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Résumé en français

Cette thèse concerne le développement, l’extension et l’application d’une formulation stochastique
des équations de la mécanique des fluides introduite par Mémin (2014). La vitesse petite échelle,
non-résolue, est ici modélisée au moyen d’un champ aléatoire décorrélé en temps. Cela change
l’expression de la dérivée particulaire et donc les équations de la mécanique des fluides. Les modèles
qui en découlent sont dénommés modèles sous incertitude de position. La thèse s’articulent autour
de l’étude successive de modèles réduits, de versions stochastiques du transport et de l’advection
à temps long d’un champ de traceur par une vitesse mal résolue.

Le chapitre 1 est une introduction qui rassemble différents résultats théoriques. Le chapitre 6
est un article publié. Les chapitres 2, 3, 4, 5 et 7 correspondent à des manuscripts qui ont été
soumis. Les chapitres 8 et 9 sont des manuscripts en préparation. Le chapitre 10 présente quelques
résultats complémentaires.

Résumé du chapitre 1: Processus stochastiques et calcul stochastique

Dans le premier chapitre, nous rappelons plusieurs notions relatives aux processus aléatoires et au
calcul stochastique. Après avoir présenté les processus gaussiens et les mouvements browniens en di-
mensions finie et infinie, nous donnons brièvement les définitions de base et les principales propriétés
du calcul stochastique: les processus à variations finies, les martingales, les semimartingales et les
variations quadratiques. Puis, plusieurs théorèmes sont détaillés: formule d’Itō-Wentzell, théorème
de Girsanov ainsi que les équations de Kolmogorov et Fokker-Planck. Ces résultats fournissent des
outils très puissants pour gérer des fonctions aléatoires. En particulier, la formule d’Itō-Wentzell
exprime la dérivée temporelle de la composée de deux fonctions aléatoires. La modélisation sous
incertitude de position développée dans les chapitres 2, 3, 4, 5, 6, 7 et 8 s’appuie fortement sur ce
théorème. Nous présentons également les versions multidimensionnelles de deux processus célèbres:
le processus d’Ornstein-Uhlenbeck (OU) et le mouvement brownien géométrique. Dans ce cadre de
dimension finie, nous donnons un aperçu de la structure algébrique des lois d’évolution impliquées
dans la modélisation sous incertitude de position. Après cela, nous examinons quelques méthodes
pour estimer les coefficients de diffusion. Ce point sera utile pour les chapitres 6, 7 et 8. Avant
de conclure, les avantages et les inconvénients des notations de Stratonovich et d’Itō sont discutés.
Enfin, nous ouvrons la discussion avec des outils plus généraux, issue de la physique statistique.
Avec ces outils, les opérateurs différentiels impliqués dans les théorèmes précédemment cités ne
sont plus limités au second ordre.

Résumé du chapitre 2: Ecoulements géophysiques sous incertitude de
position, Partie I: Transport aléatoire et modèles généraux

La première partie développe le cadre général de la modélisation sous incertitude de position intro-
duite par Mémin (2014). Ce principe repose sur l’hypothèse d’une vitesse, vivant à petite échelle,
aléatoire et non corrélée dans le temps. Cette hypothèse provient de l’observation que les pas de
temps utilisés dans les simulations et les mesures des écoulements géophysiques, sont beaucoup
plus grands que les plus petits temps hydrodynamiques. Cette hypothèse modifie l’expression de la
dérivée particulaire introduisant une correction d’advection, un bruit multiplicatif et une diffusion
inhomogène et anisotrope. Pour des vitesses non divergentes, cette dérivée particulaire stochas-
tique a la remarquable propriété de conserver l’énergie de chaque réalisation. Les effets équilibrés
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du bruit et de la diffusion permettent à notre modèle de mieux prendre en compte les échanges én-
ergétiques entre les différentes composantes du traceur, en comparaison à une dérivée particulaire
déterministe. En particulier, une partie de l’énergie de la moyenne (d’ensemble) du traceur est
transférée de façon continu à la composante aléatoire du traceur. Cet échange d’énergie aléatoire
constitue une propriété bien adpatée à la quantification d’incertitude. Enfin, la loi d’évolution du
Jacobien et les similitudes avec le modèle de Kraichnan sont présentées.

Dans la seconde partie, les conservations générales de la mécanique des fluides (masse, énergie
interne, salinité et quantité de mouvement) sont exprimées dans le cadre de l’incertitude de position.
Nous pouvons en déduire un modèle de Boussinesq stochastique. En présence d’un gradient de
background stationnaire (e.g. stratification), les forçages stochastiques de quantités transportées
de façon aléatoire sont des combinaisons de bruits additifs et multiplicatifs corrélés. Le bruit
additif transfère l’énergie du background à l’anomalie et augmente sa variance. Les effets du bruit
additif sur le transport de la flottabilité sont étudiés à l’aide d’un modèle jouet d’oscillations de
flottabilité. En supposant que la vitesse à grande échelle est lisse dans le temps, nous pouvons
séparer l’équation de quantité de mouvement en deux équations: une pour les termes de grande
échelle et une pour les termes de petite échelle. Ce chapitre résume également les principales étapes
de la dérivation de modèles sous incertitude de position ainsi que les paramétrages possibles.

Résumé du chapitre 3: Ecoulements géophysiques sous incertitude de
position, Partie II: Quasi-géostrophie et dispersion efficace d’ensembles
Dans la suite du chapitre 2, des modèles simplifiés de mésoéchelle sont dérivés. En plus des
hypothèses de forte stratification et de forte rotation, les ordres de grandeur des termes de tenseurs
sous-maille doivent être évalués. L’ordre de grandeur considéré dans ce chapitre conduit à un
modèle quasi-géostrophique (QG) appelé sous incertitude modérée. La Vorticité Potentielle (PV)
est conservée à trois termes sources près. Le premier est dû à des inhomogénéités de la correction
d’advection et de la diffusion turbulente de la vitesse; Le second exprime les interactions entre
la fréquence de Coriolis et les tourbillons sous-maille inhomogènes; Le dernier est le résultat de
l’action conjointe de la vitesse résolue et de la vitesse non résolue. Comme ce dernier terme n’est
pas corrélé dans le temps, il augmente l’enstrophie potentiel. En supposant une PV nul à l’intérieur
du fluide, on obtient la relation classique de surface quasi-géostrophique (SQG) entre la vitesse à
grande échelle et la flottabilité. En tant que tel, le transport sous incertitude de la flottabilité, à
la surface, a été appelée modèle SQG sous incertitude modérée (SQGMU ).

Pour illustrer le potentiel de la modélisation sous incertitude de position, des simulations
numériques du modèle SQGMU sont effectuées avec une vitesse non-résolue homogène. Deux
simulations du modèle SQG déterministe sont également décrites: une à la même résolution
grossière, pour fournir un élément de comparaison, et une à une résolution plus élevée, choisie
comme référence. La simulation utilisant le modèle SQGMU résout mieux les structures à petite
échelle que le modèle déterministe à la même résolution. Plus précisément, le modèle SQGMU

résout les instabilités de filaments et la création de petits tourbillons appelés “colliers de perles”
qui s’en suit. Ensuite, l’équilibre entre le bruit et la diffusion prescrit par notre cadre est confirmé
visuellement par des champs de flottabilité dans les espaces spatiale et spectrale. Après cela, un
ensemble de simulations a été réalisé avec le modèle SQGMU . L’ensemble évalue avec précision les
amplitudes et les positions de ses propres erreurs à chaque pas de temps dans les espaces spatiale
et spectrale. Au contraire, un ensemble généré par le modèle déterministe avec des conditions ini-
tiales aléatoires sous-estime les erreurs d’un ordre de grandeur. De plus, une analyse des moments
d’ordre supérieur de l’ensemble SQGMU identifie correctement les “colliers de perles” comme des
événements extrêmes froids ou chauds.

Résumé du chapitre 4: Ecoulements géophysiques sous incertitude de
position, Partie III: SQG et dynamique des fronts sous des conditions de
forte turbulence
Ce chapitre explore un autre adimentionnement du modèle de Boussinesq aléatoire dérivée dans le
chapitre 2. Comparée au chapitre 3, la dynamique sous-maille a une influence plus forte. Cepen-
dant, les autre termes présentent les même ordres de grandeurs que dans le chapitre 3. L’hypothèse
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de forte rotation conduit à un équilibre géostrophique modifié impliquant une divergence de la
vitesse horizontale. Puis, la forte rotation donne directement une PV nul à l’intérieur du fluide
et une relation SQG modifiée. Ce modèle a été désigné par le nom de modèle SQG sous forte
incertitude (SQGSU ).

L’équilibre géostrophique modifié fournit une relation simple entre la vorticité et la divergence
de la vitesse horizontale. Ce diagnostic est testé avec succès sur des sorties de modèle réaliste à
très haute résolution (Gula et al., 2015). Ce test nous permet également d’estimer un coefficient
de diffusion horizontale réaliste et de vérifier a posteriori notre hypothèse de forte incertitude. La
composante de vitesse divergent (ageostrophique) exprime la frontolyse sur les côtés chauds des
fronts et la frontogénèse sur les côtés froids des fronts à la surface de l’océan.

Résumé du chapitre 5: Bifurcations et incertitude de position dans les
écoulements fluides géophysiques

Ce chapitre est une suite naturelle du chapitre 3. La modélisation sous incertitude de position est
encore une fois étudiée à l’aide de l’exemple du modèle SQGMU , dans le cas homogène et pour
un écoulement ayant une géométrie similaire. Néanmoins, l’accent est mis ici sur une bifurcation
apparaissant après un temps de prédicatiblité.

Après avoir brièvement rappelé les principaux aspects de la modélisation sous incertitude de
position et le modèle SQGMU , une bifurcation due à une rupture de symétrie est étudiée avec
le modèle SQG déterministe à haute résolution. Une légère modification des conditions initiales
conduit à un changement majeur après un mois d’advection: deux scénarios sont identifiés. Avec
la même condition initiale, en raison de l’inévitable tenseur sous-maille, le modèle SQG détermin-
iste à deux résolutions différentes donne deux scénarios différents. A une résolution grossière, une
approche stochastique est donc nécessaire. Deux ensembles sont simulés: un avec la loi d’évolution
classique et des conditions initiales aléatoires et un avec le modèle SQGMU . Pour analyser visuelle-
ment les ensembles, une décomposition de Karhunen-Loève de l’ensemble est réalisée à chaque pas
de temps. Dans cette étude de cas, le premier mode de la décomposition est suffisant pour une de-
scription qualitative. Sa densité de probabilité est estimée pour les deux ensembles. Seul l’ensemble
associé au modèle SQGMU est convergé statistiquement et décrit correctement les deux scénar-
ios. En outre, cet ensemble est plus proche de la référence. Pour la méthode avec des conditions
initiales aléatoires, la nécessité d’un plus grand nombre de particules est liée à son comportement
sous-dispersif bien connu. Ceci est dû à la fois à l’échantillonnage initial et à la mauvaise résolution
de loi d’évolution. En revanche, la modélisation sous incertitude de position possède un forçage
aléatoire inhomogène même dans le cas d’une vitesse non-résolue homogène; Cette propriété rend
l’élargissement de l’ensemble plus efficace et nous permet d’utiliser moins de réalisations pour
représenter l’ensemble.

Résumé du chapitre 6: Modèle réduit d’écoulement issue d’une represen-
tation stochastique de Navier-Stokes

Ce chapitre utilise la modélisation sous incertitude de position pour dériver un modèle d’ordre
réduit (ROM) déterministe pour les écoulements fluides.

Les ROM expriment des solutions d’EDP (Equations aux Dérivées Partielles) ou d’EDPS (Equa-
tions aux Dérivées Partielles Stochastiques) sur des bases réduites. Ces bases sont issues de données
et optimisent généralement un critère spécifique. Cette thèse porte sur la Proper Orthogonal De-
composition (POD). La base associée est un ensemble de fonctions de l’espace appelées modes
spatiaux qui encodent un maximum de variabilité spatio-temporelle de la solution. Les coefficients
de la vitesse dans cette base sont appelés modes temporels. Après une projection de Galerkin de
la loi d’évolution sur la base, des termes supplémentaires sont souvent nécessaires pour modéliser
l’influence des modes non résolus. Dans cette thèse, nous proposons deux ROM POD basés sur
deux représentations stochastiques différentes de Navier-Stokes pour deux applications différentes:
un modèle déterministe pour les simulations de type LES dans les chapitres 6 et 7 et un modèle
stochastique pour la quantification d’incertitude (UQ) dans le chapitre 8. Les deux s’appuient sur
la modélisation sous incertitude de position mais avec des hypothèses différentes.
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Dans la première approche, la vitesse à grande échelle et donc les modes temporels résolus sont
supposés être différentiables par rapport au temps. Comme dans Mémin (2014) et dans le chapitre
2, ceci conduit dans le contexte de la modélisation sous incertitude de position à une représentation
grande échelle de Navier-Stokes sans bruit. Une correction d’advection et une diffusion inhomogène
et anisotrope apparaissent à la fois dans l’EDP et dans le ROM associé. Elles sont paramétrées
par la matrice de covariation quadratique à un point et à un temps de l’écoulement. Cette matrice
inhomogène spatialement est appelée tenseur de variance. Le chapitre 6 propose deux méthodes
pour l’estimer en fonction de la vitesse résiduelle. Lorsque le tenseur de variance est supposé
stationnaire, une moyenne temporelle donne facilement le résultat. Pour le cas non stationnaire,
le calcul stochastique permet encore d’estimer le tenseur de variance en le décomposant sur une
base temporelle (Genon-Catalot et al., 1992). En utilisant les modes temporels de la POD comme
base temporelle, le ROM reste autonome. De plus, nous estimons un pas de temps optimal sur
les modes résolus pour accélérer la simulation du ROM et améliorer l’estimation du tenseur de
variance. Enfin, le ROM reconstruit avec succès les modes temporels de deux écoulements de
sillage à Reynolds 300 et 3900. Le tenseur sous-maille stabilise le système réduit, même à Reynolds
élevé, et l’advection efficace corrige le décalage de fréquence.

Résumé du chapitre 7: Modélisation stochastique et modes de diffusion
pour modèles POD et analyse des petites échelles d’un écoulement
Ce chapitre fait suite au précédent. Nous rappelons le principe de la modélisation sous incertitude
de position, la représentation de Navier-Stokes associée pour le cas d’une vitesse grande échelle lisse,
le ROM POD qui en résulte et les deux types d’estimation du tenseur de variance. La décomposition
du tenseur de variance sur une base temporelle définit ce que nous appelons les modes de diffusion.
Ce chapitre propose une estimation de temps caractéristiques modales au lieu d’un seul temps
comme dans le chapitre précédent. Pour chaque mode temporel résolu, un temps caractéristique est
associé. Comme l’estimateur du tenseur de variance dépend de ce temps caractéristique, l’équation
d’évolution de chaque mode résolu repose sur un tenseur de variance différent et donc un tenseur
de sous-maille différent. Cette méthode améliore fortement la reconstruction des modes temporels.
Sans aucun ajustement, notre reconstruction devient meilleure, ou au moins aussi bonne, que le
ROM POD, utilisant une viscosité turbulente (Rempfer and Fasel, 1994), qui est ajustée de manière
optimale sur les séries temporelles des modes résolus. En outre, le chapitre montre comment
analyser l’influence de la vitesse résiduelle à travers les modes de diffusion. Ainsi, ce chapitre
propose de nouveaux outils d’analyse de données, complémentaires à la décomposition POD (ou
aux fonctions empiriques orthogonales (EOF)) habituelle. Une telle analyse est impossible avec
l’hypothèse de viscosité turbulente traditionnelle. Ces modes de diffusion dévoilent les effets de
la composante de vitesse non résolue sur la composante résolue. Nous identifions les régions et
les directions principale de la diffusion turbulente. Nous décrivons aussi les advections efficaces
induites par cette vitesse non-résolue.

Résumé du chapitre 8: Transport conservatif sous incertitude de position
de la vitesse d’un fluide et réduction de dimension
Dans une deuxième approche des ROM, nous ne supposons plus que la vitesse à grande échelle
est différentiable par rapport au temps. Dès lors, la vitesse à grande échelle est transportée sous
incertitude de position comme tous les autres traceurs. En plus de la correction d’advection et de
la diffusion turbulente, le modèle grande échelle de Navier-Stokes possède un bruit multiplicatif.
Cela permet des transferts d’énergie plus efficaces. En particulier, la conservation de l’énergie est
assurée et l’UQ est de meilleure qualité. La structure algébrique du modèle est présentée. Ce mod-
èle conduit à un ROM stochastique avec des modes temporels résolus qui sont aléatoires. En raison
de la troncature des modes, une petite partie de l’énergie diffusée dans le ROM fuit vers les modes
non-résolus et permet, ainsi, la dissipation visqueuse moléculaire dans les modes non-résolus. Le
reste de l’énergie rétrodiffuse dans le système réduit grâce au forçage aléatoire multiplicatif. Cette
analyse est valable pour toutes les projections de Galerkin sur une base orthonormée. Le résultat
est donc aussi bien applicable aux ROMs qu’aux simulations numériques aléatoires de type LES.
Comparativement aux chapitres précédents, des estimateurs plus complexes sont nécessaires pour
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estimer les statistiques des bruits, sans recourir à l’énorme fonction de covariance spatiale de la
vitesse petite échelle inhomogène. Les formules d’estimation pour POD ROM sont présentées.
La méthode permet de prévoir de façon précise l’évolution des modes temporels de deux écoule-
ments de sillage à Reynolds 300 et 3900. Les ROMs stabilisent les modes instables, empêchent la
dégénérescence des modes stables et estiment la bonne quantité d’erreurs pour garder l’ensemble
le plus proche possible de la référence.

Résumé du chapitre 9: Effets des flots lisses sur les gradients de traceur
et sur les spectres de traceurs

La méthode d’advection Lagrangienne (Sutton et al., 1994; Desprès et al., 2011a; Berti and Lapeyre,
2014) augmente la résolution des images satellitaires de traceurs en utilisant l’advection par une
vitesse lisse issue de l’altimétrie. Cette advection crée des structures mésoéchelle et sous-mésoéchelle.
Néanmoins, en raison de la résolution spatio-temporelle grossière des champs impliqués, certaines
de ces structures ne sont pas physiques. Ainsi, un lissage spatial supplémentaire du traceur ainsi
qu’une préscription précise du temps d’advection sont nécessaires. Le but de ce chapitre est de
mieux comprendre le processus de formation de ces structures et de donner une règle pour choisir
le temps d’advection ainsi que la largeur du filtre.

Après un temps fini, les gradients d’un traceur lisse advecté ont évolué. Nous exprimons de
façon analytique la moyenne de la norme au carré de ces gradients, en mettant en valeur les
liens avec le tenseur de Cauchy-Green, les Exposants de Lyapunov a Temps Fini (FTLE) et la
vitesse mésochronique (Mezić et al., 2010). L’angle relatif du gradient de traceur initial influence
la rapidité de renforcement et d’affaiblissement des gradients du traceur. Cependant, lorsque le flot
et le traceur initial sont faiblement corrélés, la norme quadratique moyenne des gradients du traceur
ne peut qu’augmenter. De plus, le taux de croissance ne dépend pas du traceur. Ce renforcement
du gradient est dû à l’action combinée de l’étirement et du repliement, aussi appelé mélange, des
structures du traceur. Grâce à ce processus, ces structures cascadent vers des échelles de plus en
plus petites. Cette vision du mélange s’applique à des traceurs lisses. En revanche, les simulations
numériques qui sont sous-résolues en espace ou en temps, telles que les modèles sous l’incertitude de
position, diluent les structures de traceur, lorsqu’elles sont plus petites que l’échelle de résolution.
En plus du cas particulier des tracteurs passifs, une corrélation faible entre traceur et flot peut être
également observée dans le cadre de la méthode d’advection Lagrangienne, à cause du lissage spatial
du traceur. De plus, l’échelle de temps géostrophique associée aux variations du courant de surface
est grande devant le temps d’évolution des gradients sous-mésoéchelles du traceur. Ainsi, pour
cette application spécifique, la vitesse Eulérienne est quasi-stationnaire et crée des cisaillements
localement uniformes et des cellules convectives stationnaires. Les premiers étirent le traceur le
long d’une ligne droite alors que les secondes replient et enroulent le traceur autour des tourbillons.
Lorsque le temps d’advection est trop long, cet enroulement fait apparaître des structures en
spirales, dans le traceur, qui ne sont pas physiques. A partir de ces deux types de comportements,
nous déduisons un modèle linéaire en temps pour le taux de croissance des gradients de traceurs.
Ce modèle est seulement paramétré par la vitesse Eulerienne grande échelle. Après cela, nous
montrons que la moyenne quadratique des gradients de traceur spécifie la longueur de corrélation
de la covariance du traceur et donc la position de la queue du spectre. En contrôlant de façon
analytique l’intensification des petites échelles dans l’espace de Fourier, nous pouvons spécifier la
largeur du filtre de la méthode d’advection Lagrangienne, mais aussi la diffusivité turbulente dans
le but de paramétrer des simulations numériques d’écoulements grande échelle comme les modèles
sous incertitude de position. Des expériences numériques avec un flot jouet ainsi qu’avec des images
satellites réelles illustrent chacun de nos résultats théoriques. En particulier, nous prédisons avec
précision la répartition globale et locale de l’étirement pour une advection à temps fini. Ce travail
met également en évidence l’effet important du repliement dans le mélange à temps fini.

Résumé du chapitre 10: Résultats supplémentaires

Ce chapitre présente d’abord les modèles sous incertitude de position avec les notations de Stratonovich
au lieu de celle d’Itō. Cela permet notamment de mieux comprendre l’expression de la correction
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d’advection dans ces modèles. Ensuite, nous comparons les modèles sous incertitude de position
avec les travaux récents de Holm (2015).



Notations

Algebra

• Bold symbols refer to vectors or matrices,

• Id is the identity matrix,

• tr(A) =
∑
i < ei,Aei > denotes the trace of the matrix or operator A, where (ei)i denotes

a complete orthonormal basis of the space,

• ‖A‖2 = ‖A‖22 = tr (AAT ) =
∑
ij A

2
ij is the square of the Frobenius norm of A,

• ‖A‖2S = tr (ASAT ) is the square of the Frobenius norm, defined by the symmetric positive-
definite matrix S,

• J =

(
0 −1
1 0

)
is the π

2 rotation in R2,

• F⊥ = JF is the orthogonal of the vector F in R2,

Probability

• Ω̆ is the sample space,

• P is the reference probability measure,

• L2 = L2(Ω̆,P(Ω̆),P) = {X measurable | E‖X‖22 <∞} is the space of random variables with
finite variance,

• X ⊥⊥ Y means that X and Y are independent random variables,

• E{X} is the expectation of X,

• Ê{X} = 1
N

∑N
i=1X

(i) is the estimator of E{X},

• V ar(X) is the variance of X,

• V̂ ar{X} = 1
N−1

∑N
i=1

(
X(i) − Ê{X}

)2

is the unbiased estimator of V ar(X),

• γF (x,y)
4
= E{F (x)F (y)} is the covariance of F ,

• ΦX(x)
4
= E{exp (ix ·X)} is the characteristic function of the random vector X at x,

• ΦX [x]
4
= E{exp

(
i
∫
x ·X

)
} is the characteristic functional of the random function X at the

function x of
(
L2
)d,

• L2 − lim
∆t→0

X(∆t) is the mean square limit of X(∆t),

• P− lim
∆t→0

X(∆t) denotes the limit in probability of X(∆t),

xv
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• Bt is depending on the context a vector of Brownian motions or a Id-cylindrical Wiener
processes,

• Ḃ abusively denotes dBt
dt ,

• < F,G >t=
∫ t

0
f2(t′) · g2(t′)dt′,

where dF (t) = f1(t)dt + f2(t)dBt and dG(t) = g1(t)dt + g2(t)dBt, corresponds to the
quadratic cross-variation of F and G,

• dtF (t,m(t)) = F (dt,m(t)) = f1(t,m(t,y))dt+ f2(t,m(t,y))dBt,
where dF (t,x) = f1(t,x)dt+ f2(t,x)dBt, stands for the Eulerian (Itō) time increment of a
function F evaluated in the position m(t,y),

• F (◦dt,m(t)) = f3(t,m(t,y))dt+ f2(t,m(t,y)) ◦ dBt,
where dF (t,x) = f3(t,x)dt+f2(t,x)◦dBt, denotes the Eulerian Stratonovich time increment
of a function F evaluated in the position m(t,y),

• dt < F (t,m(t)), G(t,m(t)) >= d <
∫ t

0
dt′F (t′,m(t′)),

∫ t
0

dt′G(t′,m(t′)) >,
= f2(t,m(t)) · g2(t,m(t))dt,

if dF (t,x) = f1(t,x)dt + f2(t,x)dBt and dG(t,x) = g1(t,x)dt + g2(t,x)dBt and denotes
the Eulerian quadratic cross-variation of F and G,

Analysis

• Ω is a subset of Rd,

• L2
(
Rd
)

=
{
F : Rd → R |

∫
Rd |F |

2 <∞
}
is the Hilbert space of finite-energy functions from

Rd to R,

• ‖F‖2L2(Rd) =
∫
Rd |F |

2 is the associated square norm,

• ‖F ‖2(L2(Rd))n =
∫
Rd ‖F ‖

2
2 is the square of the classical norm 2 in the space of finite-energy

functions from Rd to Rn,

• ∂iF = ∂xiF = ∂F
∂xi

is the derivative of F with respect to the variable xi,

• ∇F is the gradient of F in R2 or in R3,

• ∇HF =

(
∂xF
∂yF

)
is the horizontal gradient component of F ,

• ∇⊥F =

(
−∂yF
∂xF

)
= J∇F is the orthogonal gradient of F in R2,

• ∇·F is the divergence of F
(

(∇·F )j =
∑d
i=1 ∂iFij if F is a matrix

)
,

• ∆F is the Laplacian of F ,

• HF is the Hessian of F ,

• µ(Ω) is the Lebesgue measure of Ω,

• S = µ(Ω) is the surface of Ω if d = 2,

• F denotes either the time average, 1
T

∫ T
0

dt F (t), (chapters 6, 7 and 8) or the ensemble and
spatial average, 1

µ(Ω)E
∫
Ω

dx F (x), (chapter 9) of F ,

• γF (x)
4
= 1

µ(Ω)

∫
Rd dy F (y)F (y + x) is the empirical covariance,

• F̂ (k)
4
=
∫
Rd dx F (x)e−ik·x is the Fourier transform of F ,
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• ΓF (k)
4
= 1

µ(Ω) |F̂ (k)|2 is the spectrum of F ,

• ΓF (κ)
4
= κ

∮
dθk ΓF (k) where k =

(
κ cos(θk)
κ sin(θk)

)
is the omnidirectional spectrum of F i.e. the

spectrum integrated over the wave vector’s angles,

Physics

• Xt = φ(•, t) is the flow,

• J is its Jacobian,

• v is the Eulerian velocity,

• V is the Lagrangian velocity,

• ψ is the two-dimensional streamfunction,

• DtF (t,x) = (d (F (t,Xt)))|Xt=x
is the material derivative of F ,

• f and f are scalar and vector Coriolis frequency,

• f0 is the mean Coriolis frequency,

• β is the mean meridional gradient of the Coriolis frequency,

• g and g are scalar and vector gravity,

• k denotes either the vertical unitary vector or the wave vector depending on the context,

• Θ is a scalar tracer,

• T is the temperature,

• S is the salinity,

• ρ is the density,

• ρb is the mean density,

• ρ0 is the horizontal average of ρ− ρb,

• b = −g(ρ− ρb − ρ0)/ρb referred to as the buoyancy variable,

• p is the pressure,

• φ = p
ρb

is the density scaled pressure,

• Q = ∆ψ + f +
(
f0
N

)2

∂2
zψ is the stratified QG potential vorticity,

• N is the stratification or Brunt-Väisälä frequency defined by N2 = −g 1
ρb
∂zρ0,

• L is the horizontal length scale of the dynamics,

• h is the vertical length scale of the dynamics,

• D = h
L is the aspect ratio,

• U is the horizontal velocity scale,

• T = L
U is the advective time scale,

• Ro = U
f0L

is the Rossby number and expresses the ratio of horizontal advection to rotation
(Coriolis terms),

• Bu = NH
f0L

is the Burger number and expresses the ratio of stratification to rotation,
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Modeling under location uncertainty

• w =

(
u
w

)
=

uv
w

 is the large-scale velocity,

• w? = w + 1
2

∑d
i=1 (σ∂iσ

T
i• − ∂iσσTi•) is the modified advective velocity,

• σḂ is the small-scale velocity,

• σHḂ is its horizontal component,

• a = σσT = ∂t

〈∫ t
0
σdBs,

(∫ t
0
σdBr

)T〉
referred to as the variance tensor,

• aH is its horizontal component,

• aH is the scalar variance tensor in the homogeneous case defined by aH = aHId,

• kc =
√

2f0
aH

is a cutoff,

• DtF = dtF + (wdt+ σdBt) · ∇F −∇ ·
(
a
2∇F

)
for any function F ,

• DHt F = dtF + (udt+ σHdBt) · ∇HF −∇H ·
(
aH
2 ∇HF

)
for any function F ,

• Au is the scaling of the horizontal variance tensor aH ,

• Υ = UL
Au

expresses the ratio of horizontal advection to horizontal turbulent diffusion,

Reduced order models

• φi is the i-th spatial mode,

• φ0 = v̄ is the velocity averaged over time,

• bi is the i-th temporal mode,

• λi is the variance of bi over time.



Introduction

Context

Understanding, modeling and tracking geophysical fluid dynamics as well as other high Reynolds
flows remain main challenges in current researches. Indeed, beyond economical applications related
to weather forecasting and industrial flows, accurate climate projections have become a societal
need. The complexity of such systems is mainly due to the non-linear and non-local nature of the
evolution laws. It makes large-scale flow structures interact with smaller ones. As such, the large-
scale flow components cannot be simulated alone (Palmer and Williams, 2008; Slingo and Palmer,
2011). However, the computational expense of Direct Numerical Simulations (DNS) – simulations
solving all the hydrodynamical scales – are often beyond reach, especially in geophysics. As an
example, the most accurate oceanic currents numerical simulations in the world use a horizontal
mesh resolution of about 1 km (Klein et al., 2008; Gula et al., 2015), whereas solving the “real”
equations of fluid dynamics, say the Navier-Stokes equation, would require a grid cell of about 1
cm.

The effects of the unresolved so-called turbulent small-scale fluctuations have to be modeled.
Turbulent dissipations, advection corrections and backscatterings are the most famous ways to
deal with them. They respectively reduce, move and increase energy of large-scale tracers. These
different ingredients of the so-called subgrid models will be detailed in the following.

Even using the best subgrid model, the true dynamics is never exactly resolved by a large-
scale model. There are always errors. The unresolved subgrid components of tracer or velocity
are by definition unknown. In other words, they are uncertain. In this thesis, uncertainty and
stochasticity does not mean noise but rather something we do not exactly know. Uncertainty can
be very coherent. To better express this idea, let us introduce a comparison. When looking at
a tree, you cannot see all the branches because they are either too small or hidden by leaves.
The particular shapes of these branches are uncertain and could be modeled by random processes.
However, you know that they respect some features. For instance, each of them is linked to the
trunk through one and only one path. These branches are uncertain coherent structures in the
same way as unresolved small-scale vortices are. Both must respect appropriate physical laws.
Since resolved and subgrid fluid dynamics are coupled, the large-scale resolved dynamics has to
be partially stochastic. Understanding, modeling and simulating this randomness or errors is
the subject of Uncertainty Quantification (UQ). It will be the subject of the second part of the
introduction.

For some applications, the resolution of deterministic or stochastic large-scale fluid dynamics
models described by PDEs is too time consuming. An additional simplification is needed. To
alleviate this issue, Reduced Order Models (ROM) can be a solution. They only resolve the most
important modes. These models based on both physics and observations are explained in the third
part.

Modes in ROM and large-scale models exchange energy. In particular, part of the energy is
driven from unstable modes to stable ones. Geometrically, some structures of the flow are stretched
and folded, becoming smaller and smaller (direct cascade). In other words, they are mixed. The
study of mixing and mixing diagnoses has many theoretical and practical applications in the ocean,
but it is also a good way to constrain the parameters of large-scale and reduced order fluid dynam-
ics models. This will be discussed in the fourth and last part.

xix
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Let us first present the different modeling principles underlying the constitution of subgrid
models.

A classical way to model effects of small-scale velocity on large-scale one relies on the Boussinesq
“eddy viscosity” assumption (Kraichnan, 1987; Wilcox, 1988; Menter, 1992; Vallis, 2006). Like its
equivalent for large-scale tracer, the so-called eddy diffusivity, this assumption consists in replacing
the molecular diffusion coefficient by a higher value in the evolution law of the large-scale quantity.
Eddy diffusivity models for the mean tracer are understood in idealized cases. Making use of many
assumptions (ergodicity, scale gap, decorrelations, homogeneity, etc), Kraichnan (1987); Vallis
(2006) exhibit an eddy diffusivity term. However, the diffusion coefficient or matrix may not be
positive, which is a necessary condition for dissipation. The Kraichnan model – a passive scalar
advected by a homogeneous and isotropic time-uncorrelated velocity – always shows a positive
diffusion coefficient of the mean scalar (Gawȩdzki and Kupiainen, 1995). Reciprocally, some authors
replace molecular diffusion and molecular viscosity respectively by a modification of the transport:
a homogeneous and isotropic time-uncorrelated component is added to the real velocity. In such
a case, the real, deterministic and diffused passive tracer is equal to the conditional expectation
of the spurious randomly transported tracer (Klyatskin et al., 1996; Falkovich et al., 2001). For
the Navier-Stokes equations, Constantin and Iyer (2008, 2011) show that the time evolution of the
true velocity can be written as the expectation of a function of the random flow. Although eddy
diffusivity may be justified, eddy viscosity is hardly supported by theory due to the pressure forcing
(Kraichnan, 1987). Despite their lack of theoretical grounds, eddy viscosity models are widely used.
They are introduced in Large Eddies Simulation (LES) techniques (Lesieur and Metais, 1996; Pope,
2010) and Reynolds Average Navier-Stokes (RANS) (Wilcox, 1988; Menter, 1992) to model the so-
called Reynolds stress tensor. In any case, the new diffusion coefficient or matrix and its temporal
and spatial dependence have to be determined. This is often done empirically and/or using scaling
assumptions. It should be noticed that scaling assumptions for active and passive tracers, used
since Kolmogorov (1941), are challenged by many evidences of anomalous scaling when the flow is
non-smooth (Kraichnan, 1994; Gawȩdzki and Kupiainen, 1995; Chertkov et al., 1996). Only the
Kolmogorov 4/5-law (Kolmogorov, 1941; Kupiainen, 2000; Falkovich et al., 2001) – the expression
of the velocity third-order moment – is unanimously accepted by the fluid dynamics community,
since it is supported both by theory and experiments.

In addition to diffusive terms, some authors suggest correcting the mean advective velocity.
Such corrective drift is called noise-induced velocity in climate science and skew diffusion or bolus
velocity in geophysics. The skew diffusion consists in decomposing the eddy diffusivity matrix into
its symmetric and antisymmetric parts (Nakamura, 2001; Vallis, 2006). The symmetric part, in
general positive-definite, leads to diffusion, whereas the antisymmetric one leads to advection by an
effective free-divergence velocity. A famous and widely used example of this parametrization is the
“bolus” velocity of Gent and Mcwilliams (1990). The corrective drift flattens isopycnals (isodensity
surfaces) without any buoyancy dissipation. This reduces the Available Potential Energy (APE)
as baroclinic instabilities do. Many improvements and similar methods exist (e.g. Tréguier et al.,
1997). Wave literature also refers to a modified advective velocity as Stokes drift. The Stokes drift
is the difference between the mean Lagrangian velocity and the mean Eulerian velocity (appearing
in averaged transport equation of tracers). It is equal to the correlation between the gradient of the
fluctuating component of the Eulerian velocity and the displacement resulting from the integration
of the fluctuating Lagrangian velocity component (Leibovich, 1980). For divergence-free velocity it
should be proportional to the divergence of an absolute diffusivity matrix. Penland (2003b) refers
to a “noise induced drift” with a similar expression also from a Lagrangian point of view using
Fokker-Planck equation. Finally, the dynamics of inertial particles embedded in a fluid are known
to involve an effective drift. These particles trajectories deviate from the mean fluid velocity. They
cluster near the minimum of turbulent kinetic energy (Reeks, 1983; MacInnes and Bracco, 1992),
as long as those particles are not too heavy (Belan et al., 2015). This phenomenon is referred to as
turphoresis. As for waves, the corrective drift is proportional to the divergence of turbulent kinetic
energy. However, the time scale in factor is the particle relaxation time rather than the Lagrangian
velocity correlation time.

As long as the correction of the advection is divergence-free, all the above models do not
modify energy. In contrast, turbulent diffusion can only model direct energy cascade. In real sys-
tems, there are also intermittent back-scattering of energy from small scales toward larger scales.
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Therefore, some authors proposed to include terms that artificially bring energy to the system
in numerical simulations. Locally negative eddy viscosity is sometimes advocated (Protas et al.,
2015). However random forcing is more commonly preconized in recent literature. This method
is referred to as “stochastic backscaterring”. Evolution laws no longer rely on bulk parametriza-
tions i.e. deterministic models. They become Langevin equations expressed through Stochastic
Differential Equations (SDE) or Stochastic Partial Differential Equations (SPDE). Note that the
Langevin equations can be non-linear with complicated random forcing and memory terms. First,
let us mention stochastic Lagrangian models of Berloff and McWilliams (2002); Veneziani et al.
(2004) where fluid particles are uncorrelated. This means that each fluid particle evolves without
taking into account the neighboring particles. The slightly non-linear resulting evolution mod-
els are defined on empirical grounds and Gaussian assumptions. A more famous approach is the
Eddy-Damped Quasi Normal Markovian (EDQNM) model introduced by Orszag (1970) and Leith
(1971). It closes the large-scale Navier-Stokes equations in the Fourier space by neglecting some
phase correlations in non-linear terms but keeping energy constant. Chasnov (1991) uses this
framework to set up a forced-dissipative Navier-Stokes model where the Eddy Viscosity is scale-
dependant and the forcing is Gaussian, homogeneous and isotropic in space and uncorrelated in
time. Replacing non-linear interactions by a damping term and a Gaussian forcing is now common
practice. This in particular used to setup evolution laws of subgrid scales where accuracy is of lower
concern. The solutions are in this case Gaussian processes. Structural Stability Theory (S3T) is
one example in that spirit (Farrell and Ioannou, 2014). The Quasi-Linear (QL) approximation sep-
arates the non-linear deterministic dynamics of the mean field and the linearized randomly-forced
dynamics of fluctuations. Then, stability analyses are applied to the augmented state-vector of
mean and covariance in order to reveal and characterize various turbulent phenomenon. Stochas-
tic superparametrization (SSP) proposed a similar model (Grooms and Majda, 2014). The point
approximation separates the large-scale and the small-scale dynamics. The small-scale evolution
law is linearized and corrected by the introduction of noise and damping terms. To constraint
energy conservation in the stationary regime, noise variances and damping coefficients are related.
Then, the second order moments of the solution are known analytically and can feed the subgrid
tensor expression of the mean large-scale evolution law. Without involving any theoretical closure,
Berloff (2005) considers a Gaussian forcing as well. Yet its noise is inhomogeneous in space and
correlated in time. Well specified inhomogeneity brings phase information making the model more
accurate and the forcing more efficient. Phase information can also be encoded by multiplicative
noises. Besides, multiplicative noises are the most common non-Gaussian forcing. Leith (1990)
multiplies the white Gaussian noise by a function of the resolved local strain rate. Schumann
(1995) uses a quadratic function of a homogeneous Gaussian noise. Brankart (2013) adds at each
time step a multiplicative noise to the active tracers (salinity and temperature) before computing
the corresponding density. After this, the density is averaged over realizations. The non-linearity
of the state-equation makes this transitional variability non-negligible and improves the simulation
results. Rather than assuming delta correlation in space, Shutts (2005); Berner et al. (2009, 2011)
introduce a spatially homogeneous and isotropic noise. Then, they multiply it by the dissipation
rate. This method is called Stochastic Kinetic Energy Backscatter (SKEBS). As in Schumann
(1995) and Brankart (2013), the noise is defined from an Ornstein-Uhlenbeck (OU) process (Gaus-
sian process with an exponential covariance in the stationary regime) with a very small correlation
time. Such a process corresponds to an Auto-Regressive (AR) process in discrete time. In con-
trast, Mana and Zanna (2014) use a non-Gaussian noise process uncorrelated in time and space
whose variance depends on the resolved PV gradient. Except Schumann (1995), all these methods
defined on empirical grounds have a common characteristic: the factor of the multiplicative noise
is a function of the gradient of the transported quantity. This suggests a link between stochastic
backscatter and turbulent dissipation, but the justification of this link is either unclear or arbitrary.

Shutts (2005); Berner et al. (2009, 2011) can be separated from the other works mentioned above
since they focus more specifically on Uncertainty Quantification (UQ) and ensemble forecasting
issues. In other words, they seek to quantify statistically the errors of the system dynamics.

To introduce this topic, let us first give a brief description about data assimilation and filtering
method. Even beyond fluid dynamics applications, coupling numerical model simulations and
measurements is of great interest. This is called data assimilation. Some of these methods derived
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from variational principle and optimal control theory are deterministic (Le Dimet and Talagrand,
1986). A functional criterion is optimized in term of control variables to push the model closer to
the observations. For instance, in 4D-Var algorithms solutions are functions of time and space but
also of initial conditions. Variational optimization performed using the adjoint tangent dynamical
model enables us to infer the initial condition which best explains the observation. This thesis will
instead be placed in the framework of probabilistic data assimilation methods, such as smoothing
and above all filtering (Doucet et al., 2001; Doucet and Johansen, 2009; Candy, 2011; Papadakis
et al., 2010). Those methods allow both a random dynamical model as well as noisy and partial
observations to guide the ensemble forecast – a set of realizations – along time. The randomness of
the model represents error of the dynamical model whereas randomness of observations represents
the measurement errors. If the model noise is prominent, the estimated filtered variable relies
principally on the observations. Conversely, when the observation noise is dominant, the filtered
variable trajectory is mainly driven by the model. For this reason, accurate design of the model
errors is crucial in weather and climate communities (Allen and Stainforth, 2002; Penland, 2003a,b;
Berner et al., 2015). Furthermore, due to the large dimensionality of the state space, the ensemble
size is usually very small. Thus, the randomness of the dynamical model has to be very efficient.
Ensemble members, also called particles, have to quickly spread in the phase space. At the same
time, each particle should remain a “physically plausible realization”.

The randomness can have several sources. Some authors inject randomness through the pa-
rameters. Indeed, parameters like viscosity, initial and boundaries conditions are often assumed
random (Le Maitre et al., 2002; Sapsis and Lermusiaux, 2012). The chaotic nature of fluid dynamics
increases quickly the infinitesimal error related to these parameters. Other authors study the un-
certainty arising from forcings. In particular, CO2 concentration conditions are difficult to specify
in climate sciences. Lucarini et al. (2014) approach this problematic with Ruelle response theory.
In fluid dynamics, random initial conditions have been widely used for both UQ and predictability
studies (e.g. with EDQNM Métais and Lesieur, 1986). In the geophysical data assimilation com-
munities, this method is known to be underdispersive, i.e. it underestimates errors (Berner et al.,
2011; Mitchell and Gottwald, 2012; Gottwald and Harlim, 2013; Franzke et al., 2015). As such
the model is overconfident. When an observation – often far from the ensemble – is assimilated,
only few particles – and in the worst case only one – are considered relevant. The others are
discarded. This degeneracy is referred to as filter divergence. The weakness of the method can be
explained by at least two facts. At the initial time, the random perturbations lives in a huge state
space. Computational limitation leads to the setup of only a small-size ensemble, thus spanning
only a small part of the state-space (Mitchell and Gottwald, 2012; Gottwald and Harlim, 2013). As
a consequence, without any adhoc compensation, the ensemble variance is underestimated. The
compensation method is called covariance inflation (Anderson and Anderson, 1999). The ensemble
covariance is multiplied by a carefully-tuned parameter. Furthermore, such a compensation may
lead to unphysical behaviors. In any case, the ensemble covariance is usually strongly erroneous.
Moreover, these random perturbations are injected at small scales and are hence quickly diffused
by the subgrid tensor. From a dynamical system point of view, subgrid tensor makes small-scale
components of the solution more stable. Without fully resolved non-linear mechanisms of energy
redistribution, the particles tend to align asymptotically with the most unstable directions (Tre-
visan and Uboldi, 2004; Trevisan and Palatella, 2011; Mitchell and Gottwald, 2012; Sapsis, 2013;
Gottwald and Harlim, 2013). Thus, as time evolves the ensemble spans a smaller and smaller space.

Other works preferably address the modeling of errors related to wrong dynamics. Indeed, as
long as all the scales are not resolved, subgrid dynamics are modeled rather than resolved. This
continuously introduces errors which also grow in time due to chaotic behaviors. A natural way to
address this UQ is to continuously introduce noise in the dynamics. The simplest random models
are defined from linear Langevin equations with additive Gaussian noise. This has already been
discussed above for stochastic backscatter methods. We may add the linear inverse models (Penland
and Matrosova, 1994; Penland and Sardeshmukh, 1995). Keating et al. (2012) also uses a linear
evolution model with Gaussian noise for a filtering purpose. However, the parameters of the models
are themselves OU processes making the solution not Gaussian and more flexible. This method
– well known in the filtering community – is referred to as Stochastic Parametrized Extended
Kalman Filter (SPEKF) (Gottwald and Harlim, 2013). Among other empirical stochastic models,
the Stochastic Perturbed Physics Tendency scheme (SPPT) introduces a correlated multiplicative
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noise (Buizza et al., 1999). SPPT and SKEBS methods have been sucessfully applied in operational
weather forecast centers (Franzke et al., 2015).

In fluid dynamics, due to non-linearities, the targeted probability density of the solution is
highly non-Gaussian and relevant stochastic dynamical models are difficult to derive. In this
perspective, an attractive path would be to infer randomness from physics (Berner et al., 2015).
Yet as Navier-Stokes equations are deterministic, this path is not straightforward. To derive large-
scale fluid dynamical model, the time-scale separation assumption is convenient. In the seventies,
Hasselmann (1976) already relied on it for geophysical fluid dynamics. In his seminal work, the
large-scale dynamics were encoded by both mean terms and noise terms. However, eventually
only simple multidimensional OU process was considered. The time-scale separation assumption
is also the foundation of the more rigorous averaging and homogenization theories (Kurtz, 1973;
Papanicolaou and Kohler, 1974; Givon et al., 2004; Mitchell and Gottwald, 2012; Gottwald and
Melbourne, 2013; Gottwald and Harlim, 2013; Franzke et al., 2015; Gottwald et al., 2015). As the
time-scale separation goes to infinity, the large-scale dynamics will converge according to averaging
or to homogenization depending on the structure of the global model. The global dynamics as well
as the limit large-scale dynamics can be differential equations or SDEs. In the large-scale equation,
terms which are only functions of the small-scale variable often tend to converge to a white-noise-
in-time term in the Stratonovich sense with a covariance of the Green-Kubo type. Nevertheless, it
is not always true for nonlinear dynamics. Sometimes, the noise has to be understood in the sense
of Ito or Marcus stochastic integral. In the last case, the noise is a Levy process (Gottwald and
Melbourne, 2013; Gottwald et al., 2015). A successful application of the homogenization theory
in geophysics are the MTV algorithms (Majda et al., 1999, 2001; Franzke et al., 2005; Majda
et al., 2008). MTV refers to the names of the three main authors: Majda, Timofeyev and Vanden-
Eijnden. In practice, the non-linearity of the small-scale equation is empirically replaced by a
noise term and a damping term before the homogenization procedure. The homogenized dynamics
obtained are cubic with correlated additive and multiplicative (CAM) noises. Even without dealing
with Levy processes, this structure is able to produce intermittency and extreme events especially
because of the CAM noise. This specific form has also been used to infer data-driven models.
Peavoy et al. (2015) proposed an example of such a model which uses energy constrained Bayesian
estimators and artificial additional observations through Brownian bridge. Another method called
invariant manifold theory also invokes a time-scale separation. Yet it relies directly on the SDE
solution rather than on its probability density (Givon et al., 2004; Gottwald and Harlim, 2013).
It has shown good UQ skills especially because it makes multiplicative noise appear in the limit
dynamics. To conclude on these methods, for complicated non-linear dynamical systems, it is still
not clear on how to perform homogenization and when this is possible. Moreover, the theory does
not make the noise covariance explicit enough and it has to be estimated on data. During this
step, some Gaussian approximation are usually done when estimating the coefficients of the model.
Some homogenization methods like the MTV algorithm may suffer from energy-conservation issues.
Nevertheless, workarounds exist (Frank and Gottwald, 2013; Jain et al., 2014). In addition, the
homogenization methods have shown successful results in the context of reduced order models and
suggest that geophysical stochastic fluid dynamic models should involve CAM noises. When there
is no time-scale separation, the large-scale system can become non-Markovian. For deterministic
dynamics, this is readily shown by the Mori-Zwanzig equation (Givon et al., 2004; Gottwald et al.,
2015). Indeed, this explicit expression of the large-scale observables of interest involves a memory
term.

The study of Mémin (2014) and this thesis follow another approach referred to as models under
location uncertainty based on stochastic calculus and Ito-Wentzell formula (Kunita, 1997). This
formula as well as basic tools of stochastic calculus will be recalled in Chapter 1. Brzeźniak et al.
(1991) first introduces the idea but forgot the Wentzell term of the Ito-Wentzell formula. Then,
Mikulevicius and Rozovskii (2004) and Flandoli (2011) introduced the right formula. Their works
have focused on pure mathematical aims: existence and uniqueness of SPDE solutions. Neves and
Olivera (2015) also studied the wellposedness of similar SPDE using the derivation of the previous
authors. In this approach, we understand the large-scale point of view as a subsampling in time.
This point of view makes the small-scale component of the velocity look uncorrelated in time.
This changes the usual expression of the material derivative and most fluid dynamics equations.
This approach referred to as modeling under location uncertainty will be discussed in chapters 2,
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3, 4, 5, 6, 7 and 8. Recently, Holm (2015) derived similar evolution laws from the inviscid and
adiabatic framework of Lagrangian mechanics. Compared to models under location uncertainty,
the stochastic transport of scalars is identical. However, the momentum evolution of Holm (2015)
involves an additional term which imposes the helicity conservation but may increase the kinetic
energy.

When industrial constraints are such that no simulation of PDE or SPDE is possible – e.g. real
time simulation constraint – one has to turn to Reduced Order Models (ROM). In fluid dynamics,
they have a lot of similarities with large-scale simulations. Note that a large-scale simulation with
periodic boundaries conditions correspond to a ROM where the resolved modes are the Fourier
modes with frequencies smaller than the mesh-grid resolution. Obviously, they are better choices
than the Fourier basis.

The most famous ROM methods are: Proper Orthogonal Decomposition (POD), Polynomial
Chaos (PC), Proper Generalized Decomposition (PGD), Bi-Orthogonal (BO) or Dynamically Or-
thogonal (DO) methods. The POD (Holmes et al., 1998), also called Empirical Orthogonal Func-
tions method (EOF), on which we will focus, separates the time and the space dependence. If the
system is random, the associated POD ROM, which describes the time evolution of the solution,
will be random as well (e.g. Franzke et al., 2005; Majda et al., 2008; Sapsis and Majda, 2013c).
The PC (Le Maitre et al., 2002) separates the randomness and the space-time dependence. This
method, widely used in UQ, especially addresses the modeling of random parameters. The PGD
(Chinesta et al., 2011) separates all the coordinates of the solution, which can be spatial and/or
temporal coordinates but also parameters or randomness. Finally, the DO (Sapsis, 2011; Sapsis
and Lermusiaux, 2012; Sapsis, 2013; Sapsis and Majda, 2013b) and the BO (Choi et al., 2014) re-
duced order models, which can be considered as generalizations of POD and PC methods (Sapsis,
2011), rely on random temporal modes and time-dependent spatial modes. Some improvements
can make the ROM dimension dynamical (Sapsis and Lermusiaux, 2012). Reduced Order Modified
Quasilinear Gaussian (ROMQG) methods improve the ROM efficiency by simulating high order
moments using few modes through MCMC (Markov Chain Monte Carlo) whereas first and second
order moments of a larger set follow differential equations. Sapsis and Majda (2013c) applied this
formalism to bases which are constant in time (e.g. Fourier modes, POD) whereas Sapsis and Ma-
jda (2013b) applied it to DO. The ROMQG method is based on the Modified Quasilinear Gaussian
(MQG) method (Sapsis and Majda, 2013a) which is not restricted to dimensionally reduced sys-
tem. This model approximates the third-order moment in the covariance evolution law in order to
redistribute the right amounts of energy between modes. Based on stationary regime information,
dampings and noises are specified in that way. Without any additional parametrization, models
under location uncertainty naturally conserve the energy. As illustrated in chapters 2, 3 and 8,
the combine effect of multiplicative noise and diffusion accurately redistributes the energy at every
time instant.

In the POD framework, the velocity is assumed to live in a reduced subspace spanned by the
so-called spatial modes. They are learned from data through a Karhunen-Loeve decomposition.
The corresponding ROM is generally obtained through a Galerkin projection of the evolution laws
onto the spatial modes. The ROM is hence composed of a finite set of coupled ordinary differential
equations. They describe the time evolution of a reduced number of velocity modes. However,
considering only a small number of modes ignores the small-scale contributions. This yields the
same type of issues as in large-scale simulations. In particular, it usually destabilizes the system
and shifts the temporal frequencies. To overcome this issue, some authors empirically introduce an
eddy viscosity term in the reduced model (e.g. Aubry et al., 1988; Rempfer and Fasel, 1994; Östh
et al., 2014; Protas et al., 2015). Other authors (Carlberg et al., 2011) perform non-linear Galerkin
methods, with the same spatial modes. This leads to another form of the reduced model, that will
not be investigated in this thesis. As explained earlier, MTV algorithms rely on homogenization
theories (Franzke et al., 2005; Majda et al., 2008). This method also addresses the UQ issues in
ROM. Similar to MTV algorithms, in this thesis we propose new models to be used in the POD
framework. We will propose neither a new method of dimensional reduction, nor a new general
algorithm improving the performances of a dimensional reduction method. We will show that the
transport under location uncertainty enables us to derive deterministic and random POD-ROMs:
quadratic systems with or without CAM noises. Coefficients of these ROMs are learned from re-



xxv

solved and unresolved modes. Yet the estimators are based on the physical structure of the models
under location uncertainty rather than fitting of the evolution of resolved modes. This should make
the estimators more robust. Moreover, their low complexity enables their use in large-dimensional
systems.

ROMs and other models under location uncertainty express subgrid terms such as additional
diffusion with second-order statistics of the unresolved velocity. Although attractive, these expres-
sions cannot be always evaluated since unresolved velocity is hardly observed globally. In such
cases, we have to find another way to parametrize subgrid terms in the models under location un-
certainty and more generally in large-scale models. To constraint the parametrization, mixing has
to be understood. When enough scales are resolved, mixing is the combination of stretching and
folding. One can observe this beautiful process in the froth when stirring one’s coffee. Stretching
stretches pairs of points. Folding bends and folds a set of points, enabling mixing to remain in a
finite volume. Mixing quickly generates smaller and smaller structures (direct cascade) until these
structures are small enough to be dissipated by molecular viscosity or molecular diffusivity. From
this point of view, mixing corresponds to the strengthening of gradients. In contrast, at a given
scale, mixing is associated with the dissipation of gradients. Indeed, when structures become too
small to be seen at this resolution scale or at larger scales, they are often assumed diluted or un-
certain. This point of view is generally used in large-scale models and satellite observations of the
ocean. The time and space resolutions involved are generally much larger than the ones associated
with the true dynamics. This is the reason for replacing complex advection term by smoothing
or other subgrid terms in numerical simulations. Satellite measurements also discard the sparse
and possibly corrupted small-scale information. For instance, the processing of altimetry products
introduce artificial nuggets in the covariance of the optimal interpolation.

This thesis focuses on the influence of large time step rather than large mesh-grid resolution even
though both issues are linked. The models under location uncertainty explicitly use this assumption
of large time step and link this point of view to diffusion. Other works focus on advection during
a large time step with or without taking into account small-scale velocity influence, and relate it
with mixing. Mezić et al. (2010) have introduced a new criterion to diagnose stretching and folding
generated by smooth large-scale velocities after a finite time. Contrary to stretching, folding can
only occurs after a finite time of advection. Many stretching diagnosis exist. Eulerian ones include
in particular the Okubo-Weiss criterion (Okubo, 1970; Weiss, 1991; Shivamoggi and van Heijst,
2011) and improvements (e.g. Lapeyre et al., 1999) but also new criteria (e.g. Haller, 2005). The
Okubo-Weiss criterion assumes the vorticity – quantifying rotation – and the strain-rate tensor
eigenvectors – defining the directions of instantaneous compression and dilation – to be stationary
along the flow. However, these directions often turn with the flow structures. Accordingly, Lapeyre
et al. (1999) generalize the idea assuming that the rotation is stationary along the flow only in the
local frame of these directions. Note that the objective vortex definition of Haller (2005) is not
robust enough in its Eulerian version; in practice, an integration of the flow is necessary. Lagrangian
diagnoses often rely on Finite Time Lyapunov Exponents (FTLE) (Pierrehumbert and Yang, 1993;
Haller and Yuan, 2000; Thiffeault and Boozer, 2001; Haller and Sapsis, 2011; Keating et al., 2011),
Finite Size Lyapunov Exponents (FSLE) (d’Ovidio et al., 2009; Peikert et al., 2014) or diffusivities
(see e.g. Keating et al., 2011). Mendoza and Mancho (2010) also proposed a Lagrangian diagnosis
but it does not directly measure mixing. In contrast, only few works deal with folding (Thiffeault,
2004; Mezić et al., 2010; Budišić and Thiffeault, 2015; Ma et al., 2016), and they all rely on a
Lagrangian point of view.

The Lagrangian advection method is a good example of mixing after a finite time. Initially
developed for atmospheric flows (Sutton et al., 1994; Mariotti et al., 1997; Orsolini et al., 2001;
Legras et al., 2005), the method is now applied to oceanography (Desprès et al., 2011a,b; Berti
and Lapeyre, 2014; Dencausse et al., 2014). The algorithm relies on the advection of a large-scale
tracer by a smooth large-scale velocity, in order to increase the resolution of the tracer field. This
type of tracer direct cascade is called chaotic advection (Pierrehumbert and Yang, 1993). The
original fields are extracted from satellite images or in situ data, at mesoscales (about 100 km
and 1 month). The advection is performed without small scales’ influence for days or weeks and
generates energetic mesoscales and submesoscales (about 10 km) structures. Nevertheless, some of
these structures are unphysical. This drawback is mainly explained by the absence of submesoscale
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velocities. Thus, spatial smoothing is also used in the method. A question remains: how do we
choose the advection time and the filter width for the diffusion? Lagrangian advection algorithm
have also been considered with active tracers (Berti and Lapeyre, 2014). Authors suggest to set
up advection time with the root mean square of vorticity or velocity gradients. We address this
parametrization issue in chapter 9. Beyond the Lagrangian advection method, we aim at better
understanding mixing and at using satellite images to parametrize subgrid terms of large-scale
models especially the models under location uncertainty.

Preview of chapters

The chapter 1 is an introduction which gathers theoretical results. Chapter 6 is a published paper.
Chapters 2, 3, 4, 5 and 7 correspond to manuscripts that have been submitted. Chapters 8 and 9
are manuscripts in preparation. The chapter 10 brings complementary results.

Summary of chapter 1: Stochastic processes and stochastic calculus

In the first chapter, we recall several notions related to random processes and stochastic calcu-
lus. After presenting Gaussian processes and Brownian motions in finite and infinite dimensions,
we briefly give the basic definitions and main properties of stochastic calculus: finite-variation
processes, martingales, semimartingales and quadratic cross-variations. Then, several theorems
are detailed; this concerns: Itō-Wentzell formula, Girsanov theorem as well as Kolmogorov’s and
Fokker-Planck equations. These results supply very powerful tools to handle random functions.
In particular, the Itō-Wentzell formula expresses the time derivative of the composition of two
random functions. The modeling under location uncertainty developed in chapters 2, 3, 4, 5, 6,
7 and 8 heavily relies on this theorem. We also present the multidimensional versions of two
famous processes: the Ornstein-Uhlenbeck (OU) and the geometric Brownian motion. In this
finite-dimensional framework, we give some insights on the algebraic structure of the evolution
laws involved in the modeling under location uncertainty. After this, we review some methods to
estimate diffusion coefficients. This point will be useful for chapters 6, 7 and 8. Before concluding,
pros and cons of Stratonovich and Itō notations are discussed. Finally, we open the discussion
with more general tools from statistical physics where the differential operators involved in the
previously cited theorems are no longer restricted to the second order.

Summary of chapter 2: Geophysical flows under location uncertainty,
Part I: Random transport and general models

The first part develops the general framework of modeling under location uncertainty introduced
by Mémin (2014). This principle relies on the assumption of a small-scale velocity random and
uncorrelated in time. This hypothesis originates from the observation that the time steps of both
the simulations and the measurements of geophysical flows are much larger than the smallest hy-
drodynamical time scales. This assumption changes the material derivative expression introducing
an advection correction, a multiplicative noise and an inhomogeneous and anisotropic diffusion.
Under divergence-free conditions, this stochastic material derivative has the remarkable property
of conserving the energy for each realization. The balanced effects of noise and diffusion enable
our model to better take into account energy fluxes between the tracer’s components than a de-
terministic material derivative. In particular, part of the energy of the tracer’s (ensemble) mean is
continuously transferred to the random tracer component. This random energy exchange consti-
tutes a suitable property for uncertainty quantification. Finally, the Jacobian’s evolution law and
some similarities with the Kraichnan model are presented.

In the second part, general fluid dynamic conservations – mass, internal energy, salinity and mo-
mentum – are expressed in the location uncertainty framework. From them, a stochastic Boussinesq
model can be derived. Under the presence of a stationary background gradient (e.g. stratification),
stochastic forcings of randomly transported quantities are combinations of correlated additive and
multiplicative noises. The additive noise transfers energy from the background to the anomaly
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and increases its variance. Effects of the additive noise on the transport of buoyancy are study
through a toy model of buoyancy oscillations. Assuming the large-scale velocity to be smooth in
time enables us to split the momentum equation into two equations: one for the large-scale terms
and one for the small-scale terms. This chapter also summarizes the main steps of derivation of
models under location uncertainty as well as possible parametrizations.

Summary of chapter 3: Geophysical flows under location uncertainty,
Part II: Quasi-geostrophy and efficient ensemble spreading
Following chapter 2, simplified mesoscale models are derived. In addition to the strong stratification
and strong rotation assumptions, subgrid tensor terms have to be scaled. The scaling considered in
this chapter leads to a Quasi-Geostrophic (QG) model referred to as under moderate uncertainty.
The Potential Vorticity (PV) is conserved up to three source terms. The first one is due to
inhomogeneities of the advection correction and turbulent diffusion of the velocity; the second one
encodes interactions between Coriolis frequency and inhomogeneous subgrid eddies; The last one
results from the joint action of resolved and unresolved velocity. Since this last term is uncorrelated
in time, it increases the potential enstrophy. Assuming zero PV in the fluid interior yields the
classical Surface Quasi-Geostrophic (SQG) relationship between large-scale velocity and buoyancy.
As such, the transport under location uncertainty of buoyancy at the surface has been referred to
as the SQG model under Moderate Uncertainty (SQGMU ).

As an illustration of the potential of the modeling under location uncertainty, numerical sim-
ulations of the SQGMU model are performed with a homogeneous unresolved velocity. Two sim-
ulations of the deterministic SQG model are also described: one at the same coarse resolution for
comparison and one at a higher resolution chosen as a reference. The simulation using the SQGMU

model is found to better resolve small-scale structures than the deterministic model at the same
resolution. More precisely, the SQGMU model resolves filament instabilities and the subsequent
creation of small eddies called “pearl necklaces”. Then, the balance between noise and diffusion
prescribed by our framework is visually confirmed by spatial and spectral buoyancy fields. After
this, an ensemble of simulations has been performed with the SQGMU model. The ensemble ac-
curately estimates the amplitudes and the positions of its own errors at each time step in both
spatial and spectral spaces. On the contrary, an ensemble generated by the deterministic model
with random initial conditions underestimates the errors by one order of magnitude. Moreover, an
analysis of higher order moments of the SQGMU ensemble correctly identifies “pearl necklaces” as
cold or warm extreme events.

Summary of chapter 4: Geophysical flows under location uncertainty,
Part III: SQG and frontal dynamics under strong turbulence conditions
This chapter explores another scaling of the random Boussinesq model derived in chapter chapter
2. Compared to chapter 3, subgrid dynamics have a stronger influence. However, others terms
scale as in chapter 3. The strong rotation assumption leads to a modified geostrophic equilibrium
involving a divergence of the horizontal velocity. Then, the strong rotation yields directly a zero
PV in the fluid interior and a modified SQG relationship. This model has been referred to as the
SQG model under Strong Uncertainty (SQGSU ).

The modified geostrophic balance provides a simple relationship between vorticity and diver-
gence of the horizontal velocity. This diagnosis is successfully tested with realistic very-high-
resolution model outputs (Gula et al., 2015). This test also enables us to estimate a realistic
horizontal diffusion coefficient and to verify a posteriori our strong uncertainty assumption. The
divergent (ageostrophic) velocity component expresses the frontolysis on warm sides of fronts and
the frontogenesis on cold sides of fronts in the upper ocean.

Summary of chapter 5: Bifurcations and location uncertainty in geophys-
ical fluid flows
This chapter is a natural follow-up of chapter 3. Modeling under location uncertainty is also
studied through the example of the homogeneous SQGMU model for a flow in a similar geometry.
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Nevertheless, the focus here concerns a bifurcation appearing after a predictive time scale.
After briefly recalling the main aspects of modeling under location uncertainty and the SQGMU

model, the bifurcation due to a symmetry breaking is studied with the deterministic SQG model
at high resolution. A slight modification of the initial conditions leads to a major change after one-
month of advection: two scenarios are identified. Due to the unavoidable subgrid tensor, within
the same initial condition, the deterministic SQG model with two different resolutions yields two
different scenarios. A stochastic approach is hence needed at coarse resolution. Two ensembles
are simulated: one with the classical evolution law and random initial conditions and one with
the SQGMU model. To visually analyze the ensembles, a Karhunen-Loève decomposition of the
ensemble is performed at each time step. In this case study, the first mode of the decomposition
is sufficient for a qualitative description. Its estimated probability density function is tracked for
both ensembles. Only the ensemble associated with the SQGMU model is found to be statistically
converged and to correctly describe both scenarios. Furthermore, this ensemble is closer to the
reference. For the method with random initial conditions, the need for a higher number of particles
is related to its well-known underdispersive behavior. This is due to both the initial sampling and
the badly resolved evolution law. In contrast, the modeling under location uncertainty involves
an inhomogeneous random forcing even if the unresolved velocity is homogeneous; this property
makes the ensemble spread more efficiently and enables us to use less realizations to represent the
ensemble.

Summary of chapter 6: Reduced flow models from a stochastic Navier-
Stokes representation
This chapter uses the modeling under location uncertainty to derive a deterministic Reduced Order
Model (ROM) for fluid flows.

ROMs express solutions of PDEs or SPDEs on reduced bases. These bases are learned from data
and generally optimize a specific criterion. This thesis focuses on Proper Orthogonal Decomposition
(POD). The associated basis is a set of functions of space referred to as spatial modes which
encodes the maximum of the solution’s spatio-temporal variability. The coefficients of the velocity
expression in that basis are called temporal modes. After a Galerkin projection of the evolution law
onto the basis, additional terms are often needed to model the influence of unresolved modes. In this
thesis, we propose two POD ROMs based on two different stochastic Navier-Stokes representations
for two different applications: a deterministic model for LES-like simulation in chapters 6 and 7
and a stochastic model for UQ purpose in chapter 8. Both rely on the modeling under location
uncertainty but with different assumptions.

In the first approach, the large-scale velocity and hence the resolved temporal modes are as-
sumed to be differentiable with respect to (w.r.t.) time. As in Mémin (2014) and chapter 2, this
leads in the context of modeling under location uncertainty to a large-scale Navier-Stokes repre-
sentation without noise. An advection correction and an inhomogeneous and anisotropic diffusion
appear both in the PDE and in the associated ROM. They are parametrized by the one-time
one-point quadratic cross-variation matrix of the flow. This inhomogeneous matrix is referred to
as the variance tensor. The chapter proposes two ways of estimating it based on the residual
velocity. When the variance tensor is assumed to be stationary, a temporal averaging easily yields
the result. For the non-stationary case, stochastic calculus still enables to estimate the variance
tensor by decomposing it on a temporal basis (Genon-Catalot et al., 1992). By using the temporal
modes of the POD as the temporal basis, the ROM remains autonomous. In addition, an optimal
time step is estimated on the resolved modes to speed up the ROM simulation and improve the
variance tensor estimation. Finally, the ROM successfully reconstructs the temporal modes of two
wake flows at Reynolds 300 and 3900. The sub-grid tensor stabilizes the reduced system, even at
high Reynolds, and the effective advection corrects the frequency shift.

Summary of chapter 7: Stochastic modeling and diffusion modes for POD
models and small-scale flow analysis
This chapter is a follow-up of the previous one. We recall the principle of modeling under lo-
cation uncertainty, the associated Navier-Stokes representation with smooth large-scale velocity;
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the ensuing POD ROM and the two types of variance tensor estimation. The decomposition of
the variance tensor on a temporal basis defines what we call the diffusion modes. This chapter
proposes an estimation of modal characteristic times instead of a single time as in the previous
chapter. For each resolved temporal mode, a characteristic time is associated. Since the variance
tensor estimator depends on this characteristic time, the evolution equation of each resolved mode
relies on a different variance tensor and hence a different subgrid tensor. This method strongly
improves the reconstruction of temporal modes. Without any fit, our reconstruction becomes bet-
ter than – or at least as good as – the POD ROM with modal eddy viscosity (Rempfer and Fasel,
1994) optimally fitted on the resolved modes’ time series. Furthermore, the chapter shows how to
analyze the residual velocity influence through the diffusion modes. As such, this chapter proposes
new data analysis tools complementary to the usual POD decomposition (or Empirical Orthogonal
Functions (EOF)). Such an analysis is impossible through the traditional eddy-viscosity assump-
tion. These diffusion modes unveil the effects of the unresolved velocity component on the resolved
components. We identify regions and directions of main turbulent diffusion. We describe in the
same manner effective advections induced by this unresolved velocity.

Summary of chapter 8: Conservative transport of fluid velocity under
location uncertainty and dimensional reduction
In a second ROM approach, we do not assume the large-scale velocity to be differentiable w.r.t.
time anymore. As such, the large-scale velocity is transported under location uncertainty as every
other tracer. In addition to advection correction and turbulent diffusion, the large-scale Navier-
Stokes model involves a multiplicative noise. This enables more efficient energy transfers and in
particular energy conservation as well as UQ. The algebraic structure of the model is presented. It
leads to a stochastic ROM with random resolved temporal modes. Due to the mode truncation, a
small part of the energy diffused in the ROM leaks to the unresolved modes and enables molecular
viscous dissipation in unresolved modes. The rest backscatters in the reduced system through
the multiplicative random forcing. This analysis holds for any Galerkin projections onto an or-
thonormal basis. The result is hence applicable to ROMs as well as random LES-like numerical
simulations. Compared to previous chapters, more involved estimators are required to estimate the
noises statistics, without resorting to a huge inhomogeneous small-scale velocity spatial covariance
function. The estimation formulas for POD ROM will be presented. The method successfully
forecasts ROMs of two wake flows at Reynolds 300 and 3900. The ROMs stabilize the unstable
modes, prevent the degeneracy of stable modes and, quantify the right amount of errors to keep
the ensemble as close as possible to the reference.

Summary of chapter 9: Effects of smooth flows on tracer gradients and
tracer spectra
The Lagrangian advection method (Sutton et al., 1994; Desprès et al., 2011a; Berti and Lapeyre,
2014) increases the resolution of satellite images of tracers using advection by a smooth altimetry-
derived velocity. This advection creates mesoscales and submesoscales structures. Notwithstand-
ing, due to the coarse spatio-temporal resolution of the involved fields, some of these structures
are unphysical. Thus, an additional spatial smoothing of the tracer as well as a careful monitoring
of the advection time are necessary. The aim of this chapter is to better understand the formation
process of these structures and to give a rule for choosing the advection time and the filter width.

After a finite time, the gradients of an advected smooth tracer have evolved from an initial con-
figuration. We analytically express the final averaged squared norm of these gradients, highlighting
the link with the Cauchy-Green tensor, Finite Time Lyapunov Exponents (FTLE) and mesochronic
velocity (Mezić et al., 2010). The relative angle of the initial gradient tracer influences the rate of
strengthening and decreasing of the tracer’s gradients. Yet when the flow and the initial tracer are
weakly correlated, the averaged squared norm of the tracer gradients can only increase. Moreover,
the growth rate does not depend on the tracer. This gradient strengthening is due to the combined
action of stretching and folding – so-called mixing – of tracer structures. By these process, those
structures cascade to smaller and smaller scales. This point of view on mixing is associated with
smooth tracers. In contrast, numerical simulations that are under-resolved in space or time such
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as the models under location uncertainty dilute tracer structures when they are smaller than the
resolution scale. Beside passive tracers, such a weak correlation with the flow is also observed in
the Lagrangian advection method because of the tracer prior spatial smoothing. Furthermore, the
geostrophic time scale of the involved velocity is large compared to the evolution of submesoscale
tracer gradients. Thus, for this specific application, the Eulerian velocity is almost stationary and
creates locally uniform shears and stationary convective cells. The first ones stretch the tracer
along a straight line whereas the second ones fold and wrap the tracer around vortices. When the
advection time is too long, this wrapping makes unphysical spiral structures appear in the tracer.
From these two types of behaviors, we infer a model linear in time for the growth rate of tracer
gradients. This model is only parametrized by the large-scale Eulerian velocity. After that, we
show that the squared norm mean of these gradients specifies the correlation length of the tracer
covariance and thus the position of its spectrum tail. By analytically monitoring the small scales’
intensification in the Fourier space, we can specify the filter width of the Lagrangian advection
method but also eddy diffusivity to parametrize numerical simulations of large-scale flows such as
models under location uncertainty. Numerical experiments with a toy flow as well as real satellite
images illustrate each of our theoretical results. In particular, we accurately predict the global and
local distribution of stretching over the space of a finite-time advection. This work also highlights
the important effect of folding in finite-time mixing.

Summary of chapter 10: Additional results
This chapter first presents the models under location uncertainty with the Stratonovich notations
instead of Itō ones. This clarifies the expression of corrective drift in these models. Then, we
compare the models under location uncertainty with the recent work of Holm (2015). Finally, we
review the derivation of the geophysical models under location uncertainty.



Chapter 1

Stochastic processes and stochastic
calculus

Abstract

In this thesis, we use intensively the stochastic calculus formalism, especially in infinite dimension.
This formalism, which enables handling evolving random functions, will be interpreted physically
in the next chapters. Therefore, in this chapter, we recall useful definitions and properties of this
theory. We also present several of its powerful tools, such as the Itō-Wentzell formula. Examples
of stochastic differential equations (SDE) are subsequently given. Then, since we intend to make
the most of the Itō formalism, some estimation methods based on it are exposed. After that, we
discuss the pros and cons of Stratonovich and Itō notations. Finally, we briefly present another
stochastic processes theory, which goes beyond stochastic calculus for some results.

In all this section, we use a sample space Ω̆, a probability measure P and the associated
probability space (Ω̆,P(Ω̆),P). Moreover, all the functions of space are assumed to be smooth.

1.1 Gaussian processes and Brownian motions

1.1.1 Definition and notations

Here, we recall quickly what is a Gaussian process. We also fix the notations used in this thesis.
A Gaussian process is a function x→ f(x) such that, for all n and for all x1, ...,xn, (f(x1), ..., f(xn))

is a Gaussian vector. The law of a real Gaussian process is defined by its mean x 7→ m(x)
4
= E(f(x))

and its covariance (x,y) 7→ γ(x,y)
4
= E(f(x)f̄(y)). We note f ∼ GP(m, γ) to express that f fol-

lows a Gaussian distribution of mean m and covariance γ. In the complex case, we need to add a
relation function (x,y) 7→ C(x,y)

4
= E(f(x)f(y)). In this case, the previous notation is extended

to f ∼ CGP(m, γ,C). Moreover, a function γ is a covariance function if and only if it is symmetric
and positive semi-definite.

1.1.2 Finite dimensional Brownian motion

A real multidimensional Brownian motion is a centered Gaussian process with covariance (t1, t2)→
min(t1, t2)Id. Its time increments are decorrelated: (Bt1 −Bt2) ⊥⊥ (Bt3 −Bt4) if t1 < t2 6 t3 < t4.
It is continuous w.r.t. (with respect to) time but not differentiable. In signal processing and in
physics, we consider its derivative as a white noise. However, since the covariance of a white noise
is a distribution (a Dirac), it is only a formal derivative.

1



2 CHAPTER 1. STOCHASTIC PROCESSES AND STOCHASTIC CALCULUS

1.1.3 Infinite dimensional Brownian motion: Id-cylindrical Wiener pro-
cess

In this thesis, we will deal with stochastic partial differential equations. Therefore, we need a
functional Brownian motion t 7→ (x 7→ Bt(x)) which lives in an infinite dimensional space such as
L2
(
Rd
)
. We need, similarly to the finite dimensional case, each component to be independent:

Bt(x) ⊥⊥ Bt(y) if x 6= y. This would lead to a covariance E(Bt1(x)Bt2(y)) = min(t1, t2)δ(x− y).
This means that its variance is infinite, which is not suitable for a mathematical (or physical) def-
inition. A workaround consists in defining the output of a linear application, when the argument
is an infinite dimensional Brownian motion. We will define first a Q-Wiener process and then,
and Id-cylindrical Wiener process, which is the interesting object. The following definitions and
properties come from Da Prato and Zabczyk (1992) and Prévôt and Röckner (2007).

If Q : f ∈ L2
(
Rd
)
7→ Q[f ] ∈ L2

(
Rd
)
is a symmetric, non negative, trace class operator, with

Q[f ](x) =
∫
Rd Q̆(x,y)f(y)dy, then a Q-Wiener process t 7→ BQt is defined as a centered Gaussian

process with covariance:

E
(
BQt1(x)BQt2(y)

)
= min(t1, t2)Q̆(x,y)

In this case, due to the trace class property of Q, E(BQt (x))2 and E‖BQt ‖2L2(Rd) are bounded.
For the cylindrical Wiener process, the construction is more involved. We will denote by (ek)k∈N
an orthonormal and complete basis of L2

(
Rd
)
and J the following Hilbert-Schmidt embedding:

f ∈ L2
(
Rd
)
7−→ J(f) =

∑
k∈N

1

k
< f, ek > ek ∈ L2

(
Rd
)
.

Since tr(JJ∗) =
∑
k∈N 1/k2 <∞, a (JJ∗)-Wiener process can be defined in L2

(
Rd
)
, through the

previous definition. Then, an Id-cylindrical Wiener process, Bt, is defined as a process such as JBt
is an (JJ∗)-Wiener process. This definition does not depend on the embedding J . In practice, a
general Hilbert-Schmidt embedding, σ, will be used instead of J defined above.

Finally, the interesting property to remember is the following. If σ : f ∈ L2
(
Rd
)
7→ σf ∈(

L2
(
Rd
))d, with (σf)(x) =

∫
Rd σ̆(x,y)f(y)dy, is a linear operator with good properties (an

Hilbert-Schmidt operator), and if t→ Bt is a Id-cylindrical Wiener process, then σBt is a centered
Gaussian process with covariance:

E
(
σ(x)Bt1 (σ(y)Bt2)

T
)

= min(t1, t2)σ(x)σ(y)T = min(t1, t2)

∫
Rd
σ̆(x, z)σ̆T (y, z)dz. (1.1.1)

In other words, the Id-cylindrical Wiener process has the properties of a white noise in space and
of a Brownian motion in time.

Furthermore, functional analysis gives us another relevant result. It is possible to express an
infinite dimensional Brownian motion as a linear combination of classical one-dimensional Brownian
motions. Indeed, if we focus in the example above, the spatial covariance of σBt, σ(x)σ(y)T , is the
kernel of a self-adjoint compact operator. The compactness comes from its trace-class structure.
Therefore, this operator is diagonalizable in an orthonormal complete basis. We will denote by
(φk)k∈N this eigenbasis and (λk)k∈N its eigenvalues:

σ(x)σ(y)T =
∑
k∈N

λkφk(x)φTk (y).

Q-Wiener theory shows that σBt can be decomposed as follows:

σ(x)Bt =
∑
k∈N

√
λkβ

(k)
t φk(x), (1.1.2)

where
(
β

(k)
t

)
k∈N

are independent classical one-dimensional Brownian motions.
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1.2 Basic notions of stochastic calculus

We recall here some basic definitions and properties of finite dimensional stochastic calculus. Here,
for simplicity, we deal only with scalar functions of a compact set of time: t ∈ [0, T ] with T ∈ R∗+.
However, everything can be generalized easily to functions of R+×Ω withΩ ⊂ Rd (see Da Prato and
Zabczyk, 1992; Prévôt and Röckner, 2007; Kunita, 1997). We use a sample space Ω̆, a probability
measure P, a Wiener process, (Bt)t>0, its filtration (F)t>0 (the set of σ-algebra generated by

each Bt), the whole σ-algebra, F 4
= F∞

4
=
⋃
t>0 Ft, and the resulting filtered probability space

(Ω̆,F , (F)t>0 ,P).

1.2.1 Finite variation process

We define first a finite-variations function and, then, a finite-variations process.
A function t → f(t) is a finite variation function if and only if for all a < b and all partition

a = t0 < ... < tn = b of [a, b], lim
∆t→0

∑n
i=1 |f(ti)− f(ti−1)| <∞.

(t, ω)→ f(t, ω) has finite variation if and only if:

• f is adapted (i.e. f(t, .) is Ft measurable),

• For each trajectory ω, f(., ω) is a finite variation function.

Characterization:
f is a finite variation process if and only if ∃g, f(t, .) = f(0, .)+

∫ t
0
g(t′, .)dt′. Classical deterministic

functions constitute finite variation processes.

1.2.2 Martingale

(t, ω)→ f(t, ω) is a martingale if and only if:

• f is adapted,

• f(t, .) ∈ L1
Ω̆

4
= {Y : E|Y | <∞},

• ∀s < t, E(f(t, .)|Fs) = f(s, .).

In particular, if f = 0 at t = 0, then f is a centered process.
Characterization:
f is a martingale if and only if ∃g, f(t, .) = f(0, .) +

∫ t
0
g(t′, .)dBt′ , where

∫ t
0
g(t′, .)dBt′ denotes the

Itō integral.

1.2.3 Continuous semimartingale, Itō and diffusion processes

A function f is a continuous semimartingale if and only if it is the sum of a finite variation process
and a martingale.
Semimartingales are sometimes referred to as Itō processes. Stochastic calculus deals only with
semimartingales. However, in our fluid dynamics representation, we also deal with time-decorrelated
processes, formally, the differentiation along the time of a martingale.
A diffusion process is an Itō process which is a solution of an autonomous SDE.

1.2.4 Quadratic variation and quadratic cross-variation

If f and g are semimartingale and f(t = 0) = g(t = 0) = 0, then, their quadratic cross-variation,
noted < f, g >, is the unique finite variation process such as fg− < f, g > is a martingale and
< f, g >t=0= 0 .
Characterization:
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• If f(t, .) =
∫ t

0
f1(t′)dt′+

∫ t
0
f2(t′)dBt′ and g(t, .) =

∫ t
0
g1(t′)dt′+

∫ t
0
g2(t′)dBt′ , then < f, g >t=∫ t

0
f2(t′)g2(t′)dt′.

One should notice that, if f2 and g2 are random, < f, g > is also random.

• < f, g >t= P− lim
∆t→0

∑tn=t
ti=0 (f(ti)− f(ti−1))(g(ti)− g(ti−1)).

Thus, < f, g > may be interpreted as a kind of ”covariance along the time” of the time increments.
It should be noted that finite variation processes have a null quadratic variation.

1.2.5 Integral notations

In stochastic calculus, we use integral equations rather than differential equations. It is due to
the fact that the Brownian motion is properly defined whereas, its derivative, the white noise,
is defined only in the sense of distributions (Arnold, 1974). To simplify the notations, we write
df = gdt + hdBt instead of f(t) − f(0) =

∫ t
0
g(t′)dt′ +

∫ t
0
h(t′)dBt′ and dy = sdf instead of

y(t) − y(0) =
∫ t

0
s(t′)df(t′) =

∫ t
0
s(t′)g(t′)dt′ +

∫ t
0
s(t′)h(t′)dBt′ . However, it is important to keep

in mind that we only write integral equations.

1.3 Important theorems

In this section, we cite powerful theorems of stochastic calculus theory. We also show a small
property which is very useful in practice: the Itō Isometry. These theorems come from Kunita
(1997) and Oksendal (1998).

1.3.1 Itō-Wentzell Formula

Assuming that (t,x) → f(t,x) ∈ R and (t,y) → g(t,y) ∈ Rd are continuous semimartingales
(as function of time) and f is smooth enough in space, the composition (t,x) → f(t, g(t,y)) is a
continuous semimartingale and (Kunita, 1997, theorem 3.3.1 page 91):

d [f(t, g(t,y))] = dtf + (∇f)Tdg +
1

2
tr(Hfd < g, gT >) + dt < (∇f)T , g >, (1.3.1)

where dth(t,m(t)) = h(t + dt,m(t)) − h(t,m(t)) denotes the time increments of a function h
and Hf the Hessian of f . The time increments dt may be seen as the equivalent of partial
derivative ∂t in deterministic PDEs. More precisely, the time increments (denoted h(dt,m(t)) in
Kunita (1997)) can be defined as dth(t,m(t))

4
= f1(t,m(t,y))dt+ f2(t,m(t,y))dBt if df(t,x) =

f1(t,x)dt+ f2(t,x)dBt.
The Itō formula is used intensively in stochastic calculus. It replaces the Chain rule of the

classical differential calculus. It only applies when f is a deterministic function (or more generally
a bounded variation process). In the specific case where f is itself a semimartingale, the term
dt < (∇f)T , g >= d <

∫ t
0

dt′(∇f)T ,
∫ t

0
dt′g > is added. The formula is referred to as the Itō-

Wentzell formula (or generalized Itō formula) instead of Itō formula. The additional term can be
calculated with the Eulerian semi-martingale expansion of f and g.

1.3.2 Itō Isometry

If df(t) = g(t)dBt, then:
d

dt
E(ffT ) = E(ggT ). (1.3.2)

This property is straightforward from the Itō formula:

d E(ffT ) = dtE(ffT ) = E(f(gdBt)
T ) + E(gdBtf

T ) +
1

2
E(ggT ) +

1

2
E(ggT ) = E(ggT ).

In the last equality, we use the fact that martingales are centered processes.
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1.3.3 Girsanov theorem
Assuming:

• X0 = Y0 = x,

• dXt = b(Xt)dt+ σ(Xt)dBt,

• dYt = (γ(t) + b(Yt)) dt+ σ(Yt)dBt,

• b and σ respect the usual smoothness conditions for existence and uniqueness of solution,

• γ is adapted and almost surely in L2([0, T ]),

• there exists a process, u, adapted and almost surely in L2([0, T ]), such that σ(Yt)u(t) = γ(t),

• E
[
exp

(
1
2

∫ T
0
u2(s)ds

)]
<∞ (Novikov’s condition),

• Mt
4
= exp

(
−
∫ t

0
u(s)dBs − 1

2

∫ t
0
u2(s)ds

)
and dQ(ω) = MT (ω)dP(ω) on the filtration.

Then, the Q-law of Y is the same as the P-law of X.
This is a very powerful theorem for several reasons. First of all, it enables to find an attractive
formulation for the log-likelihood, as we will see later. Moreover, it enables, at least theoretically,
to simulate a SDE with a wrong drift b and to correct this error by changing the law of the solution
directly. In MCMC framework like weighted Ensemble Kalman Filter or Particle Filter (Doucet
et al., 2001; Doucet and Johansen, 2009; Candy, 2011; Papadakis et al., 2010), it would mean to
multiply each particle weight by MT at time T . Therefore, an equation with a quadratic drift, like
in fluid dynamics, could be replaced by an SDE with a linear drift or no drift at all (Romito, 2016).
To prevent misunderstanding, note that Q and P are the law of the processes t 7→ Yt and t 7→ Xt on
the whole interval [0, T ]. The one-time probability distributions (which are marginal distributions
of Q and P) are not expressed explicitly by this theorem.

1.3.4 Kolmogorov’s backward equation
IfX is a diffusion process such as dXt(x) = W (Xt(x))dt+Σ(Xt(x))dBt andXt0(x) = x, then,
its infinitesimal generator L is defined as:

L = W · ∇+
1

2
tr (ΣΣT∇∇T ) , (1.3.3)

and for any mean observable h(x, t) = E {f (Xt(x))}, we have:

∂th = Lh. (1.3.4)

Hence, for any nonlinear dynamics, one can write down an equivalent closed linear differential
equation of the mean observable of interest e.g. the mean large-scale tracer of a flow. At time t,
if the solution of the original dynamical system lives in a finite-dimensional space, the equation
is a partial differential equation. If the solution of the original dynamical system is a function,
the variable of interest at time t is seen as a functional of the initial conditions at all scales. The
equivalent differential equation is a Hopf equation, i.e. an equation with variational derivatives
(Fréchet derivative) instead of partial derivatives (Da Prato and Zabczyk, 1992).

1.3.5 Fokker-Planck equation
Under the same assumptions, we have the evolution of the one-time probability density function
of the solution replacing the generator L by its adjoint L∗:

∂tfX = L∗fX . (1.3.5)

For deterministic dynamics, the equation is of order one and is referred to as the Liouville equation
(Penland, 2003b). Furthermore, the semigroups of Kolmogorov and Fokker-Planck equations are in
this case the Koopman and the Ruelle-Perron-Frobenius operators respectively (Koopman, 1931).
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1.4 Example of classical processes

1.4.1 Ornstein-Uhlenbeck process
In Rn, the SDE of a multidimensional Ornstein-Uhlenbeck (OU) process is:

dXt = −AXtdt+CdBt,

where Bt is a multidimentional Brownian motion. Introducing Zt = eAtXt (which is a martingale
since dZt = eAtCdBt) yields:

Xt = e−AtX0 +

∫ t

0

eA(s−t)CdBs = e−AtX0 +

∫ t

0

e−AsCdB̃s,

where B̃s = Bt−s is also a Brownian motion. Xt is a Gaussian process centered on e−AtE(X0).
Moreover, if C and CT commute withA, the Itō isometry on Zt and the independence of Brownian
motion increments leads to the covariance function of Xt:

γOU (t+ τ, t) = CCTe−A|τ |
(
Id − e−(A+AT )t

)
(A+AT )−1 −→

t→∞
CCTe−A|τ |(A+AT )−1.

For the limit, we assume that (A+AT ) has positive eigenvalues. Otherwise the variance diverges.
Thus, after some time, the OU process becomes stationary, with exponential covariance function.
Its finite correlation time is given by the inverse of eigenvalues of A.

1.4.2 Geometric Brownian motion
The one-dimensional geometric Brownian motion is defined by the following SDE:

dXt = −aXtdt+XtαdBt,

where the constants a and α have real or complex values. Again the variable change, Zt = eatXt,
removes the finite-variations part of the SDE: dZt = ZtαdBt. Then by the Itō formula:

Zt = Z0 exp

(
αBt −

1

2
α2t

)
and Xt = X0 exp

(
αBt −

(
1

2
α2 + a

)
t

)
.

If α is real, Xt has a log-normal law. Since this law has a heavy tail, a geometric Brownian motion
is usually more suitable than an OU process to model phenomena with extreme events, such as
turbulent flows. If α is purely imaginary, Xt turns in the complex plane with a random Gaussian
phase. The variance of this phase increases linearly with time. After a transient state, the phase
modulo 2π overlaps and converges to a uniform distribution on [−π, π]. If a is small enough, its
amplitude increases exponentially. For large a, it decreases exponentially. In any case, the proba-
bility density function of the solution can be written analytically.

In a n-dimensional case, a geometric Brownian motion equation can be formulated as follows:

dXt = −AXtdt+ dCXt with C =
n2∑
k=1

α(k)B
(k)
t , (1.4.1)

where X ∈ Rn and dC the time differentiation of the Gaussian matrix C. The coefficients
(
B(k)

)
k

denote independent one dimensional Brownian motions, whereas the matrices
(
α(k)

)
k
are assumed

constant. If the α(k) commute and if A commutes as well with these matrices, we can then express
the solution as in the one dimensional case through the exponential of a Gaussian matrix:

Xt = exp

(
C −

(
1

2

d

dt
< C,C > +A

)
t

)
X0, (1.4.2)

= exp

 n2∑
k=1

α(k)B
(k)
t −

1

2

n2∑
k=1

(
α(k)

)2

+A

 t

X0. (1.4.3)
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Nevertheless, as far as we know, in the general case, the expression of the solution cannot be written
explicitly. However, the mean ofXt is explicitly known and, by Itō formula, the evolution equation
of its one-time covariance matrix S 4= E

(
(Xt − E(Xt)) (Xt − E(Xt))

T
)
can be formulated as:

E(Xt) = e−AtX0, (1.4.4)

d

dt
S = −(AS + SAT ) +

n2∑
k=1

α(k)S
(
α(k)

)T
+

n2∑
k=1

α(k)E(Xt)E(Xt)
T

(
α(k)

)T
. (1.4.5)

As in the one-dimensional case, we expect extreme events and/or rotations depending on the
eigenvalues of the matrices (α(k))k. Real eigenvalues should lead to extreme events with exponen-
tially decreasing amplitudes. Purely imaginary eigenvalues should undergo rotations with random
phases, and, if A is small, we get exponentially increasing amplitude.

Our stochastic fluid flow dynamics setup – the models under location uncertainty – developed
in the chapters 2, 3, 5 and 8 deals naturally with similar types of SDEs. Yet, our setup deals with
SPDE instead of SDE, qualitative behavior are expected to be similar after spatially discretizing
the SPDE. The slight difference due to numerical truncation error will be discussed in chapter
8. In our setup, the matrix A may be state-dependent (A = A(Xt)) and the matrices (α(k))k
do not commute. However, W = A(Xt) + 1

2
d
dt < C,C > and C are antisymmetric. Hence,

they are diagonalizable in C with pure imaginary eigenvalues. This imposes in particular energy
conservation for each realization:

d

dt
‖X‖22 = 0. (1.4.6)

For n = 2 and W constant, the diagonalization of C reduces the system to a one-dimensional
geometric Brownian motion in C. This problem can easily be solved and the solution rotates ran-
domly (see above). For higher dimensions, the matrix d

dt < C,C > being symmetric negative, it
can be diagonalized in R with negative eigenvalues and the SDE (1.4.1) can be further simplified.
In the following chapters, d

dt < C,C > will correspond to a Laplace-Beltrami operator encoding
turbulent diffusion. Unfortunately, that simplification does not seem sufficient to explicitly write
the semi-group as in (1.4.2) because of the correlations between coefficients of the matrix C. Nev-
ertheless, free probability in the random matrix theory deals with similar equations (Biane, 1997;
Delyon and Yao, 2006; Demni, 2008; Lévy, 2008; Delyon, 2010; Demni and Hmidi, 2012; Cébron,
2014). The matrix −

√
−1C seems similar to a hermitian Brownian matrix and the semigroup of

our equation seems similar to a unitary Brownian matrix when W = 0. Many results exist espe-
cially when the dimension of the system goes to infinity: a very relevant limit for fluid dynamics.
At the limit, the unitary Brownian matrix is called a free multiplicative Brownian matrix. The
limit of the spectral distribution of the unitary Brownian matrix is well described. We remind that
the spectral distribution of a random matrix M is the random measure:

µM =
1

n

n∑
k=1

δλk , (1.4.7)

where (λk)k are the eigenvalues of M . However, random matrix theory and stochastic differential
geometry have not been further studied during the PhD due to lack of time.

1.5 Estimation methods for the noise

In this thesis, we try to benefit from the possibilities offered by stochastic calculus formalism.
Therefore, we have attempted to base our estimation methods on it as well. The statistics based
on stochastic calculus mostly used in finance are called the processes statistics and are at the heart
of a huge literature (Genon-Catalot et al., 1992; Florens-Zmirou, 1993; Genon-Catalot and Jacod,
1993; Hofmann et al., 1999; Sørensen, 2004; Nourdin, 2004; Comte et al., 2007; van Waaij and van
Zanten, 2016). See Rao (1999) for a review of existing methods. Hereafter, we present some of
these methods as well as an estimation algorithm coming from statistical physics. We will consider
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a general SDE

dXt = w(t,Xt)dt+ σ(t,Xt)dBt. (1.5.1)

Let us note that Xt does not have to be the position of a particle. It can be the solution of a
discretized SPDE.
In many cases, we can estimate w using for instance a low-pass filter. After removing it from the
time series, the problem reduces to:

dXt = σ(t,Xt)dBt. (1.5.2)

Generally, only one realization of this semimartingale is available. In the following, N+1 will denote
the number of time steps and ∆t the time step of a path of the observed semimartingale realization.

1.5.1 Constant diffusion coefficient

A constant diffusion coefficient may be relevant for stationary Eulerian statistics:

dXt(x) = σ(x)dBt. (1.5.3)

σ(x) can be estimated separately for each x.

Local covariance matrix estimation

In equation (1.5.3), the process X is the multidimensional Brownian motion σBt. The estimation
of a∆t = σσT∆t is straightforward and stochastic calculus is not required. Indeed, the centered
discrete-time process of small time increments of X, ∆Xti

4
= X(i+1)∆t −Xi∆t = σ(B(i+1)∆t −

Bi∆t), is decorrelated in time and Gaussian. Therefore, the elements of this set are independent
and identically distributed. So, the variance, σ(t)σ(t)T∆t, can be computed averaging the products
of these time increments of X. In other words, the process is ergodic.

a∆t = P− lim
N→+∞

1

N

N∑
i=1

∆Xti(∆Xti)
T . (1.5.4)

The convergence is almost sure by the strong law of large numbers, but, here, only the convergence
in probability will be used. It can be noticed that a is the quadratic covariation of X. Then, even
if w 6= 0,

a∆t =
1

N
a(N∆t) =

1

N
<X,XT >=

1

N
P− lim

∆t→0

N∑
i=1

∆Xti(∆Xti)
T ,

= P− lim
∆t→0

1

N

N∑
i=1

∆Xti(∆Xti)
T .

If the time interval of observation is fixed, the limit ∆t → 0 is equivalent to N → +∞ and we
retrieve (1.5.4). This estimate will be used in chapters 6, 7 and 8. In practice, the process X
is not a real Brownian motion and the time step ∆t has to be chosen carefully to obtain a =
1

∆t

(
1
N <X,XT >

)
. Although simple, this method needs an empirical estimate of ∆t. Chapters

6 and 7 will propose a way to choose this time step from the smallest time scale of the large-scale
velocity dynamics.

Absolute diffusivity

The Brownian motion, X, may be seen as the limit of another process Y L smooth in time, when
the correlation time τY of the associated velocity goes to zero. Generally, this picture is described
with a stationary and homogeneous Lagrangian velocity, wL

Y , (Falkovich et al., 2001; Penland,
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2003b; Klyatskin, 2005; Vallis, 2006; Keating et al., 2011). Denoting, wL
Y , the Lagrangian velocity

and

γwLY (s) = γ̃wLY (s/τY ) = E
{
wL
Y (t1)

(
wL
Y (t1 + s)

)T}
, (1.5.5)

the stationary covariance of this Lagrangian velocity, yields

a =
d

dt
E {XtX

T

t } , (1.5.6)

= lim
τY→0

d

dt
E
{
Y L
t

(
Y L
t

)T}
, (1.5.7)

= lim
τY→0

2ΠS

∫ t

0

ds E
{
wL
Y (0)

(
wL
Y (s)

)T}
, (1.5.8)

= lim
τY→0

2ΠS

∫ t/τY

0

ds γ̃wLY (s), (1.5.9)

= 2ΠS

∫ ∞
0

ds γ̃wLY (s), (1.5.10)

= 2ΠS

∫ ∞
0

ds γwLY (s), (1.5.11)

where ΠS(M) = 1
2 (M +MT ) is the projection on the space of symmetric matrices. The expec-

tation is often defined from an average over initial conditions. This estimator does not depend on
any time step ∆t.

Usually , w and σ(s) are Lagrangian velocities. Accordingly, Y L
t =

∫ t
0
wL
Y (s)ds Xt =∫ t

0
σ(s)dBs are fluid particle displacements labeled by their initial conditions x0. If wE

Y (x, s)

and σE(x, s)Ḃ are Eulerian velocities, Y E
t =

∫ t
0
wE
Y (x, s)ds and XE

t =
∫ t

0
σE(x, s)dBs have no

physical meanings as in (1.5.3). Yet, the same type of estimation is possible for each x of the
Eulerian space. Spatial inhomogeneities of the quadratic variation, a, can be estimated. Note that
the expectation has too be replaced by a spatially or temporally averaging.

Diffusion semigroup

Many other methods allow us to estimate the quadratic variation. Some authors diagonalize
numerically the semigroup P∆t = exp (L∆t) where L(x) = 1

2 tr (a(x)∇∇T ) is the infinitesimal
generator of the diffusion (Rao, 1999; Crommelin and Vanden-Eijnden, 2006; Gottwald et al.,
2015). P∆t is evaluated using

(P∆th)(x) = E {h(X∆t)|X0 = x} . (1.5.12)

The eigenvectors and eigenvalues of P∆t lead to the eigenvectors and eigenvalues of L. Then, the
quadratic covariations encoded in a are optimally chosen in order to make the operator L fit this
diagonalization. Nonetheless, this method is computationally demanding.

Parametric estimation using likelihood

In the literature of processes statistics, a lot of parametric estimation methods rely on likelihood.
Indeed, denoting θ the parameters, even for a non-Gaussian diffusion process, such as

dXt = w(Xt|θ)dt+ σ(Xt|θ)dBt, (1.5.13)

there is a simple expression of the joint likelihood p
(
{X ′t|0 6 t′ 6 t}|θ

)
. The Girsanov theorem

(Oksendal, 1998) cited previously leads as explained in Rao (1999) to the following log-likelihood:

l ({Xt′ |0 6 t′ 6 t}|θ) =

∫ t

0

w(Xt′ |θ)Ta(Xt′ |θ)−1dXt′

−1

2

∫ t

0

w(Xt′ |θ)Ta(Xt′ |θ)−1w(Xt′ |θ)dt′. (1.5.14)
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Note that the Girsanov theorem does not give us the conditional probability density function of
Xt at time t but only the joint probability density function of {Xt′ |0 6 t′ 6 t}. The above formula
is widely used to perform maximum likelihood estimations and Bayesian estimations (Rao, 1999;
Sørensen, 2004; van Waaij and van Zanten, 2016). Nevertheless, maximum likelihood estimation in
continuous time is hardy possible if σ depends on θ. In this case, the estimation method must be
derived either from the discretized version of the stochastic differential equation (1.5.13) or from a
quadratic version computation (1.5.4).

For geophysics, it could be a very powerful tool for at least two main applications. First, it could
be used on Lagrangian data. Secondly, the transport under location uncertainty (see chapters 2, 3,
4, 5 and 8) provides SPDEs to describe geophysical tracers evolutions. After spatial discretization,
these SPDEs reduce to the form (1.5.13). A sequence of satellite images of a tracer could hence
be used to estimate a parametrization of the stochastic model. To directly deal with the SPDE,
Da Prato and Zabczyk (1992) derived an infinite-dimensional version of the Girsanov theorem. A
similar expression of the log-likelihood could hence be derived in infinite dimension.

1.5.2 The diffusion coefficient is time varying

Nonparametric method by projection using quadratic variation

Most processes statistics algorithms rely on the hypothesis that σ is either constant in time or in
space (Genon-Catalot et al., 1992; Florens-Zmirou, 1993; Genon-Catalot and Jacod, 1993; Hofmann
et al., 1999; Comte et al., 2007). Again, when we have access to a global Eulerian realization of
the velocity, we can assume that σ do not depend on X in (1.5.2). This assumption enables us to
estimate, for all functions hk, the coefficients:

ck
4
=

∫ T

0

hk(t)a(x, t)dt,

=

∫ T

0

hk(t)d
〈
X, (X)

T
〉
t
,

= P− lim
∆t→0

T∑
ti=0

hk(ti)∆Xti(∆Xti)
T .

Choosing the functions hk as an orthonormal basis of L2([0, T ]) allows to express the tensor a as:

a(t) =
∑
k∈N

ckhk(t).

In the case of a wavelet basis Genon-Catalot et al. (1992) show that such estimators have good
statistical properties: local asymptotic normality of the integrated square errors, together with a
known rate of convergence of its bias and variance. This estimate will be used in chapter 6 and 7.

1.6 Stratonovich versus Itō

The discussion of relying whether on Stratonovich or Itō convention for defining the stochastic
integral is recurrent in physics. Here, we recall the definitions and the links between those two
notations. This will highlight a first important point. Under appropriate assumptions, it is easy
to switch from one integral notation to the other. As a consequence, the most convenient form
can be used to tackle a given issue. Then, we describe the advantages and disadvantages of each
formalism.
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1.6.1 Definitions
The Stratonovich integral is defined as follows (Oksendal, 1998):∫ t

0

Σ(t) ◦ dBt
4
= L2 − lim

∆t→0

t∑
ti=0

Σ

(
ti + ti+1

2

)(
Bti+1

−Bti

)
,

= L2 − lim
∆t→0

t∑
ti=0

Σ (ti) +Σ (ti+1)

2

(
Bti+1 −Bti

)
,

whereas the Itō one is defined as:∫ t

0

Σ(t)dBt
4
= L2 − lim

∆t→0

t∑
ti=0

Σ(ti)
(
Bti+1

−Bti

)
.

1.6.2 Links between the two notations
If Σ does depend on X, the two following SDEs are equivalents (Oksendal, 1998):

dXt = W (t,Xt)dt+Σ(t,Xt) ◦ dY t, (1.6.1)

dXt = W (t,Xt)dt+
1

2

d∑
p,q=1

((Σ•p ·∇)Σ•q) (t,Xt)d < Yp, Yq >t +Σ(t,Xt)dY t.(1.6.2)

More generally, the theorem 3.2.5 page 60 of Kunita (1997) states that:

dXt
4
= Σ(t) ◦ dY t = Σ(t)dY t +

1

2
d < Σ,Y >t . (1.6.3)

This can be reformulated as follows. Let Z be a process possibly related to Y , we have:

W (t,Zt)dt+Σ(t,Zt) ◦ dY t = W (t,Zt)dt+
1

2
[dt < Σ,Y >t] (t,Zt)

+
1

2

d∑
i,j=1

∂iΣ•j(t,Zt)d < Zi, Yj >t +Σ(t,Zt)dY t. (1.6.4)

Sketch of proof:∫ T

0

Σ(t,Zt) ◦ dY t = L2 − lim
∆t→0

T∑
ti=0

Σ (ti,Zti) +Σ
(
ti+1,Zti+1

)
2

(
Y ti+1 − Y ti

)
, (1.6.5)

= L2 − lim
∆t→0

T∑
ti=0

Σ
(
ti+1,Zti+1

)
−Σ (ti,Zti)

2

(
Y ti+1

− Y ti

)
(1.6.6)

+L2 − lim
∆t→0

T∑
ti=0

Σ (ti,Zti)
(
Y ti+1

− Y ti

)
, (1.6.7)

=
1

2
< Σ̃,Y >t +

∫ T

0

Σ(t,Zt)dY t, (1.6.8)

where Σ̃(t) = Σ(t, Zt). Its differential can be computed through the Ito-Wentzell formula (1.3.1),
which yields:

d < Σ̃p•,Y >t = dt < Σp•,Y >t +
d∑

p,q=1

(∇Σpq)T d < Z, Yq >t . (1.6.9)

Re-injecting this expression in the above integral equation yields the result.
Therefore, depending on the needs, one can use the Itō or the Stratonovich formalism alterna-

tively.
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1.6.3 Advantages of each setups

The Stratonovich integral possesses properties which are advantageous for some issues. First,
if we measure dXt = W (t,Xt)dt + Σ(t,Xt)dBt by

Xti+1
−Xti−1

2 , the estimated drift may be
interpreted, as a time centered estimate, with the Stratonovich convention. Moreover, if the noise
or the fast dynamic of deterministic or stochastic equation is a continuous process with infinitesimal
correlation time, the solution of this SDE generally converges to the solution of another SDE. In this
other SDE, the noise term is often replaced by a Stratonovich integral (Arnold, 1974). Nevertheless,
it is not always true for nonlinear dynamics. Sometimes, it has to be understood in the sense of
Ito or Marcus stochastic integrals. In the last case, the noise is a Levy process (Gottwald and
Melbourne, 2013; Gottwald et al., 2015). The Stratonovich framework involves formulae close to
the deterministic differential calculus. For instance, the Itō-Wentzell formula with Stratonovich
integrals reads (theorem 3.3.2 Kunita, 1997):

d (f(t, g(t,y))) = f(◦ dt, g(t,y)) + (∇f)T ◦ dg, (1.6.10)

where f(◦ dt, g(t,y)) = f3(t, g(t,y))dt+f2(t, g(t,y))◦dBt if df(t,x) = f3(t,x)dt+f2(t,x)◦dBt

(Chow, 2014) and (∇f)T ◦ dg = (∇f)Tg3(t,y)dt+ (∇f)Tg2(t,y) ◦ dBt if dg(t,y) = g3(t,y)dt+
g2(t,y)◦dBt. Nonetheless, these notations need to be handled very carefully. Indeed, f(◦ dt, g(t,y))
has to be used with Stratonovich notations for f and g whereas f(dt, g(t,y)) has to be used with
Itō notations for f and g.

The Itō formalism provides also several advantages. When it comes to the numerical simulation
of a SDE, only this formalism can be used. Moreover, in Itō SDEs, the "noise terms" f(t,Xt)dBt

are always centered, since it is a martingale time increment. Conversely, f(t,Xt)◦dBt is not always
centered. For instance, Bt ◦ dBt = 1

2dt + BtdBt (by (1.6.3)) is not centered. The Itō notation
more explicitly identifies and separates the “real noise terms” and the other effects induced by
randomization of equations (e.g. diffusion, noise-induced drift, ...). An other consequence is a
much easier derivation of the evolution law of moments as illustrated in the next chapter. Finally,
some measurements like Particle Image Velocimetry (PIV) often estimate velocity withXti+1

−Xti

leading to an Itō convention.

In the following, we often refer to the Itō drift of the fluid flow as “the large-scale component”.
Moreover, as explained in the next chapters, we assume that the large-scale conserved momentum
involved this Itō drift. Although these physical interpretations are debatable, we chose to rely on
Itō formalism for the reasons evoked above. Nevertheless, it remains a choice.

1.7 Generalization to Markovian processes

To conclude this section, we present briefly some formulae which can be seen as a generalization
of some tools of stochastic calculus. We also show good practices to describe random functions
of space and time. This point is also interesting for this thesis as we intensively deal with such
functions in the next chapters. The following comes from the statistical physics work of Klyatskin
(2005).

Even though the stochastic calculus is a very powerful tool, it deals only with semimartingales.
If we do not consider jumps (as we have done so far), the associated infinitesimal generators (1.3.3)
only involve second order terms. In a general analysis of Markovian processes, the infinitesimal
generator can involve an infinite number of orders.
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1.7.1 Analog of the Fokker-Planck equation: one-time density

If t → X(t) is Markovian and fX
4
= E{δ(X(t) − x)} denotes its one-time probability density

function, then:

∂tfX = L∗fX , (1.7.1)

with ∀f, (L∗f)(x, t)
4
=

∞∑
n=1

(−1)n

n!

∂n

∂xn
(Bn(x, t)f(x)) , (1.7.2)

and Bn(x, t)
4
= lim

∆t→0
E
{

(X(t+ ∆t)−X(t))
n

∆t

∣∣∣∣X(t)

}
. (1.7.3)

L∗ is the adjoint of the infinitesimal generator L =
∑∞
n=1

Bn
n!

∂n

∂xn . In stochastic calculus, Bn = 0,
for all n > 2, and we retrieve the Fokker-Planck equation (1.3.5).

1.7.2 Multi-time density
To study a joint probability distribution of {X(t′)|t′ 6 t}, we do not rely on the Fokker-Planck
equation. Instead, we describe the evolution of the functional

ΨX [t, x0;x]
4
= E

{
δ (X(t)− x0) exp

(
i

∫ t

0

dt′ x(t′)X(t′)

)}
, (1.7.4)

which is a functional of any function x, with the following equation

d

dt
Ψ = (ix0x(t) + L∗)Ψ. (1.7.5)

Then, we retrieve the multi-time characteristic functional of interest

ΦX [t;x]
4
= E

{
exp

(
i

∫ t

0

dt′ x(t′)X(t′)

)}
, (1.7.6)

by integrating Ψ:

ΦX [t;x] =

∫
R

dx0 ΨX [t, x0;x]. (1.7.7)

Note that the time integral of (1.7.6) ends at t for causality reasons. The finite-dimensional law
of X is exhaustively described by Ψ, Indeed, the Fourier transform of pX(t1),...X(tn)(x1, ..., xn)
evaluated at the point (f1, ..., fn) is:

E

{
exp

(
i
n∑
k=1

fkX(tk)

)}
=

[
exp

(
n∑
k=1

fk
δ

δx(tk)

)
ΨX [t;x]

]
x=0

, (1.7.8)

where the exponential of the variational differential operator in the right-hand side is defined by the
Taylor series of the exponential. Note that the Girsanov theorem 1.3.3 is another way of describing
the law of {X(t′)|t′ 6 t}.

1.7.3 Analog of the mean of Itō formula
We will denote by f , a smooth enough function and R[t;X(t′)], a functional that depends both on
time t and {X(t′)|0 6 t′ 6 t}. From (1.7.1), one can show that:

∂

∂t
E {f(X(t))R[t;X(t′)]} = E

{
f(X(t))

∂

∂t
R[t;X(t′)]

}
+ E {(Lf)(X(t))R[t;X(t′)]} . (1.7.9)

This equation can be seen as a generalization of the Itō formula applied to f(X(t)). However, the
result is only expressed through a mean.



14 CHAPTER 1. STOCHASTIC PROCESSES AND STOCHASTIC CALCULUS

1.7.4 Multi-point density
When X = X(t,y) is a function of y ∈ Ω, the operators L and L∗ involve variational derivatives
δ

δx(y) instead of classical derivatives ∂
∂x . This kind of equation is called a Hopf equation instead of

a partial differential equation. When the spatial derivatives of the stochastic evolution law have or-
ders higher than 1, there are no closed form for the indicator function ψX(y, x0, t) = δ(X(t,y)−x0)
and accordingly no closed form for its mean: the one-time one-point probability density function.
Hence, we do not uses the Fokker-Planck equation to describe a probability density function.
Instead, we use a Hopf equation to describe the one-time multi-point characteristic functional:

ΦX [t;x] = E
{

exp

(
i

∫
Ω

dy x(y)X(t,y)

)}
, (1.7.10)

which is a functional of any deterministic function x. The Hopf equation which describes ΦX gener-
ally involves an infinite number of variational derivatives and the mutli-point multi-time cumulants
of the random forcing terms.

In this section, we have exposed the main mathematical tools that will be used within this
study. Definitions, properties and theorems have been briefly explained. After some examples of
SDEs, estimation methods based on stochastic calculus have been developed. Then, the choice
between Stratonovich and Itō calculus has been discussed. Finally, we have presented briefly more
general tools to deal with Markovian processes in finite and infinite dimensions which are not
semimartingales. In the next section of the thesis, we will apply these tools to fluid dynamics
equations.
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Abstract

A stochastic flow representation is considered with the Eulerian velocity decomposed between a
smooth large scale component and a rough small-scale turbulent component. The latter is specified
as a random field uncorrelated in time. Subsequently, the material derivative is modified and leads
to a stochastic version of the material derivative to include a drift correction, an inhomogeneous
and anisotropic diffusion, and a multiplicative noise. As derived, this stochastic transport exhibits
a remarkable energy conservation property for any realizations. As demonstrated, this pivotal op-
erator further provides elegant means to derive stochastic formulations of classical representations
of geophysical flow dynamics.
Keywords: stochastic flows, uncertainty quantification, ensemble forecasts, upper ocean dynamics

2.1 Introduction

Despite the increasing power of computational resources and the availability of high quality ob-
servations, a precise description of geophysical flows over their whole dynamical scales is today
completely beyond reach. Challenges appear as unlimited as the variety of dynamics and bound-
ary conditions with their broad range of spatial and temporal scales across the globe. To face
these challenges, numerous efforts are taking place to build an ever-increasing quality, quantity,
duration and integration of all observations, in situ and satellite. In parallel, simulation capabilities
largely improved, i.e., analysis can now be routinely carried out to more precisely characterize the
variability in the global ocean, at scales of ten to hundreds of kilometers and one to hundreds of
days. Yet, for these ocean models, the unresolved small scales and associated fluxes are always
accounted for by simple mathematical models, i.e. parameterizations.

Although the development of more efficient sub-grid representations remains a very active re-
search area, the possible separation between relatively low-frequency, large scale patterns and tran-
sient, small-scale fluctuations, strongly invites to consider stochastic representations of the geophys-
ical dynamics (e.g. Hasselmann, 1976; Allen and Stainforth, 2002; Penland, 2003b; Berner et al.,

15
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2011; Franzke et al., 2015). As derived, such developments are meant to better describe the sys-
tem’s variability, especially including a mean drift , called “bolus" velocity (Gent and Mcwilliams,
1990) or skew-diffusion (Nakamura, 2001; Vallis, 2006) in oceanography, and noise-induced velocity
in climate sciences.

In that context, several different strategies have been proposed (Franzke et al., 2015). Among
them, techniques motivated by physics have been devised. Those schemes aim to overcome a bad
representation of the small scale forcing and of their interactions with the large scale processes. Two
of such schemes have been carried out at ECMWF. The first one, the stochastic perturbation of the
physical tendencies – SPPT – (Buizza et al., 1999) implements a multiplicative random perturbation
of parameterized physical tendencies. The random variables involved are correlated in space and
time, and their characteristics set from fine grid simulations. The second one, the stochastic kinetic-
energy backscatter – SKEB – (Shutts, 2005) introduces a perturbation of the stream function and
potential temperature. This scheme is based on earlier works on energy backscattering modelling
through the introduction of random variables (Mason and Thomson, 1992). Numerous works
showed a beneficial impact of the injected randomness on weather and climate forecasts mean and
variability (see (Berner et al., 2015) and references therein) or in oceanography (Brankart, 2013;
Mana and Zanna, 2014). However, the amplitude of the perturbations to apply is difficult to specify.
The non-conservative and the variance-creating nature of those schemes is also problematic in that
prospect. A too large amplitude, while increasing significantly the ensemble spread, may lead
to unstable schemes for simulations that go beyond short-term forecast applications. A balance
between the large-scale sub-grid diffusive tensor and the noise amplitude must thus be found to
stabilize the system.

Also based on a separation of the state variables between slow and fast components, a math-
ematical framework – refereed to as MTV algorithms – has been proposed to derive stochastic
reduced-order dynamical systems for weather and climate modelling (Franzke et al., 2005; Franzke
and Majda, 2006; Majda et al., 1999, 2001, 2003). Considering a linear stochastic equation to
describe the fast modes, derivations have been rigorously studied (Gottwald and Melbourne, 2013;
Melbourne and Stuart, 2011; Pavliotis and Stuart, 2008). As demonstrated, the continuous fast
dynamics converges in continuous time towards a Stratonovich noise, leading to a diffusion term
when expressed in a corresponding Ito stochastic integral form.

As well, stochastic superparametrization assumes a scale separation (Grooms and Majda, 2013,
2014). The point approximation and Reynolds decompositions replace homogenization techniques.
As for MTV methods, the small-scale evolution law is linearized and corrected with the introduction
of noise and damping terms. The second order moments of the solution are then known analytically
and can feed the sub-grid tensors expression of the mean deterministic large-scale evolution law.
For such developments, the direct use of the Reynolds decomposition implicitly assumes that small-
scale components are differentiable. This theoretically prevents the use of Langevin type equations
for the small-scale evolution. Furthermore, in such a derivation, each scalar evolution law involves
a different sub-grid tensor. Similarly to the definition of eddy viscosity and diffusivity models for
Large-Eddy simulation, the noise expression of most stochastic fluid dynamic models are hardly
inferred from physics. So, instantaneous diffusion and randomness may not be consistently related;
even though some careful parametrizations of stationary energy fluxes couple them (Grooms and
Majda, 2013; Sapsis and Majda, 2013b; Grooms and Majda, 2014; Sapsis and Majda, 2013c).

To overcome these difficulties, we propose to dwell on a different strategy. As previously initi-
ated (Mémin, 2014), the large-scale dynamics is not prescribed from a deterministic representation
of the system’s dynamics. Instead, a random variable, referred to as location uncertainty, is added
to the Lagrangian expression of the flow. The resulting Eulerian expression then provides stochastic
extensions of the material derivative and of the Reynolds transport theorem. An explicit expression
of a noise-induced drift is further obtained. As also derived, a sub-grid stress tensor, describing
the small-scale action on the large scales, does not resort to the usual Boussinesq eddy viscosity
assumption, and further, consistently appears throughout all the conservation equations of the
system. Moreover, the advection by the unresolved velocity acts as a random forcing. As such,
this framework provides a direct way to link the resulting material transport and the underlying
dynamics. The well-posedness of these equations has been studied by Mikulevicius and Rozovskii
(2004) and Flandoli (2011). Recently, Holm (2015) derived similar evolution laws from the inviscid
and adiabatic framework of Lagrangian mechanics. Compared to models under location uncer-
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tainty, the stochastic transport of scalars is identical. However, the momentum evolution of Holm
(2015) involves an additional term which imposes the helicity conservation but may increase the
kinetic energy.

Starting with the description of the transport under location uncertainty (section 2), develop-
ments are then carried out to explore this stochastic framework for different classical geophysical
dynamical models (section 3).

2.2 Transport under location uncertainty

2.2.1 A 2-scale random advection-diffusion description
As often stated, ocean and atmospheric dynamics can be assumed to be split into two contributions
with very distinct correlation times. This assumption can especially hold for the top layer of the
ocean. For example, the larger ocean geostrophic component generally varies on much slower
time scales than motions at smaller spatial scales. From an observational perspective, current
generation satellite altimeter instruments are capable of resolving only the largest eddy scales, and
the measurements can depend sensitively on the local kinetic energy spectrum of the unresolved
flow (Poje et al., 2010; Keating et al., 2011). Satellite observations of the upper-ocean velocity field
at higher resolution can also be obtained (e.g. Chapron et al., 2005) but are certainly too sparse
and possibly noisy.

Accordingly, without loss of generality, observations of an instantaneous Eulerian velocity field
are likely coarse-grained in time, and can be interpreted under a 2-scale framework. As such,
the instantaneous Eulerian velocity is decomposed between a well resolved smooth component,
denoted w, continuous in time, and a rough small-scale one, rapidly decorrelating in time. This
badly-resolved contribution, expressed as σḂ, is then assumed Gaussian, correlated in space, but
uncorrelated in time. This contribution can be inhomogeneous and anisotropic in space. Due to
the irregularity of the flow, the transport of a conserved quantity, Θ, by the whole velocity, defined
as

Θ(Xt+∆t, t+ ∆t) = Θ(Xt, t) (2.2.1)

corresponds to a random mapping. In this setup the large-scale velocity possibly depends on the
past history of the small-scale component. This latter being white in time, the two components are
uncorrelated. Hence, the above conservation shall lead to a classical advection-diffusion evolution,
with the introduction of an inhomogeneous and anisotropic diffusion coefficient matrix, a, solely
defined by the one-point one-time covariance of the unresolved displacement per unit of time:

a =
E
{
σdBt (σdBt)

T
}

dt
. (2.2.2)

The inhomogeneous structure of the small-scale variance motions shall create inhomogeneous
spreading rates. More agitated fluid parcels spread faster than those over quiescent regions. Over-
all, the latter can be seen as “attracting” the large-scale gradients. This effect leads to invoke a
drift correction, anti-correlated with the variance gradient, or, in a multi-dimensional point of view,
anti-correlated with the covariance matrix divergence. Accordingly, the random advection under a
2-scale description can be expected to be expressed as:

∂tΘ + w? · ∇Θ︸ ︷︷ ︸
Corrected advection

=∇ ·
(

1

2
a∇Θ

)
︸ ︷︷ ︸

Diffusion

− σḂ · ∇Θ︸ ︷︷ ︸
Random forcing

, (2.2.3)

with a modified velocity given by

w? = w − 1

2
(∇ · a)T + σ(∇·σ)T . (2.2.4)

We note the conserved quantity is diffused by the small-scale random velocity. The random forcing
expresses the advection by the unresolved velocity σḂ = σ dBt

dt , and continuously backscatters
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random energy to the system. Because of this white-noise forcing term, the Eulerian conservation
equation (2.2.3) (that will be formally expressed in the following sections) intrinsically concerns a
random non-differentiable tracer. Finally, the conserved quantity is also advected by an “effective"
velocity, w?, taking into account the possible spatial variation of the small-scale velocity variance,
as well as the possible divergence of this velocity component.

Considering the unresolved velocity and this effective drift, w?, divergent-free, we shall see that
this 2-scale development establishes an exact balance between the amount of diffusion and the ran-
dom forcing. Subsequently, essential properties related to energy conservation and mean/variance
tracer evolution directly result from this balance.

2.2.2 Uncertainty formalism

In a Lagrangian stochastic form, the infinitesimal displacement associated with a particle trajectory
Xt is:

dXt = w(Xt, t)dt+ σ(Xt, t)dBt. (2.2.5)

Formally, this is defined over the fluid domain, Ω, from a d-dimensional Brownian functionBt. Such
a function can be interpreted as a white noise process in space and a Brownian process in time1.
The time derivative of the Brownian function, in a distribution sense, is denoted σḂ = σ dBt

dt ,
and is a white noise distribution. The spatial correlations of the flow uncertainty are specified
through the diffusion operator σ(., t), defined for any vectorial function, f , through the matrix
kernel σ̆(., ., t):

σ(x, t)f
4
=

∫
Ω

σ̆(x, z, t)f(z, t)dz. (2.2.6)

This quantity is assumed to have a finite norm2 and to have a null boundary condition on the
domain frontier3. The resulting d-dimensional random field, σ(x, t)dBt, is a centered vectorial
Gaussian function, correlated in space and uncorrelated in time with covariance tensor:

Cov(x,y, t, t′)
4
= E

{
(σ(x, t)dBt) (σ(y, t′)dBt′)

T
}
, (2.2.7)

=

∫
Ω

σ̆(x, z, t)σ̆T (y, z, t)dz δ(t− t′)dt. (2.2.8)

For sake of thoroughness, the uncertainty random field has a (mean) bounded norm4: E‖
∫ t

0
σdBt′‖2L2(Ω) <

∞ for any bounded time t 6 T < ∞. Hereafter, the diagonal of the covariance tensor, a, will be
referred to as the variance tensor:

a(x, t)δ(t− t′)dt = Cov(x,x, t, t′).

By definition, it is a symmetric positive definite matrix at all spatial points, x. This quantity, also
denoted σσT , corresponds to the time derivative of the so-called quadratic variation process:

σσT
4
= a = ∂t

〈∫ t

0

σdBs,

(∫ t

0

σdBr

)T〉
.

with 〈f, g〉 to stand for the quadratic cross-variation process of f and g (see Appendix 2.A).
Given this strictly defined flow, the corresponding material derivative expression of a given

quantity can be introduced.

1Formally it is a cylindrical Id-Wiener process (see Da Prato and Zabczyk (1992) and Prévôt and Röckner (2007)
for more information on infinite dimensional Wiener process and cylindrical Id-Wiener process).

2More precisely, the operator σ is assumed to be Hilbert-Schmidt.
3Note that periodic boundary conditions can also be envisaged.
4 This norm is finite since σ is Hilbert-Schmidt, ensuring the boundness of the trace of operator Q – defined

by the kernel (x,y) 7→ σ(x, t)σT (y, t) –, and ∀t 6 T < ∞, E‖
∫ t
0 σdBt′‖2L2(Ω)

=
∫ t
0

∫
Ω ‖σ̆(•,z)‖2

L2(Ω)
dzdt′ =∫ t

0 ‖σ‖
2
HS,L2(Ω)

dt′ =
∫ t
0 tr(Q)dt′ <∞, where the index HS refers to the Hilbert-Schmidt norm.
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2.2.3 Material derivative

To derive the expression of the material derivative DtΘ
4
= (d (Θ (Xt, t)))|Xt=x

, also quoted as the
Ito-Wentzell derivative or generalized Ito derivative in a stochastic flow context (Kunita, 1997,
theorem 3.2.2), let us introduce an operator, hereafter referred to as the stochastic transport
operator:

DtΘ
4
= dtΘ︸︷︷︸

4
= Θ(x,t+dt)−Θ(x,t)

Time increment

+ (w?dt+ σdBt) · ∇Θ︸ ︷︷ ︸
Advection

−∇ ·
(

1

2
a∇Θ

)
︸ ︷︷ ︸

Diffusion

dt (2.2.9)

This operator corresponds to a strict formulation of (2.2.3). More specifically, it involves a time
increment term dtΘ instead of a partial time derivative as Θ is non differentiable. Contrary to the
material derivative, the transport operator has an explicit expression (equation (2.2.9)). However,
the material derivative is explicitly related to the transport operator (see proof in Appendix 2.B){

DtΘ = f1dt+ hT1 dBt,
DtΘ = f2dt+ hT2 dBt,

⇐⇒
{

f2 = f1 + tr
(
(σT∇)hT1

)
,

h1 = h2.
(2.2.10)

Note, the material derivative, Dt, has a clear physical meaning but no explicit expression whereas
the explicit expression of the transport operator offers elegant means to derive stochastic Eulerian
evolution laws. Most often both operators coincide and can interchangeably be used. As a matter
of fact, in most cases, we deal with null Brownian function h1 in (2.2.10). This corresponds, for
instance, either to the transport of a scalar DtΘ = 0 or to the conservation of an extensive property(∫
V(t)

q
)
when the unresolved velocity component is solenoidal (∇·σdBt = 0), which leads, as we

will see it, to Dtq = −∇·w∗qdt ((2.2.28)). In such a case, it is straightforward to infer from the
system (2.2.10), that Dt and Dt coincide. For this precise case, those operators lead to

DtΘ(Xt, t) = DtΘ(Xt, t) = d (Θ(Xt, t)) = f1(Xt, t)dt. (2.2.11)

Going back to the Eulerian space, the classical calculus rules apply to operator Dt, e.g. the product
rule

Dt(fg)(x, t) = (Dtf g + f Dtg) (x, t), (2.2.12)
and the chain rule:

Dt
(
ϕ ◦ f

)
(x, t) = Dtf(x, t)(ϕ′ ◦ f)(x, t). (2.2.13)

Given these properties, an expression for the stochastic advection of a scalar quantity can be
derived.

2.2.4 Scalar advection
The advection of a scalar Θ thus reads:

DtΘ = DtΘ = 0. (2.2.14)

To analyze this stochastic transport equation, let us first consider that the effective drift and the
unresolved velocity are both divergence-free. As shown later, these conditions ensure an isochoric
stochastic flow (see (2.2.33)). With these conditions, the stochastic transport equation exhibits
remarkable conservation properties.

Energy conservation

From (2.2.9-2.2.14) and Ito lemma, the scalar energy evolution is given by:

d

∫
Ω

1

2
Θ2 =

∫
Ω

(
ΘdtΘ +

1

2
dt〈Θ,Θ〉

)
, (2.2.15)

= −
∫
Ω

1

2
(w∗dt+ σdBt) · ∇

(
Θ2
)

+

∫
Ω

Θ∇ ·
(

1

2
a∇Θ

)
dt︸ ︷︷ ︸

Loss by diffusion

+

∫
Ω

1

2
(∇Θ)

T
a∇Θdt︸ ︷︷ ︸

Energy intake from noise

.

(2.2.16)
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For suitable boundary conditions, the two last terms cancel out after integration by part. The
diffused energy is thus exactly compensated by the energy brought by the noise. With divergent-
free conditions for w? and σ, another integration by part gives

d

∫
Ω

1

2
Θ2 =

∫
Ω

1

2
∇ · (w∗dt+ σdBt) Θ2 = 0. (2.2.17)

The energy is thus conserved for all scalar random realizations. The expectation of the energy
– the energy (ensemble) mean – is therefore also conserved. Moreover, from the decomposition
Θ = E(Θ) +

(
Θ−E(Θ)

)
into the mean and the random anomaly component, we obtain a partition

of this constant energy mean:

0 =
d

dt
E‖Θ‖2L2(Ω) =

d

dt
‖E(Θ)‖2L2(Ω) +

d

dt

∫
Ω

V ar(Θ). (2.2.18)

A decrease of the mean energy – the energy of the (ensemble) mean – is always associated with an
(ensemble) variance increase. Similar energy mean budgets have recently been discussed by several
authors. Majda (2015) refers to this energy mean as the statistical energy. The author derives
the evolution law of this energy by adding the evolution equations of the mean energy and of the
integrated variance, whereas our energy budget is obtained by evaluating the mean of the evolution
law of the total energy, ‖Θ‖2L2(Ω). However, Majda (2015) does not specify the random forcing.
This is why the latter does not a priori balance the turbulent diffusion. Farrell and Ioannou (2014)
also studied the energy mean of stochastic fluid dynamics systems especially under quasi-linear
approximations and with an additive Gaussian forcing.

By the chain rule, all the tracer moments are also conserved:

DtΘp = p Θp−1DtΘ = 0. (2.2.19)

Yet, the energy of statistical moments are in general not conserved, as detailed in the following
section.

Mean and variance fields of a passive scalar

Consider now that the expectation corresponds to a conditional expectation given the effective
drift. This applies to passive scalar transport for which the drift does not depend on the tracer.
Terms in dBt have zero-mean, and the mean passive scalar evolution can be immediately derived
taking the conditional expectation of the stochastic transport:

∂tE(Θ) +w? · ∇E(Θ)︸ ︷︷ ︸
Advection

=∇ ·
(

1

2
a∇E(Θ)

)
︸ ︷︷ ︸

Diffusion

. (2.2.20)

Sincew∗ is divergent-free, it has no influence on the energy budget. The mean field energy decreases
with time due to diffusion. As for the variance, its evolution equation, derived in Appendix 2.C,
reads:

∂tV ar(Θ) +w? · ∇V ar(Θ)︸ ︷︷ ︸
Advection

=∇ ·
(

1

2
a∇V ar(Θ)

)
︸ ︷︷ ︸

Diffusion

+ (∇E(Θ))
T
a∇E(Θ)︸ ︷︷ ︸

Variance intake

. (2.2.21)

This is also an advection-diffusion equation, with an additional source term. Integrating this
equation on the whole domain, with the divergent-free condition, and considering the divergence
form of the first right-hand term, we obtain

d

dt

∫
Ω

V ar(Θ) =

∫
Ω

(∇E(Θ))
T
a∇E(Θ) > 0. (2.2.22)

It shows that the stochastic transport of a passive scalar creates variance. The dissipation that
occurs in the mean-field energy equation is exactly compensated by a variance increase. This
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mechanism is very relevant for ensemble-based simulations. The uncertainty modeling directly
incorporates a large-scale dissipating sub-grid tensor, and further encompasses a variance increase
mechanism to balance the total energy dissipation. Such a mechanism is absent in ensemble-based
data assimilation development (Berner et al., 2011; Gottwald and Harlim, 2013; Snyder et al.,
2015). An artificial inflation of the ensemble variance is usually required in consequence to avoid
filter divergence (Anderson and Anderson, 1999).

Active tracers

For the more general case of an active tracer, the velocity depends on the tracer distribution,
additional energy transfers occurs between the mean and the random tracer components (Sapsis,
2013; Sapsis and Majda, 2013b,c; Ueckermann et al., 2013; Majda, 2015). Though a complete
analytical description is involved, these energy transfers are mainly due to the nonlinearity of the
flow dynamics, and are hence more familiar. The models under location uncertainty involve both
types of interactions: the “usual” nonlinear interactions and the random energy transfers previously
described. As such, these two energy fluxes analyzes are complementary. In deterministic turbulent
dynamics with random initial conditions, energy is drained from the mean tracer toward several
modes (e.g. Fourier modes) of the tracer random component, and is backscattered from other
modes. The energy fluxes toward (from) random modes increases (decreases) the variance. In
the case of the deterministic Navier-Stokes equations, Sapsis (2013) analytically expressed the
integrated variance. The molecular or turbulent diffusion decreases the variance whereas the mean
velocity may increases or decreases the random energy, by triad interactions. The modes receiving
energy become unstable, whereas those giving energy are over-stabilized (Sapsis and Majda, 2013b).
In ensemble data assimilation of large-scale geophysical flows, the solution is defined by a manifold
sampled by a small ensemble of realizations. Those stabilizations and destabilizations are the
reason for the alignment of ensembles along unstable directions (Trevisan and Uboldi, 2004; Ng
et al., 2011). It can lead to filter divergence (Gottwald and Harlim, 2013; Bocquet et al., 2016). In
the absence of any modes truncation, the nonlinear interactions redistribute the energy between
those modes. Otherwise, the missing energy fluxes can be parametrized with additional random
terms (Sapsis and Majda, 2013b,c).

To further describe the energy exchanges involved in the dynamics under location uncertainty
of active tracers, we introduce the decomposition Θ = Θ̃ + Θ′ in terms of a slow component Θ̃
and a highly oscillating component Θ′. The first one is time-differentiable whereas the second is
only continuous with respect to time. Both components are random. This decomposition, the so-
called semi-martingale decomposition, is unique (Kunita, 1997). For each component, the following
coupled system of transport equations is:

∂tΘ̃ +w? · ∇Θ =∇ ·
(

1

2
a∇Θ

)
, (2.2.23)

dtΘ
′ + σdBt · ∇Θ = 0. (2.2.24)

At the initial time, the first component is deterministic (given the initial conditions) and the second
one is zero. The large-scale component becomes random through the oscillating component, which
is characterized by a gradually increasing energy along time:

E‖Θ′‖2L2(Ω) = E
∫
Ω

〈Θ′,Θ′〉 = E
∫ t

0

∫
Ω

(∇Θ)
T
a∇Θ dt > 0. (2.2.25)

Note, the expectation is taken with respect to the law of the Brownian path. The energy mean of the
non-differentiable component Θ′ is the mean of the energy intake provided by the noise (2.2.16).
The same amount of energy mean is removed from the system by the diffusion (2.2.16). Once
diffused, this energy is fed back to the small-scale tracer Θ′, the white noise velocity acting here as
an energy bridge. Such an energy redistribution is a main issue in sub-grid modeling. Indeed, as
explained above, large-scale flow simulations often miss to capture the energy fluxes between the
mean and the random components but also the energy redistribution from the unstable modes to
the stable modes. Note that, even though the two components are orthogonal as functions of time
(in a precise sense), they are not, in general, as functions of space:

∫
Ω

Θ̃Θ′ 6= 0. In particular, it
can be shown that those two components are indeed anti-correlated when the tracer is passive.
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The homogeneous case and the Kraichnan model

A divergent-free isotropic random field for the small-scale velocity component corresponds to the
Kraichnan model (Kraichnan, 1968, 1994; Gawȩdzki and Kupiainen, 1995; Majda and Kramer,
1999). The variance tensor, a, becomes a constant diagonal matrix 1

d tr(a)Id, where d stands for
the dimension of the spatial domain Ω. The tracer evolution now involves a Laplacian diffusion

dtΘ +
(
wdt+ σdBt

)
· ∇Θ =

tr(a)

2d
∆Θdt. (2.2.26)

Additionally, the original Kraichnan model considers a small molecular diffusion, ν, and an
external Gaussian forcing, fdB′t, defined as an homogeneous random field uncorrelated in time and
independent of the velocity component σḂ (Gawȩdzki and Kupiainen, 1995). In our framework,
the Kraichnan model, which does not involve any large-scale drift term, reads:

dtΘ + σdBt · ∇Θ =

(
ν +

tr(a)

2d

)
∆Θdt+ fdB′t. (2.2.27)

As compared to the original model, this derivation directly identifies the eddy diffusivity contribu-
tion, only implicitly termed in the Kraichnan model (Gawȩdzki and Kupiainen, 1995; Majda and
Kramer, 1999). The Ito calculus further offers means to infer the evolution of the tracer moments,
(2.2.20) and (2.2.21). The proposed development introduces an additional non-linearity through
w and possible non-uniform turbulence conditions.

2.2.5 Transport of extensive properties
Hereafter, all fundamental conservation laws are formulated for extensive properties.

Stochastic Reynolds transport theorem

Similar to the deterministic case, the stochastic Reynolds transport theorem shall describe the time
differential of a scalar function, q(x, t), within a material volume, V(t), transported by the random
flow (2.2.5):

d

∫
V(t)

q =

∫
V(t)

[
Dtq +∇ · (w?dt+ σdBt) q + d

〈∫ t

0

Dt′q,

∫ t

0

∇·σdBt′

〉]
. (2.2.28)

This expression, rigorously derived in Appendix 2.D, was first introduced in a slightly different
version by Mémin (2014). In most cases, the unresolved velocity component, σḂ, is divergence-
free and, the source of variations of the extensive property

∫
V(t)

q is time-differentiable, i.e. with
a differential of the form d

∫
V(t)

q = Fdt. In such a case, for an arbitrary volume, the transport
theorem takes the form Dtq = fdt, and according to equation (2.2.10) the material derivative can
be replaced by the stochastic transport operator, Dtq, to provide an intrinsic expression of this
stochastic transport theorem.

Jacobian

Taking q = 1 characterizes the volume variations through the flow Jacobian, J :∫
V(t0)

d(J(Xt(x0), t))dx0 = d

∫
V(t)

dx, (2.2.29)

=

∫
V(t)

∇ · (w?dt+ σdBt) (x, t) dx, (2.2.30)

=

∫
V(t0)

[
J∇ · (w?dt+ σdBt)

]
(Xt(x0), t) dx0. (2.2.31)

Valid for an arbitrary initial volume V(t0), it leads to a familiar form for the Lagrangian flow
Jacobian evolution law:

DtJ − J∇ · (w?dt+ σdBt) = 0. (2.2.32)
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Incompressibility condition

The Jacobian evolution (2.2.32) ensures a necessary and sufficient condition for the isochoric nature
of the stochastic flow:

∇ · σ = 0 and ∇ ·w∗ = 0. (2.2.33)

If the large-scale flow component, w, is solenoidal, this reduces to:

∇ · σ = 0 and ∇ ·w =∇ · (∇ · a)
T

= 0. (2.2.34)

Note that for an isotropic unresolved velocity, the last condition is naturally satisfied, as this
unresolved velocity component is associated with a constant variance tensor, a.

2.2.6 Summary

An additional Gaussian and time-uncorrelated velocity modifies the expression of the material
derivative. In most cases, the resulting stochastic transport operator, Dt, coincides with the mate-
rial derivative, Dt. Yet, possible differences between Dt and Dt have simple analytic expressions.
This stochastic transport operator leads to an Eulerian expression of the tracer transport. As ob-
tained, the tracer is forced by a multiplicative noise and mixed by an inhomogeneous and anisotropic
diffusion. Moreover, the advection drift is possibly modified with a correction term related to the
spatial variation of the small-scale velocity variance. The random forcing, the dissipation and the
effective drift correction are all linked. Accordingly, the energy is conserved for each realization, as
the tracer energy dissipated by the diffusion term is exactly compensated by the energy associated
with the random velocity forcing. For a passive tracer, the evolution laws for the mean and variance
precise these energy exchanges. The unresolved velocity transfers energy from the mean part of
the tracer to its random part. For an active tracer, this velocity component bears energy from the
whole tracer field to its random non-differentiable component.

2.3 Stochastic versions of geophysical flow models

The stochastic version of the Reynolds transport theorem provides us the flow Jacobian evolution
law, as well as the rate of change expression of any scalar quantity within a material volume.
Together with the fundamental conservation laws of classical mechanics, it provides us a powerful
tool to derive in a systematic way stochastic flow models. Thanks to the bridge between the
material derivative and the stochastic transport operator, this derivation closely follows the usual
deterministic derivations.

All along the following development, the small-scale random flow component will be assume
incompressible, i.e. associated with a divergence-free diffusion tensor:

∇ · σ = 0. (2.3.1)

This assumption remains realistic for the geophysical models considered in this study, and does
not prevent the resolved velocity component (and therefore the whole field) to be compressible.

2.3.1 Mass conservation

Mass conservation for arbitrary volumes rules the stochastic transport of the fluid density, denoted
ρ:

Dtρ+ ρ∇ ·w∗dt = 0. (2.3.2)

A suggested in 2.2.5, the material derivative, Dt, is now replaced by Dt, defined by Eq. (2.2.9).
Indeed, the mass variation is zero and thus time-continuous, and the stochastic operator coincides
with the material derivative.
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2.3.2 Active scalar conservation law
The transport theorem (2.2.28) applied to a quantity ρΘ describes the rate of change of the scalar
Θ and is generally balanced by a production/dissipation term, as:

Dt(ρΘ) + ρΘ∇ ·w∗dt = ρFΘ(Θ)dt. (2.3.3)

Again, the stochastic transport operator, Dt, is used instead of the material derivative, Dt, since
the source of variation

∫ t
0

(∫
V(t)

ρFΘ

)
dt of the extensive property,

∫
V(t)

ρΘ, is time-differentiable
(integral in dt), as explained in 2.2.5. Considering the product rule (2.2.12) and mass conservation
(2.3.2), the transport evolution model for the scalar writes:

DtΘ = FΘ(Θ)dt. (2.3.4)

For a negligible production/dissipation term, the scalar is conserved by the stochastic flow and
follows properties highlighted in section 2.2 – e.g. the energy conservation of each realization and
the dissipation of the mean field. As in the deterministic case, the 1st law of thermodynamics
implies both temperature conservation (Θ = T ) and conservation of the amount of substance – e.g.
the conservation of salinity (Θ = S):

DtT = FT (T )dt, (2.3.5)
DtS = FS(S)dt. (2.3.6)

The term FΘ(Θ) corresponds to diabatic terms such as the molecular diffusion process or the
radiative heat transfer.

2.3.3 Conservation of momentum
To derive a stochastic representation of the Navier-Stokes equations, pressure forcing is decom-
posed into continuous component, p, and white-noise term ṗσ = dtpσ

dt . The smooth component of
the velocity is not only assumed continuous but also time-differentiable (Mémin, 2014). As demon-
strated in Appendix 2.E, the flow dynamics for an observer in an uniformly rotating coordinate
frame writes:

Navier-Stokes equations under location uncertainty in a rotating frame

Momentum equations

∂tw + (w∗ · ∇)w − 1

2ρ

∑
i,j

∂i

(
ρaij∂jw

)
+ f ×w = g − 1

ρ
∇p+

1

ρ
F(w), (2.3.7a)

Effective drift

w∗ = w − 1

2
(∇ · a)T , (2.3.7b)

Random pressure contribution
∇dtpσ =(σdBt · ∇)w − ρf × σdBt + F(σdBt), (2.3.7c)

Mass conservation
Dtρ+ ρ∇ ·w∗dt = 0, ∇ · (σdBt) = 0. (2.3.7d)

Similarly to the Reynolds decomposition, the dynamics associated with the drift component in-
cludes an additional stress term, and the large-scale velocity component is advected by an eddy
effective drift velocity. The density is driven by a stochastic mass conservation equation or alter-
natively through the stochastic transport of temperature and salinity (2.3.5-2.3.6), together with a
state law. The random density constitutes a random forcing in the large-scale momentum equation.

For incompressible flows, the pressure is then recovered from a modified Poisson equation;

−∆p =∇ ·
(
ρ
(
w∗ · ∇

)
w + ρf ×w − 1

2

∑
ij

∂i( ρaij∂jw)

)
. (2.3.8)
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The pressure acts as a Lagrangian penalty term to constrain the large scale component to be
divergent-free.

This formalization can be compared to another stochastic framework based on scale gap:
Stochastic Super-Parametrization (SSP) (Grooms and Majda, 2013, 2014). Both modeling en-
able separating the large-scale velocity (2.3.7a) and the small-scale contribution (2.3.7c). This is
done by a differentiability assumption on the large-scale drift, w, in the modeling under location
uncertainty, and through the Reynolds decomposition and a point approximation assumption in
SSP. However, it can be pointed out that no averaging procedure is settled in the modeling under
location uncertainty. Furthermore, the transports of density, temperature and salinity involve ran-
dom forcings. Unlike SSP, the whole system to be simulated is thus random. This randomness is
of main importance for Uncertainty Quantification (UQ) aplications as illustrated theoretically in
section 2.2 and numerically in the part II of this set of papers (Resseguier et al., 2017b). Another
main difference between the two methods lies in the subgrid tensors parametrization. Each SSP
scalar evolution law involves a different subgrid tensor whereas there is a single one (related to
the small-scale velocity) for every transports under location uncertainty. For both model it can be
noted that the small-scale velocity component is Gaussian conditionally on the large-scale prop-
erties. Unlike our models, the SSP proposes a simple evolution model for this unresolved velocity
and hence for its statistics. This type of linear forced-dissipative evolution laws, introduced by
Eddy-Damped Quasi Normal Markovian (EDQNM) models (Orszag, 1970; Leith, 1971; Chasnov,
1991), could be as well used to specify the diffusion operator σ and close the models under location
uncertainty. Yet, such closure also need to be parametrized.

2.3.4 Atmosphere and Ocean dynamics approximations
Ocean and atmosphere dynamical models generally rely on several successive approximations. In
the following, we review these approximations within the uncertainty framework.

For ocean and atmosphere flows, a partition of the density and pressure is generally considered:

ρ = ρb + ρ0(z) + ρ′(x, y, z, t), (2.3.9a)
p = p̃(z) + p′(x, y, z, t). (2.3.9b)

Fields ρ̃(z) = ρb+ρ0(z) and p̃(z) correspond to the density and the pressure at equilibrium (without
any motion), respectively; they are deterministic functions and depend on the height only. The
pressure and density departures, p′ and ρ′, are random functions, depending on the uncertainty
component. From the expression of the vertical velocity component (2.3.7a), the equilibrium fields
are related through an hydrostatic balance:

∂p̃

∂z
= −gρ̃(z). (2.3.10)

Traditional approximation

This approximation helps to neglect the deflecting rotation forces associated with vertical move-
ments. Considering the first moment conservation along the vertical direction of (2.3.7), with the
hydrostatic balance (2.3.10), it writes:

∂tw + (w∗ · ∇)w − 1

2

∑
i,j

∂i

(
aij∂jw

)
+ fxv − fyu = −1

ρ

[
ρ′g +

∂p′

∂z

]
+ F(w). (2.3.11)

This approximation is justified when an hydrostatic assumption is employed.

Boussinesq approximation

Within small density fluctuations (i.e. the Boussinesq approximation) as observed in the ocean,
the stochastic mass conservation reads

0 = Dtρ+ ρ∇ ·w∗dt ≈ ρb∇ ·w∗dt. (2.3.12)
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This implies that the flow is volume-preserving. In an anelastic approximation, density variations
dominate. It can be shown we get the weaker constraint, associated with an horizontal uncertainty:

∇ ·w − 1

2
∇H · (∇H · aH)T =

g

c2ρ
(wρ̃) (2.3.13)

where c−2 denotes the velocity of the acoustic waves and subscript H indicates the set of horizontal
coordinates. The classical anelastic constraint implicitly assumes a divergence-free condition on
the variance tensor divergence (as obtained for homogeneous turbulence).

According to equations (2.3.5) and (2.3.6), temperature and salinity are transported by the
random flow. If those tracers do not oscillate too much, the density anomaly, ρ − ρb, can be
approximated by a linear combination of these two properties. And thus, in the Boussinesq ap-
proximation, this anomaly is transported:

0 = Dt(ρ− ρb) = Dt(ρ− ρb). (2.3.14)

Using the same approximation, the contribution of the momentum material derivative asso-
ciated with the density variation can be neglected. The Navier-Stokes equations coupling the
Boussinesq and traditional approximations then read:

Simple Boussinesq equations under location uncertainty

Momentum equations

∂tw + (w∗ · ∇)w − 1

2

∑
i,j

∂i

(
aij∂jw

)
+ fk × u = b k − 1

ρb
∇p′ + F(w), (2.3.15a)

Effective drift

w∗ =

(
u∗

w∗

)
= w − 1

2
(∇ · a)T , (2.3.15b)

Buoyancy equation

Dtb+N2 (w∗dt+ (σdBt)z) =
1

2
∇ ·

(
a•zN

2
)

dt, (2.3.15c)

Random pressure fluctuation
∇dtpσ =−ρb (σdBt · ∇)w∗ − fk × (σdBt)H + F(σdBt), (2.3.15d)

Incompressibility

∇ ·w =∇·
(
σḂ

)
=∇ ·∇ · a = 0. (2.3.15e)

For this system, the thermodynamics equations are expressed through the buoyancy variable
b = −gρ′/ρb, and the stratification (Brunt-Väisälä frequency) N2(z) = −g 1

ρb
∂zρ0(z) is introduced.

The buoyancy term constitutes a random forcing of the vertical large-scale velocity component.
Since the density anomaly, ρ − ρb, has been decomposed into a constant background slope and a
residual, the multiplicative noise of equation (2.3.14) is split into an additive and a multiplicative
noise in (2.3.15c). The additive noise drains random energy from the stratification toward the
buoyancy. Therefore, the buoyancy energy is not conserved due to the background stratification.

Buoyancy oscillations

To illustrate the effect of this additive noise in simple cases, we consider here constant-along-depth
buoyancy anomaly and stratification (∂zb = 0 and ∂zN = 0) and only a vertical motion component
(i.e u = 0 and (σdBt)H = 0) with no dependence on depth (due to the divergence constraint).
Note that this latter constraint on the diffusion tensor, implies that only azz is non null with no
dependence on depth as well. Then, the Boussinesq equations read

∂tw = b and dtb = −N2(wdt+ (σdBt)z). (2.3.16)
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Similarly to the deterministic case, we recognize an oscillatory system if N2 > 0 and a diverging
system if N2 < 0 (i.e. when lighter fluid is below heavier fluid). The velocity and buoyancy are
coupled by gravity and transport. However, in our stochastic framework, the density anomaly
is also transported by a random velocity. This highly oscillating velocity may be interpreted as
the action of wind on the surface of the ocean. The interaction between this unresolved velocity
component and the stratification acts has a random forcing on the oscillator:

dt∂tw +N2wdt = −N2(σdBt)z. (2.3.17)

To solve this equation, one can note that:

dt
(
e−2iNt∂t(e

iNtw)
)

= −N2e−iNt(σdBt)z. (2.3.18)

Then, by integrating twice, we get the solutions of the stochastic system (2.3.16):

w(t) = w(0) cos(Nt) + ∂tw(0)/N sin(Nt)︸ ︷︷ ︸
=E(w(t))

−N
∫ t

0

sin
(
N(t− r)

)
(σdBr)z, (2.3.19)

b(t) = ∂tw(0) cos(Nt)− w(0)N sin(Nt)︸ ︷︷ ︸
=E(b(t))

−N2

∫ t

0

cos(N(t− r))(σdBr)z. (2.3.20)

The ensemble means are the traditional deterministic solutions whereas the random parts are
continuous summations of sine wave with uncorrelated random amplitudes. At each time r, the
additive random forcing introduces an oscillation. Without dissipative processes, the latter remains
in the system. But, the influence of the past excitations are weighed by sine wave due to the phase
change. The buoyancy and the velocity are Gaussian random variables (as linear combinations of
independent Gaussian variables). Therefore, their finite dimensional law (i.e. the multi-time prob-
ability density function) are entirely defined by their mean and covariance functions. The variances
can be computed through the Ito isometry (Oksendal, 1998). Then, the velocity covariance can be
inferred from the SDE (2.3.17):

Covw(t, t+ τ) =
azzN

4
cos(Nτ) (2Nt− sin(2Nt)) +

azzN

4
sin(Nτ) (1− cos(2Nt)) . (2.3.21)

The covariance of the buoyancy is similar. Since the interaction between the unresolved velocity
component and the background density gradient cannot be resolved deterministically, uncertainties
of the dynamics accumulate. Each time introduces a new random uncorrelated excitation. This is
why the buoyancy and velocity variances increase linearly with time. In contrast, in a deterministic
oscillator with random perturbations of the initial conditions, the variance remains constant and
depends solely on the initial velocity variance. This growing also illustrates in a very simple case the
possible destabilization effects of the unresolved velocity in the models under location uncertainty.

The first term of the covariance (2.3.21) modulates the variance with a sine wave. The ran-
domness of w is generated by a set of sine wave which have coherent phases and interfere. When
Nτ = 0[2π] the noises with correlated amplitudes, (σdBr)z, in w(t) and w(t + τ) are in phase,
and thus the velocity covariance is large. When Nτ = π[2π] these correlated noises have opposite
phases, and yields a negative velocity covariance. When Nτ is close to π

2 [π], the noises are in
quadrature and the first term of the velocity covariance is zero.

2.3.5 Summary
The fundamental conservation laws (mass, momentum and energy) have been interpreted within
the proposed stochastic framework. Usual approximations of fluid dynamics are considered, lead-
ing to a stochastic version of Boussinesq equations. As developed, the buoyancy is transported by
a smooth large-scale velocity component and a small-scale random field, delta-correlated in time.
Consequently, the buoyancy is forced by an additive and a multiplicative noises, uncorrelated in
time but correlated in space. The additive noise encodes the interaction between the unresolved
velocity and the background stratification. The resulting random buoyancy then appears as an
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additive time-correlated random forcing in the vertical momentum equation. Both momentum and
thermodynamic equations then involve an inhomogeneous and anisotropic diffusion, and a drift
correction that both depend on the unresolved velocity variance tensor, a. Assuming hydrostatic
equilibrium in this stochastic Boussinesq model directly provides a stochastic version of the prim-
itive equations. A solvable model is also derived from this Boussinesq model. This toy model
exemplifies how the random forcing continually increases the variance of the solution.

2.3.6 Guidelines for the derivation of models under location uncertainty

The main steps of the derivation of dynamics under location uncertainty are sketched out below.

(i) The conservation laws of classical mechanics describe variation of some extensive properties.
As illustrated in Appendix 2.E for the stochastic Navier-Stokes model, if the extensive prop-
erty of interest (linear momentum in this Appendix) has a component uncorrelated in time,
the variations of this component must be balanced by a very irregular forcing, and can be
discarded.

(ii) The stochastic Reynolds transport theorem (2.2.28) enables us to interpret the variation of
the time-correlated component of the extensive property. The expression of the stochastic
material derivative of an associated intensive quantity follows.

(iii) The formulas (2.2.10) relate this material derivative, Dt, to the stochastic transport operator,
Dt. In most cases, these operators coincide.

(iv) Gathering the equations from (ii) and (iii) provides an explicit Eulerian evolution law.

(v) Additional regularity assumptions can be used to separate the large-scale and small-scale
components of the evolution law. As an example, the velocity component, w, has been
assumed to be differentiable with respect to time in this section i.e. the acceleration compo-
nent, ∂tw, is correlated in time. Thus, there is no time-uncorrelated noise in the large-scale
momentum evolution law and the random pressure fluctuations appear in a separate equa-
tion. This separation is of great interest for deterministic LES-like simulations. However, by
this approximation, we lose the conservation of the kinetic energy (2.2.17). For Uncertainty
Quantification (UQ) purposes, this separation is not necessary.

(vi) With or without regularity assumptions, usual approximations (e.g. the Boussinesq approx-
imation) can be done to simplify further the stochastic model.

Let us point out that the corresponding models involve subgrid terms which generally cannot be
neglected. When non-dimentionalized, those subgrid terms are weighted by an additional adimen-
tional number whose value depends on the noise magnitude. For a low noise the approximate
dynamical models take a random form that remains similar to their deterministic counterparts. At
the opposite, the system is generally significantly changed when considering a strong noise.

A second companion paper (part II) (Resseguier et al., 2017b) describes random versions of
Quasi-Geostrophic (QG) and Surface Quasi-Geostrophic (SQG) models with a moderate influence
of the subgrid terms, whereas the third one (part III) (Resseguier et al., 2017c) focuses on the same
models with a stronger influence of subgrid terms. The two dynamics are significantly different.

To close the stochastic system, the operator σ needs to be fully specified. Several solutions can
be proposed to that purpose. The simplest specification consists in resorting to a homogeneous
parametrization such as the Kraichnan model (Kraichnan, 1968, 1994; Gawȩdzki and Kupiainen,
1995; Majda and Kramer, 1999). The companion paper Resseguier et al. (2017b) relies on this type
of random field with a parameterization fixed from an ideal spectrum. When the small-scale velocity
is observable or at least partially observable the structure of that operator can then be estimated.
For instance, in Resseguier et al. (2015) a nonparametric and inhomogeneous variance tensor a(x) =
σ(x)σ(x)T is estimated from a sequence of observed velocity. Parametric and/or homogeneous
models could also be specified. If no small-scale statistics are available, the choice of a closure
can expressed σ as a function of large-scale quantities and similarity assumption (Kadri-Harouna
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and Mémin, 2016; Chandramouli et al., 2016). The unresolved velocity can be defined as the
solution of a simple linearized equations subject to advection by large-scale components, damping
and additive random forcing as in e.g. quasi-linear approximations (Farrell and Ioannou, 2014)
or stochastic super-parameterizations (Grooms and Majda, 2013, 2014). Existing methodologies
of data assimilation literature would also be of great interest in this context. Several authors
define models from observed correlation length or correlation deformation estimation (Pannekoucke
and Massart, 2008; Mirouze and Weaver, 2010; Weaver and Courtier, 2001). Others specify the
correlation matrices by diffusion equations (Michel, 2013a,b; Pannekoucke et al., 2014).

2.4 Conclusion

In this paper, a random component is added to the smooth velocity field. This helps model a
coarse-graining effect. The random component is chosen Gaussian and uncorrelated in time. Nev-
ertheless, it can be inhomogeneous and anisotropic in space. With such a velocity, the expression
of the material derivative is changed. To make this change explicit, we introduce the stochas-
tic transport operator, Dt. The material derivative, Dt, generally coincides with this operator,
especially for tracer transports. Otherwise, the difference between these operators has a simple
analytic expression. The stochastic transport operator involves an anisotropic and inhomogeneous
diffusion, a drift correction and a multiplicative noise. These terms are specified by the statistics
of the sub-grid velocity. The diffusion term generalizes the Boussinesq assumption. Moreover,
the link between the three previous terms ensures many desired properties for tracers, such as
energy conservation and continuous variance increasing. For passive tracer, the PDEs of mean
and variance field are derived. The unresolved velocity transfers energy from the small-scale mean
field to the variance. This is very suitable to quantify the uncertainty associated with sub-grid
dynamics. This randomized dynamics has been called transport under location uncertainty. A
stochastic version of the Reynolds transport theorem is then derived. It enables us to compute the
time differentiation of extensive properties to interpret the conservation laws of classical mechanics
in a stochastic sense.

Applied to the conservation of linear momentum, amount of substance and first principle of
thermodynamics, a stochastic version of the Navier-Stokes equations is obtained. Similarly to the
deterministic case, a small buoyancy assumption leads to random Boussinesq equations. The ran-
dom transport of buoyancy involves both a multiplicative and an additive noises. The additive
noise encodes the interaction between the unresolved velocity and the background stratification.
We schematically presented the action of this last forcing through a solvable model of fluid parcels
vertical oscillations.

Under strong rotation and strong stratification assumptions, the stochastic Boussinesq repre-
sentation simplifies to different mesoscale models depending on the scaling of the subgrid terms.
The companion papers part II (Resseguier et al., 2017b) and part III (Resseguier et al., 2017c)
describe such models. For a moderate influence of noise-driven subgrid terms, the Potential Vor-
ticity (PV) is randomly transported up to three source terms (Resseguier et al., 2017b). Assuming
zero PV in the fluid interior yields the usual Surface Quasi-Geostrophic (SQG) relationship. The
stochastic transport of buoyancy, yields a stochastic SQG model referred to as SQG model under
Moderate Uncertainty (SQGMU ). This two-dimensional nonlinear dynamics enables Resseguier
et al. (2017b) to numerically unveil advantages of the models under location uncertainty in terms
of small-scale structures restoration (in a single realization) and ensemble model error prediction
(with an improvement compared to perturbed deterministic models of one order of magnitude).

To go beyond the framework of this paper, larger-scale random dynamics can be inferred by
averaging the models under location uncertainty using singular perturbation or stochastic invariant
manifold theories (Gottwald and Harlim, 2013). Finally, a delta-correlated process and stochastic
calculus may seem insufficient to model the smallest velocity scales. Ito formulas deal with white-
noise forcing and contains only second-order terms. For higher order terms, such as hyperviscosity,
more complete theories exist (Klyatskin, 2005).
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Appendix

2.A Quadratic variation
The quadratic co-variation process denoted 〈X,Y 〉t, is defined as the limit in probability over a
partition {t1, . . . , tn} of [0, t] with t1 < t2 < · · · < tn, and a partition spacing δti = ti− ti−1, noted
as |δt|n = max

i
δti and such that |δt|n → 0 when n→∞:

〈X,Y 〉t =
P

lim
|δt|n→0

n−1∑
i=0

(
X(ti+1)−X(ti)

)(
Y (ti+1)− Y (ti)

)T
.

For Brownian motions, it follows 〈B,B〉t = t, 〈B, h〉t = 〈h,B〉t = 〈h, h〉t = 0, where h is a
deterministic function (or a random time-differentiable function) and B a scalar Brownian motion.
The quadratic co-variation of the uncertainty component reads〈∫ t

0

(σ(x, t)dBt)
i
,

∫ t

0

(σ(y, t)dBt)
j

〉
=

∫ t

0

∑
k

∫
Ω

σ̆ik(x, z, s) σ̆jk(y, z, s)dsdz,

4
=

∫ t

0

aij(x,y, s)ds. (2.A.1)

Its time derivative corresponds to the spatial covariance tensor. The diagonal of this tensor, denoted
the variance tensor, corresponds to x = y. For isotropic random fields, σ̆ (x, z) = σ̆ (‖x− z‖2),
the quadratic variation is a constant diagonal matrix.

2.B Link between the material derivative Dt and the operator
Dt

Let us assume:

DtΘ = fdt+ hTdBt. (2.B.1)

By definition of Dt (Eq. (2.2.9)),

DtΘ = dtΘ + (w∗dt+ σdBt) · ∇Θ− 1

2
∇ · (a∇Θ) dt. (2.B.2)

It yields:

dtΘ =

(
f −w∗ · ∇Θ +

1

2
∇ · (a∇Θ)

)
dt+ hTdBt − (σdBt) · ∇Θ. (2.B.3)

Denoting HΘ the Hessian of the function Θ, we have:

dt∇Θ =∇
(
f −w∗ · ∇Θ +

1

2
∇ · (a∇Θ)

)
dt+∇hTdBt −∇ (σdBt)

T ∇Θ−HΘ (σdBt) .

(2.B.4)

As Θ is a random function, its material derivative, i.e. the differential of Θ(t,Xt), involves the
composition of two stochastic processes. Its evaluation requires the use of a generalized Ito formula,
referred to as the Ito-Wentzell formula (see theorem 3.3.1, Kunita, 1997). In the same way as the



2.C. THE EVOLUTION OF THE VARIANCE OF A PASSIVE TRACER 31

classical Ito formula5, it incorporates quadratic variation terms related to the process Xt, but also
co-variation terms between Xt and the gradient of the random function Θ, as:

(DtΘ) (t,Xt)
4
= d (Θ (t,Xt)) , (2.B.5)

= dtΘ + dXt · ∇Θ +
1

2
tr (d <Xt,X

T

t >HΘ) + d <XT

t ,∇Θ >, (2.B.6)

= dtΘ + (wdt+ σdBt) · ∇Θ +
1

2
tr (aHΘ) dt+ tr (σT∇hT ) dt

−
d∑
k=1

σT•k∇σT•k∇Θdt− tr (σTHΘσ) dt, (using (2.B.4)) (2.B.7)

= dtΘ + (wdt+ σdBt) · ∇Θ− 1

2
tr (aHΘ) dt

+tr (σT∇hT ) dt− (∇·a−∇·σσT )∇Θdt, (2.B.8)

= dtΘ +

((
w − 1

2
(∇·a)

T
+ σ(∇·σ)T

)
dt+ σdBt

)
· ∇Θ

−1

2
∇·(a∇Θ) dt+ tr (σT∇hT ) dt, (2.B.9)

= DtΘ + tr (σT∇hT ) dt. (by definition of Dt)(2.B.10)

Finally, taking this Lagrangian formulation at Xt = x leads to the (Eulerian) expression of the
material derivative:

DtΘ
4
= (dt (Θ (t,Xt)))|Xt=x

= DtΘ + tr (σT∇hT ) dt. (2.B.11)

Conversely, assuming that the explicit expression (2.B.1) is unknown whereas the expression of the
material derivative is known:

DtΘ = f̃dt+ h̃
T

dBt. (2.B.12)

Using the equation (2.B.11)

DtΘ = DtΘ− tr (σT∇hT ) dt = (f − tr (σT∇hT )) dt+ hTdBt. (2.B.13)

By uniqueness of the martingale decomposition (term in dt and term in dBt), we can identify
h̃ = h. Then, using again (2.B.11) yields:

DtΘ = DtΘ− tr (σT∇hT ) dt = DtΘ− tr
(
σT∇h̃

T
)

dt. (2.B.14)

2.C The evolution of the variance of a passive tracer

For a passive scalar Θ, we denote Y 4= Θ− E(Θ) and Z 4= Y 2. The goal is to find the evolution of
V ar(b) = E(Z). The conservation of the tracer, says DtΘ = 0, gives the evolution equation of Y :

dtY = − (w? · ∇)Y dt+∇ ·
(

1

2
a∇Y

)
dt− (σdBt · ∇) Θ. (2.C.1)

And, by the Ito formula,

dtZ = 2Y dtY + dt < Y, Y >, (2.C.2)
= −w? · ∇Zdt+ Y∇·(a∇Y ) dt− 2Y (σdBt · ∇) Θ + (∇Θ)

T
a∇Θdt. (2.C.3)

Taking the expectation of this expression and using Θ = E(Θ) + Y , yields

∂tV ar(b) = −w? · ∇V ar(b) + E {Y∇·(a∇Y )} + (∇E(Θ))
T
a∇E(Θ) + E

{
(∇Y )

T
a∇Y

}
.

(2.C.4)

5relevant only to express the differential of a time-differentiable function of a stochastic process.
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Expanding the second term of the right-hand side makes appear the diffusion of the variance

E {Y∇·(a∇Y )} =
∑
i,j

∂iaijE {Y ∂jY }+
∑
i,j

aijE
{
Y ∂2

ijY
}
, (2.C.5)

=
∑
i,j

∂iaijE {Y ∂jY }+
∑
i,j

aijE
{

1

2
∂2
ij(Y

2)− ∂iY ∂jY
}
, (2.C.6)

=
1

2

∑
i,j

∂iaij∂jE {Z}+
1

2

∑
i,j

aij∂ijE {Z} − E
{

(∇Y )
T
a∇Y

}
, (2.C.7)

= ∇·
(

1

2
a∇V ar(b)

)
− E

{
(∇Y )

T
a∇Y

}
. (2.C.8)

Finally, the evolution law of the variance writes

∂tV ar(b) +w? · ∇V ar(b) = ∇·
(

1

2
a∇V ar(b)

)
+ (∇E(Θ))

T
a∇E(Θ). (2.C.9)

2.D Stochastic extension of the Reynolds transport theorem

In the following, we consider a scalar function φ transported by the stochastic flow x0 7→ x =
Xt(x0) (2.2.5). Its initial time value g:

φ(Xt(x0), t) = g(x0). (2.D.1)

We will assume that the initial function g : Ω → R has bounded spatial gradients and vanishes
outside the initial volume V(t0) and on its boundary. The material derivative of φ is:

(Dtφ)(t,Xt(x0))
4
= d (φ(t,Xt(x0))) = dg(x0) = 0. (2.D.2)

With equation (2.2.10), it writes in the Eulerian space:

0 = Dtφ
4
= dtφ+ (w?dt+ σdBt) · ∇φ−∇ ·

(
1

2
a∇φ

)
dt, (2.D.3)

with

w? = w − 1

2
(∇ · a)T + σ(∇·σ)T . (2.D.4)

Thus,

dtφ = Lφdt−∇φ · σdBt, (2.D.5)

Lφ = −∇φ · w? +
1

2
∇ · (a∇φ). (2.D.6)

Denoting J the Jacobian corresponding to the change of variables x0 7→ x = Xt(x0), the differen-
tial of the integral over a material volume of the product qφ is given by

d

∫
V(t)

(qφ)(x, t)dx = d

∫
V(0)

(Jqφ)(Xt(x0), t)dx0, (2.D.7)

= d

∫
Ω

(Jqφ)(Xt(x0), t)dx0, (2.D.8)

= d

∫
Ω

(qφ)(x, t)dx, (2.D.9)

=

∫
Ω

(
dtqφ+ qdtφ+ dt〈q, φ〉

)
(x, t)dx, (2.D.10)



2.E. STOCHASTIC NAVIER-STOKES MODEL 33

where the second line comes from φ(Xt(x0), t) = g(x0) = 0 if x0 ∈ Ω\V(t0) and the last line from
the Ito’s formula. To compute the quadratic covariation dt〈q, φ〉, we introduce a notation for the
non-differentiable part (i.e. the integral in dBt) of

∫ t
0
Dtq:

Dtq = fdt+ hTdBt. (2.D.11)

Together with the stochastic operator, Dt, this relation determines the form of the time differential
of q:

dtq = m dt+ (−∇qTσ + hT ) dBt. (2.D.12)

Hence, from (2.D.5), we have

d

∫
Ω

qφ =

∫
Ω

[
dtqφ+ q

(
Lφdt−∇φ · σdBt

)
−∇φTσ (−σT∇q + h) dt

]
. (2.D.13)

Introducing L∗ the (formal) adjoint of the operator L in the space L2(Ω) with Dirichlet boundary
conditions, this can be written as∫

Ω

[
dtq +

(
L∗q −∇ · (a∇q) +∇ · (σh)

)
dt+∇ ·

(
qσdBt

)]
φ. (2.D.14)

With the complete expression of L∗ (the second right-hand term of 2.D.6 is self-adjoint), the
condition φ(x, t)→ 1IV(t)/∂V(t), where 1I stands for the characteristic function, leads to the following
form of this differential:

d

∫
V(t)

q =

∫
V(t)

[
dtq +

(
∇ ·

(
qw?

)
+∇ · (σh)

)
dt+∇ ·

(
qσdBt

)]
, (2.D.15)

=

∫
V(t)

[
Dtq + tr (σT∇hT ) dt+ (∇·σ)h dt+∇ · (w?dt+ σdBt) q

]
, (2.D.16)

=

∫
V(t)

[
Dtq +∇ · (w?dt+ σdBt) q + (∇·σ)h dt

]
, (2.D.17)

=

∫
V(t)

[
Dtq +∇ · (w?dt+ σdBt) q + d

〈∫ t

0

Dt′q,

∫ t

0

∇·σdBt′

〉]
, (2.D.18)

where the third line comes from the explicit link (2.2.10), between the stochastic transport operator
Dt and the material derivative Dt.

2.E Stochastic Navier-Stokes model

From the conservation of linear momentum, the balance between the momentum variation and the
forces can be expressed as:

d

∫
V(t)

ρ
(
w + σḂ

)
=

∫
V(t)

dtF . (2.E.1)

The left-hand term must be interpreted in a distribution sense, the small-scale velocity, σḂ, being
non-continuous. For every test function h ∈ C∞0 (R+), we have:∫

R+

h(t)d

∫
V(t)

ρw −
∫
R+

dh

dt
(t)

∫
V(t)

ρσdBt =

∫
R+

h(t)

∫
V(t)

dtF . (2.E.2)

Both sides of this equation must have the same structure, and the forces can be written as:∫
R+

h(t)

∫
V(t)

dtF = −
∫
R+

dh

dt
(t)

∫
V(t)

ρσdBt +

∫
R+

h(t)

∫
V(t)

(ηdt+ θdBt) . (2.E.3)
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The right-hand first term must compensate the white-noise distributional differentiation of (2.E.2),
whereas the last term of (2.E.3) provides the structure of the forces under location uncertainty.
The forces are due to the gravitation potential Φa within the absolute frame, pressure and friction
forces, dtF(w,σ). A direct stochastic extension of the deterministic forces expression reads:∫

V(t)

(ηdt+ θdBt) =

∫
V(t)

(ρ∇Φadt−∇(pdt+ dtpσ) + dtF(w,σ)) . (2.E.4)

The pressure term p denotes the continuous contribution of the pressure. The other term, ṗσ, is
a zero-mean non-continuous stochastic process (the white noise part of the pressure). It describes
the pressure fluctuations due to the random velocity component. Note that the gravity force is
continuous in time, whereas the friction force applies both on the deterministic and stochastic
velocity components. For a fixed observer in a rotating frame, the rate of change of the fluid
velocity incorporates (considering the rotation, f , constant in time) the centripetal acceleration
and the Coriolis acceleration as additional terms. The centrifugal force is included within an
effective gravity, g = −∇Φ. The Coriolis term applies both to the large-scale component of the
velocity and to the random small-scale field.

The transport equation applied to the linear momentum gives:

d

∫
V(t)

ρw =

∫
V(t)

Dt (ρw) + ρw∇ ·w?dt. (2.E.5)

With Dt given by (2.2.9), the equation (2.E.5) can be expressed in terms of ρ, w and dt(ρw).
The large-scale velocity w is assumed to be differentiable in time,

dt(ρw) = dtρw + ρ∂twdt. (2.E.6)

The density time derivative, dtρ uses (2.2.9) and the mass conservation equation:

Dtρ+ ρ∇ ·w? = 0. (2.E.7)

From equations (2.E.5), (2.2.9), (2.E.6) and (2.E.7), the variation of the large-scale linear momen-
tum reads:

d

∫
V(t)

ρwi =

∫
V(t)

(
ρ
(
∂twidt+ ρ (w∗dt+ σdBt) · ∇wi −

1

2
∇ · (ρa∇wi) dt

)
. (2.E.8)

From the balance between the forces (2.E.4) and the momentum variation (2.E.8), the expression
of the flow dynamics for an observer in an uniformly rotating coordinate frame is then obtained
by considering the slow temporal bounded variation terms and the Brownian terms.
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Abstract

Models under location uncertainty are derived assuming that a component of the velocity is un-
correlated in time. The material derivative is accordingly modified to include an advection cor-
rection, inhomogeneous and anisotropic diffusion terms and a multiplicative noise contribution.
In this paper, simplified geophysical dynamics are derived from a Boussinesq model under loca-
tion uncertainty. Invoking usual scaling approximations and a moderate influence of the subgrid
terms, stochastic formulations are obtained for the stratified Quasi-Geostrophy (QG) and the Sur-
face Quasi-Geostrophy (SQG) models. Based on numerical simulations, benefits of the proposed
stochastic formalism are demonstrated. A single realization of models under location uncertainty
can restore small-scale structures. An ensemble of realizations further helps to assess model er-
ror prediction and outperforms perturbed deterministic models by one order of magnitude. Such
a high uncertainty quantification skill is of primary interests for assimilation ensemble methods.
MATLAB R© code examples are available online.
Keywords: stochastic sub-grid parameterization, uncertainty quantification, ensemble forecasts.

3.1 Introduction

Ensemble forecasting and filtering are widely used in geophysical sciences for forecasting and cli-
mate projection. In practice, dynamical models are randomized through their initial conditions
and a Gaussian error model, and are generally found to be underdispersive (Mitchell and Gottwald,
2012; Gottwald and Harlim, 2013; Berner et al., 2011; Snyder et al., 2015) with a low variance. As
a consequence, errors are underestimated and observations are hardly taken into account. Correc-
tions are considered by incorporating inflation procedures or hyperprior to increase the variance
of ensemble Kalman filters (Anderson and Anderson, 1999; Bocquet et al., 2015). However, such
corrections do not provide an accurate spatial localization of the errors.

Another difficulty of ensemble methods lies in the huge dimensions of the involved state spaces.
For obvious computational reasons, ensembles for geophysical applications appear constrained and

35
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limited to small sizes. It thus becomes primordial to build strategies to best track the most likely
dynamical events. From this point of view, ensemble simulations and stochastic dynamics have
clear advantages over the deterministic models.

The simplest random models are defined from Langevin equations with linear damping and
additive isotropic Gaussian noise, as, for instance, the linear inverse models (e.g. Penland and Ma-
trosova, 1994; Penland and Sardeshmukh, 1995), or the Eddy-Damped Quasi Normal Markovian
(EDQNM) models (e.g. Orszag, 1970; Leith, 1971; Chasnov, 1991). Among other empirical stochas-
tic models, the Stochastic Kinetic Energy Backscatter (SKEBS) (Shutts, 2005; Berner et al., 2009,
2011) and the Stochastic Perturbed Physics Tendency scheme (SPPT) (Buizza et al., 1999) intro-
duce correlated multiplicative noises. SPPT and SKEBS methods have been successfully applied in
operational weather forecast centers (Franzke et al., 2015). To target highly non-Gaussian distri-
bution of fluid dynamics properties, an attractive path is to infer randomness from physics (Berner
et al., 2015). For this purpose, the time-scale separation assumption is convenient. Hasselmann
(1976) already relied on it for geophysical fluid dynamics. This assumption is the foundation of
averaging and homogenization theories (Kurtz, 1973; Papanicolaou and Kohler, 1974; Givon et al.,
2004; Gottwald and Melbourne, 2013; Mitchell and Gottwald, 2012; Gottwald and Harlim, 2013;
Franzke et al., 2015; Gottwald et al., 2015). A successful application of homogenization theory in
geophysics is the MTV algorithms (Majda et al., 1999, 2001; Franzke et al., 2005; Majda et al.,
2008). The homogenized dynamics is cubic with correlated additive and multiplicative (CAM)
noises. This noise structure is able to produce intermittency and extreme events. In practice, the
non-linearity of the small-scale equation (fast dynamics) is conveniently replaced by a noise and
a damping terms before the homogenization procedure. Noise statistics are estimated from data,
with Gaussian assumptions.

In Resseguier et al. (2017a), following Mémin (2014), another approach has been considered to
help derive models under location uncertainty based on stochastic calculus and the Ito-Wentzell
formula (Kunita, 1997). Mikulevicius and Rozovskii (2004) and Flandoli (2011) already introduce
this methodology. Yet, their works mostly focused on pure mathematical aims: existence and
uniqueness of SPDE solutions. For our more practical purpose, the large-scale is understood
as sub-sampled in time, and the remaining small-scale velocity component is then considered as
uncorrelated in time.

Starting with the definition of the revised transport under location uncertainty (section 2),
developments are then carried out to derive and analyze the stochastic versions of Quasi-Geostrophy
(QG) and Surface Quasi-Geostrophy (SQG) models with a moderate influence of sub-grid terms
(section 3). Numerical results highlight the potential of these models under location uncertainty,
especially for ensemble forecast (Section 4).

3.2 Models under location uncertainty
This section briefly outlines main theoretical results discussed in Resseguier et al. (2017a). The ve-
locity is decomposed between a possibly random large-scale component, w, and a time-uncorrelated
component, σḂ. The latter is Gaussian, correlated in space with possible inhomogeneities and
anisotropy. Hereafter, this unresolved velocity component will further be assumed to be solenoidal.
To parameterize those spatial correlations, we apply an infinite-dimensional linear operator, σ, to
a d-dimensional space-time white noise1, Ḃ.

In time, the velocity is irregular. The material derivative, Dt, is then changed. In most cases,
it coincides with the stochastic transport operator, Dt, defined for every field, Θ, as follows:

DtΘ
4
= dtΘ︸︷︷︸

4
= Θ(x,t+dt)−Θ(x,t)

Time increment

+ (w?dt+ σdBt) · ∇Θ︸ ︷︷ ︸
Advection

−∇ ·
(

1

2
a∇Θ

)
︸ ︷︷ ︸

Diffusion

dt, (3.2.1)

where the time increment term dtΘ is used in place of the partial time derivative, as Θ is in general
non-differentiable. The diffusion coefficient matrix, a, is solely defined by the one-point one-time

1Formally each coefficient of (t 7→ Bt) is a cylindrical Id-Wiener process (see Da Prato and Zabczyk (1992) and
Prévôt and Röckner (2007) for more information on infinite dimensional Wiener processes and cylindrical Id-Wiener
processes).
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covariance of the unresolved displacement per unit of time:

a = σσT =
E
{
σdBt (σdBt)

T
}

dt
, (3.2.2)

and the modified drift is given by

w? = w − 1

2
(∇ · a)T . (3.2.3)

For a divergent small-scale velocity, this drift would involve an additional component (Resseguier
et al., 2017a). With this modified material derivative (3.2.1), the transport equations under location
uncertainty involve three new terms: a modification of the large-scale advection (w? instead of w),
an inhomogeneous and anisotropic diffusion and a multiplicative noise. This random forcing is
directly related to the advection by the unresolved velocity.

For incompressible flows (∇·w? = 0), the energy of any tracer, Θ, is conserved for each
realization:

d

∫
Ω

Θ2 = 0, (3.2.4)

where Ω is the spatial domain. This still holds for active tracers. The diffusion dissipates as much
energy as the multiplicative noise is injecting it in the system. In particular, the (ensemble) mean
of the energy, E

∫
Ω

Θ2, is conserved. This results ensures a constant balance between the energy
of the mean and the (ensemble) variance. The energy fluxes in these stochastic models are more
thoroughly described in Resseguier et al. (2017a).

A random version of the Reynolds transport theorem can further be derived (Mémin, 2014;
Resseguier et al., 2017a). From this theorem, usual conservation of mechanics (mass, linear mo-
mentum, energy and amount of substance) can be expressed in a stochastic sense. Random Navier-
Stokes and Boussinesq models can then be derived. This last model describes the stochastic trans-
ports of velocity and density anomaly, as well as incompressibility conditions.

3.3 Mesoscales under moderate uncertainty

To simplify the stochastic Boussinesq model of Resseguier et al. (2017a), Quasi-Geostrophic (QG)
models are developed for large horizontal length scales, L, such as:

1

Bu
=

(
Fr

Ro

)2

=

(
L

Ld

)2

∼ 1 and
1

Ro
=
Lf0

U
� 1, (3.3.1)

where U is the horizontal velocity scale, Ld
4
= Nh

f is the Rossby deformation radius, N is the
stratification (Brunt-Väisälä frequency) and h is the characteristic vertical length scale. The Rossby
deformation radius explicitly defines the mesoscale range, over which both kinetic and buoyancy
effects are important, and strongly interact. In the following, both differential operators Del, ∇,
and Laplacian, ∆, represent 2D operators.

3.3.1 Specific scaling assumptions

Hereafter, we explicit scaling assumptions to derive the non-dimensional version of the stochastic
Boussinesq model.

Quadratic variation scaling

Besides traditional ones, another dimensionless number, Υ, is introduced to relate the large-scale
kinetic energy to the energy dissipation due to the horizontal small-scale random component. In
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the following, σH• stands for the horizontal component of σ, aH for σH•σTH• and Au for its scaling.
The new dimensionless number is defined by:

Υ
4
=
UL

Au
=

U2

Au/T
. (3.3.2)

This number compares horizontal advective and diffusive terms in the momentum and buoyancy
equations. This number can also be related to the ratio between the Mean Kinetic Energy (MKE),
U2, and the Turbulent Kinetic Energy (TKE), Au/Tσ, where Tσ is the small-scale correlation time.
This reads:

Υ =
1

ε

MKE

TKE
, (3.3.3)

where ε = Tσ/T is the ratio of the small-scale to the large-scale correlation times. This parameter,
ε, is central in homogenization and averaging methods (Majda et al., 1999; Givon et al., 2004;
Gottwald and Melbourne, 2013). The number Ro/Υ can then be stated to measure the ratio
between sub-grid terms and the Coriolis force. In the usual deterministic case and the limit of small
Rossby number, the predominant terms of the horizontal momentum equation then correspond to
the geostrophic balance. In the stochastic case, this balance also applies from weak (Υ � 1) to
moderate (Υ ∼ 1) uncertainty. However, if Υ/Ro is close enough to O(1), this geostrophic balance
is modified due to the diffusion effects introduced by the small-scale random velocity. Hereafter,
developments focus on the moderate uncertainty case. Resseguier et al. (2017c) deals with the
strong uncertainty case.

To evaluate Υ for a given flow at a given scale, eddy viscosity or diffusivity values help the
determination of Au. Boccaletti et al. (2007) give some examples of canonical values. Then, the
typical resolved velocity and length scale lead to Υ. If no canonical values are known, absolute
diffusivity or similar mixing diagnoses could be measured (Keating et al., 2011) as a proxy of the
variance tensor.

Vertical unresolved velocity

The scaling to compare vertical to horizontal unresolved velocities is also considered:

(σdBt)z
‖(σdBt)H‖

∼ Ro

Bu
D, (3.3.4)

where D = h
L is the aspect ratio and the subscript H indicates horizontal coordinates. This scaling

can be derived from the ω-equation (Giordani et al., 2006). For any velocity u = (uH ,w)T , which
scales as (U,U,W)T , this equation reads

f2
0∂

2
zw +N2∆w =∇ ·Q ≈ −∇ · (∇uTH∇b) ≈ −f0∇ ·

(
∇uTH∂zu

⊥
H

)
, (3.3.5)

where b stands for the buoyancy variable and Q for the so-called Q-vector. In its non-dimentional
version, the ω-equation reads:

W

U

(
∂2
zw + Bu∆w

)
≈ DRo∇ ·Q. (3.3.6)

At planetary scales, Burger number is small and the rotation dominates the stratification, W
U ∼

DRo. At smaller scales, with a larger Burger number, the stratification dominates the rotation,
W
U ∼ DRo/Bu. For the small-scale velocity σḂ, the latter is thus more relevant.

Note that the angle between the small-scale component and the horizontal one can be assumed
to be constrained by the angle between the isopycnical and the horizontal plane. Invoked to
describe baroclinic instabilities theory, this statement helps to specify the anisotropy of the eddy
diffusivity (Vallis, 2006). The argument of the orientation of the eddies activity with isentropic
surfaces and the related mixing is also supported by several other authors (Gent and Mcwilliams,
1990; Pierrehumbert and Yang, 1993).
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In the case of QG models, the large and small Burger scaling cases lead to the same result: the
unresolved velocity is mainly horizontal.

(σdBt)z
‖(σdBt)H‖

∼ Ro

Bu
D � D. (3.3.7)

This is consistent with the assumption of a large stratification, i.e. flat isopycnicals, if we admit
that the eddies activity appears preferentially along the isentropic surfaces. As a consequence, the
terms (σdBt)z∂z scale as Ro

Bu
(σdBt)H · ∇. In the QG approximation, the scaling of the diffusion

and effective advection terms including σz• are one to two orders smaller (in power of Ro/Bu)
than terms involving σH•. For any function ξ, the vertical diffusion ∂z(

σz•σ
T
z•

2 ∂zξ) is one order

smaller than the horizontal-vertical diffusion term ∇ ·
(
σH•σ

T
z•

2 ∂zξ
)
and two orders smaller than

the horizontal diffusion term ∇ ·
(
σH•σ

T
H•

2 ∇ξ
)
.

Beta effect

At mid-latitudes, the related term, given by β 4= ∂yf , is much smaller than the constant part of
the Coriolis frequency. Nevertheless, it can govern a large part of the relative vorticity at large
scales. The following scaling is thus chosen (Vallis, 2006):

βy ∼∇⊥ · u ∼ U

L
= Rof0. (3.3.8)

3.3.2 Stratified Quasi-Geostrophic model under moderate uncertainty

The moderate uncertainty case corresponds to Υ ∼ 1. Horizontal advective terms and horizontal
sub-grid terms are comparable.

Following similar principles as those used to derive the deterministic stratified QG model (Vallis,
2006), a stochastic QG model can be derived (see Appendix 3.B). This QG solution corresponds to
the limit of the Boussinesq solution when the Rossby number goes to zero. The resulting potential
vorticity (PV), Q, is then found to be conserved, along the horizontal random flow, up to three
source terms:

DHt Q =
1

2

∑
i,j∈H

∂2
ij

(
∇⊥aij · u

)
dt − 1

2
∇ · (∇ · (aHf))

T
dt − tr [SJSσdBt ] , (3.3.9)

where the QG PV is:

Q
4
= ∆ψ + f +

(
f0

N

)2

∂2
zψ, (3.3.10)

ψ is the streamfunction, J =

(
0 −1
1 0

)
is the π

2 rotation matrix,

S =
1

2

[
∇uT + (∇uT )

T
]
and SσdBt =

1

2

[
∇(σdBt)

T

H + (∇(σdBt)
T

H)
T
]

(3.3.11)

denotes the strain rate tensor of the horizontal resolved and unresolved velocities, u and (σdBt)H ,
respectively. To interpret the source terms, we rather focus on the material derivative of the PV:

DH
t Q = ∇ · (α∇ψ)dt− 1

2
∇ · (∇ · (aHf))

T
dt− tr [SJSσdBt ] , (3.3.12)

with

αT
4
=
∑
i

(
∇σTHi

)2
, (3.3.13)
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which can be decomposed into a symmetric part, positive or negative diffusion of the stream
function, and an anti-symmetric part, skew diffusion advection of the stream function. Compared
to the traditional QG model, this system includes two smooth (continuous) source/sink terms that
depend on the variance tensor, and a random forcing term. The first source term in (3.3.12) is
correlated in time and may decrease or increase the PV energy. This term is due to the spatial
variations of both the diffusion coefficient and the drift correction. The second term takes into
account interactions between the Coriolis frequency, including beta effects, and inhomogeneous
sub-grid eddies. The last source term in (3.3.12) is a noise term, encoding the interactions between
the resolved and the unresolved strain rate tensors. Uncorrelated in time, this noise increases the
potential enstrophy along time.

To further understand this source term, let us denote Ξ and Λ the eigenvalues associated with
the stable directions (i.e. negative eigenvalue) of the strain rate tensors of the large-scale flow,
S, and of the small-scale flow, SσdBt respectively. We note θ, the angle between these two stable
directions

−tr [SJSσdBt ] = 2 ΞΛ︸︷︷︸
>0

sin (2θ) . (3.3.14)

The detailed derivation is provided in Appendix 3.B. This random source vanishes when the stable
directions of u and (σdBt)H are aligned or orthogonal. It is maximum and positive (respectively
minimum and negative) when there is an angle of π

4 (respectively −π4 ) between those directions.
Around the local position x, stable and unstable directions of the large-scale velocity define 2 axes
and 4 quadrants. As understood, the strain rate tensor does not depend on the local vorticity.
Yet, an hyperbolic deformation will almost resemble a positive vorticity in the upper-left and
bottom-right quadrants, and a negative vorticity in the upper-right and bottom-left quadrants.
For θ = π

4 , the stable direction of the small-scale velocity aligns along the upper-left to bottom-
right direction. The small-scale velocity then compresses the flow in this direction and dilates the
flow in the orthogonal direction (upper-right to bottom-left). The quadrants associated with a
seemingly positive (resp. negative) vorticity are brought closer (resp. farther) to x. Accordingly,
the vorticity increases at x. For −π4 , the vorticity would decrease.

Note the dBt factor has been omitted in the right-hand side of equation (3.3.14). This term
remains a linear function of the uncorrelated noise z 7→ dBt(z). Whatever the angle between the
stable directions, the source term always has a zero (ensemble) mean and increases the enstrophy
since it is a term in dBt. Equation (3.3.14) could then be used to define the horizontal inhomoge-
neous small-scale component of the velocity. If the conservation of PV is a strong constraint, this
component can indeed be defined to ensure that its stable direction is always along or orthogonal
to the stable direction of u.

A two-layer model could also be deduced from equation (3.3.9) or (3.3.12). This would help
identifying the stochastic parameterization effects on the barotropic and baroclinic modes. In
particular, the particular forms of the operator σ able to trigger barotropization effects can bemore
efficiently studied.

In the stochastic QG model, the stream function ψ is related to the buoyancy, b, the pressure,
p′, and the velocity, u, by the usual relations:

b = f0∂zψ, p
′ = ρbf0ψ and u =∇⊥ψ, (3.3.15)

where ρb is the mean (background) density. The horizontal noise term, (σdBt)H , appearing in
both the horizontal stochastic material derivative and in the 2× 2 horizontal variance tensor, aH ,
is in geostrophic balance with a pressure component uncorrelated in time. Due to their scaling,
the vertical noise and its variance are neglected in the final equations.
For homogeneous turbulence conditions, the transport of PV (3.3.12) simplifies. The variance
tensor becomes constant, the first two source terms disappear, to give

DHt Q = DH
t Q = −tr [SJSσdBt ] . (3.3.16)

The transport of the PV (equation (3.3.9) or (3.3.16)) determines the dynamics of the fluid interior.
Boundary conditions are then necessary to specify completely the dynamics.
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3.3.3 Surface Quasi-Geostrophic model under moderate uncertainty

A classical choice considers a vanishing solution in the deep ocean and a buoyancy transport at
the surface (Vallis, 2006; Lapeyre and Klein, 2006):

ψ −→
z→−∞

0 and DH
t b|z=0

= DHt b|z=0
= 0. (3.3.17)

Assuming zero PV in the interior but keeping these boundary conditions leads to the Surface
Quasi-Geostrophic model (SQG) (Blumen, 1978; Held et al., 1995; Lapeyre and Klein, 2006; Con-
stantin et al., 1994, 1999, 2012). Under the stochastic framework, the derivation is similar. The
PV is indeed identical to the classical one (see equation (3.3.10)), assuming zero PV in the interior
and vanishing solution as z → −∞ unsurprisingly yields the same SQG relationship:

b̂ = N‖k‖ ψ̂. (3.3.18)

The top boundary condition, equation (3.3.17), provides an evolution equation, namely the hori-
zontal transport of surface buoyancy, in the stochastic sense:

DHt b = 0. (3.3.19)

The time-uncorrelated component of the velocity, σḂ, is divergence-free. Its inhomogeneous and
anisotropic spatial covariance has then to be specified. The time-correlated component of the ve-
locity is also divergence-free, with a stream function specified by the SQG relation (3.3.18). The
buoyancy is randomly advected, and the resulting smooth velocity component is random as well.

3.3.4 Summary

For simplified models, stochastic versions are derived for scaling assumptions related to the sub-
grid terms. For moderate uncertainty, the PV is transported along the random flow up to three
source terms. The first one, smooth in time, is due to spatial variations of the inhomogeneous
diffusion and the drift correction. The second one, also smooth, encodes the interaction between
inhomogeneous turbulence and Coriolis frequency. These terms disappear for an homogeneous
turbulence. The last term, a time-uncorrelated multiplicative noise, involves the large-scale and
the small-scale strain rate tensors. It is a source of potential enstrophy and its instantaneous value
depends on the angle between the large-scale and small-scale stable directions. Assuming zero PV
in the interior, a SQG model follows from this QG model.

3.4 Numerical results

We focus on this SQGMU model (3.3.3). A high-resolution deterministic SQG simulation provides
a reference. The MATLAB R© codes are available online (http://vressegu.github.io/sqgmu).
Numerical results are analyzed in terms of the resolution gains (when a single realization is simu-
lated) and the potential for ensemble forecasting in estimating spatial and spectral reconstruction
errors (for an ensemble of realizations).

3.4.1 Test flow

The initial conditions defining the test flow, Figure 3.1, consist of a spatially smooth buoyancy
field with two warm elliptical anticyclones and two cold elliptical cyclones given by:

b(x, t = 0) = F

(
x−

(
250 km
250 km

))
+ F

(
x−

(
750 km
250 km

))
−F

(
x−

(
250 km
750 km

))
− F

(
x−

(
750 km
750 km

))
, (3.4.1)

http://vressegu.github.io/sqgmu


42 CHAPTER 3. GEOPHYSICAL FLOWS UNDER LOCATION UNCERTAINTY, PART II

with

F (x)
4
= B0 exp

(
−1

2

(
x2

σ2
x

+
y2

σ2
y

))
and

{
σx = 67 km,
σy = 133 km. (3.4.2)

The size of the vortices is of order of the Rossby radius Ld. The buoyancy and the stratification
have been set with: B0 = 10−3m.s−2 and N = 3f0. The Coriolis frequency is set to 1.028×10−4s−1

(45◦ N). Periodic boundaries conditions are considered.
The deterministic high-resolution SQG reference model is associated with a spatial mesh grid

of 5122 points, whereas the low-resolution (deterministic or stochastic) SQG models are run on
1282 points. The simulations have been performed through a pseudo-spectral code in space. As
for the temporal discrete scheme the deterministic simulation relies on a fourth-order Runge-Kutta
scheme, whereas the stochastic ones are based on an Euler-Maruyama scheme (Kloeden and Platen,
1999). For our application, the weak precision of this scheme is balanced by the use of a small
time step. In all the simulations (deterministic and random, high-resolution and low-resolution),
a standard hyperviscosity model is used:

Dtb = αhv∆4b dt, (3.4.3)

with a coefficient αhv = (5 × 1029m8.s−1)M−8
x where Mx denotes the meshgrid size (i.e. 128 or

512).
Figure 3.1 displays the high-resolution buoyancy field at t = 0, 5, 10, 13, 15, 16, 20 and 30 days.

During the first ten days, the vortices turn with slight deformation. Vortices of the same sign have
their tails that draw closer. This creates high shears around four saddle points located at (x, y) =
(0, 250), (500, 250), (0, 750) and (500, 750) (in km). A strong non-linearity in the neighborhood of
a saddle point has been identified to become a major source of instability (Constantin et al., 1994,
1999, 2012). In our case, this effect is weak but yields an effective creation of turbulence 10 days
later. Shears create long and fine filaments, wrapping around the vortices until the 15th day. At this
time, the filaments become unstable, break and a so-called “pearl-necklace" appears, characteristic
of the SQG model, days 17-18 in the simulation. These small vortices are then ejected from their
orbits. Between days 17th and 25th, they interact with the large vortices, the filaments and other
small vortices, to create a fully-developed SQG turbulence orbiting around the four large vortices.

3.4.2 Simulation of the random velocity
To simulate the SQGMU model (3.3.18-3.3.19), the covariance of the unresolved velocity σḂ must
be specified. As this unresolved velocity field is assumed divergence-free, we introduce the following
stream function linear operator, ψσ, and its kernel, ψ̆σ:

σH(x)dBt =∇⊥ψσ(x)dBt,=

∫
Ω

dz ∇⊥x ψ̆σ(x, z)dBt(z). (3.4.4)

As such, a single cylindrical Wiener process, Bt, is sufficient to sample our Gaussian process. This
is specific to two-dimensional domains. In 3D, a vector of 3 independent Id-cylindrical Wiener
processes, and a projection operator on the divergence-free vector space or a curl must be considered
to simulate an isotropic small-scale velocity (Mémin, 2014). For a divergent unresolved velocity,
equation (3.4.4) can additionally involve the gradient of a random potential, ∇ψ̃σdBt.

Then, similar to the Kraichnan’s model, a solenoidal homogeneous field can be considered:
(Kraichnan, 1968, 1994; Gawȩdzki and Kupiainen, 1995; Majda and Kramer, 1999):

σH(x)dBt =

∫
Ω

dz ∇⊥x ψ̆σ(x− z)dBt(z) =
(
∇⊥ψ̆σ ? dBt

)
(x). (3.4.5)

where ? denotes a convolution. Although spatially inhomogeneous field would be more physi-
cally relevant, homogeneity greatly simplifies the random field simulation. Indeed, homogeneity in
physical space implies independence between the Fourier modes

σ̂HḂ(k) = ik⊥
̂̆
ψσ(k) ̂̇B(k), (3.4.6)
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Figure 3.1: Buoyancy (m.s−2) at t = 0, 5, 10, 13, 15, 16, 20, 30 days of advection for the usual SQG
model at resolution 5122.



44 CHAPTER 3. GEOPHYSICAL FLOWS UNDER LOCATION UNCERTAINTY, PART II

10
−5

10
−4

10
0

10
2

10
4

|f̂
(κ

)|
2

κ(r ad .m− 1)

In i t i al spec trum of w and σdB t
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to a multiplicative constant), in red, and slope − 5

3 in black. In the simulation performed, σHḂ
is restricted to a narrow spectral band. Thus, this velocity component almost only acts near the
resolution cutoff, where the large-scale component, w, has a low energy.

in the half-space k ∈ (R× R+∗) ∪ (R+ × {0}). Thus, the small-scale velocity can be conveniently
specified from its omnidirectional spectrum:

k 7→ 1

µ(Ω)
E
∮

[0,2π]

dθk‖k‖
∥∥∥∥σ̂HḂ(k)

∥∥∥∥2

=
2π

∆t
‖k‖3

∣∣∣∣̂̆ψσ (‖k‖)
∣∣∣∣2 , (3.4.7)

where µ(Ω) is the surface of the spatial domain Ω, θk is the angle of the wave-vector k and ∆t
the simulation time-step. Consistent with SQG turbulence, the omni-directional spectrum slope,
denoted s, is fixed to − 5

3 . For 2D Euler equations, the slope would be set to −3. If the small
scales spectrum slope is unknown, the spectrum slope of the resolve scales – estimated on line –
may enable to specify s through a scale similarity assumption. The unresolved velocity should be
energetic only where the dynamics cannot be properly resolved. Consequently, we apply to the
spectrum a smooth band-pass filter, fBP , which has non-zero values between two wavenumbers
κmin and κmax. The parameter κmin is inversely related to the spatial correlation length of the
unresolved component. In practice, we set κmax to the theoretical resolution, π

∆x , and κmin to the
effective resolution (hereafter κmin = κmax/2). Figure 3.2 illustrates this spectrum specification.
The small scales’ energy is specified by the diffusion coefficient aH and the simulation time step:

E
(
σHḂ

)(
σHḂ

)T
=

1

∆t
aH =

1

∆t

(
aH 0
0 aH

)
. (3.4.8)

The diagonal structure of the variance tensor is due both to incompressiblity and isotropy. The
scalar variance tensor, aH , is similar to an eddy viscosity coefficient. So, a typical value of eddy
viscosity used in practice is a good proxy to setup this parameter. Otherwise, this parameter can
be tuned. For this paper, it is set to 9 m2.s−1. The time step depends itself, through the CFL
conditions, on both the spatial resolution and the maximum magnitude of the resolved velocity.
Finally, equation (3.4.6) writes:

σ̂HḂ(k)
4
=

A√
∆t

ik⊥fBP (‖k‖) ‖k‖−α d̂Bt√
∆t

(k) with s = 3− 2α = −5

3
, (3.4.9)

where A is a constant to ensure E
∥∥∥σHḂ∥∥∥2

= 2aH∆t (see equation (3.4.8) above), d̂Bt is the spatial

Fourier transform of dBt, with dBt√
∆t

, a discrete scalar white noise process of unit variance in space

and time. To sample the small-scale velocity, we first sample dBt√
∆t

, to get d̂Bt√
∆t

, and finally σ̂HḂ(k)

with the above equation.
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3.4.3 Resolution gain on a single simulation
In Figure 3.3, the buoyancy field and its spectrum for low resolution SQGMU and deterministic
SQG simulations are displayed for the day 17th. For the spectrum plots (right column), the slope
− 5

3 is superimposed. While the spectrum tail of the SQG model falls slightly before the stochastic
one, the most significant gain is observed in the spatial domain, i.e. in the phase of the tracer.
Indeed, the SQGMU buoyancy field exhibits pearl-necklaces, only obtained at higher resolution.
The low-resolved SQG simulation only generates smooth and stable filaments. Though small-scale
energy distribution remains similar for both low-resolved models, the phase of the stochastic tracer
is more accurate. This may seem surprising since the unresolved velocity, σHḂ, is defined in a
loose way, through its spectrum, without prescribing the nature of its phase. However, the noise is
multiplicative, and the random forcing, −(σHḂ) ·∇b, does implicitly take into account the tracer
phase.

Note, within the stochastic framework, the diffusion coefficient is explicitly related to the noise
variance. If the small-scale velocity is set to a magnitude three times smaller than the one pre-
scribed by the diffusion coefficient aH2 , the tracer field becomes quickly too smooth (see Figure 3.4).
Conversely, if the small-scale velocity is set to a magnitude three times larger than dictated by
the stochastic transport model, the tracer field becomes rapidly too noisy. This is visible both in
the spatial and Fourier spaces (Figure 3.4). The stochastic transport model thus imposes a correct
balance between noise and diffusion.

3.4.4 Ensemble forecasts
While single realization of SQGMU model carries more valuable information than a deterministic
SQG formulation at the same resolution, our model further enables to perform ensemble forecast-
ing and filtering. Straightforwardly, an ensemble of independently randomly forced realizations
{b(i)|i = 1, · · · , Ne} of tracer b can be simulated according to the SPDE (3.3.19). The probability
density function and all the statistical moments of the simulated tracer can then be approximated.
For instance, the (ensemble) mean of the buoyancy is a spatio-temporal field defined by:

E(b)(x, t) ≈ Ê(b)(x, t)
4
=

1

Ne

Ne∑
i=1

b(i)(x, t), (3.4.10)

where Ne denotes the ensemble size. This is in essence a Monte-Carlo Markov Chain (MCMC)
simulation. The ensemble size is deliberately kept small2 in order to assess the proposed stochastic
framework skills.

We compare the ensemble bias with the estimated error provided by the ensemble itself. The
bias corresponds to the discrepancy between the tracer ensemble mean and the SQG simulation at
high resolution3 (5122).

Our reference is deterministic since the initial condition is perfectly known and the target
dynamics is deterministic, as the real ocean dynamics. The partial knowledge of initial conditions
is a complementary issue not addressed in this paper. The reference being deterministic, the bias
represents both the error of the mean and the mean of the error:

Ê{b} − bref = Ê{ε}, (3.4.11)

where ε = b− bref stands for the (random) error. We denote by e the absolute value of this bias.

Another error metric could be the Root Mean Square Error (RMSE),
√

Ê{ε2}. Yet slightly larger,
it is found to have similar spatial and spectral distributions (not shown).

The estimated error, denoted εest, is set to 1.96 times the ensemble standard deviation. This
specific value corresponds to the (Gaussian) 95% confidence interval. Although the tracer distri-
bution is not Gaussian, this value provides an accurate conventional error estimate:

ε2est(x, t) = (1.96)2V̂ ar(b)
4
= (1.96)2 1

Ne − 1

Ne∑
i=1

(
b(i) − Ê(b)

)2

. (3.4.12)

2All the random simulations are performed with 200 – 1282 mesh-size – realizations.
3Note this simulation is afterward spatially filtered and subsampled to the same resolution as the ensemble
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Figure 3.3: Buoyancy (m.s−2) and its spectrum (m2.s−4/(rad.m−1)) at the 17th day of advection
for SQGMU at resolution 1282 (top), SQG at resolution 5122 (middle) and at resolution 1282 (bot-
tom). Unlike SQGMU, the low-resolved SQG simulation diffuses the “pearl necklaces”, noticeable
only at higher resolution.
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Figure 3.4: Buoyancy (m.s−2) and its spectrum (m2.s−4/(rad.m−1)) at the t = 17th day of ad-
vection for the SQGMU model with a small-scale velocity component three times weaker than the
one prescribed by the diffusion coefficient aH (top), with the correct amount of small-scale energy
(middle) and a small-scale velocity three times higher than the model diffusion. If the prescribed
balance between noise and diffusion is not met the tracer field becomes quickly too smooth or too
noisy.
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As this error depends on time and space, several comparisons are performed at several distinct
times in both the spatial and Fourier domains. In Figures 3.5 and 3.6, the absolute value of spatial
fields (3.4.11) and (3.4.12) (i.e. e and εest) are compared at days 10, 13, 15, 17, 20 and 25. As
obtained, the SQGMU model enables the ensemble to predict the positions and the amplitudes of
its own errors with a very good accuracy.

To compare the spread-error consistency of the proposed model, a more classical type of random
simulation is considered. An ensemble of the same size is initialized with random perturbations
of the initial conditions (3.4.1). The perturbations are assumed to be homogeneous, isotropic,
Gaussian and are sampled from a (−5

3 ) spectrum restricted to the small spatial scales, as shown
in Figure 3.7. Then, the ensemble is forecast with the deterministic SQG model.

Figures 3.8 and 3.9 represent the spectrum of the errors. The blue and red lines with crosses
stand for the spectrum of the bias absolute value, e, of the SQGMU with deterministic initial
conditions and of the SQG model with random initial conditions, respectively.

Deterministic and stochastic models have close distribution of errors over the scales, although
the SQGMU ensemble mean generally leads to lower errors than the SQG ensemble mean.

The blue line with circles denotes the spectrum of the SQGMU ensemble estimated error, εest.
As a benchmark, we superimposed the spectrum of the same estimator, εest, but simulated with
the usual model (red curve with circles). This estimation is dramatically underestimated. It is
generally one order of magnitude smaller that the real error. To reduce this drawback, a solution
would be to multiply by 10 the perturbations of the initial condition. However, this solution
introduces strong errors on the realizations (not shown). Their small-scale errors are generally
one order of magnitude larger than the ones of our model. These realizations of the deterministic
model remain far from the reference for about ten days. On the contrary, the SQGMU predicts
the correct spectral distribution of errors at each time, except at very small-scales, and each of its
realizations are accurate as shown in the previous subsection. Let us note however that most of
the errors are concentrated at large scales.

SQGMU thus appears to provide a relevant ensemble of realizations, as it enables us to estimate
the amplitude of its own error with a good accuracy both in the spatial and spectral domains.

With such an ensemble of realizations, it is now possible to analyze the spatio-temporal evolution
of the statistical moments. In Figure 3.10, we plotted the ensemble tracer mean and variance
for t = 17, 20 and 30 days of advection. As expected, the mean field is more smooth than the
realizations (see Figure 3.4 for comparison at t = 17 days). One realization provides a more
realistic field than the mean from a topological point of view. Indeed, the realization exhibits
physically relevant small-scale structures. Nevertheless, those structures have uncertain shapes and
positions. Therefore, on average, the mean field is closer (in the sense of the norm ‖•‖2L2(Ω)) to the
reference. Besides, those uncertain small-scale structures, forgotten by the mean field, are visible
in the variance. The variance becomes significant after 10 days of advection, near the stretched
saddle points. The strong tracer gradients create strong multiplicative noises. Indeed, strong large-
scale gradients involve smaller scales, and thus interact with the small-scale velocity σḂ. Then, at
t = 17 days, the filament instabilities are triggered by the unresolved velocity stretching effects. The
appearance of “pearl necklaces" and the underlying motions of those small-scale eddies are mainly
determined by the action of the unresolved velocity component. In consequence, these structures
are associated with a high uncertainty in their shapes and locations. Hence, they appear naturally
on the variance field. At t = 20, those sources of variance remain and mushroom-like structures
also develop near (x, y) = (0, 100), (500, 100), (0, 900) and (500, 900) (in km). The evolution of
these fronts are uncertain, and also show up in the variance field. On the day 30th, these random
structures are transported by the zonal jets which are located at y = 0 and y = 500 km.

The empirical moments of order 3 and 4 can also be evaluated with the ensemble. A high
4th order moment directly relates to the occurrence of extreme events, which is very relevant for
dynamical analysis. The point-wise 4-th order moment is centered and normalized to obtain the
so-called kurtosis:

m4
4
=

E (b− E(b))
4(

E (b− E(b))
2
)2 . (3.4.13)

The excess kurtosis, m4 − 3 highlights deviations from Gaussianity. In particular, positive values
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Spread-error consistency in the spatial domain
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Figure 3.5: Buoyancy bias absolute value, e = |Ê{b} − bref |, (m.s−2) of the SQGMU model (left)
and its estimation, εest, (1.96× the standard deviation of the ensemble) (right) at resolution 1282

at (from top to bottom) t = 10, 13 and 15 days of advection. The reference is the usual SQG model
at resolution 5122 – adequately filtered and subsampled.
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Spread-error consistency in the spatial domain
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Figure 3.6: Buoyancy bias absolute value, e = |Ê{b} − bref |, (m.s−2) of the SQGMU model (left)
and its estimation, εest, (1.96× the standard deviation of the ensemble) (right) at resolution 1282

at (from top to bottom) t = 17, 20 and 25 days of advection. The reference is the usual SQG model
at resolution 5122 – adequately filtered and subsampled.
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Figure 3.7: Spectrum (m2.s−4/(rad.m−1)), at the initial time, of the mean buoyancy, in blue,
spectrum of its random perturbation, in red, and slope − 5

3 in black. The initial perturbation is
restricted to a narrow spectral band. This random initial condition has been used to simulate an
ensemble with the deterministic SQG model.

figure the existence of fat-tail distribution. On the right column of Figure 3.11, the logarithm of
the excess kurtosis is displayed for several distinct times. Negative values of the excess kurtosis
(which indicates a flatter peak around the mean) have been set to zero. The “pearl necklaces",
identified in the variance plots, engender fat-tailed distribution at days t = 17 and 20. The small
eddies of a “pearl necklace" have similar vorticity and are close to each other, creating high shears
between them. A given eddy can be ejected from the necklace by its closest neighbors, and led up
to the north or south down. In such a case, the eddy reaches a zone of the space, neither warm
nor cold, with weak variability (e.g. with both local mean and variance being low compared to
eddy’s temperature). This brings extreme tracer values in statistical homogeneous areas. Finally,
the random structures, associated with extreme events are trapped in the zonal jets.

The point-wise moment of order 3 marks the asymmetry of the point-wise tracer distribution.
The skewness is the third-order moment of the centered and normalized tracer:

m3
4
=

E (b− E(b))
3(

E (b− E(b))
2
) 3

2

. (3.4.14)

Considering the interpretation of excess-kurtosis, the skewness identifies the predominant occur-
rence of cold (resp. warm) extreme events, associated with the cold (resp. warm) “pearl-necklaces".

3.5 Conclusion

Models under location uncertainty involve a velocity partially time-uncorrelated. Accordingly, the
material derivative, the interpretation of conservation laws, and the usual fluid dynamics models
are modified. In this paper, the random Boussinesq model is approximated by the so-called QG
equations. In our random framework, the approximation depends on sub-grid terms scaling. With
moderate turbulent dissipation, the PV is randomly transported in the fluid interior up to three
source/sink terms. Two of them are smooth in time and cancel out for homogeneous turbulence.
The last forcing term – a random enstrophy source – is related to the angle between stable directions
of resolved and unresolved velocities. Similarly to the deterministic case, a uniform PV yields a
randomized SQG model, called SQGMU , where the buoyancy is transported in the stochastic sense.

Simulation results are considered for the SQGMU model which is a good representation of the
transport under location uncertainty. As such, results are believed to hold for any fluid dynamics
models under location uncertainty. As found, SQGMU better resolves small-scale tracer structures
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Spread-error consistency in the Fourier domain
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Figure 3.8: Spectrum of the buoyancy bias absolute value, e = |Ê{b} − bref |, (lines with crosses)
and spectrum of the estimated error, εest, (1.96× the standard deviation of the ensemble) (lines
with circles) (m2.s−4/(rad.m−1)) of the low-resolution SQG model with random initial conditions
(red) and of the SQGMU model at the same resolution (blue), at (from top to bottom) t = 10, 13
and 15 days of advection. The reference is the usual SQG model at resolution 5122– adequately
filtered and subsampled. The low-resolution deterministic model with random initial conditions
underestimates the error by at least one order of magnitude whereas our estimation is very precise
except at small scales.
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Spread-error consistency in the Fourier domain
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Figure 3.9: Spectrum of the buoyancy bias absolute value, e = |Ê{b} − bref |, (lines with crosses)
and spectrum of the estimated error, εest, (1.96× the standard deviation of the ensemble) (lines
with circles) (m2.s−4/(rad.m−1)) of the low-resolution SQG model with random initial conditions
(red) and of the SQGMU model at the same resolution (blue), at (from top to bottom) t = 17, 20
and 25 days of advection. The reference is the usual SQG model at resolution 5122– adequately
filtered and subsampled. The low-resolution deterministic model with random initial conditions
underestimates the error by at least one order of magnitude whereas our estimation is very precise
except at small scales.
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Figure 3.10: Point-wise mean (left) and standard deviation (right) of the buoyancy (m.s−2) at
t = 17, 20 and 30 days of advection for SQGMU model at resolution 1282. The moments are
computed through MCMC simulations. The mean field is smoother than the individual realizations.
Areas of higher variance appear first near the stretched saddle points. Then, at t = 17 days, the
filament instabilities are triggered by the unresolved velocity component. The appearance of “pearl
necklaces" can be observed. At t = 20, mushrooms-like structures also develop in the variance field
near (x, y) = (0, 100), (500, 100), (0, 900) and (500, 900) (in km). At t = 30 days, these random
structures are transported by the zonal jets.



3.5. CONCLUSION 55

3rd and 4th point-wise moments

x (m)

y
(m

)

l og(Kurtosi s-3)

 

 

0 5 10

x 10
5

0

2

4

6

8

x 10
5

x(m)

y
(m

)

Skewness

 

 

0 5 10

x 10
5

0

2

4

6

8

x 10
5

−2

−1

0

1

2

−4

−2

0

2

x (m)

y
(m

)
l og(Kurtosi s-3)

 

 

0 5 10

x 10
5

0

2

4

6

8

x 10
5

x(m)

y
(m

)

Skewness

 

 

0 5 10

x 10
5

0

2

4

6

8

x 10
5

−2

−1

0

1

2

−4

−2

0

2

x (m)

y
(m

)

l og(Kurtosi s-3)

 

 

0 5 10

x 10
5

0

2

4

6

8

x 10
5

x(m)

y
(m

)

Skewness

 

 

0 5 10

x 10
5

0

2

4

6

8

x 10
5

−2

−1

0

1

2

−4

−2

0

2

Figure 3.11: Point-wise skewness, and logarithm of the excess kurtosis of the buoyancy at t = 17, 20
and 30 days of advection for SQGMU model at resolution 1282. The moments are computed
through MCMC simulations. Negative excess kurtosis is set to 0. The point-wise law of the tracer
is clearly non-Gaussian. The “pearl necklace" events identified in the variance plots leads to fat-
tailed distributions with skewness at t = 17 and 20 days. The random structures, associated with
fat tails are then trapped in the zonal jets.
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than a usual SQG model simulated at the same resolution. The prescribed balance between noise
and diffusion has also been confirmed. As further highlighted, an ensemble of simulations was
able to estimate the amplitude and the position of its own errors in both spatial and spectral
domains. This result suggests that the proposed randomized dynamics should be well suited for
filtering and other data assimilation methods. On the contrary, a deterministic model with ran-
domized initial conditions, either creates strong errors in its realizations (one order of magnitude
larger than the unperturbed deterministic dynamics), or underestimates its own errors (one or-
der of magnitude too low). A MATLAB R© code simulating the SQGMU model is available online
(http://vressegu.github.io/sqgmu).

As a discussion, we can address the problem of uncertainty quantification (UQ) of an unresolved
dynamics from an opposite point of view as the usual setting. Instead of specifying a form for the
sub-grid velocity, we can wonder what is the optimal form of SPDE for UQ in fluid dynamics. As
demonstrated, randomization of initial conditions is far from being sufficient to quantify uncer-
tainty. Therefore, a random forcing is needed to inject randomness at each time step. The simplest
choice is a forcing uncorrelated in time. Otherwise, additional stochastic equations need to be
simulated to sample a time-correlated process. This is not desirable in high dimension and the
correlation time of the process is often small anyway (Berner et al., 2011). A forcing uncorrelated
in time is a source of energy. So, to be physically acceptable, the SPDE should involve a dissipative
term to exactly compensate this source, even in non-stationary regime. The simplest choices of
dissipation are diffusion and linear drag. For small-scale processes, the first is more suitable. Now,
what is the form of a noise which brings as much energy as a diffusion removes? The proposed
approach constitutes a suitable solution toward this goal.

To further improve the accuracy of the UQ, spatial inhomogeneity of the variance tensor a can
be introduced from data or from additional models, as discussed in Resseguier et al. (2017a). This
inhomogeneity may reduce possible spurious oscillations of tracer stable isolines. Such oscillations
are visible on Figure 3.3 on the sides of the largest vortices. The assumption of time decorrela-
tion may also be a limitation. Nevertheless, as shown by the numerical simulations, the method
already achieve very good outcomes with an homogeneous noise component and no real time-scale
separation between the resolved and unresolved velocities. Note in particular that since the noise
is multiplicative, the random forcing is inhomogeneous even for homogeneous small-scale velocity.

Resseguier et al. (2017c) focuses on a system with a clear time-scale separation between the
meso and sub-meso scale dynamics to explore the consequences of the QG assumptions under a
strong uncertainty assumption (Υ ∼ Ro). A zero PV directly appears in the fluid interior and the
horizontal velocity becomes divergent. This divergence provides a simple diagnosis of the frontolysis
on warm sides of fronts and frontogenesis on cold sides of fronts.

Future works shall also focus on the potential benefits of the stochastic transport for data
assimilation issues. As foreseen, the proposed stochastic formalism opens new horizons for ensemble
forecasting techniques and other UQ based dynamical approaches (e.g. Ubelmann et al., 2015). This
stochastic setup has also been used to characterize chaotic transitions associated with breaking
symmetries, also demonstrating interesting perspectives in that context.
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Appendix

3.A Non-dimensional Boussinesq equations

To derive a non-dimensional version of the Boussinesq equations under location uncertainty (Resseguier
et al., 2017a), we scale the horizontal coordinates x̃h = Lxh, the vertical coordinate z̃ = hz, the
aspect ratio D = h/L between the vertical and horizontal length scales. A characteristic time
t̃ = Tt corresponds to the horizontal advection time U/L with horizontal velocity ũ = Uu. A
vertical velocity w̃ = (h/L)Uw is deduced from the divergence-free condition. We further take
a scaled buoyancy b̃ = Bb, pressure φ̃′ = Φφ′ (with the density scaled pressures φ′ = p′/ρb and
dtφσ = dtpσ/ρb), and the earth rotation f∗ = fk. For the uncertainty variables, we consider a
horizontal uncertainty ãH = Au aH corresponding to the horizontal 2×2 variance tensor; a vertical
uncertainty vector ãzz = Awazz and a horizontal-vertical uncertainty vector ãHz =

√
AuAwaHz

related to the variance between the vertical and horizontal velocity components. The resulting
non-dimensional Boussinesq system under location uncertainty becomes:

Nondimensional Boussinesq equations under location uncertainty

Momentum equations

dtu+ (w · ∇)udt+
1

Υ1/2
(σHdBt · ∇H)u+

(
Ro

BuΥ1/2

)
(σdBt)z∂zu

− 1

2Υ

∑
i,j∈H

∂2
ij

(
aiju

)
dt+O

(
Ro

ΥBu

)
+

1

Ro
(1 + Roβy)k ×

(
udt+

1

Υ1/2
σHdBt

)

= −Eu ∇H

(
φ′dt+

1

Υ1/2
dtφσ

)
, (3.A.1a)

dtw + (w · ∇)wdt+
1

Υ1/2
(σHdBt · ∇H)w +

(
Ro

BuΥ1/2

)
(σdBt)z∂zw

− 1

2Υ

∑
i,j∈H

∂2
ij

(
aijw

)
dt+O

(
Ro

ΥBu

)
=

Γ

D2
bdt− Eu

D2
∂z

(
φ′dt+

1

Υ1/2
dtφσ

)
,

(3.A.1b)

Buoyancy equation

dtb+

(
w∗Υdt+

1

Υ1/2
(σdBt)

)
· ∇b− 1

2

1

Υ
∇H ·

(
aH∇b

)
dt+O

(
Ro

ΥBu

)
+

1

(Fr)2

1

Γ

(
w∗Υ/2dt+

(
Ro

Bu

)
1

Υ1/2
(σdBt)z

)
= 0, (3.A.1c)

Effective drift

w∗Υ =
(
u∗Υ, w

∗
Υ

)T
,

=

((
w − 1

2Υ
∇ · aH

)
,

(
w −

(
Ro

2ΥBu

)
∇H · aHz +O

(
Ro

ΥBu

)2
))T

, (3.A.1d)

Incompressibility
∇ ·w = 0, (3.A.1e)

∇·
(
σdBt

)
= 0, (3.A.1f)

∇H · (∇H · aH)
T

+ 2
Ro

Bu
∇H · ∂zaHz +O

((
Ro

Bu

)2
)

= 0. (3.A.1g)

Here, we do not separate the time-correlated components and the time-uncorrelated com-

ponents in the momentum equations. The terms in O
(
Ro
Bu

)
and O

(
Ro
Bu

)2

are related to the
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time-uncorrelated vertical velocity. These terms are too small to appear in the final QG model
(Bu = O (1) in QG approximation) and not explicitly shown. We only make appear the big
O approximations. Traditional non-dimensional numbers are introduced : the Rossby number
Ro = U/(f0L) with f0 the average Coriolis frequency; the Froude number (Fr = U/(Nh)), ratio
between the advective time to the buoyancy time; Eu, the Euler number, ratio between the pres-
sure force and the inertial forces, Γ = Bh/U2 = D2BT/W the ratio between the mean potential
energy to the mean kinetic energy. To scale the buoyancy equation, the ratio between the buoyancy
advection and the stratification term has also been introduced:

B/T

N2W
=

B

N2h
=

U2

N2h2

Bh

U2
= Fr2Γ. (3.A.2)

Besides those traditional dimensionless numbers, this system introduces Υ, relating the large-
scale kinetic energy to the energy dissipated by the unresolved component:

Υ =
UL

Au
=

U2

Au/T
. (3.A.3)

3.B QG model under moderate uncertainty

Hereafter, we consider the QG approximation (Ro � 1 and Bu ∼ 1), for Υ ∼ 1. We focus on solu-
tions of the Boussinesq model with Rossby number going to zero. To derive the evolution equations
corresponding to this limit, the solution of the non-dimentional Boussinesq model (Appendix 3.A)
is developed as a power series of the Rossby number:

wb
φ

 =
∞∑
k=0

Ro
k

wk

bk
φk

 . (3.B.1)

According to the horizontal momentum equation (3.A.1a), the scaling of the pressure still corre-
sponds to the usual geostrophic balance. This sets the Euler number as:

Eu ∼ 1

Ro
. (3.B.2)

For the ocean, the aspect ratio, D 4
= H/L, is small and D2 � 1. As a consequence,

D2

Eu
∼ D2Ro � D2 � 1 and

D2

EuΥ
∼ D2Ro

Υ
6 D2 � 1. (3.B.3)

Therefore, the inertial and diffusion terms are negligible in the vertical momentum equation. The
hydrostatic assumption is still valid. This leads to the classical QG scaling of the buoyancy equa-
tion:

Γ ∼ Eu ∼ 1

Ro
and

1

Fr
2Γ
∼ Ro

Fr
2 =

Bu

Ro
. (3.B.4)

In the following, the subscript H is omitted for the differential operators Del, ∇, and Laplacian,
∆. They all represent 2D operators. Only keeping terms of order 0 and 1, we get the following
system:
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Momentum equations

Ro

dtu+ (u · ∇)udt+
1

Υ1/2
(σHdBt · ∇)u− 1

2Υ

∑
i,j∈H

∂2
ij

(
aiju

)
dt+O

(
Ro

ΥBu

)
+ (1 + Roβy)k ×

(
udt+

1

Υ1/2
σHdBt

)
= −∇H

(
φ′dt+

1

Υ1/2
dtφσ

)
, (3.B.5)

b dt+O
(
RoD2

)
= ∂z

(
φ′dt+

1

Υ1/2
dtφσ

)
, (3.B.6)

Buoyancy equation

Ro

Bu

dtb+∇b ·
(
udt+

1

Υ1/2
(σdBt)H

)
+ ∂zb wdt− 1

2Υ

∑
i,j∈H

∂2
ij (aijb) dt


+ wdt− 1

Υ

Ro

Bu
(∇ · aHz)T dt+

Ro

Bu

1

Υ1/2
(σdBt)z +O

(
Ro

2

ΥBu
2

)
= 0, (3.B.7)

Incompressibility
∇ · u+ ∂zw = 0, (3.B.8)

∇·
(
σdBt

)
H

+
Ro

Bu
∂z
(
σdBt

)
z

= 0, (3.B.9)

∇ · (∇ · aH)
T

+ 2
Ro

Bu
∇ · ∂zaHz +O

((
Ro

Bu

)2
)

= 0. (3.B.10)

The thermodynamic equation (3.B.7) at 0 order leads to :

w0 = 0, (3.B.11)

and then, by the large-scale incompressibility equation (3.B.8), the 0-order horizontal velocity
is divergence-free. Following the scaling assumption, the horizontal small-scale velocity is also
divergence-free (3.B.9). The horizontal momentum equation (3.B.5) at the 0-th order leads to:

u0 =∇⊥φ′0 and (σdBt)H =∇⊥dtφσ, (3.B.12)

where time-correlated and time-uncorrelated components have been separated by the mean of
uniqueness of the semi-martingale decomposition (Kunita, 1997). Being divergent-free, both com-
ponents can be expressed with two stream functions ψ0 and dtψσ:

u0 =∇⊥ψ0 and (σdBt)H =∇⊥dtψσ, (3.B.13)

exactly corresponding to the dimensionless pressure terms:

ψ0 = φ′0 and dtψσ = dtφσ. (3.B.14)

Deriving these equations along z and introducing the hydrostatic equilibrium (3.B.6) – decomposed
between correlated and uncorrelated components – yields the classical thermal wind balance at
large-scale for the 0-th order terms. The buoyancy variable does not involve any white noise term,
and the small-scale random velocity is thus almost constant along z, as

∂zu0 =∇⊥b0 and ∂z(σdBt)H = O
(
RoD2

)
. (3.B.15)

Accordingly the variance tensor scales as:

∀i, j ∈ H, ∂zaij = O
(
Ro

2D4
)
, (3.B.16)

which is negligible in all equations, and the uncertain random field solely depends on the horizontal
coordinates. Since Ro/Bu ∼ Ro, the 1-st order term of the buoyancy equation must be kept to
describe the evolution of b0:

1

Bu
DH0tb0 + w1dt− 1

Υ
(∇ · aHz)T dt+

1

Υ1/2
(σdBt)z = 0, (3.B.17)
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where, for all functions h,

DH0th
4
= dth+∇h ·

(
u0dt+

1

Υ1/2
(σdBt)H

)
− 1

2Υ

∑
i,j∈H

∂2
ij (aijh) dt. (3.B.18)

Taking the derivative along z leads to:

1

Bu

DH0t∂zb0 +∇b0 · ∂z
(
u0dt+

1

Υ1/2
(σdBt)H

)
− 1

2Υ

∑
i,j∈H

∂2
ij (∂zaijb0) dt


+ ∂zw1dt− 1

Υ
(∇ · ∂zaHz)T dt+

1

Υ1/2
∂z(σdBt)z = 0. (3.B.19)

The introduction of the thermal wind equations (3.B.15) and incompressibility conditions (3.B.8-
3.B.10) helps simplifying this equation as:

1

Bu
DH0t∂zb0 −∇·u1dt+

(
Ro

Bu

)−1
1

Υ
∇ · (∇ · aH)

T
dt−

(
Ro

Bu

)−1
1

Υ1/2
∇·(σdBt)H = 0. (3.B.20)

Note the factor
(
Ro
Bu

)−1

appears. It comes from the incompressible conditions (3.B.9) and (3.B.10),

leading ∇·(σdBt)H and ∇· (∇ · aH)
T

dt to both scale as Ro
Bu

. The hydrostatic balance at 0-order
links the buoyancy to the pressure, and then to the stream function

∂zb0 = ∂2
zφ0 = ∂2

zψ0. (3.B.21)

The 1-st order term of the vertical velocity is not known. Yet, the system can be closed using the
vorticity equation at order 1:

∇⊥ ·
(
DH0tu0

)
+

(
∇·u1 +

(
Ro

Bu

)−1

∇·(σdBt)H

)
+∇(βy)· (u0dt+ (σdBt)H) = 0, (3.B.22)

where the divergence terms come from the constant Coriolis term.

Again, factors
(
Ro
Bu

)−1

compensate the order of magnitude of∇·(σdBt)H and∇·(∇ · aH)
T

dt.
Then,

DH0t (∆ψ0) +∇·u1dt+
1

Υ1/2

(
Ro

Bu

)−1

∇·(σdBt)H + β

(
v0dt+

1

Υ1/2
(σdBt)y

)
+

1

Υ1/2
tr
(
∇⊥(σdBt)

T

H∇uT0
)
− 1

2Υ

∑
i,j∈H

∂2
ij

(
∇⊥aij · u0

)
dt = 0. (3.B.23)

To make appear the transport of PV, we note that:

DH0t (1 + βy) = −β
(
v0dt+

1

Υ1/2
(σdBt)y

)
+∇·aHyβdt

−
(
Ro

Bu

)−1
1

2Υ
∇ · (∇ · aH)

T
dt. (3.B.24)

Then, using (3.B.20), (3.B.21) and (3.B.23), we get:

DH0t
(

∆ψ0 + 1 + βy +
1

Bu
∂2
zψ0

)
= −∇·aHyβdt−

(
Ro

Bu

)−1
1

2Υ
∇ · (∇ · aH)

T
dt

− tr
(
∇⊥(σdBt)

T

H∇uT0
)

+
1

2Υ

∑
i,j∈H

∂2
ij

(
∇⊥aij · u0

)
dt. (3.B.25)
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We recall that coefficients
(
Ro
Bu

)−1

are still present since

∇·(σdBt)H ∼∇ · (∇ · aH)
T

dt ∼
(
Ro

Bu

)
. (3.B.26)

If we rewrite the equation with dimensional quantities, the evolution equation for u0 = limRo→0 u
is obtained (dropping the index 0 for clarity):

DHt Q = −tr
(
∇⊥(σdBt)

T

H∇uT
)

+
1

2

∑
i,j∈H

∂2
ij

(
∇⊥aij · u

)
dt− 1

2
∇· (∇ · (aHf))

T
dt, (3.B.27)

where Q is the QG potential vorticity:

Q
4
= ∆ψ + f +

(
1

N

)2

∂2
zψ. (3.B.28)

Note, (3.B.12) provides the geostrophic balance for the small-scale velocity component. To express
the material derivative of Q, the noise term is expanded:

−tr
(
∇⊥(σdBt)

T

H∇uT
)

= −
∑
k,j∈H

∂2
kjψ∂kσj•dBt. (3.B.29)

According to Resseguier et al. (2017a), the difference between the material derivative, DtQ, and
the stochastic transport operator DtQ, is a function of the time-uncorrelated forcing:{

DtQ = f1dt+ hT1 dBt,
DtQ = f2dt+ hT2 dBt,

⇐⇒
{

f2 = f1 + tr
(
(σT∇)hT1

)
,

h1 = h2.
(3.B.30)

The expression of h1 is given by equation (3.B.27) and the above formulas give:

DtQ− DtQ =
∑
i∈H

σi•∂i

− ∑
j,k∈H

∂kσj•∂
2
kjψ

T

, (3.B.31)

= −
∑

i,j,k∈H

(
σi•∂

2
ikσ

T

j•∂
2
kjψ + σi•∂kσ

T

j•∂
3
ijkψ

)
. (3.B.32)

With the use of the small-scale incompressibility, we obtain:

1

2

∑
i,j∈H

∂2
ij

(
∇⊥aij · u

)
=

∑
i,j,k∈H

(
∂jσi•∂

2
ikσ

T

j•∂kψ + ∂jσi•∂kσ
T

j•∂
2
ikψ + σi•∂

2
ikσ

T

j•∂
2
jkψ + σi•∂kσ

T

j•∂
3
ijkψ

)
. (3.B.33)

From (3.B.32) and (3.B.33), it yields:

DtQ −

DtQ−
1

2

∑
i,j∈H

∂2
ij

(
∇⊥aij · u

) =
∑

i,j,k∈H

(
∂jσi•∂

2
ikσ

T

j•∂kψ + ∂jσi•∂kσ
T

j•∂
2
ikψ
)
.

(3.B.34)

Denoting, α, the following matrix

αij
4
=
∑
k∈H

∂kσi•∂jσ
T

k• =
∑
k∈H

∂k(σi•∂jσ
T

k•), (3.B.35)
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we have

∇ · (α∇ψ) =
∑

i,j,k∈H

(
∂jσi•∂

2
ikσ

T

j•∂kψ + ∂jσi•∂kσ
T

j•∂
2
ikψ
)
, (3.B.36)

= DtQ−

DtQ−
1

2

∑
i,j∈H

∂2
ij

(
∇⊥aij · u

) , (3.B.37)

and the material derivative of the PV finally reads:

DH
t Q =∇ · (α∇ψ)dt− 1

2
∇ · (∇ · (aHf))

T
dt− tr

[
∇⊥(σdBt)

T

H∇uT
]
. (3.B.38)

To note, the transpose of the matrix α has a compact expression:

αT =
∑
p

(
∇σTHp

)2
. (3.B.39)

To better assess the role of the random source term (the last term of (3.B.38)), it is decomposed
in terms of symmetric and anti-symmetric parts of the small-scale/large-scale deformation tensors.
Let us denote S and SσdBt the symmetric parts of ∇uT and ∇(σdBt)

T

H , respectively. Associated
with divergence-free velocities, these symmetric parts, so-called strain rate tensors, have zero trace.

Terms − 1
2ωJ and − 1

2ωσdBtJ will stand for the anti-symmetric parts, where J =

(
0 −1
1 0

)
is the

π
2 rotation. The factors ω and ωσdBt are the large-scale and the small-scale components of the
vorticity, respectively. Using JJ = −Id and tr[MN ] = tr[NM ] yields:

−tr
[
∇⊥(σdBt)

T

H∇uT
]

= −tr

[
J

(
SσdBt −

1

2
ωσdBtJ

)(
S − 1

2
ωJ

)]
, (3.B.40)

= −tr [SJSσdBt ]−
1

2
ωσdBt tr [S]︸ ︷︷ ︸

=0

−1

2
ω tr [SσdBt ]︸ ︷︷ ︸

=0

+
1

4
ω ωσdBt tr [J ]︸ ︷︷ ︸

=0

, (3.B.41)

= −tr [SJSσdBt ] . (3.B.42)

This term thus only depends on the strain rate tensors of u and (σdBt)H . The PV transport can
thus be rewritten as:

DH
t Q =∇ · (α∇ψ)dt− 1

2
∇ · (∇ · (aHf))

T
dt− tr [SJSσdBt ] . (3.B.43)

The noise term can be further expressed using the stable directions of the flows defined by u and
(σdBt)H , respectively. In the following, we will omit writing the dBt factor. The two strain rate
tensors are decomposed in orthogonal basis:

S = V ΞV T =
2∑
p=1

ΞppV •pV
T

•p and SσdBt = WΛW T , (3.B.44)

where V T

•pV •q = W T

•pW •q = δpq, Ξ11 = −Ξ22 < 0 and Λ11 = −Λ22 < 0.

−tr [SJSσdBt ] = −
2∑

p,q=1

ΞppΛqqtr
[
V •pV

T

•pJW •qW
T

•q
]
, (3.B.45)

= −
2∑

p,q=1

ΞppΛqq
(
V T

•pW •q
) (
V T

•pJW •q
)
, (3.B.46)

= −
2∑

p,q=1

ΞppΛqq cos(θpq) cos
(
θpq +

π

2

)
, (3.B.47)

=
1

2

2∑
p,q=1

ΞppΛqq sin(2θpq), (3.B.48)
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where θpq
4
= ̂(V •p,W •q) is the angle between V •p and W •q. Using the relations between the

eigenvalues and the orthogonality of the eigenvectors, it finally comes:

−tr [SJSσdBt ] =
1

2
Ξ11Λ11

(
sin (2θ11)− sin

(
2
(
θ11 −

π

2

))
− sin

(
2
(
θ11 +

π

2

))
+ sin (2θ11)

)
,

= 2 Ξ11Λ11︸ ︷︷ ︸
>0

sin (2θ11) . (3.B.49)
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Chapter 4

Geophysical flows under location
uncertainty, Part III
SQG and frontal dynamics under
strong turbulence conditions

V. Resseguier, E. Mémin, and B. Chapron. Geophysical flows under location uncertainty, part
III: SQG and frontal dynamics under strong turbulence. Manuscript submitted for publication in
Geophysical & Astrophysical Fluid Dynamics, 2017c

Abstract

Models under location uncertainty are derived assuming that a component of the velocity is un-
correlated in time. The material derivative is accordingly modified to include an advection correc-
tion, inhomogeneous and anisotropic diffusion terms and a multiplicative noise contribution. This
change can be consistently applied to all fluid dynamics evolution laws. This paper continues to
explore benefits of this framework and consequences of specific scaling assumptions. Starting from
a Boussinesq model under location uncertainty, a model is developed to describe a mesoscale flow
subject to a strong underlying submesoscale activity. Specifically, turbulent diffusion and rotation
effects have similar orders of magnitude. As obtained, the geostrophic balance is modified and
the Quasi-Geostrophic (QG) assumptions remarkably lead to a zero Potential Vorticity (PV). The
ensuing Surface Quasi-Geostrophic (SQG) model provides a simple diagnosis of warm frontolysis
and cold frontogenesis.
Keywords: stochastic subgrid tensor, uncertainty quantification, upper ocean dynamics.

4.1 Introduction

Quasi-Geostrophic (QG) models are standard models to study mesoscale barotropic and baroclinic
dynamics. Assuming uniform Potential Vorticity (PV) in the fluid interior, the Surface Quasi-
Geostrophic (SQG) model helps describe the surface dynamics (Blumen, 1978; Held et al., 1995;
Lapeyre and Klein, 2006; Constantin et al., 1994, 1999, 2012). Despite its simplicity, the SQG re-
lation provides a good diagnosis to relate mesoscale surface buoyancy fields to surface and interior
velocity fields. Nevertheless, QG and SQG paradigms assume strong rotation and strong strati-
fication (Fr ∼ Ro � 1) and thus neglect the submesoscale ageostrophic dynamics. In particular,
the QG velocity is horizontal and solenoidal. This structure prevents the emergence and devel-
opment of realistic submesoscale features such as frontogenesis, restratification, and asymmetry
between cyclones and anticyclones (Lapeyre et al., 2006; Klein et al., 2008). In contrast, the QG+1

(Muraki et al., 1999) and SQG+1 (Hakim et al., 2002) models capture such phenomenon with a
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(one degree) higher order power series expansions in the Rossby number. This comes with an
additional complexity. In particular, the SQG+1 model involves a nonlinear PV. Semi-Geostrophic
(SG) (Eliassen, 1949; Hoskins, 1975) and Surface Semi-Geostrophic (SSG) models (Hoskins, 1976;
Hoskins and West, 1979; Badin, 2013; Ragone and Badin, 2016) also offer simple alternatives to
the QG framework. Within a weaker stratification context (Fr

2 ∼ Ro � 1), ageostrophic terms
emerges to better represent fronts and filaments than QG dynamics. The SSG model is formally
similar to SQG as it is in the same way associated with a zero PV. Yet, SSG involves a space
remapping (from geostrophic coordinates to physical coordinates) together with a nonlinear term
in the PV that is often neglected (Ragone and Badin, 2016). These terms – both of order 1 in
Rossby – bring relevant horizontal velocity divergence as in SQG+1 model. Nevertheless, these
terms require a more involved numerical inversion.

In this paper, we derive a linear SQG model enabling to cope with frontal dynamics without
explicitly resolving higher Rossby order. PV is not arbitrarily set to zero, it rigorously results
from a strong submesoscale activity. Indeed, this underlying turbulence makes the turbulent dif-
fusion comparable to the Coriolis force, and consequently cancels the PV. Such a derivation is a
direct consequence of the dynamics under location uncertainty (Mémin, 2014; Resseguier et al.,
2017a,b), for which the velocity is decomposed between a large-scale resolved component and a
time-uncorrelated unresolved component. Derived models then rigorously handle sub-grid ten-
sors. In particular, they link together small-scale velocity statistics, turbulent diffusion, small-scale
induced velocity and backscattering effects.

After briefly recalling the main features of models under location uncertainty (section 2), a
modified SQG model is derived (section 3). Finally, the ensuing diagnostic relation is tested on
realistic very-high resolution model outputs (section 4).

4.2 Models under location uncertainty
Hereafter, we briefly outline the main ideas for the derivation of these stochastic models (for a
more complete description, see Resseguier et al. (2017a)). This relies on a decomposition of the
flow velocity in terms of a large-scale component, w, and a random field uncorrelated in time, σḂ:

dX

dt
= w + σḂ. (4.2.1)

The latter represents the small-scale velocity component. This solenoidal, possibly anisotropic and
non-homogeneous random field corresponds to the aliasing effect of the unresolved velocity compo-
nent. To parametrize its spatial correlations, an infinite-dimensional linear operator, σ, is applied
to a space-time white noise, Ḃ. The decomposition (4.2.1) leads to a stochastic representation of
the Reynolds transport theorem (RTT) and of the material derivative, Dt (derivative along the
flow (4.2.1)). In most cases, this derivative coincides with the stochastic transport operator, Dt,
defined for every field, Θ, as follow:

DtΘ
4
= dtΘ︸︷︷︸

4
= Θ(x,t+dt)−Θ(x,t)

Time increment

+ (w?dt+ σdBt) · ∇Θ︸ ︷︷ ︸
Advection

−∇ ·
(

1

2
a∇Θ

)
︸ ︷︷ ︸

Diffusion

dt, (4.2.2)

where the time increment term dtΘ stands instead of the partial time derivative as Θ is non
differentiable. The diffusion coefficient matrix, a, is solely defined by the one-point one-time
covariance of the unresolved displacement per unit of time:

a = σσT =
E
{
σdBt (σdBt)

T
}

dt
, (4.2.3)

and the modified drift is given by

w? = w − 1

2
(∇ · a)T . (4.2.4)

For a divergent small-scale velocity, this drift would involve an additional component (Resseguier
et al., 2017a). The stochastic RTT and material derivative involve a diffusive subgrid term, a
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multiplicative noise and a modified advection drift induced by the small-scale inhomogeneity. This
material derivative has a remarkable conservative property. Indeed, for any field, Θ, randomly
transported, i.e.

Θ(X(t+ ∆t), t+ ∆t) = Θ(X(t), t), (4.2.5)

Resseguier et al. (2017a) showed that the energy of each realization is conserved:

d

dt

∫
Ω

Θ2 = 0. (4.2.6)

The RTT enables us to express the conservation law of mechanics (linear momentum, energy,
mass) with a partially known velocity. Deterministic and random subgrid parametrizations for
various geophysical flow dynamics can then directly be obtained. Stochastic Navier-Stokes and
Boussinesq models can be derived as discussed by Mémin (2014) and Resseguier et al. (2017a). The
latter model involves random transports of buoyancy and velocity, together with incompressibility
constraints.

4.3 Mesoscale flows under strong uncertainty
From the Boussinesq model, the QG assumptions state a strong rotation and a strong stratification.
This is of particular interest to study flows at mesoscale, where both kinetic and buoyant dynamics
are important. More specifically, we focus on horizontal length scales, L, such as:

1

Bu
=

(
Fr

Ro

)2

=

(
L

Ld

)2

∼ 1 and
1

Ro
=
Lf0

U
� 1, (4.3.1)

where U is the horizontal velocity scale, Ld
4
= Nh

f is the Rossby deformation radius, N is the
stratification (Brunt-Väisälä frequency) and h is the characteristic vertical length scale. In the
following, both differential operators Del, ∇, and Laplacian, ∆, represent 2D operators. Moreover,
σH• stands for the horizontal component of σ, aH for σH•σTH• and Au for its scaling.

4.3.1 Specific scaling assumptions
Similarly to Resseguier et al. (2017b), scalings within the QG framework (4.3.1) can authorize the
set up of a non-dimensional stochastic Boussinesq model amenable to further simplifications.

Quadratic variation scaling

Models under location uncertainty involve subgrid terms which have also to be scaled. A new
dimentionless number, Υ, quantifying the ratio of horizontal advection and horizontal turbulent
diffusion is therefore introduced:

Υ
4
=

U/L

Au/L2
=

U2

Au/T
. (4.3.2)

We can also relate it to the ratio of Mean Kinetic Energy (MKE), U2, to the Turbulent Kinetic
Energy (TKE), Au/Tσ, where Tσ is the small-scale correlation time. This reads:

Υ =
1

ε

MKE

TKE
, (4.3.3)

where ε = Tσ/T is the ratio of the small-scale to the large-scale correlation times. This parameter,
ε, is central in homogenization and averaging methods (Majda et al., 1999; Givon et al., 2004;
Gottwald and Melbourne, 2013). The number Υ/Ro measures the ratio between rotation and
horizontal diffusion. For a parameter Υ close or larger than unity, the geostrophic balance still
holds (Resseguier et al., 2017b), whereas for Υ ∼ Ro, this balance is modified. Throughout this
paper, we focus on this specific scaling.
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The parameter Υ depends through Au on the flow and on the resolution scale. In order to
specify the scaling and the resulting associated model, knowledge of the characteristic horizontal
eddy diffusivity or eddy viscosity is needed. Tuning experiences of usual subgrid parametrizations
may provide such information, and Boccaletti et al. (2007) give some examples of canonical values.

If absence of characteristic values, absolute diffusivity or similar mixing diagnoses could be
measured (Keating et al., 2011) as a proxy of the variance tensor. Small values of Υ are generally
relevant for the ocean where the TKE is often one order of magnitude larger than the MKE
(Wyrtki et al., 1976; Richardson, 1983; Stammer, 1997; Vallis, 2006). Note that here the TKE may
encompass all the unresolved dynamics down to the Kolmogorov scale.

Vertical unresolved velocity

To scale the vertical unresolved velocity, we consider

(σdBt)z
‖(σdBt)H‖

∼ Ro

Bu
D, (4.3.4)

where D = h
L is the aspect ratio and the subscript H indicates horizontal coordinates. The ω-

equation (Giordani et al., 2006) justifies such a scaling. For any velocity u = (uH ,w)T , which
scales as (U,U,W)T , this equation reads

f2
0∂

2
zw +N2∆w =∇ ·Q ≈ −∇ · (∇uTH∇b) ≈ −f0∇ ·

(
∇uTH∂zu

⊥
H

)
, (4.3.5)

where b stands for the buoyancy variable and Q for the so-called Q-vector. In its non-dimentional
version, the ω-equation reads:

W

U

(
∂2
zw + Bu∆w

)
≈ DRo∇ ·Q. (4.3.6)

The Burger number is small at planetary scales where the rotation dominates (WU ∼ DRo) and
is large at submesoscales where the stratification dominates (WU ∼ DRo/Bu). For the small-scale
velocity σḂ, the latter is thus more relevant.

Relations between the isopicnical tilt and mixing give another justification of the scaling (4.3.4).
Based on baroclinic instabilities theory, anisotropy specifications of eddy diffusivity sometimes
rely on this tilt (Vallis, 2006). Moreover, several other authors suggest that the eddy activity
and the associated mixing mainly occur along isentropic surfaces (Gent and Mcwilliams, 1990;
Pierrehumbert and Yang, 1993).

For QG dynamics, the Burger number is of order one and the scaling in DRo and in DRo/Bu

coincides. In particular, they encode a mainly horizontal unresolved velocity:

(σdBt)z
‖(σdBt)H‖

∼ Ro

Bu
D � D. (4.3.7)

This is consistent with the assumption of a large stratification, i.e. flat isopycnicals, if we admit
that the activity of eddies preferentially appears along the isentropic surfaces. As a consequence,
the terms (σdBt)z∂z scale as Ro

Bu
(σdBt)H · ∇. In the QG approximation, the scaling of the

diffusion and effective advection terms including σz• are one to two orders smaller (in power of
Ro/Bu) than terms involving σH•. For any function ξ, the vertical diffusion ∂z(

σz•σ
T
z•

2 ∂zξ) is one

order smaller than the horizontal-vertical diffusion term ∇ ·
(
σH•σ

T
z•

2 ∂zξ
)
and two orders smaller

than the horizontal diffusion term ∇ ·
(
σH•σ

T
H•

2 ∇ξ
)
.

Beta effect

The beta effect is weak at mid-latitude mesoscales. Yet, at the first order, it influences the absolute
vorticity. So, we choose the same scaling as Vallis (2006):

βy ∼∇⊥ · u ∼ U

L
= Rof0. (4.3.8)
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4.3.2 Stratified Quasi-Geostrophic model under strong uncertainty
Strong uncertainty condition corresponds to Υ having an order of magnitude close to the Rossby
number. More specifically, we assume Ro 6 Υ � 1. In this situation, the random eddies have
larger energy than the large-scale mean kinetic energy. Accordingly, the diffusion and drift terms
are one order of magnitude larger than the advection terms.

In the case of strong ratio Υ, the diffusion is very large and the system is not approximately in
geostrophic balance anymore. The large-scale horizontal velocity becomes divergent, and decou-
pling the system is more tedious. For sake of simplicity, in the following we consider the case of
homogeneous and horizontally isotropic turbulence. As a consequence, the variance tensor, a, is
constant in space and diagonal:

a =

aH 0 0
0 aH 0
0 0 az

 . (4.3.9)

Modified geostrophic balance under strong uncertainty

For horizontal homogeneous turbulence, the large-scale geostrophic balance is modified by the
horizontal diffusion, whereas the unresolved velocity is in geostrophic balance:

f × u− aH
2

∆u = − 1

ρb
∇p′,

f × σHdBt = − 1

ρb
∇dtpσ,

(4.3.10a)

(4.3.10b)

where u is the large-scale horizontal velocity, p′ the time-correlated component of the pressure,
ṗσ = dpσ

dt the time-uncorrelated component, and ρb is the mean density. For a constant Coriolis
frequency, the first equation can be solved in Fourier space. The Helmholtz decomposition of the
velocity reads: 

u =∇⊥ψ +∇ψ̃,

ψ̂ =

(
1 +

∥∥∥∥ kkc
∥∥∥∥4

2

)−1
p̂′

ρbf
,

ψ̃ =
1

k2
c

∆ψ,

(4.3.11a)

(4.3.11b)

(4.3.11c)

where kc =
√

2f0
aH

and the hat accent indicates a horizontal Fourier transform. This solution is
derived in Appendix 4.A using geometric power series of matrices. The obtained formula is valid
for any right-hand side in equation (4.3.10a). For instance, additional forcing such as an Ekman
stress could be taken into account. In equation (4.3.11), the solenoidal component of the velocity,
∇⊥ψ, corresponds to the usual geostrophic velocity multiplied by a low-pass filter (4.3.11b). The
irrotational (ageostrophic) component of the velocity, ∇ψ̃, dilates the anticyclones (maximum
of pressure and negative vorticity) and shrinks the cyclones (minimum of pressure and positive
vorticity) at small scales. Indeed, according to equation (4.3.11c), the divergence of the velocity
corresponds to the vorticity Laplacian divided by k2

c . Naturally, this structure is reminiscent of
the Ekman model where divergence and vorticity would be related by a double vertical derivative:

δ = `2Ek∂
2
zζ where

{
δ = ∇·u,
ζ = ∇⊥ · u, (4.3.12)

and `Ek is the thickness of the Ekman layer. The turbulent diffusion involved in equation (4.3.11c)
is rather horizontal due to the strong stratification assumption (see (4.3.4)). In the proposed
stochastic model, the divergent component and the low-pass filter of the system (4.3.11) are pa-
rameterized by the spatial cutoff frequency kc, which moves toward larger scales when the diffusion
coefficient aH increases. If both the vorticity and the divergence can be measured at large scales,
the previous relation should enable to estimate the cutoff frequency kc by fitting terms of equation
(4.3.11c). Then, the horizontal diffusive coefficient, aH , or the variance of the horizontal small-scale
velocity (at the time scale ∆t), aH/∆t, can be deduced.
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Modified SQG relation under strong uncertainty

To derive a QG model, we use the other equations of the stochastic Boussinesq model at the
0-order. After some algebra (see Appendix 4.C), we obtain directly a zero PV in the fluid interior:

PV =

(
∆ +

(
1 +

∆2

k4
c

)
∂z

((
f0

N

)2

∂z

))
ψ = 0, (4.3.13)

where kc =
√

2f0
aH

. The assumptions used here correspond to the same used for a classical QG
model (Vallis, 2006), except that the dissipation, due to the noise, is strong. It is a striking result.
Instead of finding a model in the form of a classical QG model, developments, through a strong
uncertainty, directly leads to the description of surface dynamics, a SQG model. It means that
the subgrid dissipation prevents the development of the interior dynamics. Without this dynamics,
no baroclinic instabilities can grow (Lapeyre and Klein, 2006). If the stratification is vertically
invariant, this static linear equation can be solved by imposing a vanishing condition in the deep
ocean (z → −∞) and a specified boundary value at a given depth (z = η). The horizontal Fourier
transform of the solution then reads:

ψ̂(k, z) = ψ̂(k, η) exp

 N‖k‖2

f0

√
1 +

∥∥∥ kkc ∥∥∥4

2

(z − η)

 . (4.3.14)

At z = η, the modified SQG relation is:

b̂(k, η) = N‖k‖2

√
1 +

∥∥∥∥ kkc
∥∥∥∥4

2

ψ̂(k, η), (4.3.15)

where b stands for the buoyancy. In the following, we will refer to (4.3.15) as the SQG relation under
Strong Uncertainty (SQGSU ). For low wave number or moderate uncertainty (‖k/kc‖22 ∼ Ro/Υ�
1), we retrieve the standard SQG relation. The expression of the stream function as a function
of the buoyancy is expressed as the convolution with a Green function, GSQG = 1

2πN ‖x‖
−1, and

the velocity decays rapidly as the inverse of the square distance to the point vortex center. On
the other hand, for very high wave numbers or very large uncertainty (‖k/kc‖22 ∼ Ro/Υ� 1), the
velocity tends very quickly to zero. For strong uncertainty or small scales (‖k/kc‖22 ∼ Ro/Υ ∼ 1),

b̂ =

√
2N

kc

(
‖k‖22 + O

‖k‖→kc

(∥∥∥∥ kkc
∥∥∥∥

2

− 1

)2
)
ψ̂. (4.3.16)

Accordingly, we may see the SQGSU relation as an intermediary between two relevant models in
geophysics: the SQG dynamics where the tracer (the buoyancy) is proportional to ‖k‖2ψ̂ and a
two-dimensional flow dynamics where the tracer (the vorticity) is proportional to ‖k‖22ψ̂. In the
latter case, the streamfunction can be expressed as the convolution of the buoyancy with the Green
function, G2D = kc

2
√

2πN
ln ‖x‖, and the velocity decays slowly as the inverse of the distance to the

point vortex center. Nevertheless, contrary to the two-dimensional flow and the SQG models, the
2D velocity u is divergent (see equation (4.3.11c)). The total horizontal velocity can be computed
from the buoyancy, through the Helmholtz decomposition (4.3.11a), the modified SQG relation
(4.3.15) and the equation (4.3.11c). As derived, the vertical velocity is finite and given by the main
balance of the buoyancy equation:

w =
f0

N2

1

k2
c

∆b. (4.3.17)

Note that this equation is not derived from a non-hydrostatic vertical momentum equation. Equa-
tion (4.3.17) is directly obtained from the thermodynamic equation. It expresses the fact that,
under strong stratification and strong horizontal diffusion, the buoyancy anomalies are mainly
created by vertical advection. This relation is similar to the result of Garrett and Loder (1981),
except the proportionality coefficient. Indeed, Garrett and Loder (1981) consider vertical diffusion
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and neglect the horizontal one. Invoking the thermal wind relation and the stratification struc-
ture, vertical variations are then associated with horizontal buoyancy variations. In the present
development, the vertical velocity scales as Ro

ΥBu
DU ∼ ‖k/kc‖22DUBu

. It is prominent at small scales
and proportional to the variance tensor, such as the divergent component of the horizontal velocity.

Figures 4.1 and 4.2 show the static link between the 3D velocity and buoyancy for two isolated
vortices and a front, respectively. As obtained, the solenoidal component is similar to the classic
SQG velocity. In Figure 4.1, the non-rotational component forces the anticyclone (warm spot) to
spread, and the cyclone (cold spot) to shrink. Note that our study focuses on the ocean dynamics.
For atmospheric applications, the vertical axis should be inverted and the sign of the temperature
anomaly changed (Ragone and Badin, 2016). In Figure 4.2, the irrotational component is weak
on the warm side of the front, but strongly strengthens the cold side. As modeled in the SQG+1

(Hakim et al., 2002) and Surface Semi-Geostrophic (SSG) (Badin, 2013; Ragone and Badin, 2016)
models, a frontolysis (resp. frontogenesis) develops on the warm (resp. cold) side of the front. In
Figure 4.1, a downwelling of warm water and a upwelling of cold water appear. As the vertical
velocity comes from the thermodynamic equation and not from the vertical momentum equation,
it is the cause of the buoyancy anomaly not its consequence. Whereas the irrotational horizontal
component is stronger close to a front than within an eddy, the vertical velocity associated with a
front is found much weaker than the one associated with an isolated eddy.

4.4 Diagnostic under strong uncertainty

As derived, under strong uncertainty, the eddy diffusion is substantial and modifies the geostrophic
balance (4.3.11). The velocity becomes divergent and equation (4.3.11c) offers a diagnostic of this
divergence. This diagnostic states that the divergence should be proportional to the Laplacian of
the vorticity:

δ =
1

k2
c

∆ζ. (4.4.1)

To evaluate the relevance of this diagnostic, outputs of a realistic 3D high-resolution oceanic sim-
ulation are used. During winter, the eddy activities are usually stronger, especially close to en-
ergetic currents. For this reason, the Gulf-Stream during winter season is a test-bed region for
high-resolution simulation (Gula et al., 2015).

Figure 4.3 shows the temperature of the first and of the 58th day. Simulations are three-
dimensional and involve a fine spatial and temporal resolutions. Equation (4.3.11c) is a surface
mesoscale diagnostic valid far from the coasts. Consequently, the surface fields are filtered tempo-
rally and spatially. The final time step is one day and the final resulting spatial resolution is 3 km.
Figure 4.3 displays the original surface field and the filtered cropped fields.

Figure 4.4 compares the reference divergence field to our estimate, the Laplacian of the vorticity.
An overall agreement clearly emerges. Nonetheless, the small scales of our estimate are more
energetic than the small scales of the real divergence field. For this reason, the spatial fields are
further filtered at a resolution of 30 km. Except for some small spots, estimation and reference are
similar. In particular, fronts – associated with two length scales: one at sub-mesoscales and one at
mesoscales – are highlighted.

Figure 4.5 specifies the relevance and the limitations of the proposed diagnostic. The spectra of
the two fields unveil a very good match at mesoscale range (L > 60km i.e. κ < 10−4), whereas they
differ at sub-mesoscales. This difference is certainly not surprising, the estimation being derived
for large scale components. Note, the velocity divergent component is far from being zero in the
mesoscale range. Compared to the solenoidal component, its spectrum is certainly much flatter and
smaller in this range. Nevertheless, the mesoscale divergence is stronger than the sub-mesoscales
divergence. The ratio of Fourier transform modulus further confirms the accuracy of our diagnostic
at mesoscales and makes clear the difference at sub-mesoscales. The −1 slope may suggest that a
fractional diffusion would be preferable to a Laplacian diffusion at those scales.

The complementary analysis is the coherence, which is a measure of the phase relationship
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Figure 4.1: Value of the interior buoyancy created by a warm spot and a cold spot at the surface.
The two components of the velocity are also shown. The upwelling and shrinking of the cyclone
(cold spot) and the downwelling and spreading of the anticyclone (warm spot) are clearly visible.

Figure 4.2: Value of the interior buoyancy created by a front at the surface. The two components
of the velocity are also shown. The divergence effects will strengthen the front on the cold side
(frontogenesis) and smooth the front on the warm side (frontolysis). The vertical velocity is here
much weaker than in the case of isolated spots.
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between two fields. Specifically, the coherence is the Fourier modes correlation coefficient:

<

 δ̂(k) ∆̂ζ(k)∣∣δ̂(k) ∆̂ζ(k)
∣∣
 , (4.4.2)

where < denotes the real part. The coherence is the cosinus of the phase shift, θ, between the two
fields. Here, we directly show the phase shift averaged on angular spatial frequencies.

For our estimate the phase-shift is about 0.8 ≈ π
4 . It means that a linear transformation of

the large-scale vorticity can explain more than half of the divergence. As a comparison, the same
analysis was done with the SQG relation, using temperature anomaly instead of buoyancy (not
shown). The phase shift was similar.

From Figure 4.4, one further get a rough estimation for the multiplicative constant of the
proposed diagnostic: k2

c ≈ 10−7. It suggests a spatial cutoff k−1
c ≈ 3 km and a diffusion coefficient

aH/2 ≈ 1000 m2.s−1. This value is canonical, according to Boccaletti et al. (2007), which upholds
the proposed approach. To confirm the validity of our strong uncertain assumption, it can be
evaluated:

Ro

Υ
∼
∥∥∥∥ kkc

∥∥∥∥2

2

∼ aH
2f0

κ2 ∼ 0.1, (4.4.3)

with 2π
κ = 60 km.

The unresolved energy can also be estimated. From a mesoscale point of view, motions induced
with diurnal cycles can be approximated as delta-correlated processes. Hence, an estimation of the
unresolved horizontal velocity amplitude shall follow from

√
aH/∆t ≈ 10−1m.s−1, with ∆t = 1

day. Considering the present simulation, this is consistent with the sub-mesoscale velocity field.

4.5 Conclusion

To develop models under location uncertainty, the highly-oscillating unresolved velocity compo-
nent is assumed to be uncorrelated in time. Consequently, the expression of the material derivative
and hence most fluid dynamics models are modified, taking into account an inhomogeneous and
anisotropic diffusion, an advection correction and a multiplicative noise. In this work, we simplify
a Boussinesq model under location uncertainty assuming strong rotation, stratification, and sub-
grid turbulence. From this last assumption, the geostrophic balance is modified, and an horizontal
divergent velocity explicitly appears. Furthermore, the QG approximation implies a zero PV. In
other words, the strong uncertainty prevents interior dynamics at mesoscales. This provides a
new derivation of the SQG model from the Boussinesq equations. The ensuing SQG model with
divergent velocity is denoted SQGSU . It exhibits physically relevant asymmetry between cold and
warm areas, and suggests a diagnostic of the mesoscale divergence from the vorticity, as successfully
tested on very high-resolution simulated data.

A more complete model could encompass white noise components for temperature, salinity and
density. At mesoscales, a thermal wind relation should relate these time uncorrelated components
to the unresolved velocity. Therefore, these additional terms should provide the vertical structure
of the unresolved velocity, without increasing the complexity of the parametrization.

Finally, besides solar forcing, the restratification is certainly a complicated process related to
frontal dynamics. In the Mixed Layer (ML), the ML instabilities are often triggered by non-
hydrostatic motions. They generate very-small-scale baroclinic instabilities and slumpings of the
fronts (Boccaletti et al., 2007). For such phenomena, subgrid parameterizations are necessary. They
must act to horizontally homogenize and restratify the ML. In such a context, the SQGSU model
may constitute a simple solution or, at least a first step to develop models under location uncertainty
in this direction. To encode the weak stratification of the ML, stochastic Semi-Geostrophic (SG)
and Surface Semi-Geostrophic (SSG) models could also be derived. According to our scaling of the
vertical unresolved velocity (4.3.4), a weaker stratification should then enhance the vertical mixing
compared to the SQGSU model. The modified geostrophic balance (4.3.11) would involve both
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Figure 4.3: Temperature (in Celsius degree) for the first (top) and 58th day (bottom) at high
temporal and spatial resolution (∆t = 12h and ∆x = 750m) (left) and after filtering (∆t = 1 day
and ∆x = 3km) (right). The black line on the top pictures highlight the region selected for the
diagnostic.
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Figure 4.4: Divergence (s−1) and Laplacian of the vorticity (m−2.s−1) for the first and the 58th day
at a 30-km resolution. According to our modified geostrophic balance under strong uncertainty,
the latter is an estimation of the mesoscale divergence up to a multiplicative constant.



76 CHAPTER 4. GEOPHYSICAL FLOWS UNDER LOCATION UNCERTAINTY, PART III

10
−4

10
−4

10
−2

10
0

10
2

|f̂
(
κ
)
|2

κ

(

rad.m− 1
)

Normal i z ed mean spec trum of the i rrotat i onal ve l oc i ty and of i ts e st imati on

10
−4

10
−2

10
−1

10
0

10
1

|f̂
1(
κ
)
|/

|f̂
2(
κ
)
|

κ

(

rad.m− 1
)

Mean spec trum rati o

10
−4

0

0.5

1

1.5

θ

κ

(

rad. s− 1
)

Mean phase shi ft
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Each of these spectral quantities is averaged on angular spatial frequencies and on the 58 winter
days.
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horizontal and vertical diffusions. Moreover, since the stratification is weaker in the SG scalings,
each term of the buoyancy equation (3D transport, 3D turbulent dissipation and stratification)
would have the same scaling.
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Appendix

4.A Modified geostrophic balance
Under strong horizontal homogeneous turbulence, the large-scale geostrophic balance is modified
by the horizontal diffusion:

f × u− aH
2

∆Hu = ξ, (4.A.1)

where u is the resolved horizontal velocity and ∆H
4
= ∂2

x + ∂2
y the horizontal Laplacian. On the

right-hand side, ξ is the pressure gradient. Let us note that f ×u = fJu with J =

(
0 −1
1 0

)
and

that JT = J−1 = −J . For a constant Coriolis frequency, the previous equation can be solved in
the horizontal Fourier space :

û =
(
fJ +

aH
2
‖k‖22Id

)−1

ξ̂ =

(
Id −

∥∥∥∥ kkc
∥∥∥∥2

2

J

)−1(
− 1

f
ξ̂
⊥
)
, (4.A.2)

with kc =
√

2f
aH

. − 1
f ξ
⊥ = − 1

f Jξ is the solution without diffusion. Expanding the right-hand side

operator in Taylor series and using the properties J2p = (−1)pId and J2p+1 = (−1)pJ ,(
Id −

∥∥∥∥ kkc
∥∥∥∥2

2

J

)−1

=
+∞∑
p=0

(∥∥∥∥ kkc
∥∥∥∥2

2

J

)p
, (4.A.3)

=
+∞∑
p=0

(−1)p
∥∥∥∥ kkc

∥∥∥∥4p

2

Id +
+∞∑
p=0

(−1)p
∥∥∥∥ kkc

∥∥∥∥4p+2

2

J , (4.A.4)

=
+∞∑
p=0

(
−
∥∥∥∥ kkc

∥∥∥∥4

2

)p(
Id +

∥∥∥∥ kkc
∥∥∥∥2

2

J

)
, (4.A.5)

=
1

1 +
∥∥∥ kkc ∥∥∥4

2

(
Id +

∥∥∥∥ kkc
∥∥∥∥2

2

J

)
. (4.A.6)

This leads to the following solution for the modified geostrophic balance:

û =
1

1 +
∥∥∥ kkc ∥∥∥4

2

(
− 1

f
ξ̂
⊥
)

+

∥∥∥ kkc ∥∥∥2

2

1 +
∥∥∥ kkc ∥∥∥4

2

(
1

f
ξ̂

)
. (4.A.7)

4.B Non-dimensional Boussinesq equations
To derive a non-dimensional version of the Boussinesq equations under location uncertainty (Resseguier
et al., 2017a), each term of the evolution laws is scaled (Resseguier et al., 2017b): the horizontal
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coordinates x̃h = Lxh, the vertical coordinate z̃ = hz, the aspect ratio D = h/L between the
vertical and horizontal length scales. A characteristic time t̃ = Tt corresponds to the horizontal
advection time U/L with horizontal velocity ũ = Uu. A vertical velocity w̃ = (h/L)Uw is deduced
from the divergence-free condition. We further take a scaled buoyancy b̃ = Bb, pressure φ̃′ = Φφ′

(with the density scaled pressures φ′ = p′/ρb and dtφσ = dtpσ/ρb), and the earth rotation f∗ = fk.
For the uncertainty variables, we consider a horizontal uncertainty ãH = Au aH corresponding to
the horizontal 2 × 2 variance tensor; a vertical uncertainty vector ãzz = Awazz and a horizontal-
vertical uncertainty vector ãHz =

√
AuAwaHz related to the variance between the vertical and

horizontal velocity components. The resulting non-dimensional Boussinesq system under location
uncertainty becomes:

Nondimensional Boussinesq equations under location uncertainty

Momentum equations

dtu+ (w · ∇)udt+
1

Υ1/2
(σHdBt · ∇H)u+

(
Ro

BuΥ1/2

)
(σdBt)z∂zu

− 1

2Υ

∑
i,j∈H

∂2
ij

(
aiju

)
dt+O

(
Ro

ΥBu

)
+

1

Ro
(1 + Roβy)k ×

(
udt+

1

Υ1/2
σHdBt

)

= −Eu ∇H

(
φ′dt+

1

Υ1/2
dtφσ

)
, (4.B.1a)

dtw + (w · ∇)wdt+
1

Υ1/2
(σHdBt · ∇H)w +

(
Ro

BuΥ1/2

)
(σdBt)z∂zw

− 1

2Υ

∑
i,j∈H

∂2
ij

(
aijw

)
dt+O

(
Ro

ΥBu

)
=

Γ

D2
bdt− Eu

D2
∂z

(
φ′dt+

1

Υ1/2
dtφσ

)
,

(4.B.1b)

Buoyancy equation

dtb+

(
w∗Υdt+

1

Υ1/2
(σdBt)

)
· ∇b− 1

2

1

Υ
∇H ·

(
aH∇b

)
dt+O

(
Ro

ΥBu

)
+

1

(Fr)2

1

Γ

(
w∗Υ/2dt+

(
Ro

Bu

)
1

Υ1/2
(σdBt)z

)
= 0, (4.B.1c)

Effective drift

w∗Υ =
(
u∗Υ, w

∗
Υ

)T
,

=

((
w − 1

2Υ
∇ · aH

)
,

(
w −

(
Ro

2ΥBu

)
∇H · aHz +O

(
Ro

ΥBu

)2
))T

, (4.B.1d)

Incompressibility
∇ ·w = 0, (4.B.1e)

∇·
(
σdBt

)
= 0, (4.B.1f)

∇H · (∇H · aH)
T

+ 2
Ro

Bu
∇H · ∂zaHz +O

((
Ro

Bu

)2
)

= 0. (4.B.1g)

Here, the time-correlated components and the time-uncorrelated components in the momen-

tum equations have not been separated. The terms in O
(
Ro
Bu

)
and O

(
Ro
Bu

)2

are related to the
time-uncorrelated vertical velocity. These terms are too small to appear in the final QG model
(Bu = O (1) in QG approximation) and not explicitly shown. We only make appear the big
O approximations. Traditional non-dimensional numbers are introduced : the Rossby number
Ro = U/(f0L) with f0 the average Coriolis frequency; the Froude number (Fr = U/(Nh)), ratio
between the advective time to the buoyancy time; Eu, the Euler number, ratio between the pres-
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sure force and the inertial forces, Γ = Bh/U2 = D2BT/W the ratio between the mean potential
energy to the mean kinetic energy. To scale the buoyancy equation, the ratio between the buoyancy
advection and the stratification term has also been introduced:

B/T

N2W
=

B

N2h
=

U2

N2h2

Bh

U2
= Fr2Γ. (4.B.2)

Besides those traditional dimensionless numbers, this system introduces Υ, relating the large-
scale kinetic energy to the energy dissipated by the unresolved component:

Υ =
UL

Au
=

U2

Au/T
. (4.B.3)

4.C QG model under strong uncertainty
For the case Υ close to the Rossby number, the diffusion term is not negligible anymore and the
geostrophic balance is modified. As the terms of the geostrophic balance remain large (Ro 6 Υ�
1), the scaling of the pressure can still be done with the Coriolis force. This leads to an Euler
number scaling as

Eu ∼ 1

Ro
. (4.C.1)

Keeping a small aspect ratio D2 � 1, we get
Eu

D2
∼ 1

RoD2
� 1

Ro
>

1

Υ
. (4.C.2)

As the Rossby number and the ratio Υ are both small in the vertical momentum equation, the
inertial terms are dominated by the diffusion term which is itself negligible in front of the pressure
term. The hydrostatic balance is hence conserved. The buoyancy scaling still correspond to the
thermal winds relation:

Γ ∼ Eu ∼ 1

Ro
. (4.C.3)

Considering the scaling (σdBt)z
‖(σdBt)H‖ ∼ D

Ro
Bu

for the vertical small-scale velocity, the non-dimensional
evolution equations are now given by:

Momentum equations

Ro

(
dtu+ (u · ∇)udt+

1

Υ1/2
(σHdBt · ∇)u+O

(
Ro

ΥBu

))
− Ro

2Υ

∑
i,j∈H

∂2
ij

(
aiju

)
dt

+ (1 + Roβy)k ×
(
udt+

1

Υ1/2
σHdBt

)
= −∇H

(
φ′dt+

1

Υ1/2
dtφσ

)
, (4.C.4)

b dt+O

(
RoD2

Υ1/2

)
= ∂z

(
φ′dt+

1

Υ1/2
dtφσ

)
, (4.C.5)

Buoyancy equation
Ro

Bu

(
dtb+∇b ·

(
udt+

1

Υ1/2
(σdBt)H

)
+ ∂zb wdt

)
− Ro

2Υ

∑
i,j∈H

∂2
ij (aijb) dt

+ wdt− 1

Υ

Ro

Bu
(∇ · aHz)T dt+

Ro

Bu

1

Υ1/2
(σdBt)z +O

(
Ro

2

ΥBu
2

)
= 0, (4.C.6)

Incompressibility
∇ · u+ ∂zw = 0, (4.C.7)

∇·
(
σdBt

)
H

+
Ro

Bu
∂z
(
σdBt

)
z

= 0, (4.C.8)

∇ · (∇ · aH)
T

+ 2
Ro

Bu
∇ · ∂zaHz +O

((
Ro

Bu

)2
)

= 0. (4.C.9)
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The operators Del, ∇, and Laplacian, ∆ represent 2D operators. If Ro ∼ Υ, the system is
not anymore approximately in geostrophic balance. The large-scale velocity becomes divergent
and decoupling the system is more involved. For sake of simplicity, we thus focus on the case of
homogeneous and horizontally isotropic turbulence. As a consequence, the variance tensor a is
constant in space and diagonal:

a =

ah 0 0
0 ah 0
0 0 az

 . (4.C.10)

The time-correlated components of the horizontal momentum at the 0-th order can be written as:

−aH
2

∆u0 + k × u0 = −∇φ′0, (4.C.11)

Then, equation (4.A.7) of Appendix 4.A expresses the result in Fourier space. In the physical
space, the solution reads:

u0 =∇⊥
(

1 +
∆2

k4
c

)−1

φ′0︸ ︷︷ ︸
=ψ0

+∇
(

1 +
∆2

k4
c

)−1
∆

k2
c

φ′0︸ ︷︷ ︸
=ψ̃0

with kc =

√
2

aH
(4.C.12)

which is the Helmholtz decomposition of the horizontal velocity u0 into its rotational and divergent
component with a stream function ψ0 and a velocity potential ψ̃0. Differentiating the buoyancy
equation at the order 0 along z, we obtain

aH
2

∆∂z

(
b0
Bu

)
= ∂zw0 = −∇ · u0 = −∆ψ̃0 = −∆2

k4
c

ψ0. (4.C.13)

The time-correlated part of the 0-th order hydrostatic equation relates the buoyancy to the pressure
φ′0:

aH
2

∆∂z

(
b0
Bu

)
=
aH
2

∆∂2
zφ
′
0 =

aH
2

∆∂2
z

(
1 +

∆2

k4
c

)
ψ0. (4.C.14)

Gathering these two equations leads to:(
∆ +

(
1 +

∆2

k4
c

)
∂z

((
f0

N

)2

∂z

))
ψ = 0. (4.C.15)

Using the horizontal Fourier transform, it writes:(
−‖k‖22 +

(
1 +

∥∥∥∥ kkc
∥∥∥∥4

2

)
∂z

((
f0

N

)2

∂z

))
ψ̂ = 0. (4.C.16)

Under an uniform stratification, with a fixed value at a specific depth (z = η), and a vanishing
condition in the deep ocean (z → −∞), a solution is:

ψ̂(k, z) = ψ̂(k, η) exp

 N‖k‖2

f0

√
1 +

∥∥∥ kkc ∥∥∥4

2

(z − η)

 . (4.C.17)

Accordingly, the buoyancy is:

b̂ = ∂zφ̂
′ = f0

(
1 +

∥∥∥∥ kkc
∥∥∥∥4

2

)
∂zψ̂ = N‖k‖2

√
1 +

∥∥∥∥ kkc
∥∥∥∥4

2

ψ̂. (4.C.18)



Chapter 5

Bifurcations and location uncertainty
in geophysical fluid flows

Abstract
A bifurcation associated with a symmetry breaking is identified in a high-resolution simulation of
a simplified geophysical model, the so-called Surface Quasi-Geostrophic (SQG) model. Depend-
ing on the initial condition, two subsequent scenarios are possible. Yet, for the same initial field,
low-resolution and high-resolution SQG simulations follow different scenarios. To retrieve both
scenarios, two ensembles of stochastic simulations are performed on the coarser grid. The ensem-
ble based on random initial conditions does not appear to converge and requires a large number of
realizations. The other ensemble is obtained according to a randomized transport, referred to as
dynamics under location uncertainty. Within this stochastic framework, many attractive theoreti-
cal properties are kept, and ensemble results robustly identify both scenarios and their respective
probability density functions. MATLAB R© codes are available online.

Keywords: Bifurcation, stochastic sub-grid tensor, geophysical fluid dynamics, ensemble forecasts.

For geophysical flows, chaos is ubiquitous and imposes finite limits on the pre-
dictability of fully developed turbulent flows. Long-term evolutions can then en-
compass several scenarios. The latter are customarily unveiled using an ensemble of
deterministic simulations with random initial conditions. The large dimension of geo-
physical systems can prevent the efficiency of this method. Here, we illustrate on a
simple example the potential of a new stochastic approach: the transport under loca-
tion uncertainty. As a testbed, a bifurcation is studied for a known geophysical fluid
dynamics model. As derived and numerically proved using very few simulations, the
randomized dynamics largely outperforms the classical method, to robustly anticipate
and describe several likely transitions and evolutions.

5.1 Introduction
For geophysical flows, a loss of predictability is generally attributed to the rapid upscale cascade of
small-scale initial error (Lorenz, 1969; Leith, 1971; Leith and Kraichnan, 1972; Métais and Lesieur,
1986). This strongly hampers the applicability of deterministic large-scale forecasts.

For that reason, ensemble methods are routinely used in operational weather or climate centers
for short to seasonal time scales forecasting (Berner et al., 2015, and references therein). Pro-
posed schemes mostly consist in tracking several likely-scenarios and to increase in fine the models
predictability skill. This necessitates a good estimation of uncertainties, both in terms of their
magnitude and location. Underdispersive ensembles shall lead to overconfident dynamical models
with poor forecasting skills. A good representation of the ensemble dispersion, but accompanied
with a bad spatial localization of the errors, will also lead to a poor state-space representation.

81
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The predictability skills thus critically depends on the scheme capability to model and maintain
unresolved small-scale events.

In this paper, we explore the performances of a new stochastic framework with respect to
this issue. Introduced by Mémin (2014), this approach is referred to as dynamics under location
uncertainty. The formalism has been successfully applied to deterministic Large Eddy Simulations,
more specifically to POD-Galerkin reduced order models (Resseguier et al., 2015). It can further
provide randomized versions of fluid dynamics models.

Hereafter, this stochastic framework is applied to the surface quasi-geostrophy model corre-
sponding to the evolution of a scalar quantity with 2D velocities determined by the scalar prop-
erties. As demonstrated, a bifurcation associated with a symmetry breaking is efficiently tracked
using the proposed stochastic framework. Using few realizations, the probability density functions
of each subsequent scenarios is well characterized, whereas methods based on random initial condi-
tions do not converge. The identification of several scenarios, done at each time step in a reduced
subspace, is obtained by Principal Component Analysis (PCA), also termed Empirical Orthogonal
Functions method (EOF).

Notations and properties of the transport under uncertainty are first recalled. The test flow
is then presented. Finally, a diagnosis of bifurcation is performed and discussed from both the
stochastic model and a method based on randomized initial conditions.

5.2 Transport under location uncertainty
This section briefly recall notation and developments of the stochastic framework.

5.2.1 Informal description
Numerical models describing the ocean/atmosphere dynamics introduce de facto a coarse scale
truncation of the system. Those dynamical models emanate from physical deterministic represen-
tations whose solutions are assumed to be smooth (i.e. differentiable) in time. Although small-scale
fluid flow velocities can be characterized by local and intermittent energy bursts, possibly asso-
ciated with infinitesimal characteristic time-scales, it is generally assumed that these unresolved
flow components remain smooth in time. At the model resolution, the resolved (large-scale) flow
can thus be considered as a coarse-grained representation of the actual Eulerian flow, with the
unresolved flow component rapidly varying in time. From an observer point of view, such sub-grid
dynamics can be conveniently modeled by a delta-correlated process. The smooth velocity field, de-
noted w, represents a large-scale, possibly random, component continuous in time. The unresolved
contribution, expressed as σḂ, is then assumed Gaussian, volume preserving (divergence-free) and
uncorrelated in time. This contribution can be non-homogeneous and anisotropic in space. Due to
the irregularity of the resulting flow, the transport of a conserved quantity, b, by the whole velocity,
defined as

b(Xt+∆t, t+ ∆t) = b(Xt, t) (5.2.1)

reads in an informal stochastic way as

∂tb+w? · ∇b︸ ︷︷ ︸
Corrected
advection

=∇ ·
(

1

2
a∇b

)
︸ ︷︷ ︸

Diffusion

−σḂ · ∇b︸ ︷︷ ︸
Random
forcing

, (5.2.2)

with a drift velocity corrected as

w? = w − 1

2
(∇ · a)T . (5.2.3)

Hence, the deterministic (for a fixed realization of velocity field w) evolution equation is replaced
by a stochastic equation with respect to σḂ. As a result, the conserved quantity is now advected
by an “effective" velocity, w?, taking into account the possible spatial variation of the small-scale
velocity variance. The random forcing term in (5.2.2) relates to the advection by the unresolved
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velocity σḂ = σ dBt
dt . This term continuously backscatters random energy to the system. The

diffusion term then accounts for the mixing effect of the small-scale random velocity. This term
plays a role similar to the eddy diffusivity models introduced in classical large-scale representations
(Gent and Mcwilliams, 1990; Germano et al., 1991; Lilly, 1966; Smagorinsky, 1963), in analogy
with the molecular diffusion mechanism (Boussinesq, 1877).

The inhomogeneous and anisotropic diffusion coefficient matrix, a, is then defined by the one-
point one-time covariance of the unresolved displacement per unit of time:

a =
E
{
σdBt (σdBt)

T
}

dt
. (5.2.4)

This ensures an exact energy balance between the amount of diffusion and the random forcing.

5.2.2 Uncertainty formalism

To derive more formally the evolution law of a scalar quantity transported by a stochastic flow,
the stochastic Lagrangian description of the infinitesimal displacement associated with a particle
trajectory Xt writes:

dXt = w(Xt, t)dt+ σ(Xt, t)dBt. (5.2.5)

In this equation, the second term explicitly figures the flow location uncertainty. Formally, this
random field is defined over the fluid domain, Ω ⊂ Rd, from a d-dimensional Brownian function
Bt. Such a function can be interpreted as a white noise process in space and a Brownian process in
time. Formally it is a cylindrical Id-Wiener process (see Da Prato and Zabczyk (1992) and Prévôt
and Röckner (2007) for more information on infinite dimensional Wiener process and cylindrical
Id-Wiener process). The time derivative of the Brownian function, in a distribution sense, is
informally denoted σḂ = σ dBt

dt , and is a white noise distribution. The spatial correlations of
the flow uncertainty are specified through the diffusion operator σ(., t), defined for any vectorial
function, f , through the matrix kernel σ̆(., ., t):

σ(x, t)f
4
=

∫
Ω

σ̆(x, z, t)f(z, t)dz. (5.2.6)

This quantity is assumed to have a finite norm. More precisely, the operator σ is assumed to
be Hilbert-Schmidt. We also assume that the above expression have periodic or null boundary
conditions on the domain frontier. The resulting d-dimensional random field, σ(x, t)dBt, is a
centered vectorial Gaussian function, correlated in space and uncorrelated in time with covariance
tensor:

Cov(x,y, t, t′)
4
= E

{
(σ(x, t)dBt) (σ(y, t′)dBt′)

T
}
, (5.2.7)

=

∫
Ω

σ̆(x, z, t)σ̆T (y, z, t)dz δ(t− t′)dt. (5.2.8)

We note that the uncertainty field has a (mean) bounded norm for any finite time. Indeed, since
σ is Hilbert-Schmidt, the trace of operator Q – defined by the kernel (x,y) 7→ σ(x, t)σT (y, t) – is
finite, and for all t 6 T <∞,

E
∥∥∥∥∫ t

0

σdBt′

∥∥∥∥2

L2(Ω)

=

∫ t

0

∫
Ω

‖σ̆(•, z)‖2L2(Ω) dzdt′, (5.2.9)

=

∫ t

0

‖σ‖2HS,L2(Ω)dt
′ =

∫ t

0

tr(Q)dt′ < ∞, (5.2.10)

where the index HS refers to the Hilbert-Schmidt norm. Hereafter, the diagonal of the covariance
tensor, a, will be referred to as the variance tensor:

a(x, t)δ(t− t′)dt = Cov(x,x, t, t′).
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By definition, it is a symmetric positive definite matrix at all spacial points, x. This quantity, also
denoted in short as σσT , corresponds to the time derivative of the so-called quadratic variation
process:

σσT
4
= a = ∂t

〈∫ t

0

σdBs,

(∫ t

0

σdBr

)T〉
.

with 〈f, g〉 to stand for the quadratic cross-variation process of f and g.
All along this study, we further assume that the small-scale random flow component is associated

with a divergence-free diffusion tensor:

∇ · σ = 0. (5.2.11)

5.2.3 Scalar advection

For a fluid flow defined by equation (5.2.5), the material derivative of a tracer writes:

0 = Dtb = dtb︸︷︷︸
4
= b(x,t+dt)−b(x,t)
Time increment

+ (w?dt+ σdBt) · ∇b︸ ︷︷ ︸
Advection

−∇ ·
(

1

2
a∇b

)
︸ ︷︷ ︸

Diffusion

dt. (5.2.12)

The time increment dtb can be interpreted as the analog of the partial time derivative ∂tb in
deterministic partial differential equations. The above expression is derived in Appendix 5.A. To
ensure a stochastic isochoric flow, an incompressibility constraint on the modified drift is considered,
∇·w? = 0. This adds up to the divergence-free condition of the unresolved velocity (5.2.11). One
can show that those two constraints enable to establish a strong energy conservation property for
any realizations:

d

dt

∫
Ω

b2 = 0. (5.2.13)

The noise energy intake is exactly compensated by the diffusion term. Note that when the unre-
solved velocity is homogeneous, the variance tensor, a, is uniform in space, as a = tr(a)

d Id.

5.2.4 SQG model under moderate uncertainty

The buoyancy, b, is proportional to the density anomaly ρ′

b
4
= −g ρ

′

ρ0
with ρ(x, y, z, t) = ρ0

(
1− N2

g
z

)
+ ρ′(x, y, z, t), (5.2.14)

where ρ is the density, and N the stratification. In the ocean, the density anomaly is small
compared to the total density (Boussinesq approximation) and the flow is approximately isochoric.
The conservation of salinity and temperature, with a linearized equation of state, provides the
transport of buoyancy (Vallis, 2006). Then, considering rapid rotation, strong stratification and
uniform potential vorticity leads to the so-called SQG model (Blumen, 1978; Held et al., 1995).
A random version of this model (denoted SQGMU ) can be derived from the location uncertainty
principle. It will keep the same structure except that the buoyancy is now transported in the
stochastic sense (5.2.12). The horizontal velocity u = w is related to the buoyancy b in Fourier
space through the usual SQG relation:

û = ik⊥
b̂

N‖k‖2
, (5.2.15)

where k is the horizontal wave-vector. The unresolved velocity σḂ is also horizontal and denoted
σHḂ. Consequently, the variance tensor is a 2× 2 matrix denoted aH and the SQGMU model is
two-dimensional.
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5.3 Chaotic test flow and resolution issues
High-resolution deterministic SQG simulations of test flows will provide references to which we will
compare random simulations performed at a lower resolution.

The initial conditions defining our test flows are shown in Figures 5.1 and 5.2, consisting of a
spatially smooth buoyancy field with two warm elliptical anticyclones (positive buoyancy) and two
cold elliptical cyclones (negative buoyancy) given by:

b0(x)
4
= F

(
x−

(
250 km
250 km

))
+ F

(
x−

(
750 km
250 km

))
−F

(
x−

(
250 km
750 km

))
− F

(
x−

(
750 km
750 km

))
, (5.3.1)

with

F (x)
4
= B0 exp

(
−1

2

(
x2

σ2
x

+
y2

σ2
y

))
and

{
σx = 67 km,
σy = 133 km. (5.3.2)

The domain size is a square box Lx × Ly = 1000 km×1000 km. The boundaries conditions of
the simulation are doubly periodic and, for the above initial condition, there is a meridional line
of symmetry at x = 500 km. Therefore, the zonal period of the initial condition is Lx/2 = 500
km. This periodicity is relatively stable and holds during the first month. Nevertheless, the SQG
dynamics, is subject to an inverse cascade of energy (Capet et al., 2008), and vortices of the same
sign tend to merge. When this merging occurs, this affects the global shape of the flow. In particu-
lar, the periodicity that remains in the first month eventually disappears. This symmetry is hence
metastable rather than stable. The symmetry breaking corresponds to a transition from one “state”
to an another. By “state”, we mean a relatively “compact” and connected subspace of the state
space. Warm vortices can merge at x = 0 or at x = 500km. In the following, we will refer to the
first case as “scenario 1”, and to the second case as “scenario 2”. Because of the periodic boundary
conditions, these two possible transitions are likely to occur. In a deterministic numerical simula-
tion, the appearance of one transition or the other is determined by an infinitesimal asymmetry in
the initial condition or possibly by a numerical error. This is a bifurcation. The bifurcation related
to the merging of cold vortices is analog. With those two simultaneous bifurcations, there are thus
2× 2 = 4 likely transitions.

To trigger a particular transition, we introduce two infinitesimal modifications in the initial
condition. For the sake of simplicity, we focus on the bifurcation associated with the warm vortices.
To do so, the merging of cold vortices in x = 500 km will be forced, by adding an infinitesimal
small-scale cold eddy in (x, y) = (480, 750) (in km). The barycentre of northern structures becomes
slightly closer to x = 500 km. This gives rise to the desired transition, as shown in Figures 5.1
and 5.2. To trigger the bifurcation associated with the southern warm vortices, an infinitesimal
small-scale eddy has been added in (x, y) = (20, 250) (in km). If the eddy is warm, the southern
barycentre is moved closer to x = 0, and the two warm vortices merge near x = 0 (scenario 1), as
shown in Figure 5.1. If this eddy is cold, the southern barycentre is moved closer to x = 500 km,
and the two warm vortices merge near x = 500 km (scenario 2), as shown in Figure 5.2. The exact
expression of the initial condition is the following:

b(x, t = 0) = b0(x) + 0.3swF

(
1

40

(
x−

(
20 km
250 km

)))
−0.3F

(
1

40

(
x−

(
480 km
750 km

)))
, (5.3.3)

where the large-scale field, b0, and the two-dimensional Gaussian function, F , remain defined by
(5.3.1) and (5.3.2). The factor sw is set to 1 (respectively −1) if one wants to force the scenario
1 (respectively the scenario 2). The size of the large vortices of b0 is of the order of the Rossby
radius Ld, whereas the small-scale eddies spread only over few kilometers.

The amplitude of the buoyancy and the stratification are set to: B0 = 10−3m.s−2 and N = 3f0.
The Coriolis frequency is fixed to 1.028 × 10−4s−1, which corresponds to a latitude of 45◦. The
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reference deterministic high-resolution SQG model is associated with a mesh-grid of 5122 points.
The low-resolution (deterministic or stochastic) SQG models are run with 1282 points. Simulations
are performed through a pseudo-spectral code. For all simulations (deterministic and random, high-
resolution and low-resolution), a standard hyperviscosity model has been introduced (Held et al.,
1995):

Dtb = αhv∆4b dt, (5.3.4)

with a coefficient αhv = (5× 1029m8.s−1)M−8
x where Mx denotes the grid size (i.e. 128 or 512).
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Figure 5.1: Buoyancy (m.s−2) at t = 0, 30, 40, 50, 55, 60, 70 and 80 days of advection for the SQG
model at resolution 5122. Here, a cold and a warm very small eddies are added respectively in
the top and the bottom of the initial condition. These eddies are highlighted by respectively a
blue square and a red square. This small difference in the initial condition does not modify the
flow until the onset of the symmetry breaking, the 40th day. Since the flow is chaotic, the small
perturbation at t = 0 determines how the symmetry breaking occurs a month and a half later.

The high-resolution simulations corresponding to scenario 1 and 2 are displayed in Figures 5.1
and 5.2, respectively. At this resolution, the evolution toward scenario 1 or scenario 2 is determined
by the value of the parameter sw (i.e.+/ − 1). The associated variations are hardly taken into
account by the low-resolved SQG model, as shown in Figure 5.3. The two SQG simulations
correspond to 70 days of advection at high and low resolution, respectively. Both simulations
have been initialized in the same way (sw = 1). The low-resolution field differs from the high-
resolution field, as it apparently followed the wrong transition. As understood, whatever the
random or deterministic nature of the tracer evolution law, a dissipation or a filtering at small
scales is necessary to remove aliasing effects. In present simulations, the dissipation is created by
an hyperviscosity scheme. At low resolution, the initial perturbation is rapidly diffused (few days).
When the symmetry breaking occurs, after 40 days of advection, this initial perturbation has
been completely forgotten. Moreover, another infinitesimal asymmetry triggers the other likely
transition. According to the expression of b0 (equations (5.3.1) and (5.3.2)), the large scale of
the initial condition is not exactly zonally periodic with period 500 km. The southern part is
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Figure 5.2: Buoyancy (m.s−2) at t = 0, 30, 40, 50, 55, 60, 70 and 80 days of advection for the usual
SQG model at resolution 5122. Here, two very small cold eddies are added in the top and the
bottom of the initial condition. They are highlighted by two blue squares. This small difference
in the initial condition does not modify the flow until the onset of the symmetry breaking, the
40th day. Since the flow is chaotic, the small perturbation at t = 0 determines how the symmetry
breaking occurs a month and a half later.
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slightly warmer in the middle. Indeed, the value of b0 on (x, y) = (500, 250) (in km) is about
1.8×10−5m.s−2, and on (x, y) = (0, 250) (in km) is about 8.8×10−6m.s−2. The initial barycentre
of the southern structures is thus closer to x = 500 km. This asymmetry has a very weak amplitude
but a large spatial length scale which prevents its diffusion. This explains the merging in the wrong
location.
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Figure 5.3: Buoyancy (m.s−2) after 70 days of advection for the SQG model at resolution 5122 (
left) and at resolution 1282 (right). The small-scale perturbation in the initial condition activating
the symmetry breaking in the reference simulation (5122), is dissipated in few days in the low-
resolution simulation. This makes this single low-resolution simulation erroneous.

In the next section, we will show that low-resolution simulations of appropriate randomized
dynamics can retrieve the right scenario.

5.4 Stochastic analysis
With low-resolution simulations of the SQGMU model described in 5.2.4, ensemble analysis can be
performed. The unresolved velocity component is assumed to be isotropic, with a (− 5

3 ) spectrum
restricted to the small spatial scales, as illustrated by Figure 5.4. The energy is then specified by
the diffusion coefficient aH

2 = 9 m2.s−1. The numerical simulation of this component is detailed
in Appendix 5.B. A MATLAB code simulating the SQGMU model is available online (http:
//vressegu.github.io/sqgmu).

Unlike the SQG model, the random simulations of the SQGMU model, with the exact same
initialization sw = 1, yields several likely transitions. In Figure 5.5, we show two realizations.
One of those realizations corresponds to the reference scenario (scenario 1), the other does not.
The model encodes several likely transitions, and thus several potential scenarios. Indeed, the
random forcing provides various small-scale perturbations that may trigger these transitions. As
this triggering is random, the large-scale changes are also random. In other words, there is a
backscattering of uncertainty toward the large scales, as illustrated in Figure 5.6. We decomposed
the mean omni-directional spectrum, i.e. the mean energy at a given scale, Ê{Γb}, into the
spectrum of the mean tracer, ΓÊ{b}, (blue line) and the mean spectrum of the tracer random

component, Ê
{

Γb−Ê{b}

}
, (shaded grey):

Ê{Γb} = Ê
{

1

A

∮
‖k‖2|b̂|2dθk

}
, (5.4.1)

=
1

A

∮
‖k‖2

(
|Ê{b̂}|2︸ ︷︷ ︸
Energy of
the mean

+ Ê
{
|b̂− Ê{b̂}|2

}
︸ ︷︷ ︸

Variance

)
dθk, (5.4.2)

= ΓÊ{b} + Ê
{

Γb−Ê{b}

}
, (5.4.3)

where A denotes the area of the domain Ω, Ê{f} the empirical mean of f , computed from the
ensemble, and f̂ the Fourier transform of f .

http://vressegu.github.io/sqgmu
http://vressegu.github.io/sqgmu
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(up to a multiplicative constant) for the SQGMU simulation, in red, and slope − 5

3 in black. In the
simulation performed, σHḂ is restricted to a narrow spectral band. Thus, this velocity component
acts almost only near the resolution cutoff, where the large-scale component, w, has a low energy.
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Figure 5.5: Two realizations of buoyancy (m.s−2) after 70 days of advection for the SQGMU at
resolution 1282. Event though the small-scale perturbation in the initial condition is dissipated
in few days, the small-scale component of SQGMU triggers randomly the symmetry breaking.
Therefore, some realizations follow the right transitions (left) and some do not (right).
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Uncertainty backscatter
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Figure 5.6: Tracer spectrum (m2.s−4/(rad.m−1)) after 30 days (top) and 70 days (bottom) of
advection for SQG model at resolution 5122 (green), one realization of SQGMU model, Γb(1) , at
resolution 1282 (red dashed line), the spectrum of the mean, ΓÊ{b}, (blue line) and the mean
spectrum of the tracer random component, Ê{Γb−Ê{b}}, (shaded grey). After being stacked, the
two last plots represent the mean spectrum: Ê{Γb} = ΓÊ{b} + Ê{Γb−Ê{b}}. The more thick the
shaded grey area is, the more variance is contained at this scale. At t = 30 days, the variance
remains at small scales but this small-scale uncertainty activates the symmetry breaking. This
results in a variance backscattering with a thickening of the spectrum of the random component
at large scales (visualized at t = 70). Since large scales influence strongly the small scales the
small-scale variance is also enforced.
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One can then wonder about the number of realizations following the right scenario. This
necessitates the analysis of the 4-dimensional spatio-temporal random field

(
b(i)(xj , yk, tl)

)
ijkl

.
The superscript (i) designates the i-th realization of the ensemble. To reduce the associated
dimension, a Principal Component Analysis (PCA), also termed Empirical Orthogonal Function
(EOF) representation, is performed over the realizations, at a fixed time t. Within this analysis,
unlike usual EOF representation, the time axis is replaced by the realization index. At a given time,
it helps to represent the whole ensemble (200 realizations of the random field) by the ensemble
mean field and few other EOF spatial modes. In the present case, the buoyancy is approximated
as:

b(i)(x, t) = Ê(b)(x, t) +

Ne∑
n=1

c(i)n (t)Ψ(x, t), (5.4.4)

≈ Ê(b)(x, t) +

NEOF∑
n=1

c(i)n (t)Ψn(x, t), (5.4.5)

where Ne is the size of the ensemble, NEOF � Ne is the number of EOF modes chosen to described
the whole ensemble and the (Ψn)16n6NEOF

denote the EOF spatial modes. Those spatial fields
are orthogonal:

1

M

M∑
j=1

Ψn(xj , t)Ψm(xj , t) = δnm, (5.4.6)

with M the number of grid points. The mean energies – or variances – of EOF coefficients cor-
respond to the eigenvalues of the two-points correlation matrix; they are ordered in decreasing
order and represent the energies associated with each spatial mode. To describe the ensemble with
respect to a maximal variance point of view, only the EOF coefficients cn concentrating the largest
part of the buoyancy mean energy are kept. This energy, which differs from the energy of the
mean, reads:

Ê

 1

M

M∑
j=1

b2(xj , t)

︸ ︷︷ ︸
Mean energy

=
1

M

M∑
j=1

(
Ê(b)

)2

(xj , t) +
1

M

M∑
j=1

V̂ ar (b) (xj , t), (5.4.7)

=
1

M

M∑
j=1

(
Ê(b)

)2

(xj , t)︸ ︷︷ ︸
Energy of the mean

+

Ne∑
n=1

Ê
{
c2n(t)

}︸ ︷︷ ︸
Mean energy of
the n-th EOF

. (5.4.8)

In Figure 5.7, left part, the energy associated with the different spatial modes is displayed. At
t = 30 days, the energy of the mean field, denoted as a 0-th order EOF (index+1 = 1), is much
larger than the variance field, described by the other EOFs. On the contrary, at t = 70 days, after
the breaking symmetry, the energy of the mean and the variance have the same order of magnitude.
The variance is mainly explained by the fist EOF. Thus, at the first order, the randomness of the
tracer is approximately encoded by this first EOF coefficient, c1. Its probability density function
and the joint probability density function for the two first EOF coefficients presented in Figure
5.7 are unimodal at t = 30 days and bimodal at t = 70 days. Note that the tracer is clearly non-
Gaussian. The symmetry breaking has created two likely scenarios in the ensemble. The scenario
corresponding to negative values of the first EOF coefficient (probability of 47%) is called scenario
A and the scenario corresponding to positive values (probability of 53%) is called scenario B. The
red line at zero separates the probability density function between the two scenarios. In Figure
5.8, the same probability density function along time is plotted. The bifurcation is clearly visible.
Also shown, the mean buoyancy (m.s−2) of the two likely scenarios are represented after 70 days
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Figure 5.7: Energy of the EOFs (m2.s−4) (left), probability density function of the first EOF
coefficient (middle) and joint probability density function for the two first EOF coefficients (right)
after 30 days (top) and 70 days (bottom). The ensemble is simulated according to the SQG model
under moderate uncertainty at resolution 1282. At t = 30 days, the energy of the mean field,
denoted as a 0-th order EOF (index+1 = 1), is much higher than the variance field, described by
the other EOFs. On the contrary, at t = 70 days (after the symmetry breaking), the energy of the
mean and variance have the same order of magnitude. The variance is mainly explained by the first
EOF. Therefore, at the first order, the random component of the tracer can be approximated by
this first EOF. The probability density function of the first EOF coefficient and the joint probability
density function for the two first EOF coefficients are unimodal at t = 30 days and bimodal at
t = 70 days. The breaking symmetry has created two likely scenarios, which are very different from
one another. The scenario A corresponds to negative values of the first EOF coefficient (probability
of 47%) whereas the scenario B corresponds to positive value (probability of 53%). The red line
separates the probability density function between the two scenarios.
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of advection. The two mean fields, Ê(b|1) and Ê(b|2), are calculated as:

Ê(b|1) = Ê(b) + Ê(c1|1)Ψ1 = Ê(b) +

 1

#
{
i|c(i)1 < 0

} ∑
c
(i)
1 <0

c
(i)
1

Ψ1, (5.4.9)

Ê(b|2) = Ê(b) + Ê(c1|2)Ψ1 = Ê(b) +

 1

#
{
i|c(i)1 > 0

} ∑
c
(i)
1 >0

c
(i)
1

Ψ1, (5.4.10)

where # stands for the cardinality of a set. The scenario A is quite close to the scenario 1, which
is the reference with this initial condition, whereas scenario B is close to scenario 2. The stochastic
model has enabled the ensemble to track both scenarios and to describe them statistically. Let us
point out that the shape of the isotropic small-scale velocity expression has been loosely fixed by
an a priori form of the spectrum. Some learning procedures of the noise topology from past data
could lead to express more informative heterogeneous random fields, and to statistically favor the
most likely transition. Moreover, since the two scenarios are very different, the introduction of few
observations, through an assimilation procedure, could very easily help to select the right scenario.

For sake of comparison, we also show results obtained using the deterministic SQG model, ini-
tialized with random conditions. Initial small-scale buoyancy perturbations are assumed Gaussian
and sampled from a (− 5

3 ) spectrum, as shown in Figure 5.9. These perturbations should not change
the large-scale flow before the predictability time (about one month). Accordingly, we require those
perturbations to be of small amplitudes and restrict them to small scales. The same analysis is
performed, including the EOF decomposition and the distinction between two likely scenarios.
Figure 5.10 gathers the results. After 70 days of advection, the scenario A is hardly visible in the
probability density function of the first EOF. The ensemble estimates a probability of only 39%
for the reference scenario. The SQGMU ensemble estimated a probability of 47%. Moreover, the
probability density function is very noisy. This suggests that the ensemble may not be converged,
i.e. the empirical statistics of the ensemble will change if the ensemble size grows. The scenario A
completely disappears in the joint probability density function for the two first EOF coefficients.
The probability density function of the first EOF along time, before and after the symmetry break-
ing, exhibits very narrow branches associated with high probabilities, compared to Figure 5.8. It
indicates that randomized initial conditions may lead to underdispersive ensemble. Furthermore,
in Figure 5.10, trajectories of some realizations are still visible after the bifurcation. This confirms
that the probability density function did not converge. Indeed, to estimate this density, we use the
well-known Parzen-Rosenblatt estimator (Rosenblatt, 1956; Parzen, 1962): each realization is asso-
ciated with a kernel and the estimator is the sum of those kernels. Here, some realizations or set of
few realizations are isolated and create spikes in the estimator. More realizations would be needed
to have almost continuously distributed realizations. In other words, the ensemble is not converged.
This drawback could be expected for at least two reasons. First, the structure of the initial noise
contains little physical information, while the dimension of the state space is huge. Without phase
information, covering all the possibilities requires a very large number of realizations. Furthermore,
the subgrid tensor diffuses the small-scales components of the tracer where the ensemble variability
is encoded. This is a known features of ensemble forecasts: ensemble members tend to align with
most unstable directions of the dynamics (Trevisan and Uboldi, 2004; Ng et al., 2011; Gottwald
and Harlim, 2013; Bocquet et al., 2016). Since small scales are stabilized by the subgrid tensor, the
ensemble shrinks to span a smaller large-scale unstable subspace (Sapsis, 2013). On the contrary,
the stochastic model associates phase and intermittency with the noise and continuously injects it
into the dynamics. The phase information or inhomogeneity as well as the non-Gaussianity come
from the multiplicative structure. Even though the uncorrelated velocity is only prescribed by a
spectrum, the tracer gradients have phase and dynamically constraint the regions of application of
the noise. This process makes the stochastic forcing much more efficient. Hence, a smaller number
of realizations are needed. In Figure 5.10, the convergence of the probability density function of
scenario B (positive values of the first EOF coefficient) seems slightly better than the density of
scenario A. Unfortunately, the bottom Figures shows that the scenario B is not the one followed
by the high-resolution simulation. Let us note that the reference is deterministic. Accordingly, the
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Figure 5.8: Probability density function of the first EOF coefficient along time (top), buoyancy
(m.s−2) after 70 days of advection for the mean of the two likely scenarios A and B of the SQGMU

model at resolution 1282 (respectively middle left and middle right) and the reference scenarios
1 and 2 at high resolution 5122 (respectively bottom left and bottom right). The bifurcation is
clearly visible on the top plot. The two likely scenarios differ from the sign of the first EOF
coefficient. They are almost associated with an equal probability of occurrence: a probability of
47% for scenario A and a probability of 53% for scenario B. The scenario A (respectively B) is
similar to the scenario 1 (respectively 2).
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Figure 5.9: Spectrum (m2.s−4/(rad.m−1)), at the initial time, of the mean buoyancy, in blue,
spectrum of its random perturbation, in red, and slope − 5

3 in black. The initial perturbation is
restricted to a narrow spectral band. This random initial condition has been used to simulate an
ensemble with the deterministic SQG model.

reference probability density is a dirac measure. Indeed, the deterministic reference initial condi-
tion is assumed to be known and is used in all large-scale simulations. Moreover, the reference
dynamic defined by the high-resolution SQG model is deterministic as the real ocean dynamics
is. The bad description of the scenario A tends to confirm that the SQG model with randomized
initial conditions fails to describe the bifurcation.

Another argument is the distance between the reference and each ensemble. In Figure 5.11
reports the error corresponding to the realization closest to the reference, i.e. with minimal error,
for each ensemble. In geophysical data assimilation, large confidence is often given to observations.
Thus, the maximum a posteriori estimator is almost equal to the minimal error realization. Figure
5.11 shows that the ensemble from the stochastic model is closer to the reference than the ensemble
with randomized initializations. It suggests that the stochastic method should lead to a better
maximum a posteriori estimator.

5.5 Conclusion

In this study, long-time forecasts of two different SQG models have been compared. The first one
corresponds to the classical SQG equations with a random initial condition. The second one is a
stochastic version of SQG, derived from a stochastic expression of the transport equations (Mémin,
2014). Both models are compared to a high-resolution simulation reference.

The chosen high-resolution reference is subject to a bifurcation after 40 days of advection. An
infinitesimal modification of the initial condition determines the global shape of the flow two months
later. Depending on the value of this initial modification, two different scenarios are isolated. For
the same initial condition, the deterministic high-resolution and the low-resolution simulations do
not follow the same transition. Indeed, the sub-grid tensor associated with the coarser resolution
diffuses the crucial initial perturbation before the transition. This makes the deterministic forecast
useless. This result questions the classical definition of predictability and associated error which
only rely on initial perturbations (Lorenz, 1969). Note that before the symmetry breaking, the
large-scale errors induced by slight modifications of the initial conditions are negligible in front of
large-scale model errors. To recover, the true scenario at low resolution, a possible solution could
be to randomize the initial condition. As shown, this solution would require a large number of
realizations. At the opposite, the proposed stochastic model tracked both scenarios. Its efficiency
is mainly explained by the continuous injection of multiplicative noise. This structure dynamically
constrains both the phase and the intermittency of the noise. The model achieved to predict the
likelihood and the point-wise tracer probability density in each case.

To identify and separate the scenarios, a simple threshold is sufficient regarding the high energy
distributed along the first PCA axis. For more realistic flow, the number of scenarios is likely to
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Same diagnostic based on a deterministic model with random initial conditions

10
0

10
2

EOF index+1

10
-14

10
-12

10
-10

10
-8

10
-6

E
n
er
g
y

Energy of EOFs

-2 -1 0 1 2

1st EOF coefficient
×10

-4

0

1

2

3

4

5

p
d
f

×10
4 pdf of 1st EOF coefficient pdf of EOF coefficients

-2 -1 0 1 2

1st EOF coefficient
×10

-4

-2

-1

0

1

2

2
n
d
E
O
F
co
effi

ci
en
t

×10
-4

pdf of the 1st PCA coefficient along time

35 40 45 50 55 60 65 70 75 80

Time (day)

-4

-2

0

2

4

1s
t
P
C
A

co
effi

ci
en
t

×10
-4

0

2000

4000

6000

8000

10000

Mean of scenario A

0 2 4 6 8

x
×10

5

0

5

10

y

×10
5

-1

-0.5

0

0.5

1
×10

-3
Mean of scenario B

0 2 4 6 8

x
×10

5

0

5

10

y

×10
5

-1

-0.5

0

0.5

1
×10

-3

Figure 5.10: Energy of the EOFs (m2.s−4) (top left), probability density function of the first EOF
coefficient (top middle), joint probability density function for the two first EOF coefficients (top
right) after 70 days, probability density function of the first EOF coefficient along time (middle),
buoyancy (m.s−2) after 70 days of advection for the means of the two likely scenarios A and B
(bottom left and bottom right respectively). The ensemble is simulated according to the usual
deterministic SQG model with random initial conditions at resolution 1282. The joint probability
density function for the two first EOF coefficients suggests only one likely scenario. The central
Figure confirms that this model fails to correctly describe the bifurcation. Indeed, the probability
density function appears to be not converged in this case. The bottom Figures show that the worst
resolved scenario (the scenario A) is the one similar to the true reference scenario (the scenario 1).
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Figure 5.11: Minimum normalized error along time in the ensemble with random initial conditions
(red) and in the ensemble with random dynamics (blue). The square error was integrated over the
space and divided by the energy of the reference.

be larger. Hence, this classification may be inadequate and more advanced clustering methods
(e.g. kmeans and expectation-maximization algorithms) are probably required. In this paper,
this ensemble aggregation was used as a diagnosis. But, it could also improve filtering methods.
Indeed, for geophysical flows, the state-space dimension being large, the ensemble size is generally
too small to encode all possibilities. So, when an observation is assimilated, only few realizations
of the ensemble are close enough, and all the others are considered useless. This often leads to
filter degeneracy. Considering distance to likely scenarios rather than distance to realizations may
help preventing this deficiency.

As expressed transport under location uncertainty involves an inhomogeneous and anisotropic
diffusion, a drift correction and a multiplicative noise. All these terms are related to the sub-grid
velocity statistics. This transport can also provide a systematic derivation method for stochastic
large-scale fluid dynamics models. While the analysis of this paper is applied to a randomized
version of the SQG model with a toy initial condition, the multiplicative structure of the noise and
the balance with diffusion hold for any fluid dynamics models under location uncertainty. This
suggests that similar conclusions could be expected in more complex problems. We shall consider
this question in future works. Hence, this systematic derivation method may open for new ensemble
forecasts methods, especially for climate projections where uncertainty quantification is a main issue
(Allen and Stainforth, 2002).

Appendix

5.A Stochastic material derivative
The Reynolds transport theorem provides the expression of the rate of change of a scalar function,
q, within a material volume, V(t), transported by the flow. Relying on a stochastic Lagrangian
expression of the fluid particles’ trajectory (5.2.5), a stochastic extension of this theorem has been
derived by Mémin (2014):

d

∫
V(t)

q =

∫
V(t)

(
dtq +

[
∇ ·

(
q(w − 1

2
(∇ · a)

T︸ ︷︷ ︸
w?

)
)
− 1

2

d∑
i,j=1

∂i(aij∂jq)
]
dt+∇q · σdBt

)
. (5.A.1)

For an isochoric stochastic flow (∇ ·w? = 0;∇ · σ = 0) it is easy to see that the change of rate
expression (5.A.1) corresponds to the following stochastic version of the material derivative:

d

∫
V(t)

q =

∫
V(t)

Dtq,

=

∫
V(t)

(
dtq +

[
∇q ·w? − 1

2
∇ · (a∇q)

]
dt+∇q · σdBt

)
. (5.A.2)
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5.B Simulation of the random velocity
To simulate the SQGMU model (equations (5.2.12) and (5.2.15)), the covariance of the unresolved
velocity σḂ must be specified. A simple choice consists in relying on a solenoidal homogeneous field
similar to the Kraichnan model (Kraichnan, 1968, 1994; Gawȩdzki and Kupiainen, 1995; Majda
et al., 1999):

σH(x)dBt =

∫
R2

dzσ̆(x, z)dBt(z) =

∫
R2

dzσ̆(x− z)dBt(z), (5.B.1)

with ∇·σ̆ = 0. (5.B.2)

Note that the proposed model handles spatially inhomogeneous field, which can be much more
physically relevant. However, homogeneity greatly simplifies the random field parameterization and
simulation. Indeed, homogeneity in physical space implies independence between Fourier modes,

σ̂HḂ(k), in the half-space k ∈ R × R+. As the unresolved velocity σḂ is further assumed to be
divergence-free and isotropic, it can be conveniently specified from its two-dimensional spectrum
k → 1

∆t |ˆ̆σ(‖k‖)|2. To follow the SQG turbulence, the omni-directional spectrum slope is fixed
to − 5

3 , which corresponds to the usual SQG spectrum slope (Blumen, 1978; Klein et al., 2008).
According to our stochastic framework, the energy of this small-scale velocity is fixed by the
diffusion coefficient aH and the simulation time step, ∆t:

E
{(
σHḂ

)(
σHḂ

)T}
=

1

∆t
aH =

1

∆t

(
aH 0
0 aH

)
. (5.B.3)

The time step depends itself, through the CFL conditions, linked either to the advection term or
to the diffusion terms, on the spatial resolution and on the maximum magnitude of the resolved
velocity. The unresolved velocity should be energetic only where the dynamics cannot be resolved
properly, meaning between the effective resolution and the true resolution π

∆x . Consequently,
a smooth band-pass filter, fBP is introduced which has non-zero value only between two wave-
numbers κmin and κmax. This specifies the scale range over which the unresolved component
spectrum is non zero. The parameter κmin is inversely related to the spatial correlation length of
the unresolved component. The Fourier transform of this component is finally defined as:

σ̂HḂ(k)
4
=

A√
∆t

ik⊥fBP (‖k‖) ‖k‖−α d̂Bt√
∆t

(k) with 3− 2α = −5

3
, (5.B.4)

where A is a constant, which is set such that E
∥∥∥σHḂ∥∥∥2

2
= 2aH∆t (see equation (5.B.3) above), d̂Bt

is the spatial Fourier transform of dBt and dBt√
∆t

is a discrete scalar white noise process of variance
1 in space and time. In such a parameterization, the small-scale velocity is easy to sample. We first

sample dBt√
∆t

then we get d̂Bt√
∆t

and finally σ̂HḂ(k) with the above equation. Figure 5.4 illustrates
the definition (5.B.4). Finally, only three parameters, aH , κm and the spectral slope have too be
specified in this homogeneous case. They are defined by the usual diffusion coefficient, the effective
resolution and the dynamics of interest respectively. When the typical spectral slope is unknown,
it may be identified to the instantaneous spectral slope of the resolved velocity.
For the inhomogeneous case, there are many ways of prescribing this unresolved velocity. Without
prior learning, one could for instance make one or several of the previous parameters be space-
dependent. Many deterministic realistic geophysical simulations already involve an anisotropic and
inhomogeneous eddy diffusivity coefficient. The effective resolution and the spectrum slope could
be defined based on the spectrum of the resolved velocity. If small-scale observations are available,
useful statistics or their relations with the large-scale velocity could be learned (e.g. Gottwald et al.,
2015).
The latter is specific to two-dimensional domains. In three dimension, the three-dimensional curl
and 3 independent Id-cylindrical Wiener processes must be considered to simulate the small-scale
velocity. If boundaries conditions are not periodic, the convolution (5.B.1) has to be implemented
instead of the multiplication in Fourier space (5.B.4).
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Abstract

In large-scale Fluids Dynamics systems, the velocity lives in a broad range of scales. To be able
to simulate its large-scale component, the flow can be decomposed into a finite variation process,
which represents a smooth large-scale velocity component, and a martingale part, associated with
the highly oscillating small-scale velocities. Within this general framework, a stochastic represen-
tation of the Navier-Stokes equations can be derived, based on physical conservation laws. In this
equation, a diffusive sub-grid tensor appears naturally and generalizes classical sub-grid tensors.
Here, a dimensionally reduced large-scale simulation is performed. A Galerkin projection of our
Navier-Stokes equation is done on a Proper Orthogonal Decomposition basis. In our approach
of the POD, the resolved temporal modes are differentiable with respect to time, whereas the
unresolved temporal modes are assumed to be decorrelated in time. The corresponding reduced
stochastic model enables to simulate, at low computational cost, the resolved temporal modes. It
allows taking into account the possibly time-dependent, inhomogeneous and anisotropic covariance
of the small scale velocity. We proposed two ways of estimating such contributions in the context
of POD-Galerkin.
This method has proved successful to reconstruct energetic chronos for a wake flow at Reynolds
3900, even with a large time step, whereas standard POD-Galerkin diverged systematically. This
paper describes the principles of our stochastic Navier-Stokes equation, together with the estima-
tion approaches, elaborated for the model reduction strategy.

Keywords

Stochastic calculus, fluid dynamics, large eddy simulation, Proper Orthogonal Decomposition,
reduced order model, uncertainty quantification

6.1 Introduction

Modeling accurately and understanding geophysical fluid dynamics is a main issue in current re-
searches. Indeed, beyond economic applications linked to weather forecasting, the need for accurate
climate projections is becoming more and more important. Studying such systems using physics
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is challenging, especially in regard to the non-linearity of the Navier-Stokes equations. Since these
equations make large-scale velocities interact with small-scale velocity fluctuations, the main ve-
locity tendency cannot be simulated alone (Slingo and Palmer (2011) and Palmer and Williams
(2008)). The effects of the unresolved small-scale, so-called turbulent, fluctuations have to be taken
into account.
A first way of modeling 3D turbulence is to only consider the direct energy cascade, which means
that energy goes from the large scales to smaller scales, until it is dissipated by molecular vis-
cosity (Vallis (2006)). This can be done by assuming that the large-scale velocity follows the
Navier-Stokes equation with an additive diffusive term, parametrized by a so-called eddy viscosity
(Kraichnan (1987)). Such types of additive terms are called sub-grid tensors, since they represent
the effect of velocity living at smaller scale than the simulation grid. However, the diffusion matrix
or diffusion coefficient and its temporal and spatial dependence have to be determined. In many
cases, it is done empirically and/or using scaling assumptions. This is the case for LES (Large
Eddies Simulation) where the large-scale flow is defined by a spatially low-pass-filtered velocity
(Parnaudeau et al. (2008),Lesieur and Metais (1996)) and RANS (Reynolds Average Numerical
Simulation) where the large-scale component is defined by a statistical average of the velocity. The
same type of models are used for large-scale modeling of tracers evolution, using eddy diffusivity
instead of eddy viscosity.
Another drawback of this approach is the assumption of a permanent direct energy cascade. In
real systems, there are intermittent back-scattering of energy from smaller scales toward the larger
one. Therefore, some authors proposed to include terms that artificially bring energy to the sys-
tem. Sometimes, it is done by a locally negative eddy viscosity (Protas et al. (2015)). Another
solution consists in setting up a system forced by a Gaussian process decorrelated in time (Kupi-
ainen (2000)). The spatial covariance of this forcing is a parameter that has to be determined. A
stationary assumption greatly simplifies the problem and the associated model.
Considering a random velocity is now widely used (Slingo and Palmer (2011), Palmer and Williams
(2008) and Franzke et al. (2015)). In addition to theoretical physics constraints, it enables uncer-
tainty quantification, and the use of ensemble based methods such as filtering (Doucet et al. (2001),
Doucet and Johansen (2009) and Candy (2011)). The stochastic model, described in the previous
paragraph, adds a random force to the equation without deep theoretical justification. This addi-
tive noise can be interpreted as an explicit error of the model. However, within this prospect, why
would an additive noise be more adequate than a multiplicative noise or any other model of noise?
According to Majda et al. (1999), in reduced models for geophysical fluid dynamics applications,
the coupling of an additive and a multiplicative noise is a good choice, leading naturally to heavy
tails processes. But as far as we know, no theoretical justifications of this choice have been pro-
vided.
The study Mémin (2014) and this paper follow another approach, introduced by Brzeźniak et al.
(1991) and Mikulevicius and Rozovskii (2004). The aim is to bring up naturally a physically based
uncertainty quantification and a sub-grid-tensor model without strong assumptions. The velocity
is assumed to be random and partially decorrelated in time. From the Lagrangian point of view,
it defines a general semimartingale flow. Using stochastic calculus and classical fluid dynamics
principles, one can prove a stochastic representation of the so-called Reynolds transport theorem.
It describes the time-space evolution of a scalar transported by this semimartingale flow. Using
energy and mass conservation, it leads to time-space evolution of respectively the temperature
and the density. Then, the transport theorem applied to momentum and the second Newton Law
lead to a stochastic version of the Navier-Stokes equations. The corresponding scalar and velocity
evolution laws involve an inhomogeneous time-dependent anisotropic diffusive sub-grid-tensor and
additive and multiplicative noise.
For some industrial applications, the resolution of a system of partial differential equations may
be too time consuming. A solution consists in deriving a model of reduced dimension, like in the
case of the Proper Orthogonal Decomposition (POD) Holmes et al. (1998). Within this model,
the velocity at a fixed time, t, is assumed to live in a small dimensional subspace of functions of
space. The basis of this subspace, so-called spatial modes, is determined by a Principal Component
Analysis (PCA) on a sequence of velocity snapshots. The coefficient of the velocity in the reduced
basis are called temporal modes. Then, the partial differential equation of interest is projected on
the function of this basis. It leads to a finite set of coupled ordinary differential equations which
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describe the time evolution of the temporal modes. One problem for non-linear models such as
Navier-Stokes equations is that keeping only a small number of modes destabilizes the system. In
order to overcome this, some authors empirically add a diffusive term, parametrized by an eddy
viscosity model to the reduced model. Several modeling of this eddy viscosity have been proposed.
For instance, Aubry et al. (1988) proposed a constant coefficient, whereas Rempfer and Fasel (1994)
introduced the modal model with one eddy viscosity per mode. Recently, Östh et al. (2014) and
Protas et al. (2015) proposed an eddy viscosity model that depends on the instantaneous energy of
the temporal modes. Other authors (Carlberg et al. (2011)) perform non-linear Galerkin methods,
with the same spatial modes. It leads to another form of the reduced model, that will not be
investigated in this paper.
In our approach, the unresolved temporal modes are assumed to be random and decorrelated in
time whereas the resolved ones are deterministic. Thus, according to our stochastic Navier-Stokes
model, an explicit sub-grid tensor appears both in the PDE and in the associate reduced model.
The parameters of this sub-grid tensor can then be easily estimated on the residual velocity, through
a statistical estimator. By residual velocity, we mean the part of the velocity snapshots which is not
represented by the PCA. As will be demonstrated here, this sub-grid tensor successfully stabilizes
the reduced system.
The paper is organized as follows. The first section presents the stochastic fluid dynamics model,
on which we rely. The second section is a reminder of the classical POD approach. The third
one presents our POD based reduced model under uncertainty. The fourth section presents some
numerical results and comparisons. Finally, the last section concludes and provides perspectives.

6.2 The proposed stochastic model

In this work, an Eulerian stochastic description of the velocity and tracer evolution is used, as
proposed in Mémin (2014). Unlike classical stochastic methods, a random part, encoding an
uncertainty on the velocity expression, is added to the Lagrangian velocity before any model
derivation. Thanks to this decomposition, a stochastic representation of the so-called Reynolds
transport theorem, cornerstone of the deterministic fluid dynamic theory, can be derived. Thus,
assuming a dynamical balance similarly to the second Newton law, a stochastic Navier-Stokes
expression can be derived. It should be noticed that the equations, described below, are derived
from fundamental physical laws only.
The time differentiation of a trajectory Xt of a particle is noted:

dXt = w(Xt, t)dt+ σ(Xt, t)dBt, (6.2.1)

where σ(., t) is an Hilbert-Schmidt operator on (L2(Rd))d defined by its kernel σ̆(., ., t): ∀f ∈
(L2(Rd))d, σ(., t)f

4
=
∫
Ω
σ̆(.,y, t)f(y)dy and t 7→ B(t) is a cylindrical Id-Wiener process (see

Da Prato and Zabczyk (1992) and Prévôt and Röckner (2007) for more information on infinite
dimensional Wiener process and cylindrical Id-Wiener process). Then, (x, t) 7→ σ(x, t)dBt is a
centered Gaussian process with the following covariance:

∀x,y ∈ Rd,E
(
(σ(x, t)dBt) (σ(y, t′)dBt′)

T
) 4

= a(x,y)δ(t− t′)dt,

where:

a(x,y)dt =

∫
Ω

σ̆(x, z)σ̆T (y, z)dzdt
4
= σ(x)σ(y)Tdt

= d

〈∫ t

0

σ(x, t′)dBt′ ,

(∫ t

0

σ(y, t′′)dBt′′

)T〉
.

The notation < f, g > is the quadratic cross-variation of f and g, used in stochastic calculus,
and its expression is recall in Appendix 6.A. The term

∫ t
0
wdt′ represents the large-scale part of

the flow whereas
∫ t

0
σdBt′ represents the small-scale part. The real physical small-scale flows are

differentiable w.r.t. (with respect to) time. But, the time sampling used for large-scale modeling
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or observation is often larger than the smaller physical time scale of the real velocity. Thus, at this
large scale time sampling, the smallest scales of the flow are non differentiable almost everywhere
w.r.t. time.
The semimartingale Lagrangian formulation (6.2.1) together with stochastic calculus theory allows
us differentiating and integrating random physical quantities. Some basic notions of stochastic
calculus, concerning finite variation processes, martingales and semimartingales, are provided in
Appendix 6.A.

6.2.1 Stochastic representation of the Reynolds-transport theorem

Thanks to the previous decomposition, it is possible to derive a stochastic representation of the
so-called Reynolds transport theorem. Unlike Mémin (2014), we will not assume that, for each
x,y and t, the matrix σ̆(x,y, t) is symmetric. Furthermore, the time differentiable part of the
flow, w(x, .), will not be assumed to be deterministic anymore, but rather, to be a continuous
semimartingale. Nevertheless, if we exactly follow the same procedure, the very same stochastic
transport theorem can be derived.

Theorem 6.2.1 Stochastic Reynolds transport theorem

Noting φ the stochastic flow defined by:

∀x ∈ Ω, t ∈ R+,φ(x, t) = x+

∫ t

0

w(φ(x, t′), t′)dt′ +

∫ t

0

σ(φ(x, t′), t′)dBt′ ,

and denoting V (t) = φ(V (0), t) a material volume transported by the stochastic flow,
we have:

d

∫
V (t)

q(x, t)dx =

∫
V (t)

(
dtq +∇·

(
qdXt + qσ(∇·σ)Tdt− 1

2
∇·(aq)Tdt

))
dx. (6.2.2)

The mathematical equivalence between formulation (6.2.2) and the stochastic Reynolds trans-
port theorem of Mémin (2014) is proven in Appendix 6.B. If q is a passive tracer, transported by
the stochastic flow, d

∫
V (t)

q(x, t)dx = 0, and:

q(x, t)− q(x, 0) = −
∫ t

0

∇·
(
qw + qσ(∇·σ)T − 1

2
∇·(aq)T

)
dt′ −

∫ t

0

∇·(qσ) dBt′ . (6.2.3)

This equation is the unique decomposition of the continuous semimartingale q, into a finite variation
process (the integral in dt) and a local martingale (the integral in dBt) Kunita (1997). Physically,
the finite variation process varies slowly and is responsible of the large time-scale variation of q,
whereas ∇·(qσ) dBt′ is decorrelated in time and null in average. From this point of view, the two
components live in two different spaces, and hence the semimartingale decomposition is unique.
If we make the hypothesis of a constant density ρ, the last equation applied to q = ρ and the
uniqueness of the decomposition leads to:

0 = ∇·σ, (6.2.4)

0 = ∇·
(
w + σ(∇·σ)T − 1

2
(∇·a)T

)
=∇·

(
w − 1

2
(∇·a)T

)
. (6.2.5)

Usually, the evolution of an intensive property, q, can be computed from equation (6.2.3), through
the knowledge of the small-scale velocity characteristic, σ, and of the large-scale drift, w. Indeed,
the evolution of all intensive property statistical moments can be formalized through equation
(6.2.3). For instance, the equation of the conditional expectation of the scalar, given the velocity
w for all time, q̄ 4= E(q|w), is:

∂q̄

∂t
+∇·(q̄w∗) =∇·

(
1

2
a∇q̄

)
where w∗ = w + σ(∇·σ)T − 1

2
(∇·a)T . (6.2.6)
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This is a classical advection-diffusion equation. Indeed, since a is symmetric positive-semidefinite,
∇·
(

1
2a∇q̄

)
leads only to diffusion. The expectation, q̄, is advected by an effective drift, w∗, and

undergoes a diffusion through the tensor 1
2a. In the case of a constant density, w∗ is naturally

divergence-free (see equation (6.2.5)). For large-scale tracers, this advection-diffusion equation,
derived from physical laws, has the same form as the widely used empirical advection-diffusion
equation setup through an eddy diffusivity assumption (Vallis (2006)). However, unlike most of
these classical models, the sub-grid diffusion we got is time-dependent, anisotropic and inhomoge-
neous.

6.2.2 Stochastic Navier-Stokes model
Similarly to the Newton second law, a dynamical balance between the temporal differentiation
of the stochastic momentum, ρdXt, and general stochastic forces action is assumed. This leads,
applying (6.2.2) to ρdXt and ρ, to the following stochastic Navier-Stokes representation.

Theorem 6.2.2 Stochastic Navier-Stokes representation
If w is a finite variation process and f the integral of the pressure p along time can be decomposed
as a general continuous semimartingale

∫ t
0
(p′dt+ dtpσ), then

ρ

(
∂w

∂t
+ (w · ∇)w + f ×w

)
= τ(w) + ρg −∇p+ fV (w), (6.2.7)

ρ ((σdBt · ∇)w + f × σdBt) = −∇dtpσ + fV (σ)dBt, (6.2.8)

where{
fV (h) = µ

(
∇2h+ 1

3∇ (∇·h)
)
,

∀k, τk(w) = 1
2

(
∇·(∇·(ρawk))

T −∇·(∇·(ρa))
T
wk − 2 ∗ ρ ((∇·σ)σT∇)wk

)
.

As a consequence, if the large-scale component, w, is a finite variation process (i.e. if it is time
differentiable) and if the density ρ is deterministic, then w is deterministic, knowing the initial
conditions. It can be noted again that the kernel σ̆ is not assumed pointwise symmetric. The
equivalence between formulation (6.2.7) and the stochastic Navier-Stokes model of Mémin (2014)
is proven in Appendix 6.B.
Expression (6.2.7) can be seen as a generalization of several classical turbulence models. For
instance, if the small-scale infinitesimal displacement σdBt is isotropic and divergence free, and if
the density is constant, the sub-grid tensor simplifies to τ(w) = ρa2 ∆w. We retrieve the simplest
expression of the Boussinesq assumption, with a constant eddy viscosity given by a

2 . Generally
speaking, we may wonder whether the sub-grid tensor, τ , is dissipative, like in a theoretical 3D
direct energy cascade (Vallis (2006), Kupiainen (2000)). If ρ is assumed to be constant, and if a
or w and their derivatives are assumed to be null on the border of Ω, then τ is dissipative. The
proof is provided in Appendix 6.C.
The knowledge of small-scale physical flow realizations allows estimating σ and a:

adt = E((σdBt)(σdBt)
T ) and (∇·σ)σTdt = E((∇·σdBt)(σdBt)

T ). (6.2.9)

Thus, the value of a(x, t) can be used in a large-scale simulation ruled by equation (6.2.7). The
tensor a and functions of σ can also be estimated from a single realization thanks to stochastic
calculus, as explained later, or by assuming local time or space ergodicity as in Harouna and Mémin
(Preprint 2014). Another interesting way of using (6.2.9) is through Monte-Carlo small-scale sim-
ulations, such as particle filtering, where particles correspond to several probable values of the
small-scale velocity. A third alternative to estimate a and σ, without using (6.2.9), consists in
relying directly on known statistical properties of small-scale measurements. Some works on this
subject are currently ongoing. In all these methods, the estimation of the tensor a corresponds
to a solution of a closure problem. Knowing the value of a should lead to a simulation of the
drift, through (6.2.7), or of a tracer transport, through the stochastic transport theorem (Mémin
(2014)), in which the small-scale actions are taken into account in a statistical way.
It is also possible to follow a dual strategy with a downscaling approach, like, for instance, mix-
ing diagnostics, which is, at the moment, an important issue in Meteorology and Oceanography
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(Nakamura (2001) and Mezić et al. (2010)). The evolution equation of both the averaged stochastic
transport theorem (6.2.6) and the average stochastic Navier-Stokes model (6.2.7), applied to ob-
served large-scale geophysical data can give information on the tensors a and σ. Indeed, analysing
how a tracer is advected and diffused may help computing these two tensors. Related information,
such as the local small-scale energy, the anisotropy created by the matrix a(x,x, t), or the local
divergence, which is linked to∇·σ, can be inferred. These information could teach us, for instance,
the likelihood of locally strong velocity or tracer gradient and the principal directions of mixing
created by the main variance directions.
Theorems 6.2.1 and 6.2.2 provide the foundations of a physically relevant stochastic Fluid Dynamics
framework. In this paper, we will rely on them for a reduced model application.

6.3 Classical model reduction using POD
Dimensional reduction techniques are methods allowing simplification of Partial Differential Equa-
tions (PDE), using dedicated basis specified from observed data. The Proper Orthogonal Decom-
position (POD) is one of these methods, and below are recalled its main principles.
Here, we consider an observed multivariate field such as a velocity u(x, t) depending on space x ∈ Ω
and time t ∈ [0, T ]. The goal consists in looking for a subspace of reduced dimension where v(., t)
is likely to live for all t. We thus seek a finite orthonormal set of function of space, which spans
this subspace. These functions (φi(x))16i6N are called spatial modes or topos and are computed
from a Karunen Loeve decomposition on a series of available velocity snapshots. In other words, a
spectral analysis is done on the space (or time) autocorrelation tensor of observed data:

v̄(x)
4
=

1

T

∫ T

0

v(x, t)dt, (6.3.1)

cov(x1,x2)
4
=

1

T

∫ T

0

(v(x1, t)− v̄(x1))(v(x2, t)− v̄(x2))Tdt, (6.3.2)∫
Ω

cov(x1,x2)φi(x1)dx1 = λiφi(x2) with
∫
Ω

φi(x) · φj(x)dx = δi,j . (6.3.3)

The topos are sorted such that λ1 > ... > λN , where N is the number of observed snapshots (if the
number of points of the spatial grid is larger than N). It leads to the decomposition:

∀(x, t) ∈ Rd × R, v(x, t) ≈ v̄(x) +
N∑
i=1

bi(t)φi(x). (6.3.4)

The values (bi(t))16i6N are called temporal modes or chronos and satisfy:

∀i, j, 1

T

∫ T

0

bi(t)bj(t)dt = λiδi,j . (6.3.5)

In the following, v̄ will be denoted φ0 and b0
4
= 1. Then, since only the first temporal modes

concentrate the most significant part of the energy, a second truncation approximation is usually
performed:

∀(x, t) ∈ Rd × R, v(x, t) ≈
n∑
i=0

bi(t)φi(x) with n� N. (6.3.6)

A Galerkin projection enables us to look for an approximate solution of a PDE. The approximate
solution at time t, v(., t), defined in (6.3.6), is assumed to live in a finite-dimensional sub-space,
spanned by (φ0, ...,φn), instead of an infinite-dimensional one. The time-space evolution equation
of v (a PDE) is then expressed as the time evolution equations (a finite set of coupled ODEs)
of chronos. In fluid dynamics, PDE system describing the velocity evolution, such as the Navier-
Stokes equations, have the general following abstract form:

∂v

∂t
= I + L(v) + C(v,v), (6.3.7)
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where L and C are respectively linear and bilinear differential operators. The first term, I, includes
pressure and gravity. The second one, L, involves molecular viscosity and possibly Coriolis force.
The last one, C, encodes the non-linear advection term. Projecting this PDE on each topos leads
to:

∀i 6 n,
dbi
dt

=

(∫
Ω

φi · I
)

︸ ︷︷ ︸
4
=ii

+
n∑
p=0

(∫
Ω

φi · L(φp)

)
︸ ︷︷ ︸

4
=lp,i

bp

+
n∑

p,q=0

(∫
Ω

φi · C(φp,φq)

)
︸ ︷︷ ︸

4
=cp,q,i

bpbq.

Because of the non-linearity, the temporal modes strongly interact with each others. In particular,
even though the original model (with n = N) is computationally stable for moderate Reynolds
number, the reduced one is generally not so. This particularity of the Navier-Stokes equation is not
restricted to the POD framework. Simulating a large-scale flow, considering only the largest Fourier
modes, leads also to strong instabilities and numerical explosions. A rough truncation cannot be
considered without introducing a dissipative term whose role is to drain the energy brought by
the larger modes beyond the truncation and thus to avoid an energy accumulation. Eddy viscosity
models, which consist in enforcing the fluid viscosity, are often used for that purpose. This principle,
which dates back to Boussinesq (Kraichnan (1987)), is often used in large-scale simulation as well
as in the context of POD (Aubry et al. (1988), Rempfer and Fasel (1994), Östh et al. (2014), Protas
et al. (2015)). In practice, these methods introduce empirically an additional damping term to the
Navier-Stokes equation. This leads to a modified linear term in (6.3.7). Unfortunately, since this
term is built from an empirical thermodynamical analogy, its precise form is difficult to justify
and its parametrization has to be tuned for each simulation to get optimal results. The method
proposed in the next section allows us to tackle these drawbacks.

6.4 Stochastic POD

To overcome the difficulties developed previously, we suggest to use our stochastic Navier-Stokes
model instead of the classical Navier-Stokes equations. Let us outline that both systems address
the same physics. They both rely on mass and momentum conservation and differ only in how
they are taking into account small-scale missing information.

6.4.1 Model

The reduced dynamic system we propose is based on the stochastic Navier-Stokes model developed
in (6.2.2), assuming that the density ρ is constant and the smooth part of the flow, w, is of bounded
variations. To tackle the problem of modes interactions, Mémin (2014) proposed to decompose v
as follows : vdt = wdt + σdBt with w =

∑n
i=0 biφi (projection on the truncated subspace) and∑N

i=n+1 biφidt a realization of σdBt (projection on the complementary "small-scale" subspace).
Since ∇·v = 0, for all i, ∇·φi = 0 and, then, ∇·w = 0. The drift, w, follows the finite variation
part of the stochastic Navier-Stokes equation (6.2.7) in the incompressible case. Projecting on the
divergence-free functions space, we have:

∂w

∂t
+P ((w · ∇)w) = P

(
1

ρ
τ(w)

)
+ g + ν∆w, (6.4.1)

where

1

ρ
τk(w) =

1

2

(
∇·(∇·(awk))

T −∇·(∇·a)
T
wk

)
, (6.4.2)

P 4
= Id −∆−1∇∇T . (6.4.3)
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In Fourier space, the projector on divergence-free functions space reads P̂ = Id − kkT

‖k‖22
. Equation

(6.4.1) can be rewritten as:

∂w

∂t
= I + L(w) + C(w,w) + F (a,w), (6.4.4)

where F is a bilinear differential operator. Projecting this equation along φi for each i ∈ J1, nK,
gives the evolution equation of b 4= (bi)16i6n.

∀i ∈ J1, nK,
dbi
dt

= ii +
(
l.i + f̆(a).i

)T
b+ btc..ib, (6.4.5)

with f̆(a)j,i
4
=

∫
Ω

φi · F (a,φj), (6.4.6)

where the coefficients (ii)16i6n, (f̆(a)j,i)16i,j6n, (lj,i)16i,j6n and (ck,j,i)16i,j,k6n are computed
through the integration over the whole space of the terms of (6.4.1). Those dynamical coefficients
depend on both the resolved topos and the unresolved velocity variance tensor, a. This system
includes a natural small-scale dissipation mechanism, through the tensor τ . To fully specify this
system, we need to estimate the quadratic variance tensor a. This important issue is developed
in subsection 6.4.3. But first we will elaborate further on the choice of a characteristic time step
related to the truncation operated.

6.4.2 Choice of the time step
For several applications, the simulation of the most energetic large-scale component of the solution
is sufficient. However, this simulation needs to be fast, implying a low complexity evolution model
and a large time step. The structure of our stochastic model enables to reach both goals.
Indeed, as long as the resolved modes, which represent w, are differentiable w.r.t. time, our
stochastic reduced model is valid. Thus, the time step can be chosen as large as desired, as long
as these modes remain smooth. The Shannon-Nyquist sampling theorem provides a natural upper
bound to fix this time step. This theorem states that a function can be sampled, without loss
of information, if the sampling frequency is twice as large as the largest frequency of the original
function. Otherwise, the sampled function undergoes an aliasing artifact characterized by a back
folding of the Fourier spectrum. If the resolved POD modes and their evolution equations are
not affected by aliasing phenomena, the required smoothness is assumed to be reached. Since the
evolution equations are quadratic, a sufficient condition for the necessary smoothness is:

1

∆t
> 4 maxi6n (fmax (bi)) , (6.4.7)

where fmax (bi) is the maximum frequency of the i-th temporal mode.
Of course, aliasing will occur in the unresolved temporal modes, associated with smaller time
scales. However, our stochastic model is derived from a decorrelation assumption of the small-
scale unresolved part of the velocity. A strong subsampling of these components strengthens the
decorrelation property of these modes.

6.4.3 Estimation of the uncertainty variance tensor
After having estimated the topos and fixed the time step, we need to estimate the uncertainty
variance tensor a. This estimation will enable us to get a full expression of the dynamical coefficients
of the chronos evolution equations (6.4.5). To that end, additional modeling assumptions must be
imposed. The first natural hypothesis consists in assuming an uncertainty field that is stationnary
in time – and spatially non homogenous. In this stationary case, the uncertainty variance tensor
is constant in time.

The uncertainty variance tensor is constant in time

This case corresponds to the assumption used in Mémin (2014). To understand the consequence
of this hypothesis, we recall that a

∆t is the variance of the residual velocity v − w. The process
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is decorrelated in time and Gaussian. The snapshots are hence independent. Therefore, the
(v −w)(v −w)T (ti) are independent and identically distributed. So, the expectation, a

∆t , can be
computed by averaging the snapshots (v−w)(v−w)T (ti). In other words, the process is ergodic.

a(x)

∆t
= lim

N→+∞

1

N

N∑
i=1

(v −w)(x, ti)((v −w)(x, ti))
T , (6.4.8)

where N is the number of snapshots after time sub-sampling. The convergence is almost sure by
the strong law of large numbers but, here, only the convergence in probability is used. One can
notice that this relation is straightforward when using stochastic calculus, as explained hereafter.
Thanks to the expression above, one can see several advantages of such an assumption. First of all,
the construction of a is straightforward and easy to compute. Secondly, σdBt itself is a a-Wiener
process, since a(x,y) is a trace class operator constant in time (see Prévôt and Röckner (2007)
and Da Prato and Zabczyk (1992) for more details on Q-Wiener processes). The spectrum of this
operator, which is central in the model reduction process, enables us to use a diagonalized version
of σ and a as in (Mémin (2014)):

a(x,y) =
∞∑

k=n+1

λk∆t φk(x)φk(y)T ≈
N∑

k=n+1

λk∆t φk(x)φk(y)T , (6.4.9)

σ(x)dBt =
∞∑

k=n+1

√
λk∆t φk(x)dβ

(k)
t ≈

N∑
k=n+1

√
λk∆t φk(x)dβ

(k)
t , (6.4.10)

where the (β(k))k>n are independent standard one-dimensional Brownian motions. As a result,
it is very easy in this context to generate realizations of the small-scale uncorrelated component.
The knowledge of the leading eigenfunctions of the POD complementary space allows us to access
directly to the spectral representation of the diffusion tensor.

The uncertainty variance tensor is time varying

Assuming a constant value for a(x,x) means that the turbulence is not intermittent. In the context
of POD, it would mean that all the unresolved modes have a constant variance. It is a good first
approximation. But, one may wonder whether it is possible to do better.
If a does depend on time, the estimation is more involved. Since only one realization of the small-
scale velocity is available, some time-ergodicity hypothesis would be necessary, at least locally, to
use (6.2.9) as in (Harouna and Mémin (Preprint 2014)). Otherwise, parametric and non parametric
estimation of a(Xt, t)dt = d <X,X >t are studied in the literature (Rao (1999), Genon-Catalot
et al. (1992), Florens-Zmirou (1993), Genon-Catalot and Jacod (1993), Hofmann et al. (1999) and
Comte et al. (2007)). Parametric ones use for instance maximum likelihood estimation. Indeed,
denoting θ the parameters, the Girsanov theorem (Oksendal (1998)) leads, as explained in Rao
(1999), to the following log-likelihood:

l(Xt −X0|θ) =

∫ t

0

w(t′,Xt′)
T (aop(t′,Xt′ |θ))

−1
dXt′

−1

2

∫ t

0

w(t′,Xt′)
T (aop(t′,Xt′ |θ))

−1
w(t′,Xt′)dt

′,

where:

aop(t,x|θ)(f)
4
=

∫
Ω

a(t,x,y|θ)f(y)dy.

It is a very powerful tool because it can be used on Lagrangian data. However, the knowledge of the
inverse of the infinite dimensional operator aop is required. Moreover, here, we look rather for a non-
parametric technique. These methods assume that σ is either constant in time or in space (Genon-
Catalot et al. (1992), Florens-Zmirou (1993), Genon-Catalot and Jacod (1993), Hofmann et al.
(1999) and Comte et al. (2007)). But, contrary to the main application domain of the literature
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applications (finance), we have here access to an Eulerian realization of the stochastic flow. For all
x ∈ Rd, it is then possible to build a spatially homogeneous local martingale X̃

x

t
4
=
∫ t

0
σ(x, t)dBt.

Its realization,
∫ t

0
(v(x, t)−w(x, t))dt, after time sub-sampling, enables to estimate, for all functions

hk, ∫
hk(t)a(x, t)dt =

∫
hk(t)d

〈
X̃
x
,
(
X̃
x
)T〉

t
,

= P− lim
∆t→0

T∑
ti=0

hk(ti)(X̃
x

ti+1
− X̃x

ti)(X̃
x

ti+1
− X̃x

ti)
T ,

≈ (∆t)2
T∑

ti=0

hk(ti)(v −w)(x, ti)((v −w)(x, ti))
T ,

where P − lim∆t→0 stands for the limit in probability as the time step, ∆t, approaches 0. The
functions hk can be a orthonormal basis of L2([0, T ]) such as wavelets (Genon-Catalot et al. (1992)).
In Genon-Catalot et al. (1992), it is shown that such estimators have good statistical properties:
local asymptotic normality of the integrated square errors, together with the rate of convergence
of its bias and variance. Therefore, the influence of the sub-grid tensor on d

dtbi will be represented
by time-dependent, linear coefficients as shown in (6.4.5).

The uncertainty variance tensor is in the span of the chronos

The chronos reduced basis (bi/‖bi‖L2([0,T ]))16i6n provides a much better solution than a wavelet
basis. As a matter of fact, this choice has three main advantages. First of all, since we are
studying the time evolution of (bi)16i6n, the slow time variations of a, which are consistent with
the time variations of (bi)06i6n, are the information most needed. The number of wavelets needed
to represent these time variations would be a priori much larger than n + 1. Secondly, we do not
need to reconstruct a. Indeed, noting zi(x) = bi(.)a(x,.)

λi
and using the fact that a→ f(a) (defined

by (6.4.6)) is linear,

f̆(a) = f̆

(
n∑
k=0

bkzk

)
=

n∑
k=0

bkf̆ (zk) . (6.4.11)

Thus, (6.4.5) becomes:

∀i ∈ J1, nK,
dbi
dt

= ii + l.Ti b+ bT (c..i + f ..i) b, (6.4.12)

with fpqi
4
= f̆qi (zp) . (6.4.13)

If one chooses the basis (bi)06i6n, only (zi)06i6n is needed to compute f and, hence, to simulate
the influence of a in the evolution of bi. The calculation is thus more direct. One may notice that
equations (6.4.12) define again a quadratic evolution system of chronos. Thus, the criterion for
time step choice, developed in 6.4.2, remains the same. The third advantage of this basis is that
f does not depend on time, unlike the term f̆(a) in equation (6.4.5). It is thus faster to compute
than f̆(a(t)) at all time t, and requires a lower memory capacity to store it. But, above all and
unlike any other basis, although the variance tensor is time dependent, the evolution system of
(bi)16i6n remains autonomous. This is an unavoidable requirement for a forecasting task (Protas
et al. (2015)).
To simplify the equation and to be more precise in what follows, we will remove the constant
balance in (6.4.12). In permanent regime, since the system is stable, one can assume that dbi

dt = 0.
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Figure 6.1: Vorticity along z of a wake behind a cylinder at Reynolds 300.

Thus, noting b1:n = (bi)16i6n, we get:

∀i ∈ J1, nK,
dbi
dt

= −
n∑
k=1

λk (c+ f)k,k,i + bT1:n (c+ f)1:n,1:n,i b1:n

+
(
l1:n,i + (c+ f)

T

0,1:n,i + (c+ f)1:n,0,i

)T
b1:n.

(6.4.14)

This model leads, as you will see later on, to an improved accuracy and stability of the system.
We however lose the direct sampling capability of the previous simple ergodic assumption.

6.5 Numerical results
The different variations of the proposed approach have been assessed and compared numerically on
numerical data of a wake behind a cylinder at Reynolds 300 and 3900 (Parnaudeau et al. (2008)).

6.5.1 Characteristics of the data
The fluid is incompressible: ∇·v = 0. At x = 0, there is a constant velocity U = 1 directed
along x > 0. At (x, y) = (5, 0), there is a motionless cylinder with an axis along the z axis. In
permanent regime, it creates a Von Kármán vortex street behind the cylinder. A clockwise vortex
is created at the bottom right of the cylinder, it breaks away from it and moves downstream. Then,
a counter-clockwise vortex is created at the top right of the cylinder, breaks away from the first
one and moves downstream, and so on. This periodic physical process makes the two first chronos
almost sinusoidal.
Figures 6.1 and 6.2 show the z component of the vorticity ∇×v on horizontal section of the fluid.
In Figure 6.1, the cylinder is cropped. The vorticity is a measurement of the rotation of the fluid on
this plane. A positive vorticity (in red) means a counter-clockwise rotation. A negative vorticity (in
blue) means a clockwise rotation. At this point, one can see, in both Figures, a counter-clockwise
is breaking away at the right of the cylinder and a clockwise one is enlarging at the bottom right.

In Figure 6.2, Kelvin-Helmholtz instabilities at the top right and bottom right of the cylinder
can be observed just before the vortex creation zone. At the top and bottom of the cylinder, the
velocity is close to the inflow velocity U = 1 along x whereas, at the right of the cylinder, close
to it, the velocity is close to zero. Thus, there are two mixing layers at the boundaries, at the top
right and bottom right of the cylinder. These Kelvin-Helmholtz instabilities as well as the Von
Kármán vortex street creates a turbulent wake downstream of the cylinder.
At Reynolds 300, there are only few small-scales features. Most of the energy and most of the
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Figure 6.2: Vorticity along z of a wake behind a cylinder in the horizontal section z = 0, at
Reynolds 3900.

dynamic is in large-scale structures. We use 80 vortex shedding. At Reynolds 3900, the turbulence
is relatively important. Therefore, the spectrum support of the velocity is quite large, meaning
that the velocity exists at several space and time scales. Indeed, one can see both small and
large structures on Figure 6.2. Thus, in the context of POD, the chronos live at different time
scales. Since the spectrum is more energetic for lower wave-number, the first chronos, i.e. the most
energetic ones, have larger time-scale. Due to the quasi-periodic behavior of the flow along time,
the chronos are closed to the Fourier modes but not exactly equal. This analysis of the chronos
time scale is hence just a rough tendency. It explains nevertheless why our stochastic model, based
on a separation between smooth and highly oscillating parts of the velocity is relevant.
Compared to the data of Parnaudeau et al. (2008), we slightly filtered and sub-sampled them
spatially in order to reduce by two the number of gridded points by axes. The Gaussian filtering is
used here only to reduce a potential spatial aliasing. To speed-up and facilitate the computations,
we also removed part of the space where the vorticity is negligible: at |y| > 3.5 and x < 3, as seen
in Figure 6.2. We use N = 251 time steps to observe 3 vortex shedding.

6.5.2 Reconstruction of chronos

To reconstruct the chronos, the reduced order dynamical system (6.4.14) is used. The modes mean
energy, (λi)16i6n, and the topos, (φi)06i6n, are computed from the whole sequence of snapshots
(N = 3999 for Reynolds 300 and N = 251 for Reynolds 3900). As for the initial condition, we
used the referenced values of the chronos computed from the scalar product of initial velocity
with the topos. Then, regarding the chronos spectra, an optimal time sub-sampling is chosen, as
explained in subsection 6.4.2. Afterwards, using the topos, the residual velocity and possibly the
chronos, the variance tensor, a, or its decomposition is estimated. The coefficients of the reduced
order dynamical system of chronos (see equation 6.4.14) are computed, using discrete derivation
schemes and integration. Finally, the chronos are recomputed, integrating (6.4.14) with a 4-th
order Runge-Kutta method, with (brefi )(t = 0)16i6n as initial condition.

Figures 6.3 and 6.4 show examples of the reconstruction of the chronos for n = 2, at Reynolds
300, and n = 10, at Reynolds 3900, with the classical POD method (blue lines) and our method
with a variance tensor defined as a linear combination of chronos (red lines). At Reynolds 300, the
first two modes explain most of the energy. That is why we consider only n = 2. The reference
(brefi )16i6n (black dots) are superimposed for comparison purpose. It can be observed that our
model follows the references quite well whereas the deterministic model blows up. The divergence
occurs very quickly at Reynolds 3900. It may be pointed out that here both reduced models are
parameter free. No constant had to be tuned to adapt any viscosity model.
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Figure 6.3: Reconstruction of the first two modes (n = 2), of a wake flow at Reynolds 300,
with a variance tensor constant in time. The black plots are the observed references. The blue
lines correspond to the solutions computed with a standard POD-Galerkin whereas the red ones
are computed with the stochastic representation, without any corrective coefficient. The initial
condition, at t = 0, is common.
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Figure 6.4: Reconstruction of the first ten modes (n = 10), of a wake flow at Reynolds 3900, with
a variance tensor expressed as a linear function of the chronos. The black plots are the observed
references. The blue lines correspond to the solutions computed with a standard POD-Galerkin
whereas the red ones are computed with the stochastic representation, without any corrective
coefficient. The initial condition, at t = 0, is common.

Figures 6.5 and 6.6 show the error of the solution along time. The error is defined as follows:

err(t) = T

∥∥vref − v∥∥
L2(Ω)

‖vref‖L2(Ω×[0,T ])

,

= T

∥∥∥∑n
i=1

(
brefi − bi

)
φi +

∑N
i=n+1 b

ref
i φi

∥∥∥
L2(Ω)∥∥∥∑n

i=0 b
ref
i φi

∥∥∥
L2(Ω×[0,T ])

,

=


∑n
i=1

(
brefi − bi

)2

+
∑N
i=n+1

(
brefi

)2

‖w̄‖2L2(Ω) +
∑N
i=1 λi


1/2

.

Approximating the square of the real unresolved modes,
((

brefi

)2
)
n+16i6N

, by their time average,

(λi)n+16i6N , the error simplifies to:

err(t) ≈


∑n
i=1

(
brefi − bi

)2

+
∑N
i=n+1 λi

‖w̄‖2L2(Ω) +
∑N
i=1 λi


1/2

, (6.5.1)

which is greater than the minimal error associated to the modal truncation:

err(t) >

( ∑N
i=n+1 λi

‖w̄‖2L2(Ω) +
∑N
i=1 λi

)1/2

. (6.5.2)

Equation (6.5.1) defines the criterion error plotted in Figures 6.5 and 6.6, whereas (6.5.2) consti-
tutes a lower bound of this error.
Here, we use vref 4= v − V as the reference solution, and V is the constant inflow velocity. The
reference velocity is null, far from the cylinder and the integration of its energy, on the domain,
does not depend on the size of the domain.
Figures 6.5 and 6.6 illustrate the error obtained for the standard POD Galerkin model without
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Figure 6.5: Normalized error for n = 2 modes, of a wake flow at Reynolds 300. The error is
normalized by the energy of the solution:

∑N
i=1 λi. The blue line corresponds to the standard

POD Galerkin. The red one stands for our model with a constant variance tensor along time. The
magenta one represents our model with linear representation of the variance tensor. The doted
line indicates the error associated with the mode truncation :

∑N
i=n+1 λi. The black solid line is

the error considering only the time mean velocity.

sub-grid dissipative term, and our model for a variance tensor which is either fixed constant along
time or expressed as a linear combination of the chronos. For the Reynolds 300, only the model
with constant variance has been used. Indeed, this fluid dynamics system has only few degrees
of freedom. For this Reynolds number, the model with variance tensor varying in time is overpa-
rameterized. The doted line represents the minimal error associated with the reduced subspace
truncation error. The black solid line is the error considering only the time mean velocity – if we
set all the chronos to 0.
In this case:

err|b=0(t) = T

∥∥vref − v̄∥∥
L2(Ω)

‖vref‖L2(Ω×[0,T ])

,

=


∑N
i=1

(
brefi

)2

‖w̄‖2L2(Ω) +
∑N
i=1 λi


1/2

,

can be finally approximated as

err|b=0(t) ≈

( ∑N
i=1 λi

‖w̄‖2L2(Ω) +
∑N
i=1 λi

)1/2

.

This term does not constitute an upper bound of the error. However, if this limit is crossed it
means that the model is completely useless. In Figures 6.5 and 6.6, the fast exponential divergence
of the standard POD reduced order (in blue) is clearly visible. Conversely, our methods, based on a
physically relevant stochastic representation of the small scale component, have much weaker errors,
without tuning any additional parameters on the data. There is only a slight difference between a
constant and a linear representation of the variance tensor. A drawback of the second method is
that a(x, t) is not ensured to be a positive definite matrix. When the number of modes increases,
the basis used for the projection of a, (bi)06i6n, is larger. Thus, the projection approximates
better the identity, and the estimation of a(x, t) becomes closer to a positive matrix and close to
a. This may explain the difference between the two methods.
Whatever their differences, both methods provide very encouraging results. These representations
clearly enable the construction of autonomous sub-grid models. This constitutes an essential point
for the devising of autonomous reduced order dynamical systems.
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Figure 6.6: Normalized error for n = 2, 4, 6, 8, 10, 12, 14 and 16 modes, of a wake flow at Reynolds
3900. The error is normalized by the energy of the solution:

∑N
i=1 λi. The blue line corresponds

to the standard POD Galerkin. The red one stands for our model with a constant variance tensor
along time. The magenta one represents our model with linear representation of the variance
tensor. The doted line indicates the error associated with the mode truncation :

∑N
i=n+1 λi. The

black solid line is the error considering only the time mean velocity.

6.6 Conclusion

In this paper, a fluid dynamics model built from fundamental physical principles applied to a
stochastic representation of the flow has been used. In this representation, the fluid velocity is
random and partially decorrelated in time. This time decorrelation can be interpreted as coming
from a subsampling in time of a fast oscillating part of the velocity. In this framework, mass and
momentum conservation principles can be constituted from stochastic calculus to derive a complete
fluid flow dynamics model. This framework brings a strong theoretical support to classical empirical
models, while generalizing them through the incorporation of an anisotropic, inhomogeneous and
time-dependent diffusion. Compared to the original stochastic model, introduced in Mémin (2014),
some initial assumptions have been removed. The diffusion tensor σ does not need to be symmetric
anymore, w can be any semimartingale for the stochastic version of the Reynolds transport theorem
and any finite variation process for the stochastic Navier-Stokes model. It has also been proved that
the sub-grid tensor is diffusive when the density is constant. Thanks to our stochastic representation
of fluid dynamics, a reduced model, describing the resolved modes evolution, has been derived. This
model takes explicitly into account the unresolved modes influence. Since our stochastic model
enables to deal with aliasing effects, we have chosen a time step as large as possible to simplify the
reduced model simulation. A criterion based on Shannon-Nyquist theorem has been proposed to
set the time step. Two different methods have been proposed to estimate the variance tensor. The
first one relies on the assumption of a constant variance tensor along time, whereas the second one
decomposes this tensor as a linear combination of the chronos basis. From both methods, closed
autonomous reduced systems have been derived. Finally, in section 6.5, both methods have been
tested on numerical data from DNS simulation at Reynolds 300 and LES simulation at Reynolds
3900 of wake flow. The two kinds of reduced models have been compared to POD Galerkin reduced
system. The standard reduced system exhibits very fast diverging trajectories. On the contrary,
our models have shown to provide much better results without any parameter tuning.
Those results are very encouraging. Indeed, we have written basic physical conservation laws in a
stochastic framework where Itō formalism is interpreted as scale separation. This new methodology
has yielded to a powerful stochastic fluid dynamics model. It is true that the variance tensor a
remains to be estimated or modeled. Nevertheless, we have proposed two estimation methods of
this tensor, based on stochastic calculus, in the context of reduced order model. These simple
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estimation methods were sufficient to illustrate the potential of our new fluid dynamics model.
Needless to say, a lot of improvements are possible and may be considered. Here, the variance has
been assumed to be constant in time or in the span of chronos. However, it can also be assumed that
it is a quadratic or a cubic function of the temporal modes. To obtain a more sophisticated time
dependence for the variance tensor, a dynamical model can also be used. Many dynamical models
of the sub-grid velocity variance exist in the literature, based mainly on heuristic observations or
statistical estimations. For instance, the RANS equations are closed by empirical turbulent kinetic
energy evolution equations (Menter (1992)). More recent works reveal new sub-grid dynamical
models. Stochastic superparametrization (Grooms and Majda (2014)) is one example of such
models. Using the so-called point approximation, the large-scale influence on the evolution equation
of the small-scale velocity becomes constant and uniform. Then, a Gaussian closure decouples the
small-scale Fourier modes and enables solving the small-scale variance dynamic. To go further,
the sub-grid velocity can be non-Gaussian. Modified Quasilinear Gaussian (MQG) closure (Sapsis
and Majda (2013c,b)) can be used instead of a Gaussian one. The Quasilinear Gaussian (QG)
method neglects third order moments. The MQG algorithm enables simulating accurately the
two first moments by modeling the third order moments (Sapsis and Majda (2013c)). This model
is based on energy transfer principles and estimations on long time. The MQG-DO algorithm
manages to also simulate accurately the other moments in a reduced subspace (Sapsis and Majda
(2013b)). QG, MQG and MQG-DO closures will also lead to a dynamical model of the small-
scale variance tensor a. Another improvement of our algorithm could consist in using several
time steps. One time step by resolved mode will involve one value of the variance tensor by
resolved mode. This should make the most of the time-decorraleted unresolved velocity explicit
influence. Therefore, the variance tensor would be different for each resolved modes. Finally, it
could be suitable to remove the finite variations assumption for the large-scale drift, w. This yields
to a new model, that will be exposed in future works. In such a model, an evolution equation
determines the partially time-correlated sub-grid velocity component: the martingale part of w.
This component is random, centered and not differentiable w.r.t. time. Therefore, it lives at
a smaller scale than the finite-variation velocity component, studied previously in this paper.
However, since the martingale component is continuous w.r.t. time, its evolution is smoother than
the time-uncorrelated component. This new evolution equation, on the martingale part of the drift,
may bring several advantages. First, this is a linear stochastic partial differential equation with
additive and multiplicative noises, which is both easy to handle and physically pertinent (Majda
et al. (1999)). Then, the noises covariances are naturally linked to the covariance of the time-
uncorrelated velocity component a(x, y) and to the sub-grid tensor. It implies a lot of interesting
properties such as energy conservation, up to molecular viscous effect. Moreover, this stochastic
equation is only inferred from fundamental physical laws. Therefore, neither tuning nor ad hoc
model assumption is needed. For all these reasons, this new stochastic fluid dynamics model should
be very helpful to built relevant uncertainty quantification (UQ) and sub-grid stochastic dynamic
models, with reduced complexity. Such UQ methods can be used for stochastic reduced order
models, filtering or probabilistic closures. And the associated sub-grid stochastic dynamics can be
used, for instance, for stochastic superparametrization. Some work on this new model is currently
ongoing.

Appendix

6.A Basic notions of stochastic calculus

We recall here some basic definitions and properties of stochastic calculus. Here, for simplicity, we
only deal with functions of a compact set of time: t ∈ [0, T ] with T ∈ R∗+. However, everything
can be generalized easily to functions of R+ × Ω with Ω ⊂ Rd (see Kunita (1997), Da Prato and
Zabczyk (1992) and Prévôt and Röckner (2007)).
We use a sample space Ω̆, a probability measure P, a Wiener process, (Bt)t>0, its filtration (F)t>0

(the set of σ-algebra generated by each Bt), the whole σ-algebra, F 4= F∞
4
=
⋃
t>0 Ft, and the

resulting filtered probability space (Ω̆,F , (F)t>0 ,P)
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Defintion 6.A.1 Finite variation function
t → f(t) is a finite variation function if and only if for all a < b and all partition a = t0 < ... <
tn = b of [a, b],

∑n
i=1 |f(ti)− f(ti−1)| <∞.

Defintion 6.A.2 Finite variation process
(t, ω)→ f(t, ω) has finite variations if and only if:

• f is adapted (i.e. f(t, .) is Ft measurable),

• For each trajectory ω, f(., ω) is a finite variation function .

Characterization:
f is a finite variation process if and only if ∃g, f(t, .) = f(0, .) +

∫ t
0
g(t′, .)dt′.

Defintion 6.A.3 Martingale
(t, ω)→ f(t, ω) is a martingale if and only if:

• f is adapted ,

• f(t, .) ∈ L1
Ω̆

4
= {Y : E|Y | <∞},

• ∀s < t, E(f(t, .)|Fs) = f(s, .).

In particular, if f = 0 at t = 0, then f is a centered process.
Characterization:
f is a martingale if and only if ∃g, f(t, .) = f(0, .) +

∫ t
0
g(t′, .)dBt′ .

Defintion 6.A.4 Continuous semimartingale
f is a continuous semimartingale if and only if it the sum of a finite variation process and a
martingale

Stochastic calculus deals only with semimartingales. In our fluid dynamics representation, we also
deal with time-decorrelated processes, formally, the differentiation along time of a martingale.

Defintion 6.A.5 Quadratic variation and quadratic cross-variation
If f and g are semimartingale and f(t = 0) = g(t = 0) = 0, then, their quadratic cross-variation,
noted < f, g >, is the unique finite variation process such fg− < f, g > is a martingale and
< f, g >t=0= 0 .

Characterization:

• If f(t, .) =
∫ t

0
f1(t′)dt′+

∫ t
0
f2(t′)dBt′ and g(t, .) =

∫ t
0
g1(t′)dt′+

∫ t
0
g2(t′)dBt′ , then < f, g >t=∫ t

0
f2(t′)g2(t′)dt′.

It should be noticed that, if f2 and g2 are random, < f, g > is also random.

• < f, g >t= P− lim
∆t→0

∑tn=t
ti=0 (f(ti)− f(ti−1))(g(ti)− g(ti−1)).

Thus, < f, g > may be interpreted as a kind of ”covariance along time”.

Theorem 6.A.1 Itô-Wentzell Formula
If (t, x)→ f(t, x) and (t, y)→ g(t, y) are semimartingale (as function of time), and x→ f(., x) is
twice differentiable, then

dt (f(t, g(t, y))) = dtf + ∂xfdtg +
1

2
∂2
xxfdt < g, g > +dt < ∂xf, g > .
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6.B Equivalence of formulation for the stochastic transport
and Navier-Stokes theorem

6.B.1 Stochastic Reynolds transport model

Mémin (2014) describes the stochastic transport theorem as follows:

d

∫
V (t)

q(x, t)dx =

∫
V (t)

dtq +

∇·(qw) +
1

2
‖∇·σ‖2q − 1

2

∑
i,j

∂2
ij(aijq)|∇·σ=0

dt+∇·(qσdBt)

dx,

where: ∑
i,j

∂2
ij(aijq)|∇·σ=0

=
∑
i,j

(∂2
ij(σi.σ

t
j.))|∇·σ=0

q + 2(∂i(σi.σ
t
j.))|∇·σ=0

)∂jq + aij∂
2
ijq,

=
∑
i,j

∂jσi.∂iσ
t
j.q + 2σi.∂iσ

t
j.∂jq + aij∂

2
ijq,

=
∑
i,j

∂2
ij(aijq)− 2∂2

ijσi.σ
t
j.q − ∂iσi.∂jσtj.q − 2∂iσi.σ

t
j.∂jq.

So,

1

2
‖∇·σ‖2q − 1

2

∑
i,j

∂2
ij(aijq)|∇·σ=0

=
∑
i,j

−1

2
∂2
ij(aijq) + ∂2

ijσi.σ
t
j.q

+∂iσi.∂jσ
t
j.q + ∂iσi.σ

t
j.∂jq,

= −1

2
∇·(∇·(aq)T ) +∇·(σ(∇·σ)T q),

= ∇·
(
−1

2
(∇·(aq)T ) + σ(∇·σ)T q

)
.

6.B.2 Stochastic Navier-Stokes model

Mémin (2014) describes the r-th coordinate of the diffusion tensor of the stochastic Navier-Stokes
model as:

τr(w) =
∑
i,j

1

2
ρaij∂

2
ij(wr) + ∂i(ρaij)|∇·σ=0

∂jwr,

=
∑
i,j

1

2
ρaij∂

2
ij(wr) + ∂i(ρaij)∂jwr − ρ∂i(σi.)σj.∂jwr,

=
1

2
(∇·(∇·(ρawr)

T ))−∇·(∇·(ρa)T )))wr − ρ∇·σσT∇wr.

6.C Dissipative effect of sub-grid tensor τ

If the density, ρ, is assumed to be constant, then ∇·σ = 0 by the martingale part of the mass
conservation. Moreover, a or w and its derivatives are assumed to be null in the border of Ω, then
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with two integrations by parts,∑
k

∫
Ω

wk∇·(∇·(awk))
T

dx =

∫
Ω

w ·
∑
i,j

∂2
ij (ai,jw) dx

= −
∫
Ω

∑
i,j

∂iw
t∂j (ai,jw) dx,

= −
∫
Ω

∑
i,j

(∂iw
T∂jai,jw + ∂iw

Tai,j∂jw) dx,

= −
∫
Ω

∑
i,j

(
1

2
∂i‖w‖22∂jai,j + ∂iw

Tai,j∂jw

)
dx,

=

∫
Ω

(
1

2
∇·(∇·a)

T ‖w‖22 − ‖∇wT‖2a
)

dx,

where ‖∇wt‖2a
4
=
∑
k ‖∇wk‖2a

4
=
∑
k∇wT

ka∇wk = tr ((∇wT )Ta∇wT ).

2

∫
Ω

w · τ dx = ρ

∫
Ω

(
1

2
∇·(∇·a)

T ‖w‖22 − ‖∇wT‖2a −∇·(∇·a)
T ‖w‖22

)
dx,

= −ρ
∫
Ω

(
1

2
∇·(∇·a)

T ‖w‖22 + ‖∇wT‖2a
)

dx.

Using now the finite variation part of the mass conservation, which is ∇·w = 1
2∇·(2∇·a)

T , we
get:

2

∫
Ω

w · τ dx = −ρ
∫
Ω

(
∇·w‖w‖22 + ‖∇wT‖2a

)
dx,

= ρ

∫
Ω

(
(w · ∇) ‖w‖22 − ‖∇wT‖2a

)
dx,

= ρ

∫
Ω

(
2 w · ((w · ∇)w)− ‖∇wT‖2a

)
dx.

Considering together the advection term and the sub-grid term of the Navier Stokes equation we
have for the energy: ∫

Ω

w · (−ρ (w · ∇)w + τ) dx = −ρ
2

∫
Ω

‖∇wT‖2adx < 0, (6.C.1)

which is the sought result. It should be noted that in the incompressible deterministic equation,
∇·w = 0 and thus the advection term (w · ∇)w does not influence the global energy. Here
however, it is not the case anymore and this term has to be taken into account, as above.
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ABSTRACT

We introduce a stochastic modelling in the constitution of fluid flow reduced order models. This
framework introduces a spatially inhomogeneous random field to represent the unresolved small-
scale velocity component. Such a decomposition of the velocity in terms of a smooth large-scale
velocity component and a rough, highly oscillating, component gives rise, without any supplemen-
tary assumption, to a large-scale flow dynamics that includes a modified advection term together
with an inhomogeneous diffusion term. Both of those terms, related respectively to turbophoresis
and mixing effects, depend on the variance of the unresolved small-scale velocity component. They
bring to the reduced system an explicit subgrid term enabling to take into account the action of the
truncated modes. Besides, a decomposition of the variance tensor in terms of diffusion modes allows
us to provide a meaningful statistical representation of the stationary or nonstationary structura-
tion of the small-scale velocity and of its action on the resolved modes. This supplies a useful tool
for turbulent fluid flows data analysis. We apply this methodology to circular cylinder wake flow
at Reynolds numbers Re = 300 and Re = 3900, respectively. The finite dimensional models of the
wake flows reveal the energy and the anisotropy distributions of the small-scale diffusion modes.
These distributions identify critical regions where corrective advection effects as well as structured
energy dissipation effects take place. In providing rigorously derived subgrid terms, the proposed
approach yields accurate and robust temporal reconstruction of the low-dimensional models.

7.1 Introduction

Surrogate empirical models of flow dynamics with a reduced set of degrees of freedom are widely
used in fluid mechanics for control applications or physical analysis (Noack et al., 2010). Within
such modelling a few numbers of modes extracted from experimental or numerical measurements
are used to represent the main dynamical behaviour of a flow. The modes in themselves may help
unveiling recurrent dynamical patterns. Spectral approaches are quite natural for that purpose.
Fourier representation has been used for a long time to characterize hydrodynamics instabilities.
Proper Orthogonal Decomposition (POD) and the spectral representation of the velocity auto-
correlation matrix is used to extract descriptive empirical spatial or temporal basis of the flow
(Aubry et al., 1988; Holmes et al., 1996; Sirovich, 1987). More recently the Dynamic Modes
Decomposition (DMD) relying on the eigenvectors of the Koopman operator (Koopman, 1931)
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and Takens delay embedding theorem (Takens, 1981) has been proposed to represent, from the
evolution of observations, the principal modes of the dynamical system’s attractor (Mezic, 2005;
Rowley et al., 2009; Schmid, 2010). Combination of both representations can be used as well
(Cammilleri et al., 2013) to provide a suitable energy spectrum representation. In all those modal
representations the construction of the reduced order dynamics requires a truncation operation in
which the most “influential” modes – with respect to a given criterion – are kept to describe the
flow. In general, the action of the discarded modes must be modeled to get accurate and stable
dynamical systems. The effect of those neglected processes encompasses dissipation effects but are
also responsible of some energy redistribution and backscattering (Piomelli et al., 1991).

In most of the flow low-order dynamics, the unresolved small-scale processes are represented
on the basis of an eddy viscosity assumption (Boussinesq, 1877). This takes the form of a damp-
ing term in the reduced order dynamical system. In Galerkin POD reduced models, this extra
dissipation, which adds up to the linear molecular diffusion, is modeled by a constant coefficient
(Aubry et al., 1988) or through a modal constant vector (Cazemier et al., 1998; Rempfer and
Fasel, 1994). Recently, nonlinear functions have been proposed for a bluff body wake flow (Östh
et al., 2014). Although those models have demonstrated their efficiency in numerous situations, the
estimation of the associated parameters and/or the choice of the nonlinear dependency between
the eddy-viscosity coefficients and the modal coefficients constitute a sensible issue. Furthermore,
from a physical interpretation point of view, the action of the small-scale velocity component is
interpreted only with regard to an homogeneous stationary dissipation effect. Neither preferential
local direction of diffusion related to the flow physics is considered, nor energy redistribution action
by the small scales.

Robust techniques based on optimal control strategies have also been proposed for building re-
duced dynamical models from noisy data (Artana et al., 2012; D’Adamo et al., 2007; Tissot et al.,
2013; Semaan et al., 2016) and incomplete knowledge of the actual flow dynamics (i.e. unknown
initial condition, partially known forcing terms, etc.). Those techniques accurately estimate low-
order dynamical systems in the temporal windows on which the data are available. These methods
unfortunately experience some limitations for forecasting new states of the system. Furthermore,
the physical interpretation of the unresolved velocity component remains difficult since their con-
tribution is distributed in an unknown manner over all the coefficients of the dynamical system
and on the error function (when weak dynamical constraint (Artana et al., 2012) is considered).

In this work, to take into account the unresolved modes in the surrogate dynamic model, we
will rely on a recently proposed stochastic framework (Mémin, 2014; Resseguier et al., 2017a). In
this context, an advection of the large-scale component due to the action of the unresolved random
component emerges naturally, together with an inhomogeneous nonstationary diffusion. This will
lead us to consider corrective advection and diffusion terms driven by the turbulence inhomogeneity
whose local effects can now now physically interpreted.

After presenting the stochastic model in section 7.2, section 7.3 describes the derivation of the
associated POD reduced order model. We also propose a method to estimate the additional com-
ponents of the dimensional reduced system from the residual velocity. Then, the data benchmarks
are detailed in section 7.4. From the estimated additional components, we analyse in section 7.5
the influence of the residual velocity on the large-scale flow and reconstruct the temporal modes
of the reduced order models.

7.2 Dynamics stochastic modelling
The proposed stochastic principle relies on a Lagrangian random description of the flow velocity:

dXt

dt
= w(Xt, t) + σ(Xt, t)Ḃ. (7.2.1)

The first right-hand term, w, stands for the large-scale velocity component. It is a smooth com-
ponent along time. For turbulent flows, it is associated with a much larger time-scale than the
unresolved small-scale velocity component. This latter, σḂ = σdB/dt, is associated with fast
modes that are rapidly decorrelating at the resolved time scale. Based on this observation, we will
assume that such a component can be ideally represented through a spatially smooth incompress-
ible (divergence-free) Gaussian random field uncorrelated in time. This (possibly inhomogeneous)
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random field is formally built from an infinite-dimensional Brownian motion. It is associated with
a covariance tensor denoted:

Qij(x,y, t, t
′) = E((σdBt)i(x, t)(σdBt)j(y, t

′)) = cij(x,y, t)δ(t− t′)dt. (7.2.2)

In the following, the diagonal of the covariance tensor, which plays a central role in our setting,
will be denoted as: a(x)

4
= c(x,x, t). This tensor, that may depend on time, will be referred to as

the small-scale variance tensor. It is a symmetric positive definite matrix at all spacial points, x
(excluding degenerate cases) with dimension in m2.s−1. It corresponds thus to an eddy viscosity
term.

This stochastic formulation is related in spirit to the Lagrangian stochastic models based on
Langevin equations that have been intensively used for turbulent dispersion (Sawford., 1986) or
in probability density function (PDF) modelling of turbulent flows (Haworth and Pope, 1986;
Pope, 1994, 2000). However, here our interest focuses more on the associated large-scale Eulerian
representations of the flow dynamics. This Eulerian description of the resolved velocity component
is obtained through a formulation of the Reynolds transport theorem adapted to such a stochastic
flow.

7.2.1 Stochastic conservation equations
Considering the flow decomposition (7.2.1), the rate of change of a scalar quantity (in the absence
of random forcing) within a material volume is given by the following expression (Mémin, 2014;
Resseguier et al., 2017a):

d

dt

∫
V (t)

q dx =

∫
V (t)

(
∂q

∂t
+∇ · (qw∗)−∇ ·

(
1

2
a∇q

)
+ σḂ · ∇q

)
dx, (7.2.3)

where the effective advection velocity is given as:

w∗
4
= w − 1

2

(
∇ · a

)T
. (7.2.4)

Equation (7.2.3) provides a stochastic representation of the so-called Reynolds transport theorem.
It is important to outline that at a given grid point, q is a random value which depends among
other things on the Brownian component of the particles flowing through that point. The second
term corresponds to the large-scale advection by an effective drift, w∗, that includes a contribution
related to the divergence of the small-scale velocity variance tensor (7.2.4). The third term is a
diffusion expressing the mixing effect exerted by the small-scale velocity component. The final
term corresponds to the scalar advection by the small-scale velocity field. From this expression a
conservation of an extensive property,

∫
V (t)

q, such as mass or internal energy (neglecting diabatic
and compressive effects) reads immediately as the following intensive property evolution equation

∂q

∂t
+∇ · (qw∗) + σḂ · ∇q =∇ ·

(
1

2
a∇q

)
. (7.2.5)

As the right-hand term is a smooth temporal component, we observe immediately that the Brow-
nian terms associated, on the one hand, to the scalar temporal variation and, on the other hand,
to the small-scale advection necessarily compensate each other. A fluid with a constant density ρ,
requires naturally a divergence-free constraint on the effective advection:

0 = ∇ · σḂ, (7.2.6)

0 = ∇ ·w∗ =∇ ·
(
w − 1

2
(∇ · a)

)
. (7.2.7)

This is the case we are dealing with in this study. The two constraints (7.2.6-7.2.7) correspond to
the incompressibility conditions associated with the stochastic representation. For isochoric flows
with variable density as in geophysical fluid dynamics, interested readers can refer to Resseguier
et al. (2017a,b,c).
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7.2.2 Navier-Stokes equations associated with a stochastic representa-
tion of the small-scales

Similarly to the Newton second law, a dynamical balance between the temporal differentiation of
the stochastic momentum, ρdXt, and the action of the forces is assumed. Applying the stochas-
tic representation of the Reynolds transport theorem (7.2.3) leads to the following Navier-Stokes
equations (Mémin, 2014):

∂w

∂t
+ (w∗ · ∇)w = −1

ρ
∇p+

d∑
i,j=1

∂

∂xi

(
1

2
aij

∂w

∂xj

)
+ ν4w. (7.2.8)

This equation corresponds to the large-scale momentum equation. This expresssion differs from
the classical Reynolds decomposition formulation mainly by the introduction of both a large-scale
dissipation term and a correction term in the large-scale advection. The dissipative term plays
a role that is similar to the eddy viscosity models introduced in classical large scale representa-
tions (Bardina et al., 1980; Lilly, 1992; Smagorinsky, 1963) or to the spectral vanishing viscosity
(Karamanos and Karniadakis, 2000; Pasquetti, 2006; Tadmor, 1989). It is also akin to numerical
regularization models considered in implicit models (Aspden et al., 2008; Boris et al., 1992; Lam-
ballais et al., 2011). The small-scale stochastic representation principle is nevertheless more general
as it does not rely on a priori fixed shapes of the subgrid tensor (e.g. Boussinesq assumption) nor
does it presuppose a given numerical scheme (e.g. implicit models). The subgrid term takes a
general diffusion form whose matrix coefficients are given by the small-scale variance tensor. The
diffusion principal directions are thus aligned with this tensor principal directions.

The advection correction term is much less intuitive. It is related here to an advection bias due to
the inhomogeneity of the small-scale variance tensor. This corresponds to the eddy-induced velocity
introduced for tracer mean transport in oceanic or atmospheric circulation models (Andrews and
McIntyre, 1976; Gent et al., 1995) and more generally to the turbophoresis phenomenon associated
with small-scale inhomogeneity, which drives inertial particles toward the regions of lower diffusivity
(Brooke et al., 1992; Caporaloni et al., 1975; Reeks, 1983; Sehmel, 1970). Qualitatively, this drift
correction can be understood as follow. Fluid parcels with higher turbulent kinetic energy (TKE)
move faster. It ensues that at large scales, areas associated with maximum of TKE spread whereas
areas associated with minimum of TKE shrink. Hence, a large-scale drift oriented toward these
maxima/minimum emerges. This orientation suggests an anticorrelation with the TKE gradient.
Since the turbulent velocity variations are multidimensional, they are better described by the
variance tensor. The drift correction is consequently proportional to the opposite of the variance
tensor divergence. For homogeneous turbulence, the small-scale variance tensor is constant and
this corrective advection does not come into play. It can be noted that this advection correction
is of the same form as the one proposed in Caporaloni et al. (1975); MacInnes and Bracco (1992);
Reeks (1983).

The small-scale random field can be freely defined and be in a shape that goes from isotropic
stationary models up to inhomogeneous non-stationary random fields. However, in the inhomo-
geneous case (such as the Smagorinsky model) the advection correction term comes into play. A
stochastic representation of the unresolved scales differ thus significantly from classical large-scale
modelling. It relies on less strict assumptions, which enable to cope naturally with inhomogeneous
anisotropic turbulence.

This stochastic representation relies on a scale gap assumption, which is coherent with deter-
ministic justifications of the eddy viscosity (Kraichnan, 1987). The stochastic transport expression
(7.2.3) and the momentum equation (7.2.8) provide the foundations of a physically relevant large-
scale fluid dynamics formulation. It opens a new paradigm for large-scale modelling adapted to
turbulence inhomogeneity in involving a general subgrid diffusion together with a small-scale drift
correction. In the next section, we will rely on this model for the construction of reduced order
dynamical systems.
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7.3 Reduced order models
Dimensional reduction techniques enable the constitution of simplified lower dimensional represen-
tations of partial differential equations (PDE). They are usually specified from a Galerkin projection
onto data-based dedicated basis. The proper orthogonal decomposition, also called Empirical Or-
thogonal Functions (EOF) in geophysics, is one of those methods for turbulent flows. In §7.3.1
the POD model reduction is briefly presented. Then, in §7.3.2 we introduce the derivation of the
reduced order model from the stochastic representation principle described in §7.2. In §7.3.3, dif-
ferent characteristic time scales are introduced for the different modes, leading to the concept of
modal characteristic time steps. Finally, in $ 7.3.4 a precise specification of the small-scale variance
tensor is proposed with two different estimation methods.

7.3.1 POD model reduction
POD reduced order models rely on the linear decomposition of the velocity w on a reduced number
of orthogonal spatial modes (Holmes et al., 1996):

w(x, t) ≈
n∑
i=0

bi(t)φi(x). (7.3.1)

The number of modes, n, is assumed to be much lower than the state space dimension. The func-
tions (φi(x))16i6N encoding the spatial flow variations are referred to as topos and are computed
from a Karunen-Loeve decomposition on a series of N + 1 available velocity snapshots. The topos
are sorted by decreasing order of the snapshots empirical covariance eigenvalues: λ1 > ... > λN .
The (bi(t))16i6N denote the temporal modes; they are called chronos. The chronos are the eigen-
vectors of the spatially averaged temporal correlation matrix, whereas the topos constitute the
eigenvectors of the temporally averaged spatial correlation matrix. They are both computed from
the snapshots covariance. Function φ0 corresponds to the time average velocity and b0

4
= λ0

4
= 1.

We also denote by T the time between the first and the last snapshot. The Navier-Stokes equations
can be written in the general following form:

∂w

∂t
= I +L(w) +C(w,w), (7.3.2)

where L and C stand respectively for linear and bilinear differential operators. The first term,
I, gathers the pressure and the external forces such as gravity. The second one, L, includes the
molecular friction term and possibly the Coriolis force. The last one, C, encodes the nonlinear
advection term. Projecting this PDE on each topos leads to:

dbi
dt

=

(∫
Ω

φi · I
)

︸ ︷︷ ︸
4
=ii

+

n∑
p=0

(∫
Ω

φi ·L(φp)

)
︸ ︷︷ ︸

4
=lp,i

bp +

n∑
p,q=0

(∫
Ω

φi ·C(φp,φq)

)
︸ ︷︷ ︸

4
=cp,q,i

bpbq. (7.3.3)

Due to nonlinearity, the temporal modes strongly interact with one another. In particular, even
though the original model (with n = N) is computationally stable for moderate Reynolds number,
a strongly reduced model (n � N) appears unstable in general. A frequency shift is also often
observed. Those artefacts are extensively documented in the literature (Artana et al., 2012; Aubry
et al., 1988; Rempfer and Fasel, 1994; Östh et al., 2014; Protas et al., 2015). The introduction of a
damping eddy viscosity term to mimic the truncated modes’ dissipation leads to a modified linear
term in (7.3.3). Unfortunately, as this term is built on empirical grounds its precise form is difficult
to justify. Furthermore, its parametrization has to be tuned for each simulation to achieve good
results. When large wake domains are considered the influence of the pressure term (and of the
boundaries) is in general negligible (Deane et al., 1991; Ma et al., 2002; Noack et al., 2005). We
will also rely on this assumption, although several authors have shown that neglecting the pressure
term was a source of uncertainty regarding an accurate representation of the flow dynamics (Kalb
and Deane, 2007; Noack et al., 2005). To take into account the effect of the outflow boundary,
corrective terms are introduced by some authors through modifications of the linear (Galetti et al.,
2007) or quadratic terms (Noack et al., 2005).
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7.3.2 Reduced order modelling associated with the stochastic represen-
tation

To overcome the difficulties evoked previously, we propose to derive the reduced order model
from the stochastic representation principle described previously. To account for the effect due to
the modal truncation, we will assume that the whole field v = w + σḂ can be decomposed in
such a way that the large-scale component lives on the subspace endowed with the reduced POD
basis w =

∑n
i=0 biφi while realizations of the small-scale component belong to the orthogonal

complement subspace σḂ =
∑N
i=n+1 biφi. Since ∇ · v = 0, for all i, ∇ · φi = 0 and, then,

∇ ·w = 0. The dynamics of the large-scale component, w, is given by the incompressible Navier-
Stokes equations (7.2.8). Projecting this equation onto the topos φi leads to:

dbi
dt

= ii +
(
l•i + f̆(a)•i

)T
b+ bTc••ib , (7.3.4)

where f̆(a)j,i
4
=

∫
Ω

d∑
k=1

φ
(k)
i ·

(
−1

2
(∇ · a)∇φ(k)

j︸ ︷︷ ︸
Advection

+∇ ·
(

1

2
a∇φ(k)

j

)
︸ ︷︷ ︸

Diffusion

)
. (7.3.5)

Let us note that f̆(a) is linear and is the only function that depends on the variance tensor a. This
system includes now a natural small-scales dissipation mechanism, through the diffusion term. But
it also corrects the frequency shift through the additional advective term brought by the variance
tensor inhomogeneity. To fully define this system, we need to specify the small-scale variance tensor
a. This issue is developed in subsection 7.3.4. But before that, we will elaborate further on the
choice of the characteristic times related to the modal truncation.

7.3.3 Time scale characterisation

Very efficient flow simulations are obtained by reducing as much as possible the number of modes
of the associated surrogate model. An even higher efficiency can be obtained by increasing the
evolution time step. This time step can be naturally chosen as a single constant for the whole
system. However, as we shall see, different characteristic time scales can be fixed for the different
modes, leading to the concept of modal characteristic time steps.

Single time step

As long as the resolved modes, representing w, are smooth w.r.t. time, the assumption pertaining
to our reduced model construction is valid. The time-step must thus be fixed as the largest value
that guarantees that all the chronos remain smooth. The characteristic time scale associated
with the fastest resolved mode (which is often the least energetic mode) is a good target for
that purpose. This time scale is associated with the highest frequency of the chronos Fourier
modes. Quantitatively, the Shannon-Nyquist theorem provides us with a natural upper bound to
fix its value. This theorem states that a function can be sampled, without loss of information,
if the sampling frequency is two times bigger than the largest frequency of the original function.
Otherwise, the sampled function undergoes an aliasing artifact characterized by a folding of the
Fourier spectrum and a loss of regularity. We will thus assume that the required regularity condition
is fulfilled if the modes are not affected by aliasing phenomena. Since the evolution equations are
quadratic, a sufficient condition thus reads:

1

∆t
> 4 max

i6n
(fmax (bi)) . (7.3.6)

where fmax (bi) is the maximum frequency of the i-th mode. Aliasing takes place in the unresolved
temporal modes, which are associated with smaller time scales. However, the stochastic represen-
tation is precisely built from a decorrelation assumption of the small-scale unresolved part of the
velocity. A strong subsampling of those components strengthens further the decorrelation property
of the unresolved modes.
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Modal characteristic times

The resolved chronos are associated with different time scales. Hence, the previous criterion can
be immediately extended to get a characteristic time scale attached to each chronos, bi:

1

∆ti
> 4fmax (bi) . (7.3.7)

A modal variance tensor field for each chronos can now be defined as

a(i)(x)
4
= ∆tiE

{
σḂ

(
σḂ

)T}
(x) =

∆ti
∆t
ã(x) with ã(x) = ∆t E

{
σḂ

(
σḂ

)T}
(x). (7.3.8)

The modal variance tensor ai corresponds to the small-scale velocity variance during a given time
step at the time-scale of the Chronos bi (i.e. it corresponds to an eddy viscosity associated with
the neglected modes expressed with respect to the characteristic time associated with bi). The
chronos evolution equation (7.3.4) thus becomes:

dbi
dt

= ii +

(
l•i +

∆ti
∆t
f̆(ã)•i

)T
b+ bTc••ib. (7.3.9)

The time step ∆t corresponds in practice to the simulation time step.

7.3.4 Estimation of the small-scale variance tensor

The full definition of the reduced order model requires a precise specification of the small-scale
variance tensor. We compare here two different estimation methods for this tensor. A first method
will rely on a stationarity assumption while a second technique will allow us to define a time-varying
tensor.

Stationary small-scale variance tensor

This case corresponds to the model developed in Mémin (2014). The small-scale velocity variance,
a/∆t can be computed through a temporal averaging of the residual velocity second moment
(v −w)(v −w)T (ti) at all spatial locations. This simple scheme thus provides a representation of
a spatially varying stationary variance tensor.

Small-scale variance tensor in the chronos subspace

A stationary model has obvious limitations in terms of turbulence intermittency modelling. A
time dependent variance tensor is nevertheless more involved to estimate as in this case only a
single realization of the small-scale velocity trajectory, (v(x, t) − w(x, t)), is available. However
considering a temporal basis it is possible to estimate, at a fixed point, the matrix coefficients,
zi(x), of the tensor, a(x, t) (Genon-Catalot et al., 1992). We term those coefficients the diffusion
modes, as they correspond to a modal decomposition of the principal diffusion directions. With
the chronos reduced basis we get:

ã(x, t) =
n∑
j=0

bj(t)zj(x). (7.3.10)

Note that even though the residual velocity, (v−w), lives in the subspace orthogonal to the chronos
reduced basis, its one-point one-time covariance – and hence the variance tensor – do not. So, it
seems natural to introduce the decomposition (7.3.10). Using the orthogonality of the Chronos,∫ T

0
bkbldt = δklλkT , leads to:

zj(x) =

∫ T

0

bj(t)

Tλj
ã(x, t)dt ≈ ∆t

N + 1

N∑
k=0

bj(tk)

λj
(v − w)(x, tk)((v − w)(x, tk))T , (7.3.11)
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where N = T
∆t . It can be noticed that keeping only the zero-diffusion mode and canceling the

others: zi = 0, ∀i > 1, brings us back to the stationary variance tensor model. The non-zero
modes introduce a time varying variance. Yet, it is important to outline that the reduced order
model (7.3.4) remains a quadratic autonomous system. As a matter of fact from (7.3.10), we get
the following system:

dbi
dt

= ii + lT•ib+ bT (c••i + f••i) b, where fpqi
4
=

∆ti
∆t

f̆qi (zp) . (7.3.12)

7.4 Flow configuration and numerical simulations

To evaluate the pertinence of the modelling developed in the previous section for the specification
of a low order dynamical system and to analyse the contribution of the small-scale component,
we consider three-dimensional incompressible flows past a circular cylinder at Reynolds number
Re = 300 and Re = 3900. We performed direct numerical simulations (DNS) using Incompact3d,
a high-order flow solver, based on the discretization of the incompressible Navier–Stokes equations
with finite-difference sixth-order schemes on a cartesian mesh (Laizet and Lamballais, 2009). A
second-order Adams-Bashforth scheme was used for the time advancement. The incompressibility
condition is treated with a fractional step method based on the resolution of a Poisson equation
in spectral space, allowing here for the velocity field the use of periodic boundary conditions in
the two lateral directions y and z. A constant flow is imposed at the inlet of the computational
domain and a simple convection equation is solved at the exit. Using the concept of the modified
wavenumber, the divergence free condition is ensured up to machine accuracy. The pressure field
is staggered from the velocity field by half a mesh to avoid spurious oscillations. The modelling
of circular cylinder of diameter D inside the computational domain was performed here with a
simple Immersed Boundary Method (IBM). It is based on a direct forcing to ensure zero velocities
boundary condition at the wall and inside the solid body. We also used data extracted from a large-
eddy numerical simulation (LES) performed by Parnaudeau et al. (2008) using a former version of
Incompact3d. This code solved incompressible Navier–Stokes equations on a regular cartesian grid
in nonstaggered configuration and using the customized IBM technique of Parnaudeau et al. (2003)
to avoid discontinuities on the velocity field, leading to the creation of spurious oscillations when
high-order centered schemes are used. This LES was carried out with a high spatial resolution,
close to the one expected for a DNS, and with the subgrid-scale model proposed by Métais and
Lesieur (1992) combined with a fixed filter length estimated as the cubic root of the mesh volume.

Three different cases were considered: a DNS at Reynolds number Re = 300, a high resolution
LES (HR LES) at Reynolds number Re = 3900 (Parnaudeau et al., 2008) and a low resolution
DNS (LR DNS) at Reynolds number Re = 3900. We performed the DNS at Reynolds number
Re = 300 on a domain extending over 20D × 20D × 0.5D with 512 × 321 × 8 points in the
streamwise, perpendicular and spanwise directions, respectively. This reduced spanwise length
corresponds to the minimum domain size usable with Incompact3d and led to a three dimensional
wake flow simulation with a very short periodicity in the spanwise direction. This choice was done
to reduce the computational cost and to simulate a longer time series, necessary for the POD
analysis. The simulation was run on N = 3999 time steps to observe 80 vortex shedding cycles.
The high resolution LES of Parnaudeau et al. (2008) we used was computed on a domain size
of 20D × 20D × πD with 960 × 960 × 48 points in the streamwise, perpendicular and spanwise
directions, respectively. We extracted from this simulation 219 equidistant snapshots over 5 vortex
shedding cycles. In order to have longer time series we performed a low resolution DNS for the
same Reynolds number Re = 3900 and with the same domain size and mesh grid. This DNS was
run on 2499 time steps to observe 80 vortex shedding, with the last parallel version of Incompact3d
(Laizet and Li, 2011). Since the new version of Incompact3d did not implement the subgrid-scale
model used in the study of Parnaudeau et al. (2008), we performed a low-resolution DNS for the
same Reynolds number. The main difference in the results between HR LES and LR DNS are
discussed below.

In the following (with the exception of §7.5.1), non-dimensional quantities are considered, and
calculated using the cylinder diameter D and the inflow velocity U0. Dimensionless quantities will
be identified by lower-case symbols, e.g. (x, y, z) for the coordinate system and t for the time. In
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Case Re (Lx × Ly × Lz)/D nx × ny × nz Snapshots Shedding cycles
DNS 300 20× 20× 0.5 512× 321× 8 3999 80
HR LES 3900 20× 20× π 961× 960× 48 219 5
LR DNS 3900 20× 20× π 961× 960× 48 2499 80

Table 7.1: Summary of simulations and of extracted data.

this frame reference, the inflow velocity vector at x = 0 is (u, v, w) = (1, 0, 0) and the cylinder
is located at (x, y, z) = (5, 0, z). Details of the three cases are provided in table 7.1. Figure 7.1
shows the spanwise vorticity component in the plane z = 0 for the DNS at Reynolds number
Re = 300, the high resolution LES at Reynolds number Re = 3900 and the low resolution DNS at
Reynolds number Re = 3900, respectively. At Reynolds number Re = 300 and due to the quasi
two-dimensional configuration of the simulation, there are only few small-scale features. Most of
the energy is gathered in the large-scale vortical structures. In this regime two topos modes are
sufficient to describe faithfully the flow. At Reynolds number Re = 3900, a sustained turbulence
can be observed in the far wake of the cylinder and in the recirculation zone just behind the cylinder.
The boundary layer on the body is laminar and transition to turbulence takes place in the shear
layers. The near wake flow is mostly driven by those two shear layers (Ma et al., 2000). Their
oscillations trigger the Von Karman vortex shedding and determine the size of the recirculation
area. For this wake flow regime a higher number of modes must be kept. From figure 7.1 we can
compare the predictions of both simulations at Reynolds number Re = 3900. It is worth noting that
HR LES exhibits a statistical behaviour consistent with experimental measurements (Parnaudeau
et al., 2008), especially in the very near wake for the prediction of the length of recirculation zone.
On the contrary, LR DNS yields shorter formation length close to the one obtained at higher
Reynolds number, i.e. for Re ∼ 10000. This behaviour of low resolution wake flow simulations
is classical and associated with the so called V-shape of the mean streamwise velocity profiles for
x ≤ 8 (Ma et al., 2000). Hence, both simulations provide distinct vorticity distributions in the very
near wake. Farther downstream, i.e. for x ≥ 8, such pronounced differences are less noticeable.
LR DNS exhibits some wiggles, which seem to increase sligthly the vorticity spreading along the
wake.

7.5 Diffusion modes results
We now apply the novel POD modelling based on a stochastic small-scale representation presented
in §7.3 to the cylinder flow configuration described in §7.4. The reduced order dynamics of the
cylinder wake flow is known to be sensitive to the unresolved small-scale velocity component. In
§7.5.1, the small-scale energy and anisotropy is linked to small-scale diffusion modes. Assessment
of the stochastic modelling is then performed in the following at the Reynolds number Re = 300
and Re = 3900, respectively. In §7.5.2, contributions of small-scale diffusion modes to large-scale
flow are described and interpreted to determine which physical mechanisms of the wake flow are
concerned. In §7.5.3, we assess the performance of the subgrid term that was introduced by the
stochastic representation of the small-scales by comparing the chronos trajectories to the reference.

7.5.1 Estimation and decomposition of the turbulent velocity compo-
nents

It can be noticed in the decomposition (7.3.10), that the diffusion modes zi(x) are d×d symmetric
matrices (with zi = 0 for i > 0 in the stationary case) at all spatial points. They can be diagonalized
in a local orthonormal basis. Let us note however this decomposition does not ensure that a(x, t) =∑n
k=0 bk(t)zk(x) is positive definite since bi(t) takes positive and negative values. In practice though

the stationary coefficient dominates largely the others (which gives a positive definite estimation),
it would be necessary to project the variance tensor on the manifold of positive definite matrices.
In the following section, to analyse the small-scale energy and anisotropy we visualize the absolute
values of the eigenvalues associated with the matrix modes, zi. Due to chronos normalization, the
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Figure 7.1: Spanwise vorticity componant in a circular cylinder wake flow at Reynolds number,
from top to bottom, Re = 300 (DNS), Re = 3900 (high resolution LES, Parnaudeau et al. (2008))
and Re = 3900 (low resolution DNS), respectively.
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Figure 7.2: Local spectral representations of the matrix a in a cylinder wake flow at Re = 300, for
n = 2 POD modes and in the plane z = 0: (a), Turbulent kinetic energy of the diffusion modes
z0 (square root of the sum of the squared eigenvalues); (b), Small-scale anisotropy of the diffusion
modes z0 (ratio of the absolute value of the largest eigenvalue to the absolute value of the smallest
eigenvalue). The streamlines represent the first proper diffusion direction (i.e. the eigenvectors
corresponding to the largest eigenvalues of the small-scale variance tensor).

variance tensor diffusion modes must be also normalized by the chronos’ square root eigenvalues√
λi, as:

ã(x, t) =
n∑
k=0

bk(t)√
λk

(√
λkzk(x)

)
and

1

T

∫ T

0

(
bk√
λk

)2

= 1. (7.5.1)

We note this normalization put an even stronger emphasis on the stationary dissipation zero-mode.
Then, by (7.2.4) the corrective drift reads

w? −w =
n∑
k=0

bk(t)√
λk

v(k)
c (x) with v(k)

c = −1

2
∇ ·

(√
λkzk

)T
. (7.5.2)

Before dealing with chronos reconstruction, we propose in §7.5.1 and 7.5.2 a new type of POD
data analysis involving the information contained in the residual velocity. Algorithm 1 summarizes
the steps of our data analysis, including the POD and the diffusion modes computation.

7.5.2 Small-scale energy density, stationarity and anisotropy

The turbulent kinetic energy density (TKE) was computed by the sum of the diffusion modes
eigenvalues, since small-scale TKE is represented (up to a time scale) by the norm of that tensor.
The bigger the TKE, the more important the diffusion is. The diffusion zero-mode energy is plotted
in figure 7.2 (a) for the circular cylinder wake flow at Re = 300, with two POD modes and in the
plane z = 0. The other diffusion modes are much weaker (not shown) and the small-scale velocities
component is thus almost stationary. The colormap yields regions of high TKE in the recirculation
zone and in an arrow shape just downstream in the transitional region, i.e. for 7 ≤ x ≤ 10.

To measure small-scale anisotropy, we computed the ratio between largest and smallest eigenval-
ues, corresponding to the condition number of the local small-scale velocity variances. The bigger
this quantity the more aligned toward the first local proper direction the small-scale velocity is,
i.e. the more anisotropic the small-scale velocity and the diffusion are. Figure 7.2 (b) shows the
colormap of this quantity for the circular cylinder wake flow at Re = 300. In regions where the un-
resolved velocity component is largely anisotropic, the small-scale velocity is mainly directed in the
direction of the eigenvector associated with the largest eigenvalue of the small-scale variance tensor.
The small-scale component imposes a diffusion of the resolved velocity in the same direction. The
streamlines in figure 7.2 (b) shows the principal local diffusion directions defined by the largest
eigenvectors. The orthogonal to the streamlines would depict the directions of least diffusion of
the large-scale velocity by the small-scale component. These directions can be interpreted as the
ones of least small-scale uncertainty. The streamlines clearly show the vortex formation region
with the symmetric vortex rolling zone. The two pivotal locations at y = ±0.5 just before station
x = 6 where both shear layers start to roll into vortices are precisely indicated by high values of
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Algorithm 1 POD and diffusion modes data analysis
function stochastic_POD_analysis(n,v(x, t0), ...,v(x, tN )))

1. Usual POD: Resolved velocity component

w(x, t) =
n∑
i=0

bi(t)φi(x). (7.5.3)

2. Optimal time step
1

∆t
= 4 max

i6n
(fmax (bi)) . (7.5.4)

3. Diffusion modes analysis: study of the residual velocity component influence

• Residual velocity component
v −w. (7.5.5)

Decomposition of the residual velocity influence
• for j = 0 to n do

Component of the residual velocity influence associated with the time variability of the
chronos bj (note that b0 = λ0 = 1)
– Diffusion mode computation

Projection of the squared residues on the resolved chronos bj

zj(x) =
∆t

N + 1

N∑
k=0

bj(tk)

λj
(v −w)(x, tk)((v −w)(x, tk))T . (7.5.6)

– Analysis of the diffusion of the resolved velocity w by the residual velocity
∗ Local diagonalization of the symmetric matrix zi(x)√

λjzj(x) = P j(x)Λ(j)(x)P T

j (x), (7.5.7)

with

P j(x)P j(x)T = P j(x)TP j(x) = Id and Λ(j)
pq (x) = δpqΛ

(j)
pp (x). (7.5.8)

∗ Inhomogeneity of the turbulent diffusion of the resolved velocity
(proportional to the small-scale kinetic energy)

d∑
p=1

∣∣∣Λ(j)
pp (x)

∣∣∣ . (7.5.9)

∗ Anisotropy of the turbulent diffusion of the resolved velocity
(equal to the anisotropy of the small-scale kinetic energy)

maxp

∣∣∣Λ(j)
pp (x)

∣∣∣
minp

∣∣∣Λ(j)
pp (x)

∣∣∣ . (7.5.10)

– Corrective drift

v(j)
c (x) = −1

2
∇ ·

(√
λjzj

)T
(x). (7.5.11)

∗ Vorticity of the corrective drift

∇× v(j)
c . (7.5.12)

∗ Divergence of the corrective drift

∇ · v(j)
c . (7.5.13)

• end for

end function
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Figure 7.3: Spanwise vorticity (a) and divergence (b) of the drift correction − 1
2 (∇ · a)

T , for the
diffusion zero-mode z0 and n = 2 POD modes, in a cylinder wake flow at Re = 300.

the small-scale anisotropy. Downstream, just before station x = 9 in the middle of the transitional
region, the anisotropy reaches high values in an approximately square area of length D. To this
maximum corresponds the zone where vortices detach from the cylinder and reorganise into the
Karman vortex street further downstream. Near station x ≈ 11 at the beginning of this pattern of
regular and aligned vortices, small-scale velocity anisotropy is maximum on the centreline.

Another interesting feature of the small-scales stochastic representation principle concerns the
emergence of the small-scale effective velocity (7.2.4), also called drift correction, related to the
variance tensor inhomogeneity. Though at Re = 300, this contribution is weak as the flow is
well captured with only two POD modes, it is nevertheless interesting to observed the velocity
component that is induced by the neglected POD modes. In figure 7.8 we plot the vorticity and
divergence of this advection correction term (7.2.4) for the diffusion zero-mode z0. The small-
scale vorticity induced by the neglected modes is 3 order of magnitude weaker than the whole
flow vorticity (figure 7.1), which confirms its minor effect on the large-scale flow. However some
interesting patterns emerge from those figures. In the divergence map (figure 7.3 b) we observe
high divergence zones at station x = 6 corresponding to the vortex formation and just downstream
at station x = 6.5 where the vortices are shed. Convergence zones are also shown at the same
station but on the centreline and on both sides just outside of the recirculation region. In the
vorticity map (figure 7.3 a) several small-scale vorticity spots take place within the recirculation
area, whereas elongated vorticity patterns can be observed, like for the convergence, just outside
of the recirculation region. Such flow corrections, though being weak, take place in the region of
the flow where physical mechanisms that give rise to vortex shedding are active and may have
significant contributions if the flow is sensitive in these regions. One interesting feature, here, is
the presence of high values of vorticity, corresponding to the maximum of anisotropy, at the two
pivotal locations of the shear layers rolling into vortices.

Then it is of particular interest to analyse how the proposed small-scale stochastic modelling
behaves with a higher turbulent wake flow. We then consider the cylinder wake flow at Reynolds
number Re = 3900 (HR LES). It should be noted that the low number of velocity snapshots
available for that case (see table 7.1) leads to insufficient convergence of the POD modes. To avoid
to much wiggles on the diffusion modes results the matrix a was computed only in two-dimensions
in fixed z-planes and then averaged along the z-axis. Hence the contribution of the small-scale
spanwise velocity component was neglected and the analysis was based on an averaged view of
a along the z-axis. Colormaps of the energy density for the diffusion modes z0, z1 and z2 are
plotted in figure 7.4 (a), for 4 POD modes. We observe that the turbulent energy of the diffusion
zero-mode is three times larger than for the nonstationary modes. These spatial small-scale energy
distributions show that the largest magnitudes are reached at the end of the recirculation region and
further downstream in the transitional region. Examination of the small-scale anisotropy spatial
distribution together with the streamlines of the principal local diffusion directions plotted in figure
7.4 (b), indicates for z0 diffusion mode the two pivotal regions where the shear layers start to roll
into vortices, and for z1 and z2 diffusion modes more complex structures of the anisotropy high
values in the whole wake flow. In figures 7.5 (a) and 7.5 (b), respectively the vorticity norm and the
divergence of the drift correction for the diffusion mode z0 is plotted. Like for the Re = 300 case,
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Figure 7.4: Local spectral representation of the matrix a in a cylinder wake flow at Re = 3900 (HR
LES), for n = 4 POD modes: From top to bottom, diffusion modes z0, z1 and z2 respectively;
(a), Turbulent kinetic energy (square root of the sum of the squared eigenvalues); (b), Small-scale
anisotropy (ratio of the absolute value of the largest eigenvalue to the absolute value of the smallest
eigenvalue). The streamlines represent the first proper diffusion direction (i.e. the eigenvectors
corresponding to the largest eigenvalues of the small-scale variance tensor).
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modes.
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vorticity and divergence corrections are observed near the shear layers, outside and at the end of
the recirculation zone, and just downstream in the launching area. Here again, high magnitudes of
vorticity just downstream the maximum of anisotropy, are associated with the two pivotal regions
of the shear layers rolling into vortices. Nevertheless, in the present HR LES case, results show
some wiggles, which are here the footprint of insufficient convergence of the modes due to the low
number of velocity snapshots available (see table 7.1). In that context the velocity induced by the
neglected POD modes is less informative since the energy is less precisely spread over the modes.

We now consider the case LR DNS with sufficient velocity snapshots to get converged POD
modes thus allowing us to analyse more precisely in three-dimensions the behaviour of the diffusion
modes. Note however that due to the marginal resolution of LR DNS the flow yields a short
recirculation zone length of the order 0.5D, lower than the distance of 1.56D obtained with HR
LES and expected for the Reynolds number Re = 3900 (Parnaudeau et al., 2008). Figure 7.6 (a-d)
is a mapping of three-dimensional iso-surfaces of the energy density for the diffusion modes z0, z1,
z2, z3, and z4, in a cylinder wake flow at Re = 3900 (LR DNS). We observe that the diffusion
mode z0 is one order of magnitude larger than the nonstationary modes. The flow turbulence
exhibits hence a strong stationary behaviour. On the stationary diffusion mode z0 we see clearly
the recirculation zone and the external delimitation of the cylinder wake as regions of higher and
lower dissipation, respectively. The second and third nonstationary diffusion modes are related to
structures with a characteristic length of the size of the Von Karman vortices. The fourth and
fifth nonstationary diffusion modes correspond to much finer structures in the near cylinder wake.
When compared with the case at Re = 300, the stationary diffusion mode z0 exhibits similar spatial
distribution of the small-scale turbulent kinetic energy, with the highest magnitudes reached at the
end of the recirculation region and further downstream in the transitional zone with an arrow
shape. Where the small-scale energy is high, the unresolved velocity and the diffusion are strong.
The results we present next analyse the three-dimensionnal anisotropy of the diffusion modes.

In figures 7.7 (a-c) we plot the small-scale anisotropy isosurfaces of modes z0 and z1, respec-
tively. No particular structure shows up on the nonstationary first modes (see e.g. anisotropy
of mode z1 in figure 7.7 b). As a consequence, the anisotropic structures and consequently the
diffusion geometry is principally described by the diffusion mode z0. Like for the two other cases,
the diffusion mode z0 exhibits clearly, through local high magnitudes of the small-scale anisotropy,
the two three-dimensional pivotal locations of the shear layers close to the cylinder just before
station x = 5.5 at y = ±0.5 (figures 7.7 a and c). Downstream near station x = 8 − 9 in the
middle of the transitional region where vortices detach from the cylinder and start to reorganise
into the Karman vortex street, local high magnitudes of the anisotropy is indicated in figure 7.7 (c).
Farther downstream, near station x ≈ 12 at the beginning of this pattern of regular and aligned
vortices, the diffusion mode anisotropy is also maximum on the centreline.

In figure 7.8 (a-e) we plot vorticity and divergence iso-surfaces of the advection correction
term for the three first diffusion modes. The stationary diffusion mode z0 unveils two large-scale
effective contra-rotative vortices (figure 7.8 a). Like for the two other cases, the drift correction of
the resolved (large-scale) velocity by the unresolved (small-scale) velocity is associated with high
small-scale anisotropy and with vorticity corrections at the pivotal locations of the shear layers.
Just behind the cylinder in the recirculation zone figure 7.8 (b) reveals a divergent area and two flat
convergent zones near both shear layers. Thinner vorticity and diverging structures can be observed
in the near cylinder wake on the nonstationary modes z1 and z2. The vorticity and divergence
magnitudes involved in those modes are one order weaker than for the stationary diffusion mode.
Downstream no significant structures are observed, indicating rather an homogeneous character of
the small-scale velocity.

The diffusion modes analysis developed in the present paper identifies critical regions of the
wake flow: the anisotropy exhibits mainly the pivotal location of the shear layers which are asso-
ciated with large-scale vorticity corrections by the small-scale unresolved velocity and large-scale
divergence corrections take also place in the vortex formation zone. For the wake flow considered,
the results indicate that outside the recirculation area and the shear layer zones an eddy viscosity
assumption is likely valid. However in the near wake, such an assumption is too strong and correc-
tive advection effects as well as structured energy dissipation effects must be taken into account.
These findings support the recent results of Chandramouli et al. (2016) who demonstrated the good
contributions of such novel stochastic small-scale modelling in the context of coarse-grid large eddy
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Figure 7.6: Local spectral representation of the matrix a in a cylinder wake flow at Re = 3900
(LR DNS), for n = 4 POD modes: (a-e), Small-scale turbulent kinetic energy isosurfaces of the
diffusion modes z0 to z4, respectively. At places where the energy is high, the unresolved velocity
and the diffusion are strong. The green isosurfaces are associated with higher values than the
yellow isosurfaces.
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(a) (b)

(c)

Figure 7.7: Local spectral representation of the matrix a in a cylinder wake flow at Re = 3900
(LR DNS), for n = 4 POD modes: (a,b), Small-scale anisotropy isosurfaces of modes z0 and z1,
respectively; (c), Top view of small-scale anisotropy isosurface of modes z0. The red cones represent
the preferential diffusion directions (i.e. the eigenvectors corresponding to the largest eigenvalues
of the small-scale variance tensor). The green surface (σ = 6) is associated with a higher anisotropy
of both the small-scale velocity and the diffusion, than the yellow surface (σ = 3).
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Figure 7.8: Vorticity (Left) and divergence (Right) isosurfaces of the drift correction − 1
2 (∇ · a)

T in
a cylinder wake flow at Re = 300, for n = 4 POD modes: (a,b), Diffusion mode z0; (c,d), Diffusion
mode z1; (e,f), Diffusion mode z2. On the left column, the green iso-surfaces are associated with
a vorticity vector aligned downward whereas the yellow iso-surfaces are associated with a vorticity
vector aligned upward. On the right column the green surfaces stand for areas with iso-negative
divergence (convergent zone) whereas the yellow iso-surfaces correspond to a positive divergence
(divergent zone).
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simulation of a wake flow.

7.5.3 Chronos reconstruction

In this section we aim at assessing the performance of the subgrid term introduced by the stochastic
representation of the small-scales. We compare the chronos trajectories that were directly recon-
structed from the reduced order dynamical system (7.3.12) to the observed chronos. Let us note
that almost long time perfect trajectories could be recovered through data assimilation strategies
(Artana et al., 2012; D’Adamo et al., 2007). However with such techniques it would be difficult
to identify the intrinsic role of the subgrid scheme compared to a least-squares adaption of all the
dynamics coefficients along the whole sequence. We therefore prefer to rely on a more difficult
direct reconstruction strategy in which no coupling mechanism with the data nor any least squares
estimation procedure of the dynamical coefficients are introduced.

The results presented so far on the diffusion mode analysis did not necessitate any knowledge of
the Reynolds number to compute both the diffusion and the drift correction of the large-scale by the
unresolved small-scale. The assessments have been conducted in particular with the LR DNS data
for which the flow does not fit with the theoretical wake flow at Reynolds number Re = 3900. We
now turn to reduced order dynamical systems which, in contrast, need for their evaluation flow data
sets that are physically consistent with the Reynolds number considered. Hence in the following we
consider the DNS case at Reynolds number Re = 300 and the HR LES case at Reynolds number
Re = 3900.

The modes mean energy, λi, and the topos, φi, are computed from the whole sequence of
snapshots (N = 3999 for Reynolds 300 and N = 251 for Reynolds 3900). As for the initial
condition, we used the referenced values of the chronos, denoted brefi , computed directly from
the snapshots covariance diagonalization. Then, regarding the chronos spectra, an optimal time
sub-sampling is chosen, as explained in §7.3.3. Afterward, using the residual velocity and the
chronos, the variance tensor, a, is estimated. The coefficients of the reduced order dynamical
system of chronos (7.3.12) are directly computed using discrete derivation schemes. The chronos
trajectories are simulated with a 4-th order Runge-Kutta integration method, with bref (t = 0) as
initial condition.

Figures 7.9 and 7.10 show examples of the reconstruction of the chronos for n = 2 at Reynolds
number Re = 300 and n = 10 at Reynolds number Re = 3900, respectively, for the classical
POD method (blue plot) and for the proposed modelling with respectively a stationary and a
nonstationary variance tensor defined on the subspace associated with the chronos basis (red plot).
At Reynolds number Re = 300, the first two modes carry most of the energy. The reference brefi
(black plot) are superimposed for comparison purposes. It can be observed that our stochastic
model follows the references quite well whereas the deterministic model blows up. Let us point out
that here both reduced models are completely parameter free. No constant has been tuned to adapt
any viscosity model. Figures 7.11 and 7.12 describe the error evolution along time. Approximating
the square of the actual unresolved chronos, by the time average of their squares, we defined the
error as follows:

err(t) = T

∥∥uref − u∥∥
L2(Ω)

‖uref‖L2(Ω×[0,T ])

,

= T

∥∥∥∑n
i=1

(
brefi − bi

)
φi +

∑N
i=n+1 b

ref
i φi

∥∥∥
L2(Ω)∥∥∥∑N

i=0 b
ref
i φi

∥∥∥
L2(Ω×[0,T ])

,

≈


∑n
i=1

(
brefi − bi

)2

+
∑N
i=n+1 λi

‖φ0‖2L2(Ω) +
∑N
i=1 λi


1/2

, (7.5.14)
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Figure 7.9: Reconstruction of the two first modes (n = 2) of a wake flow at Reynolds number
Re = 300, with a stationary variance tensor. The black dots are the observed references. The blue
lines correspond to the solutions computed with a standard POD-Galerkin whereas the red ones
are computed with the stochastic representation. The initial condition, at t = 0, is identical for all
methods.
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Figure 7.10: Reconstruction of the 10 first modes (n = 10) of a wake flow at Reynolds number
Re = 3900 (HR LES), with a variance tensor expressed as a linear function of the chronos. The
black dots are the observed references. The blue lines correspond to the solutions computed with
a standard POD-Galerkin whereas the red ones are computed with the stochastic representation.
The initial condition, at t = 0, is identical for all methods.
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Figure 7.11: Normalized error for n = 2 modes, of a wake flow at Reynolds number Re = 300.
The error is normalized by the energy of the solution:

∑N
i=1 λi. The blue line corresponds to

the standard POD Galerkin (without eddy viscosity). The red one stands for our model with a
stationary variance tensor. The green colour curve denotes a modal eddy viscosity reduced order
model. The modal eddy viscosity coefficients are estimated on the three first vortex shedding. The
end of the learning period is indicated by a vertical bar at t = 18. The dashed line indicates the
error associated with the mode truncation :

∑N
i=n+1 λi. The black solid line is the error when we

only consider the temporal mean velocity.

which is greater than the minimal error associated to the modal truncation:

err(t) >

( ∑N
i=n+1 λi

‖φ0‖2L2(Ω) +
∑N
i=1 λi

)1/2

. (7.5.15)

Equation (7.5.14) defines the criterion error plotted in figures 7.11 and 7.12, whereas (7.5.15)
constitutes a lower bound of this error. In figures 7.11 and 7.12, we displayed successively the error
plots, obtained for the standard POD Galerkin model without subgrid dissipative term, our model
with stationary and nonstationary variance tensors, and finally for a deterministic modal eddy
viscosity model. This subgrid model, proposed in Rempfer and Fasel (1994) consists in modifying
the reduced order system by adding a strong isotropic diffusive term (Laplacian) to stabilize the
system. This eddy viscosity is said to be modal since different viscosity coefficients are attached
to each chronos. Those coefficients are estimated by a least squares fitting on the first quarter of
the data. Modal eddy viscosity in its least squares form ressembles indeed to a data assimilation
strategy in which the best stationary isotropic dissipative forcing is estimated from the discrepancy
between the model and the data. The same isotropic dissipation is imposed on the whole fluid
domain at every time step. As such this subgrid dissipation is much more difficult to interpret in
terms of local signatures of the small-scale coherent structures.

In figures 7.11 and 7.12, the doted lines indicates the minimal error associated with the reduced
subspace truncation error. The black solid line corresponds to the error level associated with the
temporal mean velocity – i.e. setting all the chronos to 0. In this case:

err|b=0(t) ≈

( ∑N
i=1 λi

‖φ0‖2L2(Ω) +
∑N
i=1 λi

)1/2

.

This term does not constitute an upper bound of the error. However, it provides the error level
reached by the null model. In figures 7.11 and 7.12, fixing a log-scale for the y axis, we observe
readily the exponential divergence of the standard POD reduced order (in blue).

We observe that at low Reynolds number the modal eddy viscosity model does not allow to
capture accurately, on a long time period, the complex non-linear dynamics undergone by the non-
resolved modes (figure 7.11). Just after the learning period (3 vortex shedding), the eddy viscosity
models performs well. However, they start diverging after 30 time steps. The stationary model
leads, in contrast, to a stable simulation in the long run.
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For the case HR LES at Reynolds number Re = 3900 (figure 7.12), we compared the eddy
viscosity approaches (modal and constant) with stationary and nonstationary models of the vari-
ance tensors. In this case the variance tensor as well as the eddy viscosity coefficients have been
estimated on 3 vortex shedding as well. The performances of the modal and single characteristic
times attached to the variance tensor have been evaluated and compared. The error plots are
shown in figure 7.12. The introduction of different small-scale characteristic time steps associated
with the different modes significantly improves the results that were obtained for a single common
characteristic time. Both approaches are equivalent for short time period only. The introduction of
modal characteristic times is clearly beneficial in the long run. The nonstationary representation
performs only slightly better than the stationary one for this wake flow. However, the piece of
information brought by the nonstationary diffusion modes enables a meaningful analysis of the
small-scale contribution (see §7.5.2). Both eddy viscosity approaches perform well either in their
modal or constant versions. Modal eddy viscosity appears to work better when a small number
of modes is involved. The (stationary or nonstationary) variance tensor models that are associ-
ated with modal characteristic time scales exhibit nearly the same stabilizing skills as the eddy
viscosity models. Both models lead to similar error levels. Nevertheless, it must be outlined that
the two approaches are based on different assumptions. Eddy viscosity relies intrinsically on an
homogeneous isotropic diffusion with no preferential direction of energy dissipation. The diffusion
remains constant whatever the considered region: in the near or far wake regions, and even in the
shear layers. However, as a fixed constant estimated through a mean squares procedure, it provides
the optimal amount of missing energy dissipation (with respect to a spatio-temporal mean of the
squared norm) that is required to stabilize the reduced dynamical system. Conversely, as shown
in the previous section, the variance tensor and the associated diffusion modes provide a finer
representation of the small-scales action in terms of energy dissipation but also in terms of energy
redistribution. As for the simulation of the reduced system, both models lead to comparable error
levels. They enable to stabilize the system in a similar way, but the variance tensor models unveil
important hints on the small-scale flow structuration.

7.6 Conclusion

We investigated the study of reduced order modelling based on a stochastic representation of the
small-scales proposed by Mémin (2014) and Resseguier et al. (2017a). This principle gives rise
naturally to a drift correction generated by the inhomogeneity of the small scale velocity variance
and to an inhomogeneous diffusion term. The diffusion term is closely related to eddy viscosity as-
sumption. Indeed, for an isotropic divergence-free random field, the stochastic representation boils
down to the classical eddy viscosity assumption. A POD Galerkin projection of the corresponding
Navier-Stokes equations enables us to constitute a modified reduced-order dynamical system that
includes a linear term gathering the effects of the effective advection and the diffusion exerted by
the unresolved small-scale component. This function directly depends on the small-scale variance
that must be specified to close the system. We proposed in this study a modelling based on the
decomposition of this variance tensor on the chronos basis. The estimation has been performed on
the residuals between the snapshots measurements and their resolved reconstruction on the topos
basis. The coefficients of this decomposition quoted as the diffusion modes constitute meaningful
features for the interpretation of the small-scale statistical organization. They allow for a detailed
examination of the principal directions of the small-scale energy dissipation and also to extract ad-
vective structures generated by the small-scale velocity. For wake flow configurations the analysis
of the anisotropy of the diffusion modes is appropriate to determine regions of the flow that are key
players. The largest magnitudes of the anisotropy zero-mode occur in the vicinity of the pivotal
zone of the shear layers rolling into vortices and where the drift correction is effective. Those dif-
fusion modes, coupled with modal characteristic time scales, provide a subgrid model that shows
the same (global) stabilizing skill as the isotropic eddy viscosity models.
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Figure 7.12: Normalized error for n = 2, 4, 6, 8, 10, 12, 14 and 16 modes at Reynolds number
Re = 3900 (HR LES). The error is normalized by the energy of the solution:

∑N
i=1 λi. The blue

colour line corresponds to the standard POD Galerkin (without eddy viscosity). The red curve
stands for the stationary variance tensor. The magenta curve represents the nonstationary model
of the variance tensor. The solid and dashed lines correspond to methods with single and modal
characteristic time respectively. The green lines denote a reduced order model with eddy viscosity
(solid line) and modal eddy viscosity (dashed line) models. The eddy viscosity coefficients are
estimated through a least squares fit on the whole data sequence. The variance tensors are also
estimated from a temporal mean on the whole sequence. The black doted line indicates the error
associated with the mode truncation :

∑N
i=n+1 λi. The black solid line is the error when we only

consider the temporal mean velocity.
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Chapter 8

Conservative transport of fluid
velocity under location uncertainty
and dimensional reduction

Abstract

This chapter is devoted to a random Navier-Stokes representation and its application to ensemble
forecasting in the context of reduced order models. Up to some forcings, the velocity is transported
in a stochastic sense as with the buoyancy in chapters 2, 3, 4 and 5. Accordingly, our Navier-Stokes
model involves an effective drift, an inhomogeneous and anisotropic diffusion but also an additive
noise and a multiplicative skew-symmetric noise. Under some divergence-free conditions, the energy
is conserved for each realization. Indeed, by the action of the unresolved time-uncorrelated com-
ponent of the velocity, the energy diffused by the subgrid diffusion tensor is exactly compensated
by the energy intake of the multiplicative noise. Thus, a turbulent diffusion of the mean velocity
always generates a covariance inflation. When the resolved velocity component is expressed on a
finite basis, the structure of the model restores energy fluxes between resolved modes and from
resolved modes toward unresolved modes. A random Proper Orthogonal Decomposition (POD)
dimensionally-reduced model is derived from this framework. The deterministic Reduced Order
Model (ROM) coefficients are obtained by a Galerkin projection whereas the correlations of the
multiplicative and additive noises are estimated from the residual velocity, the model structure,
and the evolution of the resolved modes. The low computational cost of these rigorous estimators
makes them applicable to study turbulent flows. The stochastic POD-ROM has been applied to
wake flows at Reynolds 300 and 3900 for Uncertainty Quantification (UQ) purposes. Ensembles are
forecast outside the learning interval. Our stochastic model stabilizes unstable modes, maintains
the variability of stable modes and shows very good prediction skills.

8.1 Transport under location uncertainty of the velocity

8.1.1 Structure of the model

In Appendix 8.A, we derive a stochastic Navier-Stokes representation to describe the evolution of
the large-scale velocity component w:

Dtw + f × (wdt+ σdBt) = gdt− 1

ρ
∇pdt+ ν∆(wdt+ σdBt), (8.1.1)
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where σḂ = σ dBt
dt is the unresolved small-scale velocity component assumed to be uncorrelated

in time, Dt is the stochastic transport operator defined for any function Θ by:

DtΘ
4
= dtΘ︸︷︷︸

4
= Θ(x,t+dt)−Θ(x,t)

Time increment

+ (w?dt+ σdBt) · ∇Θ︸ ︷︷ ︸
Advection

−∇ ·
(

1

2
a∇Θ

)
︸ ︷︷ ︸

Diffusion

dt, (8.1.2)

with

w? 4= w − 1

2
(∇·a)

T
. (8.1.3)

This transport operator involves the terms of a deterministic material derivative as well as three
new terms: an advection correction (w? instead of w), an inhomogeneous and anisotropic diffusion
and a multiplicative noise. This last term corresponds to the advection by the unresolved velocity
σḂ. We can formally rewrite the velocity evolution law (8.1.1) as follows:

dtw = (dM)(w)
4
= (I + L(w) + F (w) + C(w,w)) dt+ (HdBt) + (GdBt)(w), (8.1.4)

where L, F and (GdBt) are linear differential operators and C is a bilinear differential opera-
tor. The first term of the right-hand side, I, includes pressure and gravity. The additive noise
(HdBt) corresponds to the Coriolis accelaration and to the molecular viscous dissipation of the
time-uncorrelated velocity component, σḂ. Under suitable boundary conditions, the algebraic
structures of the different operators can be further detailed. The molecular viscosity represented
by L and the inhomogeneous and anisotropic diffusion involved in F correspond to symmetric
negative operators; the Coriolis force part of L, the advection correction part of F (under the
incompressibility condition ∇·(∇·a)T = 0), and the random advection involved in (GdBt) (under
the incompressibility condition∇·σ = 0) are skew-symmetric operators. Indeed, for every function
f1 and f2, an integration by part gives:∫

Ω

f1 (GdBt) f2
4
=

∫
Ω

f1 (σdBt · ∇) f2 =

∫
Ω

f1∇ · (σdBtf2) = −
∫
Ω

(σdBt · ∇f1) f2. (8.1.5)

Moreover, the negative symmetric turbulent diffusion can be expressed with the random skew-
symmetric operator (GdBt):

∇ ·
(a

2
∇•
)

=
1

2

∑
k

(σ•k · ∇) ((σ•k · ∇) •) =
1

2

∑
k

G•kG•k = −1

2

∑
k

G?
•kG•k, (8.1.6)

where G? denotes the adjoint of G. The resolved advection C (under the incompressibility condition
∇·w = 0) is also skew-symmetric with respect to the second argument (i.e. g 7→ C(f , g) is skew-
symmetric). In the following, we do not consider the Coriolis force anymore.

8.1.2 Kinetic energy budget
Since the pressure does not influence the energy budget, neglecting the gravity, the molecular
viscosity as well as the divergence of w? and σ lead by the Itō lemma to the kinetic energy budget:

d

(
1

2
‖w‖2

(L2(Rd))d

)
=

∫
Ω

(
dtw

Tw +
1

2
dt < w

T ,w >

)
, (8.1.7)

=

∫
Ω

∇ ·
(a

2
∇wT

)
w︸ ︷︷ ︸

Loss by diffusion

dt+

∫
Ω

1

2
tr
(
(∇wT )

T
a∇wT

)
︸ ︷︷ ︸
Energy flux from the noise

dt, (8.1.8)

= 0. (8.1.9)

The energy intake of the noise and the dissipation by turbulent diffusion exactly compensate
each other. The energy is conserved for each realization. The diffusion decreases the energy of
the velocity, especially the energy of the mean, ‖E{w}‖2

(L2(Ω))d
, whereas the multiplicative noise
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generates only random energy, ‖w−E{w}‖2
(L2(Ω))d

. Thus, the time-uncorrelated component of the
velocity drains energy from the mean field to the random component of w. We can also express
this energy transfer with the expectation of equation (8.1.9):

d

dt

∫
Ω

V ar(w) =
d

dt
E‖w − E{w}‖2(L(Ω))d = − d

dt
‖E{w}‖2(L(Ω))d . (8.1.10)

Besides the physical relevance of the energy conservation, this variance inflation is of primary
interest for ensemble forecasts. After its generation by the noise, this random energy may come
back to the mean field by nonlinear interactions.

8.1.3 Incompressible Navier-Stokes under location uncertainty with and
without noise

Note that the Navier-Stokes model (8.1.1) involves noises whereas the Navier-Stokes representation
of Mémin (2014) used in chapter 2 (equation (2.3.7)), chapter 6 (equation (6.2.7)) and chapter
7 (equation (7.2.8)) does not. In these chapters, the large-scale velocity, w, is assumed to be
differentiable w.r.t. time. In other words, we neglect the irregular component of the large-scale
velocity which is continuous but not differentiable. We only keep the very smooth component
and the very irregular component, σḂ . So, this statement may be understood as a gap-scale
assumption. The ensuing Navier-Stokes model is deterministic even though it involves subgrid
terms. As such, it is very useful for deterministic LES-like simulations. In contrast, this chapter
does not rely on that assumption and proposes a Navier-Stokes model (8.1.1) with noises. Up
to some forcings, the large-scale velocity is transported under location uncertainty as every other
tracers. Unlike the Navier-Stokes model without noise, that model has to be simulated with MCMC
and can be applied to uncertainty quantification, especially for data assimilation purposes.

8.2 Galerkin projection

8.2.1 A finite-dimensional system with correlated additive and multi-
plicative noise

Let φ0 be a stationary spatial field that represents a possible stationary background velocity.
Its precise definition will be given in the following. As in the previous chapters, we express the
velocity anomaly, w − φ0, in a finite-dimensional set of orthogonal spatial modes (φi)16i6n. Yet,
the following analysis is not restricted to POD-ROMs. The spatial modes, (φi)16i6n can also be
Fourier modes or any other orthogonal set. In the case of Fourier modes, we would probably choose
φ0 = 0 whereas in the POD-ROM framework, φ0 = w is the temporal mean of the velocity w.
The associated temporal modes, bi, of the velocity are random and depend on a realization ω ∈ Ω̆
whereas the spatial modes φi, are assumed to be deterministic and stationary:

w(x, t, ω) =

n∑
i=0

bi(t, ω)φi(x), (8.2.1)

where b0 = 1.
A ROM is a system gathering SDEs of all the temporal modes. With ROMs, we aim at

approximating the evolution of a true velocity field denoted v. Usually, a ROM enables only a
finite number of modes (8.2.1) to be solved. To compensate for the mode truncation, the unresolved
velocity component v −w is assumed to be uncorrelated in time and hence well modeled by σḂ.
Accordingly, the resolved component w is the solution of the Navier-Stokes representation (8.1.4).
To obtain the reduced model, this SPDE is projected onto each spatial modes φi (1 6 i 6 n):

dbi = (dMR
i )(b)

4
=

∫
Ω

φi · (dM)(w), (8.2.2)
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where b = (bi)06i6n. The coefficients of dMR can be evaluated with (8.1.4):

(dMR
i )(b) =

(∫
Ω

φi · I
)

︸ ︷︷ ︸
4
=ii

dt+
n∑
p=0

(∫
Ω

φi · L(φp)

)
︸ ︷︷ ︸

4
=lpi

bpdt+
n∑
p=0

(∫
Ω

φi · F (φp)

)
︸ ︷︷ ︸

4
=f̆pi

bpdt

+
n∑

p,q=0

(∫
Ω

φi · C(φp,φq)

)
︸ ︷︷ ︸

4
=cpqi

bpbqdt+

(∫
Ω

φi · (HdBt)

)
︸ ︷︷ ︸

4
=(θi•dBt)

+
n∑
p=0

(∫
Ω

φi · (GdBt)(φp)

)
︸ ︷︷ ︸

4
=(αpi•dBt)

bp.

(8.2.3)

The coefficients i0, l•0, f̆•0, c••0, (θ0•dBt), (α•0•dBt) and the operator (dMR
0 ) can be defined in

a similar way. Nevertheless, they do not corresponds to the dynamics of b0 = 1. Moreover, they
are not necessary to simulate the ROM. The terms (αdBt) = (αpi•dBt)06p,i6n and (θdBt) =
(θi•dBt)06i6n correspond to a Gaussian skew-symmetric matrix and a Gaussian vector respectively
with correlated coefficients. All the correlations can be expressed through the spatial modes and the
small-scale velocity covariance tensor a(x,y). If the modes φi are spatial Fourier modes associated
with small wave-numbers, the ROM (8.2.2) is a (random) LES-like simulation expressed in Fourier
space and b is the set of Fourier coefficients of the solution.

8.2.2 Energy leak

The matrix (αdBt) is antisymmetric since it expresses the advection by the divergence-free velocity
σḂ. However, due to its random structure, it increases the kinetic energy, 1

2‖w‖
2
(L2(Ω))d

. This

created variance is dissipated by the symmetric part of matrix f̆ = (f̆ij)06i,j6n (see equation
(8.1.9)). Indeed, under the incompressibility condition ∇·(∇·a)T = 0, the symmetric part of f̆
corresponds to the dissipative sub-grid tensor, whereas its antisymmetric part encodes the advection
correction. Up to molecular viscosity, gravity and boundary conditions effects, the global Navier-
Stokes model (8.1.4) conserves the energy as demonstrated by equation (8.1.9). Nevertheless, it is
important to outline that the reduced order model (8.2.2) does not exactly conserve the resolved
kinetic energy 1

2‖w‖
2
(L2(Ω))d

. The mode truncation introduces a small leak of energy. This is due
to the fact that the ROM (8.2.2) does not solves exactly the global Navier-Stokes model (8.1.4).
It solves instead its Galerkin projection onto the reduced subspace spanned by the spatial modes
(φi)16i6n:

dtw =
n∑
i=0

dbi φi =
n∑
i=1

(dMR
i )(b) φi =

n∑
i=1

(∫
Ω

φi · (dM)(w)

)
φi = Πφ [(dM)(w)] , (8.2.4)

where Πφ is the projection onto the reduced subspace. Specifically, for any function h, the projec-
tion, Πφ, is defined as follows:

(Πφ[h]) (x, t)
4
=

n∑
p=1

(∫
Ω

φp · h(•, t)
)
φp(x). (8.2.5)

If the spatial modes are Fourier modes associated with small wave-numbers, the projection Πφ[h]
is the large-scale component of the field h. As proofed in Appendix 8.B, the kinetic energy diffused
in the ROM (8.2.2)-(8.2.3) by the subgrid tensor by units of time is given by:∫

Ω

dtw
Tw =

∫
Ω

∇·
(a

2
∇wT

)
w dt = −1

2

∑
k

‖(G•k)(w)‖2(L2(Ω))d dt. (8.2.6)

The above expression is similar to the dissipation of the complete stochastic Navier-Stokes model
(8.1.8). Nevertheless, the velocity w is different because it is the solution of another SPDE. The
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dissipation (8.2.9) also corresponds to the energy diffused in the ROMs of chapters 6 and 7. In
contrast, the Itō term encoding the energy flux from the noise is

1

2

d

dt

∫
Ω

< wT ,w >=
1

2

∑
k

‖Πφ [(G•k)(w)]‖2(L2(Ω))d = bT

(
1

2

n∑
p=1

α•p•α
T

•p•

)
b. (8.2.7)

Finally, as for the full Navier-Stokes model, we can evaluate the variation of kinetic energy with
the Itō formula:

d

(
1

2
‖w‖2

(L2(Ω))d

)
=

∫
Ω

(
dtw

Tw +
1

2
dt < w

T ,w >

)
, (8.2.8)

= −1

2

∑
k

∥∥Π⊥φ [(G•k)(w)]
∥∥2

(L2(Ω))d
< 0, (8.2.9)

where Π⊥φ = Id −Πφ is the projector onto the space orthogonal to the spatial modes. The subgrid
diffusion extracts energy from some modes and the multiplicative noise gives energy to others.
These stabilization and destabilization effects restore a large part of the energy transfers occurring
between resolved modes. Yet, the uncorrelated velocity component also drains energy from the
resolved modes to the unresolved modes. This energy flux is exactly the right-hand side of (8.2.9).
In contrast, the transport under location uncertainty does not naturally transfer energy from
unresolved modes to resolved modes. This explains the energy leak.

We could prevent this dissipation by using

−1

2

∑
k

(Πφ [G•k])
?

Πφ [G•k] , (8.2.10)

represented in the ROM by

−1

2

n∑
p=1

α•p•α
T

•p•, (8.2.11)

instead of the full turbulent diffusion operator:

−1

2

∑
k

G?
•kG•k =∇ ·

(a
2
∇•
)
. (8.2.12)

Notwithstanding, the additional dissipation (8.2.9) should not be a problem. First, it enables a
molecular viscous energy dissipation in the unresolved modes by a direct cascade from the resolved
modes. So, for very turbulent flow described by few modes, the energy leak appears necessary.
Moreover, our main concern consists in restoring energy fluxes between resolved modes. Indeed,
the main energy exchanges appear between the energetic modes. As in POD, the most energetic
modes of the ROM are often the resolved modes. Those energy fluxes are very difficult to model
correctly in ROMs. As an example, Sapsis and Majda (2013b) observe that a basis encoding 50%
of the energy can lead to a ROM missing more than 98% of energy transfers. Restoring the energy
fluxes between resolved modes is a main issue and it is the issue we want to address with the
models under location uncertainty.

Note also that due to the interactions with the stationary background φ0 the energy variation
of temporal modes

∑n
i=1 b

2
i = ‖

∑n
i=1 biφi‖2(L2(Ω))d

differs from the kinetic energy variation:

d

(
1

2
‖w‖2

(L2(Ω))d
− 1

2

n∑
i=1

b2i

)
= d

∫
Ω

φ0 ·
(

1

2
φ0 +

n∑
i=1

biφi

)
=

∫
Ω

φ0 · dw = (dMR
0 )(b) 6= 0.

(8.2.13)

8.2.3 Proper Orthogonal Decomposition
In the POD framework, the spatial modes, so-called topos, are obtained from a set of velocity snap-
shots (vobs(•, ti))06i6N . More precisely, the topos are the solution of the constrained optimization
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problem:

Maximize
(φi)16i6n

n∑
i=1

∫ T

0

(∫
Ω

φi · (vobs − v)

)2

subject to
∫
Ω

φi · φj = δij . (8.2.14)

Intuitively, the topos are the n orthonormal functions which can best explain the snapshots’ tem-
poral variability. The mode φ0 = v is set to the time averaged velocity. The temporal modes b
are called chronos and the temporal variances, 1

T

∫ T
0
b2i , are denoted λi. Moreover, if the snapshots

describe a divergence-free velocity field, the topos φi are divergence-free as well.

8.3 Estimations of subgrid terms

The matrix f̆ is defined by the topos and the one-point quadratic cross-variation tensor a(x,x).
The correlations of the Gaussian noises (αdBt) and (θdBt) also involve the two-point quadratic
cross-variation tensor of the small-scale velocity, a(x,y). For instance, the coefficients of the
covariance matrix of the Gaussian vector (θdBt) are:

E {(θi•dBt) (θj•dBt)} = E
{(∫

Ω

dx φi(x)Tν∇2
xσ(x)dBt

)(∫
Ω

dy ν∇2
y (σ(y)dBt)

T
φj(y)

)}
,

=

∫∫
Ω2

dxdy φi(x)Tν2∇2
x∇

2
ya(x,y)dt φj(y).

Therefore, the whole stochastic ROM is closed knowing the tensor a(x,y). However, in practice,
if the covariance tensor a(x,y) is inhomogeneous, its size is so large that its estimation or even its
storage becomes prohibitive. Nevertheless, there are at least three ways to overcome this difficulty.
The first one is to assume a model structure for the covariance. For instance, it can be considered as
isotropic or at least only slightly anisotropic and inhomogeneous. In this case, the covariance can be
specified through a phenomenological model of the velocity spectrum, as in Kraichnan (1968) and
chapters 3 and 5 of this thesis. Modeling the covariance is almost mandatory when the smallest-
scale velocity is not observed. Yet if the small-scale velocity is observed, other techniques can be
considered. Indeed, one can build a reduced representation of the small-scale velocity σḂ, learned
from available snapshots or realizations. This efficient method often relies on a Karhunen-Loeve
decomposition. In the particular framework of POD, a great number of topos have to be estimated
and the number of coefficients involved in the reduced order system increases. Depending on the
desired accuracy of the noise representation, the complexity of this method may increase quickly.
Here, we will rely on a third method, specifically setup for ROM frameworks. Similarly to the
second method, the noise structure is learned from observed small-scales snapshots, without using
the covariance a(x,y). This method estimates directly the correlations of the random ROM’s
coefficients.

8.3.1 Estimation formulas

In order to close our new stochastic ROM system, we need to estimate the variance tensor a and
the variance and correlations between the noises of the ROM. First, recalling that b0 = 1, we note
that:

(α•i•dBt)
T
b+ (θi•dBt) =

n∑
k=1

(αki•dBt) bk + ((θi• +α0i•)dBt) .

Therefore, the multiplicative and additive noises of the ROM correspond to the first and second
term of the right-hand side respectively. Then, we need to estimate the following correlations:

a(x,x)dt = E
{

(σ(x)dBt) (σ(x)dBt)
T
}
,

(θi• +α0i•) · (θj• +α0j•)dt = E {((θi• +α0i•)dBt) ((θj• +α0j•)dBt)} ,
(θi• +α0i•) ·αqj•dt = E {((θi• +α0i•)dBt) (αqj•dBt)} ,

αpi• ·αqj•dt = E {(αpi•dBt) (αqj•dBt)} ,

(8.3.1)
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for 1 6 i, j, p, q 6 n. Assuming the variance tensor a to be stationary leads to rigorous estimators
through time averaging. Besides the variance tensor, there are O(n4) correlations to estimate.

For any function ξ and q > 0, let us introduce the functionals:

Kjq[ξ]
4
= −

∫
Ω

φj ·
(
(ξ · ∇)φq

)
, (8.3.2)

and

Kj0[ξ]
4
=

∫
Ω

φj · (− (ξ · ∇)φ0 + ν∆ξ) . (8.3.3)

With these notations, the estimation formulas are:

(θi• +α0i•) · (θj• +α0j•) ≈ Kj0

[
∆t

N + 1

N∑
k=0

(
dbobsi

dt

)
(tk)(v −w)obs(tk, •)

]
, (8.3.4)

αpi• · (θj• +α0j•) ≈ Kj0

[
∆t

λp(N + 1)

N∑
k=0

bobsp (tk)

(
dbobsi

dt

)
(tk)(v −w)obs(tk, •)

]
,(8.3.5)

αpi• ·αqj• ≈ Kjq

[
∆t

λp(N + 1)

N∑
k=0

bobsp (tk)

(
dbobsi

dt

)
(tk)(v −w)obs(tk, •)

]
,(8.3.6)

where 1 6 i, j, p, q 6 n, (v −w)obs is the observed residual velocity,

bobsi =

∫
Ω

φi · vobs, (8.3.7)

λobsi =
1

T

∫ T

0

(bobsi )2, (8.3.8)

and N + 1 the number of available snapshots. The derivation of these formulas is provided in
the Appendix 8.C. Since the time averaging is performed before the application of the functionals
Kjq, the differential operators involved in these functionals need to be computed only once for
each couple (i, j, p, q). For moderate values of n, the low computational cost of these estimators is
well adapted to the derivation of ROMs describing strongly turbulent flows. These estimations are
direct due to the orthogonality of the observed chronos bobsi . In a more general (non-orthogonal)
setting, the estimated correlations are solutions of a linear inverse problem. The variance tensor
will be estimated as in chapters 6 and 7 by:

a(x,x) ≈ ∆t

N + 1

N∑
k=0

(v −w)obs(x, tk) (v −w)
T

obs (x, tk). (8.3.9)

With these estimations done, all the parameters of the stochastic ROM (8.2.2)-(8.2.3) are known.
It is then possible to forecast an ensemble of realizations of the reduced model through Monte-Carlo
simulations.

8.3.2 Modal time step
We perform the same modal time step estimation than in chapter 7 and modify the stochastic
ROM accordingly:

dbi =

(
ii +

(
∆ti
∆t
f̆•i + l•i

)T
b+ bTc••ib

)
dt+

√
∆ti
∆t

(α•i•dBt)
T
b+

√
∆ti
∆t

(θi•dBt) . (8.3.10)

8.4 Ensemble forecasting
We have numerically tested the UQ skills of the ROM (8.2.2)-(8.2.3) on two DNS simulations of
wake flows at Reynolds 300 and 3900 respectively. The first one is quasi two dimensional whereas
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Figure 8.1: Forecast of the 4 modes for n = 4 modes of a wake flow at Reynolds 300. The dash-dot
black plots are the observed references. The blue lines correspond to the solutions computed with
a standard POD-Galerkin whereas the dashed red ones are computed with the smooth stochastic
ROM (see chapters 6 and 7). From the ensemble simulated according to the full-stochastic POD-
ROM, we have plotted one realization (yellow line), the ensemble mean (green line) and +/−1.96 ×
the standard-deviation (shaded gray). The initial condition at t = 0 is common to all methods.

the second one is three dimensional. The Modal time step method (8.3.10) is considered for the
high Reynolds simulation since the associated dynamics involve a wide set of time scales. The
reference velocity snapshots involved in the following tests have been used to estimate neither the
topos nor the structure of the ROM. As such, our simulations correspond to forecasts rather than
to reconstructions. Ensemble of simulations are simulated for both Reynolds numbers.

In Figure 8.1 an ensemble of 4 modes of the 300-Reynolds flow are compared to the reference
chronos (dash-dot black line): brefi =

∫
Ω
φi · vref . We learned the ROM parameters on 10 vortex

sheddings and simulate it on the 5 following ones. We also show the results given by the standard
deterministic POD-Galerkin projection (blue) and the stochastic ROM without noise of chapters 6
and 7 (dotted red line). In the following, we will refer to this latter ROM as the smooth stochastic
ROM whereas the focus of this chapter, the ROM (8.2.2)-(8.2.3), will be referred to as the full-
stochastic ROM. The ensemble mean computed with this ROM (green) is similar to the smooth
ROM and the deterministic POD for the first two modes. Yet, in modes 3 and 4 the ensemble mean
is the only system which is not completely damped. This must be due to energy transfers from
other modes restored by the multiplicative noise and to the large random energy (+/− 1.96 × the
standard-deviation in shaded gray) of modes 3 and 4 which fed the mean by nonlinear interactions.
This large random energy also explains why the ensemble mean of these modes is more damped
than the reference. Indeed, the energy of these modes is contained both in the mean and in the
variance. The ensemble mean has progressively transformed its energy into variance. But, this
variance is coherent as illustrated by a realization of the ensemble (yellow) which correctly follows
the reference of modes 3 and 4 during the first and the last 5 units of time.

For n = 4 modes, the energy transfers involving modes 3 and 4 have been maintained by
randomizing them. A partially random mode is more desirable than a single erroneous deterministic
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mode. Nevertheless, such a randomness is always less informative than an accurate deterministic
mode. Accordingly, a ROM should randomly transfer energy only when it is not possible to
deterministically do so. With n = 8 modes, the dynamics is better resolved and less spreading is
necessary as revealed by Figure 8.2. Modes 3 and 4 are now well resolved and mainly deterministic.
This suggests that modes from 5 to 8 determine a large amount of energy fluxes between the mode
3 (resp. 4) and the four first modes by triades interactions. Indeed, the source of randomness
σḂ plays a key role on modes 3 and 4 only for n = 4 modes, i.e. only when this unresolved
velocity mimics the modes 5 to 8. For n = 8 modes, this is now the modes 7 and 8 which depend
on unresolved dynamics. They are thus partially random. The non-stationary spreading of the
ensemble well represent the reference chronos even the under-resolved two last modes. All things
considered, Figures 8.1 and Figure 8.2 have demonstrated that our stochastic model injects exactly
the right amount of randomness in the system.

Although necessary when the number of modes is not large enough, random energy transfers
strongly increase the modes’ variance keeping the biases constant and hence increase the Root
Mean Square Error (RMSE) of the ensemble:

RMSE
4
= Ê ‖w − vref‖2(L(Ω))d =

∥∥∥Ê{w} − vref∥∥∥2

(L(Ω))d
+

∫
Ω

V̂ ar(w). (8.4.1)

Figure 8.3 shows the RMSE (magenta crosses) from n = 2 to 16 modes. For n = 4 compared to
n = 2, we notice an increasing of variance and RMSE even though the ensemble minimal error
decreases. This confirms our previous analysis. The modes 3 and 4 must be strongly related to
the dynamics of higher-order modes. As such, the dynamics of modes 3 and 4 involve important
random energy fluxes which increases the variance. In contrast, the variance and the RMSE is much
lower for n = 8. With more modes, a larger part of the energy can be deterministically transferred
reducing the variance and hence the RMSE. In this case, a lower variance is better because it comes
with a better resolution of the ROM. At a given RMSE – a given error amplitude of the system –
the spreading has to be as large as possible to be as close as possible to the reference. Equation
8.4.1 also expresses this geometric constraint: a larger variance means a smaller bias and thus an
ensemble centered closer to the reference. Furthermore, for data assimilation procedures a larger
variance prevents the degeneracy of the filter. Beside the bias (green), the distance between the
reference to the ensemble (magenta line) can be geometrically understood as the minimal distance
i.e. the distance to the closest particle of the ensemble. In an assimilation with Particle Filter (PF)
with a simple model of measurement errors, this particle is the Maximum A Posteriori (MAP).
During the assimilation of a measurement, the RMSE decreases and becomes closer to this minimal
error. Unlike Ensemble Kalman Filter (EnKF), there is no correction and this minimal error is a
lower bound for the error. Figure 8.3 unveils a small minimal distance for every value of n and in
this way confirms the very good UQ skills of the ROM. For n = 16 modes, the results are still good.
Nevertheless, they do not overtake the skills of the 8-mode ROM. This may be due to the relatively
small amount of data exploited to learn the ROM coefficients. Indeed, the multiplicative noise is
described by O(n4) coefficients (O(105) for n = 16). A larger learning set is hence necessary.

We have also applied our algorithm to snapshots derived from a DNS at Reynolds 3900. Two
additional issues arose. First, the flow being much more turbulent, it is very difficult to simulate
a ROM with few modes. Moreover, this data set has been generated with a spatially-unresolved
simulation. For more details, chapter 7 describes this issue with more details and referred to
this data set as Low-Resolution DNS (LR DNS). Accordingly, the data do not exactly follow the
Navier-Stokes equation and deriving a ROM from physics by a Galerkin projection becomes less
accurate. Even with these additional difficulties, Figure 8.4 shows that the ROM stabilizes the
global system. Moreover, modes 3 and 4 of a full-stochastic POD-ROM with 16 modes are able to
spread the ensemble during the 10 last units of time especially to compensate the phase shift of
the mean.

Figure 8.5 displays small ensemble errors (RMSE and minimal error) for the first 15 units of
time (3 vortex sheddings). This suggests that an assimilation procedure would lead to good results
if a measurement were assimilated every 2 or 3 vortex sheddings.
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Figure 8.2: Forecast of the 8 modes for n = 8 modes of a wake flow at Reynolds 300. The dash-dot
black plots are the observed references. The blue lines correspond to the solutions computed with
a standard POD-Galerkin whereas the dashed red ones are computed with the smooth stochastic
ROM (see chapters 6 and 7). From the ensemble simulated according to the full-stochastic POD-
ROM, we have plotted one realization (yellow line), the ensemble mean (green line) and +/−1.96 ×
the standard-deviation (shaded gray). The initial condition at t = 0 is common to all methods.
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Figure 8.3: Normalized error for n = 2, 4, 8 and 16 modes of a wake flow at Reynolds
300. The error is normalized by an approximation of the square root of the solution energy:(
‖v‖2(L(Ω))d +

∑N
i=1 λi

)1/2

. The dash black plots indicate the error associated with the mode

truncation :
(∑N

i=n+1 b
2
i

)1/2

. The blue lines correspond to the solutions computed with a stan-
dard POD-Galerkin whereas the dashed red ones are computed with the smooth stochastic ROM
(see chapters 6 and 7). From the ensemble simulated according to the full-stochastic POD-ROM,
we have plotted the errors of one realization (yellow line); the ensemble bias (green line); 1.96 ×
the standard-deviation (shaded gray); the ensemble RMSE (magenta crosses); and the minimal
distance to the reference (magenta line). The initial condition at t = 0 is common. The normalized
error considering only the time mean velocity is about 0.93 and is thus not visible in the Figure.
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Figure 8.4: Forecast of the first 4 modes with for n = 16 modes of a wake flow at Reynolds 3900.
The dash-dot black plots are the observed references. The blue lines correspond to the solutions
computed with a standard POD-Galerkin whereas the dashed red ones are computed with the
smooth stochastic ROM (see chapters 6 and 7). From the ensemble simulated according to the
full-stochastic POD-ROM, we have plotted one realization (yellow line), the ensemble mean (green
line) and +/ − 1.96 × the standard-deviation (shaded gray). The initial condition at t = 0 is
common to all methods.
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Figure 8.5: Normalized error for n = 2, 4, 8 and 16 modes of a wake flow at Reynolds
3900. The error is normalized by an approximation of the square root of the solution energy:(
‖v‖2(L(Ω))d +

∑N
i=1 λi

)1/2

. The dash black plots indicate the error associated with the mode

truncation :
(∑N

i=n+1 b
2
i

)1/2

. The blue lines correspond to the solutions computed with a stan-
dard POD-Galerkin whereas the dashed red ones are computed with the smooth stochastic ROM
(see chapters 6 and 7). From the ensemble simulated according to the full-stochastic POD-ROM,
we have plotted the errors of one realization (yellow line); the ensemble bias (green line); 1.96 ×
the standard-deviation (shaded gray); the ensemble RMSE (magenta crosses); and the minimal
distance to the reference (magenta line). The initial condition at t = 0 is common. The black solid
line at the top is the error considering only the time mean velocity.
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8.5 Conclusion

In this chapter, we have derived a random conservative Navier-Stokes representation based on the
modeling under location uncertainty. After explaining its algebraic structure, we showed that this
model conserves the energy of each realization. The energy dissipated by the inhomogeneous and
anisotropic diffusion backscatters to the solution as variance through a skew-symmetric multiplica-
tive noise. To derive a ROM, the solution is expressed in a finite dimensional basis. The energy
fluxes between the resolved modes and toward the unresolved modes are maintained by the joint
effect of noise and diffusion but the energy backscatterings from the unresolved modes toward the
resolved modes are lost. This energy leak can be worked around. However, we preferred to keep
this structure to enable the direct cascade toward the viscous scales. In the context of POD-ROM,
a set of statistics have been derived to estimate the noises and diffusion parameters. These esti-
mators rely on the physical structure of our stochastic Navier-Stokes model, the processing of the
residual velocity – the velocity component not represented by the resolved modes – and, a partial
fitting of one realization of the resolved modes’ evolution. Despite their low computational costs,
these statistics enable to estimate the influence of an unresolved inhomogeneous time-uncorrelated
velocity. All these correlation parameters, the spatial modes and the coefficients of the ROM are
estimated on a learning set derived from DNS simulations of wake flows at Reynolds 300 and 3900.
Ensembles are then forecast from these stochastic ROMs. The UQ skills are excellent especially
at Reynolds 300. The variability of stable modes is randomly maintained by the joint effect of
diffusion and multiplicative noise. This keeps the ensemble very close to the reference. Further-
more, this random forcing naturally adapts the spreading to the amount of interactions that can
be resolved deterministically. Indeed, the variance is larger, when energy can only be randomly
transferred whereas the variance is lower when these fluxes can be resolved deterministically.

In the near future, we would like to compare the UQ skills of our POD-ROM on larger data sets
with a deterministic POD-ROM with random initial conditions and other stochastic POD-ROMs.
The needed ensemble size could also been discussed. Finally, a filtering procedure will probably be
implemented.

Appendix

8.A Navier-Stokes model under location uncertainty

The following derivation is inspired of a proof of Mémin (2014) reproduced in chapter 2, originally
introduced by Mikulevicius and Rozovskii (2004). Most conservation laws of mechanics state that a
variation of an extensive quantity,

∫
V(t)

ρ
(
Θ+σΘḂ

)
, is due to some external actions. We explicitly

make the associated specific property, Θ + σΘḂ, appear to simplify the following development.
Moreover, the component σΘḂ expresses a possible time-uncorrelated component of this intensive
quantity. For instance, the property Θ+σΘḂ could express the specific internal energy in the first
principle or the velocity components in the conservation of linear momentum. All these balances
can be expressed as:

d

∫
V(t)

ρ
(
Θ + σΘḂ

)
=

∫
V(t)

dtFΘ. (8.A.1)

The left-hand term must be interpreted in a distribution sense, the small-scale velocity, σΘḂ,
being non-continuous. For every test function h, we have:∫

R+

h(t)d

∫
V(t)

ρΘ −
∫
R+

dh

dt
(t)

∫
V(t)

ρσΘdBt =

∫
R+

h(t)

∫
V(t)

dtFΘ. (8.A.2)

Both sides of this equation must have the same structure and the forces can be written as:∫
R+

h(t)

∫
V(t)

dtFΘ = −
∫
R+

dh

dt
(t)

∫
V(t)

ρσΘdBt +

∫
R+

h(t)

∫
V(t)

(ηΘdt+ γΘdBt) . (8.A.3)
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The right-hand first term must compensate for the white-noise distributional differentiation of
(8.A.2), whereas the last term of (8.A.3) provides the structure of the forces under location uncer-
tainty.
The transport equation applied to the ρΘ and the continuity equation Dtρ+ ρ∇·w?dt = 0 give:

d

∫
V(t)

ρΘ =

∫
V(t)

(Dt (ρΘ) + ρΘ∇ ·w?dt) , (8.A.4)

=

∫
V(t)

(
ρDtΘ +DtρΘ + d

〈∫ t

0

Dt′ρ,

∫ t

0

Dt′Θ

〉
+ ρΘ∇ ·w?dt

)
, (8.A.5)

=

∫
V(t)

ρDtΘ, (8.A.6)

where all quadratic cross-variation evaluated in Lagrangian coordinates is zero. This result being
true for any volume V(t) , we can remove the integral and use the previous results (8.A.2) and
(8.A.3) :

DtΘ =
1

ρ
ηΘdt+

1

ρ
γΘdBt. (8.A.7)

Then the formula (2.2.10) of chapter 2 yields:

DtΘ = −tr

(
(σT∇)

(
1

ρ
γΘ

))
dt+

1

ρ
ηΘdt+

1

ρ
γΘdBt. (8.A.8)

Then, we apply this general relation to each component of the velocity Θ + σΘdBt = wi +
σi•dBt. The pressure is decomposed into a component continuous in time p and time-uncorrelated
component ṗσ = dtpσ

dt . Accordingly the forcings read:{
ηwi = −ρ(f ×w)i + ρgδi3 − ∂ip+ ρν∆wi,
γwi = −ρ(f × σdBt)i − ∂idtpσ + ρν∆(σdBt)i.

(8.A.9)

Then, from (8.A.8) the stochastic Navier-Stokes model under location uncertainty is:

Dtw + f × (wdt+ σdBt) = gdt− 1

ρ
∇(pdt+ dtpσ) + ν∆(wdt+ σdBt)

− tr ((σT∇) (−f × σ + ν∆σ)) dt+ dt

〈∫ t

0

(σdBt′ · ∇) ,

∫ t

0

1

ρ
∇dt′pσ

〉
. (8.A.10)

In this paper, we neglect the time-uncorrelated pressure ṗσ and all the correlations of the second
line. After this, the Navier-Stokes representation reads:

Dtw + f × (wdt+ σdBt) = gdt− 1

ρ
∇pdt+ ν∆(wdt+ σdBt). (8.A.11)

8.B Energy dissipation
Hereafter, we neglect the boundary conditions. This assumption which is valid for wake flows,
if the spatial domain is sufficiently large, enables us to proceed easily to integrations by parts.
Moreover, we assume that the incompressibility conditions ∇·w? = 0 and ∇·σ = 0 hold. We first
apply the Itō formula to the local kinetic energy to obtain

d

(
1

2
‖w‖2

(L2(Ω))d

)
=

∫
Ω

(
dtw

Tw +
1

2
dt < w

T ,w >

)
. (8.B.1)

Using the projected Navier-Stokes model (8.2.4) without viscosity, weight and pressure

dtw = Πφ [(dM)(w)] = Πφ [(F (w) + C(w,w)) dt+ (GdBt)(w)] , (8.B.2)
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the Itō term is straightforward:∫
Ω

dt < w
T ,w > =

∑
k

‖Πφ [(G•k)(w)]‖2(L2(Ω))d dt. (8.B.3)

From the definition (8.2.5) of the projection operator Πφ, we can express the above quantity with
the ROM coefficients:

d

dt

∫
Ω

< wT ,w > =
∑
k

n∑
p=1

(∫
Ω

φp · (G•k)(w)

)2

, (8.B.4)

=
n∑
p=1

∑
k

(
n∑
q=1

bq

∫
Ω

φp · (G•k)(φq)

)2

, (8.B.5)

= bT

(
1

2

n∑
p=1

α•p•α
T

•p•

)
b. (8.B.6)

By (8.B.1) again, the first term of the energy budget (8.B.1) reads∫
Ω

dtw
Tw =

∫
Ω

Πφ [(dM)(w)] ·w. (8.B.7)

To remove the projection operator, Πφ, we first exploit the symmetry of the projection operator
and then the fact that w is already in the reduced subspace:∫

Ω

dtw
Tw =

∫
Ω

(dM)(w) ·Πφ [w] , (8.B.8)

=

∫
Ω

(dM)(w) ·w, (8.B.9)

=

∫
Ω

(F (w)dt+ C(w,w)dt+ (GdBt)(w))
T
w, (8.B.10)

=

∫
Ω

(
∇·
(a

2
∇wT

)
dt+ ((w? + σdBt) · ∇)wT

)
w, (8.B.11)

= −1

2

∫
Ω

d∑
q=1

(∇wq)T a∇wqdt+
1

2

∫
Ω

∇·(w?dt+ σdBt)︸ ︷︷ ︸
=0

‖w‖22, (8.B.12)

= −1

2

∫
Ω

∑
k

‖(σ•k · ∇)w‖2 dt, (8.B.13)

= −1

2

∑
k

‖(σ•k · ∇)w‖2(L2(Ω))d dt. (8.B.14)

Then, we decompose the multiplicative noise into two components: one in the reduced subspace
and one in the orthogonal of the reduced subspace.

(σ•k · ∇)w = (G•k)(w) = Πφ [(G•k)(w)] + Π⊥φ [(G•k)(w)] , (8.B.15)

where Π⊥φ = Id−Πφ is the projector on the orthogonal of the reduced subspace. By orthogonality,
the norm (8.B.14) can be split as follows:∫

Ω

dtw
Tw = −1

2

∑
k

‖Πφ [(G•k)(w)]‖2(L2(Ω))d dt

−1

2

∑
k

∥∥Π⊥φ [(G•k)(w)]
∥∥2

(L2(Ω))d
dt. (8.B.16)

Finally, using the expression of the Itō term (8.B.3), the kinetic energy budget (8.B.1) simplifies
to:

d

dt

(
1

2
‖w‖2

(L2(Ω))d

)
= −1

2

∑
k

∥∥Π⊥φ [(G•k)(w)]
∥∥2

(L2(Ω))d
< 0. (8.B.17)
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For a thorough mathematical analysis, we can precise the meaning of the norm appearing in
the right-hand sides of (8.B.3), (8.B.6), (8.B.14), (8.B.16) and (8.B.17). The functions B 7→ σB,
B 7→ (GB)(h) and B 7→ (HB) are infinite-dimensional operators from

(
L2(Ω)

)d to (L2(Ω)
)d (for

a function h of
(
L2(Ω)

)d smooth enough). Accordingly, the right-hand sides of (8.B.3), (8.B.14),
(8.B.16) and (8.B.17) are Hilbert-Schmidt norms. The infinite-dimensional operatorsB 7→ (αB)V ,
B 7→ (θB) map

(
L2(Ω)

)d to Rn (for any vector V ∈ Rn+1). So, the right-hand sides of (8.B.6)
are canonical norms of (L2(Ω))n+1.

8.C Estimation formulas

We recall that:

dbi =
(
ii +

(
f̆•i + l•i

)T
b+ bTc••ib

)
dt+ (α•i•dBt)

T
b+ (θi•dBt) . (8.C.1)

Therefore, the constraints
∫ T

0
bk = δk0 lead to:

< bi,

∫ t

0

((θj• +α0j•)dBs) > =
n∑
k=1

<

∫ t

0

(αki•dBs) bk,

∫ t

0

((θj• +α0j•)dBs) >

+ <

∫ t

0

((θi• +α0i•)dBs) ,

∫ t

0

((θj• +α0j•)dBs) >, (8.C.2)

=
n∑
k=1

(∫ T

0

bk

)
αki• · (θj• +α0j•) + T (θi• +α0i•) · (θj• +α0j•),

(8.C.3)
= T (θi• +α0i•) · (θj• +α0j•). (8.C.4)

We denote dX̃
x 4

= σ(x)dBt. Its realizations are the Eulerian residual velocities up to the time step
(v(x, t) − w(x, t))∆t. Then the definition of ((θj• +α0j•)dBs) and the properties of quadratic
covariations give the first type of estimator:

(θi• +α0i•)(θj• +α0j•) =
1

T

∫ T

0

d < bi,

∫ t

0

(θj• +α0j•)dBs >, (8.C.5)

=
1

T

∫ T

0

d < bi,

[∫
Ω

φj• ·
(
−
(
X̃
x · ∇

)
φ0 + ν∆X̃

x
)]

>, (8.C.6)

=
1

T
P− lim

∆t→0

T∑
tk=0

(dbi)(tk)

[∫
Ω

φj ·
(
−
(

dX̃
x · ∇

)
φ0 + ν∆dX̃

x
)]

(tk)

(8.C.7)

= Kj0

[
1

T
P− lim

∆t→0

T∑
tk=0

(dbi)(tk)dX̃
x

(tk)

]
, (8.C.8)

where we used the linearity of the operator:

Kj0[ξ]
4
=

∫
Ω

φj · (− (ξ · ∇)φ0 + ν∆ξ) . (8.C.9)
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Again by the ROM (8.C.1), the orthogonality of the chronos yields:∫ T

0

bpd < bi,

∫ t

0

((θj• +α0j•)dBs) > =

∫ T

0

n∑
k=1

bpd <

∫ t

0

(αki•dBs) bk,

∫ t

0

((θj• +α0j•)dBs) >

+

∫ T

0

bpd <

∫ t

0

((θi• +α0i•)dBs) ,

∫ t

0

((θj• +α0j•)dBs) >,
(8.C.10)

=
n∑
k=1

(∫ T

0

bpbk

)
αki• · (θj• +α0j•)

+

(∫ T

0

bp

)
(θi• +α0i•) · (θj• +α0j•), (8.C.11)

= Tλpαpi• · (θj• +α0j•). (8.C.12)

This results leads to the second type of estimator:

αpi• · (θj• +α0j•) =
1

λpT

∫ T

0

bpd < bi,

[∫
Ω

φj ·
(
−
(
X̃
x · ∇

)
φ0 + ν∆X̃

x
)]

>, (8.C.13)

=
1

λpT
P− lim

∆t→0

T∑
tk=0

bp(tk)(dbi)(tk)

[∫
Ω

φj ·
(
−
(

dX̃
x · ∇

)
φ0 + ν∆dX̃

x
)]

(tk),

(8.C.14)

= Kj0

[
1

λpT
P− lim

∆t→0

T∑
tk=0

bp(tk)(dbi)(tk)dX̃
x

]
. (8.C.15)

The last estimator derivation is similar replacing (θj• +α0j•) above by αqj•:

αpi• ·αqj• = − 1

λpT

∫ T

0

bpd < bi,

[∫
Ω

φj ·
((
X̃
x · ∇

)
φq

)]
>, (8.C.16)

= − 1

λpT
P− lim

∆t→0

T∑
tk=0

bp(tk)(dbi)(tk)

[∫
Ω

φj ·
((

dX̃
x · ∇

)
φq

)]
(tk), (8.C.17)

= Kjp

[
− 1

λpT
P− lim

∆t→0

T∑
tk=0

bp(tk)(dbi)(tk)dX̃
x

]
, (8.C.18)

where

Kjq[ξ]
4
= −

∫
Ω

φj ·
(
(ξ · ∇)φq

)
. (8.C.19)



Chapter 9

Effects of smooth flows on tracer
gradients and tracer spectra

Abstract
During a finite-time advection, the norm of tracer gradients can increase or decrease, depending
on the angle between flow gradients and initial tracer gradients. When the correlation between
these two fields is weak – either because the tracer has a negligible back effect on the flow or
because a strong spatial smoothing has been performed – the averaged squared norm of tracer
gradients can only increase. Moreover, the local growth rate of the tracer gradients is independent
of the initial tracer distribution. As presented, this growth rate is directly related to FTLE and
mesochronic velocity. A simple model is then proposed to locally and globally describe the time
evolution of the growth rate in the case of a stationary or slowly time evolving Eulerian velocity
field. The key processes are locally uniform shears and foldings around stationary vortices. Finally,
the squared norm mean of tracer gradients controls and specifies the time evolution of the spectral
tail and its slope. Accordingly, the advection time and low-pass filter width can be determined
for practical applications using a Lagrangian advection method. This analysis suggests a practical
eddy diffusivity parameterization. Numerical experiments on a toy model and using satellite data
illustrate these developments.

9.1 Introduction
Since the first images from space, the attention of both theoreticians and remote sensing scien-
tists has been triggered by the abundance of various ocean tracer patterns and signatures in the
mesoscale and sub-mesoscale (1-50 km) ranges (e.g. Gower et al., 1980; Lesieur and Sardouny,
1981). To date, global direct quantification of horizontal dispersion and mixing at such scales is
still not available. Yet, from precise measurements of the ocean topography and its related dy-
namics, significant progress has been made. Nowadays, combined satellite altimeter measurements
satisfactorily detail the large scale ocean dynamics. The ocean’s mesoscale (10-50 km) and subme-
soscale (< 10 km) variability and energy are still more challenging to map with conventional radar
altimeters, mainly because of the narrow illuminated swath of each instrument, regardless of the
orbital configuration (Dufau et al., 2016).

Nonetheless, a now-common strategy is to derive small-scale tracer structures and so-called
Lagrangian coherent structures, from the available smooth altimetry-derived velocities (e.g. Price
et al., 2006; Lehahn et al., 2007). Indeed, using a Lagrangian-dynamical framework, an initial
larger-scale tracer field can be advected on higher-resolution grids, generating much smaller-scale
patterns (Aref, 1984; Pierrehumbert and Yang, 1993). Typical moderate- to large-scale ocean
cyclonic and anti-cyclonic eddies trap and advect fluid parcels over weeks to months. As pictured,
with time, these fluid parcels with different origins, temperature, salinity and possibly different
biogeochemical properties and/or contaminant loadings, come closer, to sharpen fronts but also to
possibly dilute their properties, and promote transformative chemical reactions. To help trigger
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Figure 9.1: Deformation of an air layer in the atmosphere after 6 hours, 12 hours, 24 hours and 36
hours respectively. A simple barotropic model is used to simulate the flow (Welander, 1955).

these processes, stirring effect first characterizes the development of elongated structures, well
illustrated by Welander (1955), using a simple velocity field to produce spectacular distortions,
Figure 9.1. Initial square elements, small compared to the length scale of the deforming flow
field, become subject to translation, rotation and shearing. With time, deformation is significant.
Increasingly long and thin filaments wrap around the eddy, and possibly fold. Folds then appear
where the velocity gradient is perpendicular to the stream direction. Accordingly, at a given scale
of observations, mixing can be associated with processes that act to minimize filament thinning
and dilute sharp differences (gradients).

After a long advection by a smooth and slowly-varying velocity, the expected growth of passive
tracer gradients can be theoretically obtained, as well as its related spectral tail evolution. From
this analysis, local and global diagnoses of stretching and folding can further be developed. From a
practical point of view, using estimated velocities from altimeter-derived sea surface height (SSH)
measurements, the initial tracer field, sea surface temperature (SST) or salinity (SSS), must thus
be low-pass filtered prior to Lagrangian-advection operations. It can then be expected that the
time of advection and the low-pass filter bandwidth are directly linked. Following the proposed
development, an exact relation can indeed be determined. Such an analysis then provides a rigorous
explanation to the heuristic choices used in Dencausse et al. (2014). This can further be compared
to values that can be inferred from the knowledge of the Rossby deformation radius or the mean
squared vorticty (Berti and Lapeyre, 2014).

The section 2 describes the tracer gradients after a finite-time advection, and the associated
stretching and folding diagnoses. In section 3, the averaged tracer gradient norm is shown to control
the tracer spectrum tail. Tools are provided to monitor the aforementioned Lagrangian advection
method. Based on the proposed developments, section 4 rapidly discusses subgrid parametrizations
of large-scale flow simulations.
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9.2 Time evolution for the tracer gradient norm

In this section, we propose exact and approximate results to describe the mean of the gradient
squared norm of an advected tracer T :

‖∇T‖2, (9.2.1)

where the averaging operator • is defined for every function f as follows:

f =
1

S
E
∫
Ω

f, (9.2.2)

Ω ⊂ R2 is the spatial domain and S < ∞ its area. Even though we will mainly focus on deter-
ministic dynamics, the expectation, E, of the above formula enables us to directly generalize our
results to random cases.

9.2.1 Exact flow properties

Given a possibly random velocity field v, the flow x0 7→ φ(x0) is defined as:

φ(x0) = φ(x0, t) = x0 +

∫ t

0

dt′v(φ(x0, t
′), t′). (9.2.3)

For a divergence-free velocity, ∇·v = 0, we have det(∇φT ) = 1, where ∇φT is the spatial gradient

tensor of the flow. Subsequently, the right Cauchy-Green deformation tensor, ∇φT
(
∇φT

)T
,

and its inverse, shall have two real and identical strictly positive eigenvalues. Only the stable
direction, corresponding to the eigenvector associated with the eigenvalue smaller than 1, and the
unstable direction, corresponding to the eigenvector associated with the eigenvalue larger than 1,
are switched. Along the stable (resp. unstable) direction, the distance between two points decreases
(resp. increases). More precisely, a matrix diagonalization leads to:

∇φT
(
∇φT

)T
= P TD−1P with D−1

ii = 1 + α2

(
1− (−1)i

β

α

)
, (9.2.4)

where P is an orthogonal matrix, α2(x0) = 1
2‖∇φ

T ‖2 − 1 > 0 and β2(x0) = α2 + 2, using the
Frobenius matrix norm. The eigenvalues Dii define the Finite Time Lyapunov Exponents (FTLE)
(Pierrehumbert and Yang, 1993; Haller and Yuan, 2000; Thiffeault and Boozer, 2001; Haller, 2005;
Haller and Sapsis, 2011). The largest and the smallest FTLEs are:

Λ =
1

2t
log(D−1

11 ) and − Λ =
1

2t
log(D−1

22 ). (9.2.5)

In particular, when both the largest FTLE, Λ, and the time, t, are large, the term α2 is large and
β/α =

√
1 + 2

α2 is small. This leads to the approximation:

Λ ≈ 1

t
log(α), (9.2.6)

Therefore, the FTLE ridges – often considered as proxies of mixing barriers – coincide with the α
ridges. The Cauchy-Green tensor encodes insightful information on the flow. For instance, it rules
the tracer gradient norm evolution. Noting that at a given time, the transported tracer gradient,
∇T , can be written from the initial gradient field, ∇T0, as:

∇T (x) =∇(T0(φ−1(x))) = [∇φT ]−1(φ−1(x))∇T0(φ−1(x)). (9.2.7)
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Then, using incompressiblity in the variable change and the matrix diagonalization (9.2.4), we get
an exact expression of the averaged squared norm of tracer gradients:

‖∇T‖2 − ‖∇T0‖2 =
1

S
E
∫
Ω

dx ‖∇T (x)‖2 − 1

S
E
∫
Ω

dx0 ‖∇T0(x0)‖2 , (9.2.8)

=
1

S
E
∫
Ω

dx0

∥∥∥[∇φT ]−1(x0)∇T0(x0)
∥∥∥2

− 1

S
E
∫
Ω

dx0 ‖∇T0(x0)‖2 , (9.2.9)

= (∇T0)
T
([
∇φT (∇φT )

T
]−1 − Id

)
∇T0, (9.2.10)

= α2

(1 +
β

α

)
︸ ︷︷ ︸

>0

(
P T∇T0

)2

2
+

(
1− β

α

)
︸ ︷︷ ︸

<0

(
P T∇T0

)2

1

, (9.2.11)

where
(
P T∇T0

)
i
is the i-th component of the vector P T∇T0. Thus, the Cauchy-Green tensor

and the initial tracer gradient completely determine the averaged squared norm of advected tracer
gradients (equation (9.2.10)). To simplify the above expression, we define the angle between the
tracer gradient and the compressive (stable) direction of the direct flow as:

cos(θφT0
) =

(
P T∇T0

)
2

‖∇T0‖2
. (9.2.12)

Finally, we infer the following compact expression:

‖∇T‖2 − ‖∇T0‖2 = ‖∇T0‖2 α2

(
1 +

β

α
cos
(

2θφT0

))
. (9.2.13)

The advection globally increases (decreases) the tracer gradient norm if the initial tracer gradient
is locally close enough to the stable (unstable) direction of the direct flow. This corresponds to
θφT0

close to 0[π] or π
2 [π] respectively. This is modulated by the initial amplitude of the tracer

gradients, α2 and β
α =

√
1 + 2

α2 > 1. It should be noticed that α and β do not explicitly depend
on the tracer.

9.2.2 Decorrelation approximations
Over the space, the angle θφT0

takes different values. If the flow gradients and the initial tracer
gradients are not correlated and are oriented along various angles over the space, the variance of
θφT0

will likely be large (i.e. close to 2π). Then, due to the overlapping, the distribution of 2θφT0
[2π]

over the space becomes close to an uniform law on [0, 2π]. The average over the space of the term
cos
(

2θφT0

)
will become close to zero, and

‖∇T‖2 − ‖∇T0‖2 ≈ ‖∇T0‖2 α2 > 0. (9.2.14)

On average, the tracer gradients will thus always increase by stretching. Figure 9.1 illustrates well
the process. The tracer is completely passive. It can be a dye or an oil spill introduced at time
t = 0. In this case, the tracer and the flow are completely decorrelated and the initial structure of
the tracer is quickly stretched and folded to fill a broad range of scales. In contrast, geophysical
tracers are generally correlated to the flow. This correlation ensues from the previous advection
(from time t = −∞ until t = 0) which had led to the initial tracer T0 and from the non-linear effects.
It is expressed by the angle θφT0

in the right-hand-side integrand of equation (9.2.13) which can
be locally positive or negative. Accordingly, that correlation restricts or reduces locally enhanced
strong gradients. In the Lagrangian advection method (Berti and Lapeyre, 2014; Dencausse et al.,
2014), the tracers – Sea Surface Temperature (SST) or Sea Surface Salinity (SSS) – are not passive.
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The flow and the tracers are correlated. This is the reason of the preservation of the tracers’ very-
large-scale structures such as the background meridional gradient. However, at mesoscales and
submesoscales, the initial tracer and the flow have been decorrelated by the filtering. So, our result
(9.2.14) predicts a strengthening of mesoscale and submesoscale tracer gradients. This is exactly
what is happening in the works of Berti and Lapeyre (2014) and Dencausse et al. (2014).

By assuming again no correlation between the initial tracer and the flow, the formula (9.2.14)
can be further approximated by:

‖∇T‖2

‖∇T0‖2
≈ 1 + α2. (9.2.15)

Before modeling the time dependance of the averaged growth rate, α2, we describe the links
between the mixing diagnostic introduced by Mezić et al. (2010) and our exact result (9.2.13).

9.2.3 Link with the mixing criterion of Mezić et al. (2010)
As in Mezić et al. (2010), the mesochronic velocity is defined as the velocity time-averaged along
a trajectory:

v̆(x0, t)
4
=

1

t

∫ t

0

dt′V (x0, t
′) =

φ(x0)− x0

t
, (9.2.16)

where V is the Lagrangian velocity. As derived by the authors, the incompressibility of the flow
yields:

1 = det(∇φT ) = det(Id + t∇v̆T ) = 1 + t tr (∇v̆T ) + t2 det (∇v̆T ) . (9.2.17)

The mesochronic velocity is thus an incompressible flow with the following structure:

t det (∇v̆T ) = −tr(∇v̆T ) = −∇·v̆ 6= 0. (9.2.18)

The definition of the local growth rate, α2 thus reads:

α2 4
=

1

2
‖∇φT‖2 − 1, (9.2.19)

=
1

2
‖Id + t∇v̆T‖2 − 1, (9.2.20)

= −t (tdet (∇v̆T )) +
t2

2
‖∇v̆T‖2 , (9.2.21)

=
t2

2

(
(∂xŭ− ∂y v̆)

2
+ (∂yŭ+ ∂xv̆)

2
)
. (9.2.22)

It expresses the strain of the mesochronic velocity. Then, let us introduce the mesochronic vorticity
ω̆
4
= ∇⊥ · v̆. Note that the mesochronic vorticity is not the vorticity time-averaged along a

trajectory. With this notation, the incompressibility constraint (9.2.18) enables us to rewrite
equation (9.2.22) as a function of the determinant det

(
∇v̆T

)
:

α2 =
t2

2

(
(∇·v̆)2 − 4 det

(
∇v̆T

)
+ ω̆2

)
, (9.2.23)

=
t2

2

(
t2 det

(
∇v̆T

)(
det
(
∇v̆T

)
− 4

t2

)
+ ω̆2

)
. (9.2.24)

Mezić et al. (2010) then call mesoelliptic areas, areas over which the tracer gradients turn while
keeping their norm unchanged, and mesohyperbolic areas, areas overwhich the gradients increase
or decrease. According to (9.2.13), mesoelliptic regions are thus associated with zero growth rate
α2, and expression (9.2.24) leads to the equality

det
(
∇v̆T

)(
det
(
∇v̆T

)
− 4

t2

)
= −

(
ω̆

t

)2

6 0. (9.2.25)
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We thus retrieve, following a different approach, the criterion introduced by Mezić et al. (2010).
Indeed, the authors separate mesohyperbolic areas from mesoelliptic areas depending on the sign
of the following criterion:

det (∇v̆T )

(
det (∇v̆T )− 4

t2

)
. (9.2.26)

Here, our developments provide further understandings. For the mesoellipticity case, equation
(9.2.25) relates the criterion (9.2.26) to the mesochronic vorticity ω̆. Conversely, making use of
(9.2.24) and (9.2.22), the separation between mesoelliptic and mesohyperbolic behaviors is given
by the sign of:

t2 det
(
∇v̆T

)(
det
(
∇v̆T

)
− 4

t2

)
= 2

(α
t

)2

− ω̆2, (9.2.27)

= (∂xŭ− ∂y v̆)
2

+ (∂yŭ+ ∂xv̆)
2 − ω̆2. (9.2.28)

This interpretation then becomes reminiscent to the Okubo-Weiss criterion (Okubo, 1970; Weiss,
1991; Shivamoggi and van Heijst, 2011). Indeed, this separation explicits the competition between
the strain and the rotation of the mesochronic velocity, encoded by α and ω̆, respectively.

The mesohyperbolicity corresponds to a stretching. It occurs when two points become closer
or diverge. This property is naturally encoded in:

‖φ−1(x+ δx)− φ−1(x)‖2 ≈ ‖[∇(φ−1)T (x)]δx‖2 = δxT
(
[∇φT (y)] [∇φT (y)]

T
)−1

δx,(9.2.29)

where y = φ−1(x). Mixing can occur when folding is associated with stretching. Folding is then
obviously associated with a three-points kinematic property. First, the three points are separated
by stretching, creating a filament. Then, the filaments folds bringing the two opposite points
closer again. This folding can trap an area having a distinct tracer value creating strong tracer
gradients. To identify mixing zones, Mezić et al. (2010) thus separate two types of mesohyper-
bolicity: the couples of points which have turned (δxT (φ(x+ δx)− φ(x)) < 0) and the others
(δxT (φ(x+ δx)− φ(x)) > 0). An area where both types of mesohyperbolicity are present and
adjacent must have been folded and hence corresponds to a mixing zone. To separate these two
types of mesohyperbolicity, the authors study the eigenvalues of the evolution matrix (∇φT )

T in-
stead of its singular values. Note however that folding could also be studied directly relying on the
Cauchy-Green tensor, [∇φT ] [∇φT ]

T Indeed,(
φ−1(x+ δx1)− φ−1(x)

)T (
φ−1(x+ δx2)− φ−1(x)

)
≈ δxT1

(
[∇φT (y)] [∇φT (y)]

T
)−1

δx2,
(9.2.30)

where y = φ−1(x). Adequately normalized, this scalar product defines an angle between a pair
of points. If the angle is smaller than the initial angle, defined by δxT1δx2, folding occurs. Such
criterion can be analytically expressed with eigenvectors and eigenvalues of the Cauchy-Green
tensor.

To note, few other methods exist in the literature to diagnose folding and its relation to stretch-
ing. For instance, Budišić and Thiffeault (2015) study wrapping of advected points with braids.
This mathematical tool provides simple visualizations of the number of winding of given sets of
advected points relatively to other sets of points. As introduced, the Finite Time Braids Expo-
nents (FTBE) then quantify the increasing rate of the number of windings. Following an other
approach, Ma et al. (2016) directly measure folding of material lines through an alanlysis of their
curvature variations. In the following, we relate folding, stretching and gradient of the curfacture
of streamlines in the case of a slowly varying Eulerian velocity field.

9.2.4 Time dependance
In the work of Dencausse et al. (2014), the time resolution of Eulerian velocity is relatively low.
This is a common feature of velocity estimates from space. Today, their typical temporal resolution
is about 10 days. Moreover, being associated with geostrophic dynamics, the velocity correlation
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time is generally about 1 month. Therefore, the velocity field does not vary much during an
advection of one or two weeks. Hence, the velocity will be assumed stationary. This assumption
determines a specific form for the flow. In particular, the flow is not chaotic (Thiffeault, 2004). The
analyis will first separate between two typical cases: open straight streamlines and closed curved
streamlines.

Locally uniform shear

Let us first focus on locally straight streamlines (i.e. streamlines with zero curvature). In such
a case, the strengthening of tracer gradients results from a velocity shear, similarly to usual
infinitesimal-time stretching. We denote by x the local axis of the straight streamline and by
vx = v

‖v‖ · v = ‖v‖, the velocity component on this direction. The incompressibility imposes(
v

‖v‖
· ∇
)
vx = ∂xvx =∇ · v = 0. (9.2.31)

Thus, since the Eulerian velocity is stationary, the Lagrangian velocity is stationary as well:

dV

dt
(x0, t) =

d

dt
(v (φ(x0, t))) = ((v · ∇)v) (φ(x0, t)) = 0, (9.2.32)

and the flow simplifies to

φ(x0, t) = x0 +

∫ t

0

dt′V (x0, t
′) = x0 + v(x0)t. (9.2.33)

This so-called ballistic regime is superdiffusive (Vallis, 2006; Falkovich et al., 2001). Taking the
gradient of the above expression and, using the incompressibility again, the stretching rate reads

α2 4=
1

2
‖∇φT‖2 − 1 =

1

2
‖Id +∇vT t‖2 − 1 =

t2

2
‖∇vT‖2 = t2

1

2

(
v⊥

‖v⊥‖
· ∇‖v‖

)2

︸ ︷︷ ︸
=1/τ2

s

, (9.2.34)

where the last equality comes from the orientation of velocity gradients imposed by (9.2.31). The
time τs will be referred to as the shearing time.

Stationary convective cells

Close to vortices, streamlines are often closed or at least curved, and the previous development
cannot be applied. For this purpose, we now focus on closed streamlines. Since the flow is in-
compressible, fluid parcels cannot accumulate. Therefore, those streamlines define loops, called
stationary convective cells (Falkovich et al., 2001), where fluid parcels rotate periodically. Accord-
ingly, the flow and thus the Lagrangian velocity are periodic and the flow is called subdiffusive
(Vallis, 2006; Falkovich et al., 2001). This geometry can nevertheless create strong stretching in
finite-time. Indeed, two concentric closed streamlines can define Lagrangian loops associated with
different rotation periods. Rotations after rotations, a fluid parcel on the fastest loop will devi-
ate from its initial neighboring parcel on the slowest loop. So, this differential rotation creates
stretching. Moreover, it also induces folding. A filament distributed perpendicular to streamlines
will be deformed by the continuous differential rotation. After a finite time, the filament will wrap
around the convective cell creating spirals. Lehahn et al. (2007) illustrate a similar process with
the action of stable and unstable manifolds on phytoplankton patches. To mathematically express
the stretching induced by those convective cells, we propose to write the flow as follows:

φ(x0) = φ(x0, t) ≈ x0 + g(x0, f(x0)t), (9.2.35)

where g is 1−periodic with respect to its second variable and f(x0) is the local temporal frequency.
Accordingly, for a point initially on x0 in a closed streamline C, the trajectory t 7→ φ(x0, t) runs
from x0 to x0 through a path P embedded in C with a temporal period 1/f(x0) defined by:

1

f(x0)
=

∫ 1/f(x0)

0

dt =

∫
P

dl

‖v‖
=

∮
C

v

‖v‖2
· dl =

∫∫
A
∇⊥ ·

(
v

‖v‖2

)
dA, (9.2.36)
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where ∇⊥· denotes the two dimensional-curl and A the surface delimited by C. As the two last
integrals only depend on the streamline C and not on the precise initial condition x0, the local
frequency inherits from the same invariance. Since the Eulerian velocity is stationary, the points
x0 and φ(x0, t) are on the same streamline, and thus:

f(φ(x0, t)) = f(x0). (9.2.37)

This frequency can be approximated by a local angular velocity θ̇, estimated using the streamline
curvature, denoted 1/R, as:

f ≈ θ̇

2π
≈ ‖v‖

2πR
=

1

2π

[
(v · ∇)

v

‖v‖

]
· v

⊥

‖v⊥‖
. (9.2.38)

In practice, since the exact formula (9.2.36) can be difficult to evaluate numerically, we will instead
use the above approximation. In the following derivation, we however keep the exact definition
(9.2.36). In particular, we still assume the frequency invariance along the streamline (9.2.37). The
first coordinate of g encodes the spatial dependency of the loop (vectorial) amplitudes. Note that
the model (9.2.35) is very general as it only assumes periodicity of Lagrangian trajectories. It
enables us to partially decouple flow variations associated with different streamlines (i.e. different
local frequencies f) and flow variations associated with different temporal phase shift along the
streamline (i.e. different times t). To some extent, this second type of variation can be understood
as different initial conditions in the same streamline, due to the periodicity assumption. Similar
decomposition ideas were proposed by Thiffeault (2004) for chaotic (non-periodic) flows. Denotes:

(∂1g
T )(z1, z2) =∇z1

(gT (z1, z2)) and (∂2g)(z1, z2) = ∂z2 (g(z1, z2)) . (9.2.39)

Note that both terms are 1−periodic with respect to its second variable. By the frequency invari-
ance (9.2.37), we can replace f(x0) by f(φ(x0, t)) in the model (9.2.35):

φ(x0, t) = x0 + g(x0, f(φ(x0, t))t). (9.2.40)

Then, replacing back f(φ(x0, t)) by f(x0) after evaluating the gradient, the stretching of the flow
reads:

∇φT (x0, t) = Id + (∂1g
T )(x0, f(φ(x0, t))t)

+t ∇φT (x0, t) ∇f(φ(x0, t)) (∂2g
T )(x0, f(φ(x0, t))t), (9.2.41)

= Id + (∂1g
T )(x0, f(x0)t)

+t ∇φT (x0, t) ∇f(φ(x0, t)) (∂2g
T )(x0, f(x0)t). (9.2.42)

In the last equality, the second right-hand term is time-periodic and thus bounded. If we neglect
its time variation, it writes

(∂1g
T )(x0, f(x0)t) ≈ (∂1g

T )(x0, 0) =∇φT (x0, 0)− Id = 0. (9.2.43)

Introducing the original periodic model (9.2.35) into its definition, the Lagrangian velocity V reads:

V (x0, t) =
dφ(x0, t)

dt
= f(x0)(∂2g)(x0, f(x0)t). (9.2.44)

Finally, the flow gradient expression (9.2.42) can be rewritten using equations (9.2.43) and (9.2.44):

∇φT (x0, t) = Id + t ∇φT (x0, t)
∇f(φ(x0, t))

f(x0)
V T (x0, t) , (9.2.45)

= Id + t ∇φT (x0, t)

(
1

f
∇f vT

)
(φ(x0, t)), (9.2.46)

where the frequency invariance (9.2.37) was used in the last equality. After this, we factorize terms
in ∇φT ,

Id =∇φT (x0, t)

(
Id − t

(
1

f
∇f vT

)
(φ(x0, t))

)
. (9.2.47)
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Then, we inverse the matrix equation and remap with the inverse flow, φ−1:

(∇φT )
−1 (

φ−1(x, t), t
)

= Id − t
(

1

f
∇f vT

)
(x). (9.2.48)

Note that since the frequency is a function of the streamline (9.2.37),

0 =
d

dt
(f(x0)) =

d

dt
(f (φ(x0, t))) = (v · ∇f) (φ(x0, t), t). (9.2.49)

Therefore, the frequency gradient is orthogonal to the velocity, and

‖∇f‖ ≈
∣∣∣∣ v⊥‖v⊥‖ · ∇f

∣∣∣∣ . (9.2.50)

As the eigenvalues of the flow gradients ∇φT are the inverse of one another, this matrix and its
inverse have the same Frobenius norm. So, the time dependance of the growth rate in the final
grid (points x) follows from its definition and from (9.2.48):

α2
(
φ−1(x, t), t

) 4
=

1

2
‖∇φT

(
φ−1(x, t), t

)
‖2 − 1, (9.2.51)

=
1

2
‖ (∇φT )

−1 (
φ−1(x, t), t

)
‖2 − 1, (9.2.52)

= −
(
t

f
∇f · v

)
︸ ︷︷ ︸
=0 by (9.2.49)

(x) +

(
t2

2f2
‖∇f‖2‖v‖2

)
︸ ︷︷ ︸

=1/τ2
f

(x), (9.2.53)

where τf will be referred to as the folding time. As (9.2.15) only involves the spatial average of α2,
we can further simplify the model by spatial integration. By integrating equation (9.2.53) over a
specific domain Ωf , we can conclude with the variable change defined by the incompressible flow:∫

Ωf

dx0 α
2(x0, t) =

∫
φ(Ωf )

dx0 α
2
(
φ−1(x, t), t

)
= t2

∫
φ(Ωf )

dx

τ2
f (x)

. (9.2.54)

The subspace Ωf is a subset of Ω where the concept of wrapping convective cells is relevant. Since
we considered closed streamlines, we assume that φ(Ωf ) = Ωf . This subspace will be properly
defined in the following.

Global time dependence

In order to combine the folding time, τf , and the shearing time, τs, we locally define a local
stretching time τ :

τ(x0)
4
=

{
τf (x0) if R(x0) 6 L

2

τs(x0) if R(x0) > L
2

, (9.2.55)

where 1/R(x0) is the streamline curvature on x0, L the average diameter of a vortex. Following
the previous models of shearing and folding, we model the stretching rate by:

α =
t

τ
. (9.2.56)

Where gradients are created by a uniform shear, streamlines are straight, the curvature 1/R is
weak and τ = τs, whereas, where the gradients strengthen by wrapping, the curvature is larger
and τ = τf . To estimate the average vortices diameter L, we make uses of a toy model:

v = U

(
cos
(

2π
λ x
)

sin
(

2π
λ y
)

sin
(

2π
λ x
)

cos
(

2π
λ y
)) . (9.2.57)
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The vortices diameter is identified to the size of the convective cell:

L =
λ

2
=

(
6π2‖v‖2

‖∇vT‖2

)1/2

. (9.2.58)

We use this diameter estimator in the general case.
The condition (9.2.55) well defines a space partition Ω = Ωf ∪Ωs to integrate the growth rate

α2:

α2 =

(
t

τG

)2

with
1

τ2
G

4
=

(
1

τ2

)
=

1

S
E

(∫
Ωf

dx

τ2
f (x)

+

∫
Ωs

dx0

τ2
f (x0)

)
, (9.2.59)

where Ωf
4
= {x ∈ Ω|R(x) 6 L

2 } and Ωs
4
= {x0 ∈ Ω|R(x0) > L

2 }. Again, we assumed that
φ(Ωf ) = Ωf because the flow maps closed streamlines onto themselves. In the following, we will
refer to τG as the global stretching time. The model (9.2.59) together with the folding and shearing
time definitions (9.2.53)-(9.2.34) specify a global Eulerian estimate of finite-time stretching. Unlike
usual diagnosis, such as FTLE and Finite Size Lyapunov Exponents (FSLE) (d’Ovidio et al., 2009),
the proposed global model does not require any integration of the flow.

According to (9.2.15), the evolution law (9.2.59) determines the tracer gradient norm:

‖∇T‖2

‖∇T0‖2
≈ 1 +

(
t

τG

)2

. (9.2.60)

9.2.5 Numerical illustrations

Let us first exemplify these analytical developments with an instructive toy example, before dealing
with satellite observations. We advected a large tracer filament by a stationary velocity field using
a backward Lagrangian advection (Figure 9.2). For technical details on this method, we referred to
Berti and Lapeyre (2014) and Dencausse et al. (2014). The tracer progressively wraps, eventually
creating infinitely long filaments. With the formula (9.2.59), we estimate a global stretching time
of 13.36 days. This roughly corresponds to half a rotation.

Figure 9.3 represents the spatial distribution of the stretching rate α2, the factor α/β and the
mesochronic vorticity ω̃ at several times for our toy model. The spatial distribution of α stabilizes
after one week only. As demonstrated, this non-dimentionalized number is significant on the folding
area (the border of the vortex). The ratio α/β =

√
1 + 2

α2 – which quantifies the significance of
the orientation of tracer gradient – decreases along time in the mixing area. It stabilizes to its
minimum value, say 1, at t ≈ τG. The mesochronic vorticity is first concentrated in the center of
the cylinder. Then, after each global stretching time, a new ring of mesochronic vorticity is added
to the mixing area.

Figure (9.4) displays the spatial distribution of the folding time, τf , the shearing time, τs, and
the stretching time, τ , for this toy model. Folding and stretching time are represented both in the
initial grid (x0) and in the advected grid (x = φ(x0, t)). This remapping on the initial grid is
needed as the folding time is locally defined in the advected grid (see (9.2.53) and (9.2.54)). For
this remapping, we integrated the forward flow x0 7→ φ(x0, t). Note that the remapping enables a
better visualization of the stretching spatial distribution, but this mapping is not necessary for the
global stretching time computation (9.2.59). The folding effects are dominant in this toy model
and the folding time well captures the spatial structure of α2. Yet, the inverse folding time diverges
outside of the vortex as the streamline curvatures tend to zero. Indeed, according to (9.2.38) zero
curvature implies zero local frequency f and thus infinite folding time (see (9.2.53)). For such a
weak curvature, the relevant model is the uniform shear. Following the space partition (9.2.55),
the stretching time is chosen as a shearing time in these areas. The global models of time evolution
of the averaged stretching rate (9.2.59) and of the tracer gradients (9.2.60) are also successfully
tested in Figure 9.5.

We now perform a similar analysis using satellite data. Velocities are estimated from altimeter-
derived SSH fields. The velocity field, on which the Eulerian estimates will be applied, corresponds
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Figure 9.2: Advecting vorticity of the toy model (top in s−1) and tracer (dimensionless) advected
using a backward Lagrangian method at time t = 0, 5, 10, 15, 30 and 150 days.
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Figure 9.3: Values of ω̃2/2 (s−2) (left), (α/t)2 (s−2) (middle) and the ratio of α/β (dimensionless)
(right) in the initial grid (points x0) at time (from top to bottom) t = 15, 30 and 150 days for the
toy model.
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Figure 9.4: Squared inverse of the folding time in the final grid (points x) (top left) and initial
grid (points x0) (bottom left), the shearing in the initial grid (points x0) (top and bottom middle)
and the stretching time in the final grid (points x) (top right) and initial grid (points x0) (bottom
right) for the toy model. All plots are in s−2. In order to represent folding and stretching time in
the initial grid, these fields were advected during 30 days.
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our model.

to January 1st, 2011, in the Antarctic Circumpolar Current (ACC) region, south of Australia. We
begin by a small spatial window of 10◦ × 10◦. A larger window will be considered subsequently.
Figure 9.6 delineates the Kinetic energy (KE) and the vorticity fields. The KE shows the ACC
eastward jet between latitudes −50◦ and −48◦. Two (warm) anticyclones and a (cold) depression
are also visible both in the vorticity and in initial SST fields at (129◦,−51◦), (131◦,−54◦) and
(130.5◦,−49.5◦), respectively. We then advect the January 1st, 2011, SST field. Similarly to
Dencausse et al. (2014), we linearly interpolate in time the daily velocity data to perform the
advection operation. The vortice dipole closed to the jet creates a mushroom-like structure in the
advected tracer. Each vortice wraps the tracer, creating spirals. The small southern anticyclone
(131◦,−54◦) seems weaker than the other anticyclone (129◦,−51◦). Yet, it faster wraps the tracer,
as velocities are certainly larger than over the dipole area.

Figure 9.7 shows the stretching rate, α, the mesochronic vorticity, ω̃, and the estimate (weight-
ing) of the tracer/flow correlation, β/α. The folding, shearing and stretching time are presented in
the same Figure. A slight low-pass spatial filtering (2-km filter width) is applied to the stretching
time to help distinguish the filamentous structures. The spatial distributions of stretching rate and
stretching time are very similar. The amplitude of the stretching time is slightly underestimated
(ratio of about 2). The sides of the aforementioned vortices exhibit intense mixing, whereas the
inverse shearing time is weak. As for the toy model, folding effects due to differential rotations
near the boundaries of vortices are the leading mixing processes.

Now, we consider a larger space window to visualize a broader variety of structures and dy-
namical processes. The spatial location and the date remain the same. Figure 9.8 displays the
KE and the vorticity. The jet and many vortices are visible. In the same manner, the SST is ad-
vected (Figure 9.9). The advection creates small-scale structures which turn to unphysical spirals
when the advection time is too long. At 48 days of advection the advected domain is strongly
deformed, especially by the eastward jet. Figure 9.10 compares the stretching ratio, α2, and the
estimated stretching time in this larger spatial window. As found, most stretching structures are
well predicted by the proposed model.

Finally, Figure 9.11 presents the time evolution of the averaged stretching rate (9.2.59) and
of the averaged tracer gradients norm (9.2.60). The reference plots clearly exhibit the structures
prescribed by models (9.11) and (9.2.59):

α2 =

(
t

τG

)2

and
‖∇T‖2

‖∇T0‖2
=

{
1 if t� τG(
t
τG

)2

if t� τG
. (9.2.61)

We estimate a global stretching time of 1.67 days and the plots reveal a good match even though
the stretching time seems slightly underestimated (by a factor of about ∼ 1.7). The small shift
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Figure 9.6: Kinetic energy (KE) (top left in m2.s−2), vorticity (top right in s−1), SST (bottom left
in ◦C), all measured by satellite the 1st of January 2011, and SST (in ◦C) after a 5-day advection
(bottom right). On the top images, streamlines are superimposed. The streamlines, the KE, the
vorticity and the advection are defined by SSH-derived velocity fields.
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Figure 9.7: Values of the mesochronic vorticity, ω̃2/2, (s−2) (top left), the stretching growth rate,
(α/t)2, (s−2) (top middle), the ratio α/β (dimensionless) (top right), the squared inverse of the
folding time (s−2) (bottom left), the shearing time (s−2) (bottom middle) and the stretching time
(s−2) (bottom right), in the initial grid (points x0) at time t = 5 days for the SSH-derived velocity
fields. We can observe the good match between the stretching rate and our Eulerian estimation of
the stretching time.
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Figure 9.8: Kinetic energy (KE) (left in m2.s−2) and vorticity (right in s−1) derived from SSH
measured the 1st of January 2011.
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Figure 9.9: SST (in ◦C) (from top to bottom) measured by satellite the 1st of January 2011, after
5-, 10-, and 48-day advection.
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value and the red line our model.

between predicted and reference averaged tracer gradients norm may also be explained by a resid-
ual correlation between the tracer and the underlying flow as explained previously with equation
(9.2.13).

9.3 Tracer spectral tail
In the following, we study the distortion of scales of the tracer T during the advection, i.e. the
evolution of its spectral tail. The main results of this section does not necessitate to consider the
decorrelation assumption of 9.2.2, nor the stationary assumption used in 9.2.4. Developments are
thus more general. After preliminary results related to tracer moments, we first derive a Gaussian
approximation for the evolution of the spectrum tail, assuming spatial smoothness. This approxi-
mation is then applied to initial and advected tracers. Finally, we generalize the development and
discussion to self-similar spectra.

9.3.1 Moment conservation
In the following, T̂0, T̂ , γT0

, γT and ΓT0
, ΓT denote the Fourier transforms, the covariances

(associated with the averaging •) and the spectra of initial and final tracer fields, respectively.
Furthermore, the Hessian of a function f will be denoted by Hf . It is interesting to remark
that the tracer mean, T , does not change during the advection. Indeed, for the advected tracer
T (x) = T0(φ−1(x)), the variable change defined by the inverse flow x → φ−1(x) = x0 and the
incompressiblity constraint (det(∇φT ) = 1) yields:

T =
1

S
E
∫
Ω

dx T (x) =
1

S
E
∫
Ω

dx0
1

det(∇φT (x0))︸ ︷︷ ︸
=1

T0(x0) = T0. (9.3.1)

As a consequence, we will assume without loss of generality that the tracer is centered. Similarly,
the (spatial) variance conservation can be deduced:

γT (0) = T 2 =
1

S
E
∫
Ω

dx T 2(x) =
1

S
E
∫
Ω

dx0 T
2
0 (x0) = T 2

0 . (9.3.2)

Since all scales are assumed to be resolved and the molecular diffusion is ineffective on the length
and time scales of interest, there are no overlays of fluid parcels and no dilution of their properties.
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Each fluid parcel conserves its tracer value during its advection. More generally, for all functions
f , f(T ) is conserved.

9.3.2 Smooth scalar approximation
First, let us consider the covariance of a smooth scalar f , for small spatial distance ‖δx‖. More
specifically, we assume this covariance to be three times differentiable, which is a strong assumption
on the scalar initial regularity. Yet, for tracers measured at mesoscales and re-interpolated on a sub-
mesoscale spatial grid, this assumption is still relevant. The covariance can then be approximated
near 0 by its Taylor expansion:

γf (δx)
4
=

1

S
E
∫
Ω

dx f(x)f(x+ δx), (9.3.3)

= ‖f‖2 +
1

2
δxTHγf (0)δx+ o

‖δx‖→0
(‖δx‖3), (9.3.4)

= ‖f‖2 exp

(
−1

2
δxT

(
−Hγf (0)

‖f‖2

)
δx

)
+ o
‖δx‖→0

(‖δx‖3), (9.3.5)

where, by integration by parts:

−Hγf (0) = − (∇δx∇T

δxγf (δx))|δx=0
, (9.3.6)

= − 1

S
E
∫
Ω

dx f(x) (∇δx∇T

δxf(x+ δx))|δx=0
, (9.3.7)

= − 1

S
E
∫
Ω

dx f(x)Hf (x), (9.3.8)

=
1

S
E
∫
Ω

dx ∇f(x)(∇f(x))T > 0 (in the Lowner sense). (9.3.9)

Hence, −‖f‖2H−1
γf

(0) encodes the square of the correlation lengths of the tracer, and the covariance
can be approximated by a Gaussian function near 0. The Fourier transform of the covariance
expression (9.3.5) provides the approximation if the spectrum tail, as:

Γf (k)
4
=

1

S
E|T̂0(k)|2, (9.3.10)

=
1

S
E
∣∣∣∣∫
Ω

dx f(x)e−ik·x
∣∣∣∣2 , (9.3.11)

= γ̂f (k), (9.3.12)

∼
‖k‖→∞

2π
(
‖f‖2

)2

det
(
Hγf (0)

) 1
2

exp

(
−1

2
kT
(
−‖f‖2H−1

γf
(0)
)
k

)
. (9.3.13)

Note that the evolution of the opposite of the Hessian −Hγf (0) =∇f(∇f)T is much more difficult
to describe than its trace. Indeed, equation (9.3.9) yields:

tr
(
−Hγf (0)

)
= tr (∇f(∇f)T ) = ‖∇f‖2, (9.3.14)

To let this gradient norm to appear, instead of the covariance Hessian, we consider the omnidirec-
tional spectrum. The omnidirectional spectrum of the scalar f is defined as follows:

Γf (κ)
4
= κ

∮
[0,2π]

dθk Γf (k), (9.3.15)

where k = κ

(
cos(θk)
sin(θk)

)
is the wavenumber-vector and κ the wavenumber. A shown in the Appendix

9.A, the Taylor expansion (9.3.5) then leads to:

Γf (κ) ∼
‖k‖→∞

Cf exp

(
−1

2
L2
fκ

2

)
, (9.3.16)
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where

L2
f =

‖f‖2

‖∇f‖2
and Cf = 2

 (2π)3
(
‖f‖2

)3

‖∇f‖2


1/2

. (9.3.17)

9.3.3 Tail change

Applied, to both the initial tracer, T0, and the advected tracer, T , the approximation (9.3.16)
yields:

ΓT (κ) ∼
‖k‖→∞

ΓT0
(κ)

CT
CT0

exp

(
−1

2

(
L2
T − L2

T0

)
κ2

)
, (9.3.18)

∼
‖k‖→∞

ΓT0(κ)

(
‖∇T0‖2

‖∇T‖2

)1/2

exp

(
1

2
‖T0‖2

(
1

‖∇T0‖2
− 1

‖∇T‖2

)
κ2

)
, (9.3.19)

where the simplification in the last asymptotic equivalence is due to the variance conservation
(9.3.2). As explained in section 9.2, if the initial tracer T0 and the flow are decorrelated, the tracer
gradients strengthen: ‖∇T‖2 > ‖∇T0‖2 (i.e. LT < LT0

) and by (9.3.19) the tracer spectral tail
raises. More precisely, using the estimate (9.2.60), we get for final expression:

ΓT (κ) ∼
‖k‖→∞

ΓT0
(κ)

(
1 +

(
t

τG

)2
)−1/2

exp

(
1

2

‖T0‖2

‖∇T0‖2
κ2

1 +
(
τG
t

)2
)
. (9.3.20)

This is illustrated for the toy flow in Figure (9.3.20). The Gaussian approximation successfully
captures the spectrum tail shift towards small scales. The associated spatial fields have been
presented in Figure (9.2).

As simplified, the initial spectrum tail can then be recovered using an isotropic Gaussian filtering
of the tracer with a degree of smoothness controlled by the variance coefficient:

‖T0‖2

‖∇T0‖2
1

1 +
(
τG
t

)2 . (9.3.21)

This adaptive filtering is exemplified in Figure 9.13. The tracer is advected during a time t, and
then smoothens by a Gaussian filter with the width (9.3.21). The combine effect of advection and
filtering moves the large-scale structures, but keeps the global amount of small-scale structures
stationary.

9.3.4 Self-similar approximation

Even though the previous Gaussian approximation is useful to link advection and filtering, spectra
of geophysical tracer field are more likely self-similar, and possibly non-smooth. Moreover, it can be
useful to target specific spectral slopes using the Lagrangian advection method. For these reasons,
we consider the following form for the spectrum of a scalar f :

Γf (κ) =

{
A
(

1 + κ
κm

)−ζ
if κ 6 κ∞

0 otherwise
, (9.3.22)
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Figure 9.12: Omnidirectional spectra (blue) and its prediction using the Gaussian approximation
(9.3.20) (red) for the toy model at t = 0, 5, 10, 15, 30 and 150 days. The associated spatial fields
are displayed in Figure 9.2.
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Figure 9.13: Tracer advected (left) and tracer advected and then smoothed by our adapted Gaussian
filter (right) for the toy model at (from top to bottom) t = 5, 10, 15, 30 and 150 days.
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Then,

L2
f =

‖f‖2

‖∇f‖2
, (9.3.23)

=

∫ κ∞
0

(
1 + κ

κm

)−ζ
∫ κ∞

0
κ2
(

1 + κ
κm

)−ζ , (9.3.24)

=
(ζ − 2)(ζ − 3)

κ2
m

(
2−

(
1 + κ∞

κm

)1−ζ
(

(ζ − 1)(ζ − 2)
(
κ∞
κm

)2

+ 2(ζ − 1)κ∞κm + 2

)) . (9.3.25)

where κ∞ is set by the numerical resolution. As long as the width of the inertial scale, κ∞ − κm,
is large enough, the above function is strictly positive and continuous w.r.t. the spectral slope, ζ,
for all ζ > 1.

For f = T being the advected tracer, the wavenumber κm can encompass planetary length
scales which does not vary much during the process of advection. This weak variation is due to the
spatial correlation between tracer and flow (see (9.2.13)), but also to the relatively small advection
time (mesoscale or submesocale time scales). The resolution, κ∞, is constant as well. So, a targeted
spectral slope, ζ, provides a length scale Lf to be reached on a given advection time, making use
of (9.3.21).

Figure 9.14 illustrates this estimate, applied to the ACC SST field presented in the last section.
As prescribed by the model, the spectrum tail slope of the advected SST reaches the value −3 after
5 days of advection, 2.5 after 10 days and −2 after 48 days. Figure 9.9 displays the spatial SST
fields before and after advection. These data correspond to the summer (January in the southern
hemisphere).

Interestingly, the seasonality variation can be studied. Figure 9.15 displays, for each day of
the year 2011, the global stretching time, τG, the spectrum slope of the measured SST and the
prescribed advection time to reach a −2.5 spectrum slope. As found, the stretching is faster during
the winter, likely associated with a more intense eddy activity. The measured SST spectral slopes
are relatively stationary (close to −4), whereas the small-scale velocity is expected to be stronger
during winter. Accordingly, the prescribed advection time is smaller in wintertime.

Berti and Lapeyre (2014) proposed other Eulerian means to prescribe the advection time: the

inverse of the vorticity Root Mean Square (RMS),
(

(∇⊥ · v)2
)−1/2

, and of the velocity gradient

RMS,
(
‖∇v‖2

)−1/2

. The latter is directly linked to the shearing time (9.2.34). Yet, these estimates

can encode shearing but not folding. Indeed, folding involves 2nd order derivatives of the velocity,
such as to describe the curvature variation of adjacent streamlines (9.2.53). Moreover, these criteria
do not depend on the initial nor on the resulting spectral slope. So, these criteria cannot fully
control the necessary advection time, and shall likely lead to wrong resulting tracer spectral slopes.
For instance, Figure 9.15 demonstrates that these criteria strongly underestimate the advection
time needed to reach a −2.5 spectrum slope. Accordingly, these criteria mostly apply to very short
advection time, with a resulting advected tracer already close to the true SST.

9.4 Estimation of eddy diffusivity

Considering satellite observations, geophysical tracers generally exhibit relatively stable spectra.
The predicted raise of the tracer spectral tail, under multiple advection operations, shall thus be
compensated. This can possibly be resulting from the combined effects of the well resolved, slow-
varying and large-scale, velocity, and of an unresolved, fast-varying and likely small-scale, velocity.
As the first velocity component will tend to raise the spectrum (9.3.20), the second component shall
act to the mean tracer. As often suggested, this last process can be accounted for using a uniform
eddy diffusivity, ν. As such, after an advection of ∆t, it multiplies the spectrum by exp

(
−ν∆tκ2

)
.

To exactly compensate the spectrum increase (9.3.20) during ∆t, and thus to keep the resulting
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Figure 9.14: SST spectrum of the satellite data (red) and after prescribed advection (blue) with 5
days for a −3 spectrum slope (top), 10 days for a −2.5 spectrum slope (middle) and 48 days for
a −2 spectrum slope (bottom). The associated spatial fields are presented in Figure 9.9. On the
blue bottom spectrum, missing large-scale values are due to a strong deformation of the advected
spatial domain by the jet (see Figure 9.9).
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Figure 9.15: Global stretching time, τG (top in days), SST spectrum slope of Globcurrent data
(middle) and prescribed advection time to reach a −2.5 spectrum slope (bottom in days) with the
velocity gradient RMS (blue line), vorticity RMS (black line) and our model (red line).
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advected tracer closer to its initial variance distribution over scales, the eddy diffusivity can then
be set as:

ν =
1

2τG

‖T0‖2

‖∇T0‖2
c(t) with c(t) =

∆t
τG(

1 +
(

∆t
τG

)2
) =

{
∆t
τG

if ∆t� τG
τG
∆t if ∆t� τG

. (9.4.1)

For small time time step, ∆t, the eddy diffusivity is superdiffusive, whereas for large time step
it is subdiffusive. Note also that in the second case, the direct cascade intensifies, decreasing the
large-scale tracer energy as encoded by the multiplicative constant of (9.3.20):

(
‖∇T0‖2

‖∇T‖2

)1/2

≈

(
1 +

(
∆t

τG

)2
)−1/2

=

{
1 if ∆t� τG
τG
∆t if ∆t� τG

. (9.4.2)

Conclusion

Through this chapter, we analyzed how sets of points are stretched and folded by a smooth, possibly
stationary, flow, creating strong tracer gradients and raising the spectral tail of the initial tracer
spectral distribution.

Two characteristics of the flow influence the norm of advected tracer gradients: a local growth
rate, associated with the eigenvalues of the Cauchy-Green tensor, and the orientation of the stable
direction, eigenvector of the Cauchy-Green tensor. Integrated over space, the influence of local
orientation disappears if the initial tracer is not correlated to the flow. The overall gradients
can then only strengthen. Such a weak correlation applies for passive tracers, having negligible
back effects on the flow, but such a weak correlation can also appear when the tracer is strongly
smoothed before being advected. The growth rate can then be readily related to FTLE and
mesochronic velocity. If the Eulerian velocity is stationary, the gradient strengthening is mainly
due to locally uniform shears and stationary convective cells. The first process stretches pairs
of points when the streamlines are straights and parallel. The second one folds and wraps the
tracer around vortices. Indeed, different concentric orbits are associated with different temporal
periods. A local, in space, temporal frequency can then be understood as an angular velocity,
and its spatial variations deform the tracer structures. For both the velocity shears and angular
velocity shears, the norm of tracer gradients linearly increases in time. Integrated over space, the
square of this norm controls and specifies the time evolution of the tracer correlation length, the
spectral tail and its slope. Two simplified models are proposed to approximate the tracer spectrum
tail. These models only depend on the advection time, the Eulerian velocity and the initial tracer
statistical characteristics. Numerical simulations on a toy model and real satellite images confirm
the validity of these different approximations. In particular, we successfully estimate the spatial
and spectral distribution, as well as the time evolution of the mixing processes. We apply the
method to specify the advection time and the filter width of the Lagrangian advection method.
Moreover, the proposed development can help the definition of an eddy diffusion coefficient as a
function of the large-scale velocity. Finally, this work highlights the preponderant effect of folding
in finite-time mixing.
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Appendix

9.A Omnidirectional spectra of tracers for smooth flow
Hereafter, we will focus on the omnidirectional spectrum of a scalar f . This will enable us to
replace ∇f(∇f)T by ‖∇f(x)‖2 in the expression of the spectrum (9.3.13).

Γf (κ) = κ

∮
[0,2π]

dθkΓf (k),

= κ

∮
[0,2π]

dθk

∫
Ω

dδx γf (δx)e−ik·δx,

= κ

∮
[0,2π]

dθk

∫
Ω

dδx

(
γf (0)− 1

2
δxT

1

S
E
∫
Ω

dx ∇f(x)(∇f(x))Tδx+ o
‖δx‖→0

(
‖δx‖3

))
e−ik·δx,

=
κ

S
E
∮

[0,2π]

dθk

∫
Ω

dδx

∫
Ω

dx

(
f2(x)− 1

2
δxT∇f(x)(∇f(x))Tδx+ o

‖δx‖→0

(
‖δx‖3

))
e−ik·δx,

=
κ

S
E
∫
Ω

dx

∮
[0,2π]

dθk

∫
Ω

dδx

(
f2(x)− 1

2

(
∇f(x)

‖∇f(x)‖2
· δx

)2

‖∇f(x)‖22 + o
‖δx‖→0

(
‖δx‖3

))
e−ik·δx.

Locally in x, we can define a variable change for δx = (δx1 δx2)T . We apply the rotation matrix
U(x) = 1

‖∇f(x)‖2

[
∇f(x) ∇⊥f(x)

]
to δx to align δx with the tracer gradient and denote θ(x)

the angle of the associated rotation:

Γf (κ) =
κ

S
E
∫
Ω

dx

∮
[0,2π]

dθk

∫
Ω

dδx

(
f2(x)− 1

2
(δx1)2‖∇f(x)‖22 + o

‖δx‖→0

(
‖δx‖3

))
e−i(U

Tk)·δx,

=
κ

S
E
∫
Ω

dx

∮
[θ(x),θ(x)+2π]

dθk

∫
Ω

dδx

(
f2(x)− 1

2
(δx1)2‖∇f(x)‖22 + o

‖δx‖→0

(
‖δx‖3

))
e−ik·δx,

=
κ

S
E
∫
Ω

dx

∮
[0,2π]

dθk

∫
Ω

dδx

(
f2(x)− 1

2
(δx1)2‖∇f(x)‖22 + o

‖δx‖→0

(
‖δx‖3
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e−ik·δx,

= κ
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[0,2π]

dθk

∫
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dδx

(
‖f‖2 − 1

2
(δx1)2‖∇f‖2 + o

‖δx‖→0

(
‖δx‖3

))
e−ik·δx.

The third equality above is due to the averaging over the spatial frequency angle θk. Indeed, UTk
is just a rotation of k. And, integrating over [0, 2π] or over [θ(x), 2π + θ(x)] is the same thing,
since it leads to the same closed line: a circle of radius κ.

Γf (κ) = κ

∮
[0,2π]

dθk

∫
Ω

dδx1dδx2

(
‖f‖2 exp

(
−1

2

‖∇f‖2

‖f‖2
(δx1)2

)
+ o
‖δx‖→0

(
‖δx‖3
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×e−ik1δx1e−ik2δx2 ,

∼
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κdθk
Cf

2(2π)
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(
−1

2
L2
fk

2
1

)
(2π)δ(k2),

where k =

(
k1

k2

)
=

(
κ cos(θk)
κ sin(θk)

)
, L2

f = ‖f‖2
‖∇f‖2

and Cf
2(2π) =

(
2π(‖f‖2)

3

‖∇f‖2

)1/2

. Note that

the asymptotic equivalence is an approximation. Then, switching from cylindrical to Cartesian
coordinates in each half rings {k ∈ R2|k1 6 0, ‖k‖ = κ} and {k ∈ R2|k1 > 0, ‖k‖ = κ} yields:

Γf (κ) ∼
‖k‖→∞

2
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−κ
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L2
fκ

2

)
.



Chapter 10

Additional results

In this chapter, we use both Itō (terms with dBt) and Stratonovich notations (terms with ◦dBt).
For descriptions and comparisons of these notations, the reader can refer to the section 1.6 of this
thesis.

10.1 Models under location uncertainty with Stratonovich
notations

10.1.1 Flow
Thanks to the formula (1.6.1) of chapter 1, the SDE of the stochastic flow, X, can be written in
Stratonovich form as follow:

dXt = w(Xt, t)dt+ σ(Xt, t)dBt ⇐⇒


dXt = wS(Xt, t)dt+ σ(Xt, t) ◦ dBt,

with wS = w − 1
2

d∑
i=1

∂iσσ
T
i•.

(10.1.1)

10.1.2 Transport
The Stratonovich form of the stochastic material derivative is:

DtΘ = dtΘ + ((wSdt+ σ ◦ dBt) · ∇)Θ. (10.1.2)

Moreover, let us consider a stochastic transport equation of a quantity Θ:

DtΘ = fdt+ gdB′t, (10.1.3)

where Bt and B′t are independent, and g is differentiable in time and does not depend on Θ. Then,
according to equation (2.2.10) of chapter 2, the stochastic transport operator DtΘ and the material
derivative DtΘ coincide and:

DtΘ = dtΘ + ((wSdt+ σ ◦ dBt) · ∇)Θ. (10.1.4)

We propose two different proofs:

Proof 1, using the Stratonovich form of the Ito-Wentzell formula
To derive equation (10.1.2), we write the definition of the material derivative in Lagrangian

coordinates and apply the Stratonovich form of the Ito-Wentzell formula (Kunita, 1997; Chow,
2014) to Θ with the Stratonovich flow (10.1.1):

DtΘ(Xt, t) = d [Θ(Xt, t)] = [dtΘ + ((wSdt+ σ ◦ dBt) · ∇)Θ] (Xt, t), (10.1.5)

Equation (10.1.4) follows by (2.2.10).
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Proof 2, using formula (1.6.3) to go from Itō to Stratonovich notations
Here, we need to assume a particular form for the forcing (equation (10.1.3)). By definition of

the stochastic transport operator (2.2.9) in chapter 2 and by the formula (1.6.3) of chapter 1:

dtΘ = − (w?dt+ σdBt) · ∇Θ +∇ ·
(

1

2
a∇Θ

)
dt+ fdt+ gdB′t, (10.1.6)

= − (w?dt+ σ ◦ dBt) · ∇Θ +∇ ·
(

1

2
a∇Θ

)
dt+ fdt+ g ◦ dB′t (10.1.7)

−1

2

∑
k

d < −(σ•k · ∇)Θ, Bk > −
1

2
d < g,B′ > . (10.1.8)

The first quadratic covariation is itself evaluated using the Itō evolution law (10.1.6):∑
k

d < −(σ•k · ∇)Θ, Bk >t =
∑
k

(σ•k · ∇) [(σ•k · ∇)Θ] dt (10.1.9)

= ∇ · {a∇Θ}dt− (σ(∇·σ)T ) · ∇Θdt. (10.1.10)

The second quadratic covariation is trivial since we assumed that g is differentiable w.r.t. time (g
has finite variations):

d < g,B′t >= 0. (10.1.11)

After cancellation of the diffusion terms in (10.1.8), we recognize the expression of the Stratonovich
drift (10.1.1):

wS = w − 1

2

d∑
i=1

∂iσσ
T

i• = w? − 1

2
σ(∇·σ)T . (10.1.12)

This leads to the result.

Note that the Stratonovich form (10.1.2) of the stochastic transport equation can also be derived
from the Itō form (10.1.3) with the more classical formula (1.6.1) of chapter 1. Nevertheless, since
the scalar Θ is a function living in an infinite-dimensional space, the noise term, Σ(Θ)dBt =
σdBt ·∇Θ, is here a functional of the function Θ. Thus, in formula (1.6.1), the partial derivatives,
∂xi , and the scalar product of Rd, X ·Y , appearing in ((Σ•p · ∇)Σ•q) have to be replaced by the
variational derivatives, δ

δΘ(y) , and the scalar product of L2(Ω),
∫
Ω
fg, respectively.

10.1.3 Modified drift
The results (10.1.1) and (10.1.4) enable to better understand the form of the modified drift, w?,
involved in the models under location uncertainty:

w? 4
= w − 1

2
∇·a+ σ(∇·σ)T , (10.1.13)

= w − 1

2

d∑
i=1

∂iσσ
T

i•︸ ︷︷ ︸
=wS

(Lagrangian)
Stratonovich drift

+
1

2
σ(∇·σ)T︸ ︷︷ ︸

Due to Ito notation
in the evolution law
(as the diffusion)

. (10.1.14)

In particular, for incompressible flow, the operator σ is divergence-free and the modified drift, w?,
is the Stratonovich large-scale velocity.

10.2 Comparison with Holm (2015)
From a Lagrangian mechanics approach, Holm (2015) derived several stochastic fluid dynamics
models. Hereafter, we detail their similarities and the distinctions with the models under location
uncertainty. To simplify the comparison, we work with the Stratonovich notations.
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For a scalar tracer – like the buoyancy, b, under the Boussinesq approximation – Holm (2015)
prescribes the same type of evolution law than the modeling under location uncertainty:

Dtb = 0. (10.2.1)

Nonetheless, the incompressible stochastic transports of velocity and vorticity differ from our ap-
proach. First, Holm (2015) considers the transport – up to some forcings – of the Stratonovich
large-scale linear momentum, ρwS = ρw?, whereas our Navier-Stokes under location uncertainty
(8.1.1) assumes the transport of the Itō large-scale linear momentum, ρw. Furthermore, due to
the choice of its Lagrangian, the stochastic representation of Holm (2015) involves an additional
term. Specifically, our stochastic Navier-Stokes equation (8.1.1) with neither viscosity nor Coriolis
force reads:

[dt + ((w?dt+ σ ◦ dBt) · ∇)] w︸︷︷︸
Due to the
transport
of ρw

= −1

ρ
∇p1dt, (10.2.2)

whereas the model of Holm (2015) is:

[dt + ((w?dt+ σ ◦ dBt) · ∇)] w?︸︷︷︸
Due to the
transport
of ρw?

+
d∑
k=1

∇(w?kdt+ σk• ◦ dBt)w
?
k︸ ︷︷ ︸

Additional term

= −1

ρ
∇p2dt, (10.2.3)

where p1 and p2 both represent the pressure but do not necessarily coincide. The additional term
has at least two major consequences.

First, as derived in Holm (2015), this term leads to an evolution law of the vorticity, ω? =
∇ × w?, similar to the deterministic one. Accordingly, the models of Holm (2015) conserves
the helicity and the Kelvin theorem remains. In particular, in 2D, the transport of 2D vorticity
ω? =∇⊥ ·w? reads:

[dt + ((w?dt+ σ ◦ dBt) · ∇)]ω? = 0, (10.2.4)

whereas the transport of vorticity ω =∇⊥ ·w under location uncertainty involves a source term:

[dt + ((w?dt+ σ ◦ dBt) · ∇)]ω = −tr
[
∇⊥(σ ◦ dBt)

T∇wT

]
. (10.2.5)

As expected, under moderate uncertainty assumptions (see chapter 3 for more details), the QG PV
evolution law (see equations (3.3.12) and (3.B.38)) involves a similar forcing term. The paragraph
3.3.2 describes the physical meaning and the influence of this term for the QG PV dynamics.

The second consequence of the additional term in the Navier-Stokes model (10.2.3) is the lost
of the large-scale kinetic energy conservation. In the following, we will proof this claim. To be
coherent with the modeling, the kinetic energy is defined as KE = 1/2‖w?‖2

(L2(Ω))d
. Using the

Stratonovich Navier-Stokes model (10.2.3) and several integrations by parts:

d KE =

∫
Ω

w? · dtw? =
∑
k

∫
Ω

(w?)TSσkw
? (◦dBt)k, (10.2.6)

where Sσk = 1
2

([
∇ (σ•k)

T
]

+
[
∇ (σ•k)

T
]T) defined the strain-rate tensor of the unresolved veloc-

ity. The kinetic energy variation has a priori non-zero mean since it is a Stratonovich noise. With
the formula (1.6.3), we can turn to the Itō notation in order to explicit this noise:

d KE =
∑
k

∫
Ω

(w?)TSσkw
? (dBt)k +

1

2

∑
k

d

〈∫
Ω

(w?)TSσkw
?, (Bt)k

〉
. (10.2.7)

Then the Navier-Stokes model (10.2.3) implies:

1

2
d

〈∫
Ω

(w?)TSσkw
?, (Bt)k

〉
=

∫
Ω

(w?)TSσk d 〈w?, (Bt)k〉 , (10.2.8)

=

∫
Ω

(w?)TSσk ((σ•k · ∇)w? +∇σT•kw?) dt, (10.2.9)



192 CHAPTER 10. ADDITIONAL RESULTS

To simplify this expression, we may assume that the unresolved velocity is isotropic and homo-
geneous in space. In this case, all terms of the form ∂pσqkσjk and of the form

∑
q ∂pσqk∂qσjk =∑

q ∂q(∂pσqkσjk) cancel and the expectation of the kinetic energy budget gives:

d

dt
E{KE} =

1

2

∑
k

E‖∇σT•kw?‖2
(L2(Ω))d

> 0. (10.2.10)

To conclude, the model of Holm (2015) does not conserve mean kinetic energy in the general
case. Thus, it does not conserve the kinetic energy of each realization. In contrast, the model
under location uncertainty always conserves the mean kinetic energy and the kinetic energy of
each realization (see equation (8.1.9)).

10.3 Review of the derivation of the models under location
uncertainty

In this section, we recall the derivation of geophysical models under location uncertainty presented
in chapters 2, 3 and 4. After the general fluid dynamics models, we detail the Boussinesq, QG and
SQG models.

All along the following development, the small-scale random flow component will be assume
incompressible, i.e. associated with a divergence-free diffusion tensor:

∇ · σ = 0. (10.3.1)

This assumption remains realistic for the geophysical and incompressible flows considered in this
thesis, and does not prevent the resolved velocity component (and therefore the whole field) to be
compressible.

10.3.1 Mass conservation
Using the transport theorem (2.2.28), mass conservation for arbitrary volumes rules the stochastic
transport of the fluid density, denoted ρ:

Continuity equation

Dtρ+ ρ∇ ·w∗dt = 0. (10.3.2)

10.3.2 Active scalar conservation law
The transport theorem (2.2.28) applied to a quantity ρΘ describes the rate of change of the scalar
Θ and is generally balanced by a production/dissipation term, as:

Dt(ρΘ) + ρΘ∇ ·w∗dt = ρFΘ(Θ)dt. (10.3.3)

We can apply the product rule

Dt(ρΘ) = DtρΘ + ρDtΘ, (10.3.4)

since D(ρΘ)
Dt and D(ρ)

Dt are correlated in time. Then, the mass conservation (10.3.2) simplifies the
transport evolution of the scalar:

DtΘ = DtΘ = FΘ(Θ)dt. (10.3.5)

As in the deterministic case, the 1st law of thermodynamics implies temperature conservation
(Θ = T ) and the conservation of the amount of substance implies the conservation of salinity
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(Θ = S):

Thermodynamics equations

DtT = FT (T )dt, (10.3.6a)
DtS = FS(S)dt. (10.3.6b)

10.3.3 Navier-Stokes model under location uncertainty
2nd Newton’s law in the distribution sense

Then, we involve an informal expression of the 2nd Newton’s law of motion. In a Galilean frame,
the variation of the linear momentum is due to some external actions:

d

∫
V(t)

ρ
wdt+ σdBt

dt
=

∫
V(t)

dtF . (10.3.7)

The left-hand term must be interpreted in a distribution sense, the small-scale velocity, σḂ = σdBt
dt ,

being a white noise in time. For every test function h, we have:∫
R+

h(t)d

∫
V(t)

ρw −
∫
R+

dh

dt
(t)

∫
V(t)

ρ σdBt =

∫
R+

h(t)

∫
V(t)

dtF . (10.3.8)

Both sides of this equation must have the same structure and the forces can be written as:∫
R+

h(t)

∫
V(t)

dtF = −
∫
R+

dh

dt
(t)

∫
V(t)

ρ σdBt +

∫
R+

h(t)

∫
V(t)

(ηdt+ γdBt) . (10.3.9)

The right-hand first term must compensate for the white-noise distributional differentiation of
(10.3.8), whereas the last term of (10.3.9) provides the structure of the forces under location
uncertainty.

The Reynolds transport theorem (2.2.28) applied to the (Itō) linear momentum, ρw, the in-
compressibility constraint (10.3.1) and the continuity equation (10.3.2) give as in the deterministic
case:

d

∫
V(t)

ρw =

∫
V(t)

(Dt (ρw) + ρw∇·w?dt) =

∫
V(t)

ρDtw. (10.3.10)

This result being true for any volume V(t), we can remove the integral and use the previous
results (10.3.8) and (10.3.9) :

Dtw =
1

ρ
ηdt+

1

ρ
γdBt. (10.3.11)

Eulerian formulation

The pressure is decomposed into a continuous-in-time component continuous in time, p, and time-
uncorrelated component, ṗσ = dtpσ

dt . Accordingly the forcing reads:{
η = −ρ(f ×w) + ρg −∇p+ ρν∆w,

γdBt = −ρ(f × σdBt)−∇dtpσ + ρν∆σdBt.
(10.3.12)

Then, from (10.3.11) and the formula (2.2.10) the stochastic Navier-Stokes model under location
uncertainty is:

Dtw + f × (wdt+ σdBt) = gdt− 1

ρ
∇(pdt+ dtpσ) + ν∆(wdt+ σdBt)

− tr ((σT∇) (−f × σ + ν∆σ)) dt+ dt

〈∫ t

0

(σdBt′ · ∇) ,

∫ t

0

1

ρ
∇dt′pσ

〉
. (10.3.13)
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In all the thesis, we neglect the correlations of the second line. With this simplification, the Navier-
Stokes representation reads:

Navier-Stokes equations under location uncertainty with noise

Dtw + f × (wdt+ σdBt) = gdt− 1

ρ
∇(pdt+ dtpσ) + ν∆(wdt+ σdBt). (10.3.14)

Note however that the correlations of (10.3.13) may be useful to describe a Stokes drift.
Another (possibly simpler) way to derive all the previous equations of this section is to use

Stratonovich notations. Indeed, Stratonovich calculus is similar to the deterministic calculus.
However, after that formal derivation, one would need to go from Stratonovich notations to Itō
notations with the formula (1.6.3). We recall that only Itō stochastic differential equations can be
simulated numerically.

Navier-Stokes model under location uncertainty without noise

For computational reasons, a deterministic LES-like model is sometime more adequate than a ran-
dom model. For this purpose, Mémin (2014) assumed the drift w to be a smooth function of time.
As such, its evolution law cannot involve white noise terms. The stochastic Navier-Stokes model
(10.3.14) can hence be split. On one side, the evolution of the drift is determined by the smooth
terms (in dt). On the other side, the “noise terms” (in dBt) must cancel each others. This intuitive
argument is rigorously supported by the uniqueness of the semimartingale decomposition (Kunita,
1997) in stochastic calculus.

Navier-Stokes equations under location uncertainty without noise

∂tw + (w? · ∇)w −∇ ·
(

1

2
a∇w

)
+ f ×w = g − 1

ρ
∇p+ ν∆w, (10.3.15a)

(σdBt · ∇)w + f × σdBt = −1

ρ
∇dtpσ + ν∆σdBt. (10.3.15b)

10.3.4 Boussinesq equations
For ocean and atmosphere flows, a partition of the density and pressure is generally considered:

ρ = ρb + ρ0(z) + ρ′(x, y, z, t), (10.3.16a)
p = p̃(z) + p′(x, y, z, t). (10.3.16b)

Fields ρ̃(z) = ρb+ρ0(z) and p̃(z) correspond to the density and the pressure at equilibrium (without
any motion), respectively; they are deterministic functions and depend on the height only. The
pressure and density departures, p′ and ρ′, are random functions, depending on the uncertainty
component. From the expression of the vertical velocity component (10.3.14), the equilibrium fields
are related through an hydrostatic balance:

∂p̃

∂z
= −gρ̃(z). (10.3.17)

Within small density fluctuations (i.e. the Boussinesq approximation) as observed in the ocean,
the stochastic mass conservation reads

0 = Dtρ+ ρ∇ ·w∗dt ≈ ρb∇ ·w∗dt. (10.3.18)
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This implies that the flow is volume-preserving.
According to equations (10.3.6a) and (10.3.6b), temperature and salinity are transported by

the random flow. If those tracers do not oscillate too much, the density anomaly, ρ − ρb, can
be approximated by a linear combination of these two properties. And thus, in the Boussinesq
approximation, this anomaly is transported:

0 = Dt(ρ− ρb) = Dt(ρ− ρb). (10.3.19)

The Navier-Stokes equations coupling the Boussinesq and traditional approximations then read:

Simple Boussinesq equations under location uncertainty

Momentum equations

Dtw + fk × (u+ (σdBt)H) = b kdt− 1

ρb
∇(p′dt+ dtpσ) + F(wdt+ σdBt), (10.3.20a)

Buoyancy equation

Dt(b+N2z) = 0, (10.3.20b)
Incompressibility

∇ ·w =∇·
(
σḂ

)
=∇ ·∇ · a = 0. (10.3.20c)

For this system, the thermodynamics equations are expressed through the buoyancy variable
b = −gρ′/ρb, and the stratification (Brunt-Väisälä frequency) N2(z) = −g 1

ρb
∂zρ0(z) is intro-

duced. To obtained the Boussinesq model (2.3.15) of Resseguier et al. (2017a), the drift w has
been assumed smooth in time (see 10.3.3 for more details).

10.3.5 Non-dimentionalized Boussinesq equations

To simplify the stochastic Boussinesq model (10.3.20), Quasi-Geostrophic (QG) models are devel-
oped for large horizontal length scales, L, such as:

1

Bu
=

(
Fr

Ro

)2

=

(
L

Ld

)2

∼ 1 and
1

Ro
=
Lf0

U
� 1, (10.3.21)

where U is the horizontal velocity scale, Ld
4
= Nh

f is the Rossby deformation radius and h is the
characteristic vertical length scale.

That simplification necessitates a non-dimensionalistion of the Boussinesq equations under lo-
cation uncertainty. To derive this non-dimensional version (10.3.20), we scale the horizontal coor-
dinates x̃h = Lxh, the vertical coordinate z̃ = hz, the aspect ratio D = h/L between the vertical
and horizontal length scales. A characteristic time t̃ = Tt corresponds to the horizontal advection
time U/L with horizontal velocity ũ = Uu. A vertical velocity w̃ = (h/L)Uw is deduced from the
divergence-free condition. We further take a scaled buoyancy b̃ = Bb, pressure φ̃′ = Φφ′ (with the
density scaled pressures φ′ = p′/ρb and dtφσ = dtpσ/ρb), and the earth rotation f∗ = fk.

Hereafter, we explicit scaling assumptions to derive the non-dimensional version of the stochastic
Boussinesq model.

Besides traditional ones, another dimensionless number, Υ, is introduced to compares horizontal
advective and diffusive terms in the momentum and buoyancy equations. . In the following, σH•
stands for the horizontal component of σ, aH for σH•σTH• and Au for its scaling. The new
dimensionless number is defined by:

Υ
4
=
UL

Au
=

U2

Au/T
. (10.3.22)

In order to keep plausible geophysical orders of magnitude, we restrict Υ > Ro.
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The scaling to compare vertical to horizontal unresolved velocities is also considered:

(σdBt)z
‖(σdBt)H‖

∼ Ro

Bu
D, (10.3.23)

where D = h
L is the aspect ratio and the subscript H indicates horizontal coordinates. For the

justification of this scaling, we refer the reader to 3.3.1.
At mid-latitudes, the related term, given by β 4= ∂yf , is much smaller than the constant part

of the Coriolis frequency. Nevertheless, it can govern a large part of the relative vorticity at large
scales. The following scaling is thus chosen (Vallis, 2006):

βy ∼∇⊥ · u ∼ U

L
= Rof0. (10.3.24)

The resulting non-dimensional Boussinesq system under location uncertainty becomes:
Nondimensional Boussinesq equations under location uncertainty

Momentum equations

dtu+ (w · ∇)udt+
1

Υ1/2
(σHdBt · ∇H)u+

(
Ro

BuΥ1/2

)
(σdBt)z∂zu

− 1

2Υ

∑
i,j∈H

∂2
ij

(
aiju

)
dt+O

(
Ro

ΥBu

)
+

1

Ro
(1 + Roβy)k ×

(
udt+

1

Υ1/2
σHdBt

)

= −Eu ∇H

(
φ′dt+

1

Υ1/2
dtφσ

)
, (10.3.25a)

dtw + (w · ∇)wdt+
1

Υ1/2
(σHdBt · ∇H)w +

(
Ro

BuΥ1/2

)
(σdBt)z∂zw

− 1

2Υ

∑
i,j∈H

∂2
ij

(
aijw

)
dt+O

(
Ro

ΥBu

)
=

Γ

D2
bdt− Eu

D2
∂z

(
φ′dt+

1

Υ1/2
dtφσ

)
,

(10.3.25b)

Buoyancy equation

dtb+

(
w∗Υdt+

1

Υ1/2
(σdBt)

)
· ∇b− 1

2

1

Υ
∇H ·

(
aH∇b

)
dt+O

(
Ro

ΥBu

)
+

1

(Fr)2

1

Γ

(
w∗Υ/2dt+

(
Ro

Bu

)
1

Υ1/2
(σdBt)z

)
= 0, (10.3.25c)

Effective drift

w∗Υ =
(
u∗Υ, w

∗
Υ

)T
,

=

((
w − 1

2Υ
∇ · aH

)
,

(
w −

(
Ro

2ΥBu

)
∇H · aHz +O

(
Ro

ΥBu

)2
))T

, (10.3.25d)

Incompressibility
∇ ·w = 0, (10.3.25e)

∇·
(
σdBt

)
= 0, (10.3.25f)

∇H · (∇H · aH)
T

+ 2
Ro

Bu
∇H · ∂zaHz +O

((
Ro

Bu

)2
)

= 0. (10.3.25g)

Here, we do not separate the time-correlated components and the time-uncorrelated com-

ponents in the momentum equations. The terms in O
(
Ro
Bu

)
and O

(
Ro
Bu

)2

are related to the
time-uncorrelated vertical velocity. These terms are too small to appear in the final QG mod-
els (Bu = O (1) in QG approximation) and not explicitly shown. We only make appear the big
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O approximations. Traditional non-dimensional numbers are introduced : the Rossby number
Ro = U/(f0L) with f0 the average Coriolis frequency; the Froude number (Fr = U/(Nh)), ratio
between the advective time to the buoyancy time; Eu, the Euler number, ratio between the pres-
sure force and the inertial forces, Γ = Bh/U2 = D2BT/W the ratio between the mean potential
energy to the mean kinetic energy. To scale the buoyancy equation, the ratio between the buoyancy
advection and the stratification term has also been introduced:

B/T

N2W
=

B

N2h
=

U2

N2h2

Bh

U2
= Fr2Γ. (10.3.26)

10.3.6 Quasi-Geostrophic model under Moderate Uncertainty (QGMU)

Hereafter, we consider the QG approximation (Ro � 1 and Bu ∼ 1), for Υ ∼ 1. We focus
on solutions of the Boussinesq model with Rossby number going to zero. To derive the evolu-
tion equations corresponding to this limit, the solution of the non-dimentional Boussinesq model
(10.3.25) is developed as a power series of the Rossby number:

wb
φ

 =

∞∑
k=0

Ro
k

wk

bk
φk

 . (10.3.27)

According to the horizontal momentum equation (10.3.25a), the scaling of the pressure still corre-
sponds to the usual geostrophic balance. This sets the Euler number as:

Eu ∼ 1

Ro
. (10.3.28)

For the ocean, the aspect ratio, D 4
= H/L, is small and D2 � 1. As a consequence,

D2

Eu
∼ D2Ro � D2 � 1 and

D2

EuΥ
∼ D2Ro

Υ
6 D2 � 1. (10.3.29)

Therefore, the inertial and diffusion terms are negligible in the vertical momentum equation. The
hydrostatic assumption is still valid. This leads to the classical QG scaling of the buoyancy equa-
tion:

Γ ∼ Eu ∼ 1

Ro
and

1

Fr
2Γ
∼ Ro

Fr
2 =

Bu

Ro
. (10.3.30)

In the following, the subscript H is omitted for the differential operators Del, ∇, and Laplacian,
∆. They all represent 2D operators. Only keeping terms of order 0 and 1, we get the following
system:
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Momentum equations

Ro

dtu+ (u · ∇)udt+
1

Υ1/2
(σHdBt · ∇)u− 1

2Υ

∑
i,j∈H

∂2
ij

(
aiju

)
dt+O

(
Ro

ΥBu

)
+ (1 + Roβy)k ×

(
udt+

1

Υ1/2
σHdBt

)
= −∇H

(
φ′dt+

1

Υ1/2
dtφσ

)
, (10.3.31)

b dt+O
(
RoD2

)
= ∂z

(
φ′dt+

1

Υ1/2
dtφσ

)
, (10.3.32)

Buoyancy equation

Ro

Bu

dtb+∇b ·
(
udt+

1

Υ1/2
(σdBt)H

)
+ ∂zb wdt− 1

2Υ

∑
i,j∈H

∂2
ij (aijb) dt


+ wdt− 1

Υ

Ro

Bu
(∇ · aHz)T dt+

Ro

Bu

1

Υ1/2
(σdBt)z +O

(
Ro

2

ΥBu
2

)
= 0, (10.3.33)

Incompressibility
∇ · u+ ∂zw = 0, (10.3.34)

∇·
(
σdBt

)
H

+
Ro

Bu
∂z
(
σdBt

)
z

= 0, (10.3.35)

∇ · (∇ · aH)
T

+ 2
Ro

Bu
∇ · ∂zaHz +O

((
Ro

Bu

)2
)

= 0. (10.3.36)

The thermodynamic equation (10.3.33) at 0 order leads to :

w0 = 0, (10.3.37)

and then, by the large-scale incompressibility equation (10.3.34), the 0-order horizontal velocity
is divergence-free. Following the scaling assumption, the horizontal small-scale velocity is also
divergence-free (10.3.35). The horizontal momentum equation (10.3.31) at the 0-th order leads to:

u0 =∇⊥φ′0 and (σdBt)H =∇⊥dtφσ, (10.3.38)

where time-correlated and time-uncorrelated components have been separated by the mean of
uniqueness of the semi-martingale decomposition (Kunita, 1997). Being divergent-free, both com-
ponents can be expressed with two stream functions ψ0 and dtψσ:

u0 =∇⊥ψ0 and (σdBt)H =∇⊥dtψσ, (10.3.39)

exactly corresponding to the dimensionless pressure terms:

ψ0 = φ′0 and dtψσ = dtφσ. (10.3.40)

Deriving these equations along z and introducing the hydrostatic equilibrium (10.3.32) – decom-
posed between correlated and uncorrelated components – yields the classical thermal wind balance
at large-scale for the 0-th order terms. The buoyancy variable does not involve any white noise
term, and the small-scale random velocity is thus almost constant along z, as

∂zu0 =∇⊥b0 and ∂z(σdBt)H = O
(
RoD2

)
. (10.3.41)

Accordingly the variance tensor scales as:

∀i, j ∈ H, ∂zaij = O
(
Ro

2D4
)
, (10.3.42)

which is negligible in all equations, and the uncertain random field solely depends on the horizontal
coordinates. Since Ro/Bu ∼ Ro, the 1-st order term of the buoyancy equation must be kept to
describe the evolution of b0:

1

Bu
DH0tb0 + w1dt− 1

Υ
(∇ · aHz)T dt+

1

Υ1/2
(σdBt)z = 0, (10.3.43)
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where, for all functions h,

DH0th
4
= dth+∇h ·

(
u0dt+

1

Υ1/2
(σdBt)H

)
− 1

2Υ

∑
i,j∈H

∂2
ij (aijh) dt. (10.3.44)

Taking the derivative along z leads to:

1

Bu

DH0t∂zb0 +∇b0 · ∂z
(
u0dt+

1

Υ1/2
(σdBt)H

)
− 1

2Υ

∑
i,j∈H

∂2
ij (∂zaijb0) dt


+ ∂zw1dt− 1

Υ
(∇ · ∂zaHz)T dt+

1

Υ1/2
∂z(σdBt)z = 0. (10.3.45)

The introduction of the thermal wind equations (10.3.41) and incompressibility conditions (10.3.34-
10.3.36) helps simplifying this equation as:

1

Bu
DH0t∂zb0−∇·u1dt+

(
Ro

Bu

)−1
1

Υ
∇· (∇ · aH)

T
dt−

(
Ro

Bu

)−1
1

Υ1/2
∇·(σdBt)H = 0. (10.3.46)

Note the factor
(
Ro
Bu

)−1

appears. It comes from the incompressible conditions (10.3.35) and

(10.3.36), leading ∇·(σdBt)H and ∇· (∇ · aH)
T

dt to both scale as Ro
Bu

. The hydrostatic balance
at 0-order links the buoyancy to the pressure, and then to the stream function

∂zb0 = ∂2
zφ0 = ∂2

zψ0. (10.3.47)

The 1-st order term of the vertical velocity is not known. Yet, the system can be closed using the
vorticity equation at order 1:

∇⊥ ·
(
DH0tu0

)
+

(
∇·u1 +

(
Ro

Bu

)−1

∇·(σdBt)H

)
+∇(βy)· (u0dt+ (σdBt)H) = 0, (10.3.48)

where the divergence terms come from the constant Coriolis term.

Again, factors
(
Ro
Bu

)−1

compensate the order of magnitude of∇·(σdBt)H and∇·(∇ · aH)
T

dt.
Then,

DH0t (∆ψ0) +∇·u1dt+
1

Υ1/2

(
Ro

Bu

)−1

∇·(σdBt)H + β

(
v0dt+

1

Υ1/2
(σdBt)y

)
+

1

Υ1/2
tr
(
∇⊥(σdBt)

T

H∇uT0
)
− 1

2Υ

∑
i,j∈H

∂2
ij

(
∇⊥aij · u0

)
dt = 0. (10.3.49)

To make appear the transport of PV, we note that:

DH0t (1 + βy) = −β
(
v0dt+

1

Υ1/2
(σdBt)y

)
+∇·aHyβdt

−
(
Ro

Bu

)−1
1

2Υ
∇ · (∇ · aH)

T
dt. (10.3.50)

Then, using (10.3.46), (10.3.47) and (10.3.49), we get:

DH0t
(

∆ψ0 + 1 + βy +
1

Bu
∂2
zψ0

)
= −∇·aHyβdt−

(
Ro

Bu

)−1
1

2Υ
∇ · (∇ · aH)

T
dt

− tr
(
∇⊥(σdBt)

T

H∇uT0
)

+
1

2Υ

∑
i,j∈H

∂2
ij

(
∇⊥aij · u0

)
dt. (10.3.51)
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We recall that coefficients
(
Ro
Bu

)−1

are still present since

∇·(σdBt)H ∼∇ · (∇ · aH)
T

dt ∼
(
Ro

Bu

)
. (10.3.52)

If we rewrite the equation with dimensional quantities, the evolution equation for u0 = limRo→0 u
is obtained (dropping the index 0 for clarity):

DHt Q = −tr
(
∇⊥(σdBt)

T

H∇uT
)

+
1

2

∑
i,j∈H

∂2
ij

(
∇⊥aij · u

)
dt− 1

2
∇·(∇ · (aHf))

T
dt, (10.3.53)

where Q is the QG potential vorticity:

Q
4
= ∆ψ + f +

(
1

N

)2

∂2
zψ. (10.3.54)

For a given σH , equations (10.3.53) and (10.3.54) constitute a stochastic Eulerian QG model that
can be simulated numerically.

Note, (10.3.38) provides the geostrophic balance for the small-scale velocity component. To
express the material derivative of Q, the noise term is expanded:

−tr
(
∇⊥(σdBt)

T

H∇uT
)

= −
∑
k,j∈H

∂2
kjψ∂kσj•dBt. (10.3.55)

According to (2.2.10), the difference between the material derivative, DtQ, and the stochastic
transport operator DtQ, is a function of the time-uncorrelated forcing:{

DtQ = f1dt+ hT1 dBt,
DtQ = f2dt+ hT2 dBt,

⇐⇒
{

f2 = f1 + tr
(
(σT∇)hT1

)
,

h1 = h2.
(10.3.56)

The expression of h1 is given by equation (10.3.53) and the above formulas give:

DtQ− DtQ =
∑
i∈H

σi•∂i

− ∑
j,k∈H

∂kσj•∂
2
kjψ

T

, (10.3.57)

= −
∑

i,j,k∈H

(
σi•∂

2
ikσ

T

j•∂
2
kjψ + σi•∂kσ

T

j•∂
3
ijkψ

)
. (10.3.58)

With the use of the small-scale incompressibility, we obtain:

1

2

∑
i,j∈H

∂2
ij

(
∇⊥aij · u

)
=

∑
i,j,k∈H

(
∂jσi•∂

2
ikσ

T

j•∂kψ + ∂jσi•∂kσ
T

j•∂
2
ikψ + σi•∂

2
ikσ

T

j•∂
2
jkψ + σi•∂kσ

T

j•∂
3
ijkψ

)
. (10.3.59)

From (10.3.58) and (10.3.59), it yields:

DtQ −

DtQ−
1

2

∑
i,j∈H

∂2
ij

(
∇⊥aij · u

) =
∑

i,j,k∈H

(
∂jσi•∂

2
ikσ

T

j•∂kψ + ∂jσi•∂kσ
T

j•∂
2
ikψ
)
.

(10.3.60)

Denoting, α, the following matrix

αij
4
=
∑
k∈H

∂kσi•∂jσ
T

k• =
∑
k∈H

∂k(σi•∂jσ
T

k•), (10.3.61)
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we have

∇ · (α∇ψ) =
∑

i,j,k∈H

(
∂jσi•∂

2
ikσ

T

j•∂kψ + ∂jσi•∂kσ
T

j•∂
2
ikψ
)
, (10.3.62)

= DtQ−

DtQ−
1

2

∑
i,j∈H

∂2
ij

(
∇⊥aij · u

) , (10.3.63)

and the material derivative of the PV finally reads:

DH
t Q =∇ · (α∇ψ)dt− 1

2
∇ · (∇ · (aHf))

T
dt− tr

[
∇⊥(σdBt)

T

H∇uT
]
. (10.3.64)

To note, the transpose of the matrix α has a compact expression:

αT =
∑
p

(
∇σTHp

)2
. (10.3.65)

10.3.7 Surface Quasi-Geostrophic model under Moderate Uncertainty
(SQGMU)

A classical boundary conditions choice for the QG model considers a vanishing solution in the deep
ocean and a buoyancy transport (10.3.20b) at the surface (Vallis, 2006; Lapeyre and Klein, 2006):

ψ −→
z→−∞

0 and DH
t b|z=0

= DHt b|z=0
= 0. (10.3.66)

Assuming zero PV in the interior but keeping these boundary conditions leads to the Surface
Quasi-Geostrophic model (SQG) (Blumen, 1978; Held et al., 1995; Lapeyre and Klein, 2006; Con-
stantin et al., 1994, 1999, 2012). Under the stochastic framework, the derivation is similar. The
PV is indeed identical to the classical one (see equation (10.3.54)), assuming zero PV in the interior
and vanishing solution as z → −∞ unsurprisingly yields the same SQG relationship:

b̂ = N‖k‖ ψ̂. (10.3.67)

The top boundary condition, equation (10.3.66), provides an evolution equation, namely the hori-
zontal transport of surface buoyancy, in the stochastic sense:

DHt b = 0. (10.3.68)

The time-uncorrelated component of the velocity, σḂ, is divergence-free. Its inhomogeneous and
anisotropic spatial covariance has then to be specified. The time-correlated component of the ve-
locity is also divergence-free, with a stream function specified by the SQG relation (10.3.67). The
buoyancy is randomly advected, and the resulting smooth velocity component is random as well.

10.3.8 QG and SQG models under Strong Uncertainty (SQGSU)

For the case Υ close to the Rossby number, the diffusion term is not negligible anymore and the
geostrophic balance is modified. As the terms of the geostrophic balance remain large (Ro 6 Υ�
1), the scaling of the pressure can still be done with the Coriolis force. This leads to an Euler
number scaling as

Eu ∼ 1

Ro
. (10.3.69)

Keeping a small aspect ratio D2 � 1, we get

Eu

D2
∼ 1

RoD2
� 1

Ro
>

1

Υ
. (10.3.70)
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As the Rossby number and the ratio Υ are both small in the vertical momentum equation, the
inertial terms are dominated by the diffusion term which is itself negligible in front of the pressure
term. The hydrostatic balance is hence conserved. The buoyancy scaling still correspond to the
thermal winds relation:

Γ ∼ Eu ∼ 1

Ro
. (10.3.71)

Considering the scaling (σdBt)z
‖(σdBt)H‖ ∼ D

Ro
Bu

for the vertical small-scale velocity, the non-dimensional
evolution equations are now given by:

Momentum equations

Ro

(
dtu+ (u · ∇)udt+

1

Υ1/2
(σHdBt · ∇)u+O

(
Ro

ΥBu

))
− Ro

2Υ

∑
i,j∈H

∂2
ij

(
aiju

)
dt

+ (1 + Roβy)k ×
(
udt+

1

Υ1/2
σHdBt

)
= −∇H

(
φ′dt+

1

Υ1/2
dtφσ

)
, (10.3.72)

b dt+O

(
RoD2

Υ1/2

)
= ∂z

(
φ′dt+

1

Υ1/2
dtφσ

)
, (10.3.73)

Buoyancy equation
Ro

Bu

(
dtb+∇b ·

(
udt+

1

Υ1/2
(σdBt)H

)
+ ∂zb wdt

)
− Ro

2Υ

∑
i,j∈H

∂2
ij (aijb) dt

+ wdt− 1

Υ

Ro

Bu
(∇ · aHz)T dt+

Ro

Bu

1

Υ1/2
(σdBt)z +O

(
Ro

2

ΥBu
2

)
= 0, (10.3.74)

Incompressibility
∇ · u+ ∂zw = 0, (10.3.75)

∇·
(
σdBt

)
H

+
Ro

Bu
∂z
(
σdBt

)
z

= 0, (10.3.76)

∇ · (∇ · aH)
T

+ 2
Ro

Bu
∇ · ∂zaHz +O

((
Ro

Bu

)2
)

= 0. (10.3.77)

Again, the operators Del, ∇, and Laplacian, ∆ represent 2D operators. If Ro ∼ Υ, the system
is not anymore approximately in geostrophic balance. The large-scale velocity becomes divergent
and decoupling the system is more involved. For sake of simplicity, we thus focus on the case of
homogeneous and horizontally isotropic turbulence. As a consequence, the variance tensor a is
constant in space and diagonal:

a =

ah 0 0
0 ah 0
0 0 az

 . (10.3.78)

The time-correlated components of the horizontal momentum (10.3.72) at the 0-th order can be
written as:

−aH
2

∆u0 + k × u0 = −∇φ′0. (10.3.79)

Let us note that f × u0 = fJu0 with J =

(
0 −1
1 0

)
and that JT = J−1 = −J . For a constant

Coriolis frequency, the previous equation can be solved in the horizontal Fourier space :

û0 =
(
J +

aH
2
‖k‖22Id

)−1

(−ikφ̂′0) =

(
Id −

∥∥∥∥ kkc
∥∥∥∥2

2

J

)−1 (
ik⊥φ̂′0

)
, (10.3.80)
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with kc =
√

2
aH

. Expanding the right-hand side operator in Taylor series and using the properties

J2p = (−1)pId and J2p+1 = (−1)pJ ,(
Id −

∥∥∥∥ kkc
∥∥∥∥2

2

J

)−1

=
+∞∑
p=0

(∥∥∥∥ kkc
∥∥∥∥2

2

J

)p
, (10.3.81)

=
+∞∑
p=0

(−1)p
∥∥∥∥ kkc

∥∥∥∥4p

2

Id +
+∞∑
p=0

(−1)p
∥∥∥∥ kkc

∥∥∥∥4p+2

2

J , (10.3.82)

=
+∞∑
p=0

(
−
∥∥∥∥ kkc

∥∥∥∥4

2

)p(
Id +

∥∥∥∥ kkc
∥∥∥∥2

2

J

)
, (10.3.83)

=
1

1 +
∥∥∥ kkc ∥∥∥4

2

(
Id +

∥∥∥∥ kkc
∥∥∥∥2

2

J

)
. (10.3.84)

This leads to the following solution for the modified geostrophic balance:

û0 =
1

1 +
∥∥∥ kkc ∥∥∥4

2

(
ik⊥φ̂′0

)
+

∥∥∥ kkc ∥∥∥2

2

1 +
∥∥∥ kkc ∥∥∥4

2

(
−ikφ̂′0

)
. (10.3.85)

In the physical space, the solution reads:

u0 =∇⊥
(

1 +
∆2

k4
c

)−1

φ′0︸ ︷︷ ︸
=ψ0

+∇
(

1 +
∆2

k4
c

)−1
∆

k2
c

φ′0︸ ︷︷ ︸
=ψ̃0

with kc =

√
2

aH
(10.3.86)

which is the Helmholtz decomposition of the horizontal velocity u0 into its rotational and divergent
component with a stream function ψ0 and a velocity potential ψ̃0. Differentiating the buoyancy
equation at the order 0 along z, we obtain

aH
2

∆∂z

(
b0
Bu

)
= ∂zw0 = −∇ · u0 = −∆ψ̃0 = −∆2

k4
c

ψ0. (10.3.87)

The time-correlated part of the 0-th order hydrostatic equation relates the buoyancy to the pressure
φ′0:

aH
2

∆∂z

(
b0
Bu

)
=
aH
2

∆∂2
zφ
′
0 =

aH
2

∆∂2
z

(
1 +

∆2

k4
c

)
ψ0. (10.3.88)

Gathering these two equations and dropping index 0 lead to:(
∆ +

(
1 +

∆2

k4
c

)
∂z

((
f0

N

)2

∂z

))
ψ = 0, (10.3.89)

with kc =
√

2f0
aH

. Using the horizontal Fourier transform, it writes:(
−‖k‖22 +

(
1 +

∥∥∥∥ kkc
∥∥∥∥4

2

)
∂z

((
f0

N

)2

∂z

))
ψ̂ = 0. (10.3.90)

Under an uniform stratification, with a fixed value at a specific depth (z = η), and a vanishing
condition in the deep ocean (z → −∞), a solution is:

ψ̂(k, z) = ψ̂(k, η) exp

 N‖k‖2

f0

√
1 +

∥∥∥ kkc ∥∥∥4

2

(z − η)

 . (10.3.91)
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Accordingly, the buoyancy is:

b̂ = ∂zφ̂
′ = f0

(
1 +

∥∥∥∥ kkc
∥∥∥∥4

2

)
∂zψ̂ = N‖k‖2

√
1 +

∥∥∥∥ kkc
∥∥∥∥4

2

ψ̂. (10.3.92)



Conclusion

During this thesis, we have studied the dynamics of tracers in fluid flows changing either very fast
or very slowly.

From a large scale point of view, fast velocity changes prevent a full tracking of the dynam-
ics. A fully deterministic description cannot completely apprehend all the complexity generated
by the nonlinear interactions between scales and the necessary physical approximations performed
in terms of forcing or boundary conditions. In contrast, a stochastic physical framework can en-
code this partial uncertainty through the introduction of random fields. The difficulty consists in
keeping important properties related for instance to energy transfer or transport relations. This
challenge is addressed by the modeling under location uncertainty. To model very fast changes
of an incompressible flow – or similarly a very large time scale of observation – the unresolved
and highly-oscillating component of the velocity is assumed to be random and time-uncorrelated.
As demonstrated in chapters 2, 3, 4 and 8, within such framework, general and simplified ran-
dom fluid dynamics models can be inferred from fundamental conservations of mechanics: mass,
momentum, energy, amount of substance, etc. Stochastic versions of Navier-Stokes, Boussinesq,
quasi-geostrophic and surface quasi-geostrophic models have been rigorously derived. In these
evolution laws, a tracer is transported in a stochastic sense. Accordingly, the tracer energy is
redistributed by an effective drift and through the joint action of two other terms.

The effective drift may be understood as the difference between the Lagrangian and the Eulerian
mean velocity. It is directed towards the minimum of turbulence and have many similarities with
the Stokes drift and the so-called bolus velocity introduced in oceanic models. The two other terms
express a diffusion contribution and a random forcing. The diffusion is possibly inhomogeneous
and anisotropic; it stabilizes the unstable tracer modes through an energy dissipation. Chapters
6 and 7 have shown that these first terms enable us to derive stable deterministic POD reduced
order models from a direct Galerkin projection of fluid dynamical equations even at relatively
high Reynolds number. Adapted estimators have been proposed for this purpose. The physical
effect of the residual velocity forgotten by the ROM have also been interpreted through the eyes
of our models under location uncertainty. Accordingly, these models offer new data analysis tools
complementary to the usual Empirical Orthogonal Functions (EOF). Furthermore, the Surface
Quasi-Geostrophic model under Strong Uncertainty (SQGSU ) model of chapter 4 exhibited the
importance of subgrid dissipation terms in physical model derivation. This model also revealed how
the interactions between this diffusion and the earth rotation affect the mesoscale and submesocale
dynamics of the ocean.

The random forcing is a multiplicative noise which destabilizes some tracer modes by injecting
as much energy as the diffusion removes. It acts as a random energy bridge between different modes
of the tracer. These energy transfers are recovered but are uncertain. The ensuing instabilities
hence increase the tracer variance. These stochastic instabilities are at the heart of chapters 2,
3, 5 and 8. First, chapters 2 and 8 theoretically unveil these energy fluxes. Then, through nu-
merical simulations of a simplified oceanic model, chapter 3 demonstrates that a single run of the
model resolves physically relevant filament instabilities unlike the deterministic model simulated
at the same resolution. These instabilities are triggered by the multiplicative noise. So a single
realization of the model under location uncertainty can improve numerical simulations of fluid
flows. Furthermore, in the context of forecasting, the random destabilization prevents an ensemble
of simulations to align with unstable modes of the dynamic. In geophysical fluid dynamics, this
well-known problem of degeneracy is due to a strong stabilization of some modes by the subgrid
tensor. This problem has been illustrated in chapter 3. An ensemble generated by the deterministic
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dynamics and random initial conditions shrunk and hence underestimated its error by an order of
magnitude. In the transport under location uncertainty, the energy is drained from these unstable
modes to stable ones. The stable modes remain energetic due to the random energy intake and
prevent the ensemble degeneracy. The ensemble simulated according to our model accurately esti-
mates the amplitude and the position of its own error in both spatial and spectral space. Chapter
8 also shows that a small ensemble evolving in a strongly reduced subspace succeeds in estimating
its error. In a similar way, chapter 5 shows how the same ensemble better describes a bifurcation
in a long term forecast. The bifurcation leads to two likely scenarios. Before the bifurcation, the
dynamics is in a meta-stable state. Again the subgrid tensor over stabilizes some stable modes. As
in chapter 3, it strongly weakens small-scale modes which encode either an accurate information
on the initial condition or a spread due to random initial conditions. Moreover, this over stabi-
lization biased the exits of the meta-stable state. In this case, these exits are mainly determined
by infinitesimal numerical errors. This makes long-term forecasts inaccurate as illustrated by both
deterministic simulations and ensemble generated by random initial conditions. On the other hand,
the noise involved in the model under location uncertainty sufficiently destabilizes the metastable
state to recover and accurately describe both scenarios with a small ensemble size. The small
number of needed realizations is also due to the multiplicative structure of the noise. Indeed, in
addition to the introduction of non-Gaussianity this structure enforces an inhomogeneity of the
noise even though the random small-scale velocity component is homogeneous. Let us outline that
for an homogeneous random velocity field, the associated turbulent diffusion is uniform but the
total energy budget of the subgrid terms – diffusion plus noise – is inhomogeneous. In this model,
only the physically relevant instabilities are triggered. Accordingly, each realization are physically
plausible. From an UQ point of view, it means that only the over-stabilized modes are spread.
As a consequence, much less directions have to be sampled and in this way only a few realiza-
tions should be needed. This constitutes a capital advantage in the perspective of geophysical flow
based numerical simulation. Moreover, the model structure is independent of the noise amplitude.
This should allow strong noise in order to fit constraints of realistic ensemble forecasting without
strongly perturbing the physics. This is often hardly possible with empirical models which ex-
hibit an inappropriate balance between the effective diffusion and the noise variance. Chapter 8
demonstrates the possibility of estimating at low computational cost the influence of stationary
inhomogeneous and time-uncorrelated small-scale velocity in POD-ROMs derived from a model
under location uncertainty. Furthermore, these stochastic POD-ROMs demonstrate several strong
UQ skills. The ensemble variability of stable modes is maintained by the random energy fluxes.
They are in this way sustained and do not correspond to evanescent modes as in the case of only
dissipative subgrid stress models. In addition, by a skillful spreading, the ensemble remains very
close to the reference. On the one hand, some realizations become closer to the reference; on
the other hand, the ensemble variance increases only if necessary. The algebraical structure of
the global random transport under location uncertainty has been explained in chapters 1 and 8.
The semigroup of passive tracer dynamics shows some similarities with a unitary operator called
free multiplicative Brownian matrix. In finite dimension, this corresponds to a unitary Brown-
ian matrix. By construction, the solution is forced to remain in the manifold of constant energy.
Nonetheless, chapter 8 has shown that a truncation in the number of modes describing a numerical
solution yields a small energy leak toward unresolved modes. Yet this process seems physically
relevant to us since it enables the energy to cascade toward molecular viscous scales.

Currently, we continue to analyze stochastic instabilities introduced by the modeling under
location uncertainty through the work begun in chapter 8 as well as the study of Lagrangian
dynamics of tracer gradients. This last study is not presented in this thesis. The study aims
at better understanding and taking into account subgrid velocity influence in mixing diagnosis.
For this purpose, we generalize to random flows the Eulerian mixing criterions of Okubo (1970);
Weiss (1991) and Lapeyre et al. (1999). Several theoretical and numerical results have already
been obtained. Depending on the value of few parameters, the time-uncorrelated velocity either
promotes hyperbolicity, ellipticity or elliptic bursts. We are currently working on the application
of this method to diagnose mixing in the ocean surface from altimetry-derived velocity.

A problem of these velocity fields measured from space is indeed their low spatial and temporal
resolutions. This bring us to the second subject: fluid flows changing very slowly – or observed at a
very small time scale. Mixing diagnoses relying on these smooth data often neglect the influence of
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the unobserved or sparsely observed subgrid velocity. This sometimes leads to strong errors (Keat-
ing et al., 2011). By our stochastic Lagrangian study we aim at statistically describing the effect
of this subgrid component on mixing. Conversely, studying the mixing induced by the smooth
large-scale velocity measured from space can unveil the missing elements of the dynamics. These
identified missing elements can then yield better subgrid parametrization as well as subgrid veloc-
ity statistics. This problem has been addressed in chapter 9. We have characterized the squared
norm of tracer gradients integrated over the space after a finite-time advection. When a spatial
smoothing decorrelates the tracer and the incompressible flow, advection can only strengthen the
gradients and the local growth rate is independent of the tracer. For a very low temporal resolution,
the main processes of gradient strengthening corresponds to velocity shears where streamlines are
straight and to angular velocity shears where the streamlines are curved. This last process folds
and wraps the tracer around vortices. From these two mechanisms, we derived a simplified model
– linear in time – to quantify the norm of tracer gradients. After having demonstrated that this
norm characterizes the correlation length of the tracer, we analyzed its influence on the tracer
spectrum. All things considered, we have obtained a simple model to quantify the position of
the tracer spectrum tail after a finite-time advection. Furthermore, the parameters of this model
only depends on the Eulerian velocity. We presented simulations with a model of stationary flow
and real satellite images of the ocean. We have successfully applied our model to the Lagrangian
advection method (Sutton et al., 1994; Desprès et al., 2011a; Berti and Lapeyre, 2014; Dencausse
et al., 2014) to set up the spatial filter width and the advection time. This simple model could also
be valuable in numerical simulations of large-scale fluid flows to specify the turbulent diffusion as
a function of the large-scale velocity.

When the models under location uncertainty rely on an inhomogeneous time-uncorrelated ve-
locity, we have referred to the Itō drift w to as the “large-scale velocity”. Yet it was a choice.
Similarly to Stokes drift studies, the Itō drift, w, may be considered as the mean Lagrangian
velocity whereas the corrected drift (Stratonovich drift in the incompressible case), w? = w +
1
2

∑d
i=1 (σ∂iσ

T
i• − ∂iσσTi•), may be understood as the mean Eulerian velocity. Note that for a

constant density the mass conservation only imposes zero divergence for w? and σ but not for
w. Depending on the averaging method, further numerical studies on a simple flow generated
by a known inhomogeneous stochastic differential equation may help us to know in which case
we estimate w and in which case we estimate w?. Moreover, in our different stochastic Navier-
Stokes representations, we have assumed a transport of the Itō drift rather than a transport of the
Stratonovich drift. Numerical procedures could be performed on simple inhomogeneous flows to
rigorously test both assumptions.

The transport under location uncertainty is characterized by the stabilization and the destabi-
lization of several phenomena. Thus, this formalism may lead to interesting dispersion equations
with noises. Such equations could link the property of the operator σ to the stability of some
waves as well as non-oscillating phenomenons such as the filament instabilities of chapter 3. Many
tools used to study deterministic dynamical systems (Lyapunov exponents, stability, ellipticity,
hyperbolicity, bifurcation, etc) have a stochastic version (Arnold and Kloeden, 1989) and may help
handle these stochastic dispersion equations. Moreover, if the influence of a simulation resolution
explicitly appears in such a dispersion relation – for instance through a hyperviscosity – we may
be able to setup the parameters of σ as a function of the tracer and the resolution in order to
trigger the right instabilities. Another way of studying the instabilities and the energy fluxes of
our random models is through reduced order models. In particular, Dynamical Orthogonality (DO)
with a constant or varying dimensionality is an attractive method (Sapsis, 2011; Sapsis and Ler-
musiaux, 2012; Sapsis and Majda, 2013b; Sapsis, 2013). First, it is adapted to random systems and
naturally separates mean and random components. This could be interesting to study the random
energy exchanges between the mean and random components and between the stable and unstable
modes. Furthermore, it may also overcome the energy leak unveiled in chapter 8 by enabling the
spatial modes to change on the fly. As suggested in chapter 1, the theories of random matrices and
free probability could bring a lot of information on the eigenvalues of the dynamics of randomly
transported passive tracers. Again, these eigenvalues – probably lying on the unit circle of C –
may reveal interesting features about random energy exchanges. Potential analytical results on the
statistics of the tracer after a finite time may also improve some data assimilation procedures.
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Even without additional analytical results, the models under location uncertainty offer new
procedures to learn from geophysical data. A natural application is filtering and this application
has to be addressed. In addition, the Girsanov theorem (see chapter 1) together with a parametric
model of the operator σ theoretically enables maximum likelihood estimation and Bayesian infer-
ence from a set of satellite images of the tracer. Another way of closing our models could rely on
a physical relation. For instance, the product of the isolines curvature and the norm of the tracer
gradient is conserved in many cases (Constantin et al., 1994; Lapeyre, 2000). With an adequate
parametric model (see for instance chapters 3 and 5), some parameters of σ such as its correlation
length can be locally setup in order to meet this physical constraint.

In the long term, several modifications of the models under location uncertainty could be en-
visaged. The assumption of conditional Gaussianity of the unresolved velocity may be a physical
limitation. A work around could consist of averaging or homogenization procedures of our stochas-
tic models. Fast modes would follow linearized models under location uncertainty. Since the
evolution laws of fast modes already contain a noise, there would be no need to artificially add
it before the homogenization as in the MTV framework (Majda et al., 1999, 2001; Franzke et al.,
2005; Majda et al., 2008). Furthermore, Levy processes defined by noises with Laplace distribu-
tions could be used instead of continuous semimartingales defined by Gaussian noises. However,
even though the stochastic calculus of Levy processes is well known we would need an analog of the
Itō-Wentzell formula. Finally, without relying on jump processes, statistical physics may lead to
an Itō-like formula with an infinite number of terms (Klyatskin, 2005). It could overcome the dif-
ficulty introduced by the time differentiation of white noise in the derivation of random stochastic
models (see chapters 2 and 8). Notwithstanding, we would again need an analog of the Itō-Wentzell
formula.
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Résumé

Cette thèse concerne le développement, l’extension et l’application d’une formulation stochas-
tique des équations de la mécanique des fluides introduite par Mémin (2014). La vitesse petite
échelle, non-résolue, est modélisée au moyen d’un champ aléatoire décorrélé en temps. Cela modifie
l’expression de la dérivée particulaire et donc les équations de la mécanique des fluides. Les modèles
qui en découlent sont dénommés modèles sous incertitude de position. La thèse s’articule autour
de l’étude successive de modèles réduits, de versions stochastiques du transport et de l’advection
à temps long d’un champ de traceur par une vitesse mal résolue.

La POD est une méthode de réduction de dimension, pour EDP, rendue possible par l’utilisation
d’observations. L’EDP régissant l’évolution de la vitesse du fluide est remplacée par un nombre
fini d’EDOs couplées. Grace à la modélisation sous incertitude de position et à de nouveaux esti-
mateurs statistiques, nous avons dérivé et simulé des versions réduites, déterministes et aléatoires,
de l’équation de Navier-Stokes.

Après avoir obtenu des versions aléatoires de plusieurs modèles océaniques, nous avons montré
numériquement que ces modèles permettaient de mieux prendre en compte les petites échelles des
écoulements, tout en donnant accès à des estimés de bonne qualité des erreurs du modèle. Ils
permettent par ailleurs de mieux rendre compte des évènements extrêmes, des bifurcations ainsi
que des phénomènes physiques réalistes absents de certains modèles déterministes équivalents.

Nous avons expliqué, démontré et quantifié mathématiquement l’apparition de petites échelles
de traceur, lors de l’advection par une vitesse mal résolu. Cette quantification permet de fixer
proprement des paramètres de la méthode d’advection Lagrangienne, de mieux le comprendre le
phénomène de mélange et d’aider au paramétrage des simulations grande échelle en mécanique des
fluides.

Mots-clés : Qantification d’incertitude, prévision d’ensemble, bifurcation, calcul stochastique,
mécanique des fluides, géophysique, dynamique de surface dans l’océan, modèle d’ordre réduit,
proper orthogonal decomposition, statistique des processus, advection Lagrangienne, mélange,
repliement.

Abstract

This thesis develops, analyzes and demonstrates several valuable applications of randomized
fluid dynamics models referred to as under location uncertainty. The velocity is decomposed be-
tween large-scale components and random time-uncorrelated small-scale components. This assump-
tion leads to a modification of the material derivative and hence of every fluid dynamics models.
Through the thesis, the mixing induced by deterministic low-resolution flows is also investigated.

We first applied that decomposition to reduced order models (ROM). The fluid velocity is
expressed on a finite-dimensional basis and its evolution law is projected onto each of these modes.
We derive two types of ROMs of Navier-Stokes equations. A deterministic LES-like model is able
to stabilize ROMs and to better analyze the influence of the residual velocity on the resolved
component. The random one additionally maintains the variability of stable modes and quantifies
the model errors.

We derive random versions of several geophysical models. We numerically study the transport
under location uncertainty through a simplified one. A single realization of our model better
retrieves the small-scale tracer structures than a deterministic simulation. Furthermore, a small
ensemble of simulations accurately predicts and describes the extreme events, the bifurcations as
well as the amplitude and the position of the ensemble errors. Another of our derived simplified
model quantifies the frontolysis and the frontogenesis in the upper ocean.

This thesis also studied the mixing of tracers generated by smooth fluid flows, after a finite
time. We propose a simple model to describe the stretching as well as the spatial and spectral
structures of advected tracers. With a toy flow but also with satellite images, we apply our model
to locally and globally describe the mixing, specify the advection time and the filter width of the
Lagrangian advection method, as well as the turbulent diffusivity in numerical simulations.

Keywords : Uncertainty quantification, ensemble forecast, bifurcation, stochastic calculus,
fluid dynamics, geophysics, upper ocean dynamics, reduced order model, proper orthogonal de-
composition, processes statistics, Lagrangian advection, mixing, folding.
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