, and o > 0 are the location and the dispersion parameters. d( - ) is the

Riemannian distance given in (4.5) and {(o) is a normalization factor, independent
of M. In the next section, more details on (o) are given.
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4.4.2 Normalization Factor
4.4.2.1 Definition

By following the procedure previously introduced for the RGD, the normalization
factor (o) is defined as [Hajri et al. 2016]:

(o) = /p e {—M}dv(M), (4.35)

202

with dv(M) being the Riemannian volume element. Moreover, in the same work, it
has been shown that {(o) is independent of M, so by replacing it with the identity
matrix, the following close form can be obtained:

C(o}:qm/Rmexp{—%} Hsmh{w} dry...dry,, (4.36)

i<j

where |r| = (r2 +... + rﬁl)% and gm 1s given in (4.13).

4.4.2.2 Numerical Computation of ¢ (o)

In order to evaluate the expression in (4.36), the Monte Carlo integration can be
used. Thus, the vector r has to be sampled from a multivariate Laplace distribution:

1p m Taf— 1y )3
oy = - 2Tm5) ) GEMT L (4.37)
M3 7% Tpn(m) 2™ 2

where I'pp(-) is the multivariate Gamma function [Muirhead 1982] given in (4.14).
Further on, M is considered to be ol,:

1p (m xT
p(x|o) = 2 m( exp{ —~ X b (4.38)
w2z I'pyp(m) 2P o2m 20
In the end, the normalization factor in (4.36) becomes:
78 Tyn(m) 20m+D) g2m  (lzi—

i<j

where E[-] denotes the expectation with respect to the multivariate Laplace dis-
tribution defined in 4.38 and g, has the form in (4.13). Similar to the RGD’s
normalization factor, the results are smoothed by means of cubic spline functions
and then, tables containing the obtained values of {(¢) can be built.

In order to define the RLD. besides the normalization factor, two parameters
are needed: the central value and the dispersion. Their estimation is the subject of
the next part.
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4.4.3 Parameter Estimation

Similar to the Riemannian Gaussian distribution, the parameters can be estimated
through the maximum likelihood estimation.

Let M = {Mp}n=1:~ be a set of N independent and identically distributed
samples according to a Riemannian Laplace distribution of central value M and
dispersion o.

The MLE of the central value M is the Riemannian median ﬁ: obtained by
minimizing the cost function:

N
Frtea(M) = - 3 (VL M), (4.40)
n=1

where d(-) is the geodesic distance [James 1973] defined in (4.5). More details on
the centroid estimation algorithm can be found in Section 5.2.2. With this definition
for M, the construction of a robust parametric model is achieved. More precisely,
the Riemannian median is more robust to outliers than the Riemannian center of
mass [Fletcher ef al. 2009] used in the case of RGDs. A detailed comparison between
these two estimators is carried out in Chapter 5.

Further on, the MLE estimate & of the dispersion o is given by the solution of:

o3 x %C(U) = fMed(ﬁ}a (4.41)

where ((o) is the normalization factor. In practice, for m = 2, the dispersion & is
obtained by the Newton-Raphson algorithm [Hajri et al. 2016]. Like for the RGDs,
it m > 2, then & can be obtained by means of Monte Carlo integration. Thus, the
derivative of ¢(o) with respect to o is expressed:

2eo)= [ A o {2 duiay

- 202
:qu/ L%exp{—%} Hsinh{ln;ﬂ}drl...drm, (4.42)
R™ i<j

1
where |r| = (72 4+ ... +72,)2 and gn, is given in (4.13). Next, vector r is sampled
from a multivariate Laplace distribution of parameter oI, resulting in:

g 72 Tm) 2t o [ () N
EC(J} = e E |gm 3 Hsmh 5 : (4.43)

i<j

In addition, it has been shown that M and & are unique and that M is a
consistent estimator of M [Hajri et al. 2016].
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4.4.4 Mixture Model for RLDs

Starting from (4.34), the RLD definition has been extended to the case of mixtures
of RLDs [Hajri et al. 2016]. For a mixture of K RLDs, the probability density
function becomes:

K
p(M|0) = > @i p(M|Mg, o), (4.44)
k=1
where 0 = {(wk,l\_/lk,ck)lgkgK} is the parameter vector. wg are the positive

weights, with wy, € (0,1) and ZkK=1 wy = 1, while p(M|Mp, 0}) is given by (4.34).
The parameters of each component k=1,..., K can be estimated by using the
k-means, or the expectation maximization algorithms.

4.4.4.1 Parameters Estimation by Using the K-means Algorithm

The estimation procedure is similar to the one presented in Algorithm 1 for the
RGDs. The two methods differ only in the definition of the update rules. More
precisely, for robustness purpose, the parameters of each cluster ¢ are computed by
replacing the center of mass cost function in (4.22) and (4.23) by the median cost

function:
N,

LY d(M, My,), (4.45)

Frrea(My) = Ne
n=1

with My, € cg. n=1,..., N and N representing the cardinal of cg. In addition,
the normalization factor Z (o) in (4.23) is replaced by {(o).

4.4.4.2 Parameters Estimation by Using the Expectation-Maximization
Algorithm

The expectation-maximization algorithm has been also introduced for the Rieman-
nian Laplace distributions [Hajri ef al. 2016]. The general idea of the estimation
method is similar to the one described in Algorithm 2 for the RGDs. In order to
obtain the mixture’s parameters, small changes have to be made in the previously
introduced algorithm. First, for each mixture component k, k = 1,...,K, the
quantity wg(Mp, ) in (4.25) has the following expression :

@ X p(My,| Mg, o)
YK @ x p(My|Ms, 0)

s=1

wi(Mp, 0) = (4.46)
where p(-) represents the RLD probability density function. Second, the squared
distances d2(M, My,) in (4.27) and d?(Mg, My,) in (4.28) are replaced by d(M, My,)
and d(My, M,,). Third, the estimated dispersion in (4.29) is defined by using ®,
which is the inverse function of o + 03 x % log ¢(o).
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4.4.4.3 Bayesian Information Criterion for RLDs

For the Riemannian Laplace distribution, the number of mixture components K can
be estimated by the BIC. The same idea as the one presented in Section 4.3.4.3 can
be implemented, by simply replacing the probability density function in (4.32) with
the RLD in (4.34).

4.5 Application to Texture Image Classification

In this section, the Riemannian mixture models are applied to texture image classi-
fication by using the MIT Vision Texture (VisTex) database [Vis |. The purpose of
this experiment is to classify the textures, by taking into consideration the within-
class diversity. Therefore, each texture class is characterized in the parameter space
6 by its central value M and its dispersion o, as illustrated in Figure 4.4. In this
context, the influence of outliers on the classification performances is analyzed and
the results are compared to those given by the Wishart distribution (WD) [Lee
et al. 1999, Saint-Jean & Nielsen 2013].

Figure 4.4: Within-class diversity modeled by Riemannian distributions.

4.5.1 Database

The VisTex database contains 40 images illustrated in Figure 2.1 and considered as
being 40 different texture classes. Starting from this database, a modified version
has been built. as follows. First. each texture is decomposed in 169 patches of
128 x 128 pixels., with an overlap of 32 pixels. As a result, a total number of
6760 textured patches are obtained. Next, some patches are corrupted, in order to
introduce abnormal data into the dataset. Therefore, their intensity is modified by
applying a gradient of luminosity. For each class, between 0 and 60 patches are
modified in order to become outliers. An example of a VisTex texture with one of
its patches and an outlier patch are shown in Figure 4.5.
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(a) (b) (¢)

Figure 4.5: (a) Example of a texture from the VisTex database, (b) one of its patches
and (c) the corresponding outlier.

4.5.2 Methodology and Results

For this experiment, the classification is performed by using the EM algorithm.
Knowing that this is a supervised classification algorithm, the database is 15 times
equally and randomly divided in order to obtain the training and the testing sets.
Then, for each patch in both databases, a feature vector has to be computed. The
luminance channel is first extracted, and then normalised in intensity. The grayscale
patches are filtered using the stationary wavelet transform with Daubechies db4
filter, with 2 scales and 3 orientations. Next, the wavelet coefficients located in a
p X g spatial neighborhood of the current spatial position are clustered in a random
vector and modeled as realisations of zero-mean multivariate Gaussian distributions.
For this experiment, the spatial information is captured by using a vertical (2 x 1)
and a horizontal (1 x 2) neighborhood. Further on, the 2 x 2 sample covariance
matrices are estimated for each wavelet subband and each neighborhood. In the
end, each patch is represented by a set of F' = 12 covariance matrices (2 scales x 3
orientations x 2 neighborhoods).

The estimated covariance matrices are elements of P,,, with m = 2 and therefore
they can be modeled by Riemannian Gaussian distributions and Riemannian Laplace
distributions. More precisely, in order to take into consideration the within-class
diversity, each class ¢ in the training set is viewed as a realisation of a mixture
of Riemannian distributions with K mixture components, characterized by ©, =
(wﬁ,M‘zJ,og,f): having M{ ¢ € Py, with k =1,--- ,K and f =1,--- ,F. Since
the wavelet subbands are assumed independent. the probability density describing
the training class c is:

K F
p(M|O.) = wi [ p(MFIM, £, 0% ). (4.47)
k=1 f=1

where p(M?H\_/I‘fCJ,Jg,f) is the Riemannian Gaussian distribution given in (4.5), or
the Riemannian Laplace distribution in (4.34).

The learning step of the classification is performed using the EM algorithm
for mixture models, presented earlier in this chapter. For the number of mixture
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components, several situations are considered. First, K is predefined and set to 1.
In this case, the within-class diversity is only modeled by the dispersion around the
centroids. Next, K is set to 3 and third, it is determined by using the BIC criterion
recalled in (4.31). Note that for both RGD and RLD models, the degree of freedom
is expressed as:

DF:Kxem(mTJrl)

+KxF+(K—-1), (4.48)

since one centroid and one dispersion parameter should be estimated for each sub-
band and for each component of the mixture model. In practice, the number of
mixture components K varies between 2 and 5, and the K yielding to the lowest
BIC criterion is retained.

The EM algorithm is sensitive to the initial conditions. In order to minimize
this influence, for this experiment the EM algorithm is repeated 10 times and the
result maximizing the log-likelihood functions is retained. Finally, the classification
is performed by assigning each element M € Ps in the testing set to the class of the
closest cluster ¢, maximizing one of the following log-likelihood criteria:

e for the mixture of K RGDs:

[
al Fod* (M, M
argmax{logt%rz—ZlogZ(&z,f)—Zw}; (4.49)
c f=1 f=1 (Jk,f)

e for the mixture of K RLDs:

—c
d "~ d(My,p, My )
- ~ »J 1 f
argmax { log @wf — log ¢(o7, ¢) — — LA (4.50)
c { f2=:1 ! f2=:1 2(%,)

where My ¢ is the sample covariance matrix of the ft* subband of the test
patch ¢, knowing that F' subbands are extracted for each patch.

It has to be mentioned that these two decision rules represent the extension
of the quadratic discriminant analysis to the case when the image descriptors are
covariance matrices.

In addition, the results are compared to the Wishart distribution (WD) [Lee
et al. 1999, Saint-Jean & Nielsen 2013].

The classification results expressed in terms of overall accuracy are shown in
Figure 4.6 for RGDs in black, RLDs in red and WD in blue. For all the considered
methods, the classification rate is given as a function of the number of outliers, that
varies between 0 and 60 for each class.

From this graphic, the influence of abnormal data on the RGD and RLD models
is first analyzed as the number of outlier patches increases. The results show that
the RLD gives slightly better results than the RGD. Next, the number of mixture
components is considered. It can be noticed that the results are improved by using
mixture distributions joint with the BIC criterion for choosing the suitable number
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Figure 4.6: Classification results (Source: |Hajri et al. 2016].

of clusters. In conclusion, the mixture of RLDs combined with the BIC criterion
to estimate the best number of mixtures components can minimize the influence of
abnormal samples present in the dataset.

A second experiment is performed, having as purpose the comparison between
the linear and quadratic discriminant analysis. In the following, the RLD BIC
method is considered. The decision criterion for the quadratic discriminant analysis
has been given in (4.50), while the linear discriminant analysis is obtained when the
within-class diversity is not captured by means of the dispersion parameter. In other
words, the homoscedasticity assumption is added to the mixture model in (4.50),
meaning that all the clusters are characterized by the same dispersion 6 , = 0. As
a result, the following log-likelihood criterion has to be maximized:

F
arg max { - Z d(Mt,f,N_I;}}, (4.51)
=1

c

which is also called the minimum distance to mean classifier [Barachant et al. 2012].
The classification results are presented in Figure 4.7, showing the importance of this
parameter in the decision rule. For instance. if the number of outlier patches per
class is fixed to 30, a significant gain of about 3.5% is observed when the quadratic
discriminant analysis is considered.
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Figure 4.7: Comparison between the classification results given by the RLD BIC with
and without the homoscedasticity assumption.

4.6 Conclusions and Perspectives

4.6.1 Conclusions

In this chapter, two probability density functions modeling the manifold of covari-
ance matrices have been presented: the Riemannian Gaussian distribution and the
Riemannian Laplace distribution. These models have been compared in the context
of texture image classification by studying the influence of outliers on the classifica-
tion results.

First, the Riemannian Gaussian distribution has been defined and details on
the computation of its normalization factor have been given. This distribution is
characterized by two parameters that are the central value and the dispersion. The
main drawback of this probability model is the fact that its central value is given
by the center of mass, which is a non-robust estimator. To solve this problem, we
proposed the extension of the Laplace distribution to the Riemannian manifold,
knowing that its central value is the median. The obtained density is called the
Riemannian Laplace distribution.

Second, this new distribution has been presented, along with the computation
scheme of its normalization factor.

Third, the parameter estimation process has been detailed for both RGD and
RLD, by using the maximum likelihood estimation approach.

Next. the RGD and RLD have been extended to the mixture models and a
modified version of the k-means and EM algorithms for the parameters’ estimation
has been proposed.

Moreover, the Bayesian information criterion has been adapted for the Rieman-
nian manifold, in order to automatically compute the appropriate number of clusters.

In the end, both distribution models have been applied to texture image classi-
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fication, by using a modified version of the VisTex database. The performed exper-
iments have been design to study the influence of outliers on the two distributions
and to analyze the importance of the dispersion in the construction of the decision
rule. In addition, the classification results have been compared to those given by
modeling the data using the Wishart distribution. The obtained results have shown
that for a significant number of outliers, the correct classification performance is
increased by considering the RLD model.

In this chapter, is has been shown that by using the median, the presence of
outliers can be handled. Further on, in the following chapter, the centroid estimation
methods will be analyzed and compared in terms of robustness to aberrant data. In
addition, a new robust estimator will be introduced.

4.6.2 Perspectives

Future works will include:

e The extension of the multivariate generalized Gaussian distribution to the Rie-
mannian manifold: in this chapter, two probability density functions defined
on the Riemannian manifold have been presented: the Riemannian Gaussian
distribution and the Riemannian Laplace distribution. The study of another
function, that is the generalized Riemannian Gaussian distribution represents
the subject of future works, along with the development of some appropriate
centroid estimation methods. In this case, the probability density function
will be of the form:

p (MIM,O’) =

exp{—%}? (4.52)

1
Z (o)
where £ is the shape parameter. In this case, the maximum likelihood esti-
mator of the centroid M will be given by the p-means [Arnaudon et al. 2013]

e The extension of the Riemannian distributions to the space of complex co-
variance matrices: in the case of Polarimetric SAR data, complex covariance
matrices are classically used as descriptors, in order to model the information
contained in this type of images. Therefore, future works will address the
problem of modeling this matrices on the Riemannian manifold, by extend-
ing the Riemannian distributions to the space of Hermitian positive definite
matrices [Hajri et al. 2017].

e The development of Riemannian models for structured covariance matrices: in
practice, covariance matrices having special forms can be encounterd in signal
and image processing applications, like the Teplitz, or block-Teeplitz matri-
ces. For instance, the autocovariance matrices of wide-sense stationary random
signals are Toeplitz matrices [Therrien 1992|, while the block-Teeplitz matri-
ces can be encountered in multi-channel linear prediction [Therrien 1981], or
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filtering problems [Jakobsson et al. 2000]. These structured matrices are char-
acterized by specific properties that will be exploited in future works to develop
models which take into account this particular geometry [Said et al. 2016].
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5.1 Introduction

In the previous chapter. it has been shown that covariance matrices can be mod-
eled as realizations of Riemannian Gaussian distributions or Riemannian Laplace
distributions and used in classification algorithms such as k-means or Expectation-
Maximization (EM) [Said et al. 2015a]. This kind of classification procedures
are based on the partition of the dataset in subsets, or clusters, characterized by
their central values. also called centroids. The dataset’s partition is accomplished
by assigning each observation to the closest cluster in terms of a predefined dis-
tance [Bishop 2007]. This is a recursive procedure and for each iteration, the
centroid’s value is recomputed and the assignation step is repeated. Often, the
cluster’s centroid is the center of mass, computed by using the squared Euclidean
distance [MacQueen 1967, Lloyd 2006]. Despite its popularity, this method is not
appropriate for covariance matrices having a Riemannian geometry. To solve this
problem, the Euclidean distance can be replaced by an intrinsic metric such as the
Riemannian distance. The obtained Riemannian center of mass has been defined in
Chapter 4 and details on its computation will be given in the next section. However,
the main disadvantage of the center of mass is its non-robust behavior to outliers
that can exist in the dataset [Bishop 2007, Afsari 2011, Formont et al. 2013]. A
robust alternative for the centroid’s computation is the median, which has been also
generalized for Riemannian manifolds [Yang 2010, Fletcher ef al. 2009, Barbaresco
et al. 2013]. In practice, the median is determined by using a gradient descent al-
gorithm. Nonetheless, for its computation, a division by the distance between each
observed covariance matrix in the dataset and the median is needed. If these two
points are too close, this distance tends toward zero and may lead to numerical insta-
bility. In such case, Yang proposes to exclude those points, at each iteration of the
algorithm [Yang 2010]. Another possibility for determining robust centroids in the
space of covariance matrices is the use of the trimming methods [Uehara et al. 2016].
These algorithms imply the elimination of a fixed percentage of outliers, according
to their distance with respect to the dataset’s mean or median, and the computation
of the mean or the median on the remaining data. Nevertheless, the main difficulty
of the trimmed estimators relies on how the percentage of discarded data can be
tuned.

In this chapter, a novel centroid estimator, based on the theory of M-estimators
is proposed. By considering the so-called Huber’s function [Huber 1964, Tyler 1987],
the definition of this estimator is introduced and an algorithm to estimate it from a
sample of N covariance matrices is presented. The proposed estimator is a trade-off
between the center of mass and the median, where the former is efficient, while
the latter is robust to outliers. Moreover, a method to automatically determine
the Huber’s threshold is presented, based on the median absolute deviation (MAD)
concept [llea ef al. 2016¢,llea et al. 2016d].

The chapter is structured as follows. Section 5.2 recalls the definition of the
centroid of a sample of N observations. An overview of the center of mass, the
median and the trimming based methods is also given. Section 5.3 introduces the
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proposed Huber’s centroid estimator and presents a gradient descent algorithm to
estimate it. In addition, an algorithm to automatically tune the Huber’s threshold
is developed. Section 5.4 evaluates the performance of these estimators on simulated
data. In Section 5.5, the results are validated through two applications concerning
the texture image classification and the brain decoding. Section 5.6 draws a parallel
between the robust estimators of covariance matrices and the robust estimators of
centroids. Their importance in the classification workflow is illustrated in several
examples. In the end, Section 5.7 reports some conclusions and perspectives.

5.2 Centroids and Estimation Methods

Let M = {M;y,...,Mn} be a random sample of N covariance matrices, charac-
terized by its central value M. The estimated centroid of this set, denoted M., is
obtained by minimizing the following cost function f(M):

M = arg min f(M). (5.1)
M

In practice, the minimum value of f(M) is found by using gradient based algo-
rithms [Absil et al. 2008]. Thus, the centroid is recursively estimated by using the
following expression:

Msﬁt—u = EXDM“(—Sit Vf(NL;;)), (5.2)

with s;; being the descent step and Exppg(-) the Riemannian exponential map-
ping [Higham 2008] given in (4.6). Moreover, the Armijo’s backtracking proce-
dure [Armijo 1966] is used to fix si at each iteration #t. This recursive process
is repeated as long as the norm of Vf(l\_/lgt), denoted Dy, is greater than a preci-
sion parameter €, or until a maximum number of iterations Np,qe 1s reached. More
precisely, Dj; is given by:

Dy = ||V f(My)|| = tr ((M;tlvf(mit))z) . (5.3)

Depending on the choice of f(M), different centroid estimators have been intro-
duced in the literature. In this section, the definition of two well-known estimators,
that are the center of mass [Karcher 1977, Nielsen & Bhatia 2012, Fiori 2009] and the
median [Fletcher et al. 2009, Yang ef al. 2010] are recalled. In addition, the methods
based on the geometric trimmed averages [Uehara et al. 2016] are presented.

5.2.1 The Center of Mass

The center of mass (CM) has been first introduced in [Karcher 1977] and it be-
came one of the most popular estimators. In this case, the estimated centroid is
obtained by minimizing the sum of squared distances between the centroid M and
the observations M;, 2 = 1,...,N. Therefore, the cost function is:

N
fom (M) = %Z d*(M, M), (5.4)
i=1
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where d( ) represents the Rao’s Riemannian distance between two covariance ma-
trices introduced in (4.5) and defined as [James 1973]:

o
on
e

P 3
d(M;, M) = [Z(ln,\y] , (5.
i=1

where A;, i = 1...m are the eigenvalues of M;lMl and m is the size of covariance
matrices. In the same paper, a gradient-based algorithm has been proposed for the
computation of the center of mass. Starting from (5.4), the gradient with respect

to M, denoted by V fopr (M), is defined as:

N
Vfon(M) =~ 3" Logg (M), (5.6)
i=1

where Logyz(-) is the Riemannian logarithm mapping [Higham 2008] given in (4.7).
This function is used further, to recursively estimate the centroid. A pseudo-code
describing this procedure is presented in Algorithm 3, knowing that Dgyy,, repre-
sents the gradient’s norm obtained from (5.3) and (5.6).

Algorithm 3 Center of mass estimator

Input: My,...,My. &, Npax

Initialize M using the sample mean

it=1

while (Dcpr, > €) and (it < Npax) do
Estimate M using one iteration of (5.2).

Compute the gradient norm, Dcag,,, according to (5.3).
it =1t + 1.

end while

Output: M

Bt B = A T A T

The center of mass has been also studied in works like [Moakher 2006, Pen-
nec 2006, Nielsen & Bhatia 2012, Fiori 2009]. Even though it is largely used, this
method has a major drawback: it is easily influenced by the outliers present in the
dataset |Yang 2010, Fletcher et al. 2009]. This idea is illustrated by an example in
Figure 5.1. First, the CM for an outlier-free dataset is computed (Figure 5.1.a).
Next, outliers are added and the CM is recomputed (Figure 5.1.b). It can be seen
that, in this case, the centroid is attracted by the aberrant data, which proves its
non robust behavior.

In order to reduce the impact of aberrant data on the estimated centroid’s
value, several possibilities are available. Some authors have proposed in [Fletcher
et al. 2009, Uehara ef al. 2016] the use of trimming based methods to remove the
outliers before the computation of (5.4), or the use of other estimators generalized
for the Riemannian space, like the median [Fletcher et al. 2009, Yang 2010].
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Figure 5.1: Behavior of the center of mass for (a) an outlier-free dataset and (b) in the
presence of outliers.

5.2.2 The Median

The median is a robust centroid estimator, computed by minimizing the sum of
distances between the centroid M and the observations M;. Thus, the cost function
is:

N
Futea(MD) = 13" d(V, M) (57
i=1

where d(-) is the Riemannian distance, given in (5.5).

This estimator has been first generalized to the Riemannian case in [Fletcher
et al. 2009]. In their work, the authors considered the cost function as being the
weighted sum of distances. Note that the equation in (5.7) is obtained when all
the weights are equal to 1/N. In order to compute the median’s value, they have
proposed to extend the Weiszfeld [Weiszfeld 1937] algorithm to manifolds. More
precisely, the median is iteratively updated by using a subgradient algorithm on
the cost function. In addition, they proved the algorithm’s convergence to a unique
value for positively curved manifolds. In [Yang 2010, Yang et al. 2010], the authors
have defined the Riemannian median for the complete Riemannian manifold and
they have introduced a gradient-based estimation algorithm that converges for both
positively and negatively curved manifolds. In the following, the gradient descent
estimation algorithm is detailed, starting from the cost function given in (5.7). In
this case, the gradient with respect to M, denoted by V farea(M), can be written
as:

N
Logyr(M;)

_ 1
VfMed(M} = _ﬁ d(l\_/_[ M} b

i=1

where Logyy.) is the Riemannian logarithm mapping [Higham 2008] given in (4.7).
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Asit can be seen, the gradient in (5.8) exists only if d(IM, M) # 0. In some cases,
that is when observations M, i = 1,..., N are too close to the current centroid’s
estimate Mj;, the distance between them is close to 0, yielding potential numerical
instability. To avoid this situations, in [Yang 2010] the author proposed to exclude,
at each iteration it, the observations M; that are too close from M;;. Therefore, a
threshold value T is needed to define the proximity between the estimated centroid
and the observations. More precisely, if

d(Mie, M) < T, (5.9)

then the observations IM; are discarded at iteration it. Next. for iteration, it 41, the
previously discarded observations are reintroduced into the dataset and the estima-
tion and distance verification steps are repeated. This process is iterated for a fixed
number of iterations Npgae. or until the gradient’s norm Dyed,, 1s smaller than the
predefined value €. A pseudo-code is given in Algorithm 4, in order to synthesize the
median centroid estimation, knowing that Dpeq,, is obtained from (5.3) and (5.8).

Algorithm 4 Median centroid estimator
: Inmput: My,... ., Mpy. T. €, Npax

1

2: Initialize M using the sample mean.

3 it = 1.

4: while (Dpfeq,, > €) and (it < Npmax) do
5: Compute d(M, M;).

6 fori=1,...,N do

7 if d(M,M;) <T then

8
9

Discard M.
end if
10: end for
11: Estimate M using one iteration of (5.2).
12: Compute the gradient norm, Dyyeq,,. according to (5.3).

13: Reintroduce all the discarded Mj;.
14: it =it + 1.

15: end while

16: Output: M

In Figure 5.2, the center of mass and the median are compared in terms of
robustness to outliers. First, a dataset with no aberrant data is considered. In this
case, the two estimators give almost identical centroids (Figure 5.2.a). On the other
hand, when outliers are added (Figure 5.2.b), it can be noticed that the center of
mass moves towards them, while the estimated median stays closer to the dataset’s
real central value.

5.2.3 The Geometric Trimmed Averages

The geometric trimmed averages |Uehara et al. 2016] are approaches that deal with
outliers by eliminating them from the dataset. These methods are based on one



5.2. Centroids and Estimation Methods 79

3 . : : : 3
+ Data . - Data
* CM S . + Outliers
2 + Med . S 1 2l x CM no outliers - *
e, A #* CM outliers
1 . 1 + Med outliers
0 B o] " +
1 -1
2 2 .
&) 1 0 1 2 3 4 ) 2 0 2 4

(a) (b)

Figure 5.2: Comparison between the center of mass and the median for (a) an outlier-free
dataset and (b) in the presence of outliers.

parameter denoted a which represents the proportion of ignored data. Usually, a%
of the farthest observations are discarded.

For implementing these methods, several steps are needed. First, the centroid
My of the original dataset is obtained, by using the center of mass, or the median.
Second, the Riemannian distances V(i) = d(Mg,M;), @ = 1,..., N between the
estimated centroid and the dataset’s elements are computed. Next, a% of the
farthest elements from the estimated centroid Mg are discarded. In the end, the
center of mass, or the median of the remaining elements is recomputed.

Based on the centroid’s estimation method, the following algorithms have been
proposed in [Uehara et al. 2016]:

a) geometric trimmed means: the centroids are obtained by minimizing one of
the following cost functions:

feMrmean (M) = fou (Trimg ™ (M), (5.10)

or
fOMpmea(M) = fou (TrimF*d (M), (5.11)
where foar(-) is the center of mass cost function in (5.4), Trimy®"(-) and

Trim™d(.) are the trimming operators, when a% of the farthest elements

from the center of mass, respectively the median are discarded;

b) geometric trimmed medians: the centroids are obtained by minimizing one of
the following cost functions:

fMedrmean (M) = frred(Trimy " (M)), (5.12)

or
Ftedgy(M) = farea(Trim™ed(M)), (5.13)

where fared(-) is the median cost function in (5.7).



80 Chapter 5. Robust Centroid Estimation on the Manifold of Covariance Matrices

To summarize all these methods, a pseudo-code is given in Algorithm 5.

Algorithm 5 Geometric Trimmed Averages
I: Input: My,...,My. «
2: Initialize Mg using the center of mass, or the median.
3: Compute V(i) = d(Mp,M;), i =1,..., N according to (5.5).

4: Discard a% of the largest values in V.

5 Compute M using the center of mass, or the median.
6: Output: M

In Figure 5.3, the behavior of the geometric trimmed mean defined in (5.10) is
shown, for different values of . The original dataset is shown in Figure 5.3.a, where
the red crosses represent the outliers. Starting from this dataset, @ = 2%, 5% and
10% of the farthest elements from the centroid are discarded, giving Figure 5.3.b,

3 : T . 3
- Data e, - Data
of * Outliers T ] of * Remaining outliers
x CMno outliers| «+. : Wi, . x CM no outliers PR
# CMoutliers |+ :osut ’ #* Trima. =2% ot
1r .
or or
-1 * -1t
) ﬂé‘ﬁf -2r H%ﬁ;#
- '41-— + : 4: + +
=3 ) 0 2 4 7 -2 0 2 4
(a) (b)
3 . 3 .
- Data - - Data
of * Remaining outliers . : of * Remaining outliers
x CM no outliers x CM no outliers
#* Trimo. = 5% # Trima=10%
or K . x Of " ,;. ‘e
-1 o -1
-2 * fﬁ‘f . -2 * )
_3 - L L L
-4 -2 0 2 4 §4 -2 0 2 4

(c) (d)

Figure 5.3: Behavior of the geometric trimmed mean defined in (5.10) for (a) a = 0%,
which is equivalent to the CM of the entire set, (b) @ =2%, (¢) @ =5% and (d) a = 10%.
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Figure 5.3.¢c and Figure 5.3.d. In these three last figures, the red crosses are the
outliers remaining after the trimming procedure.

By analyzing the images, it can be noticed that as @ increases, the estimated
centroid becomes closer to its true value.

5.3 The Huber’s Estimator

5.3.1 Motivation

In the previous section, several centroid estimators have been presented. These
methods have been recently studied for covariance matrices in the Riemannian
space [Fletcher et al. 2009, Yang 2010, Barbaresco et al. 2013, Uehara et al. 2016]. In
the following, some disadvantages of these approaches are identified:

e The center of mass is known as being easily influenced by aberrant data.

e The median computation may lead to problems of numerical instability. The
gradient of the cost function in (5.8) implies the division by the distance
d(M, M;) between the centroid M and the observations M;. As mentioned
earlier in Section 5.2.2, there are cases when this distance can be equal to
zero. Therefore, the gradient function is not defined. In order to avoid these
situations a threshold value has to be tuned for eliminating the observations
that are too close from the estimated centroid. The problem that arises with
this approach concerns the user dependent choice of the threshold’s value.

e The geometric trimmed averages discard the outliers. Nevertheless, by deleting
the elements that differ from the rest of the dataset, some new ones might
become outliers. If the removal procedure is repeated, the dataset may become
too small for further reliable analysis [Fletcher ef al. 2009]. Moreover, another
difficulty encountered with trimming based methods concerns the choice of a,
the parameter fixing the percentage of eliminated observations.

In this context. to circumvent all those drawbacks, a novel centroid estimator
on the manifold of covariance matrices is defined. The proposed method, called the
Huber's estimator. can be viewed as a trade-off between the center of mass and the
median, where the former is efficient, while the latter is robust to outliers. The
compromise between these two estimators can be controlled by one parameter, the
Huber’s threshold. Its value can be automatically fixed, by taking into consideration
the variability presented in the dataset.

5.3.2 Definition

In the following, the novel centroid estimator is introduced, based on the theory of
M-estimators [Huber 1964, Maronna 1976, T'yler 1987]. In this case, the cost function
in (5.1), denoted f, (M) for the M-estimator, can be expressed by means of a scalar
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weight function u(-), as follows:

N
Fu(M) = %Zu(d(m, M,))d(M, My), (5.14)

i=1

where wu(-) is a positive-valued function which gives a weight to each observation
M; in the computation of the centroid. Obviously, the weight function u(-) should
decrease to zero to ensure that the outliers have a smaller contribution to the cen-
troid’s estimation than the other observations. Note that even if the center of
mass (5.4) and the median (5.7) have expressions similar to (5.14) for respectively
w(d(M, M;)) = 1 and w(d(M, Mi)) = gz,

M-estimators, since the regularity conditions of their corresponding weight function

they do not belong to the family of

u( - ) defined in [Maronna 1976] are not satisfied. These conditions have been men-
tioned in Section 3.2.4 in the context of covariance matrix estimation and they are
explained next for centroid estimation:

e for the median: the weight function u(-) is not defined when d(M, M;) = 0;

e for the center of mass: the upper limit of ¥(d(IM, M;)) = d(M, M;)u(d(M, M;)) =
d(M, M) is infinite.

In [Huber 1964], Huber has introduced the so-called Huber’s function u(-) de-
fined as:

_ T

u(d(M, M;)) = min (1,_7), 5.
(a ) d(M, M;) (

where T is a threshold value controlling the contribution of outliers in the estima-

tion. By combining (5.14) and (5.15), the proposed Huber’s centroid is the covari-

ance matrix M, which minimizes the following cost function [llea et al. 2016¢, llea

et al. 2016d]:

N
_ 1 _
faM) =+ D (M, M) 1y a)<ry

i=1

N
T _
+ N Z d(M, M) ﬂ{d(M,M,-})T}a (5.16)
i=1

where 1,4} is the indicator function, which equals 1if @ < b and 0 otherwise. The
threshold T represents a measure of discriminating between normal and aberrant
data and therefore, it controls the estimator’s behavior. In other words, for large
values of T'. the Huber’s estimator behaves as the center of mass, while for small
values it is equivalent to the median. Figure 5.4 presents the Huber’s function for the
center of mass (Figure 5.4.a), the median (Figure 5.4.b) and the Huber’s estimator
(Figure 5.4.c).

In the following, a computation algorithm for the Huber’s centroid is proposed,
based on the gradient descent algorithm which minimizes the distance function given
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(a) (b) ()
Figure 5.4: The Huber’s function wu(t) for (a) the center of mass, (b) the median and (c)

the Huber’s centroid.

in (5.16). The gradient of fzr(IM) with respect to M that is V fgz (M) can be written
as:

N
_ 2
Vig(M) = — Zbﬂgm(NLz) L avmy)<ry

N -
i=1
N
T — Logyg(M;)
TN 2 d(M, M) AT (5.17)

where Logyg(-) is the Riemannian logarithm mapping [Higham 2008] given in (4.7).
Once that this function is defined, it is further used in the recursive estimation
procedure described by (5.2). A pseudo-code description of the Huber’s centroid
estimation is given in Algorithm 6, where Dy, is the gradient’s norm obtained
from (5.3) and (5.17).

Algorithm 6 Huber’s centroid estimator

Input: My,...,Mpy. T. €, Npax

Initialize M using the sample mean

it=1

while (Dg,, > €) and (it < Npax) do
Estimate M using one iteration of (5.2).
Compute the gradient norm, Dp,,, according to (5.3).
it=1dt+1

end while

Output: M

Rl e B = A ol v

As observed in (5.17), the first and second terms correspond to the gradient of
the cost function for the center of mass (5.6) and the median (5.8) centroids. For the
second term, it can be seen that the division by distance d(Mﬁ,M@‘) is needed. As
mentioned earlier, for the median, this division may cause computational problems.
By using the proposed Huber’s centroid, this problem is solved automatically by
considering the threshold T'. In conclusion, by choosing an appropriate value for T,
the division by zero in the gradient function (5.17) will be avoided, which represents
an important advantage of the proposed method.
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In the following section, a user independent method is proposed in order to tune
this parameter.

5.3.3 Algorithm for Huber’s Threshold Automatic Computation

Similar to the geometric trimmed averages, the performance of the Huber’s estimator
depends greatly on the threshold T that discriminates between aberrant and normal
data. Therefore the need to automatically fix it or at least to give an idea on its
order of magnitude. In practice, T is application dependent and it is related to the
intrinsic variability of the observed data. A visual explanation of this remark is
given in Figure 5.5. For instance, if a dataset is characterized by a low variability,
the outliers can be easily spotted (Figure 5.5.a). On the other hand, once that
the dataset’s variability increases, the outliers are much more difficult to identify
(Figure 5.5.b). As T has to discriminate between outliers and normal data, its value
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Figure 5.5: Qutliers and data intrinsic variability.

should take into consideration this aspect.

In the following, the data is considered to be a set of N covariance matrices
M = {My,...,Mn} of size m x m distributed according to a Riemannian Gaussian
distribution (RGD), detailed in Chapter 4. This distribution is characterized by
two parameters: the central value M and the dispersion o. Its probability density
function with respect to the Riemannian volume element is given by:

_ dg(ﬁﬁlggl}, (5.18)

- 1
p(M|M, o) = ——exp { 592

Z (o)
where Z(o) is a normalization factor independent of the centroid M, and d(M, M)
is the Riemannian distance defined in (5.5).
In order to estimate the threshold’s value, a robust estimator of the dispersion
parameter o is required, considering that the Huber’s threshold T' can be computed
as:

T=cx& (5.19)

¥
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with ¢ being a constant and & the estimated dispersion. In practice, ¢ can take
values between 1 and 2 [Huber & Ronchetti 2009]. As mentioned in [Huber &
Ronchetti 2009], a common value is ¢ = 1.5. For the dispersion parameter esti-
mation, a robust method is introduced next. Inspired by the previous works on
robust statistics [Huber & Ronchetti 2009], the concept of median absolute devia-
tion (MAD) is extended to the case of covariance matrices living in the Riemannian
space [llea et al. 2016¢]. The MAD of M is defined as the median of the Riemannian
distances d computed between each sample M;, ¢ = 1,...,N and the Riemannian

median, denoted RMed(M):
MAD — median (d(Mi, RMed(M})). (5.20)

A comparison between the MAD in the Euclidean and the Riemannian spaces is
made in Table 5.1.

Table 5.1: Definition of MAD in both Euclidean and Riemannian spaces.

Euclidean Space || Riemannian Manifold

Let X = {X1,...,Xn~} be a set of scalar || Let M = {Mj,...,Mn} be a set of co-

observations: variance matrices:

MAD = median(|X; — median(X))). MAD = median (d(M,-, RMed(M))).

Further on, a link between the MAD and the dispersion parameter o is needed.
More precisely, the MAD is defined as:

1 - d(M,M MAD
~ =p(d(M,M) < MAD) :p( (M, M) < ) (5.21)
2 mo mo
Starting from this expression, a new variable is introduced:
, = M M) (5.22)
mo

and its statistics are studied. In practice, it has been observed on simulated data
that the distribution of z is independent of M and o. To sustain this remark,
an example is shown in Figure 5.6. The behavior of z has been analyzed in the
following experiment. A dataset of 10° independent and identically distributed
covariance matrices of size m x m, issued from an RGD model has been generated.
The simulated covariance matrix dataset has been obtained for centroids M having
the form:

M(i,5) = pl= for i, 5 € [1,m]. (5.23)

In the first case, two values have been chosen for p, that are py = 0.1 and ps = 0.5,
giving the following centroids:

- 1 0.1 - 1 05
Ml:[O.l 1] and Mgz[ ]

05 1
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Moreover, the dispersion parameter o has been fixed to 0.1. The histogram of z has
been plotted in Figure 5.6.a showing the independence of z with respect to centroids.
A similar experiment has been performed to illustrate the independence of z with
respect to o, shown in Figure 5.6.b. In this case, p has been fixed to 0.5 and two
dispersion parameters have been considered: o1 = 0.1 and o9 = 0.5.

1.4 14 : : :
—p, =01 —0, =01
12 —p,=05 1.2r —0,=05
1 1
0.8} | o8l
0.6} 1 0.6
0.4} 1 0.4}
0.2} 1 0.2}
% 05 1 15 2 25 % 05 1 15 2 25

(a) (b)
Figure 5.6: Independence of z with respect to (a) M and (b) o.
It has to be mentioned that the use of z is equivalent to the standardization step

z = 5‘?—“ for a univariate normal distribution.
Next, by using (5.21), the MAD is given by:

%:d)(MAD), (5.25)

mao

where ¢@(-) is the cumulative distribution function of z. The estimated dispersion
parameter can be obtained as:

b= _! MAD (5.26)
D m
where ¢~1(-) is the inverse cumulative distribution function. In the end:
b= % MAD, (5.27)
with K = @ Experiments have shown that K = 1.312. This value has been

obtained on datasets of N = 10% independent and identically distributed covariance
matrices of size m x m, issued from an RGD with p fixed to 0.5. Different values
have been considered for m: 2, 3, 5, 7 and 16. In addition, for the dispersion
parameter o, 13 values equally sampled between 0.1 and 0.4 have been taken. Next,
for each simulated dataset, the MAD is computed according to (5.20) and K is
expressed from (5.27). In the end, the mean value of K has been retained, that is
approximately 1.312.
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By using the proposed algorithm, the estimated threshold T can be obtained
without any user intervention. Its value is computed only by taking into considera-
tion the natural variability of the dataset. Note also that this estimated value is an
order of magnitude of the threshold we may consider in the Huber estimation algo-
rithm. Depending on the value chosen for constant ¢ in (5.19), different values can
be found for the estimated T'. All the results presented in this chapter are achieved
for c = 1.5.

5.4 Performance Analysis

In this section, several tests are performed on simulated data in order to analyze
the behavior of the proposed Huber's centroid estimator. The obtained results
are presented and they are compared to those given by the center of mass and the
median, knowing that the covariance matrices are generated as realizations of RGDs.

Since the centroids are covariance matrices, the manifold of the space of co-
variance matrices should be taken into account for the estimators’ performance
evaluation. In the literature, many authors have proposed to define the concept of
intrinsic analysis for statistical estimation [Oller & Corcuera 1995, Smith 2005, Gar-
cia & Oller 2006]. To this aim, the concepts of intrinsic root-mean square error
(RMSE) and intrinsic bias vector field have been introduced for the Riemannian
case. These definitions are recalled next.

Let M be the estimated centroid of the dataset. that is the estimate of the
centroid M. The intrinsic RMSE is given by [Oller & Corcuera 1995, Smith 2005,

Garcia & Oller 2006]:
RMSE = \/ E[d2(M, M)], (5.28)

where d(-) is the Riemannian distance defined in (5.5). In addition, the bias vector
field (M) of M is given by [Oller & Corcuera 1995,Smith 2005, Garcia & Oller 2006]:

b(M) = Logx;Ext [ﬁ] = E[Logmﬁ] , (5.29)

knowing that Eyy [N_I] = Expy [Logml\_fl]. Since the bias vector field b(M) in the
Riemannian space is a covariance matrix, its norm has to be computed for further

evaluation:

b = tr (M (M))7) (5.30)

where tr(-) is the trace operator. For a better understanding of these performance
measures, a parallel with the Euclidean space is drawn in Table 5.2.

For all the experiments, the simulated covariance matrix datasets are obtained
by using the expression given in (5.23). In addition, m = 2 and 5000 Monte Carlo
runs are used for the performance evaluation.

The first experiment consists in studying the influence of the dataset’s size N on
the centroid’s estimation performance, for no outlier values. In this case, the dataset
contains between 100 and 5000 independent and identically distributed covariance



88 Chapter 5. Robust Centroid Estimation on the Manifold of Covariance Matrices

Table 5.2: Definitions of RMSE and bias vector field in both Euclidean and Riemannian
spaces.

Euclidean Space || Riemannian Manifold
Let @ be the estimate of parameter 6: Let M be the estimate of the centroid M:
RMSE = \/E[(0 - 0)?]; RMSE = \/ E[d?(M, M)];
b(8) = E[6] — 6. b(M) = Log g Exx [M].

matrices of size 2 x 2 issued from an RGD having the dispersion ¢ = 0.1 and the
centroid M obtained from (5.23) for p = 0.7:

- 1 07

M= [0.7 1 } ‘
Figure 5.7 draws the results obtained for the intrinsic RMSE (Figure 5.7.a) and for
the intrinsic bias vector field (Figure 5.7.b), when the centroids are estimated by
using the center of mass (in blue), the median (in black) and the Huber’s centroid
with fixed threshold T' = 1 and 0.5 (in green) and automatically computed value
for T (in red). As expected, as there are no outlier observations in the dataset,

the center of mass is slightly better than the other estimators. Moreover, it can
be noticed that a higher number N of covariance matrices, gives a better centroid

estimation.
107 ; . .
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Figure 5.7: (a) The RMSE and (b) the bias vector field as functions of the dataset’s size
for no outlier data.

The second test studies the influence of outliers on the centroid’s estimation.
For this purpose, a dataset containing 1000 matrices of size 2 x 2 is created. These
matrices have an RGD distribution of dispersion ¢ = 0.1. The centroid M is
obtained as in the previous case for p = 0.7 (5.31). To this original data set,
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some outliers are added. They are i.i.d. covariance matrices issued from an RGD of
centroid Moyt = 10 x My, with M, obtained from (5.23), for p, = 0.1:
— 10 1
Mout = [ :| .

-
1 10 (5.32)

The dispersion of the outlier sample ooyt is set to 0.1.

Figure 5.8 draws the results obtained for the intrinsic RMSE (Figure 5.8.a)
and for the intrinsic bias vector field (Figure 5.8.b) as functions of the percentage
of outliers. The behavior of the center of mass (in blue), the median (in black)
and the Huber’s centroid with fixed threshold T'= 1 and T = 0.5 (in green) and
automatically computed value for T (in red) are analyzed, when the percentage
of aberrant data varies from 0 to 40%. As observed, the center of mass is clearly
influenced by the presence of outliers, while for robust estimators, like the median or
the Huber’s centroid, this influence in less important. In addition, it can be noticed
that the Huber’s estimator represents a trade-off between the center of mass and
the median.
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Figure 5.8: (a) The RMSE and (b) the bias vector field as functions of the outlier per-
centage (Source: |llea et al. 2016¢| © [2016] IEEE).

5.5 Application to Classification

In this section, the Huber’s estimator is used for texture and MEG signal classifica-
tion. The obtained results are reported and compared to those given by the center
of mass and the median.

5.5.1 Application to Texture Image Classification

The first application of the proposed centroid estimator is in the context of texture
image classification. The purpose of this experiment is to analyze the influence of
aberrant data on the classification accuracy, by using a modified MIT Vision Texture
(VisTex) database [Vis |.
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5.5.1.1 Database

The VisTex database contains 40 texture images considered as 40 different classes.
To obtain the database used for the experiment, the same workflow as in the previous
Chapter 4 is implemented. First, each image is divided into 169 patches of 128 x 128
pixels, with an overlap of 32 pixels. Next, outlier samples with altered intensity are
introduced in the dataset. For each class, between 0 and 60 patches are introduced by
applying a gradient of luminosity. Figure 4.5 shows a texture image from the VisTex
database (Figure 4.5.a), one of its patches (Figure 4.5.b) and its corresponding
oultier (Figure 4.5.¢). In the end, 6760 patches are obtained and used further for
the classification.

5.5.1.2 Methodology and Results

For this experiment, the classification procedure is based on the spatial dependence
of the wavelet coefficients. Thus, each patch is filtered by using the Daubechies’ db4
wavelet, with 2 scales and 3 orientations. The spatial dependence is then captured
for each pixel of each wavelet subband by considering a vertical and a horizontal
spatial neighborhood of 2 x 1 and 1 x 2 pixels. Next, the sample covariance matrix
(SCM) is estimated for each wavelet subband and both neighborhoods. In the end,
a set of F' = 12 covariance matrices is obtained for every patch.

The database is 100 times equally and randomly divided into a training and a
testing set. The elements in the two sets are characterized by F' covariance matri-
ces. Further on, each training class ¢ is modeled by a mixture of K RGDs, whose
parameters are estimated by using the EM algorithm presented in Chapter 4. Next,
a test patch tis affected to the class ¢ maximizing the log-likelohood criterion given
in (4.47).

In this experiment, several values are considered for the number of mixture com-
ponents. First, K is set to 1 meaning that each class contains only one cluster.
Therefore, the presence of outliers is not handled by the mixture model and a more
accurate analysis of the influence of aberrant data on the centroid estimation meth-
ods can be carried out. Second, K is fixed to 3 and third, it is determined by
optimizing the BIC criterion given in (4.31).

The classification performances, in terms of overall accuracy, are computed for
the center of mass (in blue), the median (in black) and the Huber’s centroid with
the threshold value T automatically fixed (in red). The results are presented in
Figure 5.9 as functions of the number of outlier patches per class, knowing that
Figure 5.9.b represents a zoom on the upper part of Figure 5.9.a. By analyzing
these graphics, the following conclusions can be drawn. First, as the number of
outliers increases, the median and the Huber’s estimators perform better than the
center of mass. By automatically computing the threshold’s value, the Huber’s
estimator gives classification performances that are close to the median. Second,
the results are improved by using the BIC criterion. In the same time, when K # 1,
the dataset’s variability can be handled by the mixture model.
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Figure 5.9: (a) Correct classification rate when centroids are estimated by using the center
of mass, the median and the Huber's centroid with T automatically fixed and (b) a zoom
on the upper part of (a).

5.5.2 Application to MEG Based Brain Decoding

For the first application, outliers have been artificially created and added to the
original database. Further on, another example is considered in order to study,
this time, the influence of the intrinsic outliers. This second application concerns
the brain decoding, based on magnetoencephalography (MEG) data. The database
proposed for the Biomag 2014 Decoding Challenge: Brain Decoding Across Subjects
(DecMeg2014) [Dec | is used. The idea of brain decoding consists in predicting
the stimulus presented to the subject from the concurrent brain activity [Olivetti
et al. 2014]. For this experiment, two categories of visual stimulus are considered:
face and scrambled face. Therefore, the problem to solve can be viewed as a two-
class classification task. A detailed description of the neuroscientific experiment
implemented to collect the data can be found in [Henson et al. 2011].

5.5.2.1 Database

The database contains 16 training and 7 testing subjects. For each training sub-
ject, approximately 580 trials are recorded, giving a training set of 9414 trials.

Next, for each trial, covariance matrices of size 16 x 16 are extracted. as described
in [Barachant 2014].

5.5.2.2 Methodology and Results

For the classification step, a modified version of the unsupervised method presented
in [Barachant 2014] is implemented. For this purpose, a regularized logistic regres-
sion model is trained to obtain the initial labels for the unsupervised classification
algorithm (k-means). Then, the centroids of each class (face or scrambled face) are
computed. At this stage, several estimators are studied: the center of mass, the
median, the Huber’s estimator with fixed threshold (T = 0.2 and T' = 0.5) and also
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with automatically computed value for T. In addition, the trimmed based meth-
ods [Uehara et al. 2016] are considered for e = 5% of discarded extreme data. Next,
for each testing subject, covariance matrices are computed and the classification is
performed by two approaches:

e For the first one. the covariance matrices are modeled as mixtures of K
RGDs and each test trial M; is assigned to the centroid ¢ maximizing the
log-likelihood criterion:

c

. . d? (M, M
arg max { log @y, — log Z(6%) — W}’

k=1,... K.

This decision criterion corresponds to the quadratic discriminant analysis men-
tioned in Chapter 4.

e For the second one, the winner method of the DecMeg2014 competition is
considered, for which the test trials are assigned to the closest class, by us-
ing the minimum distance to mean (MDM) Riemannian classifier [Barachant
et al. 2012]:

arg min {dQ(Mt,I\_/Ifc)}, (5.34)
c

k=1,... K.

This approach can be interpreted as the maximization of the log-likelihood (5.33),
by considering the homoscedasticity hypothesis and it corresponds to the lin-
ear discriminant analysis, mentioned in Chapter 4.

The purpose of the preformed tests is to compare the behavior of the centroid
estimators presented in this chapter, but also to study the influence of the dispersion
parameter on the classification results.

The obtained results are shown in Table 5.3, where the first column corresponds
to the RGD mixture model and the second one to the MDM based method. Further
on, several remarks can be made. By analyzing the below table, it can be seen that
the use of Huber’s estimator provides comparable or even better classification perfor-
mances than the other robust estimators, but without their disadvantages: division
by zero for the median, or choice of the percentage a of discarded observation for
the trimmed estimators. Interestingly, note that the estimated Hubers’s threshold
T is recomputed at each k-means iteration. In this experiment, it varies between
0.38 and 0.46 across the test subjects and the classes. Moreover, the proposed es-
timated value of T' by the MAD gives an order of magnitude of the threshold we
may consider in the Huber estimation algorithm. This value can be readjusted to
improve the classification performance as observed in Table 5.3.
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Table 5.3: Classification results for MEG based brain decoding.

Estimator | RGD (5.33) | MDM (5.34)

CM 73.845 74.106

Med 74.150 73.627

Huber T'=0.2 75.109 74.847
Huber T'=0.5 73.976 74.063
Huber T = auto 74.106 74.455
CM(Trim>*™) (5.10) 73.888 73.976
CM(Trim™ed) (5.11) 74.237 73.801
Med(Trimg**") (5.12) 74.542 74.412
Med(Trim™) (5.13) 74.586 74.237

5.6 Influence of Covariance Matrix and Centroid Esti-
mators on Classification

5.6.1 General Remarks

When modeling images or signals by covariance matrices for classification purposes,
robust estimators can be used at two different levels:

e during the covariance matrix estimation stage (fixed point estimator, the Hu-
ber’s estimator, etc.);

e during the centroid estimation stage (median, Huber’s centroid, etc.).

In the following, a comparison between these two aspects is performed.

The main difference between these estimators is the fact that they operate at
different levels in the classification procedure, illustrated in Figure 5.10. Starting
from the initial observation dataset, the features characterizing each observation
are extracted as a result of the preprocessing (filtering, wavelet decomposition, etc.)
and data modeling (probabilistic models, etc.) steps. These features are covariance
matrices and they represent the data’s signature. At this stage, robust estimators
of covariance matrices are needed. in order to tackle the presence of outlier values
in the observations’ structure. Next, the estimated covariance matrices are modeled
as elements in the Riemannian space and used further in clustering algorithms, like
k-means, or Expectation-Maximization. These clustering procedures are based on
regrouping the dataset’s elements into clusters characterized by their central value.
At this point, robust centroid estimators are essential to deal with outliers arising
from the inherent variability of the data, or from faulty measurements.

For a better illustration, an example is presented in Figure 5.10, by reconsidering
the classification workflow introduced in Chapter 4. In this case, X = {Xy,..., Xy}
is a set of N independent and identically distributed random vectors according to a
parametric model characterized by its covariance matrix. Several observations have
to be made on this dataset. First, for each vector X;, ¢ = 1,..., N the normal
observations are represented by yellow circles. Second, the vector X3 contains some
outlier values, displayed as red squares. Therefore, the robust estimators of the
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covariance matrix are used to reduce their impact in the estimation process. In
addition, the vector X, marked in green, is itself an aberrant observation arisen. for
example, from faulty measurements. In this case, the estimated covariance matrix
M, will be an outlier in the covariance matrix set. In order to reduce its influence
on the centroid’s computation, robust estimators of M are needed.
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Figure 5.10: Covariance matrix estimation and centroid estimation steps in the classifi-
cation workflow.

In order to quantify the impact of outliers, the next subsection introduces an
experiment on images simulated for the PolSARproSim software.

5.6.2 PolSARpro Image Classification

The influence of covariance matrix estimation and centroid estimation is analyzed
next, on simulated SAR images. These images are generated by using the Pol-
SARproSim [Williams 2006] software package as described in Chapter 3. In ad-
dition, outlier images are created and added to the initial database. The outliers
represent forest stands that have been damaged by storms, illnesses, human actions,
etc. Therefore. a predefined number of pixels are modified to mimic the conse-
quences of these events. The procedure for obtaining this type of images is detailed
in Appendix A.

The first experiment studies the impact of the number of outlier images on the
centroid estimation algorithms. First, 40 images of pine forests having less than
10 years old are considered and equally divided into a training and a testing set.
Second, images containing aberrant pixels are added only to the training set. The
percentage of modified pixels is fixed to 10%, while the number of images containing
this type of modification varies from 5% to 20%. Next, the spatial dependence on
the wavelet coefficients is modeled by multivariate Gaussian distributions. The
covariance matrices are estimated using both SCM and FP estimators. Further on,
the central value M of the covariance matrices in the training dataset is computed
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by using the center of mass, the median and the Huber’s centroid with T fixed to 0.2,
0.5 and automatically determined. The geodesic distance between the covariance
matrices in the testing set My,. ¢ = 1,...,20 and the centroid of the training set is
computed. In the end, the mean value of all distances is computed:

1
MeanD = %d(Mti, M). (5.35)

This algorithm is iterated 100 times, for 100 different partitions of the initial database
in training and testing sets. The obtained results are shown in Figure 5.11 for both
the SCM (Figure 5.11.a) and the FP (Figure 5.11.b). For the SCM it can be noticed
that when the percentage of outlier images is small. all the tested methods give
similar distance values. Moreover, for larger values, the robust aspect of the median
and the Hubers’s centroid can be observed. On the other hand, these remarks are no
longer true for the FP estimator. In this case, the mean distance does not vary with
the percentage of outliers, or with the centroid estimation method. In conclusion,
when the SCM method is used, it is necessary to consider robust centroid estima-
tors in order to obtain results that are independent of the quantity of aberrant data.
Note that similar conclusions have also been drawn in the PhD thesis of P. Formont
for the classification of textured PolSAR images [Formont 2013].
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Figure 5.11: Comparison between (a) the SCM and (b) the FP estimators for a fixed
number of aberrant pixels and different numbers of outlier images.

In the second experiment, the influence of the number of aberrant pixels is
analyzed. Therefore, the number of outlier images is fixed to 20%. The same
workflow as in the first experiment is followed, knowing that the percentage of
aberrant pixels varies from 2% to 15%. The results are shown in Figure 5.12 for
the SCM (Figure 5.12.a) and the FP (Figure 5.12.b). Conclusions similar to the
previous experiment can be drawn: for the SCM estimator, the robust methods for
central value estimation become useful for large percentage of aberrant pixels, while
no change is observed for the FP estimator.

For these two experiments, the centroid estimation algorithms do not modify
the results obtained for the FP estimator. This behavior can be explained by the
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Figure 5.12: Comparison between (a) the SCM and (b) the FP estimators for a fixed
number of outlier images and different percentages of aherrant pixels.

fact that the outliers are similar to vector X3 in Figure 5.10 and therefore, their
influence is canceled by using robust covariance matrix estimators during the feature
extraction stage. In other words, the FP estimator is able to eliminate the influence
of aberrant pixels when image signatures are computed.

The third experiment is designed in order to show the influence of outliers, when
the covariance matrices are estimated with the FP algorithm. In this case, outliers
similar to vector X; in Figure 5.10 are built. The training set contains 20 images
of forest stands having less than 10 years old. Among them, 20% have 15% of
aberrant pixels. In addition, some outlier images (for example, mislabeled data)
of forest stands having between 20 and 30 years old are added. These images do
not have aberrant pixels. The same workflow as for the first experiment is followed
and the results are shown in Figure 5.13, knowing that the X-axis is not linear.
By adding images that are totally different from the majority, the corresponding
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Figure 5.13: Comparison between the centroid estimation methods, when the FP covari-
ance matrices estimator is used.
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estimated covariance matrices become outliers for the centroid estimation process.
Therefore the importance of the median and Huber’s estimator can be also proved
for the FP covariance matrix estimator. Even though, for large number of outliers,
the estimation performances diverge from the results obtained for outlier-free data,
the robust estimators remain less influenced than the center of mass.

In conclusion, depending on the nature of outliers, their influence in the estima-
tion process can be diminished by choosing the appropriate robust approach.

5.7 Conclusions and Perspectives

5.7.1 Conclusions

Many signal and image processing applications, like classification [Said ef al. 2015a],
segmentation [Gu et al. 2014], or filtering [Barbaresco et al. 2013] require the com-
putation of the central value of a covariance matrix dataset. In this chapter, several
ideas concerning the robust centroid estimation on the manifold of covariance ma-
trices have been presented.

First, a new method, called the Huber’s centroid, for the estimation of the central
value M of a covariance matrix dataset has been introduced. based on the Huber’s
cost function. This estimator is defined as a trade-off between the center of mass
and the median, where the first one is efficient for datasets with no outliers, while
the second one is robust to the presence of aberrant observations. The contribution
of outliers in the estimation process is controlled by the cost function’s parameter,
that is the threshold T

Second, a gradient descent-based algorithm on the manifold of covariance ma-
trices has been proposed for the centroid’s computation.

Third, a method to automatically compute the Huber’s threshold T has been
developed. This method is based on the concept of median absolute deviation
that has been generalized to the Riemannian case. Thus, experiment-dependent
thresholds can be obtained, in order to capture the intrinsic variability presented
in each dataset. By using this approach, an order of magnitude of threshold T is
found, which may give a clue on the value that has to be considered in the Huber’s
estimation algorithm.

Further on, the properties of the Huber’s centroid, have been analyzed on simu-
lated data. The robustness to outliers and the influence of the dataset’s size in the
estimation process have been investigated. A comparison with the center of mass
and the median has been also performed.

Next, the Huber’s centroid has been used in the context of two real data classi-
fication problems, that are the texture image classification and the brain decoding.
The results have been compared to some state-of-the-art methods that are the center
of mass, the median and the trimmed based estimators.

In the end, a parallel is made between the two types of robust estimators that
may be involved in the classification workflow: the covariance matrix estimators and
centroid estimators.
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5.7.2 Perspectives

Further work will include several directions:

e The computation algorithm for the Huber’s centroid: in Section 5.3.2 a gradi-
ent descent-based method has been proposed to estimate the Huber’s centroid.
Future works will analyze the convergence of this algorithm and the existence
of a unique solution. It has to be mentioned that for the performed exper-
iments, no convergence problems have been encountered. In addition, the
convergence of the gradient descent algorithm has been already proved for
the center of mass [Karcher 1977] and the median [Yang 2010]. However, a
mathematical proof will be searched for the Huber’s centroid.

e The concept of MAD for Riemannian manifolds: in Section 5.3.3, the MAD
has been introduced and a link between it and the dispersion parameter o
dM;,M) o
ma "
proposed and its statistics have been studied. Experimentally, it has been

has been defined. For this purpose, the transformation z = been
observed that z seems to have a chi-squared distribution and that it is inde-
pendent of the dispersion o and the centroid M. Further on, a mathematical
proof for these observations will be searched. in order to find an explicit value
for the coefficient K linking the MAD and o. It has to be reminded that
previously, K has been determined from experiments and set to K & 1.312.

e The generalization to other types of centroid estimators: in the present chapter.
the Huber’s function has been introduced for centroid estimation. Neverthe-
less, the proposed method may be generalized to other functions in order to
develop new robust centroid estimators. For instance, the family of Hampel
functions [Hampel et al. 2005], the linear quadratic quadratic (LQQ) func-
tion [Koller & Stahel 2011], the Welsh function [Maronna et al. 2006] may be
considered for future work.
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6.1 Introduction

In the previous chapters, we have presented different robust classification algorithm
based on global features. Even if these global descriptors have provided relatively
good performances, these features are not adapted to non-stationary signals (local
deformation, ...). To face this issue, many researchers turned their attention to
local descriptors. Bag of words (BoW), Fisher vectors (FV), or vectors of locally
aggregated descriptors (VLAD) are examples of local models used to capture the
information lying in signals [Jaakkola & Haussler 1998, images [Sanchez et al. 2013],
or videos |Faraki et al. 2015b]. These descriptors have multiple advantages. First,
the obtained information can be used in a wide variety of applications, like classifica-
tion [Sanchez et al. 2013] and categorization [Perronnin & Dance 2007], text [Salton
& Buckley 1988] and image [Douze et al. 2011] retrieval, action and face recogni-
tion [Faraki et al. 2015a], ete. Second, combined with powerful local feature descrip-
tors, such as SIFT, they are robust to transformations like scaling, translation, or
occlusion |Faraki et al. 2015a].

These three approaches, have been widely used for many applications involving
non-parametric features. Recently BoW and VLAD have been extended to the case
where each feature is a point on a Riemannian manifold. This is, for instance, the
case where local descriptors are covariance matrices. This includes many differ-
ent applications in image processing, like classification [Barachant et al. 2013, Said
et al. 2015a, llea et al. 2015b|, image segmentation [Garcia & Oller 2006], object de-
tection [Mader & Reese 2012, Robinson 2005], etc. In [Faraki et al. 2015b] and [Faraki
et al. 2014], the BoW approach has been extended to the so-called log-Euclidean bag
of words (LE-BoW) and bag of Riemannian words (BoRW) models by considering
the log-Euclidean and the geodesic distance between two points on the manifold.
In addition, the Riemannian version of the VLAD model (R-VLAD) has been de-
veloped in [Faraki ef al. 2015a] and has shown superior classification performances,
compared to the classic VLAD.

Until now, F'V have not been yet generalized in the same manner to Riemannian
manifold, due to the lack of probabilistic generative models suited for parametric de-
scriptors. In Chapter 4. it has been shown that the covariance matrices are elements
on the manifold that can be modeled by Riemannian Gaussian distributions [Said
et al. 2015b] and Riemannian Laplace distributions [Hajri et al. 2016]. The present
chapter proposes an application of these distributions to model local descriptors by
introducing the Riemannian Fisher Vectors (RFV). In this context, the theoretical
background is fixed and it is validated on classification problems.

The chapter is structured as follows. Section 6.2 presents the general classifica-
tion workflow, when local features are used for information modeling. An overview
of the BoW, the FV and the VLAD descriptors defined on the Euclidean space is
also given. In addition, the methods that extend the BoW and VLAD to the Rie-
mannian manifold are also described. Section 6.3 introduces the proposed extension
of FV to the Riemannian manifold, resulting in the Riemannian Fisher vectors.
These descriptors are defined for both the Gaussian and Laplace mixture models
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and their relation with the R-VLAD is detailed. Section 6.4 presents an application
of the proposed method to texture image classification, based on region covariance
descriptors. For this experiment, in order to speed-up the computation of covariance
matrices, they are estimated by using the integral images. Moreover, the influence
of the classification method on the RFV is analyzed, by comparing the support
vector machine and random forest classifiers. In the end, Section 6.5 reports some
conclusions and perspectives.

6.2 Local Features for Information Modeling

The work presented in this chapter focuses on classification based on local features.
In this context, the information modeling process and the classification workflow
are illustrated in Figure 6.1, where four different stages can be identified: feature
extraction, codebook creation, coding and post-processing, and classification.
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Figure 6.1: Classification workflow for local features based methods.

During the first stage, some characteristics, called low level features, are ex-
tracted. from each element in the database. These descriptors are often computed
on patches and as a result, a set of feature vectors, or signatures, is obtained for
each element in the database. Further on, supervised classification algorithms will
be used, and therefore, this initial set of feature vectors is divided into two sets,
called training and testing sets.

The codebook creation stage is performed on the training set and its pur-
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pose is to identify the significant features from the dataset. Usually, this proce-
dure is performed by means of clustering algorithms, like k-means, or expectation-
maximization. By using these algorithms, the set is partitioned into a predefined
number of clusters, each of them being described by parameters, such as the clus-
ter’s centroid, the dispersion, the associated weight, etc. The obtained features are
called codewords and they are grouped in a codebook, also called a dictionary.

Based on the extracted codebook, the coding stage is implemented next, by
projecting the training signature set onto the codebook space. The purpose of this
operation is to express the signatures by using the previously obtained codewords.
As stated earlier, in the introduction, approaches like bag of words, Fisher vectors, or
vectors of locally aggregated descriptors can be used, resulting in some local models
that capture the underlying information. After their computation, a post-processing
step is often applied, consisting in two possible normalizations, namely the £3 [Per-
ronnin et al. 2010b] and power normalizations [Perronnin et al. 2010a]. The coding
process will be detailed in the following sections, for each of these methods.

For the final classification stage, the testing feature set is also mapped onto the
codebook space. The classification results are obtained, in the end, by associating
the test images to the class of the most similar training observation, according to
some decision rules. In practice, algorithms like k-nearest neighbors, support vector
machine. random forest, etc. are used.

In the following, a short description of the coding models (i.e. bag of words,
Fisher vectors, and vectors of locally aggregated descriptors) for features living in
the Euclidean space is given. In addition, some models that extend the BoW [Faraki
et al. 2015b, Faraki et al. 2014] and VLAD [Faraki et al. 2015a] to the Riemannian
manifolds are also presented.

6.2.1 FEuclidean Space
6.2.1.1 Bag of Words

The bag of words (BoW) model has been used for text retrieval and categoriza-
tion [Salton & Buckley 1988, Joachims 1998] and then extended to visual catego-
rization [Csurka et al. 2004]. In the context of text analysis, the BoW approach has
been used to model a text by a histogram containing the number of occurrences of
each word. This idea has been applied to image characterization, where the "words"
are represented by some discriminating features. Therefore, the image is described
by the number of occurrences of these patterns.

The BoW model follows the general workflow presented earlier, in the introduc-
tory part. First, the codebook is created during the learning stage. Next, based
on the extracted codewords, the data space is partitioned in Voronoi regions, by
assigning each data point to the closest centroid. Further on, for each element in
the dataset, its signature is determined by computing the histogram of the number
of occurrences of each codeword in its structure, as shown in Figure 6.2. In the
end, the classification is performed by means of a distance measure between two



6.2. Local Features for Information Modeling 103

Data signatures

I | Histogram
I III [
1 . |——— Coding g
I H I and ;
— post-processing E
| =] | |1y
e — — ]
Codebook OBaHITaE

Figure 6.2: Feature vector computation for the bag of words method.

histograms, like the chi-squared distance.

The BoW method has several advantages. This is a simple and computa-
tional effective method, invariant to affine transformations and occlusions [Csurka
et al. 2004]. On the other hand, its performances depend on the codebook’s size,
the best results being obtained for large dictionaries [Perronnin & Dance 2007]. In
addition, the BoW method counts only the number of local descriptors assigned to
each Voronoi region. Thus, the classification results may be improved by including
other statistics. such as the variance of local descriptors. This is the case of Fisher
vectors that are presented next.

6.2.1.2 Fisher Vectors

Fisher vectors (FV) are descriptors based on Fisher kernels [Jaakkola & Haus-
sler 1998], representing methods for measuring if samples are correctly fitted by
some given models. By using FV, a sample is characterized by the gradient vector
of the probability density function that models it. Classically, a Gaussian mixture
model (GMM) [Perronnin & Dance 2007] is considered. In practice, the probability
density function is replaced by the log-likelihood and, as mentioned in [Perronnin
& Dance 2007], its gradient describes the direction in which parameters should be
modified to best fit the data. In other words, the gradient of the log-likelihood with
respect to a parameter describes the contribution of that parameter to the gener-
ation of a particular observation [Jaakkola & Haussler 1998]. A large value of this
derivative is equivalent to a large deviation from the model. Further on, that can
be translated into the fact that the model does not correctly fit the data.

Let X = {xp}n=1:N. With x, € R™, be a sample of N low level m-dimensional
features extracted from a dataset. These features are modeled as i.i.d realizations
of the parametric model p(X|6). By extracting the F'V for this set, the sample X is
projected onto a fixed length vector, whose size depends on the number of parameters
in f. More precisely, through the Fisher kernels, the sample is characterized by its
deviation from the model [Sanchez et al. 2013]. This deviation is measured by
computing the Fisher score Uy [Jaakkola & Haussler 1998], that is the gradient V
of the log-likelihood with respect to the model’s parameters 6:

N
Ux = Vologp(X|0) =V log p(xs|6). (6.1)

n=1



104 Chapter 6. Riemannian Fisher Vectors

In classification problems, the gradient of the log-likelihood can be normalized
by using the Fisher information matrix Fp [Jaakkola & Haussler 1998]. For this
purpose, Fy is given by:

Fy = Ex[UxU%], (6.2)

where Ex[-] denotes the expectation over p(X|0) and (-)T is the transpose opera-
tor. Therefore, the normalized Fisher score becomes [Perronnin & Dance 2007):

F;'*Vylog p(X6). (6.3)

Often, this normalization step is not performed in practice, due to the associated
computational costs. In this case, Fp is approximated by the identity matrix. Nev-
ertheless, in [Perronnin & Dance 2007], the authors have shown that by performing
the normalization. the performances are increased.

Let X = {Xn}n=1:n be an N-sample of m-dimensional observations modeled as
a Gaussian mixture model with K components. Thus:

K

P(xnl0) = @kp(xnlpr, M), (6.4)
k=1

where 0 = {(w@g, pr; Mi)1<k<k } is the parameter vector for the kh component. wp
is the mixture weight, with w € (0,1) and ZkK=1 wp = 1, pp is the mean vector,
M, is the covariance matrix and

P(Xn|0k) = exp{ - %(xn — ) M (% — ﬂk)}- (6.5)

(2m) M2

In addition, the covariance matrix is assumed to be diagonal and o} = Diag(Mg) is
the variance vector.

Next. the derivatives of each dimension d. d = 1,...,m with respect to @ are
computed, by taking into consideration two observations:

e the probability yx(xy) that the observation xp is generated by the kR Gaussian
component is computed as:

wi p(Xn|0k)
S @i p(xnlfy)’

Ve (xn) = (6.6)

e toensure the constraints made on the mixture weights, the following parametriza-
tion is generally adopted:

exp (o)

= 6.7
> e (a) o

Wk
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As a result, by neglecting the Fisher information matrix, the gradients of the

log-likelihood are obtained as:

dlogp(X|h) o [ X0~ Hi
n =S (). o

Olospi) g IM | 69
( 1

d dy3 d
doy; — Uk) oy

N

610gp(X|9 Z () — k] (6.10)

By using some, or all of these derivatives, the Fisher vectors are obtained, as illus-
trated in Figure 6.3. In [Sanchez et al. 2013], it has been shown that the combination
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Figure 6.3: Feature vector computation for the Fisher vector method.

between the derivatives with respect to the mean and dispersion gives the most dis-

criminating descriptors.

6.2.1.3 Vectors of Locally Aggregated Descriptors

The wvectors of locally aggregated descriptors (VLAD) represent a simplification of
the Fisher kernel [Jégou et al. 2010], based on the definition of the codebook.

Let X = {xn}n=1.n, With x, € R™, be an N-sample of low level m-dimensional
features extracted from a dataset. This set is partitioned into K clusters, given
by their centroids usually determined by the k-means algorithm. For each cluster
cp, k=1,..., K, a vector containing the differences between the cluster’s centroid
pr and each element xp in that cluster is computed. Next, the sum of differences
concerning each cluster ¢ is determined:

Vi = Z Pk — Xn, (6.11)
XnECk
as shown in Figure 6.4. In the end, the final VLAD descriptor is given by the

concatenation of all the previously obtained sums:

V=[v,..., VK], (6.12)
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which leads to very good results in practice [Jégou ef al. 2010].
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Figure 6.4: Feature vector computation for the VLAD method.

The VLAD descriptors can be also obtained starting from FV. by taking into
consideration only the derivatives with respect to the GMM mean, given in (6.8). In
addition, the homoscedasticity assumption (o = o, Vk = 1,...,K) and the hard
assignment scheme (yg(x,) = 1 if x, € ¢ and 0 otherwise) are required to obtain
the VLAD [Sanchez et al. 2013, Jégou et al. 2010].

Recently, the BoW and VLAD methods have been generalized to the Riemannian
case. In the following, these extensions to the manifold of covariance matrices are
presented.

6.2.2 Extension to Riemannian Manifolds
6.2.2.1 Bag of Words on the Riemannian Manifold

In [Faraki et al. 2014] and [Faraki et al. 2015b], the BoW approach has been extended
to the so-called bag of Riemannian words (BoRW) and log-Euclidean bag of words
(LE-BoW) models.

These descriptors have been obtained by addressing two problems:

e the codebook construction in the Riemannian space;

e the histogram construction in the Riemannian space.

Let M = {Mj}n=1:N, with My, € Py, be a sample of N ii.d observations on
the Riemannian manifold.

In order to take into account the geometry of the covariance matrices space,
in [Faraki et al. 2014] the authors have extended the k-means algorithm to the
Riemannian space, by using the Rao’s geodesic distance between two points on the
manifold. In this case, the cluster’s centroid M is given by the center of mass
obtained by minimizing the cost function in (5.4), recalled next:

N
fen(M) = 3" d(M, M), (6.13)
n=1
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where d( -) represents the Rao’s Riemannian distance [James 1973]. Next, the his-
togram has been computed by associating each local descriptor to its closest code-
word in terms of geodesic distance.

A slightly different algorithm can be obtained starting from the one given in [Faraki
et al. 2014], by introducing the RGD, or RLD, probability density function in the
codebook construction.

Let M = {Mp}n=1.n, with M, € Pp,, be an N-sample of i.i.d observations
issued from one of the Riemannian distributions. In this case, the data space is
partitioned in K Voronoi regions by maximizing the corresponding probability den-
sity function. More precisely, each observation M, is assigned to the cluster k,
k=1,...,K according to:

arg}l:laxp(MnIMk,cm), (6.14)

where p(My|Mg, ok) is the RGD, or RLD probability density function given in (4.8),
or (4.34).

In [Faraki ef al. 2015b] the authors have proposed another approach, called
the LE-BoW. which implies the transformation of the matrix space into a vector
space, by means of log-Euclidean representations. As a result, the codebook can be
obtained by the classical k-means defined in the Euclidean space and the histogram
is then built in the log-Euclidean space.

6.2.2.2 Riemannian Vectors of Locally Aggregated Descriptors

The Riemannian version of VLAD, called Riemannian Vectors of Locally Aggregated
Descriptors (R-VLAD), has been developed in [Faraki ef al. 2015a] and has shown
superior classification performances, compared to the classic VLAD algorithm.

In order to define this descriptor. two problems had to be addressed first:

e the definition of a metric for the clustering algorithm;
e the definition of the Riemannian subtraction.

In [Faraki ef al. 2015a] these issues have been solved by choosing the geodesic dis-
tance [James 1973]| as a similarity measure and the Riemannian logarithm map-
ping [Higham 2008] to perform the subtraction on the manifold.

Let M = {Mp}n=1.n, with My € Pp, be an N-sample of i.i.d observations
on the Riemannian manifold. Based on the geodesic distance, M is partitioned in
K clusters with the centroids denoted by ¢, k = 1,..., K. This partition can be
achieved by using the k-means detailed in [Faraki et al. 2015a]. In this case, the
vector of differences between each centroid ¢ and the elements M; € cg. defined
in (6.11), becomes:

Vi = Z Log., M, (6.15)

M,‘, EC)

where Log(-) is the Riemannian logarithm mapping [Higham 2008].
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6.3 Riemannian Fisher Vectors

The previous section has described the generalization of the BoW and VLAD mod-
els to the Riemannian manifolds. This extension has not yet been done for Fisher
vectors, due to the lack of probabilistic generative models, suited for parametric
descriptors. Recently, the Riemannian space has been modeled by several distribu-
tions and therefore, the Fisher vectors can be defined for the manifold of covariance
matrices.

Let M = {Mp}n—1.n, with My € Pp, be an N-sample of i.i.d observations
modeled as a mixture of K Riemannian distributions. Under the independence
assumption, the probability density function of M is given by:

N N K
p(MI0) = [] p(Mn|0) = [] D wrp(Ma| Mg, %), (6.16)
n=1 n=1 k=1

where p(M,|My, o) represents some density defined on the manifold and 6 =
{(wk;Mkaﬂk)lgkgK} is the parameter vector containing the mixture weight oy,
the central value M} and the dispersion parameter o.

In order to obtain the Riemannian Fisher Vectors (RFV), the gradient of the
probability density function characterizing the data has to be determined. Similar to
the Euclidean case, this is achieved by computing the gradient of the log-likelihood
with respect to the model parameters. Concerning the gradient’s normalization,
up to our knowledge, there is no closed-form expression for this Fisher information
matrix in the Riemannian space. In practice, it can be estimated by carrying out a
Monte Carlo integration. Nonetheless, due to the computation cost of this approach,
the Fisher information matrix is often approximated by the identity matrix [Per-
ronnin & Dance 2007].

In the following, RFV are derived for the Riemannian Gaussian model and
Riemannian Laplace model. Closed-form expressions of the derivatives of the log-
likelihood functions with respect to § = {(Wk,Mk,Jk)lngK} can be computed
based on the following observations:

e the probability 4x(My) that the observation My, is generated by the k** mix-
ture component is computed as:

@i p(Mn|Mg, 0)
Yoy @i p(Ma My, 05)

(Mp) = (6.17)

e to ensure the constraints of positivity and sum-to-one for the weights, the
derivative of the log-likelihood with respect to this parameter needs the fol-
lowing parametrization [Sanchez et al. 2013]:

exp(ag)

= 6.18
1 exp(a) 019

Wk
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In the end, the vectorized representation of the derivatives of the log-likelihood
with respect to the parameters in 6, gives the Riemannian Fisher vectors.

By using the RFV, a sample is characterized by a feature vector containing
some, or all the derivatives, having the maximum length given by the number of
parameters in 6.

6.3.1 Riemannian Gaussian Model

In order to obtain the RFV for the Riemannian Gaussian model, the probability
density function p(My|Mpg,o0r) in (6.16) represents the Riemannian Gaussian dis-
tribution, introduced in Section 4.3.1 and recalled next:

M, My) }1

2
p(M,|Mg, 0p) = p{ _ (6.19)

2
20y,
where My, € P, and oy > 0 are the location and the dispersion parameters. Z(og)
is a normalization factor independent of the centroid My and d( - ) is the Riemannian
distance |[James 1973].

As a result. the derivatives with respect to the elements in the parameter vector
are [Llea et al. 2016b]:

Odlogp(M|0) 2”: (M) Logmkg(Mn)’

e )3 k (6.20)
Ologp(M|0) o d*(Mp, My) B Z' (o)

— oy = ;mmn){ 2 Zion) } (6.21)
Dloap(MI6) 1Og§éi4|9) = ; [vx(Mn) — @], (6.22)

where Logyy, () is the Riemannian logarithm mapping [Higham 2008], () and
ay are defined in (6.17), respectively (6.18). Z’(oy) is the derivative of Z(og) with
respect to og. All the computational details concerning the derivatives with respect
to @ are given in Appendix B. In addition, the method for computing Z’(oy) has
been already presented in Section 4.3.3.

By analyzing these expressions, it can be noticed that they are similar to the
ones obtained for the GMM presented in Section 6.2.1.2, more precisely, with the
expressions in (6.8), (6.9) and (6.10).

6.3.2 Riemannian Laplace Model

Starting from their initial definition, the Riemannian Fisher vectors are extended
next to the Riemannian Laplace distribution. In this case, the probability density
function p(Mp|Mg, 0%) in (6.16) is given by the RLD introduced in Section 4.4.1
and recalled further:

p(Mal 1) = s exp { - AT ME)), (623
k
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where My, € P, and o, > 0 are the location and the dispersion parameters.
¢(o%) is a normalizing factor independent of My and d(-) is the Riemannian dis-
tance [James 1973].

Therefore, the derivatives with respect to the distribution’s parameters are [llea
et al. 2016al:

dlogp(M|9) _ 2”: (M) 08w (M)

M, —~ 2 02 d(Mp, My)’ (6.24)
Ologp(M|0) o d(M,,, My,) B ¢’ (o%) 5
60'k - 712=:1 Vi (M‘i’l) { 0'2 C(Jk) } 1 (62‘ )
6log§6(£4|9) _ ﬂZ::l e (M,,) — @], (6.26)

where Logyy, () is the Riemannian logarithm mapping [Higham 2008], y(-) and
ay are defined in (6.17) and (6.18). {’(ox) is the derivative of {(og) with respect to
ok and its computation has been detailed in Section 4.4.3. The mathematical proof
of the expressions in (6.24), (6.25) and (6.26) can be found in Appendix C.

6.3.3 Relation with R-VLAD

As mentioned in the introductory part, VLAD features are a special case of FV.
Therefore. R-VLAD can be viewed as a particular case of the proposed RFV. More
precisely, R-VLAD is obtained by taking into consideration only the derivatives
with respect to the central value My, given in (6.20), or (6.24). In addition, a
hard assignment scheme is applied, knowing that the intrinsic k-means algorithm
is usually used for the codebook generation. Starting from the definition of the
elements v in the R-VLAD descriptor [Faraki ef al. 2015a] recalled here

v = Z Logyg, (M), (6.27)

Mn ECk

where My, € ¢ are the elements assigned to the cluster cg, k= 1,..., K, the hard
assignment implies that:

1, if M, € ¢

. (6.28)

otherwise.

Y(Mn) = {

¥

Moreover, the assumption of homoscedasticity is considered, that is o, = 0 ,Vk =
1,...,K. By taking into account these two hypotheses, it is clear that (6.20)
and (6.24) reduce to (6.27), hence confirming that RFV are a generalization of
R-VLAD descriptors. The only difference between (6.20) and (6.24) relies on the
way the codebooks are constructed. The former considers that the centroid of each
cluster is the center of mass, while the latter assumes that the centroid is the median.
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6.4 Application to Texture Image Classification

This section introduces an application to texture image classification. The aim of
this experiment is threefold.

The first objective is to analyze the potential of the proposed RFV. for both the
Gaussian and Laplace models, compared to the recently proposed bag of Riemannian
words (BoRW) model [Faraki ef al. 2014] and R-VLAD [Faraki ef al. 2015a]. The
BoRW, RFV and R-VLAD are built based on region covariance descriptors |Tuzel
et al. 2006] containing basic information, like image intensity and gradients. The
experiment’s purpose is not to find the best classification rates, but to compare the
methods, starting from classical descriptors.

The second objective is to determine the RFV that are the most discriminant
to retrieve the classes: the one associated to the centroid Mg, to the dispersion o
or to the mixture weight ay.

The last objective is to compare two different classification algorithms for the
RFV, that are the support vector machine (SVM) and random forest.

6.4.1 Databases
For this work. two texture databases are used:

e VisTez |Vis | database illustrated in Figure 2.1, for which each class is com-
posed of 64 images of size 64 x 64 pixels;

e Outex TCO00_13 [Out | database shown in Figure 2.2, for which each class
is represented by a set of 20 images of size 128 x 128 pixels.

For both databases, the general classification workflow presented in Section 6.2
is applied and it is detailed next.

6.4.2 Classification Workflow

Earlier in this chapter, it has been shown in Figure 6.1 that the experimental work-
flow consists in four stages. At the beginning, the descriptors modeling the textural
information are extracted. Next, the codebook is generated and the RFV are com-
puted. In the end, a supervised classification algorithm is used to classify these
REV. In the next subsections, each of these stages will be presented.

6.4.2.1 Feature Extraction

For this experiment, the textural information is captured by using region covariance
descriptors (RCovDs), obtained from classical features. Thus, for an image I of size
W x H, characteristics like the image intensity and the norms of the first and second
order derivatives are computed for each pixel (z,y) € I. As a result, a vector D of
m = 5 elements is extracted for every pixel [Tuzel et al. 2006]:

D(z,y) = [I(z,y), |22, |2

k]

2 2 T
2w |Zen| | (6.29)
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where I(z,y) is the image intensity of pixel (z,y) € I.

Next, the feature image Ir of image [ is built. Ir is a W x H x m dimensional
array, where each element Ir(z,y) is the m-dimensional vector D(z, y), as shown in
Figure 6.5.
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Figure 6.5: Computation of feature images.

Starting from the feature images, the RCovDs are defined as being the estimated
covariance matrices Mp computed on a sliding patch (or region) P € Ip:

LS
Mp = 5~ > (n—w)(Pn— w7, (6.30)
n=1

where Np represents the number of m-dimensional points {pn }n—1,... n, in the patch
P € Ir and p is the empirical mean of all the points. The estimated covariance
matrices are further used in order to characterize each texture image.

To speed-up the covariance matrices computation time, the fast covariance com-
putation algorithm based on integral images, presented in [Tuzel et al. 2006], has
been implemented. This procedure is described in Appendix D.

For the present application, patches of 15 x 15 pixels are extracted. In addition,
an overlap of 8 pixels is considered between patches. Therefore, each image, in
the VisTex and Outex database, is represented by a set of 36 and respectively 196
patches P, which will give a set of 36, respectively 196, covariance matrices of
size m X m, with m = 5. In the end, each texture class is represented by a set
Mj,..., My of N covariance matrices, with M,, € Ps.

6.4.2.2 Codebook Creation

Knowing that supervised classification methods are considered later, the covariance
matrices database is equally and randomly divided in order to obtain the training
and the testing sets. Further on, the patches in the training set are used to create
a codebook. For this step, a within-class approach is implemented. More precisely,
each texture class is modeled by a mixture of K Riemannian distributions (RGD or

RLD) and the estimated parameters {ﬁ’k;mka&k}lgkgK represent the codewords.
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The codebook is obtained by concatenating the codewords previously extracted for
each class. The estimation procedure is carried out here, by using the intrinsic k-
means algorithm detailed in Section 4.3.4.1 and Section 4.4.4.1, with K being set
to 3. In addition, the k-means algorithm is repeated 10 times in order to reduce the
influence of the centroids initialization.

6.4.2.3 Coding and Post-processing

Once that the codebook is determined, the extracted features are projected into the
codebook space during the coding stage. The BoRW, RFV and R-VLAD models
are derived for both RGDs and RLDs as explained in Section 6.2 and Section 6.3.
After their computation, a post-processing step is required.

In the FV framework, the post-processing consists in two possible normalization
steps |Faraki et al. 2014]:

e /3 normalization that has been proposed in [Perronnin ef al. 2010b] to mini-
mize the influence of the background information on the image signature. For
a vector V. its normalized version Vp, is computed as:

%

Vi, =——, 6.31
L2 I|V||2 ( )

where || - || represents the Ly norm.

e power normalization that corrects the independence assumption made on the
patches [Perronnin ef al. 2010a]. For the same vector V, the power-normalized
version Vpoyper is obtained as:

Vpower = SigIl(V) |V|p: (6-32)

where 0 < p <1, and sign( - ) is the signum function. For all the experiments
presented in this section, p is set to %, as suggested in [Sanchez et al. 2013].

The same normalization scheme is applied for R-VLAD model. For the BoRW
model, only £3 normalization is performed, as recommended in [Faraki ef al. 2015b].

6.4.2.4 Classification Methods

For the final classification step, each test image is associated to the class of the most
similar training image by using several approaches. For the first one, the support
vector machine (SVM) [Vapnik 1995] algorithm with a Gaussian kernel is consid-
ered. In this case, the dispersion parameter in the Gaussian kernel is optimized by
considering a cross-validation procedure on the training set. The practical imple-
mentation is made by using the LIBSVM library [Chang & Lin 2011]. For the second
approach, the random forest classifier [Breiman 2001], with 100 trees, is applied for
the RFV and R-VLAD descriptors and the results are compared to those given by
the SVM.



114 Chapter 6. Riemannian Fisher Vectors

6.4.3 Results

In this section, the classification results obtained on the VisTex and Outex TCO000 13
databases are discussed. Table 6.1 and Table 6.2 report the SVM classification per-
formances in terms of overall accuracy. In order to find these values, the databases
have been partitioned 10 times in training and testing sets. In addition, the Fisher
information matrix given in (6.2) is considered to be the identity matrix.

In these tables, the first column specifies the descriptor’s type (BoRW, RFV,
or R-VLAD). The second column (Homosced.) refers to the homoscedasticity as-
sumption. If this assumption is true, all the clusters ¢ have the same dispersion
parameter 0. The third column (Prior) corresponds to the weights wop. If this
parameter is set to false, the same weight is given to all the clusters of the mixture
model. The last two columns present the classification performances when mixtures
of RGDs and RLDs model the space of estimated covariance matrices. Moreover, in
the section concerning the BoRW, the results obtained by using the state-of-the-art
method, described in [Faraki et al. 2014], are reported on the third row. The other
lines refer to a modified version of this algorithm, implying the maximization of the
RGD, or RLD. likelihood in the codebook creation.

The carried out experiments have multiple purposes. First, the RGD’s and
RLD’s performances are analyzed, in order to discover the most suitable distribution
for data modeling. Second, the descriptors are compared to find the most accurate
one for the present problem. Third, for the RFV, the contribution of each parameter
(weight, dispersion, centroid) to the classification accuracy is tested. For example,
the row “RFV : @” indicates the classification results when only the derivatives with
respect to the weights are considered to calculate the RFV.

By observing the results, the following conclusions can be noticed. First, for
these experiments, the use of RLDs brings little improvement in terms of classifica-
tion accuracy. The most important raises can be spotted for the VisTex and Outex
database by considering the "RFV: o" (about 7%) and the "RFV: o,w" (about
4%) features. In both tables, the corresponding values are marked in blue. More-
over, combining the RFV associated to the centroid M with those associated to the
weight and dispersion parameters yields a gain of about 3% on the VisTex database
for both RGDs and RLDs. In addition, the proposed REV outperforms significantly
the state-of-the-art BoRW [Faraki et al. 2014] and R-VLAD descriptors |[Faraki
et al. 2015a] . A significant gain of 3 to 4% is observed on these databases and the
best classification results are marked in red. This gain is quite logical, since the
REV can be interpreted as a generalization of R-VLAD.

Next, the influence of the final classifier is analyzed for the RFV and R-VLAD.
Therefore, the SVM and the random forest classification algorithms are tested on the
VisTex and Outex databases. The results are presented in Table 6.3 and Table 6.4,
knowing that the texture classes are modeled by a mixture of K RGDs. From this
experiment, it can be concluded that the R-VLAD method is not influenced by the
classification algorithms. On the other hand, for the RFV the best results are always
obtained when the SVM classifier is used. An important gain of 4 to 6% can be
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Table 6.1: SVM classification results on the VisTex database in terms of overall accuracy.

Method | Homosced. | Prior | RGD | RLD
BoRW false true 87.22 £ 1.19 | 87.70 = 1.75
BoRW false false 87.51 £ 0.92 | 88.10 &+ 1.42
BoRW |Faraki ef al. 2014] true false | 87.20 £ 1.55 | 87.69 £ 0.93
BoRW true true 76.67 £ 2.35 | 69.01 &+ 5.39
RFV : w false true 89.21 £ 0.94 | 90.11 &+ 0.58
RFV: o false true 81.42 + 1.12 | 88.51 &+ 0.87
RFV: M false true 87.22 £ 1.15 | 87.7T1 £ 1.06
RFV:o,w false true 81.80 £ 0.60 | 85.36 £ (.86
RFV : M,w false true 88.13 £ 0.67 | 88.45 £ 0.79
RFV : I\_‘I,o false true 90.41 £ 0.86 | 91.07 £ 0.53
RFV : M,o,w false true 89.93 £ 0.53 | 89.77 £ 1.13
R-VLAD |Faraki et al. 2015a] true false | 87.94 £ (.58 | 87.38 £ 0.73

Table 6.2: SVM classification results on the Qutex database in terms of overall accuracy.

Method | Homosced. | Prior | RGD | RLD

BoRW false true 84.32 £ 0.99 | 83.84 £ 0.81

BoRW false false 84.37 £ 1.28 | 83.79 £ 0.96

BoRW |Faraki ef al. 2014] true false | 84.43 + 1.23 | 83.60 £ 0.79

BoRW true true 79.31 £ 1.86 | 77.19 £ 0.27

RFV : w false true 8431 £1.29 | 84.32 £ 0.85

RFV : o false true 7846 £ 1.54 | 84.15 £ 1.01

RFV : M false true 83.94 £ 0.90 | 83.78 £ 0.67

RFV:o,w false true 79.72 £2.09 | 81.79 £ 0.92

RFV : M,w false true 8451 £ 0.78 | 84.40 £ 0.99

RFV : M,o false true 8432 £1.19 | 8478 £ 1.11

RFV : M,o,w false true 8457 £ 1.24 | 83.94 £ 1.23

R-VLAD |Faraki et al. 2015a] true false | 82.99 + 1.19 | 83.71 £+ 1.32

observed for the VisTex database. It has to be mentioned that this comparison do
not concern the BoRW, due to the fact that in this case, the image signatures are
represented by histograms and not by some feature vectors as in the case of RFV
and R-VLAD.

Table 6.3: Comparison between the SVM and the random forest classification perfor-
mances on the VisTex database, for the RGD model.

Method || Homosced. | Prior | SVM | Random forest
RFV: M false true 87.22 £ 1.15 83.73 £ 1.18
RFV : M, o false true 90.41 £ 0.86 85.15 £ 0.64
RFV : M, o, w false true 89.93 £ 0.53 85.03 £ 0.46
R-VLAD |Faraki et al. 2015a] true false 87.94 + 0.58 87.97 £ 0.67
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Table 6.4: Comparison between the SVM and the random forest classification perfor-
mances on the OQutex database for the RGD model.

Method || Homosced. | Prior | SVM | Random forest
RFV: M false true 83.94 + 0.90 81.68 & 1.33
RFV : M, o false true 84.32 £1.19 81.82 £ 0.39
RFV: M, o, @ false true 84.57 £1.24 81.63 £ 0.59
R-VLAD |Faraki et al. 2015a] true false 82.99 +£1.19 83.93 £ 0.83

6.5 Conclusions and Perspectives

6.5.1 Conclusions

Starting from a generative model, local descriptors, such as Fisher vectors can be
extracted in order to describe the information lying in signals, images, or videos.
These FV are descriptors derived from the Fisher kernels and they represent a
method to measure if samples are correctly fitted by a given model.

Introduced initially in the context of Gaussian mixture models [Perronnin &
Dance 2007], FV have been generalized in this chapter to Riemannian manifolds,
where the features are represented by parametric descriptors, like covariance matri-
ces. The obtained descriptors have been called Riemannian Fisher vectors. Several
aspects concerning this new local model have been presented in this chapter.

First, based on the definition of the mixtures of Riemannian Gaussian distribu-
tions and Riemannian Laplace distributions. the expressions of RFV have been de-
veloped. Knowing that these mixture models are characterized by three parameters,
namely the mixture weight, the central value and the dispersion, the correspond-
ing Fisher scores have been expressed. By concatenating some, or all of them, the
proposed RE'V have been obtained [llea ef al. 2016b, llea et al. 2016a].

Second, the connection between the RFV and the Riemannian version of the
conventional vectors of locally aggregated descriptors (R-VLAD) [Faraki ef al. 2015a]
has been analyzed. It has been shown that by considering the homoscedasticity
hypothesis, along with a hard assignment scheme, the RFV reduces to R-VLAD. The
proposed RFV can hence be considered as a generalization of R-VLAD descriptors.

Next. both Gaussian and Laplace RFV models have been applied in the context
of texture image classification. In addition, their behavior has been compared to

other local descriptors, already generalized for the Riemannian case, that are the bag
of Riemannian words (BoRWs) [Faraki et al. 2014] and R-VLAD [Faraki et al. 2015a].

6.5.2 Perspectives

Further works will include several directions:

e The derivation of an analytical expression of the Fisher information matriz
for the Riemannian Gaussian and Laplace distributions: in Section 6.2.1.2, it
has been shown that the Fisher vectors are computed based on the gradient
of the model’s log-likelihood. The obtained expression is often normalized
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by the Fisher information matrix, which has a favorable impact on the re-
sults [Perronnin & Dance 2007]. Even though explicit forms can be derived
for this matrix in the Euclidean space, up to our knowledge, there is no closed-
form expression of the Fisher information matrix for the considered Rieman-
nian Gaussian and Laplace distributions. In practice, it can be estimated by
Monte Carlo integration. Knowing that in the Euclidean space, the results
are improved after the normalization, further works will concern the search of
an analytical expression of the Fisher information matrix for the Riemannian
Gaussian and Laplace distributions.

The use of enhanced image descriptors: the classification performances re-
ported in this chapter have been obtained starting from basic descriptors.
More precisely, for each image, the intensity and the norms of the first and
second order derivatives have been considered in order to build the covariance
matrices in Section 6.4.2.1. The impact of more complex descriptors, like the
so-called local extrema-based descriptor (LED) [Pham et al. 2016] that cap-
tures all the color, spatial and gradient information will be analyzed in future
works.

The dictionary reduction: in this chapter, dictionary based classification meth-
ods that operate in the Riemannian space have been used. Further on, based
on the recent works on sparse representation for symmetric positive definite
matrices [Harandi ef al. 2012,Harandi et al. 2016], the codebook creation stage
described in Section 6.4.2.2 will be modified in order to take into consideration
only some representative codewords. The obtained results will be integrated
in the proposed classification workflow for the Riemannian distributions.

The exploitation of the spatial distribution of the extracted patches: in this
chapter, a patch based classification methods has been presented. While the
proposed method has demonstrate promising results, it does not take into
account the spatial distribution of the patches. Exploiting this information
may yield to gain of classification performance. Inspired by the concept of
co-occurrence matrices [Haralick et al. 1973], future works will concern the
development of a classification method which will exploit the statistical de-
pendence between neighboring patches.
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7.1 Conclusions

The work presented in this thesis focused on the use of covariance matrices, as
texture descriptors, for the development of robust classification algorithms. More
precisely, starting from the zero-mean multivariate Gaussian distributions, as sta-
tistical models for texture information. a robust classification workflow has been
proposed. This workflow has been introduced in Chapter 1 and it is recalled in
Figure 7.1, in order to summarize the main contributions of this work.
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Figure 7.1: Classification workflow.

This workflow begins with the extraction of some textural descriptors and their
modeling by means of zero-mean multivariate Gaussian distributions. Considering
this starting point, the concept of robustness appears at different levels.

First, the estimation of the covariance matrix characterizing the zero-mean MGD
has to be capable to deal with the outlier values present in the observations. Once
extracted, these features can be used in the classification. At this stage, for the
decision-making strategy, a method to regulate the false alarm rate is desired. To
answer this need, a statistical hypothesis test has been proposed in this work, based
on the geodesic distance. This test has been analyzed in terms of noise robustness
and classification performance. The test statistic has been used further, for PolSAR
image classification. In this context, the classification workflow has been modified
by adding an optional preprocessing stage, consisting in noise filtering. Based on
the partial differential equation formalism, a directional diffusion denoising method
has been proposed, for speckle reduction. By applying this step, it has been shown
that the overall accuracy can be improved.

Instead of directly using the covariance matrices in the classification, they can be
modeled as elements on the Riemannian manifold, in order to take into consideration
the geometry of their space. To model the within-class diversity, the Riemannian
Gaussian and Laplace distributions have been introduced. The probability density
functions of these distributions have two parameters: the central value and the
dispersion around it. As a result, the model’s robustness to outliers is given by
the centroid estimation procedure. This remark has motivated the proposition of
the Riemannian Laplace distribution to minimize the influence of outlier covariance
matrices on the centroid estimation. For this model. the MLE of the central value
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is the median, which is known to be a robust estimator, compared to the center
of mass used for the Riemannian Gaussian distribution. In addition, the mixture
model has been also defined and their parameters have been estimated by extending
the k-means and EM algorithms. The BIC criterion has been considered, for the
automatic computation of the appropriate number of clusters involved in those two
clustering algorithms. In the end, these methods have been applied to texture image
classification and shown promising results compared to the state-of-the-art Wishart
distribution.

The k-means and EM clustering algorithms are based on the partition of the
dataset in subsets, characterized by their central value. A robust alternative to
the center of mass and the median, previously mentioned, has been introduced in
this thesis. This centroid has been inspired by the theory of M-estimators, more
precisely by the Huber’s estimator. The proposed estimator, called the Huber’s
centroid, represents a trade-off between the efficiency of the center of mass and
the robustness of the median. This compromise is tuned by a threshold, which
controls the estimator’s behavior. More precisely, for large values, the centroid
behaves as the Riemannian center of mass, while for small values it is similar to
the median. To compute the estimated centroid, a gradient based algorithm has
been also proposed. In addition, an algorithm for the automatic computation of
the Huber’s threshold has been defined, based on the concept of median absolute
deviation, that has been extended to the Riemannian manifold. This estimator
has been validated on simulated data, texture images, simulated PolSAR data and
magnetoencephalography data. The results have shown its potential.

All the previous classification algorithms are based on global descriptors. The
last contribution of this thesis, gives an alternative to this approach by defining
a local descriptor based classification method. In this context, the Fisher vectors
have been extended to the Riemannian manifold. This extension was not possible
without a probabilistic generative model. By considering the Riemannian Gaussian
and Laplace models. introduced in this thesis, the Riemannian Fisher vectors have
been defined and the relation with the Riemannian vectors of locally aggregated
descriptors has been shown. In the end. these descriptors have been applied to
texture image classification, showing promising results.

7.2 Perspectives

Ideas related to the future work have been presented at the end of each chapter. In
the following, a selection of the possible perspectives is made, representing the main
research directions. Therefore, the work presented in this thesis can be continued,
by considering the following:

e The generalization of the proposed methods to non-Gaussian statistical models:
all the methods presented in this thesis rely on the use of covariance matrices,
as texture features. A multivariate Gaussian distribution has been considered
to model the observations. This choice has been motivated by the convenient
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properties of this distribution. More precisely, for the MGDs, the geodesic
distance admits a closed form. In Chapter 2, it has been shown that more
complex statistical models can be employed for data modeling, such as the
multivariate generalized Gaussian distribution (MGGD), the SIRV model, the
copula-based model. etc. Such models are expected to better represent the
observations, since they all generalize the multivariate Gaussian distribution.
But in general, for these models, the geodesic distance does not admit a closed
form. Only some approximations can be available for some particular cases
(fixed shape parameter, linear approximation of the geodesics). One may con-
sider a divergence, like the Kullback-Leibler, instead of the geodesic distance
but in this case, some desirable properties of the distance will be lost. There-
fore, the adaptation of the proposed approaches to other probability models
should be taken into consideration for future works.

The eztension of the proposed Riemannian tools to the space of complex co-
variance matrices: in Chapter 4, two density models for the space of real
covariance matrices have been proposed, that are the Riemannian Gaussian
and Laplace distributions. Future works will address the extension of these
models to the space of complex covariance matrices. This idea is motivated
by the existence of applications where the covariance matrices can be complex
valued. For instance, this is the case of PolSAR data. This topic is the subject
of current research works [Hajri et al. 2017].

The development of the Riemannian models for structured covariance matri-
ces: another extension of the Riemannian Gaussian and Laplace distribution
is represented by the adaptation of these models to the space of structured
covariance matrices. In practice, covariance matrices having special forms, like
Toeplitz, or block-Teeplitz, can be found. Hence, the Riemannian distance on
the manifold of structured covariance matrices is not the one defined in (4.5)
and considered in this thesis. More precisely, for these matrices, the geom-
etry of their space has to be respected by the chosen distance, in order to
benefit of all their advantages. Consequently, all the developed Riemannian-
geometric tools should be readapted to these spaces of structured covariance
matrices [Said et al. 2016].

The exploitation of the spatial distribution of patches in the classification: in
Chapter 6, a patch based classification method has been introduced. Based
on the concept of Fisher vectors extended to covariance matrices, the pro-
posed Riemannian Fisher vectors have shown promising results, compared to
state-of-the-art local covariance matrice descriptors, i.e. BoRW and R-VLAD.
Nevertheless, all these methods have a major drawback: they do not exploit
the spatial distribution of patches. Inspired by the concept of gray level co-
occurrence matrices used for texture analysis, further works will be devoted to
the extension of such co-occurrence matrix to covariance matrices estimated
on local patches.



APPENDIX A
Creating Outlier Images for the
PolSARproSim Database

In the context of forest stands, the outliers can be represented by stands with mod-
ified structure. The changes in structure can be determined by storms, illnesses, or
human actions and they are reflected in the textural and polarimetric characteristics
of the corresponding images. Therefore, by having properties that are different from
the rest of the images in the dataset, they can be considered as oultiers.

In order to mimic this behavior, the simulated images are modified by replac-
ing a predefined percentage of pixels with aberrant ones. The aberrant pixels are
generated as vegetation pixels and structured in a circular area as shown in Fig-
ure A.1. The area’s surface is computed by taking into consideration the percentage
of aberrant pixels fixed by the user.

(b)

Figure A.1: Example of PolSARproSim outlier images containing (a) 5% and (b) 20% of
aberrant pixels.

To obtain the outlier images, several steps are needed:
1. A PolSARproSim image with large surface and low tree density is simulated;

2. A large surface containing no trees is identified and modeled by a zero-mean

multivariate Gaussian distribution.
3. The covariance matrix of the MGD for the selected region is estimated;

4. A new dataset having the same distribution, that is the same parameter value,
is generated. The new dataset is structured in a circular area and inserted into
another PolSARproSim image that will represent the outlier image:
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a) a circular area having a specific surface and the center randomly fixed is
g
generated. The surface is computed based on the percentage of aberrant
pixels fixed by the user.

(b) the pixels of the circular area are replaced by the earlier obtained MGD
dataset.



APPENDIX B

Fisher Vectors for the Riemannian
Gaussian Model

Let M = {Mp},—1.n. with My, € P, be an N-sample of 1.i.d observations modeled
as a mixture of K Riemannian Gaussian distributions. Under the independence
assumption, the probability density function of M is given by:

p(M|h) = Hp(an) (B.1)

where 0 = {(wk,l\_/lk,ak)lgkg{} is the parameter vector containing the mixture

weight wg, the central value My and the dispersion parameter ox. For a mixture of
K RGDs, p(M,|0) is defined as [Said et al. 2015b]:

=

p(Mp|0) = @p p(Mp[My, 0%

k=1
- .
1 d2(Mn,Mk)
= kzzlm 7o) exp { - T}’ (B2)

where Z(o}) is a normalization factor independent of the centroid My and d(-) is
the Riemannian distance [James 1973].

Starting from (B.1), the log-likelihood is obtained as:

log p(M|0) = Zlogp(MnW (B.3)

and its derivatives with respect to the parameter vector can be computed.
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B.1 The derivative with respect to the centroid Mj,

The derivative of the log-likelihood in (B.3) with respect to the centroid My, is
obtained as follows:

dlog p(M|9) 0
oM, oM,

Zlogp(M 10)

Z 0log p(M,,|6)
= oM,

_ aMkp(M'"“W)
Z p(an)

n=1

(B.4)

) o p(M0)
Z ZJ 1w p( nle:Uj).

The numerator is separately computed further:
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(B.5)
Knowing that derivative of the Riemannian distance is given by [Chavel 2006]:

53]
M},

dQ(Mn: Mk) = —2 L(]gmi (Mn): (BG)

the expression in (B.5) can be written:

o L d?(M,, M)
oz Malf) = =k g e { = TR (= ) (-2 Loy, (M)
= ;ex { _ dg(Mn:Mk)} LOgM,; (Mn)
2o 207 o2
1 _
= Wk o2 L(JgMi (M) p(My, | My, o). (B.7)

k

Next, by replacing the numerator in (B.4) by the result in (B.7), the following
relation is derived:

dlog p(M]6) i 2% Logyy, (Mn) p(Mn| My, o%) B3)
OM;, Zj =1Wj P(Mn|Mj:0'j)

n=1
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In the end, by introducing the variable:

@k, p(Mp|Mg, o%)

Te(My) = - ; (B.9)
Y Y @ p(Mn|Mj, 0;)
the final form of the derivative with respect to My is obtained:
0log p(M|0) _
gp | Z Te(My,) o}, 2 Logyg, (My). (B.10)

B.2 The derivative with respect to the dispersion oy,

The derivative of the log-likelihood in (B.3) with respect to the dispersion parameter

o i1s obtained as follows:
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Next, the numerator is separately computed:
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By replacing in (B.11) the numerator with the previously expression (B.12), the
derivative of the log-likelihood becomes:

Y Z'(oy) |, d® (MmM)
dlogp(Mf) o= Pk P(Ma|My, op){ — Z28 + CMM |

(B.13)
> i1 @i p(Mu|M;, o)

Oop. —

In the end, by using the expression of y(M,) in (B.9), the final form of the
derivative with respect to og is obtained:

Ologp(M|6) ol Z'(ox) | d*(Mpn,My) ,
T oop T;'Yk(Mn}{ = Z(ow) + P } (B.14)

B.3 The derivative with respect to the weight w;

In order to compute the derivative of the log-likelihood in (B.3) with respect to the
weight, a parametrization is needed first [Sanchez et al. 2013]:

o = Plok) (B.15)

3jm1 exp(ey)

This parametrization using «g ensures the constraints of positivity and sum to one
for the weights. Therefore, the derivative with respect to o is replaced by the
computation of the derivative with respect to ag:

N
Ologp(M|0) 0
= Bar ; log p(My,|0)

day,

_ i": 9log p(Ms|6)

= day,

N dar, p(Mn|9)
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— Z oz P(Mnl6) (B.16)
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The numerator is separately computed, by taking into consideration the parametriza-
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tion in (6.18):
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Next, by replacing the numerator in (B.16), by the previously obtained expres-
sion (B.17), the derivative of the log-lihelikood can be written as:

Ologp(M|6) _ i @i p(Mp| My, 0%) — @, Zf:l w; p(Mn|Mj, 0;)

1 (B.18)
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In the end, by introducing the expression of v,(My) in (B.9), the final form of
the derivative with respect to ag is obtained:

N
Ologp(MI0) _ §~ 1 (M) — . (B.19)
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APPENDIX C

Fisher Vectors for the Riemannian
Laplace Model

Let M = {Mp},—1.n. with My, € P, be an N-sample of 1.i.d observations modeled
as a mixture of K Riemannian Laplace distributions. Under the independence
assumption, the probability density function of M is given by:

p(M]0) = Hp(Mn|9) (C.1)

where 0 = {(wk,l\_/lk,ak)lgkg{} is the parameter vector containing the mixture

weight wg, the central value My and the dispersion parameter ox. For a mixture of
K RLDs, p(M,|0) is defined as [Hajri et al. 2016]:

K

p(Mn|0) = @i p(Mn|My, o%)
k=1

I
M)

Wk

1 Xp { — 7d(Mka) }, (C.2)

Cn(on) 207

b
I
_

where (m(ok) is a normalizing constant independent of My, and d(-) is the Rieman-
nian distance [James 1973].

Starting from (C.1), the log-likelihood is obtained as:

log p(M|0) = Zlogp(MnW (C.3)

and its derivatives with respect to the parameter vector can be computed.
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C.1 The derivative with respect to the centroid M;

The derivative of the log-likelihood in (C.3) with respect to the centroid My is

obtained as follows:
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M, 6‘M Z log p(M|0)

Z 0 Ing(Mn | 9)
oM,

N
_ EP(MRW)
=2 "0, 2

n=1

Z BMk (M'ﬂrlg)
ZJ -1 W@j P(MnlMJ:UJ) .

The numerator is separately computed further:
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Knowing that derivative of the Riemannian distance is given by [Chavel 2006]:
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the expression in (C.5) can be written:
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Next, by replacing the numerator in (C.4) by the result in (C.7), the following
relation is derived:
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In the end, by introducing the variable:

@k, p(Mp|Mg, o%)
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Y @ p(Ma|Mj, 0;)
the final form of the derivative with respect to My is obtained:
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C.2 The derivative with respect to the dispersion oy,

The derivative of the log-likelihood in (C.3) with respect to the dispersion parameter
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Next, the numerator is separately computed:
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By replacing in (C.11) the numerator with the previously expression (C.12), the
derivative of the log-likelihood becomes:

. Cloy) | d(Mn M)
dlogp(M|0) L Pk P(Mﬂ|Mk=°’k){ oy T }

(C.13)
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In the end, by using the expression of y,(M,) in (C.9), the final form of the
derivative with respect to og is obtained:
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C.3 The derivative with respect to the weight @y

In order to compute the derivative of the log-likelihood in (C.3) with respect to the
weight, a parametrization is needed first [Sanchez et al. 2013]:
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This parametrization using «g ensures the constraints of positivity and sum to one
for the weights. Therefore, the derivative with respect to o is replaced by the
computation of the derivative with respect to ag:
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The numerator is separately computed, by taking into consideration the parametriza-
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tion in (6.18):
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Next, by replacing the numerator in (C.16), by the previously obtained expres-
sion (C.17), the derivative of the log-lihelikood can be written as:
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In the end, by introducing the expression of ,(My) in (C.9), the final form of
the derivative with respect to ag is obtained:
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APPENDIX D

Integral Images for Covariance
Matrix Computation

Integral images are intermediate image representations that have been introduced
in [Viola & Jones 2001]. Starting from an image I, the integral image It is defined
as:

I y)= Y Iu). (D.1)

r<z!, y<y’

A graphical representation of this equation is shown in Figure D.1. Moreover, the

y . y |
ZI(x‘y)
KXYy
I(x.y) h(x"y’)

Figure D.1: Computation of integral images.

definition of integral images can be extended to higher dimensions and used for fast
computation of region sums, as mentioned in [Tuzel et al. 2006]. In the same work,
the procedure for covariance matrix estimation based on integral images has been
detailed, as follows. First, the expression of the (,7)-th element in the covariance
matrix given in (6.30), has been rewritten:

Np

Mp(i,3) = 5= 3 (pa(®) — 1)) (bnl3) ~ 1)) =

1 n=;}P 1 Np Np
= N—P(; pn(i)pn(j) - N—P;pn(i}gpn@)). (D.2)

To compute the two terms in (D.2), the integral images have been used. Therefore,
the following notations have been introduced:

R(mf:y;J} = Z IF(mayai) (DS}

r<z’, y<y'
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and

Q(m',y’,i,j} = Z IF($,y,i,j}, (D'l)

z<x’, y<y'

where R is the W x H x m tensor of the integral images, @ is the W x H x m xm
tensor of the second order integral images and 7,7 =1,...,m. In addition,

R.y = [R(z,y,1) ... R(z,y,m)]" (D.5)
and
Q(m:yala 1) cen Q(mayalam}
Qr,y = : (D-G)
Q(z,y,m,1) ... Q(z,y,m,m)

are the corresponding m-dimensional vector and m x m dimensional matrix. Finally,
the covariance matrix of a patch P delimited by the upper left corner (z’,3’) and
the lower right (z”,y"”) corner, as illustrated in Figure D.2, is given by:

1
Mp(mf,yf;mﬂ,yﬂ) = N—P (me!,yﬂ + me,y! —_— Qrﬂ,y!’ —_— me,yﬂ—

1
— N—P (Rmu,,yn —|— Rmr,yr — R.T’,’y” — Rmn,y;) (Rmu,,yn —|— Rm;,yr — R.’.."’,’_l,-'” — qu,y!)T) s
(D.7)

knowing that Np = (z” —2')(y” — /). This expression is obtained based on the fact

X X"

IF(x,y)

Figure D.2: Example of a patch P € Ip, where each element p, is an m-dimensional
point, n =1,...,Np.

that the sum of the elements in any rectangle (z/,y/,z”,4") contained in an integer
image I7 can be evaluated as:

II (37”1 y”} + II(:B,: y’) - II('I"”: y;} - If(mf: y”}‘ (Dg)

With this algorithm, once that the integral images have been built, the time com-
plexity of the covariance matrix estimation is O(m?2), VP € I [Tuzel et al. 2006].
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An M-estimator for Robust Centroid Estimation on
the Manifold of Covariance Matrices

Ioana Ilea, Lionel Bombrun, Romulus Terebes, Monica Borda, and Christian Germain

Abstract—This paper introduces a new robust estimation
method for the central value of a set of N covariance matrices.
This estimator, called the Huber’s centroid, is described starting
from the expression of two well-known methods, that are the
center of mass and the median. In addition, a computation
algorithm based on the gradient descent is proposed. Moreover,
the Huber’s centroid performances are analyzed on simulated
data, to identify the impact of outliers on the estimation process.
In the end, the algorithm is applied to brain decoding, based on
magnetoencephalography (MEG) data. For both simulated and
real data, the covariance matrices are considered as realizations
of Riemannian Gaussian distributions and the results are com-
pared to those given by the center of mass and the median.

Index Terms—centroid, classification, center of mass, median,
Huber’s centroid.

I. INTRODUCTION

OVARIANCE matrices are used in a wide variety of
Capplications in signal and image processing, including
array processing [1], radar detection [2], [3], medical image
segmentation [4], face detection [5], vehicle detection [6],
etc. Another research direction concerns the signal and image
classification, where covariance matrices can be used to model
different kind of dependence, like spatial, temporal, spectral,
polarimetric dependence, etc [7]-[10].

Recently, covariance matrices have been modeled as realiza-
tions of Riemannian Gaussian distributions (RGDs) and used
in classification algorithms such as k-means or Expectation-
Maximization (EM) [9]. This kind of classification procedures
are based on the partition of the dataset in subsets, or clusters,
characterized by their central values, also called centroids.
The dataset’s partition is accomplished by assigning each
observation to the closest cluster in terms of a predefined
distance [11]. This is a recursive procedure and for each
iteration, the centroid’s value is recomputed and the assig-
nation step is repeated. Usually, the cluster’s centroid is the
center of mass, computed by using the squared Euclidean
distance. Despite its popularity, this method is not appropriate
for covariance matrices having a Riemannian geometry. To
solve this problem, the Euclidean distance can be replaced
by an intrinsic metric such as the Riemannian distance. The
main disadvantage of the center of mass is its non-robust
behavior to outliers that can exist in the dataset [11]-[13]. A
robust alternative for the centroid’s computation is the median,
which has been also generalized for Riemannian manifolds [3],
[14], [15]. This estimator is computed by using a gradient
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descent algorithm. Nonetheless, in this algorithm, a division
by the distance between each observed covariance matrix in
the dataset and the median is needed. If those two points are
too close, this distance tends toward zero and may lead to
numerical instability. In such case, Yang propose to exclude
those points, at each iteration of the algorithm [14]. Another
possibility for determining robust centroids in the space of
covariance matrices is the use of the trimming methods [16].
These algorithms imply the elimination of a fixed percentage
of outliers, according to their distance with respect to the
dataset’s mean or median, and the computation of the mean
or the median on the remaining data. Nevertheless, the main
difficulty of the trimmed estimators relies on the way to tune
the percentage of discarded data.

The main contribution of the paper is to propose a novel
centroid estimator, based on the theory of M-estimators. By
considering the so-called Huber’s function [17], [18], we intro-
duce the definition of this estimator and present an algorithm
to estimate it from a sample of N covariance matrices. The
proposed estimator is a trade-off between the center of mass
and the median, where the former is efficient, while the
latter is robust to outliers. Moreover, based on the median
abosolute deviation (MAD) concept, this paper presents a way
to automatically determine the Huber’s threshold.

The paper is structured as follows. Section II recalls the
definition of the centroid from a sample of N observations.
A brief overview of the center of mass and the median
are given. Next, we introduce the proposed Huber’s centroid
estimator and present a gradient descent algorithm to estimate
it. The performance of these estimators is then evaluated on
simulated data. Section III introduces an application to brain
decoding, based on MEG data. Finally, Section IV reports
some conclusions and perspectives of this work.

II. THE HUBER’S ESTIMATOR FOR CLUSTER CENTROIDS
A. Centroids and estimation methods

Many signal and image processing applications including
classification [9], segmentation [19], or filtering [3] require
the computation of the central value of a covariance matrix
dataset, which represents the subject of this section. Let
{Mi,..., My} be a random sample of N covariance matri-

ces. The centroid estimator of this set, denoted M, is defined
as being the minimizer of the following cost function f(M):
M = argmin f(M). (1)

M

Depending on the choice of f(M), different estimators of
the centroids have been introduced in the literature. In the



following, we briefly recall the definition of the center of mass
(CM) [20]-[22] and the median (Med) [2], [15] and next we
introduce the proposed M-estimator.

a) The center of mass is one of the most popular estimators,
for which the cost function is:

N
fem(M) = %Z d*(M, M), 2
i=1

where d(-) represents the Rao’s Riemannian distance between
two covariance matrices defined as [23]:

d(My,M3) = [% > (n )\5)2] ; 3)

i=1

where \;, i = 1...m are the eigenvalues of M2_1M1.

Even though this method is largely used, it has a major
drawback: it is easily influenced by the outliers present in the
dataset [14], [15]. In order to reduce the impact of aberrant
data on the estimated centroid’s value, several possibilities
are available. Some authors have proposed in [15], [16] the
use of some trimming based methods to remove the outliers
before the computation of (2). By deleting the elements that
differ from the rest of the dataset, some new ones will become
oultiers. If the removal procedure is repeated, the dataset may
become too small for further reliable analysis. Therefore, a
more appropriate solution is the use of robust methods for
computing the centroid, like the median [15].

b) The median is defined by using the distance function:

N
Furea(M) = =3 d(M, M) @
=1

It has to be mentioned that the estimation of the center of
mass and the median from a set of covariance matrices have
been recently studied in [3], [14], [15].

The center of mass and the median are two extreme solu-
tions: the first one is efficient for datasets with no outliers,
while the second one is robust to the presence of aberrant
observations. In the following, we propose a trade-off between
these two methods by introducing a Huber-like estimator.

B. The Huber's estimator

1) Definition of the Huber’s centroid

In this section, we introduce a novel centroid estimator on
the manifold of covariance matrices, based on the theory of
M-estimators [17], [18], [24]. In this case, the cost function
in (1), denoted f, (M) for the M-estimator, can be expressed
by means of a scalar weight function u(-), as follows:

1 X

J D = 5 w(dM MMM, ()
where u(-) is a positive-valued function which gives a weight
to each observation M; in the computation of the centroid.
Obviously, the weight function w(-) should decrease to zero
to ensure that the outliers have a smaller contribution to
the centroid’s estimate than the other observations. Note that
even if the center of mass (2) and the median (4) have

expressions similar to (5) for respectively u(d(IM,M;)) =1
and u(d(M,M;)) = gyppry- they do not belong to the
family of M-estimators since the regularity conditions of their
corresponding weight function u(-) defined in [24] are not
satisfied.

In [17], Huber introduces the so-called Huber’s function
u(-) defined as:
T
) ©)

" d(M, M;)
where T is a threshold value controlling the contribution of
outliers in the estimation. By combining (5) and (6), the

proposed Huber’s centroid estimator is the covariance matrix
M, which minimizes the following cost function:

u(d(M, M;)) = min (1

N
1
fuM) =+ > @ (M, M) 1gm,)<ry+
=1
7N
TN Z d(M, M;) Ligm,M.}>T) Q)
=1
where 1,3, is the indicator function, which equals 1 if
a < b and 0 otherwise. Threshold T' represents a measure
for discriminating between normal and aberrant data and
therefore, it controls the estimator’s behavior. In other words,
for a large value of T, the Huber’s estimator behaves as the
center of mass, while for a small value it is equivalent to the
median.

In this paper, we propose an algorithm to estimate the
Huber’s centroid by means of a gradient descent algorithm
which minimizes the distance function given in (7). The
gradient of f (M) with respect to M that is V(fz(M)) can
be written as:

9 N
V(frM)) = -+ > Logn (M:) 1aomm, )<}
=1
N
Ts~LogmML) 0 @®)
Ng—l d(M,M,;) {d(M,M;}>T}s
where Log,, is the Riemannian logarithm mapping [25], [26].
Once that this value is obtained, the centroid can be updated
as:
My = EKPM“(—Sit V(fa(Mi))), )]

with s;; being the descent step and Exp,,; the Riemannian
exponential mapping [25], [26]. In practice, the Armijo’s
backtracking procedure [27] is used to fix s;; at each iteration
of the algorithm.

This recursive process is repeated as long as the norm
of V(fm(M;:)), denoted D;;, is greater than a precision
parameter ¢, or until a maximum number of iterations Npax
is reached. Practically, D;; is given as:

Dj = ||V (fa (Ma))|| = tr (M5'V(fur (Mir)))?) . (10)

In the end, the Huber’s centroid My estimator is obtained.
A pseudo-code description of the Huber’s centroid estimation
is given in Algorithm 1.

As observed in (8), the first and the second terms correspond
respectively to the gradient of the cost function for the center



Algorithm 1 Huber’s centroid estimator
1: Input: My,...,Mp, T, €, Npax

Initialize M using the sample mean

it=1

while (D;; > €) and (it < Npax) do
Estimate VI using one iteration of (9).
Compute the gradient norm, D;;, according to (10).
it=1t+1

end while

Output: M

== = AN

of mass and median centroids. For the second term, it can
be seen that the division by distance d(M;;, M;) is needed.
In some cases, that is when an observation M; is close to
the current centroid’s estimate M, their distance is close
to 0 yielding to potential numerical unsuitability. To avoid
this, in [14] the author proposes to exclude, at each iteration
it, the observations M; that are too close from M. By
using the proposed Huber’s centroid, this problem is solved
automatically by considering the threshold 7. In conclusion,
by choosing an appropriate value for 7', the division by zero in
the gradient (8) will be avoided, which represents an important
advantage of the proposed method.
2) Determination of an automatic Huber’s threshold
As explained before, the performance of the Huber’s cen-
troid estimator depends greatly on the threshold 7' that dis-
criminates between aberrant and normal data. There is hence
a need to fix it automatically or at least to give an idea of
the order of magnitude of 7'. In practice, 7' is application
dependent and is related to the intrinsic variability of the
observed data. By considering first and second order statis-
tics, the Riemannian Gaussian distribution (RGD) has been
introduced in [26]. This distribution is characterized by two
parameters: the central value M and the dispersion o. Its
probability density function of the RGD is given by
_ 1 d* (M, M)
P(MM, o) = Z(o) exp{ 202 }’

where Z(o) is a normalization factor independent of the
centroid M, and d(M, M) is the Riemannian distance defined
in (3).

In order to estimate the threshold’s value, a robust estimator
of the dispersion parameter o is required. Inspired by previous
works on robust statistics [28], we propose to extend the
concept of median absolute deviation (MAD) to the case of
covariance matrices which live in a Riemannian space. The
MAD of the set My, ...,My is defined as the median of
the Riemannian distances d computed between each sample
M, and the Riemannian median (denoted RMed(M)):

MAD = median(d(M;, RMed(M)). (12)

Once the MAD is computed, the robust estimate & of the
RGD’s dispersion can be obtained as:

an

K
d=—xMAD, (13)
m

where m is the size of covariance matrices and K is a con-
stant depending on the distribution of d(M;, RMed(M)) /o.

More precisely, K is obtained by studying the statistics of

z = 2MM) gince by definition of the MAD, we have:

d(M,M) _ MAD)

ma ma

L = p(d(M, M) < MAD) = p(
(14)

In practice, it has been observed on simulated data that the dis-
tribution of z is independent of M and ¢'. By combining (13)
and (14), the constant K = 1/(¢~1(0.5)), knowing that ¢~*
is the inverse of the cumulative distribution function of z.
Experiments have shown that X" ~ 1.312. Finally, the Huber’s
threshold is obtained by multiplying the estimated standard
deviation & by a constant ¢, which will give T' = ¢ x 4. A

common value for ¢ is 1.5 as recommended in [28].
C. Performance Analysis

In the following, the influence of outliers on the proposed
Huber’s centroid estimator is studied. The obtained results are
presented in this section and they are compared to those given
by the center of mass and the median.

For this experiment, covariance matrices are generated as
realizations of RGDs. For more information concerning the
generation of samples from an RGD, the interested reader is
referred to section III-A of [26]. In our case, the simulated
covariance matrix datasets are obtained for centroids M of
size m x m having the form M(i, j) = pl*—l for 4, j € [1,m].

Since the centroid is a covariance matrix, the manifold
of the space of covariance matrices should be taken into
account for the estimators’ performance evaluation. In the
literature, many authors have proposed to define the concept
of intrinsic analysis for statistical estimation [29]-[31]. To this
aim, the notions of intrinsic root-mean square error (RMSE)
and intrinsic bias vector field have been introduced. We briefly
recall here their definitions.

Let M be the estimated centroid of the dataset, that is
the estimate of the centroid M. The intrinsic RMSE is given
by [29]-[31]:

RMSE = \/ E[&(M, M)],

where d(-) is the Riemannian distance defined in (3). In
addition, the bias vector field b(M) of M is given by [29]-
[31]:

15)

b(M) = Logy; Ex; [M] = E[LogyM], (16)
knowing that Ey; [M| = Expy;E[LogyM]. Since the bias
vector field b(M) in (16) is a covariance matrix, we compute
its norm according to (10) to plot it in the following figures.

To study the influence of outliers on the centroid’s esti-
mation, a dataset containing 1000 matrices of size 2 x 2 is
created. These matrices have an RGD distribution of dispersion
o = 0.1 and centroid M obtained for p = 0.7. To this original
data set, some outliers are added. They are i.i.d. covariance
matrices samples issued from an RGD of centroid 10 x M,,
with M, obtained for p, = 0.1. Here, the dispersion for the
outlier samples o, is set to 0.1.

IThe use of z is equivalent to the standardization step = — 2=E for a
univariate normal distribution.
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Fig. 1. The RMSE (a) and the bias vector field (b) as functions of the outlier
percentage.

Figs. 1 draws the results obtained for the intrinsic RMSE
(a) and for the intrinsic bias vector field (b) as functions of
the percentage of outliers, knowing that 5000 Monte Carlo
runs have been used to evaluate the estimators’ performance.
The behavior of the center of mass (in blue), the median (in
black) and the Huber’s centroid with fixed threshold T' = 1
and 7' = 0.5 (in green) and automatically computed value
for T (in red) are analyzed, when the percentage of aberrant
data varies from 0 to 40%. As observed, the center of mass
is clearly influenced by the presence of outliers while for
robust estimators, like the median or the Huber’s centroid,
this influence in less important.

III. APPLICATION TO MEG BASED BRAIN DECODING

In this section, we apply the proposed centroid estimator
to brain decoding, based on MEG data. The database used
for the Biomag 2014 Decoding Challenge: Brain Decoding
Across Subjects (DecMeg2014) [32] has been considered. The
idea of brain decoding consists in predicting the stimulus
presented to the subject from the concurrent brain activity [33].
For this experiment, two categories of visual stimulus have
been considered: face and scrambled face. Therefore, the
problem to solve can be viewed as a two-class classification
task. A detailed description of the neuroscientific experiment
implemented to collect the data can be found in [34].

The database contains 16 training and 7 testing subjects.
For each training subject, approximately 580 trials have been
considered, giving a training set of 9414 trials. Next, for each
trial, covariance matrices of size 16 x 16 have been extracted,
as described in [35]. Further on, a modified version of the
unsupervised classification method presented in [35] has been
implemented. First, a regularized logistic regression model has
been trained to obtain the initial labels for the unsupervised
classification algorithm (k-means). Second, the centroids of
each class (face or scrambled face) are computed. For this step,
several estimators have been considered: the center of mass,
the median, the Huber’s estimator with both fixed (T" = 0.2
and T' = 0.5) and automatically computed thresholds and also
the trimmed based methods [16], when d = 5% of discarded
extreme data. For this latter, only the best result has been
retained, that is the mean-based trimmed median. Next, for
each testing subject, covariance matrices have been computed
and the classification has been performed by two approaches.
First, the winner method of the DecMeg2014 competition has
been implemented, for which the test trials have been assigned
to the closest class, by using the minimum distance to mean

TABLE I
CLASSIFICATION RESULTS FOR MEG BASED BRAIN DECODING.

Estimator [ MDM | MGD

CM 74.106 | 73.845

Med 73.627 | 74.150

Huber T = 0.2 74.847 | 75.100
Huber T = 0.5 74.063 | 73.976
Huber T = auto 74.455 | 74.106
Trimming (d = 5%) [16] || 74.412 | 74542

(MDM) Riemannian classifier [36]. Second, the covariance
matrices have been modeled as RGDs and each trial has
been assigned to the centroid maximizing the log-likelihood
criterion derived from (11).

The obtained results are shown in Table I and several
remarks can be made. By analyzing the above table, it can
be seen that the use of Huber’s estimator may increase the
classification performance. The obtained values are compara-
ble or higher to those given by the other robust estimators, but
without their disadvantages: division by zero for the median,
or choice of the percentage d of discarded observation for
the trimmed estimators. Interestingly, note that the estimated
Hubers’s threshold T is recomputed at each k-means iter-
ation. And in this experiment, it varies between 0.38 and
0.46 across the test subjects and the classes. Moreover, the
proposed estimated value of T' by the MAD gives an order
of magnitude of the threshold we may consider in the Huber
estimation algorithm. This value can be readjusted to improve
the classification performance as observed in Table L

IV. CONCLUSION

In this article, a new method called the Huber’s centroid,
for the estimation of the central value of a covariance matrix
dataset has been introduced. This estimator is a trade-off
between the center of mass and the median. The definition
of the Huber’s centroid and its computational algorithm have
been detailed. In addition, an algorithm for choosing the
appropriate threshold value for the Huber’s estimator has been
developed. Further on, the Huber’s centroid, has been applied
to the case of covariance matrices representing realizations of
Riemannian Gaussian distributions. The robustness to outlier
values has been studied on simulated data, but also in the
context of brain decoding, that is a two-class classification
experiment. The results have been compared to those given
by two well-known estimators that are the center of mass and
the median but also to those given by trimmed based methods.

Further works will include the statistical modeling of = =
d(M;, M) /mo to derive the analytical expression of K. In
addition, the proposed centroid will be used to build the
codebook for patch-based image classification algorithms.
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ABSTRACT

This paper introduces a generalization of the Fisher vectors to
the Riemannian manifold. The proposed descriptors, called
Riemannian Fisher vectors, are defined first, based on the
mixture model of Riemannian Gaussian distributions. Next,
their expressions are derived and they are applied in the con-
text of texture image classification. The results are compared
to those given by the recently proposed algorithms, bag of
Riemannian words and R-VLAD. In addition, the most dis-
criminant Riemannian Fisher vectors are identified.

Index Terms— Riemannian Fisher vectors, bag of words,
Riemannian Gaussian distributions, classification, covariance
matrix.

1. INTRODUCTION

Bag of words, Fisher vectors, or vectors of locally aggregated
descriptors represent some of the most frequently used local
models in order to capture the information lying in signals [1],
images [2] or videos [3]. These descriptors have multiple ad-
vantages. First, the obtained information can be used in a
wide variety of applications like classification [2] and catego-
rization [4], text [5] and image [6] retrieval, action and face
recognition [7], etc. Second, combined with powerful local
feature descriptors such as SIFT, they are robust to transfor-
mations like scaling, translation, or occlusion [7].

The bag of words (BoW) model has been used for text
retrieval and categorization [5, 8] and then extended to vi-
sual categorization [9]. This method is based on the con-
struction of a codebook, or a dictionary, that contains the
most significant features in the dataset. Generally, the ele-
ments in the codebook, or the words, are the clusters’ cen-
troids obtained by using the conventional k-means clustering
algorithm. Next, for each element in the dataset, its signa-
ture is determined by computing the histogram of the number
of occurrences of each word in its structure. To improve the
performance of BoW, which counts only the number of local
descriptors assigned to each Voronoi region, Fisher vectors
(FV) have been introduced by including other statistics, such
as the mean and variance of local descriptors.

FV are descriptors based on Fisher kernels [1], represent-
ing methods for measuring if samples are correctly fitted by

some given models. By using FV, a sample is characterized
by the gradient vector of the probability density function that
models it, classically a Gaussian mixture model (GMM) [4].
In practice, the probability density function is replaced by the
log-likelihood and, as mentioned in [4], its gradient describes
the direction in which parameters should be modified to best
fit the data. The derivatives with respect to the model’s pa-
rameters are computed and concatenated to obtain the FV.

The vectors of locally aggregated descriptors (VLAD)
represent a simplification of the Fisher kernel [10], based on
the definition of a codebook. In the computation process,
first of all, the dictionary has to be built. For this reason, the
dataset is partitioned by using a clustering algorithm and the
cluster centroids represent the codebook elements. Next, each
element in the dataset is associated to the closest cluster. Fur-
ther on, for each cluster a vector is computed, containing the
differences between the cluster’s centroid and each element
in that cluster. In the end, the sum of differences concerning
each cluster is computed and the final VLAD feature vector
is given by the concatenation of all the previously obtained
sums. In other way, the VLAD descriptors can be obtained
starting from FV, by taking into consideration only the deriva-
tives with respect to the means of the GMM. Note also that
the homoscedasticity assumption and the hard assignment
scheme are required to obtain VLAD features [7, 10].

Those three approaches have been widely used for many
applications involving non-parametric features. Recently
BoW and VLAD have been extended to the case where each
feature is a point on a Riemannian manifold. This is for
instance the case where local descriptors are covariance ma-
trices. This includes many different applications in image
processing, like classification [11, 12, 13], image segmen-
tation [14], object detection [15, 16], etc. In [3] and [17],
the BoW approach has been extended to the so-called log-
Euclidean bag of words (LE-BoW) and bag of Riemannian
words (BoRW) models by considering respectively the log-
Euclidean and geodesic distance between two points on the
manifold. In addition, the Riemannian version of the VLAD
method (R-VLAD) has been developed in [7] and has shown
superior classification performances, compared to the classic
VLAD algorithm.

Until now, FV have not yet been generalized in the same

]



manner to Riemannian manifold, due to the lack of proba-
bilistic generative models suited for parametric descriptors.
This represents the main contribution of this paper. The pro-
posed Riemannian Fisher vectors (RFV) are a generalization
of the FV for parametric descriptors based on the recent works
on the definition of the Riemannian Gaussian distributions
(RGDs) [18].

The paper is structured as follows. Section 2 recalls some
elements on the RGD like its definition, the expression of
mixtures of RGDs and the parameter’s estimation procedure.
Section 3 introduces the definition of the proposed RFYV,
their computation and their relation with R-VLAD. Section 4
presents an application of the proposed RFV to texture im-
age classification. Conclusions and future works are finally
reported in Section 5.

2. RIEMANNIAN GAUSSIAN DISTRIBUTIONS

Let Y = {Y:}+=1.7 be a set of T independent and identically
distributed (i.i.d.) samples according to a Riemannian Gaus-
sian distribution of central value Y and dispersion . The
probability density function of the RGD with respect to the
Riemannian volume element, in the space P,,, of m x m real,
symmetric and positive definite matrices, has been introduced
in [18] as:

_ dQ(Yt:Y)}
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P(YIY,0) = 7~ exp (1)

Z(0)

where Z(co) is a normalization factor independent of the

centroid Y and d(-) is the Riemannian distance given by
1

d(Y1,Y2) = [3,(InX;)?] %, with \;, i = 1,...,m being

the eigenvalues of Y5 'Y}.

Starting from (1), the probability density function for a
mixture of K RGDs can be defined as [18]:

K
p(Ye|A) = Z w; p(Ye|Y;,05), 2)
7=1
where A = {(w;, Y;,0;)1<;j<k } is the parameter vector. w;
are positive weights, with Z;il w; = 1land p(Y|Y;,0;)is
given by (1).

Several approaches can be employed to estimate the pa-
rameters {Y ;, 5, @, }1<;<k of the mixture of K RGDs [12].
The simplest one implies the estimation of the centroids Y,
of clusters ¢;, j = 1,...,K by using the intrinsic k-means

algorithm on a Riemannian manifold [7]. Thus, for each
cluster ¢;, the cost function
1
_ 9,<
e(Y;) =« > d*(Y;,Y;) 3)

J n=1

has to be minimized, where Y, is the set of elements Y;
in cluster ¢;, n = 1,...,N; and N; is the cardinal of Y.

The minimizer of the cost function defined in (3) is known to
be the Riemannian centre of mass of this set. The interested
reader is referred to [19] and [20] for an algorithm to com-
pute the empirical Riemannian centre of mass. Next, for each
cluster c;, the estimated dispersion parameter &; is obtained
as the solution of:

d -

This latter is solved by a conventional Newton-Raphson algo-
rithm [12]. Finally, the estimated weights 7; are given by:

- N;

W= —— (5)

All the elements recalled in this part are applied in the next
section to the definition of the proposed Riemannian Fisher
vectors.

3. RIEMANNIAN FISHER VECTORS

3.1. Definition

Let Y = {Y;}:=1.7 be a sample of T i.i.d observations fol-
lowing a mixture of X’ RGDs. Under the independence as-
sumption, the probability density function of Y is given by:

T
p(Y1N) =[] p(YelN), 6)
t=1

where A = {(w,, Y;,0;)1<j<k } is the parameter vector and
p(Y¢|A) is the probability density function given in (2).

By using the Fisher kernels, the sample is characterized by
its deviation from the model [2]. This deviation is measured
by computing the Fisher score U~ [1], that is the gradient V
of the log-likelihood with respect to the model parameters \:

T
Uy = Valogp(Y|A) = Vi) logp(YiA). (D)

t=1

As mentioned in [1], the gradient of the log-likelihood with
respect to a parameter describes the contribution of that pa-
rameter to the generation of a particular observation. In prac-
tice, a large value for this derivative is equivalent to a large
deviation from the model. Further on, that can be translated
into the fact that the model does not correctly fit the data.

In the following, the derivatives for the mixture of RGDs,
are given, knowing that ~;(Y;) is the probability that the ob-
servation Y is generated by the i** RGD and it is computed

as: _

@i p(Y¢|Yi,0:)

7:(Ye) = =x = -
> =1 @ p(Ye|Yj,05)

To determine the gradient with respect to the weight, we con-
sider the procedure described in [2]. For that, the following

®



parametrization is used in order to ensure the positivity and
sum to one constraints of the weights:
exp(a;)
> '
By taking into consideration all these observations, the

derivatives with respect to the parameters in A can be obtained
as:

©)

w; =

5‘logp(']'_'|,\ ZT:

) o2 Logy, (Ys), (10)
alogpm,\ ZT: {Z’(cr,;) dQ(Yt,‘Fi)}
— +
— Z(0;) o} '
(11)
Ologp(T|A) _ (12)

oax; ;%(Yt) (1 — ),
where Logy, (-) is the Riemannian logarithm mapping.
The vectorized representation of the derivatives in (10), (11)
and (12) of the log-likelihood, with respect to the parameters
in ), gives the Riemannian Fisher vectors (RFV). In the end,
by using the RFV, a sample is characterized by a feature
vector containing some, or all the derivatives, having the
maximum length given by the number of parameters in A.

3.2. Relation with R-VLAD

As mentioned earlier in the introduction, VLAD features are
a special case of FV. Therefore, R-VLAD can be viewed
as a particular case of the proposed RFV. More precisely,
R-VLAD is obtained by taking into consideration only the
derivatives with respect to the central value Y; (see (10)).
In addition, a hard assignment scheme is applied. Start-
ing from the definition of the elements v; in the R-VLAD
descriptor [7]:

vi= Y Logy, (Y, (13)

Yi€ei

with Y; € ¢; being the elements Y, assigned to the cluster

c;,i=1,..., K, the hard assignment implies that:
1, ifY;eq
(Y ) =4 14
7(Ye) {0, otherwise. (14)

Moreover, the assumption of homoscedasticity is considered,
thatis o; = o ,Vi = 1,..., K. By considering these two as-
sumptions, it is clear that (10) reduces to (13) hence confirm-
ing that RFV are a generalization of R-VLAD descriptors.

4. APPLICATION TO TEXTURE IMAGE
CLASSIFICATION

This section introduces an application to texture image clas-
sification. The aim of this experiment is first to analyze the

potential of the proposed RFV compared to the recently pro-
posed bag of Riemannian words (BoRW) model [17] and R-
VLAD [7]. The BoRW, RFV and R-VLAD are built based
on region covariance descriptors [21] containing basic infor-
mation, like image intensity and gradients. The experiment’s
purpose is not to find the best classification rates, but to com-
pare the two methods starting from very simple descriptors.
Second, the objective is to determine the RFV that are the
most discriminant to retrieve the classes: the one associated
to Y; (10), o; (11) or o; (12).

4.1. Databases

For this work, two texture databases are used: the VisTex [22]
database and the Outex_TC000_13 [23] database. The Vis-
Tex database consists in 40 texture classes. Each class is
composed of 64 images of size 64 x 64 pixels. The Ou-
tex_.TC000_13 database contains 68 texture classes, where
each class is represented by a set of 20 images of size
128 x 128 pixels. For both databases, the feature extrac-
tion and classification steps are similar and are detailed in the
next subsection.

4.2. Feature extraction and classification

For the classification procedure, the considered database is
equally and randomly divided in order to obtain the training
and the testing sets. For each image in the two sets, local
descriptors have to be extracted first. In this experiment, the
region covariance descriptors (RCovDs) are considered. In
order to build the RCovD for an image I of size W x H,
several characteristics are extracted for each pixel (z,y) € I.
Here, the image intensities I (z,y) and the norms of the first
and second order derivatives of I(z,y) in both directions z
and y are considered [21]. Thus, a vector v of 5 elements is
obtained for each pixel having the spatial position (z,y) € I:

al(z, 8% 1(x,
v(z,y) = [I(z,y), [2E2|, v

az2

agg (=) H T
’ ]

(15)
For the two considered databases, the extracted RCovD are
the estimated covariance matrices of vectors v(z,y) com-
puted on a sliding patch of size 15 x 15 pixels. As an overlap
of 8 pixels is considered for the patches, the VisTex and Ou-
tex databases are represented respectively by a set of 36 and
196 covariance matrices per texture class (of size 5 x 5). To
speed-up the computation time, the fast covariance computa-
tion algorithm based on integral images presented in [21] has
been implemented. In the end, each texture class is charac-
terized by a set Yi,..., Yy of N covariance matrices, that
are elements in Ps. Based on the patches in the training set,
a codebook is created. For each class, the codewords are rep-

o1(z,y)
a

resented by the estimated parameters {Y ;,5,,%;}1<j<k of
the mixture of K’ RGDs defined in (2). The estimation pro-
cedure is carried out here by using the intrinsic k-means al-
gorithm (see Section 2). For this experiment, the number of



modes K is set to 3. In the end, the codebook is obtained by
concatenating the previously extracted codewords.

Starting from the RCovDs and the learned codebook, the
BoRW, RFV and R-VLAD local models are derived, as pre-
sented in the previous section. After their computation, a nor-
malization stage is performed. In the RFV framework, the
classical power and /5 normalizations are applied [17]. The
£> normalization has been proposed in [24] to minimize the
influence of the background information on the image sig-
nature, while the power normalization corrects the indepen-
dence assumption made on the patches [25]. The same nor-
malization scheme is also applied for R-VLAD models. For
the BoRW algorithm, only ¢> normalization is performed, as
recommended in [3].

For the classification step, the SVM algorithm with Gaus-
sian kernel is considered, knowing that the dispersion param-
eter of the Gaussian kernel is optimized by using a cross val-
idation procedure on the training set.

4.3. Results

The classification performances in term of overall accuracy
on the VisTex and Outex_TCO000_13 databases are reported in
Tables 1 and 2 respectively. Those results are displayed for
10 random partitions in training and testing sets. Columns
homoscedasticity and prior correspond respectively to the ho-
moscedasticity assumption and to the use of the weights w; in
the decision rule. If the homoscedasticity assumption is true,
the dispersion parameter o; is the same for all the clusters c;.
If the prior parameter is set to false, all the clusters have the
same weight. Note that for the BoRW approach published
in [17] and the R-VLAD presented in [7], the dispersion and
weight parameters were not considered. Note also that for the
proposed RFYV, those two parameters are respectively set to
“false” and “true”, since both the dispersion and weight pa-
rameters are considered in the derivation of the RFV.

In this experiment, we also analyze the contribution of
each parameter (weight, dispersion and centroid) to the clas-
sification accuracy. For example, the row “RFV : w” indi-
cates the classification results when only the derivatives with
respect to the weights are considered to calculate the RFV
(see (12)), ...

As observed in Tables 1 and 2, the proposed RFV outper-
forms the BoRW and R-VLAD approaches. A gain of 1 to
3% is observed for the VisTex database. Moreover, among
the RFVs types, the most discriminant feature is obtained by
combining the derivatives with respect to all three parameters:
centroid, dispersion and weight (see (10), (11), (12)).

5. CONCLUSION

In this paper, a new local model for image classification in
the Riemannian space has been proposed. The introduced
method, called Riemannian Fisher vectors, is a generaliza-
tion of the so-called Fisher vectors, when the features are

Method || Homoscedasticity | Prior | Overall accuracy
BoRW false true 87.22 £ 1.19
BoRW false false 87.51 £ 0.92

BoRW [17] true false 87.20 + 1.55
BoRW true true 76.67 +2.35

RFV: @ false true 00.31£ 0.94

RFV:o false true 81.42 + 1.12

REV:Y false true 87.22 4+ 1.15

RFV :0,w false true 83.05 + 1.15
RFV:Y,w false true 87.85 +0.97
REV:Y,o false true 90.41 & 0.86
RFV:Y,0,w false true 90.43 + 0.84
R-VLAD[7] true false 87.94 £ 0.58

Table 1. Classification results on the VisTex database.

Method || Homoscedasticity | Prior | Overall accuracy
BoRW false true 84.32 £ 0.99
BoRW false false 84.37+ 1.28

BoRW [17] true false 84.43 & 1.23
BoRW true true 79.31 + 1.86

RFV: @ false true 84.94 £ 1.12

RFV:o false true 78.46 + 1.54

REV:Y false true 83.94 4 0.90

RFV:o, @ false true 80.38 + 1.80
RFV:Y,w false true 84.26 +0.75
RFV:Y,o false true 84.32 4+ 1.19
RFV:Y,0,w false true 84.12 + 1.15
R-VLAD [7] true false 82.99 £ 1.19

Table 2. Classification results on the Outex database.

represented by parametric descriptors, like covariance ma-
trices. The definition and the expression of RFV have been
given, starting from the definition of the mixture of Rieman-
nian Gaussian distributions. In addition, its relation with
R-VLAD has been illustrated. In the end, the RFVs have
been applied for texture image classification on the VisTex
and Outex_TCO000_13 databases. The results have been com-
pared with those given by BoRW and R-VLAD, showing
better classification rates for the same codebook. In addi-
tion, it has been observed that the most discriminant feature
is obtained by combining the derivatives with respect to all
parameters.

Further works on this subject will concern the extension of
RFV to the recently proposed mixture of Riemannian Laplace
distributions [26, 27].
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ABSTRACT

This paper introduces a new statistical hypothesis test for im-
age classification based on the geodesic distance. We present
how it can be used for the classification of texture image.
The proposed method is then employed for the classification
of Polarimetric Synthetic Aperture Radar images of maritime
pine forests on both simulated data with the PolSARproSim
software and real data acquired during the ONERA RAMSES
campaign in 2004.

Index Terms— Hypothesis test, SAR, geodesic distance,
classification.

1. INTRODUCTION

Texture-oriented analyzes on optical images have proven their
efficiency for the classification of maritime pine forest. Vari-
ous approaches have been considered in the literature such as
gray-level co-occurrence matrices (GLCM) [1, 2, 3] and more
recently wavelet based approaches [4, 5, 6]. In this paper, we
investigate how these methods can be extended to SAR and
Polarimetric SAR (PolSAR) data [7].

Multiscale approaches have been found to be effective for
many image processing applications. In a classification con-
text, the image is decomposed into a set of wavelet subbands,
each of them being modeled by a parametric model. During
the last decades, many univariate and multivariate parametric
models have been proposed including elliptical models [8, 9]
and copula based approaches [10, 11]. Next, for each sub-
band, the estimated parameter vector composes the signature
of the image. Once the feature vectors are computed for each
texture image, a distance (or at least a divergence) is calcu-
lated in order to measure the degree of similarity between two
images. The similarity measure which computes the proxim-
ity between two images should be intrinsic to the parametric
model. A well-known choice is the Kullback-Leibler (KL) di-
vergence. Recently, some authors have proposed to consider
the geodesic distance which is the shortest path in the para-
metric manifold. This latter has shown superior retrieval rate
compared to the KL divergence for texture image classifica-
tion [9]. Inspired from previous works on the KL divergence

and on the family of (h,¢) divergences [12, 13], we intro-
duce a new statistical hypothesis test based on the geodesic
distance which is the main objective of the paper. A second
contribution concerns the use of a SAR scenes simulator [14]
to study the influence of the acquisition parameters (incidence
angle, spatial resolution) on classification accuracy.

The paper is structured as follows. Section 2 introduces
the proposed statistical hypothesis test based on the geodesic
distance. Section 3 presents an application for the classifica-
tion of pine forests based on Polarimetric Synthetic Aperture
Radar (PolSAR) images. Classification results are then dis-
cussed in Section 4 on both synthetic and real datasets. Con-
clusions and future works are finally reported in Section 5.

2. STATISTICAL HYPOTHESIS TEST FOR SAR
IMAGE CLASSIFICATION

In this paper, we propose to set up a statistical hypothesis test.
Lety; = (x1,...,x% ) and yo = (x2,...,x2) be two sets of
m and n independent and identically distributed random vari-
ables (vectors) x according to the parametric models p(x|6; )
and p(x|fs). Let 6; and f be the maximum likelihood esti-
mators computed on these sets. In a classification problem,
the aim is to determine if y; and 9 are issued from the same
parametric model. Let’s consider the following hypothesis

test [13]
Hy: 61 =05,
{ Hl 1617&92. (1)

When #; = 02, we can prove that the statistic S¢ D(Eﬂ, 9;) =
m—fGDQ(fﬁ, f) is asymptotically chi-square distributed
m T

with M degrees of freedom for sufficiently large value of m
and n. The degree of freedom M is equal to the dimension of
the parameter space (M = d(d + 1)/2). In the following, we
propose an application to the zero-mean multivariate Gaus-
sian distribution (MGD). In such case, the geodesic distance

- - 1 -

is given by GD(M;,Ms) = [3.(In);)?]?, where M,
and M, are the maximum likelihood estimates of two MGDs

covariance matrices and \;, i = 1. .. d are the eigenvalues of
M, 'M;.



3. APPLICATION TO MARITIME PINE FOREST
CLASSIFICATION

The dataset used for this work contains both simulated and
real L-band SAR images. First, the simulated dataset is used
to determine the best airborne configuration for maritime pine
classification according to the stand age. In other words, is it
better to have a single high resolution SAR image or a low
resolution PolSAR image with two or three channels? Sec-
ond, real SAR images are used to validate the results.

3.1. Database
3.1.1. Simulated L-band SAR images

The simulated dataset is created by using the PolSARproSim
software. This software provides fully polarized simulated
SAR images of forest displaying properties consistent with
real SAR imagery [14]. Images are obtained by specifying
various acquisition parameters such as the platform altitude,
the incidence angle, the frequency, the azimuth and slant
range resolutions, and some forest stand properties, including
the stand area and density, the tree species and their mean
height.

For our study, pine tree forests of 5, 6, 12, 15, 21, 25 and
32 years old are simulated. The platform altitude is set to
3580 meters, corresponding to an airborne system, while the
frequency is fixed at 1.3 GHz (L-band). In order to find the
best airborne configuration, two experiments are considered.
In the first case, the incidence angle is chosen to be 45° and
the influence of the spatial resolution on classification perfor-
mance is evaluated. Five datasets are simulated at a resolution
of respectively 0.5, 1, 2, 3 and 5 meters. In the second case,
the image resolution is fixed to 0.5 meters and several inci-
dence angles are tested: 25°, 35°, 45° and 55°.

In both cases, the stand density (D) and the mean tree
height (H) are set according to the desired stand age, as men-
tioned in Table 1.

Age | 5 6 12 15 21 25 32
H 5.5 6.5 11.6 137 173 192 219
D | 1200 1200 800 800 400 400 300

Table 1: Maritime pine stand density [ (stems/ha) and mean tree
height A (meters) as a function of stand age (years).

The values for the stand density are chosen to be equal to
those given by the Centre Régional de la Propriété Forestiére
Aguitaine, France for the maritime pine, while the mean
tree height H is obtained by using the Maugé theoreti-
cal model [15] given by H = H,,..(1 — 0.962), where
H,,... = 30 meters is the maximum height and a is the stand
age.

By using these numerical values, a database of 350 im-
ages is created for each experiment and structured in 4 classes,
according to the stand age: 15' class: less than 10 years

Fig. 1: Examples of L-band pine forest images of: (a) 5, (b) 15, (c)
21 and (d) 32 years old simulated with PolSARproSim software for
an incidence angle of 45° and a resolution of 1 meter.

Fig. 2: The real L-band SAR image and examples of pine forest
stands of: 5 (a), 15 (b), 21 (c) and 32 (d) years old.

(Fig. 1(a)); 2™9 class: between 10 and 20 years (Fig. 1(b));
379 class: between 20 and 30 years (Fig. 1(c)); 4P class:
over 30 years (Fig. 1(d)).

3.1.2. Real L-band SAR image

The real L-band SAR data displayed in Fig. 2 consists in
one fully polarimetric image (1 meter resolution) acquired
on the Nezer maritime pine forest in France, during an ON-
ERA RAMSES campaign in 2004. From this image, 62 forest
stands between 5 and 48 years old are identified and grouped
in 4 classes, as it was done for the simulated images.

In the next section, we present several strategies for mod-
eling SAR images and hence obtaining the corresponding fea-
ture vectors.

3.2. Methodology
3.2.1. GLCM

The GLCMs are computed on the real-valued HV polar-
ization image transformed in dB and quantified with 32
gray levels. The number of quantization levels is chosen
by taking into consideration the image size. In a Cartesian
coordinate system, the GLCMs are functions of two param-
eters: the distance d between neighboring pixels and the
direction . For our study, d varies between 1 and 15, and
a = {0°,45°,90°,135°}. The Haralick [1] textural descrip-
tors homogeneity, entropy, and correlation along with the
GLCM mean are extracted and averaged in the four directions
to reduce the sensibility to the stand’s orientation [6]. Further
on, this method is denoted by GLCM HV.

3.2.2. MGD model for a single polarization image

The real-valued HH polarization image transformed in dB is
decomposed by using a Daubechies 4 (db4) wavelet trans-



form, with 2 levels and 3 orientations. For each subband, a
spatial dependence with a 3 x 3 neighborhood is considered
and modeled by the MGD. The parameter of this distribution
is estimated by the Sample Covariance Matrix (SCM). In the
following, this algorithm is denoted by MGD HH + WT + §.

3.2.3. MGD model for a three polarization image

The HH, HV and V'V polarization images are merged into a 3-
dimensional array, with each pixel being a complex number.
Three different algorithms are developed based on:

e the polarimetric dependence (denoted MGD Polar):
the complex 3-dimensional array is modeled by the
MGD and a 3 x 3 covariance matrix is estimated with
the SCM algorithm.

e the polarimetric dependence and the wavelet decom-
position (denoted MGD Polar + TW): the complex
3-dimensional array is filtered using the db4 wavelet
transform with 2 levels and 3 orientations. Each sub-
band is modeled by the MGD and the 3 x 3 covariance
matrix is estimated with the SCM algorithm.

e the polarimetric and spatial dependence, along with
the wavelet decomposition (denoted MGD Polar + TW
+ S§): the complex 3-dimensional array is decomposed
using a db4 wavelet transform having 2 levels and 3
orientations. For each subband, a spatial dependence
given by a 3 x 3 neighborhood is modeled by the MGD
and a 27 x 27 covariance matrix is estimated with the
SCM algorithm.

4. RESULTS

In the context of a supervised classification, the database is
randomly divided into a training and a testing set by a cross-
validation procedure. The partitioning algorithm is repeated
100 times and for each iteration half of the database is used
for training, while the other half is used for testing. Once the
feature vector extracted for all images, a similarity measure
between testing and training images is computed by using the
Mahalanobis distance for the GLCM algorithm and the statis-
tic S¢p defined in Section 2 for the others. All the previously
described algorithms are tested and the retrieval performance
is evaluated by means of the overall accuracy computed for a
k Nearest Neighbor classifier (k-NN), with & set to 5. In the
following, the classification performances obtained on both
simulated and real SAR images are presented.

4.1. Simulated L-band SAR images

As mentioned in Section 3.1.1, two types of experiments are
performed on simulated data. First, the influence of the im-
age resolution is tested. For this experiment the incidence
angle is fixed to 45° and the image resolution varies from
0.5m to 5m. Fig. 3 draws the influence of distance d to find

Correct classification rate

T 2 3 4 5 6 7 5 9 10 11 12 13 14 15
Distance between two pixels

Fig. 3: Influence of distance d in GLCM on classification accuracy
for different spatial resolution (HV channel).
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Fig. 4: Influence of the spatial resolution on classification accuracy
for simulated L-band SAR images with incidence angles of 45°.

the best distance between neighboring pixels. It can be seen
that distances between 1 and 5 pixels give the best results.
Fig. 4 shows a comparison between the GLCM algorithm and
the statistical based approaches with the geodesic distance,
knowing that each time the polarization with the best perfor-
mance is retained. As observed in Fig. 4, for simulated data
it is better to have one very high resolution polarization chan-
nel (99 & 1% for MGD HH + WT + S at 0.5 meters) than a
low resolution fully polarimetric SAR image (85 + 4.5% for
MGD Polar at 5 meters). For this example, a significant gain
of about 14 points is observed.

Second, the influence of the incidence angle is analyzed.
For this experiment, the image resolution is fixed to 0.5m and
several incidence angles are considered. Like in the previ-
ous case, tests are performed to find the appropriate distance
d for the GLCM algorithm. The best classification rates are
retained and compared in Fig. 5 with those given by the sta-
tistical based methods. As it can be seen, the GLCM HYV is
influenced by the incidence angle, while some small changes
can be spotted for the other methods.
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Fig. 5: Influence of the incidence angle on classification accuracy
for simulated L-band SAR images having a resolution of 0.5 meter.

4.2. Real L-band SAR images

Even though PolSARproSim provides a high level of real-
ism, significant differences can be observed between simu-
lated (Fig. 1) and real data (Fig. 2). Those differences are
the results of various phenomena, such as forest management
practices (thinning operations, plantation density) and natural
hazards (storm damages), yielding to some within-class di-
versity. Hence, as displayed in Table 2, classification results
on real SAR images are lower to those shown in Section 4.1
on synthetic dataset. Similar to the case of simulated images
with a resolution of 3 and 5m, the best results are given for
GLCM HV (86.6 + 5.6%) and MGD Polar (84.0 + 4.4%)
methods.

Classification method | Overall accuracy

GLCM HV 86.6 = 5.6
MGDHH +WT + 8 59.0+5.4
MGD Polar 840+44
MGD Polar + WT 81.8+4.0
MGD Polar + WT + S 63.5+4.9

Table 2: Comparison between the classification algorithms for real
L-band SAR images.

5. CONCLUSION

In this paper, we have introduced a statistical hypothesis test
based on the geodesic distance. Various experiments have
been conducted on both simulated and real SAR data for the
classification of maritime pine forest images. Experiments
on simulated dataset have shown that it is better to have one
very high resolution polarization channel than a low resolu-
tion fully polarimetric SAR image. Due to the presence of
intra-class diversity, those conclusions are slightly modified
on real SAR data.

Further works will include the generalization of the pro-
posed hypothesis test to robust estimators such as the family
of M-estimators [16].
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