Reforester les tropiques semi-arides ? : Enjeux, contraintes et opportunités climatiques dans la perspective du changement global

Abstract : In the face of evergrowing global deforestation, numerous forest protection and restoration projects have been deployed at the international scale. The goal of this thesis is to provide adaptation planning in the vulnerable tropical semi-arid regions with scientific material about reforestation project constraints and opportunities at the global scale, inthe context of climate change. The literature review (chapter 1) confirms that reforestation projects aimed at warmingmitigation hold a better chance of success under tropical lattitudes. Indeed, both biochemical and biophysical effects of the vegetation on climate converge toward a global cooling effect. As reforestation in tropical semi-arid regions aims at satisfying various ecosystemic services, it holds beneficial promises at both the global and the local scale. However, due to scarce water resources, implementing a tree cover in semi-arid conditions could turn out unsustainable in the long run. A bioclimatological is applied, in chapter 2, to a multimodel ensemble of projections in order to draw the evolution of global tropical semi-arid territory under several climate change scenarios (RCP). The present tropical semi-arid territory is expected to remain mostly so in future conditions. However, up to 25% of the this territory on average will evolve towards arider conditions, and up to 11% towards wetter conditions. Nevertheless, the tropical semi-arid territory will increase by the end of the 21st century, by up to 13% on average (RCP 8.5). This increase results from a migration outside of the tropical belt, consistent with the Hadley circulation widening hypothesis under climate change. Chapter 3 proposes a methodology aimed at analysing the implications of this evolution for the climatic potential of tree cover sustainability. The global vegetation model (ORCHIDEE, developed at IPSL), used to simulate this potential, accounts mechanistically for all the climatic factors of the plant's growth. A typology of result profiles from the simulation experiments partitions the territory into subregions characterized by a specific relation between the tree development and the tree cover density: five types range from the least (Type 1) to the most (Type 4) favourable ones. A reference experiment is performed using observational climate data (from the Climatic Research Unit). Covering almost half of the territory, Type 1 is characterized by the impossibility to maintain a tree cover for the highest cover densities. The second type in order of surface occupation is Type 4 (28% of the territory). More favourable, it is characterized by high tree development for any tree cover density. The "tree cover potential" of each type is characterized by its optimum: the tree cover density that realises the best compromise between tree development and total productivity. In Chapter 4, the same methodology is applied to future climate projections for RCP 8.5. The ORCHIDEE model is thus forced with global climate model outputs, for the beginning and the end of the 21st century. By the end of the century, Type 1 represents no more than 25% of the tropical semi-arid territory on average, while Type 4 becomes the dominant one (49% of the territory). Because of the stability of the tree cover potential whithin each type, the evolution toward a more or less favourable type can be directly interpreted in terms of an increasing or a decreasing potential. The results show that the tree cover potential in the tropical semi-arid territory does not systematically suffer from the general decrease that could be expected from increasing aridity. A complementary experiment suggests that the main reason for this result lies is the atmospheric CO2 fertilization effect. Interpreting these results for reforestation strategy recommandations, suggests that, for the long term, areas of the tropical semi-arid territory where reforestation would be advised against are overall relatively small.
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01511342
Contributor : Abes Star <>
Submitted on : Thursday, April 20, 2017 - 5:45:12 PM
Last modification on : Tuesday, May 14, 2019 - 7:51:12 AM
Long-term archiving on : Friday, July 21, 2017 - 2:04:16 PM

File

72150_RAJAUD_2016_archivage.pd...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01511342, version 1

Collections

Citation

Amélie Rajaud. Reforester les tropiques semi-arides ? : Enjeux, contraintes et opportunités climatiques dans la perspective du changement global. Climatologie. Université Paris-Saclay, 2016. Français. ⟨NNT : 2016SACLV066⟩. ⟨tel-01511342⟩

Share

Metrics

Record views

435

Files downloads

106