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Résumé

Depuis de nombreuses années, la conception de machines intelligentes est demeuré
un sujet de recherche majeure. Il s’est avéré que la compréhension de l'intelligence
humaine est I'un des plus grands défis que I’humanité a rencontré. Cette quéte pour
"réinventer" notre propre intelligence est motivée non seulement par la pure curiosité
intellectuelle qui a toujours caractérisé ’homme, mais aussi par le potentiel d’une
profonde transformation de notre civilisation et de domaines tel que le diagnostic
médical, la communication, le transport, I’art, la recherche scientifique, la médecine,
le monde des affaires...

Cette derniére décennie a connu un progrés remarquable dans une variété de do-
maines de l'intelligence artificielle, notamment en vision par ordinateur et en traite-
ment du son et du langage. Ces avancées ont amorcé ’émergence de nouvelles tech-
nologies qui promettent d’apporter des changements fondamentaux & nos sociétés
tels que les véhicules autonomes, la traduction automatique du texte et de la parole,
I’éducation personnalisée et le commerce électronique.

Une limitation majeure des systémes actuels de I'TA, c’est d’étre restreints par
une tache spécifique et limitée; un modeéle congu pour reconnaitre un objet dans une
image ne peut pas étre adapté a de nouvelles taches comme la reconnaissance vocale
par exemple. Bien que 'architecture d’un tel modéle soit suffisamment flexible pour
reconnaitre des objets qu’il n’a jamais appris, cette flexibilité est limitée a la tache
de reconnaissance d’objets sans pouvoir aller au-dela. Ce type d’IA est connu sous
le terme d’Intelligence Artificielle Faible. Un ingrédient clé pour franchir cette limite
et atteindre un niveau d’intelligence plus proche de celui de 'homme, ce que l'on

appelle I Intelligence Artificielle Forte, est de résoudre le probléme de I'apprentissage



non supervisé, ou la connaissance devrait étre acquise sans l'intervention d’un expert
humain, ce qui demeure une question ouverte aujourd’hui.

Cependant, certains comportements que 1'on considére intelligents chez ’lhomme
peuvent étre accomplis par une machine sans que celle-ci soit pourtant considérée
"intelligente". Par exemple, des taches difficiles qui exigent notre intelligence, telles
que les calculs mathématiques formels, peuvent étre facilement programmés et réal-
isées par un ordinateur a des vitesses qui nous dépassent. En réalité, les ordinateurs
sont régulierement utilisés pour ce type de calculs sans avoir recours aux techniques
de I'TA. En revanche, des taches qui nous paraissent simples et banales telle que la
reconnaissance d’un visage ou répondre a une question, sont parmi les plus difficiles
a effectuer par une machine et nécessitent une recherche intensive en IA.

Ce contraste pour ce que 'on qualifie d’acte intelligent entre 'homme et la ma-
chine est du probablement & une différence fondamentale dans leurs structures ainsi
que dans leurs architectures. La nature distribuée et ultra-connectée des neurones
et les zones corticales dans le cerveau sont plus favorables aux taches nécessitant un
traitement massivement parallele telle que la reconnaissance d’images ou de vidéos.
Par contre, 'architecture von-Neuman de I'ordinateur basée sur un traitement succes-
sif des instructions est mieux adapté aux taches intrinséquement séquentielles comme
les calculs formels.

Une legon importante a tirer de la recherche en intelligence artificielle au vingtiéme
siécle est le fait que si certaines taches cognitives telles que la compréhension du
langage ou d’une piéce de théatre nous paraissent simples et évidentes, cela n’implique
pas la simplicité des algorithmes et des circuits neuraux qui se cachent derriére.

Le cerveau est un organe extrémement sophistiqué. Il est principalement composé
d’un réseau de neurones dense massivement interconnecté. Comprendre les interac-
tions complexes entre ces neurones est I'un des défis majeurs pour la communauté
scientifique. Selon David Marr dans son célébre ouvrage sur la vision (Marr, 1982a),
I’analyse d’un systéme complexe tel que le cerveau devrait procéder selon trois niveaux
principaux. Au premier niveau ou le niveau computationnel, le probléme est défini

d’une maniére grossiére. Les entrées du systéme sont identifiées ainsi que les sor-
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ties attendues. Au deuxiéme niveau dit algorithmique, un algorithme pour effectuer
la transition entre les entrées et les sorties devrait étre élaboré. Une architecture
matérielle pour implémenter cet algorithme devrait étre réalisée dans le troisiéme
niveau, le niveau de conception matériel, pour obtenir une solution analogue & celle

du deuxiéme niveau.

Dans le travail présenté ici, nous nous intéressons au troisiéme niveau d’analyse de
Marr. Nous nous inspirons de ’architecture du cortex cérébral, notamment de celle du
cortex visuel, pour proposer des modéles de traitement d’images. Ce choix est motivé
par le fait que le cortex visuel est parmi les aires cérébrales les plus étudiées et par
I’existence de ressources abondantes & notre disposition, fournies par la communauté

scientifique.

Nous nous focalisons sur le probléme de I'acquisition et le traitement de I'information
visuelle dans les réseaux de neurones artificiels. L’acquisition est la premiére étape
dans la chaine de traitement visuel qui commence dans la rétine. Dans cette étape,
la lumiére issue de la scéne extérieure est capturée et transformée en un signal élec-
trochimique que le cerveau est capable de manipuler. Le traitement de ce signal
comprend une multitude de mécanismes sophistiqués tels que 'extraction de carac-
téristiques visuelles ou 'organisation de I'information acquise dans la mémoire. Dans
les premicéres couches du cortex visuel, plus proches de la rétine, les neurones représen-
tent des concepts simples; un neurone ne peut étre excité que par des motifs visuels
rudimentaires tels que 'apparition d'un contour orienté ou d’une couleur spécifique
dans une zone trés limitée du champ visuel. En s’éloignant de la rétine, cette zone
devient de plus en plus étendue alors que les stimulis associés deviennent de plus en
plus complexes. Dans les couches supérieures, tel que dans le lobe frontal, nous con-
statons que les concepts représentés par les neurones sont plus abstraits, et peuvent
étre invoqués non seulement par des stimulis extérieurs mais également par l'activité

interne du cerveau.

Dans cette thése, nous abordons le systéme visuel selon trois niveaux différents
de traitement. Nous commencons par le niveau le plus bas qui représente la rétine

et les premiéres couches de la voie ventrale. Nous examinons ’architecture de ces
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couches et nous proposons un nouveau modéle d’acquisition qui intégre des propriétés
importantes observées et souvent négligées par les modéles d’acquisition classiques.

Nous nous concentrons ensuite sur le probléme de la mémoire au niveau le plus
haut. Plutét que proposer un nouveau modéle de mémoire a ce niveau, nous nous in-
téressons a un modéle de mémoire associative existant basé sur une architecture neuro-
inspirée, et nous proposons d’améliorer les algorithmes de récupération d’informations
associés.

Nous traitons finalement le niveau intermédiaire faisant le lien entre les deux
niveaux précédents : le niveau d’acquisition du signal visuel, et le niveau de la mé-
moire. Trouver I'algorithme qui permet de transformer le signal rudimentaire acquis
dans la rétine en une représentation robuste et abstraite dans la mémoire est une
des questions fondamentales a laquelle se confronte la recherche en vision. Nous
souhaitons contribuer a une meilleure compréhension de ce probléme en proposant
un nouveau réseau de neurones artificiels pour traiter le probléme d’appariement de

caractéristique d’image qui est un probléme essentiel de la vision par ordinateur.

Un bref historique

De nombreuses architectures ont été proposées dans la littérature pour la modélisation
des différents niveaux de traitement du cortex visuel. Certains modéles se sont limités
a la modélisation d’un seul niveau alors que d’autres ont essayé d’en traiter plusieurs.

En ce qui concerne 'acquisition visuelle, certains modéles ont proposé d’approximer
les calculs complexes effectuées par la rétine, notamment celui de (Wohrer and Ko-
rnprobst, 2009) surnommé la rétine virtuelle. Ce modéle applique une convolution
linéaire pour imiter la fonction des cellules ganglionnaires, suivie par 'application
d’une non-linéarité statique et d’une procédure de génération des potentiels d’action.
D’autres modeéles comme celui de (Lorach et al., 2012) ont proposé de modéliser les
propriétés spatio-temporelles de la rétine en utilisant des capteurs dynamiques asyn-
chrones ou (DVS). Ces capteurs dits événementiels sont directement inspirés de la

fonction de la rétine biologique qui suit un régime asynchrone d’acquisition.
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Certains modéles d’acquisition vont au-dela de la rétine pour accomplir des taches
visuelles spécifiques telle que la modélisation de I'attention visuelle et la prédiction
des mouvements oculaires. Le céléebre modeéle d’Itti introduit dans (Itti et al., 1998) a
été parmi les premiers & offrir une méthode efficace pour estimer la saillance dans les
images naturelles en se basant sur le modéle théorique de (Koch and Ullman, 1987).
Pour ce faire, 'image est traitée selon trois modalités perceptuelles différentes: les
contrastes des niveaux d’intensité, les orientations locales des contours et les couleurs.
Cela a été directement inspiré par un mécanisme de décomposition similaire effectué
dans les premiéres couches de la voie ventrale grace a ’existence d’une grande variété

des cellules ganglionnaires.

La recherche sur la modélisation de 'attention visuelle et ’estimation de la sail-
lance a été abondante ces derniéres années. la plupart des modéles proposés se sont
appuyés sur le modéle théorique de (Koch and Ullman, 1987) et son implémenta-
tion dans (Itti et al., 1998). Un formalisme générique pour unifier ces modeéles a été
présenté dans (Walther and Koch, 2007). Dans ce travail, Walther a proposé une
méthode pour combiner les mécanismes attentionnels avec les techniques de recon-
naissance d’objets s’appuyant sur la fameuse théorie de (Hubel and Wiesel, 1959).
Ce modele générique a inspiré celui que nous proposons dans le chapitre 2. De la
méme maniére, nous définissons une approche générique pour représenter la rétine et
les premiéres couches du systéme visuel, mais nous allons plus loin pour incorporer
d’autres propriétés qui rendent ’architecture de notre modéle plus proche de celle du

cortex visuel.

De nombreuses recherches ont été consacrées a 'investigation du niveau supérieur
de la chaine de traitement visuel, le niveau de la mémoire. Le but est de trouver des
représentations de I'information visuelle d’'une maniére associative, similaire & celle
utilisée dans le cerveau. Pour cela, de nombreux modéles de réseaux de neurones
artificiels ont été proposés. Le réseau de Hopfield (Hopfield, 1982) est un fameux
exemple d’une architecture capable de stocker des messages de taille fixe a travers
un réseau de connexions synaptiques denses entre les neurones. Chaque neurone est

connecté a tous les autres neurones, et un poids synaptique est associé a chaque



connexion. Le modéle de McCulloch-Pitts (McCulloch and Pitts, 1943) a été utilisé
pour représenter ces neurones, et la régle d’apprentissage de Hebb (Hebb, 1949) a
été utilisé pour syntoniser les poids synaptiques selon une procédure d’optimisation

d’une fonction de cotit prédéfinie.

La machine de Bolzmann (BM) introduite dans (Ackley et al., 1985) est un autre
modeéle célebre de mémoire associative. ce réseau, doté de la méme architecture que
celle du réseau de Hopfield, applique un modéle stochastique pour 'activation des
neurones inspiré par la nature stochastique des neurones biologiques. Cela rend la
procédure d’optimisation plus résistante aux minima locaux lors de ’apprentissage ce
qui constitue une limitation majeure du réseau de Hopfield. Une autre variante de la
BM, c’est la machine de Boltzmann restreinte (RBM). Elle consiste de deux couches
de neurones, une couche dite cachée et une autre visible, connectées d’une maniére
bipartie. Cette configuration permet au RBM de stocker I'information d’une maniére
plus robuste. Elle permet également d’empiler plusieurs couches cachées ce qui donne
accés a des meilleures représentations de l'information et donc a des performances

supérieures.

Une architecture similaire a celle de la RBM est appelée 'auto-encodeur (Hinton
and Salakhutdinov, 2006; Bengio, 2009). C’est un modéle de mémoire qui consiste
typiquement en trois couches de neurones: une couche d’entrée, une couche cachée et
une couche de sortie. Lors de la phase d’entrainement, les neurones de la couche cachée
apprennent & encoder 'entrée d’une facon & pouvoir la reconstruire a la sortie. En
plus d’étre utilisés comme modéles de mémoire, les auto-encodeurs sont généralement
utilisés pour la réduction de la dimension lorsque les signaux d’entrée sont projetés
dans un espace de dimension inférieure. Le préfixe ‘auto-’ vient du fait qu’un auto-
encodeur vise a reconstruire I’entrée d’une maniére non supervisée. Comme dans une
RBM, les couches cachées d’un auto-encodeur peuvent étre empilées pour réaliser des

architectures plus ‘profondes’.

Plus récemment, Gripon et Berrou ont proposé un nouveau modéle de mémoire
associative (Gripon and Berrou, 2011) qui peut étre vu comme une généralisation du

réseau de Palm-Willshaw (Schwenker et al., 1996). Son architecture a été inspirée
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par 'organisation en micro-colonnes dans le cortex visuel ot les synapses inhibitri-
ces dominent les connexions a courte distance, tandis que les synapses excitatrices
prédominent sur les connexions & longue distance. Ce modéle offre également une
capacité de stockage plus élevée que celle du réscau de Hopfield ou la machine de
Boltzmann. Nous allons aborder ce modéle dans le chapitre 3 ot nous proposons un
nouvel algorithme pour améliorer sa performance de récupération de données.

La représentation de l'information visuelle dans le niveau intermédiaire, entre le
niveau d’acquisition et celui de la mémoire, demeure un probléme difficile. Plusieurs
étapes de traitement sont nécessaires a ce niveau pour transformer les données brutes
acquises en mémoires abstraites. La théorie phare de Hubel et Wiesel dans (Hubel
and Wiesel, 1959) proposant une succession de couches composées de cellules simples
et complexes dans le cortex visuel a ouvert la voie & une meilleure compréhension
de ces transformations. Elle propose que les cellules neurales dans le cortex visuel
soient organisées en plusieurs couches de maniére hiérarchique. Cependant, certaines
questions importantes n’ont pas encore été entiérement traitées telle que la nature
exacte des transformations effectuées a chaque couche de la hiérarchie.

L’appariement stéréoscopique est un des problémes fondamentaux du niveau in-
termédiaire. Son objectif est de comprendre comment les deux images acquises par les
yeux sont apergues comme une seule scéne. Parmi les nombreux modéles qu’on trouve
dans la littérature, Marr et Poggio ont proposé une architecture neuro-inspirée pour
traiter ce probléme (Marr and Poggio, 1976). Cette architecture s’appuie sur un al-
gorithme coopératif ol chaque neurone n’interagit qu’avec ses voisins les plus proches
au travers de connexions synaptiques excitatrices et d’autres inhibitrices. Ce modele
a inspiré notre travail sur le probléme d’appariement de caractéristique d’image dans

le chapitre 4.

Nos contributions

Dans cette thése, nous apportons trois contributions principales qui concernent les

trois niveaux de traitement visuel mentionnés ci-dessus : Nous introduisons d’abord
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une architecture neuro-inspirée pour l'acquisition du signal visuel. Nous proposons
ensuite un nouvel algorithme pour la restitution d’information du modéle de mémoire
associative proposé dans (Gripon and Berrou, 2011) sur lequel nous nous appuyons
pour introduire notre derniére contribution qui concerne le probléme d’appariement

de caractéristiques visuelles. Voici une liste plus détaillée décrivant ces contributions

e Dans le chapitre 2, nous examinons le probléme de l'acquisition et de la
représentation des caractéristiques visuelles de bas niveau. Nous étudions la
structure de la rétine et les premiéres couches de la voie ventrale afin de proposer
une architecture neurale pour acquérir et représenter 'information visuelle. Ce
modeéle se distingue par la flexibilité de son architecture. Nous montrons que
cette flexibilité permet d’imiter des propriétés importantes du systéme visuel
telle que I’échantillonnage rétinien, la magnification corticale et les mouvements
oculaires, ainsi que la notion de champ visuel qui permet de modéliser la dis-
tance entre une image et un spectateur. Nous présentons ensuite une étude de
cas dans laquelle nous utilisons le modeéle proposé pour atteindre 1’état de 1'art

sur le probléme d’estimation de la saillance dans les images statiques.

e Le chapitre 3 concerne la représentation a haut niveau de I'information dans
la mémoire. Nous étudions le réseau de neurones surnommé sparse clustered
network (SCN) proposé dans (Gripon and Berrou, 2011), modéle de mémoire as-
sociative. Nous proposons une formulation générique des différents algorithmes
de restitution d’information associés a ce modeéle, ainsi qu’un nouvel algorithme
qui donne une meilleure performance sur la récupération des données a partir

des versions partiellement effacées.

e Dans le chapitre 4, nous traitons le probléme d’appariement de caractéristiques
visuelles. Nous proposons un nouveau modéle pour le résoudre en s’appuyant sur
I’architecture du SCN présenté dans le chapitre 3. Ce modéle exploite le concept

de grappes du SCN pour renforcer les contraintes du probléme d’appariement.
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Nous évaluons ensuite la performance de ’algorithme proposé en la comparant

avec ’état de Dart.
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Abstract

Computer vision and machine learning are two hot rescarch topics that have witnessed
major breakthroughs in recent years. Although advances in these domains have not
been exclusively dependent on ideas and principles suggested by neuroscience and
neurophysiology, key historical contributions were, however, the fruits of many years
of research on the visual cortex and brain function in a more general sense. Examples
of such contributions are numerous. This includes the famous work by Hubel and
Wiesel on the cat’s visual cortex which had and still have a profound influence on
machine learning and computer vision research, and the Hebbian theory on synaptic
plasticity and learning in the cerebral cortex that was fundamental to the development
of artificial neural networks and learning algorithms, which have been at the heart of
cutting edge machine learning research in recent years. Studying lateral interactions
among neural cells in the retina contributed to designing better image processing and
compression techniques, and the study of neural representations of the visual scene
in the primary visual cortex has led to the design of interesting mathematical models
for image representation such as the log-polar model, or for receptive fields such as
Gabor and Difference of Gaussians models.

In this thesis, we follow this line and, thus, we focus on designing neuro-inspired
architectures and improving existing ones for processing visual information along
three different stages of the visual cortex. At the lowest stage, we propose a neu-
ral model for the acquisition of visual signals. This model is closely inspired by the
functionality and the architecture of the retina and early layers of the ventral stream.
Eye movement, which is a fundamental property of vision in mammals, is built at the

heart of the model we introduce, which is one of its main differences from most exist-
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ing acquisition models. Designing an acquisition model with eye movement in mind
called for the incorporation of other associated properties. Retinal sampling caused
by the non-uniform distribution of photo-receptors, and the associated cortical mag-
nification phenomenon amplified at later layers by a similar non-uniform distribution
of receptive field sizes and spatial positions, are two ubiquitous properties that our
model was inherently adapted to implement. By introducing our acquisition model,
we aspire to provide a new framework for implementing vision tasks that neced to

experiment with eye movement and its associated properties.

On the highest stage, we address the memory problem. At this stage, many
questions are raised such as the choice of the appropriate model to use for a specific
task, and the best retrieval scheme to implement. In our case, we focus on an existing
associative memory model based on a neuro-inspired architecture. This model, called
the Sparse Clustered Network, offers a large storage capacity when used as a memory.
Moreover, its architecture borrows interesting properties from the visual cortex such
as the existence of short-range inhibitory connections, and local competition between
neural cells, in addition to long-range excitatory synapses used to store information
in a distributed fashion making it robust to many sorts of noise that might affect
it, especially the partial loss of information during retrieval. Our main contribution
at this stage consists in suggesting improvements on an existing algorithm used to
retrieve stored information from partially erased versions of it. Furthermore, we
suggest a generic formulation within which all existing retrieval algorithms can fit. It

can also be used to guide the design of new retrieval approaches in a modular fashion.

We further extend Sparse Clustered Networks at the intermediate stage. We
propose a new architecture adapted to deal with the feature correspondence problem,
which is a fundamental problem in computer vision. Most approaches in literature
use optimization methods to solve a quadratic assignment problem whose solution
represents matches that respect the underlying spatial configuration among features
to some degree. The model we propose deploys the structure of Sparse Clustered
Networks, especially the local competition property among groups of neurons inspired

by short-range inhibitory interactions in the visual cortex. The matching performance
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obtained by the proposed network attains state-of-the-art and provide a useful insight
on how neuro-inspired architectures can serve as a substrate for implementing various

vision tasks.
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Chapter 1

Introduction

1.1 Problem statement

Designing intelligent machines has been the topic of a large body of research for many
years especially in the last decade. As it turned out, solving the human intelligence
problem is one of the hardest challenges we have ever encountered. This quest to
‘reinvent’ our own intelligence is motivated by the pure intellectual curiosity that has
always characterized homo sapiens, as well as by the fact that it has the potential
to profoundly transform human civilisation as we know it. This transformation is
expected to affect all aspects of human activity including business, social communi-
cation, transportation, scientific research, medicine, finance, and the list goes on.

Remarkable progress has been already achieved in last decades especially in the
domain of vision, voice and language understanding. These advances are heralding
the emergence of new technology that will bring fundamental changes to our societies
such as autonomous vehicles, automatic real-time translation of text and speech,
chatting bots, personalized education and e-commerce.

Until the present day, all Al models are designed to accomplish one specific task.
A network designed to recognize objects in images or videos cannot adapt itself to
learn a new task such as understanding speech or English text. Although its archi-
tecture is flexible enough to be able to recognize objects it has never learned, this

flexibility is limited to the object recognition task and cannot go beyond it. This is
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sometimes called Artificial Narrow Intelligence (ANI) or weak Al as opposed to Ar-
tificial General Intelligence (AGI) or Strong Al which is the human-level intelligence.
We are arguably still a long way from attaining AGI. A key ingredient for that is
to solve the unsupervised learning problem, where an Al can discover patterns and
structures within acquired data with little or no intervention from human trainers
which is still a limited capability in current unsupervised systems.

However, what is considered as intelligent behaviour might sometimes be different
between humans and machines. For example, some complicated tasks that require
human intelligence such as performing formal mathematical calculations, can be casily
achieved by computers at speeds highly surpassing the human brain limits. Actually,
computers have been doing this kind of tasks for many years without requiring what
we designate today as AL. On the other hand, tasks that seem to be effortless to us,
such as summerizing the plot of a movie or recognizing a face are still hard problems
for artificial intelligence research. This constrast was nicely illustrated by computer

scientist Donald Knuth (Nilsson, 2009):

I'm intrigued that AI has by now succeeded in doing essentially everything
that requires “thinking” but has failed to do most of what people and
animals do “without thinking” - that, somehow, is much harder! I believe
the knowledge gained while building Al programs is more important than

the use of the programs...

One reason for this contrast in what we consider as intelligent behaviour between
humans and machines might be the fundamental structural and architectural differ-
ences between the brain and computers that are von Neumann machines. The highly
distributed and interconnected structure of the brain might be more favorable to
massively parallel tasks such as image and video recognition, while the von-Neumann
architecture which based on sequential processing is more adapted to tasks such as
formal calculations.

The intricate structure of the brain has been refined and finely tuned throughout

millions of years of evolution. The algorithm implemented by neural cells has also
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been increasing in complexity, slowly and progressivly, with the increased complexity
of the brain structure culminating at human-level intelligence. An important lesson
we learned from Al research in the twentieth century is the fact that the apparent
simplicity with which we are able to achieve sophisticated tasks such as image and
language understanding does not imply the simplicity of the underlying algorithm or

neural mechanisms.

The brain is a remarkably complex organ. It is mainly composed of a densely
interconnected network of neural cells or neurons. Understanding the nature of neural
interactions that are taking place and giving emergence to intelligent behavior remains
a major challenge. According to David Marr in his famous work on vision (Marr,
1982b), analysis of complex systems such as the brain should better proceed along
three levels. The first one is the computational level, in which the problem is described
and specified in a generic manner. The final goal of the computation is also identified
at this level but no solution should be found. The algorithmic level comes next.
It is where the input and output representations are specified, and the algorithm
of transformation between them is elaborated. The third level of analysis is the
architecture design, in which a physical architecture should be designed to obtain the

same solution described by the algorithm.

In the work we present here, we are more concerned with the third level of analysis.
We consider the neural architecture of the brain as our primary source of inspiration.
We think that this might be helpful for implementing functions that the brain is known
to excel in. We choose to put more focus on studying the visual cortex and processing
visual information. The visual system is one of the most explored structures of the
brain. Extensive research has been done on this subject and abundant resources are

available including computational models and datasets.

We mainly focus on the problem of acquistion and processing of visual information
in neural networks. Acquisition is the first step in the visual processing pipeline
which is typically achieved by the retina. It is where light reflected by an object is
captured and transformed into neural signals that the brain is able to manipulate.

Processing includes mechanisms such as feature extraction as well as organizing pieces
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of information into memory. Neurons in ecarly layers of the visual system usually
represent simple ‘concepts’; they are stimulated by very specific visual patterns such
as oriented edges and color contrast. They also span a little fraction of the visual
field. As we go further from external stimuli, neurons would represent increasingly
complex patterns that can be invoked by stimuli coming from increasingly larger zones
of the visual field. In higher cortical layers, as in the frontal lobe, neurons represent
abstract concepts independent from any external stimulus. These concepts can be
invoked by external stimuli as well as by internal brain activity. Memory is the word

used typically to refer to neural assemblies in these layers.

We tackle the visual system on three different stages that we think useful for
understanding its function. We start at the lowest stage which is the retina and early
layers of the ventral stream where acquisition of the visual signal takes place. We
peer into that stage and propose a computational model for visual acquisition that
captures some ubiquitous properties of the visual system that were overlooked by

most classical visual acquisition models.

After that, we focus on the highest stage which is memory. Rather than proposing
a new memory model at this stage, we proposed to improve the performance of re-
trieval algorithms of an existing neural network model originally designed to function

as an associative memory.

We finally study the intermediate stage meant to bridge the gap between the
two previous stages: low-level acquired visual information and high-level information
stored in memory. A fundamental question in vision research is, what are the op-
erations, and what kind of interactions are happening among low-level information
captured in early visual layers that are allowing them to evolve, or to be transformed
or mapped to more abstract concepts residing in higher cortical areas in the form of
memories. We try to contribute to the understanding of this problem by proposing a
neural network model for matching image features or for solving the graph matching

problem in a more general sense.
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1.2 A brief background

Many computational architectures have been proposed to model the low, intermediate
and high stages of processing of visual information mentioned in the previous section.

Some of them addressed a single stage while others spanned several ones.

Various computational models for visual acquision have been proposed in recent
decades. Some of these models aimed at approximating the complex computations
performed by the retina. The virtual retina developed by (Wohrer and Kornprobst,
2009) is one such example. It models the function of some ganglion cell (GC) types
in the retina by applying a linear convolution on image frames followed by a static
non-linearity and a spike generation process. Other models like in (Lorach et al.,
2012) aimed at a more faithful emulation of spatio-temporal properties of the retina.
It used event-based, asynchronous dynamic vision sensors (DVS) to implement a
computational model that mimics biological visual acquision which is asynchronous

in nature.

Other neural models of visual acquisition go further than the retina. Some of
these models were proposed to accomplish specific tasks such as predicting the eye
movement behaviour driven by visual attention. One of the carlist computational
models of saliency is that of (Itti et al., 1998). It introduced one of the first imple-
mentations of the (Koch and Ullman, 1987) model of bottom-up saliency prediction.
It used three separate acquisition channels for intensity contrast, local orientation
and color to capture a visual input. This was directly inspired by a similar decom-
position procedure that takes place in early layers of the ventral stream thanks to
different types of ganglion cells. It also applied some other biological properties such
as center-surround antagonism of receptive fields of ganglion cells in their acquisition
of the input signal.

Research on designing neuroinspired models of visual attention and saliency pre-
diction has been abundant in recent years. Many were based on the same theoretical
model of (Koch and Ullman, 1987) and its implementation in (Itti et al., 1998). In

an attempt to provide a unifying base for these models, a framework for visual ac-
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quisition, saliency prediction and object recognition was proposed in (Walther and
Koch, 2007). It suggested a generic formalism in terms of which most saliency-based
attention models can be described. It also proposed a method for smoothly incor-
porating attention mechanisms, and object recognition models based on the simple
and complex cell theory of (Hubel and Wiesel, 1959) such a the Hmax, into a single
generic processing pipeline. The visual acquisition framework we propose in chapter 2
is inspired by the one presented in (Walther and Koch, 2007). Similarly, we design a
generic scheme to represent the retina and early layers of the visual system. However,
we incorporate other properties that allow for a more biologically plausible emulation

of the acquisition process.

At the highest stage, memory, much research has also been devoted to investigating
architectures for representing information in an associative fashion as biological neural
networks do. Many artificial neural networks were proposed as models for human
memory known to be associative or content-addressable. This is one of the essential
properties sought by all neural models. The Hopfield network (Hopfield, 1982) is
one early example. It was suggested as a potential architecture for organizing and
interconnecting neurons to memorize fixed size messages. It used the McCulloch-Pitts
neuron (McCulloch and Pitts, 1943) and the Hebbian learning rule (Hebb, 1949) to
achieve that. Each neuron is connected to all other neurons, and synaptic weights
are associated with each connection. These weights are set during the information
storing process. Memorization is achieved by optimization of an energy function that
could lead to being trapped in local minima, which is a serious problem for Hopfield

networks.

The Boltzmann machine introduced in (Ackley et al., 1985) is another landmark
associative memory model. It has the same recurrent neural architecture of a Hop-
field network in which each neuron is connected to all other neurons. It provides a
method for escaping local minima during the optimization procedures by introduc-
ing stochastic dynamics in neurons activation inspired by the stochastic nature of
biological nerve cells. A known variant of the network is the restricted Boltzmann

machine (RBM). It consists of two layers of neurons, a hidden and visible one, with
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a bipartite connectivity. This configuration makes learning and storing information
more efficient than in the original model. It also allows for stacking several hidden
layers in order to learn better representations of the stored data and thus a better

retrieval performance.

Autoencoders are also memory models with significant similarities to RBMs (Hin-
ton and Salakhutdinov, 2006; Bengio, 2009). An autoencoder has an input layer,
a hidden layer, and an output layer. It is trained to copy or reconstruct its input
on its output using a code learned by the hidden layer. This code represents the
input by capturing its most useful properties and avoiding redundancy. In addition
to being used as models of memory, autoencoders are typically used for dimensional-
ity reduction where input signals are projected into a lower dimensional space. The
prefix ‘auto-’ in the word ‘autoencoder’ refers to the fact that learning of the code
is achieved in an unsupervised fashion, in which the only information needed is the
input signal. As in an RBM, hidden units can be stacked to obtain ‘deeper’ and

better representations of the inputs.

More recently Gripon and Berrou proposed a new associative memory archi-
tecture (Gripon and Berrou, 2011) as a generalisation of Palm-Willshaw networks
(Schwenker et al., 1996). This model was directly inspired by the principle of error
correcting codes in information theory and by the origanization of microcolumns in
the visual cortex where inhibitory synapses dominate short-range connections, while
excitatory synapses prevail on long-range connections. It provides a higher storage
capacity than Hopfield or Boltzmann networks. We focus on this model in chapter 3

and propose a new algorithm to enhance its data retrieval performance.

Visual information processing at the intermediate stage that comes after acqui-
sition and before high-level abstract memory is still a hard problem. Actually, this
stage comprises many steps, and modest progress has been achieved on exploring the
transformation process of raw acquired information into abstract memories. Hubel
and Wiesel’s influential theory on simple and complex cells in the visual cortex (Hubel
and Wiesel, 1959) provided an overture for a better understanding of these transfor-

mations. It suggested a hierarchical organization of nerve cells into visual layers where
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representation of the visual world gets more complex and abstract as we go up that
hierarchy. However, some imporatant questions were not fully answered such as the

nature of the exact tranformations performed at each layer of the hierarchy.

Another important question was about the stereo matching problem. This is a
fundamental vision phenomenon in which the two images received by both eyes are
perceived as a single scene with additional information about depth. In an effort
to figure out neuro-compatible solutions for this problem, David Marr and Tomaso
Poggio proposed an interesting neural architecture in (Marr and Poggio, 1976) that
implemented a cooperative algorithm in which each neuron needs only to interact with
a few of its neighbors through excitatory and inhibitory synapses. They applied this
method successfully on matching random-dot stereograms. This approach provided
a useful insight on how local interactions known to dominate neural activity in the

cerebral cortex can be powerful in solving or approximating complex vision problems.

Another fundamental vision problem that we attribute to the intermediate stage
between acquisition and memory is the feature correspondence problem. The simplest
case of this problem consists in matching each feature extracted from one image called
the query image to one feature in a destination image. The goal of this matching
procedure is to check whether an instance of an object whose features are extracted
from the query image can also be found in the destination image or not. This can be
useful for applications such as object tracking, search or unsupervised object category
discovery. Inspired by Marr’s stereo matching alogrithm, we propose a new approach
to solve the feature correspondence problem in chapter 4. In that approach we design
a variant of the neural network of (Gripon and Berrou, 2011) and use it to perform
the matching procedure. As in the original network, local inhibitory synapses and

long excitatory connections are at the heart of the proposed matching procedure.

There have been many attempts to build more complete visual processing pipelines
spanning the three modeling stages that start by performing signal acquisition and
go as far as incorporating a memory model to perform object recognition. The Hmax
originally proposed in (Riesenhuber and Poggio, 1999) and later extended in (Serre

et al., 2007) is one example of such attempts. It is a model of object recognition
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whose architecture was inspired by Hubel and Wiesel’s work (Hubel and Wiesel,
1959). Acquisition of an image signal is first achieved by a set of simple cell layers.
Each simple cell responds to the existence of a simple pattern in a limited region of an
image such as an oriented edge. A sct of complex cell layers follows simple cell layers.
Each complex cell applies a max-pooling operator over a few simple cells, in which
the maximum response among these cells is taken as that of the complex cell. Simple
and complex cell layers then alternate as suggested in (Hubel and Wiesel, 1959) in
order to reach a higher level, more abstract description of the image content, which
emulates hierarchical feedforward information processing in the ventral stream.
Deep learning with convolutional neural networks (CNNs) (LeCun et al., 1998)
is another example of effort seeking object recognition by modeling the whole visual
processing pipeline starting from acquisition. As in Hmax, CNNs alternate between
simple cell (convolution) layers and complex cell (pooling) layers. However, unlike
Hmax, the convolution coefficients in CNNs are not predetermined according to neu-
rophysiological experiments. They are ‘learned’ during a supervised training process.
They allow for building networks with much deeper hierarchies than what is possible
with Hmax or other handtuned network. This also allows them to be more adapted
to the task they are designed to achieve and thus reach a better performance in ob-
ject recognition as demonstrated in (Krizhevsky et al., 2012) as well as in various
other tasks. However, while CNNs borrow some of their key architectural aspects
from that of visual cortex such as convolution an hierarchical processing, the need of
strong supervision and a very large number of training examples during the training
process suggest that the learning principle it uses is fundamentally different from its

biological counterpart.

1.3 Contributions of the thesis

This thesis brings three main contributions to the three stages of the visual process-
ing pipeline discussed above: we introduce a neuro-inspired architecture for visual

acquisition and representation, and a neural network model for solving the feature
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corresponding problem. We also propose a new algorithm for retrieving information

from associative memories. Here is a more detailed list of our main contributions:

e In chapter 2 we examin the visual acquisition problem and low-level represen-
tation. We study the human retina and early layers of the ventral stream, then
we propose a neural architecture as a framework for acquiring and representing
visual information. This framework differs from other models in the flexibility
with which it can be configured to represent visual layers. We will show that this
flexibility allows to emulate important properties of the visual system such as
retinal sampling, cortical magnification, saccadic eye movements, as well as the
visual field which is used to represent the distance parameter between a viewer
and the scene. After that, we propose a model of bottom-up saliency estima-
tion based on the proposed visual framework, and demonstrate its performance

compared to state-of-the-art models on a standard benchmark.

e Chapter 3 is about high-level representation of information in memory. More
precisely, we study the sparse clustered network (SCN) which is a neural net-
work model used typically as an associative memory (Gripon and Berrou, 2011;
Aliabadi et al., 2014). We propose a generic formulation of the different algo-
rithms used to retrieve stored information. We also suggest a new algorithm
that gives a better performance at retrieving stored data from partially erased

queries.

e In chapter 4, we deal with the correspondence problem of image features.
We propose a new matching algorithm based on the architecture of the Sparse
Clustered Network presented in chapter 3. This matching algorithm harnesses
the structural and functional properties of SCNs by using them as matching
constraints for the correspondence problem. The performance of this match-
ing model is then evaluated experimentally and compared to state-of-the-art

matching models.



Chapter 2

A new framework for visual

acquisition

An emerging trend in visual information processing is toward integrating some in-
teresting properties of the ventral stream in order to account for some limitations
of machine learning algorithms. Retinal sampling and cortical magnification are two
such important features that have been the subject of a large body of research in
recent years. In this chapter, we focus on the lowest stage of information processing
in the ventral stream. We propose a new framework for visual information acquisition
and representation that emulates the architecture of the primate visual system by in-
tegrating features such as retinal sampling and cortical magnification while avoiding
spatial deformations and other side effects produced by classical models that tried to
implement these two features. It also explicitly integrates the notion of visual angle,
which is rarely taken into account by vision models. We argue that this framework
can provide the infrastructure for implementing vision tasks such as object recogni-
tion and computational visual attention algorithms. It also raises important questions
about the role of the newly integrated features on vision behavior. Moreover, we pro-
pose an algorithm for bottom-up visual attention implemented using the proposed
framework, and show that it can attain state-of-the-art performance, and provide a

better insight on the significance of studying the role of the visual angle more closely.

11
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2.1 Introduction

Vision and the visual system have been an active area of research for many centuries.
Interest in exploring this territory has been motivated by a wide variety of applica-
tions. Ophthalmology was one of the first domains to benefit from such discoveries.
More recently, that interest has been widely driven by the desire to learn more about
the brain and decipher its neural code. A better understanding of the neural code
has enabled to design better machine learning algorithms for computer vision, and

for artificial intelligence in a more general sense.

The discovery of simple and complex cells in the famous work by Hubel and Wiesel
on receptive fields in the cat’s visual cortex (Hubel and Wiesel, 1959) marked a new
era in vision research. It revolutionized the way the visual system is studied and
understood, and allowed for the emergence of ‘computational neuroscience’, a new
field founded by David Marr whose theory on vision is still very influential (Marr,

1982b).

More recently, deep learning networks have achieved an unprecedented perfor-
mance on many visual tasks such as image categorization (Krizhevsky et al., 2012).
The architecture of these networks has been inspired by the multi-layered structure

of the visual system and the hierarchical organization of simple and complex cells.

Some criticism of deep learning includes its limited performance on tasks such as
unsupervised object discovery and localization, multiple instance recognition (MIL)
(Zhu et al., 2015; Ray et al., 2010), recognizing spatial relationships between objects
and its limited ability to generalizing to variable-scale representations of the learned
classes without increasing the size of the training set (Lake et al., 2015). Another
important problem of deep learning, according to (Ranzato et al., 2015), is its compu-
tational cost, which renders it impractical for very high resolution images. This called
some researchers to get a closer look at the visual system and some of its overlooked

properties to address these limitations.

On such property is selective visual attention that guides covert processing biases

and saccadic eyes movements. The study of this property is an emerging trend in
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visual information processing. It finds its root in Treisman’s Feature Integration
Theory (FIT) (Treisman and Gelade, 1980). This theory provided a strong evidence of
the fundamental role of attention for object recognition. This role was later explored
by many rescarchers including (Koch and Ullman, 1987; Itti ct al., 1998; Walther
et al., 2004; Bonaiuto and Itti, 2005; Borji et al., 2014). It also motivated the recent
emergence of attention-based recognition as in (Larochelle and Hinton, 2010; Zheng
ct al., 2015).

Cortical magnification is another ubiquitous feature of the visual system (Gattass
et al., 1981, 1988). In addition to its role in reducing the amount of visual information
entering the brain, Poggio has proposed that it might be a key property for enabling
scale-invariant learning of objects (Isik et al., 2011; Anselmi et al., 2015).

In this chapter, we propose a new framework for visual information acquisition
that incorporates these important features of the ventral stream. Our contributions

are the following:

1. Introducing a new bio-inspired framework for visual information acquisition and

representation that offers the following properties:

e Providing a method for taking the distance between an image and the
viewer into account. This is done by incorporating a visual angle parameter

which is ignored by most visual acquisition models.

e Reducing the amount of visual information acquired by introducing a new
scheme for emulating retinal sampling and the cortical magnification cffects

observed in the ventral stream.

2. Providing a concrete application of the proposed framework by using it as a
substrate for building a new saliency-based visual attention model, which is
shown to attain state-of-the-art performance on the MIT saliency benchmark

(Borji et al., 2013a).

The rest of this chapter is organized as follows: In section 2.2, we provide a

background of the work we are presenting. Section 2.3 introduces a brief anatomy
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of the visual system and its function, paving the way to section 2.4 where a new
vision framework is proposed that captures some interesting properties of the visual
system. In section 2.5, a new model of visual attention is proposed using the proposed
framework. We show in section 2.6 that coupling the proposed vision framework with
the proposed attention model gives interesting results that motivates the utility of
the framework. A discussion of some of the model’s properties is also discussed in

section 2.6. Section 2.7 is the chapter conclusion.

2.2 Related work

Computational and mathematical modeling of the visual system have been the focus
of many works in literature in recent years. The scope of such models ranges from
mathematical models of single neurons (McCulloch and Pitts, 1943) and receptive
fields (Rodieck, 1965; Marcelja, 1980) to modeling complete visual layers, especially
the retina (Wohrer and Kornprobst, 2009), or even modeling a succession of layers
representing carly arcas of the visual cortex such as the Hmax model (Serre et al.,
2007) or the one proposed by David Marr in his famous work on vision (Marr, 1982b).

Most vision models are designed to accomplish a specific task. For instance,
the Hmax model is a view-based object recognition processor. It is inspired by the
description of simple and complex cells in the primary visual cortex by Hubel and
Wiesel (Hubel and Wiesel, 1962). A similar model was proposed in (LeCun et al.,
1998), which also provides an implementation of simple and complex cells. However, it
uses supervised learning coupled with back-propagation to learn mathematical models
of simple cells instead of fixing them beforehand. This allowed for unprecedented
performance on many image classification tasks (Krizhevsky et al., 2012).

Some models have more general objectives. The virtual retina model in (Wohrer
and Kornprobst, 2009) was proposed as a tool for researchers in neuroscience and
neurophysiology to test their ideas and theories about visual function. Similarly,
Walther and Koch proposed their model in (Walther and Koch, 2007) as a unified

framework for implementing saliency-based visual attention and object recognition
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algorithms.

Although vision models are very numerous in literature, some important and
even ubiquitous properties of the visual system are still absent in most of them.
Retinal sampling and cortical magnification are examples of such properties. Poggio
has argued that cortical magnification might play a fundamental role in introducing
scale invariance in recognition (Poggio et al., 2014). However, a few models have
used foveal-like transformations as an approximation to the cortical magnification
effect (Rybak et al., 1998; Isik et al., 2011). While this imitates magnification in
the sense that foveal and parafoveal regions are modeled at a higher resolution than
the periphery, they differ in that the number of pixels representing the periphery is
the same as in the original image, so the number of input pixels is not reduced (see
figure 2-1(b)).

At every layer of the visual system, an image zone that falls within the fovea
is represented by more neurons than a zone with the same size falling within the
periphery. One known method for emulating this is the log-polar representation
(Schwartz, 1984). This method emulates retinal sampling very well by using a log-
polar grid for sampling pixels of a given image. It then maps sampled pixels onto a
rectangular-shaped image that has the drawback of having severe spatial deformations
as shown in figure 2-1(c). While this deformed representation has the advantage of
being invariant to certain rotation and scale transformations, it is difficult to use such

images for subsequent spatial processing used in many models such as the Hmax.

A different retinal sampling method that attempted to avoid log-polar-style de-
formation was proposed by (Martinez and Robles, 2006). It used sampling points
organized in concentric squares to sample an image. These points can then perfectly
fit into a square-shaped 2D array like in figure 2-2. While this representation causes
less deformation than the log-polar method, it still contains geometrical deformations
along its diagonals as shown in figure 2-1(d).

Thus, most known methods for generating retinal images have one of two major
drawbacks. The first drawback is constraining the size of the retinal image to be equal

to that of the input image, such as the Gaussian blurring method in figure 2-1(b).
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(b) Blurring.

(¢) Log-polar. (d) Square-sampling.

Figure 2-1: Some of the classical methods traditionally used for emulating retinal
sampling and cortical images. Notice that blurring in (b) keeps the same number of
pixel as in the original image. The log-polar and the square-sampling methods in (c)
and (d) introduce severe spatial deformations that make further spatial filtering more
challenging.

This dependency of the output image size on the input is not observed in the visual
system where the number of photo-receptors does not depend on the number of image
pixels. Morcover, one important property of retinal sampling that such methods do
not exploit is the fact that having a constant number of photo-receptors fixes an
upper bound on the amount of information allowed to enter the visual system. The
second drawback is the deformation introduced by methods that try to avoid the first
drawback as in figures 2-1(d) and (c).

We think that the main reason why such methods always have one of the above
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Figure 2-2: Retinal sampling is emulated by using a set of points organized in con-
centric squares (left). Sampled points can then fit into a smaller square-shaped image
(right) that represent the retinal image. (Martinez and Robles, 2006).

drawbacks is that they are constrained to producing an output image with a ‘regu-
lar’ shape. The term ‘regular’ here means a circular or a rectangular shape. This
constraint is set such that the output image is suitable for presentation to a human

observer or to be compatible with available image processing tools.

In the vision framework we propose in section 2.4, no such shape constraints are
fixed. Hence, we introduce a simple method for applying cortical magnification and
retinal sampling in which the output is completely independent from the size of the

input image without producing any geometrical deformations.
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2.3 The visual system

2.3.1 Structure

The mammalian visual system is a highly intricate structure that exhibits a high
level of organization. It starts at the eyes where light is trapped and transduced into
neural signals. These signals are then conveyed through the optic nerve to the rest
of the nervous system.

The first neural layer that processes visual signals is the retina. Although situ-
ated within the eyeball, the retina is considered as an integrate part of the brain. The
retina is roughly composed of a three-layered feed-forward structure. The first layer
is the Outer Nuclear Layer (ONL) containing photo-receptors. These photo-receptors
synapse onto the bipolar cells that are found in the Inner Nuclear Layer (INL). Bipo-
lar cells send their signals to ganglion cells in the Ganglion Cell Layer (GCL). An
elaborate network of lateral connections are found between photo-receptors and are
mediated by horizontal cells, while amacrine cells mediate lateral connections between
bipolar cells (Dowling, 1987).

The optic nerve that is made of ganglion cell axons is the sole output of the retina.
Most of the axons of the optic nerve project to the lateral geniculate nucleus (LGN)
in the thalamus. An important part of axons in the optic nerve also project to the
superior colliculus. The optic nerve is the first stream where visual signals take the
form of action potentials. Action potentials conveyed to the LGN by the optic nerve
continue their way through the optic radiation which is another axonal structure. The
optic radiation projects to the primary visual cortex V1 in the occipital lobe (Hubel
and Wiesel, 1962).

The occipital lobe is divided into two distinct layers called V1 and V2. The optic
radiation coming from LGN terminates in V1. At this point and starting from V2,
the visual stream starts to diverge into to two distinct pathways: the ventral and
the dorsal pathways. It has been argued that these pathways act as two independent
visual systems with distinct functions (Goodale and Milner, 1992): the ‘What’ and

the ‘Where’ systems. The ‘What’ system is situated in the temporal lobe. It is
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responsible for visual recognition tasks such as recognizing the identity of faces and
other objects. In this system, higher visual areas such as V4, PIT, CIT and AIT
are found. The ‘Where’ system, sometimes called the ‘How’ system, is found in the
parietal lobe. It has been suggested that visually-guided behavior, such as reaching
and grasping, is among the main functions of this system. Higher visual areas such
as MT, LIP, MST and VIP are parts of this system. However, A later work by
(Milner and Goodale, 2008) suggested the existence of a more complex interaction
scheme than a simple separation into two independent systems. In addition to the
feed-forward pathway of axons, a rich feedback stream also go down throughout all

the stages described so far.

2.3.2 Function

Two major families of photo-receptors are found in ONL: rods and cones. Rods are
sensitive to low light conditions and are mainly responsible for night vision. On the
other hand, cones are less sensitive to light, which makes them more adapted to
day vision when light is abundant. Rods’ and cones’ main function is to transduce
incoming photons into neural signals. These signals are further processed by the
network of horizontal, bipolar and amacrine cells. They finally arrive at ganglion
cells which translate them into action potentials and send them via the optic nerve
to other areas.

There are two major types of ganglion cells with distinct functions, Parasol and
midget cells. Parasol cells, also called M,Y or 3 cells, have wider receptive fields
(RFs). They are characterized by a lower spatial resolution and a transient response
to persistent stimuli. They are associated with achromatic vision. On the other hand,
midget cells, which are sometimes called P, X or « cells, have smaller RFs. They have
a higher spatial resolution and a lower temporal resolution than parasol cells, and they
are associated with color vision. Each type of the above ganglion cells is divided into
two sub-types called ON or OFF cells, which have complementary response levels.
Hence, we find parasol-ON, parasol-OFF, midget-On and midget-OFF cells (Salin
and Bullier, 1995; Hubel and Wiesel, 1959).
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Most ganglion cells are known for their center-surround configuration. ON gan-
glion cells are excited by the onset of light stimuli in their central region and inhibited
by light in their surround region. The inverse holds for OFF ganglion cells. Rodieck
was the first to propose an clegant mathematical model for spatial and temporal
responses of ganglion cells in the form a difference of Gaussians (DoG) (Rodieck,
1965). This center-surround model is also involved in color vision. For example,
some midget-ON cells encode the degree of red in their RFs; their center is excited by
long wave (red) light and their surround is inhibited by medium wave (green) light.
Another type is sensitive to blue, having a center excited by short wave (blue) light
and a surround inhibited by medium and long wave light.

Neurons in higher visual areas respond to progressively more complex stimulus
patterns. In the primary visual cortex V1, for example, neurons are tuned to simple
oriented contours and spatial frequencies. The response of V1 cells, also called simple
cells by (Hubel and Wiesel, 1959), are typically modeled mathematically by a Gabor
filtering process, which consists in convoluting an image with a Gabor kernel made
of the product of a 2D Gaussian kernel by a 2D cosine grating. Some neurons in V2
respond to stimuli as simple as oriented edges, but they are also tuned to illusory
edges and a slightly more complex shapes. However, the complexity of spatial and

temporal response patterns of neurons grows in complexity in higher visual areas.

2.3.3 Information reduction

The visual field (VF) of a single eye spans about 160° horizontally and 174° vertically.
While a tremendous amount of visual information could be extracted from such a
wide span, the visual system uses intelligent tricks to reduce the amount of acquired
information. This reduction starts as early as the ONL layer in the retina; the visual
field is sampled by the photo-receptors in a non-uniform fashion. The density of
cones is very high in the central region of the retina called the fovea, spanning about
1°, and decreases logarithmically toward the periphery as shown in figure 2-3. This
distribution leads to what is called ‘retinal sampling’ (Salin and Bullier, 1995; Hubel
and Wiesel, 1959).
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Figure 2-3: Spatial density distribution of rods and cones in the retina (Gonzalez and
Woods, 2002).

The reduction of visual information by means of a ‘privileged’ fovea continues in
subsequent areas of the visual system. For example, among ganglion cells of the same
type, those which pool their inputs from photo-receptors near the fovea have smaller
receptive fields than cells pooling their inputs from photo-receptors in the periphery.
This phenomenon is known as the cortical magnification effect. This effect is also
observed in LGN, V1, V2, V4 and even in higher visual arcas. The ratio between the
diameter of a given RF and its eccentricity stays relatively constant in a given visual

layer and increases in higher areas as shown in figure 2-4.

2.4 The proposed vision framework

In this section, we propose a model for visual information acquisition and represen-
tation in early layers of the visual system. This model is meant to be used as a
framework for implementing visual processing tasks such as visual attention model-

ing presented in section 2.5, or object recognition algorithms that need hierarchical
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Figure 2-4: Cortical magnification factors in V1, V2 and V4 adapted from (Gattass
ct al., 1981) and (Gattass et al., 1988) by (Freeman and Simoncelli, 2011).

information processing. This model imitates the information reduction property of
the visual system described in section 2.3. It does this by emulating retinal sam-
pling and the cortical magnification effect. This leads to some interesting properties
discussed later in section 2.6.

As we have seen in section 2.3, the early visual system can be functionally viewed
as an arrangement of consequent layers. It starts at the photo-receptor layer (ONL)
in the retina and continues through the GCL layer, the LGN, V1, V2 and so on.
The transition from one layer into another can be viewed as a mapping mediated by
synaptic connections constituting receptive fields.

The model we propose is made of two basic components: visual layers modeled
as point clouds, and mapping functions between these layers in the feed-forward

direction.

2.4.1 Notation

In this chapter, polar coordinates and their corresponding Cartesian coordinates are
sometimes used interchangeably depending on the context. The radial component
of a polar coordinate is always denoted by the roman letter r, while the angle is

denoted by the Greek letter w. The Cartesian version of (r,w) is always denoted
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by (z,y), where = rcosw and y = rsinw. If polar coordinates are written with
super- and/or subscripts, these same super- and/or subscripts are attached to their

Cartesian versions, and vice versa.

2.4.2 A generic model for visual layers

Visual layers as well as input stimuli are modeled as point clouds using a set represen-
tation. This representation can be used to instantiate any number of layers, which is
a variable parameter between vision models, by providing a generic description that
captures common properties of layers in the visual system as well as input stimuli,
such as the visual field spanned by a layer, its fovea size, spatial distribution of cells
and the distribution of associated receptive fields.

However, this representation focuses on two main properties of the visual system.
First, it is adapted to implementing the information reduction properties in the form
of retinal sampling and cortical magnification without introducing any deformations.
Second, it implements the notion of visual angle which determines the visual field span
associated with a given layer. The latter property is one main difference between the
vision framework we propose and the one proposed in (Walther and Koch, 2007).

Hence, the structure of a given visual layer can be captured by our model using

the following generic definition:

C(O°%9°,D°) = {filfi : R* = R,
o(diam(dom(ff))) = ©°,
ke{l,.. K, (2.1)

where dom(ff{) represents the domain of function ff, which is the set of points in
R? on which f{ is defined, e.g., the coordinates of points in figure 2-5, the term
diam(dom( ff)) refers to the diameter of the set dom(ff), e.g., the diameter of point
clouds in figure 2-5, and o(diam(dom( ff))) is the the visual angle ©¢ spanned by that

diameter. Similarly, ¢¢ is the visual angle spanned by the diameter of a central subset
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of dom(ff) called the fovea. The parameter D¢ is used to specify a two dimensional

spatial distribution of points in dom(ff).

(a) ) ©e
(b)

Figure 2-5: Two example point clouds representing visual layers according to the
definition in (2.1). A different distribution D¢ is used for each cloud. In (a), the
distribution D¢ is chosen as a regular grid. This distribution is more adapted to
representing images with a classical rectangular shape. In (b), this distribution is
chosen at random. This shows that the representation of visual layers in the proposed
framework is not limited to rectangular distributions as in most vision models.

As an illustrative example, the definition in (2.1) can be used to represent a
classical two dimensional RGB image. In this case, the distribution D¢ is chosen as a
2D rectangular grid corresponding to pixel positions of the image as in figure 2-5 (a),
k refers to an image component (R, G or B) and f{ is the value of the component k
at an index (4, j) in IN?.

An interesting feature of using C to represent an image is that it associates a visual
angle ©¢ with its diagonal. This emulates the fact that, in reality, an image is always
associated with a certain visual angle when viewed from a certain distance. We argue
that this is an important element for any model that aims at a faithful modeling of
the visual systems. It allows to study the influence of the visual angle on the behavior
of models performing visual tasks.

The cone receptors layer in the ONL can also be modeled using the definition
in (2.1). In this case, D¢ would be chosen to approximate cone distribution in the

retina shown in figure 2-3. This means that the density of points in dom(ff) would
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be higher in the foveal region defined by ¢, and decrease logarithmically towards
the periphery. Each point f; would represent a cone receptor whose type would be
determined by the subscript k£ (a S, M or L cone). The angles ©° and ¢° would
represent the layer’s visual field and the width of the fovea in degrees of visual angles,

respectively.

In a much similar way to representing a cone-receptors layer, other visual layers
such as the ganglion cell layer in the retina, LGN, V1 and higher layers can be modeled

by (2.1) as we will see in section 2.5.

An optional modulation function m* can be applied to a layer C:

me: RIC — RI€ (2.2)

This function can be used to implement any operation that globally modifies values
of points in a given layer. Example operations include non-linearities such as contrast
gain control and intensity adaptation as in the retina, the Inhibition of Return (IOR)

operation used in most models of visual attention, or any other operation.

2.4.3 Stacking layers

In the same way as a ganglion cell pools over a number of photo-receptors (mediated
by bipolar cells), or a neuron in V1 pools over a number of axons seen by its RF in
LGN to produce their output, layers of type C can be stacked to emulate the feed-
forward path of the visual system. In this case, each point in a C-type layer gets its
value by pooling over a set of points belonging to the previous layer. More precisely,
given two layers C; and Cy, a point f;*(z,,y,) € Ca can be associated with a set of

coordinates called its receptive field RF“?(f,?) C dom(f;'), where fi' € Cy:
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RE (/i (20, 40)) = {(z,9)[(x, y) € dom(f)),
(%0, Yo) € dom(f;?),
and (z,y) satisfies some condition
guaranteeing its membership to the

receptive field of f;(z,, yo)}- (2.3)

Determining whether a coordinate (x, y) is in the receptive field of a point f,*(x,, ¥,)
depends on the types of C; and Cy. For example, if both C; and Cy model cortical
layers, then a typical way of determining the RF membership is by looking whether
(x,y) falls within a disk-shaped region around (z,,¥,), given that (z,y) and (x,,y,)
belong to the same space. When C; is used to model a RGB image, and Cy models
a cone-receptor layer, the process becomes similar to retinal sampling where a point
in the receptors layer gets its value by sampling only one pixel in the image. In this
case, determining the receptive field of f,*(z,,y,) consists in finding its corresponding

point in C;.

The input signal to the point f,?(z,,v,) can be defined as follows:

s (i (o, 4o)) = { i (2, 9))|
(z,y) € RET(f¢ (20, ¥0))} (2.4)

and the value of f;?(z,,¥,) can be finally computed as:

Cc2 C1C2

i (T, Yo) = 012 (s (fi (%0, Y0))), (2.5)

where ¢““? is a mapping defined as:
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gb(k?:l@ . R|Szlcz(f;:2(wmy0))| — R (26)

This mapping can be linear as in the case of Gabor or DoG kernels. It can also
be used to implement non-linearities for pooling functions.

In the next section, we propose a model for saliency-based visual attention that
implements the proposed vision framework. This will shed the light on the frame-
work’s interesting properties and raises some insightful questions about their role in

visual processing in section 2.6.

2.5 Application: modeling bottom-up visual atten-
tion

Many models have been proposed in litterature for modeling visual attention in re-
cent years. This emerging field has been the subject of a large body of research in
neuroscience as well as in computer vision. It has been useful in many applications
including object recognition and video compression (Borji and Itti, 2013; Walther
et al., 2004), object segmentation (Tu et al., 2016) and detection (Pan et al., 2016;
Gao et al., 2015).

The Feature Integration Theory (FIT) introduced in (Treisman and Gelade, 1980)
was probably the first to suggest a fundamental functional role for attention in visual
recognition. A few years later, Koch & Ullman proposed a possible neural mechanism
for driving attention (Koch and Ullman, 1987). This mechanism only considered
low-level image features in which only color, intensity contrast and local intensity
orientations are used to drive the focus of attention. The first working implementation
of this mechanism was proposed by Itti and Koch in (Itti et al., 1998), and became a
landmark for many saliency prediction models based on bottom-up visual attention
(Le Meur et al., 2006; Navalpakkam and Itti, 2006; Murray et al., 2011).

The term bottom-up comes from the fact that only basic information about the
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image signal such as color and intensity are involved in predicting saliency. Other
models have attempted to enforce bottom-up biases with higher level information
about the scene such as recognition of objects or proto-objects (Judd et al., 2009; Zhao
ct al., 2014), scene context and gist information (Goferman et al., 2012; Torralba et al.,
2006), and by using fully convolutional neural networks (Kruthiventi et al., 2015), or
statistics about oculomotor biases in human subjects as in (Le Meur and Liu, 2015)
more recently.

The algorithm we propose here is based on the model of Itti and Koch. How-
ever, it shortcuts the first two steps consisting in Gaussian sub-sampling and across-
scale subtraction. These steps are replaced by a filtering operation using kernels
with eccentricity-dependent receptive fields emulating the cortical magnification ef-
fect. This allows us to reduce the number of feature maps to 9 maps instead of 42
maps in the original model.

The model we propose holds some similarity to the one the authors introduced

in (Aboudib et al., 2015) with several major differences:

e The proposed model is implemented using the vision framework proposed in

section 2.4.

e The proposed vision framework allows for a more plausible way for emulating

retinal sampling and cortical magnification factors.

e Normalized feature maps are directly combined to form the final saliency map

without computing conspicuity maps.

Figure 2-6 depicts the basic architecture of the attention algorithm based on the

proposed vision framework.

2.5.1 The image layer 7

The attention model we propose consists of four C-type layers called Z, P, U and L
defined according to (2.1). The first layer Z represents an RGB image and is defined
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as follows:

(0" ¢", D) = {filfi : N* = [0,1],
o(diam(dom(f{))) = €7,
ke{1,2 K'=3}}, (2.7)

where dom(f}) is the set of all pixel indexes (i, ) in the image. A point f{ represents
the value of the k component of the RGB image Z at a given index in IN?, where

k =1 stands for the R component, k = 2 for G and k = 3 for the blue component B.

2.5.2 The receptors layer P

The second layer P is the receptors layer that samples the input image in the same
way the ONL layer in the retina samples the visual scene, it can be similarly defined

as:
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P(OF,vP, D) = {f{Iff : R* = [0,1],
o(diam(dom(f7))) = €7,
ke {1,2, K" = 3}, (2.8)

where the distribution DP is chosen to approximate the cone distribution in the pri-
mate retina as in figure 2-7. A point f7 represents a cone receptor of type L or red

(k=1), M or green (k =2), S or blue (k = 3).

Figure 2-7: The distribution DP used for the receptor layer P. This distribution is
inspired by the distribution of cone receptors in the retina, where the density is higher
in the central fovea and decreases rapidly toward the periphery. In this figure, the
span of the diameter of layer P is o(diam(dom(f}))) = ©F = 10° and the span of the
fovea diameter ¢)? = 1°. The total number of points in this figure is 41284 of which
10000 are within the fovea.

Point coordinates (r, w) in dom(f}) are expressed in degrees, where r is the eccen-
tricity relative to the center of the fovea measured in degrees of visual angles, which
is a typical way of referring to cell positions in the retina. The coordinate w is the

angle made between the horizontal line passing through the fovea’s center and the
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line between the fovea’s center and (r, w). Parameters ¢/? and ©F are also expressed in
visual angles. They refer to the diameter span of the fovea and the overall visual field
of P, respectively. Figure 2-7 depicts an example distribution of points in dom(f}).
Notice that points are very dense toward the center where the fovea is found and get

sparser toward the periphery.

In order to compute the value of a point f' € P, a mapping qbip is applied. This
mapping can be viewed as a retinal sampling operation where each point in P is used
to sample only one pixel of the image Z at the corresponding location. Hence, given
the distribution DP, the image is sampled at the highest resolution in the fovea, and

at progressively lower resolutions toward the periphery.

We start by determining the set RF[P(f? (1, w,)) as:

REYP(fF(ro,wo)) = {(4,5)[(4, 5) € dom(f}),
(10, wo) € dom(f7),

and (4,7) = projpl(ro,wo)}, (2.9)

where proj?’ is a mapping that associates with each coordinate (r,,w,) in dom(f})

an index (4,7) in dom(f}):

proj*’ : R? — IN?. (2.10)

Since the radial coordinate r, is expressed in degrees of visual angles, a natural
graphical representation of layer P would be a spherical surface as in figure 2-8.
This is close to the real shape of the primate retina, which is often modeled by
a spherical surface centered around the nodal point of the eyeball. This spherical
representation is used for all subsequent layers of the proposed model: U and L.
Given this representation, the mapping proj?! can be determined from figure 2-8 as

follows:
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(r,w) = (dtan (r,), w,),

(27]) = proj(ro,wo) = ([CC], [y])7 (211)

where [.] denotes a rounding operation to the closest integer value, and d emulates
the distance between the photo plane and the nodal point of the eyeball as shown in

figure 2-8:

_ diam(dom(f,g)).

d (2.12)

tan ©1

diam(dom(f})

Figure 2-8: The projection of the image layer Z onto the receptor layer P modeled by
a hemisphere. The figure is a 2-dimensional cross section plane that passes through
the diagonal of the image Z and through the center of the sphere. The point of the
image whose radial coordinate is r falls onto the image diagonal.

Notice from (2.11) that setting the value of w to w, ignores the fact the the image
is inverted on the surface of layer P as shown is figure 2-8. A more faithful way would
be to set w to w, + m. However, this inversion can be safely ignored since it has no
significance on the visual processing task in question.

Also notice that in our experiments, we always consider that the center of the

fovea is fixated at the image’s center as in figure 2-10. However, this model offers the
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possibility to fixate the fovea at any arbitrary point of the image or even outside its
borders as shown in figure 2-9, which is a useful property for designing models that

needs to emulate saccadic eye movements.

(a) (b)

Figure 2-9: The acquisition of the signal of layer P is totally independent of the size,
position and the resolution of the image Z. In (a), the visual angle of the image is
set to ©F = 10°, but the fovea falls onto the upper-left corner of the image so that a
part of the image falls outside of the visual field of layer P. In (b), the fovea center
falls outside of the image borders, the value of ©1 is set to 4°.

The input signal to the point f{(r,,w,) is then defined as:

sy (f2(ro, wo)) = {15 (0, )]
(i,7) € RFip(flf(rm‘*’O)),
k=K,

and fL(i,j) € T}, (2.13)

and finally, sampling is applied by computing the value of each point f}(r,, w,) as

follows:
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FE(ro,wo) = & (537 (fE (ro, wo))), (2.14)

where ¢’P is a mapping defined on a given set A as follows:

A ifA+é
VA, 6P(A) = a7 (2.15)

0 Otherwise,
where ¢ is the empty set. Notice that the multi-part definition in (2.15) accounts
for the fact that when proj”! (r,, w,) falls outside the image borders, the sampled value
is considered as a zero. This is equivalent to considering that the image Z is embedded
into a black background. Figure 2-10 is an example of a retinal representation in P

of an image Z after applying (2.15).

Figure 2-10: The retinal image P after sampling image Z. Notice that the image is
sampled at a higher resolution at the foveal center, and that the resolution decreases
toward the periphery. No spatial deformations are introduced, and the number of
sampled points depends only on the number of points in P not on the number of
pixels in Z.
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2.5.3 The feature map layer U/

The next layer, is the feature map layer . This layer is composed of 9 feature
maps representing intensity contrast, color opponency and local orientation selectivity,

which are the basic three feature dimensions originally used in (Itti et al., 1998):

Uu“ Y, D) = {fHf*:R?* = R,
o(diam(dom(f}))) = ©“,
ke{l,.,K“=9}}. (2.16)

All points in U that have the same value for k form a single feature map. The
9 feature maps emerging from the above definition, {fi;}, {fiss}, {fissh {fiss}s
{fssh {fse ) {fies ) {fiss} and {f{“,}, are chosen to represent intensity contrast,
local orientations for 0°, 45°, 90°, 135° and color opponency for red-green, green-red,
blue-yellow, yellow-blue, respectively. The distribution D* is chosen to be a circular
grid as shown in figure 2-12. Notice that as in P, the density of points is higher in
the fovea and decreases towards the periphery. Also notice that point coordinates in
dom(f*) are expressed in the same units as coordinates in dom(f7), and they belong

to the same space.

Each point f;* in ¢ has its own receptive field in the receptor layer P spanning a

set of coordinates in dom(f7). Each such RF is defined as follows:

RFZu(f;;O‘O,wO)) = {(r,w)|(r,w) € dom(f,?%
(1o, wo) € dom( f),

and ||($’3/)7 (%0, Yo)|| < P(TO»WO)}v (2-17)

where ||., .|| is the euclidean distance operator, p(r,,w,) is the eccentricity-dependent

radius of a circle centered at (7,,w,), and is given by:
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. u
ar, ifr,> %

u .
a% otherwise,

p(ro,wo) = (2.18)
where « is the slope associated with the cortical magnification factor (CMF). Notice
that (2.18) reflects the fact that receptive fields of cells within the fovea of a given
layer tend to have roughly equal radii. However, these radii begin to increase linearly
at the extremities of the fovea toward the periphery, which is behind the cortical
magnification effect observed in the primate visual system (Gattass et al., 1981, 1988;
Isik et al., 2011).

Notice that a radius p(r,,w,) is measured in degrees of visual angles. Thus, a
more precise way to compute the distance between (z,y) and (x,,y,) in (2.17) is to
use the great circle distance according to a spherical geometry defined on layer U.
However, the spherical surface model of layers P, U and L is supposed to be locally
plane for simplicity, which allows for computing distances as being locally euclidean.

It is worth pointing out that the distribution D" can only be determined if the
number, sizes and positions of all receptive fields RF}" are known. In other words,
this distribution is chosen so that a certain overlap is respected between these RFEs;
the overlap along the radial line p,, and the overlap p. between RFs on the same
circle. Figure 2-11 shows and example configuration of receptive fields RFY*(f¥) with
overlaps p, = p. = 0.5, and figure 2-12 depicts its corresponding distribution D*.

The input signals to points belonging to feature maps for intensity contrast and

local orientations are given by:

sk (fi (1o, wo)Jkequ....5y = {fio (r,w)|
(r;w) € REY" (£ (ro, wo)),
ke {1,2, K? = 3},
and [} (r,w) € P}. (2.19)

Input signals to points within the feature map for red-green opponency are defined
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Figure 2-11: Receptive fields RF}" associated with points in layer ¢. Notice that these
RFs are smaller and more dense in the fovea and grow bigger with decreasing density
toward the periphery emulating the cortical magnification factor. This configuration
corresponds to circular and radial overlap values p. = p, = 0.5, a visual angle span
of ©* = 10° and a slope a = 0.16 for the cortical magnification factor.

as:

sk (Jx (To,wo) Ju=s = { [ (1, )
(r,w) € REL" (i (ro, wo)),
(K =1A|(z,y), (o, yo) | < (6c/2)V
(K =2A|(z,y), (xo, yo) | > (6/2)),
and f,f,(r,w) € P}, (2.20)

where 0, is the diameter of the central zone of RF}"(fi(r),w!)) that has a center-
surround configuration. We notice from (2.20) that red-green opponency is applied
in the same way as in chromatic ganglion cells that get their input signals from L

(red) cones in the central zone of their receptive fields, and from M (green) cones in
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the surround.

Figure 2-12: An example distribution D" for points in layer U corresponding to
circular and radial overlap values p. = p, = 0.5 between the receptive fields RFY"
associated with each point. This value is chosen for the clarity of display. A value
of 0.8 is used for the experiments. The visual angle span of the layer’s diameter is
o(diam(dom(fy))) = " = 10°.

Similarly, input signals for green-red, blue-yellow, yellow-blue feature maps are

defined respectively as follows:

sk (i (1o, wo) Je=r = {fii (r, w)]
(r,w) € REY(fi! (o, wo)),
(K =2 A l(2,y), (x0, o) | < (8c/2))V
(K" = 1A (2, 9), (20, 40)l| > (6c/2)),
and f} (r,w) € P}, (2.21)
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sk (i (ro, o) Jr=s = { fo (r, w)|
(r,w) € REY(fi (7o, wo0)),
(K" =3 A, 9), (o yo) | < (6/2))V
(K" € {12} All(2,w), (2o, o) | > (3¢/2)),
and f,,(r,w) € P}, (2.22)

To,Wo) k= = { i (r,w)|

r,w) € RFY(fi (ro, wo)),

K e {12} Al(z,9), (2o, yo) | < (3¢/2))V

K =3 Az, y), (20, y0) | > (0c/2)),

and f%(r,w) € P}. (2.23)

The value of each point f* in the feature maps is then computed by applying a

linear mapping ¢}".

fi(ro;wo) = & (7" (fi (1o, w5))).- (2.24)

This mapping consists in applying a DoG kernel on each input signal for the
intensity contrast and color opponency feature maps, and a Gabor (GB) kernel in
feature maps for local orientations. DoG kernels are classically used to model the
center-surround configuration of RFs of parasol and midget ganglion cells involved
in chromatic and achromatic vision, while GB kernels are typically used to model
orientation selective responses of neurons in V1, as mentioned in section 2.3.

The DoG model proposed by Rodieck in (Rodieck, 1965) is used to compute the

kernel coefficients associated with a point at a coordinate (r,w):
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[, ), (o, yo)I*

D0G<r07w07r7w) 291% eXp(_ 52 )_
1 1
2
T Z, y \Los Yo
o cxp( Nt oIy .
2 2

where (7,,w,) is the RF center to which (r,w) belongs, d; and J, are the standard
deviations of the central and the surround Gaussians of DoG kernels, ¢g; and go are
two constants used to control the relative strengths of the two Gaussians.

Coefficients of Gabor kernels (Gabor, 1946) are similarly defined as follows:

X2 + YZ’)/Q
203

2w

GB(7, Wo, 1, w) = exp(— ). cos( 5 X), s.t. (2.26)

X =(x—x,)cos0+ (y — y,) sinf and

Y =—(z—x,)sin0+ (y — y,) cosf. (2.27)

Figure 2-13 depicts some examples of DoG and GB kernels we used. The mapping
@7 is finally applied as the sum of elements of an input signal weighted by their

corresponding kernel coefficients:

(b) (d)

Figure 2-13: Some examples of the Difference of Gaussians (DoG) and Gabor (GB)
kernels used for the mapping ¢¢“. Notice that kernels whose RFs are closer to the
fovea in (a) and (c) are smaller in size in and defined on more points that RFs in
the periphery, (b) and (d), which is due to the cortical magnification factor. This
difference in size and density is inspired by biological reality in the retina. The gray
background and the size of points in these figures is adjusted for the clarity of display.
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O (sp (fi(ro, Wo)) D keqr6,7.8,0) =
= Z mean( f?(r,w)).DoG(r,, w,, r,w), (2.28)

fP(rw)C
Szu(ff: (T0,wo))

O (sp" (fi (ro, wo))ke(2345) =
- Z mean(fp(r, w))'GB(TO, Wo, r»“’)» (2.29)

fP(rw)C
SZ"(f;i‘ (ro,wo))

where f?(r,w) here is the set of all points f,(r,w) in s¥“(f¥(r,,w,)) defined on the
same coordinate (r,w). Figure 2-14 is an example of some feature maps we obtain by

applying the above mappings.

2.5.4 The saliency map layer L

Finally, layer £ is used to compute the saliency map:

LO°9,, D) = {fil fi : R* > R,
o(diam(dom(f;))) = ©°,
D' =D,
and k € {K' = 1}}, (2.30)

This saliency map has exactly the same distribution of point coordinates as that
of feature maps. The RF of each point in £ at a coordinate (r,,w,) spans only the

point at the same location in U.
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(a) Retinal image P

(c) Feature map {f" ¢} C U. (d) Feature map {f* .} C U.

Figure 2-14: The retinal image represented by the receptors layer P (a) and some
corresponding feature maps held by layer U: intensity contrast feature map (b), red-
green opponency feature map (c) and 135°-orientation feature map (d). These feature
maps correspond to circular and radial overlap values p. = p, = 0.8, a visual angle
span of ©f = 10° and a slope a = 0.16 for the cortical magnification factor.

Rer(flf(ranO)) = {(Tv w)|(T> w) € dom(f’?)’
(ro,wo) € dOm(f]f),

and (r,w) = (1o, wo) }- (2.31)
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Before point values in £ could be computed, a modulation function m* as defined
in (2.2) is applied to U. This modulation is used to increase the contrast of the most
salient regions in each feature map in a similar way the map normalization operator

N(.) is applied in (Itti et al., 1998).

U=m"U)={fiIfl R —[0,1],
dom(f{) = dom(f),
ke{l,. . k“=9}} (2.32)

The steps for computing the value of the modulated points f{ are the following:

1. A half-wave rectification is first applied to feature maps to remove negative

values.

f&=max(0, f4). (2.33)

2. The values within each feature map are scaled to the interval [0, 1].

i)
T () — min(f) (23

3. A multiplicative factor ;. is computed.
_ N2
B = (max(fE) - mean(f)) . (2.35)
4. The multiplicative factor S is then applied to each point of the feature maps.

fi = Bt (2.36)

The input signal to each point in the saliency map can now be defined on the

modulated feature maps:
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S%(flg(rmwo» = {f;f‘/(f‘,w)l
(r,w) € RFL(fi(ro,w0)),
el (2.37)

Finally, the saliency map is computed using the mapping ¢, which is the mean

of all modulated feature maps in U.

flf(TOaWO) = ¢Z5(8%é(fzf(7“oawo)))
= mean (s (fi(ro,w,))). (2.38)

2.5.5 Creating fixation maps

Fixation maps are created by an iterative processes consisting of a Winner-Take-All
(WTA) step, which extracts the coordinates of the most salient point in the saliency
map followed by an Inhibition-of-Return (IOR) step, which guarantees that previously
fixated locations should no longer be visited in subsequent iterations. Here are the

details of these two steps:

1. A fixation location (r,,w,) is extracted from the saliency map L.

(79, W) = argmax fy. (2.39)

(rw)

2. IOR is applied using a modulation function m’.
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mi(L) :

PRI I (RS 010,

0 otherwise,

where h is the radius of the inhibited zone in visual angles.

3. the pixel indexes (i,7) in the image Z corresponding to the fixation location

(ro,w,) are then computed using (2.11).

Figure 2-15 depicts an example of a saliency map in layer £ and the corresponding
smoothed saliency map. A smoothed saliency map is one consisting in convoluting a
gaussian kernel on the extracted fixation locations, in order to produce a continuous
gray-scale saliency map of the same size as the input image 7.

In the next section, we provide a performance evaluation of the proposed atten-
tion model along with a comparison with some of the state-of-the-art models, and a

discussion of the results.

2.6 Results and discussion

In order to validate the performance of the proposed model on estimating bottom-
up visual saliency, we ran the algorithm on the CAT2000 test dataset provided by
the MIT saliency benchmark. This dataset contains 2000 images from 20 different
categories with a fixed size of 1920 x 1080 pixels (Borji et al., 2013a).

Before beginning the test on the above dataset, we performed a minor optimization
of the model parameters on the CAT2000 train dataset containing 2000 images of the
same 20 categories as in the CAT2000 test set (Borji et al., 2013a).

Hence, we set the model parameters as follows: The visual angles O = OF = Q" =
©' = 10°, which represent the visual field available to the system. The diameter of the

fovea of all layers ¢! = P = ¢ = 4)* = 1°. The total number of receptors in P is set
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(a)

(b) ()

Figure 2-15: An example of a saliency map carried by layer £ (a) where the size of
single points is adapted for a better clarity of display. The corresponding smoothed
saliency map is shown in (b) made by convoluting a Gaussian kernel on the first 250
fixation locations. In (c), the smoothed saliency map is superimposed on the original
image Z.

to 123853 of which 30000 are within the fovea. This is equivalent to 41284 total RGB
pixels of which 10000 are within the fovea, as shown in figures 2-7 and 2-10. This
means that retinal images used by the algorithm has more than 50 times less pixels
than the original images, which represents a significant reduction of information. The

overlap parameters p, and p. between RFs of points in U are both set to 0.8. The
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slope av in (2.18) associated with the cortical magnification factor in layer U is set to
0.16 which is close to its value in layer V'1 of the ventral stream found by Gattass in
(Gattass et al., 1988). For each image, the 250 most salient fixations locations are
extracted by an iterative WTA and IOR process. The radius h of the inhibited zone
at each IOR iteration is set to 0.05° of visual angles.

Parameters of DoG kernels were adapted from (Rodieck, 1965). We set ¢2/g; to
0.8, 02/ to 3 and p/d; to 11.8, where ¢5/¢g; is a measure of the ratio of strength
of the surround to the center Gaussians of the DoG kernel, and d; and 5 arc the
effective widths of the center and surround Gaussians, respectively.

For Gabor kernels, we adapted parameter values used for designing simple cells in
the Hmax model (Serre et al., 2007); The aspect ratio is set as 7 = 0.3. We also set
03/A = 0.8 and p/ds = 2.5, where 03 is the effective width of the Gaussian component
of the filter, A is the wavelength of the cosine component, and p in both DoG and
Gabor kernels denotes the eccentricity-dependent radius of a given kernel computed
from (2.18) and expressed in visual angles.

Figure 2-16 depicts some examples of images taken from the CAT2000 test dataset
and their corresponding smoothed saliency maps.

Table 2.1 shows the scores of our models according to several metrics used by the
benchmark and how they compare to other models. This table and more detailed
comparisons are also available on the MIT Saliency Benchmark website http://
saliency.mit.edu/results_cat2000.html.

As shown in table 2.1, the proposed model shows good performance scores relative
to other models. These scores are computed according to 7 metrics: the Similarity
(Sim), the Correlation-Coefficient (CC), the Normalized Scanpath Saliency (NSS)
and Earth Mover’s Distance (EMD) and the Area Under the ROC Curve metrics.

It is worth pointing out that the IttiKoch2, GBVS, Judd’s and several other mod-
els are optimized for smoothing parameters and center-bias. The proposed model, has
only a minor optimization for the width of the Gaussian kernel used for smoothing
fixation maps while no explicit center-bias is applied. However, such bias arises nat-

urally in the model due to retinal sampling and cortical magnification factors, which
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Figure 2-16: Some example images from the CAT2000 test dataset (left column),
the corresponding smoothed saliency maps (middle column) and with saliency maps
superimposed (right column).

allocate more resources to processing central zones of the image than to peripheral
ones. It would be interesting to explore the role of retinal sampling and cortical mag-
nification in influencing center-bias that human subjects manifest when free viewing
images.

An important point to discuss is the fact the attentional behavior manifested by
eye fixations differs as a function of the viewing distance, (or equivalently the visual
angle) between the subject and an image (Borji et al., 2013b). However, attention
models in table 2.1 do not have a direct way for measuring their performance as
a function of the visual angle. This makes interpreting the performance of such
models against a given saliency dataset more ambiguous and less straightforward.
For example, suppose having two datasets D; and D,, associated with two visual

angles 61 and 6s, respectively. If a given attention model performs better on D; than
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Table 2.1: A performance comparison between the proposed model and other models
on the CAT2000 test dataset of the MIT Saliency Benchmark. These results can
be found on the MIT saliency benchmark Web page http://saliency.mit.edu/
results_cat2000.html.

Model Sim | AUC-| EMD| AUC4 CC | NSS | sAUC
Judd ““) Boriji

Proposed 0.58 | 0.80 | 2.10| 0.77 | 0.64 | 1.57 | 0.55

model

BMS (Zhang and Sclaroff, 2013) || 0.61 | 0.85 | 1.95 | 0.84 | 0.67 | 1.67 | 0.59

GBVS  (Harel et al., 2006) 0.51 | 0.80 | 2.99 | 0.79 | 0.50 | 1.23 | 0.58

Context- (Goferman et al., 2012) 0.50 | 0.77 | 3.09 | 0.76 | 0.42 | 1.07 | 0.60

Aware

saliency

AWS (Garcia-Diaz et al., 2012) 0.49 | 0.76 | 3.36 | 0.75 | 0.42 | 1.09 | 0.62

IttiKock?2 0.48 | 0.77 | 3.44 10.76 | 0.42 | 1.06 | 0.59

WMAP  (Lopez-Garcia et al., 2011) | 0.47 | 0.75 | 3.28 | 0.69 | 0.38 | 1.01 | 0.60

Judd (Judd et al., 2009) 0.46 | 0.84 | 3.61 | 0.84 | 0.54 | 1.30 | 0.56

model

Torralba (Torralba et al., 2006) 045 [ 0.72 | 3.44 10.71 | 0.33 | 0.85 | 0.58

saliency

Murray — (Murray et al., 2011) 0.43 | 0.70 | 3.79 | 0.70 | 0.30 | 0.77 | 0.59

model

SUN (Zhang et al., 2008) 0.43 | 0.70 | 3.42 1 0.69 | 0.30 | 0.77 | 0.57

saliency

IttiKock  (Itti et al., 1998) 0.34 1 0.56 | 4.66 | 0.53 | 0.09 | 0.25 | 0.52

Achanta (Achanta et al., 2009) 0.33 | 0.57 | 4.45 | 0.55 | 0.11 | 0.29 | 0.52

on Dy, there would be no clear way for determining whether this is due to the fact

that it is intrinsically more adapted to the angle 0, that to 65, or due to other factors.

The model we propose provides the possibility to fix all other parameters while
varying the image’s visual angle ©f. Figures 2-17 and 2-18 depict how the perfor-
mance of the proposed attention algorithm varies according to different evaluation
metrics as a function of ©®!. This provides a mechanism to check whether the model
matches ground truth attentional behavior when measured at different visual angles.
We think that this is a useful factor to consider for models that seek biological plau-
sibility. However, as to our knowledge, no available benchmarks provide fixation data
measured at different visual angles yet. Creating such a benchmark would provide
the possibility to analyze and validate our performance curves in figures 2-17 and

2-18, as well as those of future models that might choose to integrate a visual angle
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paramcter.
Finally, while the proposed model does not always give the best saliency prediction
according to table 2.1, it provides some advantages over other models from a biological

point of view:

e Eye movements and fixations can be emulated more faithfully using the pro-
posed vision framework. As in the real retina, moving the fovea over the image
will change the resolution perceived at each region of the image due to retinal

sampling and cortical magnification factors.

e A more straight-forward way to compare to ground truth on vision tasks. Effects
of fundamental vision parameters absent from most saliency models, such as
viewer distance, visual field, cortical magnification and retinal sampling could

potentially be studied more closely using the proposed framework.

Score

0500 e b : Gt B—m CC
e—e Sim

048\ L L L L L L L L L L L L L L
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Visual angle ©' (degrees)

Figure 2-17: The influence of changing the images’ visual angle ©f on the models
performance according to the Similarity (Sim) and the Cross Correlation (CC) met-
rics.

2.7 Conclusion and future work

In this chapter, treated the visual acquisition problem which is the lowest stage of

the visual processing pipeline. We proposed a new framework for building visual
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Figure 2-18: The influence of changing the images’ visual angle ©! on the models
performance according to the Normalized Scanpath Saliency (NSS) metric.

information processing models. This model is more closely inspired by the architecture
of the primate visual system, and is motivated by the recent trend in the computer
vision community toward a closer modeling of the visual system in the hope of going

beyond some limitations in current vision systems.

We have seen that the architecture of the proposed framework offers some inter-
esting properties found in the visual system. For example, the presence of a receptor
layer makes the acquired image signal totally independent from the input image’s
resolution and size. It also motivates the use of such a framework for applications
such like saccadic eye movements since the receptor layer is not constrained by the
image borders and can be used to receive its signal from any part of the input scene.
Moreover, the proposed framework has a very clear notion of a visual angle emulat-
ing the ubiquitous presence of this parameter in biological vision. This provides the
possibility to better understand the influence of a viewer’s distance from an image
on vision tasks. Another important property the framework offers is the information
reduction by means of retinal sampling and cortical magnification which are two im-
portant and omnipresent factors of primate visual systems. We have seen that these
two mechanisms can be implemented seamlessly, while avoiding classical problems

like spatial deformations and the dependency on the input image size.
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In section 2.5, we proposed a saliency-driven model of attention built on top of
the proposed vision framework. We showed that this model attains state-of-the-art
performance. More particularly, we showed that it has a better performance than
Itti and Koch’s model on which it is based, while using lower resolution and a fewer
number of feature maps. This application motivated the use of the proposed vision
framework and raises some important questions such as the role of the visual angle
in attention modeling and its importance for a better understanding of attentional
behavior and benchmarking results. One possible method we propose to start such
exploration, would be to design an attention benchmark that provide eye-fixation
data on a given dataset for a range of visual angles. It would be then interesting
to study how models’ performances should be analyzed and understood given this
variability of fixation data associated with different visual angles.

In future work, we will also consider the question of how common architectures
for visual processing, especially Convolutional Neural Networks (CNNs) might be
adapted for being implemented using the proposed framework. The challenge would
be in modifying its learning algorithm so that it can take the cortical magnification
factor into account and the associated variability in kernel sizes in each layer.

Another research perspective would be to use the proposed framework for im-
plementing attention-based object recognition processors to account for the retinal
transformation stage in models such like (Zheng et al., 2015).

The proposed framework and the associated attention model are already imple-
mented and are publicly available as a Git repository on the Web!. However, future
work will include further development and improvement of the proposed framework
along with its code implementation. We hope that through collaboration, this frame-
work could evolve as an alternative, full-fledged toolbox for neuro-inspired visual
processing, in the same way as current programming libraries offer optimized imple-

mentations of traditional image processing algorithms.

thttps:/ /bitbucket.org/ala__aboudib/see



Chapter 3

A new retrieval algorithm for Sparse

Clustered Networks

In this chapter, we are interested in the highest stage of the information processing
pipeline which is memory. More precisely, we focus on associative memories which are
data structures addressed using part of the content rather than an index. They offer
good fault reliability and a good model of biological memories which are associative
in nature. Among different families of associative memories, sparse ones are known
to offer the best efficiency (ratio of the amount of bits stored to that of bits used by
the network itself). Their retrieval process performance has been shown to benefit
from the use of iterations. In this chapter, we focus our attention on a recently
proposed model of sparse associative memories called the Sparse Clustered Network
(SCN). We review the different rules used for the retrieval process of data from these
networks. We then suggest a new policy that provide a better retrieval performance
than existing techniques. FExtensive performance evaluations among the different
retrieval algorithms are finally provided along with a discussion of the different aspects

that govern their behaviour.

93
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3.1 Introduction

Associative memories are alternatives to classical index-based memories where content
is retrieved using a part of it rather than an explicit address. Consider for example
accessing a website using a search engine instead of a uniform resource locator (URL).
This mechanism is analogous to human memory (Anderson and Bower, 1973) and has
inspired many neural-networks-based solutions as in (Willshaw et al., 1969; Hopfield,
1982).

A new artificial neural network model was proposed recently by Gripon and Berrou
(Gripon and Berrou, 2011). It employs principles from information theory and error
correcting codes and aims at explaining the long-term associative memory function-
ality of the neocortex. This model was proved to outperform Hopfield neural net-
works (Hopfield, 1982) in terms of diversity (the number of messages the network can
store), and efficiency (the ratio of the amount of useful bits stored to that of bits used
to represent the network itself) (Gripon and Rabbat, 2013). It was later extended
in (Aliabadi et al., 2014) to a sparser version which can be viewed as a generalization
of the Willshaw-Palm associative memory model (Willshaw et al., 1969; Palm, 2013).

The key difference between the models proposed in (Aliabadi et al., 2014) and
(Willshaw et al., 1969) is the use of specific structures in the network. This is done by
grouping neurons into clusters within which connections are not allowed (multi-partite
graph). These clusters are considered analogous to cortical columns of mammalian
brains in (Gripon and Berrou, 2011) in which nodes are likened to micro-columns.
This is supported by Mountcastle (Mountcastle, 1997), who suggests that a micro-
column is the computational building block of the cerebral neo-cortex. In addition,

here are some reasons to motivate the use of clusters:

e [t is believed that micro-columns in each cortical column react to similar in-
puts. The concept of clustering is meant to imitate this stimulus-similarity-
based grouping. A consequence is the possibility to use this network for retriev-
ing messages from inaccurate observations. This type of retrieval is addressed

in (Gripon and Jiang, 2013).
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e Clusters allow for simple and natural mapping between nonsparse input mes-
sages and sparse patterns representing them in the associative memory. In the
case where each cluster contains only one unit, a model equivalent to the clas-
sical Willshaw-Palm networks is obtained, where input messages have to be

sparse.

e [t was observed that micro-columns usually have many short inhibitory con-
nections with their neighbors (Buxhoeveden and Casanova, 2002; Mountcastle,
1997), which means that the activation of one micro-column causes all of its near
neighbors to be deactivated. This is due to the locally limited energy supply of
the brain. This mechanism is represented by the local winner-takes-all (WTA)
rule introduced in (Gripon and Berrou, 2011), in which a neural mechanism for

implementing the WTA process has been proposed.

e Using clusters allows for introducing guided data recovery in which a prior
knowledge of the location of clusters containing the desired data can significantly
enhance performance. A detailed study of this type of data retrieval is available

in (Aliabadi et al., 2014).

Our main contribution is to provide a generic formulation of the several retrieval
rules previously proposed for SCNs. We also propose a new rule that is shown to

provide a better retrieval performance.

This chapter is organized as follows: in section 3.2, we describe the general archi-
tecture of the network model we use. Section 3.3 introduces a generic formulation of
the different retrieval algorithms that were proposed previously. Then, the following
few sections are devoted to explaining each step of this algorithm. For each step,
previous rules are reviewed, and new rules are proposed. In section 3.7, performance
comparisons of several combinations of retrieval rules are presented. Section 3.9 is

the chapter conclusion.
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3.2 Network topology and storing messages

This section focuses on the neural-network-based auto-associative memory introduced
in (Gripon and Berrou, 2011). It is dedicated to defining this network and describing

how it can be extended to store variable-length messages.

3.2.1 Architecture

The network can be viewed as a graph consisting of n vertices or units initially not
connected (zero adjacency matrix) organized in y parts called clusters with each
vertex belonging only to one cluster. Clusters are not necessarily equal in size but
for simplicity, they will be all considered of size ¢ throughout this chapter. Each
cluster is given a unique integer label between 1 and y, and within each cluster, every
vertex is given a unique label between 1 and /. Following from this, each vertex in
the network can be referred to by a pair (7, ), where i is its cluster label, and 7 is
the vertex label within cluster 7. As argued in (Aliabadi et al., 2014), a unit in this
model is chosen to represent a cortical micro-column instead of a single neuron. This
is based on the arguement that microcolumns might actually be considered as the
computational building blocks within the cerebral cortex (Cruz et al., 2005; Jones,
2000).

At any given moment, a binary state v;; is associated with each unit (7, j) in the
network. It is given the value 1 if (7,7) is active or 0 otherwise. Initially, all units
are supposed to be inactive. The adjacency matrix for this graph W is a binary
symmetric square matrix whose elements take values in {0, 1}. In this representation,
a zero means an absence of a connection while a one indicates that an undirected (or
a symmetric) connection is present. Note that despite the fact that biological neural
networks are known to be asymmetric, we argue that units in the proposed model
represent populations of tens of neurons, and therefore can be mutually connected.

Row and column indexes of the weight matrix are pairs (¢,7). So in order to
indicated that two units (¢,7) and (¢, ') are connected, we write W, = 1. All

connection combinations are allowed except those among units belonging to the same
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cluster, resulting in a y-partite undirected graph. When the memory is empty, W is

a zero matrix.

3.2.2 DMessage storing procedure

We now describe how to store sparse messages using this network. This methodology
has been first introduced in (Aliabadi et al., 2014). Suppose that each message
consists of x submessages or segments. Some of these segments are empty, i.e., they
contain no value that need to be stored, while the rest has integer values in {1, ..., (}.
For the sake of simplicity, let us consider that all messages contain the same number
of submessages c. Only those nonempty submessages are to be stored while empty
ones are ignored. For example, in a network with y = 6 and ¢ = 12, a message
m = {,10,7,,12,11} with ¢ = 4 has two empty segments (the first and the fouth
ones), while the remaining ones have values that need to be stored. In order to store
m, the position 7 of each nonempty segment within this message is interpreted as a
cluster label, and the segment value j is interpreted as a unit label within the cluster :.
Thus, each nonempty segment is associated with a unique unit (7, j). So the message
m maps to the 10" unit of the 2"¢ cluster, the 7% unit of the 3¢ cluster, the 12"
unit of the 5 cluster and the 11** unit of the 6% cluster.

Then, given these elected units in distinct clusters, the adjacency matrix of the
network is updated according to (3.1) so that a fully connected subgraph (clique) is

formed of these selected units.

1 if (4,7) and (', ') are connected

0 otherwise

where w;j,; refers to the undirected connection between (4, j) and (¢', ;') which are
two units associated to message segments m; and my, respectively. Note that ¢ and
i’ also denote cluster indices, while j and j' denote unit indices. A single message is
not allowed to use more than one unit within the same cluster because, by definition,

connections are not allowed within a cluster.
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The value of the parameter ¢ can be identical for all stored messages, or it can be
variable. A discussion of how to choose an optimal value of ¢ is provided in (Aliabadi

et al., 2014) in which all messages are considered of the same size.

It is important to note that if one wishes to store a message m’ that overlaps with
m, i.e., the clique corresponding to m’ shares one or more connections with that of
m, the value of these connections, which is 1, should not be modified. As a direct
consequence, the network’s connection map is the union of all cliques corresponding to
stored messages. It is worth noting that when ¢ = 1, this network becomes equivalent

to the Willshaw-Palm model (Schwenker et al., 1996).

3.3 The retrieval process

The goal of the retrieval process is to recover an already stored message (by finding
its corresponding clique) from an input message that has undergone partial erasure.
A message is erased partially by eliminating some of its nonempty segments. For
example, if m = {,1,8,,10,12} is a stored message, a possible input for the network

might be m = {,,,, 10, 12}.

We propose a generic formulation of this retrieval process as an iterative twofold
procedure composed of a dynamic rule and an activation rule as depicted in algo-

rithm 1.

An input message should be fed to the network in order to trigger the retrieval
process. For example, suppose that we have a stored message m = {7,1,5,11,, }, and
that we wish to retrieve m from a query message m = {,,5,11,,} that is a partially
erased version of m. In order to do that, all units corresponding to nonempty segments
should be activated. That is, each unit (7, j) associated with segment m; is activated
by setting v;; = 1. So, m would activate two units: (3,5) and (4,11). Having a

number of active units, a dynamic rule should then be applied.
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Algorithm 1: The proposed generic formulation for the retrieval process.
input : Query message .

Apply a dynamic rule.

Phase 1
Apply an activation rule.
Apply a dynamic rule.

Phase 2

while stopping criterion is not attained do
Apply an activation rule.

Apply a dynamic rule.
end

output: Message corresponding to active units.

3.4 Dynamic rules

A dynamic rule is defined as the rule according to which unit scores are calculated.
We will denote the score of a unit (4, j) by A;; . Calculating units’ scores is crucial to
deciding which ones are to be activated. A score is a way of estimating the chance that
a unit belongs to a bigger clique within the set of active units and thus the chance that
it belongs to the message we are trying to recover. In principle, the higher the score
the higher this chance is. Two dynamic rules have been already introduced, namely,
the Sum-of-Sum (Gripon and Berrou, 2011) and the Sum-of-Max (Gripon and Berrou,

2012) rules. We propose a new rule that we shall refer to as the Normalization rule.

3.4.1 The Sum-of-Sum (SoS) rule

The SoS rule states that the score of a unit score \;; is computed as the number of
active units connected to (i, 7) plus a predefined memory effect v which is only added

if (4, j) is active. Scores should be calculated for all of the units in the network. This
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rule is described by the following equation:

Vi jil<i<x,1<j<(:

b% J4
Aij = Vi + Z Z Wyt Vit « (3.2)

i'=1j'=1

Figure 3-1: An example configuration of stored messages inside the network during
the retrieval process. Only black units are active.

This rule has a major drawback; in some cases, the scores give a false estimate
of the chance that a given unit belongs to a bigger clique within the set of active
units. To clarify this point we consider the example of figure 3-1 where black circles
represent active units at an iteration ¢ > 1. The clique we wish to retreive is abdg.
Now, we will see what happens when we calculate the scores of units a and h given a
memory effect v = 1 where a is part of the searched message while A is not. According
to the Sum-of-Sum rule, unit a has a score of 4 while unit & has a score of 5. This
indicates that the latter unit is more likely to belong to a bigger clique than the
former because it has a higher score. This observation is not true since most of the
active units connected to h belong to the same cluster and by conception, a message
can only contain at most one unit per cluster. In order to solve this problem, the

Sum-of-Max and the Normalization dynamic rules can be applied.
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3.4.2 The Normalization (Norm) rule

In the Normalization rule that we introduce here, units’ scores are calculated using

the following equation:

Vijil<i<y,1<j<i:

X ‘
1
Aij = Yij + E _|“/| E Wigei jr Vit 1 - (3.3)
=1 """ =1

where |vy| is the number of active units in cluster k. Equation (3.3) states that the
contribution of a unit (¢, j') to the score of another unit connected to it is normalized
by the number of active units in cluster k. That is, if the cluster i’ contains z active
units, then the contribution of the unit (¢, j') is equal to 1/z. So, by applying this
rule to the network of figure 3-1, unit h gets a score of 3 and unit a gets a score of
3%, which privileges the activation of the latter unit and thus solves the problem we

encountered when using the Sum-of-Sum rule.

3.4.3 The Sum-of-Max (SoM) rule

According to the Sum-of-Max rule, the score of a unit (7, j) is the number of clusters
in which there is at least one active unit (', ;') connected to (7, j) plus the memory

cffect ~ if (7, 7) is active:

Vi jil<i<x,1<j<(:
X

Aij = VUi + félﬁ%(e(wijzi’j’vi’j’)v (3.4)

] —

So referring back to figure 3-1, and according to (3.4), unit a has a score of 4
whereas unit h has a score of 3. This is a more accurate result than the one obtained
by the Sum-of-Sum rule in the sense that it indicates that the latter unit, although
connected to more active units, is less likely to belong to a bigger clique within the
set of active units than unit a.

Moreover, it has been shown in (Gripon and Berrou, 2012) that for the particular
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case, when ¢ = y, the Sum-of-Max rule guarantees that the retrieved massage is
always either correct or ambiguous but not wrong. An ambiguous output message
means that in some clusters more than one unit might sometimes be activated, among

which one is the correct unit.

3.5 Activation rules

The activation rule is applied for selecting the units to be activated based on their
scores after the application of a dynamic rule. So basically, a unit (4, 7) is activated

if its score \;; satisfies two conditions:

e )\;; is greater or equal than a global threshold that may be chosen differently

for each activation rule.
e \;; > 0;; where o;; is the activation threshold of unit (i, 7).

The difference between the two thresholds defined above is that o;; could be set
differently for each unit, so it can be used to control a unit’s sensitivity to activation.
For a very large value of o;;, a unit (4, j) is inhibited. This is helpful for excluding
a group of units from the search of a certain message in order to save time. The
global threshold has a unique value independent of any individual unit. So it is used
to elect units to be activated in a competitive activation process. For example, in a
winner-take-all competitive process, this threshold could be dynamically set to the
value of the highest score in the network in order to activate only units with the
highest score.

The activation rule should be able to find two unknowns: The subset of clusters
to which the message we are trying to recover belongs, and the exact units within
these clusters representing the submessages. We propose two new activation rules in
this chapter: the Global Winners Take All rule (GWsSTA) which is a generalization
of the Global Winner Take All (GWTA) rule, and an enhanced version of the Global
Losers Kicked Out (GLsKO) rule initially presented in (JIANG et al., 2012).
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3.5.1 The GWSsTA rule

In the Global Winner Takes All (GWTA) rule introduced in (Aliabadi et al., 2014),
only units that have the maximal score across the network are activated. The problem
with this rule is that it supposes that units belonging to the message we are looking
for have equal scores. It also supposes that this unified score should be the maximal
network score which is not necessarily the case. It has been shown in (Aliabadi
et al., 2014) that spurious cliques, i.e., cliques that share one or more edges with the
clique we are searching, might appear and render the scores of the shared units of the

searched clique higher than others’.

For example, in the network of figure 3-1, if the clique we are seeking is abdg,
then bdh is an example of a spurious one. Now, by applying the SoM rule on the
black units which are supposed to be active, and considering v = 1, we get the scores:
A =4, A =5, Ag =05, A\ =4, \f =4, \; = 4 and )\, = 3. Thus, according to
the GWTA rule, only units b and d will be kept active and the clique abdg is lost.
This is caused by the spurious clique bdh which increases the scores of b and d. The

generalization of the GWTA rule we propose is meant to account for this problem.

The behavior of the GWsTA rule is the same in both phases of the retrieval
process we described in algorithm 1. It selects a subset of units with maximal and
near-maximal scores to be activated. In other words, it defines a global threshold ¢
at each iteration, and only units whose scores are greater or equal to this threshold

are activated.

In order to compute this threshold, we first fix an integer parameter « . Then we
make a list of the a highest scores in the network including scores that appear more
than once. For example, if units’ scores in a network with a total number of units,
n = 10, are {25,18,25,23,23,19,18,19,18,17} and o = 7, then the list becomes
{25,25,23,23,19,19,18}. The minimum score in this list which is 18 is assigned to
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the threshold 6. Then we apply the following formula:

Viji1<i<y,1<j<(:

1 )\“ Z 0 and 60 2 Oij,y
Vij = (35)

0 otherwise.

It is worth pointing out that this activation rule is equivalent to the retrieval rule
proposed in (Sommer and Palm, 1999) in that units are activated by comparing their
scores to a fixed threshold 6. One problem with this rule is that the choice of an
optimal « for a certain message size would not be adapted for other message sizes.
This limits the possibility of using this rule for retrieving messages of variable sizes.
However, this problem is solved by using the GLsKO rule we present in the next

subsection.

3.5.2 The GLsKO rule

As we have seen, The GWSsTA rule needs a prior knowledge of the value of the message
size c. This means that if ¢ is not available, the rule may not be able to correctly
retrieve information. The Global Losers Kicked Out (GLsKO) rule is designed to
address this problem by being independent of any prior information about ¢ which
should also enable it to retrieve variable-sized messages more efficiently than the
GWSsTA rule. In order to achieve this, the GLsKO rule has a behavior in phase 1 of

the retrieval process that differs from that of phase 2 as follows:
e phase 1: Apply the GWTA rule.
e phase 2: Kick losers out.

In phase 1, the GWTA rule is applied which results in the activation of a subset of
units to which the searched message is guaranteed to belong. After this, the activation
thresholds of inactive units are set to infinity because we are no more interested in

searching outside the set of activated units.
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In phase 2, the rule changes behavior. At each subsequent iteration, we make
a list containing the 3 lowest nonzero scores of the active units only. For example,
if the set {25,18,25,23,23,19,18,19,17,17} represents the scores of active units in
a network with a total number of units n = 10 and we fix f = 3, then the list of
lowest scores becomes {18,19,18,19,17,17}. After that, a threshold 0 equal to the
maximum score in the latter list is set, and only units with scores greater than 6 are

kept active. This can be described by the following equation:

Vij:l<i<x,1<j<i:

1 )\ij zéandezaij,

0 and 0;; = oo otherwise.

The reason why o;; is set to an infinitely large value is that after the first phase of
the algorithm, a subset of units is activated. The clique corresponding to the message
we are looking for is guaranteed to exist in this subset given that we are dealing with
partially erased messages. So, setting o;; this way ensures that units that have failed
to be active upon the first phase would be out of the search scope throughout the
retrieval process.

We propose to enhance the performance of the GLsKO rule by controlling the
number of units p to be deactivated. This is only interesting when § = 1. For
example, if we set § = 1 in the network example of the previous paragraph, we get the
following list of scores {17,17}. If i is not specified, all losers are deactivated. But by
setting . = 1, only one of these two units is randomly chosen to be deactivated. This
may be useful if we wish to exclude losers one at a time and thus reduce incautious

quick decisions.

3.6 Stopping criteria

Since the retrieval process is iterative, a stopping criterion should be used in order to

put this process to an end. In the following subsections we review the criteria used
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typically for this goal and we propose new ones.

3.6.1 A fixed number of iterations (Iter)

A stopping criterion can be defined as a fixed number of iterations for the retrieval
process. So dynamic and activation rules are applied iteratively, and when a counter
attains the desired number of iterations, the retrieval process terminates and the
units that stay active are taken as the retrieved message. The problem with this
approach is that a stopping criterion as a simple iteration counter is independent of
the nature of retrieved messages. That is, activated units after the last iteration are
not guaranteed to form a clique corresponding to an stored message. This use of this

stopping criterion is only interesting with the GWsTA rule.

3.6.2 The convergence criterion (Conv)

This criterion states that if the set of active units at iteration ¢ 4+ 1 is the same as
that of iteration ¢, the retrieval process terminates and the result is output. The
convergence criterion is only compatible with the GWSTA rule. In the case of the
GLsKO rule, one or more active units are deactivated in each iteration. So it is not

possible to have the same set of active units across two subsequent iterations.

3.6.3 The equal scores criterion (EqSc)

According to the EqSc criterion, when scores of active units are all equal, the retrieval

process terminates and the result is output.

3.6.4 The clique criterion (Clq)

The Clq criterion we propose depends on the relationship between the number of
activated units and their scores. If activate units form a clique the retrieval process
terminates. Thus, the retrieved message is more likely to correspond to a stored

message although it would not necessarily be the correct result. In order to check
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if activated units form a clique, we define the set of active units as A = {a;|i =
1,2,...,|Al}, A(a;) as the score of the active unit a; and p as an integer, then we apply

the procedure depicted in algorithm 2.

Algorithm 2: The clique stopping criterion (Clq).
Vi,j e {1,2,...|A|}
if AMa;) = Maj) =p and |A| =p— (7 —1) then
| Output the result.
end

Terminate the retrieval process.

To make sense of algorithm 2, we take an intuitive situation when v = 1. In this
case, the stopping criterion is that when all active units have an equal score which is
equal to the number of these units, a clique is recognized, so the process terminates
and the result is output.

It is worth noting that when using the GWSsTA rule, it is always preferable to
combine any stopping criterion with the Iter criterion so that when any one of them

is satisfied the process terminates avoiding infinite looping.

3.7 Results

We have seen that there are many possible combinations of dynamic, activation rules
and stopping criteria in order to construct a retrieval algorithm. In this section we
will demonstrate the performance of some of these combinations. All messages used
for the following tests are randomly generated from a uniform distribution over all
possible message values. Reported retrieval error rates for a given number of stored
messages are averaged over 100 trials. However, no significant difference was found

between average error rates and error rates resulting from single trials.

3.7.1 Comparing dynamic rules

Figure 3-2 shows that both the SoM and the SoS dynamic rules give a similar per-

formance. The Norm rule was found to give the same results also, but it is not
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shown in the figure for clarity. This is not the case with the original network intro-
duced in (Gripon and Berrou, 2011) where the SoM rule was proved to give better
results (Gripon and Berrou, 2012). This is an interesting phenomenon that is worth
studying. It may indicate that the major source of retrieval errors in this sparse ver-
sion of the network is not related to the different methods for computing units’ scores.

This renders the differences in performance due to the use of different dynamic rules

insignificant.
1 : F-T-0-
S0S,GLSKO,CLQ, f=1, p=1 7 A
09| © SOMGLSKO.CLQ,f=1, =1 / |
| — — — SOS,GWSTA,CONV,ITER=8, =12 /&
0 | SOMGWSTACONV,TER=8, a=12 Y
. / T
/
0.7 | P _
2 Y
Sosf / 1
‘é /I Q
505 ¢ / |
E Y
304 U4 .
= /
[0 L _
2 03 }9
o
0.2 r / i
v 3
01 | / |
v 0
L o0-000000080 "
O 1 1
5 10 15 20 )
Number of stored messages x10

Figure 3-2: Influence of dynamic rules on retrieval error rates in a network with
x =100, £ =64, c =12, v =1, 0;; = 0 initially, with 3 segments of partial erasure
in input messages.

3.7.2 Comparing retrieval strategies

We notice in figure 3-3 that the GWsTA (o = 12) rule gives a better performance
than the GWTA (equivalent to GWsTA with o = 1) rule used with the Conv stopping
criterion with 30 iterations allowed at most. This is due to the fact that the former rule

has a better immunity to the phenomenon of spurious cliques described in section 3.5.
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We also notice that the GWSTA (a = 12) rule gives even a lower error rate when the
memory effect v is set to a large value such as 1000. This is because setting ~y
to that value restrains the search to only a limited subset of units in the network
where the target message is thought to be found. This is due to the fact that a
large value of v guarantees that active units always get higher scores than other
ones. Therefore, in subsequent iterations, the set of active units would most often
be the same or a subset of the previous active set. In all cases, the GLsKO (a = 1,
i = 1) rule using the EqSc or the Clq (not shown on the figure) stopping criterion
has the lowest error rate which almost achieves the performance of the brute force
Maximum Likelihood retrieval algorithm (ML) (which is a simple exhaustive search
for a maximum clique) for 3 erased input submessages out of 12. This is because
the GLsKO rule configured with such parameter values searches for the output in a
limited subset of units resulting from phase 1 and excludes only one unit at a time
before testing for the stopping criterion. This is proved by the degraded performance
shown in figure 3-3 of this same rule but without specifying a value of x which results
in the exclusion of more than one unit at a time rendering the retrieval process less
prudent and more susceptible to bad exclusions.

We also notice that when a Willshaw-Palm network with n = 6400 units is used
with the GWSTA (o = 12, = 1) rule, the same performance as in a clustered network

is obtained.

3.8 The number of iterations

Figure 3-4 shows that the average number of iterations required to retrieve a message
is relatively constant for all rules up to 140000 stored messages. Beyond this, the
number of iterations required for the GLsKO and the GWsTA rules with v = 1
begins to increase rapidly. It is worth emphasizing that the maximum number of
iterations we allowed for the GWSsTA rule is 30 so the constant level reached by the
curve representing this rule with v = 1 is just a result of that constraint. However,

the number of iterations for the GWsTA rule with v = 1000 increases only slightly
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Figure 3-3: Influence of activation rules on retrieval error rates in a network with
x = 100, ¢ = 64, ¢ = 12, v = 1 if not stated otherwise, o;; = 0 initially with 3
segments of partial erasure in input messages.

approaching an average of 3.3 for 250000 stored messages.

The reason for this explosion of the number of iterations in the case of the GLsKO
rule is that the number of units activated after the first phase increases with the
number of stored messages. So more iterations would then be needed in order to

exclude losers and thus shrink the set of active units.

In the case of the GWSTA rule with v = 1, all units in the network are concerned
with the search for a message in each iteration. So when the number of stored
messages increases, the connection density in the network gets higher and it would be
more likely that new winners appear at each iteration violating the Conv criterion.
Setting + to 1000 limits the possibility of the apparition of new winners at each

iteration and decreases the number of iterations needed before convergence.
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Figure 3-4: Average number of iterations for different scenarios in a network with
x = 100, £ = 64, ¢ = 12, v = 1 if not stated otherwise, o;; = 0 initially with 3 segments
of partial erasure in input messages.A stopping criterion Iter with a maximum of 30
iterations is imposed on the GWsTA rule with v = 1.

3.9 Conclusion and future work

In this chapter, we focused on the memory stage of the information processing and
representation pipeline. We presented the Sparse Clustered Network originally in-
troduced in(Gripon and Berrou, 2011) and (Aliabadi et al., 2014), and we proposed
a generic formulation of its several retrieval algorithms which is meant to faciliate
the process of designing new algorithms. We also proposed an improvement of the
retrieval performance of SCNs by enhancing the GLsKO activation rule.

We found that our modified version of the GLsKO activation rule combined with
the equal scores or the clique stopping criteria gives the best results in terms of the
retrieval error rate but with a rapidly increasing number of iterations. Actually, the
second phase of the GLsKO rule along with the clique criterion can be viewed as an

operation equivalent to searching the maximum clique among active units. This is a
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famous NP-complete problem. However, many suboptimal solutions were suggested
for this problem (or equivalently, the minimum vertex cover problem) such as (Xu
and Ma, 2006; Geng et al., 2007) and many more. We believe that such suboptimal
solutions are adaptable to our problem and can be integrated in our retrieval algorithm
in the future in order to give a better performance with a more reasonable number of

1terations.



Chapter 4

Sparse clustered networks for solving

the feature correspondence problem

In this chapter, we address the intermediate stage of the visual processing pipeline.
As we argued in section 1, this conceptual stage is situated between the lowest (visual
acquisition stage) and the highest (memory representation) stage. More precisely, we
address the feature correspondence problem. Finding correspondences between image
features is a fundamental question in computer vision. Many models in literature
have proposed to view this as a graph matching problem whose solution can be
approximated using optimization principles. In this chapter, we propose a different
treatment of this problem from a necural network perspective. We present a new
model for matching features inspired by the architecture of a recently introduced
neural network. We show that by using common neural network principles like max-
pooling, k-winners-take-all and iterative processing, we obtain a better performance at
matching features in cluttered environments. The proposed solution is accompanied
by experimental evaluations on a synthetic dataset as well as on natural images. It

is also compared to state-of-the-art matching models.

73
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4.1 Introduction

The problem of finding correspondences between features of two images is fundamen-
tal to computer vision. Solving this problem would be of particular importance to a
variety of vision tasks. This includes object tracking (Jiang et al., 2011), object recog-
nition (Grauman and Darrell, 2005), stereo matching (Tuytelaars and Gool, 2000),
object discovery (Leordeanu and Collins, 2005), structure from motion (Rothganger

et al., 2007), and a variety of other tasks.

The basic idea is simple: given two images m and m/, where m contains only one
object b (the query object), we are interested in finding a possibly deformed instance
b’ of b in the image m’, knowing that m’ might contain other objects than the one in
question. In order to achieve that, we take two sets of local image features V and V'
representing m and m’, respectively. Then, we search a mapping from V to V' that
is injective.

An early class of algorithms consisted in matching features based on the similarity
between their descriptor vectors. Such similarity can be obtained using simple met-
rics such as euclidean or hamming distances (Szeliski, 2010). While such methods are
still widely popular, their ability to find correct matches is limited in more complex
situations such as in the presence of multiple instances of the object b’ in the desti-
nation image m’, or in the case of matching two different objects that belong to the

same class, e.g., matching faces of two different persons, or in the presence of clutter.

Considering geometrical consistency between features in addition to their descrip-
tor similarity was suggested as a better way to achieve correct matching. For instance,
in early methods such as RANSAC (Fischler and Bolles, 1981) and ICP (Besl and
McKay, 1992), a solution is accepted only if the matched features in V' are constrained
to some parametric transformation (e.g. epipolar or affine) of their counterparts in V.
However, given that non-rigid transformations are very common in natural images,

applying these parametric constraints becomes a limitation in such cases.

In order to take both feature similarity and their geometrical proximity into ac-

count, including the case of non-rigid deformations, a class of methods were proposed
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in the last two decades that formulated feature matching as a graph matching (GM)
problem (Zhou and la Torre, 2012),(Leordeanu and Hebert, 2005),(Cho et al., 2010).
Two graphs G = {V, &}, ¢’ = {V', &'} are constructed on the sets of features V and
V' representing the graph nodes. Graph edges in £ and £’ are assigned values of some
measure of geometrical proximity between pairs of nodes in V and V', respectively.
Then we search the sub-graph of G’ that best matches G in terms of unary feature
similarity and pairwise gcometric consistency.

This graph matching problem constrained to an injective mapping from V to V'
is known to be NP-hard. A whole class of methods proposed to approach it as a
Quadratic Assignment Problem (QAP)(Zass and Shashua, 2008; Duchenne et al.,
2011; Zhou and la Torre, 2012), where an approximate solution can be obtained
by optimizing a well-defined objective function. Some of these methods suggested
an iterative approach to optimizing this objective function such as the max-pooling
matching (MPM) (Cho et al., 2014), spectral matching (SM) (Leordeanu and Hebert,
2005), re-weighted random walks (RRWM) (Cho et al., 2010) or balanced graph
matching (BGM) (Cour et al., 2007).

Little work, however, was devoted to seeking a potential neural network model for
solving the graph matching problem. We think that this is an interesting question
from an algorithmic point of view, as well as for researchers interested in Marr’s
third level of analysis that seeks possible neural mechanisms for implementing vision
algorithms (Marr, 1982a). While the present chapter addresses this level of analysis,
we do not pretend providing a real bio-mimetic solution.

The main contribution we present in this chapter is to introduce an artificial neural
network (ANN) model for addressing the correspondence problem. This model is
adapted from the SCN model recently introduced by Gripon and Berrou in (Gripon
and Berrou, 2011), which is a generalization of the Palm-Willshaw neural network
(Schwenker et al., 1996). The model we present implements a cooperative algorithm,
meaning that each neuron needs only to know about the activity of a few neighboring

neurons, which allows for the algorithm to be run in parallel.

This model implements an iterative process and provides a better matching accu-
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racy of features in cluttered images. It enforces the injective mapping constraint at
each iteration. Actually, the injective mapping constraint from V to V' implies two
different constraints: (1) A feature v; € V is allowed to match at most one feature in
V' (by the definition of a mapping). (2) A feature v, € V' is allowed to match at most
one feature in V (injectivity constraint). Unlike conventional algorithms, we neither
relax these constraints nor we enforce them both at the same time. Each iteration
of the algorithm we propose enforces one of these constraints at a time. It alternates
between them at each iteration until a good match is obtained.

The rest of this chapter is organized in five sections. In section 4.2, a brief overview
of state-of-the-art matching algorithms is presented. In section 4.3, a formal definition
of the correspondence problem is provided. Then, the architecture of the neural
network along with the algorithm we propose are presented in section 4.4. The
performance of the proposed model is evaluated in section 4.5 and compared to some

other algorithms. Section 4.6 is the chapter conclusion.

4.2 Related work

As mentioned in section 4.1, feature correspondence can be viewed as a GM prob-
lem, which is traditionally formulated as a quadratic assignment problem (QAP)
known to be NP-hard. Its solution is usually approximated by optimizing an objec-
tive function with relaxed constraints (Zhou and la Torre, 2012),(Zass and Shashua,
2008),(Leordeanu and Hebert, 2005). There were also some attempts to approxi-
mate this optimization procedure by applying an iterative process without defining
an explicit objective to optimize (Cho et al., 2014),(Cho et al., 2010),(Cour et al.,
2007),(Gold and Rangarajan, 1996). Iterative approaches to matching problems date
back to as early as Marr’s cooperative algorithm for stereo matching (Marr, 1982a).
It provided an insight on how iterative algorithms can be used to tackle difficult vision
tasks using only local image information.

Max-pooling matching (MPM) introduced by Cho et al. in (Cho et al., 2014) is

one recent example of such iterative algorithms. It applies max-pooling to preserve
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important information while discarding irrelevant details making it more robust in

the presence of outliers.

Some other methods that use a similar iterative approach include re-weighted
random walk matching (RRWM) (Cho et al., 2010). This model uses the principle of
random walks on the associative graph, where the matching contraints are enforced
at each step. Other examples include the Integer Projected Fixed Point (IPFP)
method (Leordeanu et al., 2009), Spectral Matching (SM) (Leordeanu and Hebert,
2005), balanced graph matching (Cour et al., 2007) and more (Gold and Rangarajan,
1996).

Our approach is similar to MPM in that it applies max-pooling to discard irrelative
details. Unlike MPM, pooling is not only applied among features of one image but
also in the second one. Another major difference is that the final discretization step
is replaced by a non-linear activation function applied at each iteration and a winner-
take-all (WTA) applied at the end, which is akin to local inhibition observed among

neural assemblies (Mountcastle, 1997).

In the following sections, we provide the formal definition of the feature correspon-
dence problem as a (GM) problem. Then, we describe our ANN model and specify
the details of the matching algorithm it implements. We use a similar terminology as
in (Cho et al., 2014) in order to highlight the similarities and differences between the
two algorithms, and to show where the proposed model is positioned relative to the

state-of-the-art.

4.3 Problem statement

In this section we present the classical formalism of the correspondence problem as a
GM problem, then we relate it to the error-correcting codes theory. Establishing this
relation will be useful in the next section, where we use turbo decoding principles
introduced in (Berrou and Glavieux, 1996) to explain the details of the proposed

model.



Chapter 4. SCN for solving the feature correspondence problem 78

4.3.1 Formalism

We follow the graph matching approach (GM) to the correspondence problem. The
objective is to match a query graph G = {V, £}, to a sub-graph of G’ = {V', £'}. We
define an assignment matrix X € {0, 1}"" as in (Leordeanu and Hebert, 2005), where

n = |V| and n’ = |V'|. Elements of X are set as follows:

1 if feature v; matches v/,
X,, — (4.1)
0 otherwise.

We also use an assignment vector x, which is a column-wise vectorized copy of
X. We define a unary affinity function Sy (v;,v)) to measure the similarity between
two feature descriptors, and a pairwise affinity function Sg(e;;,e),) that measures

similarity between two edges e;; € £ and e/, € £'. We use these functions to populate

!/

"), and a pairwise affinity matrix A € R™ >

a unary affinity vector asy,, = Sy (v;, v

Sg(eij,el,) ifi# jand a # b,
Aia;jb - E( ! b) (42)

0 otherwise.

An objective function is defined using the above affinity functions:

F0) =" Suleeh) + >, Sv(viv)). (4.3)

Xig=1 Xig=1

This is a known quadratic assignment problem (QAP) that can be written in
matrix form as:

f(x) =xT(A + diag(y))x, (4.4)

where diag(y) is a square matrix that contains zeros everywhere except on its main

diagonal where it holds the vector y. The solution to this problem can be expressed
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as the assignment vector x* that maximizes the objective function f(x):

X" =:X"(A + diag(y))X, (4.5)
x* =2(x"), (4.6)
st x* € {0,1}" %X e R™,
and x* represents an injective mapping

from V to V'.

Notice that the constraint on x being discrete is relaxed during the optimization
process. This relaxed version of the assignment vector is denoted X. Notice also that
the objective function does not enforce the injective mapping constraint from V to V'
we are seeking. This constraint is usually relaxed during the optimization procedure
to reduce the complexity of the problem.

The final continuous assignment vector X* obtained is then discretized in (4.6) us-
ing the function z(.) that usually applies a greedy or a Hungarian algorithm enforcing
injective mapping and the discrete-value constraints (Leordeanu and Hebert, 2005;
Leordeanu et al., 2009; Cho et al., 2014).

The algorithm we propose follows a different procedure; while x is allowed to be
continuous during the process, the injective mapping constraint is not totally relaxed
during optimization; they are enforced at each iteration, alternating between the

mapping constraint and the injectivity one, until a satisfying solution is obtained.

4.3.2 Relation to coding theory

Our proposed solution is inspired by the functionning of turbo codes, a state-of-the-
art class of error correcting codes. In this subsection we elaborate on this analogy by
explaining how GM can be likened to an error correcting problem.

One way to relate the correspondence problem to a coding/decoding procedure
is illustrated in figure 4-1. In this configuration, the query graph G is treated as

the transmitted codeword, and the destination graph G’ as the observation, which is
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viewed as a corrupted version of G due to a noisy transmission channel.

Noisy
Query trans- Observed
graph G mission graph G’
channel

Figure 4-1: Feature matching viewed as transmission problem.

The noise in the transmission channel is due to three different factors:

e Spatial deformation of feature locations in V' compared to their counterparts

in V due to all kinds of rigid and non-rigid object transformations.

e The intrinsic ambiguity of the problem in some cases, where more than one
matching solution might be possible. One good example is in the case of match-
ing features having an cquilateral triangular configuration in cach image, with a
pairwise affinity function Sg(.) that only considers relative positions of features.

In this case, each feature in V can match any feature in V'.

e The presence of outliers (clutter) which are features that do not belong to the

objects we are trying to match.

Noisy
Ground trans- Observations
truth x mission Ay
channel
Decoded
codeword
X*

Figure 4-2: The matching problem viewed as an error correcting problem of a code-
word received through a noisy transmission channel.

However, since we are seeking to find a match among graph nodes rather than
to recover the graph G from the observation, a better way to build the transmission
network is to take a ground truth assignment vector x as the transmitted codeword.
The pairwise affinity matrix A and the unary affinity vector y are the observed
variables as depicted in figure 4-2. Our objective is then to decode our observations

in order to get the vector x* belonging to the constrained domain {0, 1}””':
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We are particularly interested in what happens inside the decoder in figure 4-2.
In the next section, we will present our proposed matching model as a neural network
that will play the decoder role. The most common method in literature is to apply
an optimization procedure to find X* as in (4.5). Then discretization is applied on
that vector as in (4.6). We show how our solution differs from this classical approach,

and how it can be viewed as a process inspired by the turbo decoding concept.

4.4 Methodology

In this section we introduce the matching model we propose, which is based on the
architecture of a neural network (ANN) recently proposed in (Gripon and Berrou,
2011). We call this ANN the sparse clustered network (SCN). We also make a parallel
between the turbo-decoding principle and the proposed model in order to illustrate
its function in greater detail.

Here is a reminder of the notations we shall be using throughout this section to

refer to signals manipulated and produced by the matching process:
e The pairwise affinity matrix A.
e The unary affinity vector y.

¢ Relaxed assignment vectors X € R™ . These vectors are called relaxed because

they do not respect the injective mapping constraint.

e Semi-relaxed assignment vectors X € [0,1]". They are semi-relaxed because
they partially enforce one of the two constraints; injectivity or mapping at each

time. These vectors are sparse; most of their elements are set to zero.

e The final assignment vector x*. The assignment described by this vector re-

spects both the mapping and the injectivity constraints.
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4.4.1 The neural network model

The neural network we propose for solving the correspondence problem is constructed
on the graph captured by the affinity matrix A, as in the example of Fig. 4-4. The
architecture of this network is adapted from the SCN (Gripon and Berrou, 2011)
which was proposed by Gripon and Berrou as a gencralization of Palm-Willshaw

networks (Schwenker et al., 1996) using error correcting principles.

Figure 4-3: Architecture of the sparse clustered network (SCN) as originally proposed
in (Gripon and Berrou, 2011). Units are grouped into clusters. Only one unit per
cluster can be used to store a message.

As we saw in chapter 3, an SCN is an ANN consisting of a set of discrete units.
These units are organized into groups called clusters. Within each cluster, a WTA
constraint is imposed onto units during the network activity. SCNs were originally
used as associative memories that can store and retrieve patterns called messages.
In order to store a message, only one unit is selected within each cluster. A fully
connected graph or a ‘clique’ is then created on the selected units. This clique rep-
resents one stored message. Several messages can be stored in the network following

the same procedure as depicted in figure 4-3.
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The network grid structure depicted in Fig. 4-4 corresponds to the 2D configura-
tion of the assignment matrix X. As in SCNs, we impose a grouping configuration
on the network neurons in the form of clusters; neurons of the same row are grouped
into one cluster, and the same holds for neurons of the same column. Thus, each
neuron belongs to two clusters as shown in Fig. 4-4. Within each cluster, a WTA
activation constraint is imposed; at most one neuron per cluster can be active at the
end of the matching process with a binary activation level (0 or 1) captured by X
as in (Gripon and Berrou, 2011). However, during the network activity, and before
neurons reach their final state, this constraint is relaxed into a k-winners-take-all
(kWTA) constraint, and we allow neurons to temporarily have continuous activation
values. The connections between neurons are captured by the pairwise affinity matrix
A, and as we notice from (4.2), no connections exists between neurons of the same
cluster (Ajq;5 = 0) as in SCNs.

The WTA and kWTA constraints we impose within clusters are meant to en-
courage the one-to-one matching constraint between features in ¥V and V'. From a
biological perspective, this is akin to the local competition among neural assemblies

enforced by short inhibitory synaptic connections (Mountcastle, 1997).

The network activity starts by assigning to each neuron its unary affinity value
(Xia < ¥a). Then, within each row cluster, every neuron receives the max-pooled
propagated activity of all other neurons in the network to which it connects as in

(Cho et al., 2014) and (Aboudib et al., 2014):

X  Xia ; max X Aasgh. (4.7)

The activity values within this cluster are then normalized to their maximum,
and a KWTA operation is applied in which only a few neurons per row cluster are
kept active. At this point, the matching process proceeds to the next iteration which
is similar to the first one except that max-pooling and kWTA are applied on col-
umn clusters. We alternate between row-wise and column-wise iterations until the

convergence of X or until a fixed maximum number of iterations is attained. This is
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column column
cluster a cluster b

O

row cluster j

row cluster 7 O O

Figure 4-4: The architecture of the proposed neural network for graph matching.

akin to the process of alternating codewords between two decoding units in a turbo
decoder (Berrou and Glavieux, 1996). Notice that for row clusters, max-pooling and

KWTA are applied row-wise, while they are applied column-wise for column clusters.

Finally, after the last iteration, only neurons with a maximal activation value

(xf, = 1) are kept active while others are deactivated (x}, <— 0). A WTA operation is
then applied within every row and column cluster; if more than one neuron is active in
a given cluster, they are all deactivated and no winner is declared. This is equivalent

to imposing an ‘at most’ one-to-one matching constraint from V to V'.

To sum up, the network behavior consists in each neuron adding up its input
signals, which are the max-pooled weighted activities of other neurons. Then, a non-
lincar activation function is applied to this ncuron, taking into account the activity
level of other members of its cluster. This is akin to the classic accumulate-and-
fire neuron model of McCulloch-Pitts (McCulloch and Pitts, 1943). In the next
subsection, the proposed matching algorithm will be presented as a decoding process

in order to help explain each step in more detail.

4.4.2 Matching as a decoding process

The architecture of the decoding process we propose is depicted in figure 4-5. This
process is implemented by the neural network architecture we introduced in the pre-
vious subsection. As shown in the figure, there are four main units that operate in

an iterative fashion, and one unit, the WTA unit, applied only one time at the end.
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LL Decoder

X
kWTA
#1

Decoder

72

Figure 4-5: The architecture of the proposed decoder.

Decoder units

Each decoder unit takes two inputs: the observation A and either the unary affinity
vector y, or a semi-relaxed assignment vector X. The vector y is only taken by the
first decoder in the first iteration. In all subsequent iterations, the vector X is used
instead. The output of each decoder unit is a relaxed assignment vector x. This
vector is computed as a max-pooled weighted sum of elements in A as in (4.7). This
equation is applied by the first decoder. Notice that pooling is applied on elements
in V' (row-wise pooling) as in (Cho et al., 2014). The second decoder applies max-

pooling on elements in V (column-wise pooling):

Xia < Xia Z I?G%X ijAia;jb- (48)
beV!
The operation applied by each of these decoders is akin to the power method used
in spectral matching (SM) (Leordeanu and Hebert, 2005) to find the first eigen vector
of matrix A. Max-pooling is added to discard irrelevant details while preserving

necessary information as in (Cho et al., 2014).

kKWTA units

Each k-winner take all (KWTA) unit takes a relaxed assignment vector X as its input,
and produces a semi-relaxed assignment vector X as an output. The first kWTA
unit is only concerned about the mapping constraint. It ‘encourages’ the vector X to
respect that constraint without strictly enforcing it. In other words, it reduces the

number of matches in v, € V' that a single feature v; € ¥V can take. This is done by
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applying a kKWTA operation as follows:

Xia

Xiq ¢— (4.9)

maXgeyr iia7
Xiq iiah(iia - 7—)7 (410)

VieV,aeV,

where h(.) is the unit step function and 7 is the KWTA activation threshold.

The second kWTA units applies a similar operation for the injectivity constraint

to reduce the number of features in ¥V mapped to a single feature in V':

R e — 0 (4.11)
maX;ey Xiq

)_(ia < SEiah(s{ia - T)v (412)
vieV,acV.

Notice that the max function in (4.11) is applied across elements of V' (column
clusters), while in (4.9), it is applied across elements of V' (row clusters). The output
x of the second kKWTA unit is then used either as an input to the first decoder unit,
or as an input to the WTA unit after the last iteration. This iterative process stops
when the vector X converges. However, since a theoretical guarantee of convergence
is yet to be proved, we typically fix a maximum number of allowed iterations beyond

which the process terminates.

WTA unit

The winner-takes-all (WTA) unit takes a semi-relaxed assignment vector X as an

nn'

input and produces the final assignment vector x* € {0,1}"", which respects the

injectivity mapping constraint. The first step is to zero all values in x that do not
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equal one, which is the maximal values in X:

X, 01", (4.13)

VieV,aeV,

where ¢ is the Kronecker delta. After that, cach non-zero value X, is set to zero if
there exists at least one non-zero value of the form X;, or X, different from %;,. By
applying this procedure, the resulting assignment vector X is guaranteed to respect the
injective mapping constraint. The complete matching process we propose is described

in algorithm (3).

Algorithm 3: Proposed matching algorithm.
input : Pairwise affinity matrix A, Unary similarity vector y
output: Assignment vector x

X<—Yy
repeat
foreach 7€V do
foreach a €V’ do
‘ Xiq < Xiq Ejev maxpey XjpAajp
end
~ i . /
Xia max,cys Xiq acV
Xiq imh(iia — T) caeV
end

foreach a € V' do
foreach i €V do
‘ Xia < Xig D _peyy MAXjey XjpAdasjp
end
im — X; eV

maX;cy Xia

Xiq imh(im — T) 1 EY
end
until X converges OR last iteration attained

X[, 6@ ieVandacV #0 is the Kronecker delta.

WTA: Zero all rows and columns in x* with
more than one non-zero element.

X +— X"
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4.5 Experimental evaluation

Candidate
matches

SCNM

RRWM

IPFP

MPM

SM

Figure 4-6: Some examples of matching features between image pairs obtained by
different algorithms. True matches are shown in yellow, while false ones in red.

In this section, we present a performance comparison between the proposed match-
ing model and several other state-of-the-art models. We perform this evaluation on
two types of benchmarks. The first one is synthetic, where matching is applied on
data points generated manually, while the other experiment is carried out in a more

realistic setting in which natural images are used.
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4.5.1 Synthetic point matching

A typical evaluation method used in feature matching literature is accomplished using
synthetic datasets. We create two sets P and P’ containing points in R?. Graphs
G and G’ are created using P and P’, respectively. Each set contains two types of
points: inliers and outliers. Inliers are points representing features that we are seeking
to match. Outliers, on the other hand, are points that represent features that describe
clutter or noise that we wish to ignore during the matching process.

We randomly generate n;, inliers with coordinates sampled uniformly from the
interval [—1,+1], and we add them to P. We then add a Gaussian noise N (0, c?) to
each of these inliers before adding them to the set P’. After that, we add n,,; outliers
generated from the same distribution as the inliers to each of P and P'.

The unary affinity function is considered to be always constant Sy (p;,pl,) = 1,

while the pairwise affinity function is defined as follows:

Sk(eij, ew) = exp(=|llp: = psll = Ipa = will])- (4.14)

Using a constant Sy (.) represents a difficult case where matching depends only on
the geometrical consistency of features. We set the KWTA threshold 7 = 0.98, which
we found to give the best matching performance. Convergence of the algorithm is
attained after 4 — 6 iterations in most cases. Therefore, the maximum number of
allowed iterations is set to 6.

We first evaluate the performance of the proposed model in the presence of outliers.
We refer to the proposed model by the term SCNM standing for Sparse Clustered
Network Matching. In all of our experiments, performance is measured in terms of
the average Recall score, which is the percentage of the number of correct matches to
the total number of inliers.

In the first experiment, we fix the number of inliers to n;, = 15 in both sets
VY and V', the standard deviation of the Gaussian noise to ¢ = 0.04, and we vary
the number of outliers in both sets as shown in figure 4-7. The Recall score of

the proposed model is then compared to some state-of-the-art matching algorithms
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Figure 4-7: A comparison among models’ performance in the presence of outliers.
The number of outliers is varied for a fixed value of . The same number of outliers
shown on the horizontal axis is added to both sets V and V'.

including MPM (Cho et al., 2014), RRWM (Cho et al., 2010), IPFP (Leordeanu et al.,
2009) and SM (Leordeanu and Hebert, 2005). We notice that the score of the SCNM
model surpasses state-of-the-art by a significant margin, even when the number of
outliers is twice the number of inliers. This robustness to outliers is a very interesting
property since outliers in the form of clutter and noise are omnipresent in natural
images.

In a second experiment, we evaluate the performance gain obtained by the alter-
nating double-decoder scheme of figure 4-5. In other words, we try to answer the
question of whether alternating between decoders is behind the performance gain we
observe, or there exists other configurations that give a comparable performance. In
order to do that, we compare the turbo matcher with three alternate configurations il-
lustrated in figure 4-8: (1) in the absence of decoder#1 and kWTA#1 or the SCNM-c
configuration (2) in the absence of decoder#2 and kWTA#2 or SCNM-r (3) without
alternation between the two constraints or SCNM-sep. In the latter test case, two
separate iterative phases are run consecutively. The first one includes decoder#1 and

kWTA#1 which ‘encourages’ the mapping constraint. The second phase includes only
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A A
y | X y |
B X
X
kWTA| %
(a) SCNM-r (b) SCNM-c
A;L Decoder

#1

(c) SCNM-sep

Figure 4-8: Other possible configurations of decoder and kWTA units. In (a) and
(b), only one decoder and one kWTA units are used. In (c), both decoder units and
KWTA units are used, but no alternation between constraints is involved.

decoder#2 and kWTA#2, and ‘encourages’ the injectivity constraint.

Figure 4-9 shows that enforcing both the mapping and the injectivity constraints,
whether in an alternating or a non-alternating fashion gives a better score than using
only one decoder unit with its associated kWTA unit. However, turbo-style alternat-
ing between decoder units gives a better score than enforcing constraints separately

without alternation.

The final experiment consists in fixing the number of inliers to 30 with no outliers.
The parameter o is then varied. The Recall score of the SCNM model is evaluated,
and compared to state-of-the-art for each value of . We notice in figure 4-11 that the
proposed matcher gives a rather modest score in this case outperformed by both IPFP

and RRWM. However, as stated in (Cho et al., 2014): while a better performance in
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Figure 4-9: Performance gain obtained by using turbo-style decoding. We show how
turbo-style alternation between decoders gives a better score than using only one
decoder or using both decoders consecutively rather than in an alternating fashion.

the absence of outliers might be interesting in some situations, it is not a sufficient
property from a practical point of view, since outliers are always present in natural
images. In such cases, robustness to outliers is an indispensable property for matching

algorithms to be equipped with.

4.5.2 Matching in natural images

In this experiment, we compare the performance of the proposed model against some
of the state-of-the-art algorithms. The experiment we apply follows the one presented
in (Cho et al., 2010). A set of 30 image pairs are collected from Caltech-101 and MSRC
datasets. Then, the MSER detector (Matas et al., 2004) and the SIFT descriptor
with 128 dimensions (Lowe, 1999) are used to generate candidate correspondences
between images of each pair. These candidate correspondences are chosen based on
the Euclidean distance between SIFT descriptors; a distance threshold ¢ = 0.6 is first
chosen, then a feature pair is only kept if the distance between its two corresponding
descriptor vectors is inferior or equal to 0. Notice that this filtering process does

not guarantee an injective mapping between features of an image pair, because it
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SCNM

SCNM-r

SCNM-c

SCNM-sep

Figure 4-10: Some examples of matching features in natural images obtained by the
proposed algorithm and some of its variants. True matches are shown in yellow, while
false ones in red.

allows for more than one candidate match for a given feature. The pairwise similarity

function is computed as follows:

SE(eij7 6;1)) = max(50 — dia;ﬂn 0), (415)

where d;,.jp is the same mutual projection error function used in (Cho et al., 2010)
and (Cho et al., 2009). We use the same correspondence ground truth as in (Cho
et al., 2010), which was manually labeled.

We used three different criteria to evaluate matching algorithms. The first one
is the Recall score, computed as the average ratio of the number of true matches
obtained by an algorithm to the total number of matches in the ground truth. This is

the same accuracy criterion used by most models including (Cho et al., 2010, 2014).
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Figure 4-11: A performance comparison in the absence of outliers. The standard
deviation o of the Gaussian noise is varied, and Recall score is evaluated at each step.

However, we think that in the case where outliers are present in both the query image

m and the destination one m/, matching pairs of outliers becomes undesirable. In this

case, the matching process can be viewed as two processes. The first is finding the

correct matches, and the second is excluding matches between pairs of outliers.

Table 4.1: An evaluation of matching performance according to three different criteria

on 30 pairs of real images taken from Caltech-101 and MSRC datasets.

‘ Model H F (%) ‘ Accuracy (%) ‘ Recall (%) ‘
SCNM 43.27* 89.09 58.20
SCNM-r 29.14 90.02* 29.76
SCNM-c¢ 29.11 89.92 29.88
SCNM-sep || 41.95 89.11 55.96
RRWM 41.65 85.24 73.61*
IPFP 37.93 83.89 69.77
MPM 36.89 84.44 64.09
SM 35.28 83.48 64.45

In order to evaluate the capacity of matching models in obtaining true matches
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while excluding false ones, we use the Fj score and the accuracy criteria as follows:

P = 2 X Pr x Re
Pr+ Re '’
tp +itn
#candidate matches’

(4.16)

Accuracy = (4.17)

where Pr is the Precision score, Re is the Recall, tp is the number of true positives
and tn is the number of true negatives.

The evaluation scores are shown in table 4.1. Notice that RRWM has the best
score according to the Recall criterion. However, our proposed model gives the best
performance according to the F; and the accuracy criteria. The reason for this is that
the proposed model is better at excluding false matches and thus it gives less false
positives than other models. This can be noticed in figures 4-6 and 4-10, where true

and false matches are shown in different colors.

4.6 Conclusion and future work

In this chapter, we proposed a new approach for treating the feature correspondence
problem using artificial neural networks. We compared our model to state-of-the-art
algorithms, and showed that it enjoys a higher robustness to outliers thanks to the ap-
plication of max-pooling and kWTA operations, and to alternating rows and columns
during iterations. This robustness to outliers is an essential property for matching
objects in cluttered scenes. We also evaluated the performance of the proposed model
on matching features of natural images, we showed that our algorithm is better at ex-
cluding false matches between outliers, which is an interesting property for matching
objects in natural scenes where clutter is omnipresent. Further development of our
model will include searching for a better way of choosing final matches than zeroing
rows and columns of the assignment matrix containing more than one winner. We
think that it is a simple but a brutal procedure that might be excluding some good

matches.
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Chapter 5

Conclusion and openings

5.1 Conclusion

In this thesis, we have dealt with the information processing problem in the visual
system. We proposed neuro-inspired architectures and algorithms to model some of
the main functions achieved by the visual processing pipeline. These functions are
located along three different stages: visual acquisition on the lowest stage, feature
correspondence on the intermediate one and memory on the highest stage.

On the lowest stage, we proposed a neural network model for the acquisition and
early processing of visual information in chapter 2. The architecture of this network is
closely inspired by the retina and early layers of the ventral stream. Our main contri-
bution was to equip the proposed model with the flexibility to incorporate ubiquitous
properties of the visual system at that stage. This includes modeling the distribu-
tion of cone photoreceptors in the retina, which is responsible for retinal sampling
of the visual scene, as well as modeling the spatial distribution of receptive fields
and their eccentricity-dependent sizes, which give rise to the cortical magnification
phenomenon. Retinal sampling and cortical magnification produce an input signal
with a variable spatial resolution. This reduces the amount of information entering
the visual stream. In order to get a better resolution at a given point in the scene,
eye movement is employed to direct the fovea toward that point. We have shown that

the model we proposed is also adapted to model eye movements to get the desired
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spatial resolution at any part of its input. We suggested that this model can serve
as a generic framework for implementing tasks that need to take advantage of the
properties mentioned above. Visual attention and saliency prediction models are key
applications that we suggested to build using our framework. To demonstrate this, we
proposed to build a network for bottom-up saliency prediction based on the model
of (Itti et al., 1998) and implemented using the proposed framework, and showed
that it attains state-of-the-art performance in predicting salient regions on popular

benchmarks.

On the memory stage in chapter 3, we extended Sparse Clustered Networks intro-
duced in (Gripon and Berrou, 2011) and (Aliabadi et al., 2014) by mainly enhancing
the data retrieval performance of the Losers Kicked Out activation rule. Moreover,
we introduced a generic formalism through which existing retrieval algorithms can be
understood, and to guide the process of designing new ones. We think that SCNs are
interesting associative memories because they offer a large storage capacity compared
to other models. Grouping units into clusters and constraining only one unit per
cluster to be used to store a message, which is inspired by the observed short-range
inhibitory connections in the visual cortex, is an interesting property that was at the

heart of the feature matching model we introduced in chapter 4.

The feature matching algorithm we proposed was implemented using a neural
network that we adapted from SCNs. We showed that the clustering constraint in an
SCN can be a useful concept in applications that go beyond associative memories. In
our case, clustering was essential to enforcing the injectivity mapping or the one-to-one
matching constraint between two sets of features. The competition between candidate
matches within each cluster proved essential to obtaining a matching solution that
attains state-of-the-art performance on synthetic datasets as well as on real world
images. It also proved robust in realistic situations in which clutter is often present
in both images. We have also demonstrated an interesting property of the proposed
matching network that was inspired by the turbo-decoding concept in coding theory,
in which an alternate enforcement between the injectivity constraint and the mapping

one was essential to reaching the obtained performance. We have also shown that
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considering only one constraint and dropping the other, or considering both but in a

sequential non-alternating fashion gives a significantly lower performance.

5.2 Openings

In this section, we will try to connect the dots by drawing the big picture that guided

our rescarch during the period of my PhD thesis.

5.2.1 Visual attention for less supervision

Machine learning with convolutional neural networks (CNNs) and other architectures
deemed today as deep learning networks (DLNs) have achieved an unprecedented
success in object recognition, and a wide variety of other difficult tasks that were not
possible before.

However, state-of-the-art performance in object recognition can be currently achieved
only when very large datasets are available for training in a supervised fashion, along
with a precise label for each single training image. Humans, on the other hand, can
achieve an equivalent or a better recognition performance with much fewer training
examples and less supervision or even in a completely unsupervised way. This sug-
gests that the learning processing humans use is fundamentally different from that
implemented in DLNs.

One idea we wish to explore is the role of bottom-up saliency prediction and
feature correspondence in establishing a learning paradigm that can be achieved with
less supervision and a fewer number of training examples.

Actually, the question on the role of bottom-up saliency in learning has been al-
ready explored directly and indirectly in several areas including research on develop-
mental learning in human infants and children recovering from blindness (Ostrovsky
et al., 2006, 2010), as well as in computational models of object category discov-
ery (Kwak et al., 2015; Wang and Gupta, 2015). As suggested by these studies, we
think that learning from video rather than from static images might be the key ingre-

dient for getting around the need for strong supervision. Bottom-up visual attention
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and especially movement saliency could play an important role in achieving this. The
basic idea is that tracking a moving object across different frames could provide the
necessary supervision for learning. This is because the movement of an object is
often smooth, and while its appearance and position change slightly across frames,
the tracking signal would guarantee that the learner recognizes all of these different
postures as the same object, and that it assigns them the same label. We believe that
the vision acquisition framework we proposed in chapter 2 can be useful for imple-
menting any model that needs to experiment with such ideas where emulating visual
attention and eye movement is necessary.

In addition to establishing a correspondence between frames in the same video
by means of tracking, correspondence should also be established among frames in
different videos containing the same object as in (Wang and Gupta, 2015) based on
the method proposed in (Cho et al., 2015). This is essential to creating a training set
that is not limited to one object instance per category. In future work, we hope to

use the feature matching model we developed in chapter 4 to accomplish such a task.

5.2.2 Better representation, less training examples

After an object has been tracked throughout frames, and a label has been assigned to
all of its instances, a supervised learning algorithm should be applied on the extracted
training examples. For instance, a CNN is used in (Wang and Gupta, 2015) to create
a Siamese-triplet network for learning the training set extracted from hundreds of
thousands of videos. Obviously, while this model proposes to get around the strong
supervision problem, it still needs a tremendous number of training examples. We
think that in order to come up with a model that is able to generalize from a fewer
number of examples, a better representation in feature space should be figured out.
In other words, a fewer examples should be sufficient to learn a representation that
is generic enough to recognize new instances of the same category. In future work,
we would like to explore how SCNs presented in chapter 3 can be used to store an
object representation based on more generic properties in an attempt to reduce the

size of the training set.
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As a summary, visual attention, feature matching and SCNs are three elements
that might be helpful for designing new learning algorithms that need less supervision
and less training examples than current model. In future work, we shall explore how
to build a model that combines the proposed vision framework, the feature matching

model and SCNs in order to build a learner enjoying these properties.
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Résumé

L'apprentissage automatique et la vision par ordinateur sont deux sujets
de recherche d'actualité. Des contributions clés a ces domaines ont été les
fruits de longues années d'études du corfex visuel et de la fonction des
réseaux céréhraux. Dans cette thése, nous nous intéressons a la concep-
tion des architectures neuro-inspirées pour le traitement de I'information
sur trois niveaux différents du cortex visuel. Au niveau le plus bas, nous
proposons un réseau de neurones pour I'acquisition des signaux visuels.
Ce modele est étroitement inspiré par le fonctionnement et I'architecture
de la refine et les premiéres couches du corfex visuel chez I'humain. Il est
également adapté a I'émulation des mouvements oculaires qui jouent un
role important dans notre vision. Au niveau le plus haut, nous nous inféres-
sons & la mémoire. Nous fraitons un modéle de mémoire associative hasée
sur une architecture neuro-inspirée dite ‘Sparse Clustered Network (SCN]'.
Notre contribution principale a ce niveau est de proposer une amélioration
d'un algorithme ufilisé pour la récupération des messages partfiellement
effacés du SCN. Nous suggérons également une formulation générique
pour faciliter I'évaluation des algoritmes de récupération, et pour aider au
dévéloppment des nouveaux algorithmes. Au niveau intermédiaire, nous
étendons I'architecture du SCN pour 'adapter au probléme de la mise en
correspondence des caratéristiques d'images, un probléme fondamental en
vision par ordinateur. Nous démontrons que la performance de notre réseau
afteint I'état de I'art, et offre de nombreuses perspectives sur la fagon dont
les architectures neuro-inspirées peuvent servir de substrat pour la mise
en euvre de diverses faches de vision.

v

Mots-clés : Vision par ordinateur, Réseaux de neurones arfificiels,
Architectures neuro-inspirées, Intelligence artificielle
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Ahstract

Computer vision and machine learning are fwo hot research fopics that have
witnessed major breakthroughs in recent years. Much of the advances in
these domains have been the fruits of many years of research on the visual
cortex and brain function. In this thesis, we focus on designing neuro-
inspired architectures for processing informatfion along three different
stages of the visual corfex. At the lowest stage, we propose a neural model
for the acquisition of visual signals. This model is adapted to emulating
eye movements and is closely inspired by the function and the architecture
of the retina and early layers of the ventral stream. On the highest stage,
we address the memory problem. We focus on an existing neuro-inspired
associative memory model called the Sparse Clustered Network. We propose
a new information retrieval algorithm that offers more flexibility and a
better performance over existing ones. Furthermore, we suggest a generic
formulation within which all existing retrieval algorithms can fit. If can
also be used to guide the design of new refrieval approaches in a modular
fashion. On the intermediate stage, we propose a new way for dealing with
the image feature correspondence problem using a neural network model.
This model deploys the structure of Sparse Clustered Networks, and offers
a gain in matching performance over state-of-the-art, and provides a useful
insight on how neuro-inspired architectures can serve as a substrate for
implementing various vision fasks.

Keywords : Computer vision, Arfificial neural networks, Neuro-inspired
architectures, Artificial intelligence
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