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Abstract

Quantum information can be processed in two fundamentally different ways, using either
discrete or continuous variable implementations. Each one of them provides different
practical advantages and drawbacks. In this thesis we study theoretical means allowing
to implement quantum information protocols originally formulated for discrete quantum
systems in physical objects characterized by continuous variables. At the heart of our
considerations is the use of modular variables as helpful technique to reveal discrete
structure in continuous-variable states, operations and observables. The present work
is strongly guided by the experimental applicability of our ideas in quantum optics
experiments, with a particular focus on the transverse degrees of freedom of single
photons.
One of the main themes of this thesis is the formulation of a framework for quantum

information processing in phase-space based on the use of modular variables. The term
modular variables refers to a specific class of observables that are periodic with respect
to some pair of conjugate variables. In our framework we use these periodic observables
in order to encode discrete quantum information in Hilbert spaces of infinite dimension.
In particular, we consider protocols that involve measurements of judiciously chosen log-
ical observables enabling the readout of the encoded discrete quantum information from
the corresponding logical states. Using this framework we show how to perform tests of
fundamental properties of quantum mechanics, such as entanglement, Bell nonlocality
and contextuality, in Hilbert spaces of various dimensions. Particularly, we generalize
known tests of each of these properties, that were originally formulated for measure-
ments with discrete outcomes, to more general measurement contexts comprising the
case of bounded continuous outcomes.
Concerning experimental implementations of the presented theoretical elaborations

we discuss the transverse degrees of freedom of single photons as a natural platform
to manipulate and measure modular variables. In particular, we demonstrate how
to process discrete quantum information encoded in the spatial distribution of single
photons via the optical Talbot effect - a near-field interference effect. Finally, we show
how to produce d-dimensional entangled Talbot photon pairs without post-selection,
using spontaneous parametric down-conversion and linear optical elements only.
As last topic we explore the nonlocal properties of a specific class of hybrid entangle-

ment between particle-like and wave-like optical qubits. Using a hybrid measurement
scheme of Pauli and displaced parity measurements we show that, even after including
realistic experimental losses, a violation of local-realism is theoretically possible.
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Résumé

L’information quantique peut être traitée de deux manières fondamentalement dif-
férentes: à l’aide de variables discrètes ou continues. Dans cette thèse, nous étudions
de manière théorique la réalisation de protocoles d’information quantique dans les sys-
tèmes caractérisés par des variables continues. Pour ce faire, nous utilisons les variables
modulaires comme outil permettant de révéler des structures discrètes dans les états,
opérations et observables. Le présent travail est fortement motivé par l’applicabilité
expérimentale de nos idées dans des expériences d’optique quantique.
Le thème principal de cette thèse est la formulation d’un cadre pour le traitement

quantique de l’information dans l’espace des phases grâce aux variables modulaires.
Les variables modulaires se réfèrent à une famille spécifique d’observables qui sont péri-
odiques par rapport à une certaine paire de variables conjuguées. L’usage des variables
modulaires permet d’encoder des états logiques dans des espaces de Hilbert de dimen-
sion infinie et de définir des opérations qui permettent de les manipuler. En particulier,
nous considérons des protocoles qui impliquent des mesures de variables modulaires qui
permettent la lecture d’information discrète codée dans des variables continues. Grâce
à ce formalisme, nous montrons comment il est possible de réaliser des tests des pro-
priétés fondamentales de la mécanique quantique comme l’intrication, la non-localité ou
la contextualité dans des espaces de Hilbert de dimensions finie ou infinie.
Ensuite, nous discutons pourquoi les degrés de liberté transverse des photons sont

des candidats naturels pour l’implémentation expérimentale des variables modulaires.
À cet effet, nous démontrons comment il est possible d’utiliser l’effet Talbot - un ef-
fet d’interférence en champ proche - afin d’encoder de l’information discrète dans la
distribution spatiales des photons. Finalement, nous montrons comment produire des
photons Talbot intriqués de dimension arbitraire en utilisant la conversion paramétrique
et des éléments d’optique linéaire.
En dernier lieu, nous explorons les propriétés non-locales d’une classe spécifique

d’états hybrides intriqués entre degrés de liberté discrets et continus. En utilisant une
mesure hybride composée par les matrices de Pauli et de la parité déplacée, on montre
qu’il est possible de violer le principe de localité. De plus, on montre que cette violation
est robuste aux pertes.
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I Introduction

The field of quantum information science focused originally on the study of finite di-
mensional quantum systems used to encode and process information based on the fun-
damental laws of quantum mechanics [Nielsen and Chuang, 2000]. This led to the
formulation of a plethora of quantum information protocols which exploit fundamen-
tal properties of quantum mechanics as a resource and often outperform their classical
counterparts. In recent years, a novel way of processing quantum information, in terms
of infinite dimensional continuous-variable systems, has been developed, providing sev-
eral practical advantages and drawbacks compared to the finite dimensional case. In
the present dissertation we will combine benefits of both routes and study strategies
that allow to implement tasks originally formulated for discrete quantum systems in
continuous-variable setups.
Historically, Einstein, Podolsky, and Rosen were among the first ones to explore the

foundations of quantum mechanics trying to find a reasonable explanation for what
we call entanglement today [Einstein et al., 1935]. However, a breakthrough for the
understanding of entanglement was made about 30 years later by John S. Bell who
showed that the predictions of quantum mechanics are in conflict with those of classical
physics [Bell, 1964, 1966]. Practically, Bell provided an inequality which allows to test
correlations for their compatibility with predictions made by classical local hidden vari-
able theories and thus characterizes entanglement indirectly as a fundamental property
of quantum mechanics. As a result of Bell’s work, and its experimental demonstra-
tion about 20 years later [Freedman and Clauser, 1972; Aspect et al., 1981, 1982b],
the research exploring nonlocal aspects of quantum mechanics grew immensely over
the last decades. On the one hand, the fundamental understanding of various types
of nonlocal correlations, such as Bell nonlocality [Brunner et al., 2014], entanglement
[Gühne and Tóth, 2009; Horodecki et al., 2009] or EPR steering [Reid et al., 2009; Cav-
alcanti and Skrzypczyk, 2016], has been improved. On the other hand, their important
role as resources for applications in different areas of quantum information, such as
quantum cryptography [Ekert, 1991; Scarani et al., 2009] or communication complexity
[Buhrman et al., 2010; Brukner et al., 2004], has been established. One of the most
recent highlights were the first loophole-free violations of Bell inequalities in quantum
optics experiments [Hensen et al., 2015; Shalm et al., 2015; Giustina et al., 2015].
Another important fundamental property of quantum mechanics can be attributed

to the non-commutativity of measurements of certain observables, commonly referred
to as contextuality. Specifically, quantum mechanics is said to be a contextual the-
ory because it cannot be reproduced by noncontextual hidden variable theories, as
proven by S. Kochen and E. P. Specker in [Kochen and Specker, 1967]. An important
distinction between the previously discussed nonlocal properties and contextuality is
that the latter can occur in a state-independent fashion [Cabello, 2008; Badzia̧g et al.,
2009]. Experimental demonstrations of state-independent contextuality have been re-

13



14 I Introduction

ported with single photons, trapped ions and with nuclear spins [Amselem et al., 2009;
Kirchmair et al., 2009; Moussa et al., 2010]. Similar to nonlocality, also contextuality
can be employed as a resource in quantum information applications. For instance, in
[Horodecki et al., 2010] a device-independent quantum key distribution protocol, or in
[Gühne et al., 2014] state-independent dimension witnesses, based on non-contextuality
tests have been established. Moreover, contextuality has recently been identified as a
resource that supplies the power for qudit quantum computations [Raussendorf, 2013;
Howard et al., 2014; Delfosse et al., 2015; Raussendorf et al., 2015].
At this point we note that most of the aforementioned tests and protocols were first

formulated for measurements with finitely many outcomes described by operators on
finite dimensional Hilbert spaces, even though, EPR originally concentrated their elab-
orations on systems that are characterized by continuous degrees of freedom (e.g. the
position of a particle) and thus are performed on infinite dimensional Hilbert spaces.
Nevertheless, the latter regained again of popularity at the beginning of the 1990s due
to increasing experimental abilities allowing for the efficient preparation, manipulation
and measurement of the quadratures of the electromagnetic field [Leonhardt, 1997].
Consequently, a number of entanglement and nonlocality test for continuous variable
measurements have been derived [Eisert and Plenio, 2003; Braunstein and van Loock,
2005; Cavalcanti et al., 2007]. Among the most important advances in the field of
continuous variable quantum information are the realization of quantum teleportation
[Braunstein and Kimble, 1998; Furusawa et al., 1998], as well as quantum cryptography
protocols [Grosshans and Grangier, 2002; Grosshans et al., 2003]. Universality for ma-
nipulation of continuous variables quantum states was defined in [Lloyd and Braunstein,
1999], and subsequently measurement based quantum computation was generalized from
the discrete to the continuous realm [Gu et al., 2009; Menicucci et al., 2006].
Today, the use of continuous variable degrees of freedom is by no means restricted

to the description of optical quadrature amplitudes. The emergence of novel technolo-
gies in the fields of superconducting as well as semiconductor physics have brought into
reach also other frequency domains, such as the microwave and infrared [Blais et al.,
2004; Gunter et al., 2009; Devoret and Schoelkopf, 2013]. Furthermore, spatial degrees
of freedom also often require a treatment in a continuous variable setup. A prominent
example is that of the spatial multi-mode field of a single photon whose transverse posi-
tion and momentum can be handled in analogy to a single mode of the electromagnetic
field [Walborn et al., 2010; Tasca et al., 2011]. Apart from the description of electro-
magnetic waves, continuous variables appear also when studying vibrational degrees of
freedom of trapped ions and atoms, or micro- and nano-mechanical oscillators [Monroe
et al., 1996; Leibfried et al., 2003; Rabl et al., 2009]. Each of the mentioned platforms
provides several experimental advantages and drawbacks in the creation, manipulation
and measurement of states defined in a continuous-variable representation. A promis-
ing strategy is therefore to use so-called hybrid systems which combine, on the one
hand, various experimental techniques (see above) but, on the other hand, also bene-
fit from different theoretical strategies, i.e. discrete- and continuous-variable quantum
information processing schemes.
In quantum information, hybrid systems are studied with the goal to combine the

most attractive capabilities of different quantum optical, mechanical and solid state
systems in order to improve the performance of quantum information protocols [Kim-
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ble, 2008; Kurizki et al., 2015]. Each of these physical setups offers advantages in tasks
as efficient storage, processing, transmission or readout of quantum information. Part
of the development of such hybrid strategies is concerned with the combination of ap-
proaches that apply different, discrete- or continuous-variable, quantum encodings [van
Loock, 2011]. This comprises, for instance, the creation of hybrid entanglement among
particle-like (discrete) and wave-like (continuous) states [Morin et al., 2014]. Thereby,
particle-like states refer to states that have a discrete character, such as single photon
states. The latter can be used to encoded a two dimensional quantum system through
the presence and absence of the photon [Knill et al., 2001; Morin et al., 2013]. Al-
ternatively, wave-like states usually contain a large number of photons whose discrete
character is rather unaccessible. Examples are coherent states with opposite phases, or
cat states with different parity [Lund et al., 2008; Vlastakis et al., 2013; Albert et al.,
2016]. Hybrid entanglement between two such types of states might offer advantages
for teleportation or communication protocols [Rigas et al., 2006; Lee and Jeong, 2013].

Other hybrid strategies make use of the possibility to exploit more than one degree of
freedom of a single quantum system. Important examples are the time bin encoding for
single photons or the use of the transverse degrees of freedom aside the usual polarization
degree of freedom [de Riedmatten et al., 2004; Ali-Khan et al., 2007]. There have been
several experiments reporting the creation of hybrid entanglement between the photon’s
polarization and either its orbital angular momentum (OAM) modes [Nagali et al., 2009;
Karimi et al., 2010; Erhard et al., 2015], or its transverse momentum [Neves et al.,
2005, 2009]. A novel way to encode d-dimensional quantum systems in the transverse
distribution of single photons is by taking advantage of the optical Talbot effect [Farías
et al., 2015]. The latter, historically first discovered by H. F. Talbot and later on
theoretically described by L. Rayleigh [Rayleigh, 1881], is a near field interference effect
that occurs when plane waves are refracted by periodic grating structures [Case et al.,
2009].

Finally, we want to mention one more technique that will be important for our studies
of the relationship between discrete- and continuous-variable quantum systems and has
recently attracted some attention, the technique of modular variables. Modular vari-
ables are classes of observables that are periodic with respect to some pair of canonically
conjugate variables. Among the first ones to use this technique was Y. Aharonov and
co-workers in 1969, who studied signatures of quantum interference in the Aharonov-
Bohm effect [Aharonov et al., 1969]. After Aharonov’s work modular variables were not
used much until about 40 years later when J. Tollaksen and co-workers explored new
aspects of the relation between modular variables and weak measurements [Tollaksen
et al., 2010]. Moreover, the usefulness of modular variables in quantum information
related tasks was discovered. Notably, using the modular variables formalism, a novel
criteria allowing to detect entanglement in spatial interference patterns of particle pairs
was developed [Gneiting and Hornberger, 2011, 2013] and shortly after experimentally
implemented [Carvalho et al., 2012]. Later on, modular variables have also been used in
other areas of quantum information to propose test of the Clauser-Horne-Shimony-Holt
(CHSH) [Ketterer et al., 2015; Arora and Asadian, 2015], the Leggett-Garg [Asadian
et al., 2014; Moreira et al., 2015] and noncontextuality inequalities [Plastino and Cabello,
2010; Asadian et al., 2015; Laversanne-Finot et al., 2015]. Finally, modular variables
played a crucial role in the demonstration that fault-tolerant quantum computation
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with continuous-variable cluster states is possible [Menicucci, 2014].
In this manuscript we seek to employ methods from both the fields of discrete- and

continuous-variable quantum information so as to investigate means that allow to pro-
cess discrete quantum information encoded in infinite dimensional Hilbert spaces. To
do so, we will pursue three main strategies, the first of which aims at devising a frame-
work for quantum information processing in phase space based on the use of modular
variables [Vernaz-Gris et al., 2014; Ketterer et al., 2016]. Following this framework, we
will discuss methods to perform tests of fundamental properties of quantum mechanics,
such as entanglement, nonlocality and contextuality, using measurements of modular
variables [Ketterer et al., 2015; Laversanne-Finot et al., 2015; Laversanne-Finot et al.,
2016]. Further on, we will exploit the optical Talbot effect to encode and manipulate
finite dimensional quantum states using the transverse degrees of freedom of single pho-
tons [Barros et al., 2016]. And last, in a third study, we will analyse the entanglement
and nonlocality of a particular class of hybrid entangled states consisting of mixtures of
single-photon and cat-state encodings. Our results are, on the one hand, conceptually
interesting because they explore the boundary between the two regimes of continuous-
variable and discrete-variable quantum information. On the other hand, they might
prove beneficial for the realization of hybrid quantum devices, since they provide al-
ternative ways to process discrete quantum information in systems characterized by
continuous degrees of freedom.

Outline of this thesis

After the above introductory words, we start in Chapter II to provide basic theoretical
and experimental concepts that are important for subsequent considerations through-
out this thesis. First, we discuss two main strategies used to process information in
quantum mechanics in terms of finite and infinite dimensional Hilbert spaces. For each
of these strategies we introduce the basic theoretical tools to process, measure, and rep-
resent the corresponding quantum states. We then move on and show how to describe
quantum-mechanically the electromagnetic radiation field and review different mode
representations as well as typical quantum states of light. Finally, two experimental
platforms allowing to process continuous degrees of freedom, the transverse degrees of
freedom of a single photon and a single mode of a multi-photon field, are discussed.

In Chapter III, we devise a framework for quantum information processing in phase
space using the formalism of modular variables. We thus give first a detailed introduc-
tion to the topic of modular variables including their general definition, a discussion
of the modular position and momentum as one particular example of modular vari-
ables, and an introduction to the modular representation defined through the common
eigenstates of the modular position and momentum operator. Further on, we use the
modular representation to dichotomize the Hilbert space with respect to the modular
position and define appropriate logical sates and operations allowing to process discrete
quantum information encoded in an infinite dimensional Hilbert space. Moreover, we
define a set of appropriate modular variables that enable the readout of the discrete
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quantum information by measurements of observables which have a continuous spec-
trum. Finally, we focus on an experimental proposal of these ideas using the transverse
degrees of freedom of single photons.

Chapter IV is devoted to a study of fundamental properties of quantum mechanics,
namely entanglement, Bell nonlocality and contextuality. After introducing conceptu-
ally each of these fundamental properties and known methods for their detection in finite
dimensional Hilbert spaces, we show how to generalize these methods to more general
cases involving infinite dimensional Hilbert spaces and measurements with continuous
outcomes. In particular, we derive entanglement witnesses and nonlocality tests that in-
volve measurements of bounded observables. In both cases we discuss modular variables
as an example and provide applications of the modular variables phase space framework
devised in Chapter III. Finally, we turn to contextuality and generalize known methods
for its detection in terms of measurements with discrete outcomes to more general mea-
surement settings. Also here we discuss several examples including the use of modular
variables for the state-independent detection of contextuality.

The topic of Chapter V is once again the processing of discrete quantum information
encoded in continuous variables. This time, however, we focus from the beginning on
a specific experimental platform, the transverse degrees of freedom of single photons.
Specifically, we show how to manipulate d-dimensional quantum states encoded in the
spatial distribution of single photons via the optical Talbot effect. Furthermore, we
design a method that allows us to produce deterministically d-dimensional entangled
photon pairs from spontaneous parametric down-conversion and the application of lin-
ear optical elements only. Finally, we show how to use these entangled photon pairs to
violate discrete-variable Bell inequalities and give a perspective on possible realizations
of such nonlocality test with material particles.

Chapter VI contains a study of the nonlocal properties of a particular class of hybrid
entangled states involving particle-like and wave-like optical qubits. We thus review
some known methods for the detection of nonlocality in terms of photon number parity
measurements and then discuss a hybrid approach that involves both Pauli-like and
parity measurements. We find that the hybrid approach leads to a slightly improved vi-
olation of local-realism compared to a pure parity measurement setup. This holds even
after the inclusion of a reasonable rate of experimental imperfections in the theoretical
evaluation the signal.

The last Chapter VII contains a summary of this thesis and a brief outlook.



18 I Introduction



II Theoretical and experimental
foundations

In this second chapter, we provide several theoretical and experimental quantum me-
chanical concepts that build the foundation of the work developed in subsequent chapters
of this dissertation. Thereby, we do not aim at giving a comprehensive introduction to
quantum mechanics but rather provide a brief summary of the most important concepts
needed later on. At the same time we use this opportunity to establish the nomenclature
that will be used throughout the remainder of this manuscript. We start by introducing
basic elements of quantum information theory such as states and operations in Hilbert
spaces of different dimensions, including a discussion of the theory of measurements
in quantum mechanics and different state representations. Further on, we review the
quantization of the electromagnetic field in order to have the necessary tools to describe
quantum states of light in different experimental contexts. Finally, the transverse degrees
of single photons and the quadratures of a single mode of the electromagnetic field are
discussed as possible experimental platforms for the realization of quantum information
processing tasks.

II.1 Basic elements of quantum information theory

II.1.1 Quantum bits (qubits)

One of the most important constituents of quantum information theory is the qubit
which represents the quantum mechanical analog of the classical information unit bit
[Nielsen and Chuang, 2000]. In classical information theory a bit refers to a binary
variable that always takes one of two determined outcomes, usually denoted as 0 and 1,
such as the result of a coin toss or an electric voltage taking two distinct values. However,
in quantum information theory a qubit is associated with a two dimensional Hilbert
space structure that leads to the possibility of preparing a qubit in a superposition of
the states 0 and 1. It is this structure which leads in general to probabilistic outcomes
of qubit measurements. Examples of qubits are the polarization state of a photon (e.g.
horizontal and vertical polarization) or two isolated energy levels of an atom, ion, or
molecule. Information processing in terms of qubits can lead to surprising advantages
as compared to what is possible with classical bits, such as exponential speedups in
certain computation algorithms, and therefore reflect some of the exciting properties of
quantum mechanics. In the following, we will introduce the basic notions of qubits and
show how to manipulate them.
The pure state of a qubit is described by a unit vector belonging to a two-dimensional

complex Hilbert space H(2) which is spanned by two orthonormal basis vectors, usually
denoted by kets as |0〉 and |1〉, and referred to as the computational basis. An arbitrary
qubit state in this space, denoted by the ket |Ψ〉, can be written as a linear combination
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|Ψ〉 = α|0〉+ β|1〉, with α, β ∈ C, fulfilling the normalization condition
√
|α|2 + |β|2 =

1. If we further disregard any global phase, involved in |Ψ〉, we find the following
representation of an arbitrary qubit state:

|Ψ〉 = cos
(θ

2

)
|0〉+ sin

(θ
2

)
eiφ|1〉, (II.1)

determined by the two parameters θ ∈ [0, π[ and φ ∈ [0, 2π[. The inner (scalar-)product
between two arbitrary qubit states, |Ψ〉 and |Φ〉, is given by 〈Ψ|Φ〉 = cos

(
θ
2

)
cos
(
θ′

2

)
+

sin
(
θ
2

)
sin
(
θ′

2

)
ei(φ−φ

′), confirming the unit length of the state vector (II.1) through
||Ψ〉|2 = 〈Ψ|Ψ〉 = 1. In the course of this thesis we will often consider composite
quantum systems consisting of two or more qubits which live on a composite Hilbert
space H =

⊗n
k=1H

(2)
k = H(2)

1 ⊗ . . .⊗H
(2)
n , which is spanned by the basis of all products

of single qubit basis states and whose overall dimension is 2n. For instance, the two-
qubit Hilbert space H(2)

1 ⊗ H(2)
2 is spanned by the basis {|i〉 ⊗ |j〉|i, j = 0, 1}. For

brevity we will denote tensor products of states also by the following shorthand notations
|ψ〉 ⊗ |φ〉 = |ψ〉|φ〉 = |ψφ〉.
The dynamical evolution of an isolated quantum system is described by a unitary

transformation which maps a state |Ψ(t0)〉, given at an initial time t0, to a future state
|Ψ(t1)〉 = Û(t0, t1)|Ψ(t0)〉, at the time t1, via the unitary operator Û(t0, t1) [Cohen-
Tannoudji et al., 1998]. Alternatively, we know that the evolution of a quantum state
is determined by the Schrödinger equation i~ d

dt |Ψ〉 = Ĥ|Ψ〉, with the Hermitian Hamil-
ton operator Ĥ and the Planck constant ~ = h/2π. Combining these two views by
solving the Schrödinger equation with the Ansatz |Ψ(t1)〉 = Û(t0, t1)|Ψ(t0)〉 leads to the
definition of the quantum time evolution operator:

Û(t0, t1) = exp (−iĤ(t1 − t0)/~). (II.2)

In this thesis we will mostly consider time evolutions in terms of the application of
unitary gates each of which represent the dynamics of an underlying physical process
described by a Hamiltonian Ĥ and the duration of the evolution ∆t = t1 − t0.
The most famous examples of single qubit gates are the Pauli operators:

σ̂x = |0〉〈1|+ |1〉〈0|, (II.3)
σ̂y = i|1〉〈0| − i|0〉〈1|, (II.4)
σ̂z = |0〉〈0| − |1〉〈1|, (II.5)

which fulfil the relation

σ̂ασ̂β = 1δα,β + i
∑

γ=x,y,z

εαβγ σ̂γ , α, β = x, y, z, (II.6)

and in their matrix representation (σ̂α)k,l = 〈k|σ̂α|l〉, with k, l = 0, 1, can be written as:

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (II.7)

When applied to a single qubit state the Pauli operators (II.3) or (II.5) implement a
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NOT or a PHASE gate: σ̂x|0/1〉 = |1/0〉 and σ̂z|0/1〉 = ±|0/1〉, respectively. Further
on, the Pauli matrices (II.7) are a basis of the Lie-Algebra su(2) which exponentiates
to the Special Unitary Group SU(2), i.e. the group of all unitary 2 × 2-matrices with
determinant 1, through:

R̂n(φ) = exp
(
−iϕ

2
(n · σ̂)

)
= cos

(ϕ
2

)
1 + i sin

(ϕ
2

)
(n · σ̂), (II.8)

parametrised by the rotation angle ϕ and the rotation axis defined by the unit vector
n = (nx, ny, ny)

T, and the Pauli spin operator σ̂ = (σ̂x, σ̂y, σ̂z)
T. Including an extra

phase γ into (II.8) thus allows to implement arbitrary single qubit unitary operations
Û = eiγÛn(φ), leading to the definition of another important unitary operator, the
Hadamard gate:

Ĥ = ei
π
2

[
cos
(π

2

)
1 +

i√
2

sin
(π

2

)
(σ̂x + σ̂y)

]

=
1√
2

(
1 1
1 −1

)
, (II.9)

where we set γ = π/2, ϕ = π and n = (1/
√

2, 0, 1/
√

2)T. The Hadamard gate takes
computational basis states into equal superpositions and vice versa: Ĥ|0(1)〉 = 1√

2
(|0〉±

|1〉) ≡ |±〉 or Ĥ|±〉 = 1√
2
(|+〉±|−〉) = |0(1)〉. At this point we note that it is possible to

approximate any single qubit unitary operation Û to arbitrary accuracy using only two
gates, the Hadamard gate Ĥ and a rotation by π/4 around σ̂z, T̂ = R̂z(π/4) = e−i

π
8
σ̂z .

The latter is often referred to as π/8-gate because up to a global phase it can be
expressed as:

T̂ =

(
e−i

π
8 0

0 ei
π
8

)
. (II.10)

The square of the π/8-gate T̂ leads to the simple phase gate Ŝ, which in its matrix
representation reads:

Ŝ =

(
1 0
0 i

)
. (II.11)

Next, we introduce two important two-qubit gates, the controlled-NOT and the
controlled-PHASE gates, which in their matrix representation in the computational
basis {|00〉, |01〉, |10〉, |11〉}, read:

ĈX =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 , ĈZ =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 , (II.12)

and are related through a unitary transformation ĈX = (1⊗ Ĥ)ĈZ(1⊗ Ĥ). From the
matrix Eqs. (II.12) it is apparent that ĈX and ĈZ perform either a NOT or a PHASE
operation on the second (target) qubit depending on the state of the first (control)
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qubit and thus fixes the assignment control⊗ target. Having available either one of the
two-qubit gates (II.12) together with the possibility to perform arbitrary single-qubit
rotations (II.8), allows one to implement exactly any n-qubit unitary transformation Û ,
i.e. |Ψ〉 = Û |Φ〉, for all |Ψ〉 and |Φ〉 being arbitrary n-qubit states, by concatenation of
the respective gates. In this sense, we call a set of unitary gates universal for quantum
computation [Nielsen and Chuang, 2000]. However, since this notion of universality can
lead in general to infinitely long runtimes in order to implement a given unitary we relax
it slightly and allow for an approximate definition of universality, stating that a set of
unitary gates is approximately universal if it allows to approximate any n-qubit unitary
transformation to arbitrary precision. The advantage of approximate universality is
that it can be achieved already through application of gates contained in the finite set:
{Ĥ, Ŝ, T̂, ĈX}.
Fault-tolerant implementations of approximately universal sets are possible using

quantum error correcting codes [Nielsen and Chuang, 2000; Gottesman, 1997]. The
latter are closely related to the Clifford group which contains all n-qubit unitaries Ĝ
that fulfill P̂ ĜP̂ = P̂ ′, where P̂ and P̂ ′ are products of operators contained in the Pauli
group, that is, all Pauli operators together with the identity operator 1 and multiplica-
tions by x ∈ {±1,±i}. More precisely, Clifford group is generated by the set {Ĥ, Ŝ, ĈX},
and computations containing solely Clifford operations can be efficiently simulated on
a classical computer according to the Gottesman-Knill theorem [Nielsen and Chuang,
2000]. For fault-tolerance it is required that the error rate per gate application is be-
low a certain fault-tolerance threshold guaranteeing that attempts to detect and correct
errors will not introduce more errors than they correct for.
Finally, we want to mention the possibility of representing pure states |Ψ〉 in a density

matrix representation ρ̂ = |Ψ〉〈Ψ|. More generally, this representation allows us not only
to express every pure state as a matrix but also classical mixtures of different qubit states
|Ψα〉 according to some probability distribution {pα} by:

ρ̂ =
∑

α

pα|Ψα〉〈Ψα|, (II.13)

with the normalization condition trρ̂ =
∑

α pα = 1, where tr(·) denotes the trace opera-
tion. Equation (II.13) implies that all density matrices are positive ρ̂ ≥ 0.1 The analog
of the Schrödinger equation in the density matrix formalism reads:

i~
d
dt
ρ̂(t) =

[
Ĥ, ρ̂(t)

]
, (II.14)

thus leading to the unitary time evolution ρ̂(t) = Û(t0, t1)ρ̂0Û
†(t0, t1) of an initial

density matrix ρ̂0. The density matrix formulation becomes especially useful if one
deals with open quantum systems that account for the additional interaction with an
environment leading to decoherence or dephasing processes. The latter correspond in
general to nonunitary time evolutions and thus cannot be described solely Schrödinger
dynamics of pure quantum states [Nielsen and Chuang, 2000; Breuer and Petruccione,
2007]. For an arbitrary multi-partite density matrix ρ̂ one can calculate its reduced
density matrices (marginals) through the partial trace operation. For instance, given

1We will refer to a positive semi-definit operator usually as positive.
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a bipartite density matrix ρ̂ that acts on the Hilbert space HA ⊗ HB, we get for the
marginal corresponding to the first subsystem

ρ̂A = trB ρ̂ =
∑

i

(1⊗ 〈i|B)ρ̂(1⊗ |i〉B), (II.15)

with an arbitrary basis {|i〉B} of subsystem B. The marginal ρ̂B follows equivalently
by tracing over the subsystem A.
Having recalled the most basics of qubits and their manipulation in terms of sets

of gates we want to move on now and generalize those concepts to higher but finite
dimensional quantum systems.

II.1.2 Quantum d-dimensional systems (qudits)

The concept of a qubit can be generalized to higher dimensional quantum systems which,
in general, are described by a d-dimensional Hilbert spaceHd and referred to as qudits. A
general qudit state, expressed in terms of its computational basis {|jd〉|j = 0, . . . , d−1},
then reads |Ψ〉 =

∑
j αj |jd〉, with the normalization condition

∑
j |αj |2 = 1. Qudits can

be experimentally realized, for instance, with spin-S particles leading to a d = 2S + 1
dimensional Hilbert space or by exploiting the orbital angular momentum of single
photons [Allen et al., 2003].
A general pure qudit state (compare with Eq. (II.1)) can be written in the following

way

|Ψ〉 = cos

(
θ1

2

)
cos

(
θ2

2

)
. . . cos

(
θd−1

2

)
|(0)d〉

+ cos

(
θ1

2

)
. . . cos

(
θd−2

2

)
sin

(
θd−1

2

)
eiφd−1 |(1)d〉

+ . . .

+ cos

(
θ1

2

)
sin

(
θ2

2

)
eiφ2 |(d− 2)d〉

+ sin

(
θ1

2

)
eiφ1 |(d− 1)d〉 (II.16)

with 2(d − 1) parameters θj ∈ [0, π[ and φj ∈ [0, 2π[, where j = 0, . . . , d − 1. Pure
qubit and qudit states, such as (II.1) and (II.16), can be represented as points on a
unit sphere in a d2 − 1-dimensional Euclidean space. More details about the geometric
representation of qubits and qudits will be discussed in Sec. II.1.5.
A generalization of the Pauli operations (II.3) and (II.5) for qudits can be defined in

the following way:

σ̂(d)
x =

d−1∑

j=0

|(j + 1)d〉〈(j)d| (II.17)

σ̂(d)
z =

d−1∑

j=0

ωj |(j)d〉〈(j)d| (II.18)
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with ω = e2πi/d. Upon application on a computational basis state, Eq. (II.17) per-
forms a unit shift modulo d, leading to an arbitrary shift of k units by (σ̂

(d)
x )k and

(σ̂
(d)
x )d = 1. Similarly, Eq. (II.18) applies a unit phase of ωj to each computational

basis state. Thus, the generalized Pauli operations (II.17) and (II.18), or often referred
to as Heisenberg-Weyl operators, generate the Pauli, or Heisenberg-Weyl, group for qu-
dits through multiplications and are important constituents in quantum error correction
protocols for qudits. As we will see in Sec. II.1.3, an analog of the Heisenberg-Weyl op-
erators for continuous-variables quantum systems follows in the limit d → ∞. Further
on, we introduce the Fourier transform operator:

F̂ =

d−1∑

j,k=0

ωjk|(j)d〉〈(k)d|, (II.19)

which in analogy to the Hadamard gate takes states of the computational basis into
uniform superpositions with the phases ωjk, respectively. Using (II.19) we can define
the Fourier basis {|jd〉∗ = F̂ |jd〉|j = 0, . . . , d − 1} which is the generalization of the
basis |±〉 = Ĥ|0/1〉 introduced in Sec. II.1.1. Expressed in the Fourier basis the Pauli
operations, (II.17) and (II.18), read:

σ̂(d)
x =

d−1∑

j=0

ω−j |(j)d〉∗〈(j)d|∗, (II.20)

σ̂(d)
z =

d−1∑

j=0

|(j + 1)d〉∗〈(j)d|∗, (II.21)

showing that in the Fourier space the Pauli operators, σ̂(d)
x and σ̂

(d)
z , act inversely as

phase and shift gates, respectively. However, compared to the set of Pauli operators
(II.3-II.5) these unitary operations are in general not Hermitian. Rotations similar to
Eq. (II.8) have to be defined in terms of the corresponding spin- (d−1)

2 vector whose
components in the qudit basis {|(i)d〉} read:

(Ŝx)j,k =
~
2

√
jk(d+ 1)(i+ j − 1)/2(δj,k+1 + δj+1,k), (II.22)

(Ŝy)j,k =
~
2

√
jk(d+ 1)(i+ j − 1)/2(δj,k+1 − δj+1,k), (II.23)

(Ŝz)j,k =
~
2

(d+ 1− 2j)δj,k, (II.24)

with 0 ≤ j, k ≤ d − 1. The operators (II.22)-(II.24) form a su(2) algebra for higher
dimensional spin systems and generate rotation around the respective axis in space. A
similar expression to Eq. (II.8) for the total spin operator Ŝ can be found in [Curtright
et al., 2014] but will not be further discussed here.

Instead, we want to introduce a controlled unitary operations (compare with Eqs.
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(II.12)) for qudits. For instance, the controlled NOT operation for qudits is defined by:

Ĉ
(d)
X =

d−1∑

j=0

|(j)d〉〈(j)d| ⊗ (σ̂(d)
x )j

=

d−1∑

j,k=0

|(j)d〉〈(j)d| ⊗ |(k + j)d〉〈(k)d|, (II.25)

and, equivalently, we introduce a controlled PHASE operation

Ĉ
(d)
Z =

d−1∑

j=0

|(j)d〉〈(j)d| ⊗ (σ̂(d)
z )j (II.26)

=
d−1∑

j=0

ωjk|(j)d〉〈(j)d| ⊗ |(k)d〉〈(k)d| (II.27)

=

d−1∑

k=0

(σ̂(d)
z )k ⊗ |(k)d〉〈(k)d| (II.28)

which is acting symmetrically on the control and target qudits. As for qubits we can
define the universality for qudits by the possibility to implement any desired single qudit
operation plus an appropriate two-qudit operation, such as (II.25) or (II.25). Finite sets
for universal quantum computation do also exist [Muthukrishnan and Stroud, 2000], as
well as a generalized version of the Gottesman-Knill theorem [Gottesman, 1998].

In the following Section we will make the transition form finite dimensional quan-
tum systems to infinite dimensional ones focusing, in particular, on systems that are
described by continuous variables.

II.1.3 Continuous-variable (CV) systems

Coming from the d-dimensional case, treated in Sec. II.1.2, we can make the transition
to infinite dimensions by taking the limit d → ∞. Then, the analogs of the qudit
basis states become infinitely localized eigenstates |x′〉x, characterized by a continuous
parameter x′, of an unbounded hermitian operator x̂, fulfilling the eigenvalue relation
x̂|x′〉x = x′|x′〉x. It is most common to associate the operator x̂ with the position of
a system, however, in general it can refer to any physical quantity that is described
by an unbounded continuous variable, such as the quadratures of the electromagnetic
field (see Sec. II.2). Similarly, the momentum eigenstates |p′〉p are eigenstates of the
unbounded momentum operator p̂, defined through p̂|p′〉p = p′|p′〉p.2 Together, the
position and momentum operator fulfil the canonical commutation relation [x̂, p̂] = i~.
In the following and in the rest of the manuscript we will set ~ equal to one.

2The subscript x and p of the basis kets refer to the fact that they are eigenstates of the position x̂
or momentum operator p̂, respectively. This will be useful later on when we deal with basis states
of arbitrary quadratures (see Eqs. (II.110) and (II.111)).
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Figure II.1: (color online) Plots of the Gaussian real wave functions (II.31)

The position and momentum basis are orthogonal

〈x|xx′〉x = δ(x− x′), 〈p|pp′〉p = δ(p− p′) (II.29)

and fulfil the completeness relation
∫ ∞

−∞
dx′|x′〉x〈x′|x =

∫ ∞

−∞
dp′|p′〉p〈p′|p = 1. (II.30)

States can now be expressed in the position or momentum representation by expressing
them as a continuous superposition of the position or momentum basis states, respec-
tively:

|Ψ〉 =

∫ ∞

−∞
dx′Ψx(x′)|x′〉x =

∫ ∞

−∞
dp′Ψp(p

′)|p′〉p (II.31)

with square-integrable wave functions Ψx,p : R → C, defined by Ψx(x) = 〈x|xΨ〉 and
Ψp(p) = 〈p|pΨ〉. As simple example of such a wave functions we name here that of
a Gaussian centered at the origin with width σ which, expressed in the position and
momentum representation, respectively, read:

Ψx(x′) =
1

π1/4σ1/2
e−

x′2
2σ2 , and Ψp(p

′) =
σ1/2

π1/4
e−p

′2σ2/2. (II.32)

The position and momentum uncertainty of this state can be easily calculated from the
first and second moments of the position and momentum operator yielding the standard
deviations: ∆x =

√
〈x̂2〉 − 〈x̂〉2 = σ/

√
2 and ∆p =

√
〈p̂2〉 − 〈p̂〉2 = 1/(

√
2σ). We

thus find that the above Gaussian state saturates the Heisenberg’s uncertainty relation:
∆x∆p ≥ 1/2. Furthermore, when setting σ = 1 we obtain a state with minimal
uncertainty in position and momentum, whereas σ < 1(> 1) leads to a state with
reduced uncertainty in position (momentum), and increased uncertainty in momentum
(position).

As we were able to switch between the computational basis for qudits and its Fourier
basis, we can switch between the position and momentum basis using the CV version
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of the Fourier transform operator [Braunstein and van Loock, 2005]:

F̂ = ei
π
4

(x̂2+p̂2) =
1√
2π

∫∫ ∞

−∞
dsds′eiss

′ |s〉q〈s′|q, (II.33)

which acts as follows on the position and momentum eigenstates: F̂ |s〉x = |s〉p and
F̂ †|s〉p = |s〉x, and shows that 〈x′|xp′〉p = eix

′p′/
√

2π. We further introduce the contin-
uous analogs of the Pauli or Weyl-Heisenberg operators (II.17) and (II.18), being equal
to the position and momentum displacement operators:

X̂(s) = e−isp̂ and Ẑ(s) = eisx̂, (II.34)

respectively, realizing the operations X̂(s)|s′〉x = |s′+s〉x, Ẑ(s)|s′〉x = eiss
′ |s′〉x, X̂(s)|s′〉p =

eiss
′ |s′〉p and Ẑ(s)|s′〉p = |s′+s〉p. As already indicated in the last section, the displace-

ment operators (II.34) generate the continuous analog of the Weyl-Heisenberg group
through multiplication.
Other CV gates are, for instance, the rotation operator R̂(θ) = eiθ(x̂

2+p̂2)/2, with
angle θ, also referred to as fractional Fourier transform, which reproduces the Fourier
transform F̂ for θ = π/2, the squeezing operator Ŝ(r) = eir(x̂p̂+p̂x̂)/2, with r ∈ R,
which squeezes the position by a factor of er and stretches the momentum by e−r

accordingly, and the shear operator N̂(s) = eisx̂
2 , with s ∈ R, which implements a

shearing with respect to the position by a gradient s. Further on, CV gates acting on
more than one system can be defined in analogy to the controlled qudit gates (II.25).
For instance, a controlled version of the displacement operators (II.34) should perform
controlled SHIFT and PHASE operations on the target subsystem depending on the
position of the control subsystem, i.e. ĈX |s1〉x|s2〉x = |s1〉x|s1+s2〉x and ĈZ |s1〉x|s2〉x =
eis1s2 |s1〉x|s2〉x, respectively. Such operations are generated by the operators x̂⊗ p̂ and
x̂⊗ x̂, leading to the definition:

ĈX = e−ix̂⊗p̂ and ĈZ = eix̂⊗x̂. (II.35)

Another two-mode gate is the two-mode squeezing operation Ŝ2(r) = eir(x̂⊗p̂+p̂⊗x̂)/2,
which implements two controlled operations simultaneously with strength r. An exper-
imental implementation of all these CV gates can be envisioned in different quantum
optical setups such as the transverse degrees of freedom of single photons or the quadra-
tures of the electromagnetic field. Both of these experimental platforms have advantages
and disadvantages which we will discuss later on in this Chapter in Sec. II.3.1 and II.3.2.
Gates that are generated by Hamiltonians which are polynomials of maximal quadratic

order in the position and momentum operators are called Gaussian operations and con-
stitute the analogs of the Clifford operations in CV. They take their name from the
fact that they map all states with a Gaussian Wigner function to other states having a
Gaussian Wigner function as well [Weedbrook et al., 2012].3 In analogy to the Clifford
group, Gaussian operations map the Heisenberg-Weyl group on itself and thus transform
displacements into displacements. In other words, Gaussian operations act linearly on
the Heisenberg-Weyl algebra, which consists of all linear combinations of the position
and momentum operator, and therefore allows to write their action in the Heisenberg

3The Wigner function representation of CV quantum states will be discussed in Sec. II.1.6
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representation as a linear transformation of the vector v̂ = (x̂, p̂)T:

ÛGv̂Û †G = Mv̂ + c (II.36)

where ÛG denotes an arbitrary Gaussian operation, M is a symplectic 2×2-matrix and
the constant vector c represents a displacement. Hence, the above introduced single
system operations can be summarized by the following matrix equations:

v̂ + c =

(
x̂
p̂

)
+

(
s
t

)
=

(
x̂+ s
p̂+ t

)
, (II.37)

MR(θ)v̂ =

(
cos θ − sin θ
sin θ cos θ

)(
x̂
p̂

)
=

(
cos θ x̂− sin θ p̂
sin θ x̂+ cos θ p̂

)
, (II.38)

MS(r)v̂ =

(
er 0
0 e−r

)(
x̂
p̂

)
=

(
erx̂
e−rp̂

)
, (II.39)

MN (s)v̂ =

(
1 0
s 1

)(
x̂
p̂

)
=

(
x̂

sx̂+ p̂

)
, (II.40)

where the vector c = (s, t)T ∈ R denotes a position and momentum displacements
by s and t, and MR(θ), MS(r) and MN (s) are the corresponding symplectic trans-
formations matrices of a rotation, a squeezing and a shear operation, respectively.
Note, that any symplectic matrix can be decomposed into MR(θ)MS(r)MR(φ), us-
ing singular-value decomposition, and thus any Gaussian unitary can be expressed as
ÛG = X̂(s)Ẑ(t)R̂(θ)Ŝ(r)R̂(φ) [Braunstein and van Loock, 2005].

In the same way we can express the action of the two-mode gates (II.35) by a linear
transformation acting on a vector containing the position and momentum operator of
both modes v̂ = (x̂1, p̂1, x̂2, p̂2)T. For ĈX we find, for instance:

MCX v̂ =




1 0 0 0
0 1 0 −1
1 0 1 0
0 0 0 1







x̂1

p̂1

x̂2

p̂2


 =




x̂1

p̂1 − p̂2

x̂1 + x̂2

p̂2


 , (II.41)

where x̂1 (p̂1) and x̂2 (p̂2) have to be read as x̂⊗1 (p̂⊗1) and 1⊗ x̂ (1⊗ p̂), respectively.
Or the two-mode squeezing operation can be expressed as:

MS2 v̂ =




cosh r 0 sinh r 0
0 cosh r 0 − sinh r

sinh r 0 cosh r 0
0 − sinh r 0 cosh r







x̂1

p̂1

x̂2

p̂2


 =




cosh r x̂1 + sinh r x̂2

cosh r p̂1 − sinh r p̂2

cosh r x̂1 + cosh r x̂2

cosh r p̂2 − sinh r p̂1


 .

(II.42)

If we now define universality for CV quantum computation as in the finite dimen-
sional case, by the ability to implement any desired unitary operation on a n-partite CV
system, we can ask the natural question if the above introduced operations are already
sufficient to achieve universality. The answer to this question is obviosly no, since we
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already mentioned that all so far introduced operations are Gaussian operations which
are the analogs of the Clifford operations in finite dimensions. To understand this bet-
ter we remind that all Gaussian operations are generated by Hamiltonians which are
of maximal quadratic order in the position and momentum operators. Furthermore,
combining gates generated by Hamiltonians {±Ĥi}, leads to unitaries that are gener-
ated by linear combinations of the operators ±i[Ĥi, Ĥj ], ±[Ĥi, [Ĥi, Ĥj ]], . . ., only [Lloyd
and Braunstein, 1999; Lloyd, 1995]. Hence, concatenation of only Gaussian operations
cannot lead to unitaries that are of higher than quadratic order in the position and
momentum. In order to produce such higher order operations and thus to achieve uni-
versality for CV quantum computations, we need to introduce at least one gate that is
of higher than quadratic order in position or momentum. A famous example of such is
the cubic gate V̂ (s) = eisx̂

3 , which is Non-Gaussian and therefore cannot be expressed
as linear-symplectiv transformation of the position and momentum operators.
Now, after having introduced the three of the most common ways to process infor-

mation in quantum mechanics, we will discuss some convenient methods to represent
quantum states. However, before doing so, we will recall some basic concepts about
measurements in quantum mechanics.

II.1.4 Theory of measurements

If one opens a standard textbook of quantum mechanics one finds usually the following
postulate [Cohen-Tannoudji et al., 1998; Messiah, 1991]:

In quantum mechanics all physical observables are represented by self-adjoint opera-
tors Â on a Hilbert space H. The possible measurement outcomes of an observable are
given by its eigenvalue spectrum and the expectation value of the distribution of the mea-
surement outcomes with respect to a quantum state |Ψ〉 ∈ H can be calculated through
〈Â〉 = 〈Ψ|Â|Ψ〉.

Formulated in a slightly more mathematical way this means that every observable is
given by a self-adjoint operator Â which admits a spectral decomposition in terms of
projection operators P̂i =

∑
k |φi,k〉〈φi,k| leading to the diagonal representation:

Â =
∑

i

aiP̂i =
∑

i,k

ai|φi,k〉〈φi,k| (II.43)

where ai denote the eigenvalues of Â and k labels the degeneracy of each eigenvalue.
The projectors P̂i form an orthogonal and hermitian set of operators, thus having the
properties P̂iP̂j = δi,jP̂i and P̂i = P̂ †i = P̂ 2

i . Further on, if a measurement of Â yields
as outcome the eigenvalue ai, the quantum state |Ψ〉 of the system is projected by P̂i
onto the corresponding eigenspace Hi spanned by the basis {|φi,k〉|k = 1, . . . , dimHi}.
This process is called projective measurement and represents a particular case of a
general measurement in quantum mechanics. Indeed, a projective measurement can be
seen rather as an ideal measurement which will be difficult to realize in any realistic
experimental situation.
In a general measurement theory we consider a set M of measurement outcomes

m ∈M each associated with a measurement operator M̂m such that the probability for
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obtaining an outcome m can be expressed as:

pm = 〈Ψ|F̂m|Ψ〉 = 〈Ψ|M̂ †mM̂m|Ψ〉, (II.44)

where F̂m = M̂ †mM̂m is a positive operator, called effect [Breuer and Petruccione, 2007].
The difference to the postulate quoted above is that here we do not focus on a particular
observable Â and its possible eigenvalues, but rather on all possible outcomes that might
occur in an experiment when attempting to measure an observable. Furthermore, the
measurement operators M̂m and thus the effects F̂m, which are both in general no
projectors and M̂m not even hermitian, have to fulfil the completeness relation

∑

m

F̂m =
∑

m

M̂ †mM̂m = 1, (II.45)

reflecting the normalization of the probabilities pm. After a general measurement the
state reduces to the following post-measurement state:

|Ψm〉 =
1√
pm

M̂m|Ψ〉. (II.46)

Equivalently, one can express Eqs. (II.44) and (II.46) in the density matrix formalism
as:

ρ̂m =
1

pm
M̂mρ̂M̂

†
m with pm = tr

[
M̂mρ̂M̂

†
m

]
, (II.47)

which shows that the mapping ρ̂ → ρ̂m is the special case of a more general Kraus
map ρ̂m = Φm(ρ̂) =

∑
k Ω̂m,kρ̂Ω̂†m,k with

∑
m,k Ω̂†m,kΩ̂m,k = 1. Hence, the reduction

of the quantum state due to a general measurement process is always described by a
completely-positive and trace preserving map. Completely-positive means that not only
the map Φm has to be positive but also its extention Φm ⊗ 1 for any dimension of the
second subsystem. This is a reasonable assumption since the map Φm ⊗ 1 can describe
a measurement on one of two separated subsystems which leaves the second subsystem
untouched.4

Often when speaking about a generalized measurement one does not specify the mea-
surement operators M̂m, but only introduces directly the set of positive operators (ef-
fects) F̂m and refers to them as a positive operator valued measurement (POVM). In
this case, the exact shape of the operators M̂m and thus of the post-measurement state
|Ψm〉 yet has to be specified, for instance as M̂m =

√
F̂m.

As example we treat the case of a two-valued POVM in terms of which one can
measure the expectation value of an arbitrary bounded observable. For instance, con-
sider an observable Â with bounded spectrum amin ≤ {|ai|} ≤ amax, from which we
can construct a two-valued POVM {Ê0, Ê1} with corresponding measurement operators

4For more details about the general theory of measurements in quantum mechanics and about the
complete positivity of Kraus operations we refer the reader to the book [Breuer and Petruccione,
2007].
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Figure II.2: (color online) Quantum circuit allowing for the measurement of the POVM
Ê

(a)
0/1. Ĥ depict Hadamard gates, and a controlled unitary gate ĈU applies the unitary

Û to the system if the ancilla is in the state |0〉 and does nothing otherwise. Measuring
the ancilla in the computational basis yields the probability p0 (p1) of finding it in the
state |0〉 (|1〉), and projects the system onto the states |Ψ0〉 (|Ψ1〉).

[Horodecki, 2003]:

M̂0 =

√
(a−1 + Â)/a+, (II.48)

M̂1 =

√
1− M̂ †0M̂0, (II.49)

where a− = max(0,−amin) and a+ = a− + amax. Equations (II.48) and (II.49) fulfill
the normalization condition Ê0 + Ê1 = M̂ †0M̂0 + M̂ †1M̂1 = 1 and allow to express the
expectation value of Â as follows:

〈Â〉 = a+p0 − a−, (II.50)

where p0 = 〈Ê0〉 = 〈(a−1 + Â)〉/a+. Hence, we have expressed the expectation value of
an arbitrary bounded observable Â in terms of a single parameter p0 that is measurable
through the two-valued POVM {Ê0/1}.
The measurement of this POVM can be realized by coupling the system, on which Â

is defined, to an ancilla qubit. To show this, let’s consider the case where the spectrum
of Â is bounded by ±a from above and below, respectively, thus yielding a− = a and
a+ = 2a. Then, the measurement operators (II.48) and (II.49) lead to the POVM
Ê

(a)
0/1 = 1

2(1 ± Â/a), in terms of the renormalized operator Â/a, which is bounded by

±1 and can be expressed as the real part of an appropriate unitary operator Û . If we
now realize the quantum circuit shown in Fig. II.2, which implements two Hadamard
gates (see Eq. (II.9)) and a controlled unitary operation ĈU to the system plus ancilla,
we are left with the state

|Ψ〉|0〉 → 1

2
(1 + Û)|Ψ〉|0〉+

1

2
(1− Û)|Ψ〉|1〉. (II.51)

A measurement of the output ancilla state in the computational basis projects the out-
put state with probability p0/1 = 〈Ψ|Ê(a)

0/1|Ψ〉 = 〈Ψ|12(1 ± Re[Û ])|Ψ〉 onto the state

|Ψ0/1〉 = 1
2
√
p0/1

(1± Û)|Ψ〉. This shows that the measurement of the ancilla implements
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the POVM Ê
(a)
0/1 with Â = Re(Û) and we have a(p0−p1) = a(2p0−1) = 〈Â〉. Experimen-

tal implementations of ancilla measurements, as shown in Fig. II.2, can be envisioned
with different quantum optical platforms, for instance, the transverse degrees of freedom
of single photons [Machado et al., 2013; Hor-Meyll et al., 2014; Ketterer et al., 2015]
(see also Sec. II.3.1), in cavity QED [Haroche et al., 2007] or with micro-mechanical
oscillators [Asadian et al., 2014].

II.1.5 Bloch vector representation

In this section, we introduce the Bloch vector representation of quantum states in finite
dimensional Hilbert spaces. To do so, we first discuss some general properties of density
matrices and introduce a general operator basis in which we can expand each of them.
The space of density matrices L+(Hd) over a d-dimensional Hilbert spaceHd is defined

by:

L+(Hd) = {ρ̂ ∈ L(HD)|trρ̂ = 1, ρ̂ ≥ 0}, (II.52)

where L(Hd) denotes the space of all linear operators on Hd. The positivity condition
ρ̂ ≥ 0 in Eq. (II.52) is equivalent to demanding hermiticity ρ̂† = ρ̂ and positivity of all
eigenvalues ρi ≥ 0 of ρ̂. As inner product on such operator spaces we introduce the
Hilbert-Schmidt inner product, which is defined through (Â, B̂) = tr[Â†B̂].
Next, we introduce a complete set of orthonormal basis operators Λ̂i ∈ L(Hd), with

i = 0, . . . , d2 − 1, such that tr[Λ̂†i Λ̂j ] = δi,j . If we take into account that all density
matrices have trace equal to one, we can choose one element of the operator basis equal
to the identity Λ̂0 = 1/d, such that all other basis operators will be traceless, i.e.
tr[Λ̂i] = 0, for all i = 1, . . . , d2 − 1. In terms of this basis we can express every density
matrix as a linear combination

ρ̂ =
1

d
1 +

d2−1∑

i=1

ciΛ̂i, (II.53)

with d2−1 complex coefficients ci = tr[Λ̂†i ρ̂], which define a representation of the density
matrix ρ̂. In general, there exist many density matrix representation depending on the
specific choice of the operator basis {Λ̂i}d

2−1
i=1 .

A famous example, for d = 2, are the Pauli matrices (II.7), which lead to the Bloch
vector representation of a qubit ρ̂ = 1

2(1 + v · σ̂), with the real Bloch vector v =
(vx, vy, vz)

T = 2(〈σ̂x〉, 〈σ̂y〉, 〈σ̂z〉)T and the Pauli spin operator σ̂ = (σ̂x, σ̂y, σ̂z)
T. The

advantage of using the Pauli matrices (II.7), which generate the Special Unitary Group
SU(2), as basis is that they are hermitian and thus allow for a representation in terms
of the real Bloch vector v that can be visualized in three-dimensional euclidian space.
Before generalizing this representation to the d-dimensional case we want to discuss
some of its properties. It is easy to see that the length of the Bloch vector is given by
|v|2 = 2trρ̂2 − 1, which in the case of a pure state ρ̂ = |Ψ〉〈Ψ| = ρ̂2 is equal to one
|v| = 1, but for a general mixed state |v| < 1. Hence, all qubit states can be represented
as a point inside a two-dimensional unit-sphere (see Fig. II.3), whereas all pure states
lie on the surface of the sphere and mixed states inside of it with the maximally mixed
state ρ̂mm = 1/2 at its origin. A parametrization of the pure qubits states on the surface
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Pole states:

Figure II.3: (color online) Bloch sphere representation of the Bloch vector v for qubits
(d = 2). All pure states, which are represented by a Bloch vector v of unit length,
lie on the surface of the sphere characterized by the angles θ ∈ [0, π[ and φ ∈ [0, 2π[.
States with Bloch vector |v| < 1 are mixed states and the origin corresponds to the
maximally mixed state ρ̂ = 12/2. While the poles of the Bloch sphere with respect to
the z-axes (north and south pole) correspond to the computational basis states |0〉 and
|1〉, the poles with respect to the y- and x-axes represent its mutually unbiased bases
|i±〉 (blue) and |±〉 (red), respectively.

was given in Sec. II.1.1 by Eq. (II.1), what shows that the mapping from the qubit state
space to the unit ball in three dimensions is not only one-to-one but also surjective,
meaning that every point on or inside the sphere is associated to a qubit state.

In order to define the same Bloch vector representation for qudits we have to intro-
duce the generators of the special unitary group in d dimensions SU(d). As for the
Pauli matrices (II.7), the generators of SU(d) provide, together with the identity op-
erator, a complete, orthogonal and hermitian operator basis that can be constructed
systematically in the following way [Hioe and Eberly, 1981; Alicki and Lendi, 2007]:

{λ̂(d)
i }i=1,...,d2−1 = {ûj,k, v̂j,k, ŵl} (II.54)

where

ûj,k = |j〉〈k|+ |k〉〈j|, v̂j,k = i(|k〉〈j| − |j〉〈k|), (II.55)

ŵl =

√
1

l(l + 1)

l∑

j=1

(|j〉〈j| − l|l + 1〉〈l + 1|) (II.56)

with 1 ≤ j ≤ k ≤ d and 1 ≤ l ≤ d− 1, and a othronormal qudit basis {|m〉}dj=1 of Hd.
The SU(d) generators λ̂(d)

i , defined by Eqs. (II.54)-(II.56), are characterized by their
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commutation and anti-commutation relations, respectively:

[λ̂
(d)
i , λ̂

(d)
j ] = 2ifijkλ̂

(d)
k (II.57)

{λ̂(d)
i , λ̂

(d)
j } =

4

d
δi,j1d + 2igijkλ̂

(d)
k , (II.58)

with the real structure constants gijk (fijk) which are completely (anti-)symmetric with
respect to index permutations. Note that in Eqs. (II.57) and (II.58) repeated indices
are summed from 1 to d2− 1. As a special case of the constructed SU(d) generators we
retrieve the Pauli matrices (II.7) for d = 2 with the commutation and anti-commutation
relations, [σ̂i, σ̂j ] = 2iεijk and {σ̂i, σ̂j} = δi,j1, whereas fijk = εijk and gijk = 0. For
the case d = 3, we obtain the well-known Gell-Mann matrices {λ̂(3)

i }8i=1, defined as:
λ̂1 = û12, λ̂2 = v̂12, λ̂3 = ŵ1, λ̂4 = û13, λ̂5 = v̂13, λ̂6 = û23, λ̂7 = v̂23, λ̂8 = ŵ2, or in
matrix form by

λ1 =




0 1 0
1 0 0
0 0 0


 λ2 =




0 −i 0
i 0 0
0 0 0


 λ3 =




1 0 0
0 −1 0
0 0 0




λ4 =




0 0 1
0 0 0
1 0 0


 λ5 =




0 0 −i
0 0 0
i 0 0


 λ6 =




0 0 0
0 0 1
0 1 0




λ7 =




0 0 0
0 0 −i
0 i 0


 λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 (II.59)

with structure constants:

f123 = 1,

f458 = f678 =
√

3/2,

f147 = f246 = f257 = f345 = −f156 = −f367 = 1/2,

g118 = g228 = g338 = −g888 =
√

3/3,

g448 = g558 = g668 = g778 = −
√

3/6,

g146 = g157 = g256 = g344 = g355 = −g247 = −g366 = −g377 = 1/2. (II.60)

Having the generators of SU(d) in hand we can express the density matrix of a general
qudit state ρ̂(d) in its Bloch vector representation, through:

ρ̂(d) =
1

d
1d +

1

2

d2−1∑

i=1

v
(d)
i λ̂

(d)
i , (II.61)

with the generalized Bloch vector v(d) = {v(d)
i }d

2−1
i=1 . From Eq. (II.61) we find that

trρ̂2 = 1
d − 1

2 |v(d)|2, which shows that the length of the generalized Bloch vector for
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pure qudit states (ρ̂2 = ρ̂) is given by

|v(d)
pure| =

√
2
d− 1

d
. (II.62)

This confirms that for pure qubit states we get v(2)
pure = 1, but, for d ≥ 3, pure states

lie on the surface of a hyper-sphere with radius
√

2(d− 1)/d embedded in (d2 − 1)-
dimensional Euclidean space. Also, in contrast to the qubit case, the mapping form the
space of pure qudit states to the points on the generalized Bloch sphere is, in general,
not surjective and thus not every point on the sphere corresponds to a pure qudit state.
This becomes clear from Eq. (II.16), which shows that a general pure qudit state is
characterized by 2(d − 1) real parameters and therefore the set of pure qudit states
forms a 2(d− 1)-dimensional submanifold of the (d2− 2)-dimensional generalized Bloch
sphere. Similarly, not every point inside the generalized Bloch sphere will correspond
to a mixed qudit state.

II.1.6 Wigner function representation

When dealing with continuous-variable degrees of freedom, as discussed in Sec. II.1.3, a
Bloch vector representation, defined through a continuous set of basis operators span-
ning an infinite dimensional Hilbert space, is possible but often not as handy as in the
finite dimensional case. The latter is more elegantly described by a phase space distri-
bution W (x, p) that is parametrized by the position and momentum variables. Ideally,
such a phase space distribution would be given by a joint probability density P (x, p)
of position and momentum with the marginal probability densities, P (x) = 〈x|ρ̂|x〉 and
P (p) = 〈p|ρ̂|p〉, respectively. However, a proper probability density P (x, p) must be
positive, for all x and p, and normalized to one. In the following, we will define such
a phase space distribution and check if it fulfills the conditions of a proper probability
density.
To begin, let us define the phase-space displacement operator:

D̂(ν, µ) = eiµx̂−iνp̂ = e−iµν/2eiµx̂e−iνp̂, (II.63)

that implements a displacement of the position and momentum by the values ν and
µ, respectively. At the second equality of Eq. (II.63) we used the special case of the
Baker-Campbell-Hausdorff formula eÂ+B̂ = eÂeB̂e−[Â,B̂]/2 = eB̂eÂe[Â,B̂]/2, which holds
if [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0. The set of all displacement operators {D̂(µ, ν)|(µ, ν) ∈
R} forms a non-hermitian operator basis fulfilling the orthogonality condition

tr[D̂†(ν, µ)D̂(ν ′, µ′)] = 2πδ(µ′ − µ)δ(ν ′ − ν). (II.64)

Therefore, an arbitrary quantum state can be expanded as

ρ̂ =

∫∫
dνdµχρ̂(ν, µ)D̂(ν, µ) (II.65)
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with the complex characteristic function

χρ̂(ν, µ) =
1

2π
tr[ρ̂D̂†(ν, µ)]. (II.66)

By further evaluating Eq. (II.66) using Eq. (II.63) and by doing the substitution x =
x′ + ν/2, we get:

χρ̂(ν, µ) =
1

2π

∫ ∞

−∞
dx′e−iνµ/2〈x′|ρ̂e−iµx̂eiνp̂|x′〉 (II.67)

=
1

2π

∫ ∞

−∞
dxe−iµx〈x+

ν

2
|ρ̂|x− ν

2
〉. (II.68)

Now, we define the phase space distribution Wρ̂(x, p), also referred to as Wigner Func-
tion, as the inverse Fourier transform of the characteristic function (II.66):

Wρ̂(x, p) =
1

2π

∫∫ ∞

−∞
dµdνeiµx−iνpχρ̂(ν, µ) (II.69)

=
1

(2π)2

∫∫ ∞

−∞
dx′dνe−iνp

∫ ∞

−∞
dµeiµ(x−x′)

︸ ︷︷ ︸
=2πδ(x−x′)

〈x′ + ν

2
|ρ̂|x′ − ν

2
〉, (II.70)

which leads to the final expression

Wρ̂(x, p) =
1

2π

∫ ∞

−∞
dx′eix

′p〈x− x′

2
|ρ̂|x+

x′

2
〉. (II.71)

The Wigner function has several useful properties that allows one ignore the quantum
state or density matrix formalism and perform all calculations within phase space. For
instance, the Wigner function is linear:

Wp1ρ̂1+p2ρ̂2+...(x, p) = p1Wρ̂1(x, p) + p2Wρ̂2(x, p) + . . . , (II.72)

we can use it to calculate the inner product between two operators ρ̂1 and ρ̂2 through
the relation:

tr[ρ̂1ρ̂2] = 2π

∫∫ ∞

−∞
dxdpWρ̂1(x, p)Wρ̂2(x, p), (II.73)

and as we demanded above Wρ̂(x, p) is a real and normalized distribution:
∫∫ ∞

−∞
dxdpWρ̂(x, p) =

∫ ∞

−∞
dx〈x|ρ̂|x〉 = 1 (II.74)
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which yields the marginal probability densities:

P (x) = 〈x|ρ̂|x〉 =

∫ ∞

−∞
dpWρ̂(x, p), (II.75)

P (p) = 〈p|ρ̂|p〉 =

∫ ∞

−∞
dxWρ̂(x, p). (II.76)

Further on, using Eq. (II.73), we can calculate the expectation value of a quantum
observable Â with respect to some quantum state ρ̂ in the same fashion as we do for
classical observables in probability theory:

〈Â〉ρ̂ =

∫∫ ∞

−∞
dxdpA(x, p)Wρ̂(x, p) (II.77)

where the quantity A(x, p) = 2πWÂ(x, p) is proportional to the Wigner function of the
observable Â. For instance, an arbitrary symmetrized observable

S(x̂np̂m) =
1

2n

n∑

j=0

(
a

b

)
p̂n−j x̂mp̂j (II.78)

yields with the so-called Weyl correspondence [Weyl, 1950]:

〈S(x̂np̂m)〉ρ̂ =

∫∫ ∞

−∞
dxdp xnpmWρ̂(x, p). (II.79)

And finally we note that theWigner function is upper and lower bounded by |Wρ̂(x, p)| ≤
1/π.
However, the derived distribution Wρ̂(x, p) is in general not strictly positive and thus

cannot be associated with an ordinary joint probability density for the position and the
momentum. It is only possible to define certain classes of quantum states which have a
strictly positive Wigner function. For example, we can consider all states that have a
Gaussian Wigner function:

WGauss(x, p) =
1

2πσxσp
e
− (x−x0)2

σ2
x
− (p−p0)2

σ2
p (II.80)

with widths, σx and σp, and positions, x0 and p0. More generally, we can express a
Gaussian Wigner function as

WGauss(x, p) =
1

2π
√

det(Σ)
e−

1
2

(v−v0)TΣ−1(v−v0), (II.81)

in terms of the displacement vector v̄ = (〈x̂〉, 〈p̂〉)T, the covariance matrix

Σ =

(
〈x̂2〉 − 〈x̂〉2 〈12{x̂, p̂}〉 − 〈x̂〉〈p̂〉

〈12{x̂, p̂}〉 − 〈x̂〉〈p̂〉 〈p̂2〉 − 〈p̂〉2
)

(II.82)

and the vector v = (x, p)T. One can transform Eq. (II.81) into Eq. (II.80) by diagonal-
izing the symmetric covariance matrix (II.82). Hence, all states with Gaussian Wigner



38 II Theoretical and experimental foundations

function, referred to as Gaussian states, are completely characterized by their covariance
matrices and displacement vectors (Σ,v̄). For all other states, whose Wigner functions
are not Gaussian, also higher order moments will be important. We have thus found a
class of quantum states that have always a positive Wigner function WGauss(x, p) ≥ 0,
for all x and p.
Furthermore, for pure quantum states Gaussianity is a necessary and sufficient con-

dition for the positivity of the corresponding Wigner function, as stated by the Hudson-
Piquet’s theorem [Hudson, 1974]: “A necessary and suffcient condition for the Wigner
density Wρ̂(x, p) corresponding to the Schrödinger state vector |Ψ〉 to be a true proba-
bility density is that |Ψ〉 be the exponential of quadratic polynomial.”. Or, formulated
in other words, the Wigner function of a pure state |Ψ〉 is everywhere positive if and
only if it is a Gaussian function. This allows us to classify all pure quantum states into
two groups, called Gaussian and Non-Gaussian states, with positive and not strictly
positive Wigner function, respectively. However, note that the above theorem is only
valid for pure states and does not generalize to mixed states. For example, the classical
mixture of two Gaussian states will, according to Eq. (II.72), also have a positive Wigner
function which is in general not Gaussian. Examples of Gaussian and Non-Gaussian
states of light will be discussed in Sec. II.2.4 after having introduced the quantum state
and mode representation of the electromagnetic radiation field in Sec. II.2.1.
Last, we want to mention that the Wigner function (II.71) can also be generalized to

N -partite systems, as follows:

Wρ̂(x1, p1;x2, p2; . . . ;xN , pN ) =
1

(2π)N

∫ ∞

−∞
dx′1dx

′
2 . . . dx

′
Ne

ix′1p1+ix′2p2+...+ix′NpN

× 〈x1 −
x′1
2
|〈x2 −

x′2
2
| . . . 〈xN −

x′N
2
|ρ̂|x1 +

x′1
2
〉|x2 +

x′2
2
〉 . . . |xN +

x′N
2
〉. (II.83)

which will be of interest when studying nonlocality and entanglement in continuous-
variable systems (see Chapter V).

II.2 Quantum theory of light

In this Section we will be mainly concerned with the formulation of the quantum theory
of the electromagnetic field. The origins of this theory go back to the year 1900 when
Planck derived, for the first time, the law which describes the amount of radiation
emitted by a black body with temperature T at frequency ν, by assuming that the energy
of the emitted radiation is proportional to the Planck constant h.5 Later on in 1905, it
was Einstein who confirmed this quantum hypothesis in his work about the photoelectric
effect, by postulating that light can only exchange quantized amounts of energy with
matter because it occurs only in so-called energy quanta. While controversial at the
beginning, the quantum hypothesis is today widely accepted and forms the foundation
of a theoretical description of the electromagnetic field.

5The value of the Planck constant is h = 6.626070040(81) × 10−34Js (see
http://physics.nist.gov/cuu/Constants/index.html).
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II.2.1 Quantization of the electromagnetic field

The electromagnetic field is a measurable quantity which in quantum mechanics is de-
scribed by a self-adjoint operator. In order to derive this operator of the electromagnetic
field we start from the classical theory of electromagnetism [Jackson, 1998]. According
to the latter the classical electric and magnetic fields in vacuum, E and B, obey the
free Maxwell equations:

∇ ·E = 0, ∇×E = −∂B
∂t
, (II.84)

∇ ·B = 0, ∇×B = µ0ε0
∂E
∂t
. (II.85)

It is often of advantage to express E and B in terms of a vector and a scalar potential:

B = ∇×A, (II.86)

E = −∇Φ− ∂A
∂t

. (II.87)

which, by inserting Eq. (II.86) and (II.87) into Eq. (II.84) and (II.85), lead to the
differential equations:

∇(∇ ·A)−∇2A +
1

c2

∂

∂t
∇Φ +

1

c2

∂2A
∂t2

= 0, (II.88)

−∇2Φ−∇ · ∂A
∂t

= 0. (II.89)

where we used the relation c = 1/(µ0ε0)1/2, with the speed of light c. We can decouple
Eqs. (II.88) and (II.89) by choosing the Coulomb gauge ∇ · A = 0 and by applying
the Helmholtz’ theorem6 to divide (II.88) and (II.89) into transversal and longitudinal
parts, yielding the following equations for the vector and the scalar potential

(
1

c2

∂2

∂t2
−∇2

)
A = 0, (II.90)

∇2Φ = 0. (II.91)

The solution of Eq. (II.91) under the above conditions is given by Φ = 0. Further
on, by imposing periodic boundary conditions in a cubic volume with length L, we can
write the solution of Eq. (II.90) as a superposition of plane transversal waves:

A(r, t) =
∑

k,λ

Akεk,λ
[
ak,λe

−iωkt+ik·r + a∗k,λe
iωkt−ik·r

]
, (II.92)

6The Helmholtz’ theorem states that any vector field can be represented as superposition of a
divergence-free and a curl-free field component [Loudon, 2000].
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with the wave vector k = (kx, ky, kz), with ki = 2πni/L (ni ∈ Z\{0}), and the polar-
ization vector ελ(k), of the corresponding plane waves, which satisfy the conditions

εk,λ · k = 0, (II.93)
εk,λ · εk,λ = δλ,λ′ . (II.94)

The quantities ak,λ and a∗k,λ in Eq. (II.92) represent the Fourier coefficients determin-
ing the particular shape of the solution (II.92), and Ak is a constant. Substituting
(II.92) into Eq. (II.86) and (II.87), one straightforwardly obtains the expressions for
the classical magnetic and electric fields in free space with the energy

Hem =
1

2

∫

V
dV [ε0E2(r, t) + µ−1

0 B2(r, t)] = 2ε0V
∑

k,λ

Akω2
k|ak,λ|2. (II.95)

To obtain a quantum mechanical description of the above equations, we have to
incorporate the quantized nature of the electromagnetic field by a procedure referred to
as canonical quantization [Loudon, 2000; Mandel and Wolf, 1995]. To do so, we express
the coefficients ak,λ and a∗k,λ in terms of pairs of canonically conjugate observables, Xk,λ
and Pk,λ, as

ak,λ =
1√
2

(Xk,λ + iPk,λ) Xk,λ =
1√
2

(ak,λ + a∗k,λ), (II.96)

a∗k,λ =
1√
2

(Xk,λ − iPk,λ) Pk,λ = − i√
2

(ak,λ − a∗k,λ), (II.97)

and quantize each in association to a quantum mechanical harmonic oscillator with the
commutation relations (see Sec. II.1.3):

[X̂k,λ, X̂k′,λ′ ] = [P̂k,λ, P̂k′,λ′ ] = 0, (II.98)

[X̂k,λ, P̂k′,λ′ ] = i~δk,k′δλ,λ′ . (II.99)

In this description the Fourier coefficients ak,λ and a∗k,λ (see (II.92)) become operators
as well, âk,λ and â†k,λ, which fulfil the bosonic commutation relations:

[âk,λ, âk′,λ′ ] = [â†k,λ, b̂
†
k′,λ′ ] = 0, (II.100)

[âk,λ, â
†
k′,λ′ ] = δk,k′δλ,λ′ . (II.101)

Note, that Eqs. (II.96) and (II.96) hold equivalently for the corresponding operators if
one replaces the complex conjugation with the adjoint operations. In this case we find
that the electromagnetic energy (II.95) is equal to the Hamilton operator of a infinite
sum of independent harmonic oscillators:

Ĥem =
1

2

∑

k,λ

(
X̂2

k,λ + P̂ 2
k,λ

)
=
∑

k,λ

~ωk
(
âk,λâ

†
k,λ +

1

2

)
. (II.102)
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where we chose Ak =
√
~/(ε0V 2ωk). 7 Let us remark that the ground state energy in

(II.102) is an infinite sum of positive values, and is therefore divergent. However, the
ground state energy does not influence the dynamics of the observables, and can be set
to zero:

Ĥem =
∑

k,λ

~ωkâ†k,λâk,λ. (II.103)

The operators âk,λ (â†k,λ) are be interpreted as lowering (raising) operators, which
annihilate (create) a photon in the mode (k, ελ(k)) of the field:

âk,λ|..., nk,λ, ...〉 =
√
n|..., nk,λ − 1, ...〉 (II.104)

â†k,λ|..., nk,λ, ...〉 =
√
n+ 1|..., nk,λ + 1, ...〉. (II.105)

The eigenstates are called Fock states and the corresponding Hilbert space Fock space.
The Fock space is spanned by the set of all Fock states, which are also eigenstates of the
number operators n̂k,λ = â†k,λâk,λ, whose eigenvalues give the number of photons in each
mode of the field, and thus of the Hamilton operator (II.103). After this quantization
procedure, the vector potential and, hence, the electromagnetic field become operator
valued functions

Â(r, t) =
∑

k,λ

√
~

ε0V 2ωk
εk,λ

[
âk,λe

−iωkt+ik·r + â†k,λe
iωkt−ik·r

]
, (II.106)

Ê(r, t) = i
∑

k,λ

√
~ωk

2ε0V
εk,λ

[
âk,λe

−iωkt+ik·r − â†k,λeiωkt−ik·r
]
, (II.107)

B̂(r, t) = i
∑

k,λ

√
~

2ε0V ωk
k× εk,λ

[
âk,λe

−iωkt+ik·r − â†k,λeiωkt−ik·r
]
. (II.108)

The choice of the annihilation and creation opeators, âk,λ and â†k,λ, in Eq. (II.92),
and thus of the quadrature operators X̂k,λ and P̂k,λ, is rather arbitrary. We can also
define a rotated set of quadrature operators:

(
X̂

(θ)
k,λ

P̂
(θ)
k,λ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
X̂k,λ
P̂k,λ

)
(II.109)

leading to

X̂
(θ)
k,λ =

1

2
(âk,λe

−iθ + â†k,λe
iθ), (II.110)

P̂
(θ)
k,λ = − i

2
(âk,λe

−iθ − â†k,λeiθ), (II.111)

7This convention allows us to deal with dimensionless quadrature operators, defined in Eqs. (II.96)
and (II.96), which are related to the ordinary position and momentum operator through X̂k,λ =√

ωk
~ x̂k,λ and P̂k,λ =

√
~
ωk
p̂k,λ.



42 II Theoretical and experimental foundations

which fulfil also the commutation relations (II.98)-(II.101). The eigenstates of (II.110)
and (II.111) form, as the position and momentum eigenstates discussed in Sec. II.1.3,
two complete and conjugate bases, |Xk,λ〉θ and |Pk,λ〉θ, which that obey the complete-
ness relation:

∫ ∞

−∞
dXk,λ|Xk,λ〉θ〈Xk,λ|θ =

∫ ∞

−∞
dPk,λ|Pk,λ〉θ〈Pk,λ|θ = 1. (II.112)

Using this quadrature basis we can represent quantum states of light in a phase space
representation using the Wigner function, defined in Sec. II.1.6.

II.2.2 Mode representations

In Eq. (II.92) we expanded a general solution of the Maxwell equations in terms of
transversal plane waves εk,λeiωkt+ir·k, with polarization λ, leading to the electromag-
netic field vectors by virtue of Eqs. (II.86) and (II.87). This is by no means a unique
strategy. Moreover, plane waves might not be considered as the physically most adapted
choice. We can expand the solution (II.92) also in terms of another set of orthonormal
functions εk,λuk(r, t), usually referred to as mode functions, corresponding to some de-
gree of freedom of the electromagnetic field, such as the polarization, frequency, intensity
or phase.
The generalized quantized version of the solution of Eq. (II.90) then reads:

Â(r, t) =
∑

k,λ

A0εk,λ

[
âk,λuk(r, t) + â†k,λu

∗
k(r, t)

]
, (II.113)

with the lowering and raising operators, âk,λ and â†k,λ, that annihilate or create photons
in modes (k, λ), each associated with one of the mode functions εk,λuk(r, t) which evolve
according to the wave equation (II.90). Hence, each solution εk,λuk(r, t) corresponds to
a Hilbert space Hk,λ spanned by the Fock basis {|n〉k,λ|n = 1, 2, . . .}. The total Hilbert
space of the quantum state of the light field is then given by a tensor product of the
corresponding mode subspaces Hk,λ, leading to:

H =
⊗

k,λ

Hk,λ. (II.114)

When describing the light field one often focuses on a particular mode expansion given
by the set of operators {âk,λ}. But this is not unique. We can create a new mode
expansion {b̂k,λ} by superposing other mode operators:

b̂k,λ =
∑

k′,λ′
Uk,λ;k′,λâk′,λ′ (II.115)

where Uk,λ;k′,λ must be such that the commutation relations (II.100) and (II.101) are
preserved, meaning unitary:

∑

k′′,λ′′
U †k,λ;k′′,λ′′Uk′′,λ′′;k′,λ′ = δk,k′δλ,λ′ . (II.116)
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Note also that the index k can in general refer to continuous variables, such as the
frequency or spatial position variables. For instance, we can have an operator â†r creating
a photon at position r, or an operators â†p creating a photon with momentum p, which
are related by a Fourier transform:

âr =
1

(2π)
3
2

∫
dreir·pâp. (II.117)

In practise, to keep things simple, we will often restrict ourselves to only one degree of
freedom, thus a particular set of functions εk,λuk(r, t), while keeping all other degrees
of freedom unchanged. For instance, in Sec. II.2.3 we discuss the case where we keep
temporal (frequency) modes fixed and focus only on spatial modes of the light field.
Another example is the polarization degree of freedom of the electromagnetic field which,
while keeping spatial and temporal/frequency modes fixed, leads to a decomposition of
the Fock space into two parts HH⊗HV, corresponding to the horizontal (H) and vertical
(V) polarizations, respectively.

II.2.3 Transverse spatial modes

Now, we will consider the particular case of scalar monochromatic waves with harmonic
time dependence uk(r, t) = uk(r)eiωkt, thus focusing on the set of complex functions
{uk(r)} while keeping the polarization and temporal modes fixed. According to the
above introduced quantum theory of light, the mode functions uk(r, t) have to fulfill
Eq. (II.90) which in this case reduces to the Helmholtz equation:

(
∇2 + k2

)
uk(r) = 0, (II.118)

where k = |k|. Further on, we want to consider paraxial light beams that propagate
mainly in the z direction with transverse wave vector components q = (kx, ky)

T. The
z-component of the total wave vector k can then be written in the Fresnel or paraxial
approximation:

kz =
√
k2 − q2 ≈ k

(
1− q2

2k2

)
, (II.119)

if q2 � k2, where q = |q|. The Fresnel or paraxial approximation is also known as
small angle approximation because, in geometric optics where light is represented by
rays, paraxial rays are those rays which lie at small angles to the propagation axis of
the considered optical system. In this approximation we can write uk(r) = Uk(r)eikz,
with a slowly varying function Uk(r), such that u(r) keeps a plane wave structure for
small propagation distances. Then, Eq. (II.118) becomes

(
∂2

∂x2
+

∂2

∂y2
+ 2ik

∂

∂z

)
Uk(r) = 0. (II.120)

where we have also used that ∂2Uk(r)/∂z2 � k∂Uk(r)/∂z [Walborn et al., 2010]. Equa-
tion (II.120) is called paraxial Helmholtz equation and has the well-known Laguerre-
and Hermite-Gaussian modes as solutions. The Laguerre-Gaussian modes, expressed
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Figure II.4: Plots of the Laguerre- (left) and Hermite-Gaussian (right) modes for
various values of their indices (`, p) and (n,m), respectively. Figure taken from [Walborn
et al., 2010].

in cylindrical coordinates (ρ, φ, z), are given by

U `p(ρ, φ, z) =D`
p

1

w(z)

(√
2ρ

w(z)

)`
L`p

(
2ρ2

w(z)2

)
exp

(
− ρ2

w(z)2

)

exp

{
−i
[
kρ2

2R
− (n+m+ 1)γ(z)

]
− (p− `)φ

}
, (II.121)

where ` and p denote the azimuthal and radial indices, respectively, D`
p is a constant, L`p

denote the associated Laguerre polynomials (see Appendix A for a definition of L`p(x)),
z is the longitudinal propagation direction, R(z) is the radius of curvature, w(z) is the
beam waist, γ(z) is the phase retardation or Gouy phase, and the parameter zR is the
Rayleigh range. The order of the LG beam is defined as N = |`| + 2p. In Fig. II.4
we present examples of Eq. (II.121) for the values p = 0, 1 and ` = 0, 1, 2, 3. Other
solutions of Eq. (II.120) are the so-called Hermite-Gaussian modes which, expressed in
euclidian coordinates, read:

UHGnm (x, y, z) =Cnm
1

w(z)
Hn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
exp

(
−x

2 + y2

w(z)2

)

exp

{
−i
[
k(x2 + y2)

2R(z)
− (n+m+ 1)γ(z)

]}
. (II.122)

where Cnm are constants, Hn(x) denotes the nth-order Hermite polynomial (see Ap-
pendix A for a definition of Hn(x)). The Hermite polynomials Hn(x) are even or odd
functions of x depending if n is even or odd, respectively. The order of the beam is
given by N = m + n. Examples of Eq. (II.122) are presented in Fig. II.4. Both,
the Laguerre- and Hermit-Gaussian modes, reduce in zeroth-order (U0

0 and UHG00 ) to a
simple Gaussian beam profile.
In Sec. II.3.1, we will be concerned with a special case of such spatial optical modes,

namely those containing solely single photons. As we will see, in this case, we can
consider the transverse field distribution of the single photon as a wave function of a
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single particle in first quantization formalism.

II.2.4 Relevant quantum states of light

In this Section we discuss some important quantum states of light that will be relevant
for the further reading of this manuscript. At the same time, we take this opportunity
to show further examples of the Wigner function phase space representation introduced
in Sec. II.1.6. In the following, we will restrict ourselves to a single mode of the elec-
tromagnetic field spanned by the set of Fock states {|n〉|n = 1, 2, . . .}.

II.2.4.1 Fock states

Before turning to more particular states let us discuss some properties of the Fock basis
itself. We start with the vacuum state |vac〉 = |0〉, which is defined by the fact that it
vanishes after an application of the annihilation operator â, i.e. â|0〉 = 0. Higher order
Fock states |n〉, with n > 0, can then be formed by repeated application of the creation
operator â† on the vacuum state |0〉, leading to

|n〉 =
(â†)n√
n!
|0〉, (II.123)

where the factor 1/
√
n! follows from the definition of â† in Eq. (II.105). As mentioned

in the previous Section the Fock states form a complete and orthonormal basis fulfilling∑
n |n〉〈n| = 1 and 〈n|m〉 = δn,m, respectively, and thus allow to express every quantum

states of a single mode as:

|Ψ〉 =
∞∑

n=0

cn|n〉, (II.124)

with cn = 〈n|Ψ〉. The wave function of a Fock state |n〉 is exactly the nth order
Harmonic oscillator eigenfunction[Mandel and Wolf, 1995]:

〈x|n〉 =
1√√
π2nn!

Hn (x) e−x
2/2, (II.125)

where Hn(x) are the Hermite polynomials (see Appendix A), leading to the correspond-
ing Wigner function (II.71):

W|n〉〈n|(x, p) =
(−1)n

π
e−(x2+p2)Ln

(
2(x2 + p2)

)
, (II.126)

where Ln denote the nth order Laguerre polynomials (see Appendix A). In Fig. II.5
we present plots of the Wigner function of the four lowest order Fock states with n =
0, 1, 2, 3. We can even calculate the Wigner function of an arbitrary Fock state projector
|n〉〈m|:

W|n〉〈m|(x, p) =
(−1)n

π

√
m!

n!

(√
2(x− ip)

)n−m
e−(x2+p2)Ln−mm

(
2(x2 + p2)

)
, (II.127)
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Figure II.5: Plots of the Wigner function (II.126) of the four Fock states |0〉 (a), |1〉
(b), |2〉 (c) and |3〉 (d).

which leads to a convenient way to express the Wigner function of an arbitrary density
matrix ρ̂ in terms of its matrix elements ρn,m = 〈n|ρ̂|m〉:

Wρ̂(x, p) =
∑

n,m

ρ̂n,mW|n〉〈m|(x, p). (II.128)

II.2.4.2 Coherent states

Coherent states |α〉 are introduced as eigenstates of the photon annihilation operator â
with complex eigenvalues α, fulfilling the eigenvalue relation [Mandel and Wolf, 1995]:

â|α〉 = α|α〉, (II.129)

or equivalently the conjugate relation

〈α|â† = α∗〈α|, (II.130)

The expression of the coherent state |α〉 in terms of Fock states can be determined
by inserting a general expansion (II.124) with |Ψ〉 = |α〉 into Eq. (II.129) which leads
to a recursion formula for the coefficients cn. Solving the latter with the additional
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normalization condition 〈α|α〉 = 1 yields:

|α〉 = e−
|α|2

2

∞∑

n=0

αn√
n!
|n〉, (II.131)

which reduces to the vacuum state if α = 0. When measuring a coherent state (II.131)
in the Fock basis |n〉, we see that the probability that n photons will be found is given
by a Poisson distribution:

p(n) = |〈n|α〉|2 =
|α|2n
n!

e−|α|
2
. (II.132)

where |α|2 is a variable parameter. The mean number of photons present in a coherent
state is thus given by 〈n̂〉|α〉 = |α|2. The scalar product of two coherent states is given
by

〈α|β〉 = e−|α−β|
2/2e(α∗β−αβ∗)/2, (II.133)

which shows that coherent states are necer orthogonal, but they fulfill the over-completeness
relation [Mandel and Wolf, 1995]

1

π

∫
dα|α〉〈α| = 1, (II.134)

thus allowing us to express every state in terms of an integral over the complex plane
as

|Ψ〉 =
1

π

∫
dα〈α|Ψ〉|α〉. (II.135)

We can define the coherent state |α〉 also through a displacement of the vacuum state
|0〉, as:

|α〉 = D̂(α)|0〉 = eαâ
†−α∗â|0〉 = e−|α|

2/2eαâ
†
e−α

∗â|0〉 = e−|α|
2/2eαâ

† |0〉 (II.136)

where we used Eqs. (II.96) and (II.97) to express the displacement operator (II.63) in
terms of the annihilation and creation operators, â and â†, with α = (ν + iµ)/

√
2. The

Wigner function of a coherent state is the same as of the vacuum state (see Fig. II.5
(a)) displaced to the position (ν, µ) in phase space:

W|α〉〈α|(x, p) =
1

π
e−(x−ν)2−(p−µ)2

. (II.137)

II.2.4.3 Squeezed states

The coherent states |α〉 have a Gaussian Wigner function (II.137) that is symmetric
in x and p, leading to the minimal position and momentum uncertainty ∆x∆p = 1/2.
As already mentioned in Sec. II.1.3, we can reduce the uncertainty in the position or
momentum variables with the cost of increasing the other one, respectively, but still
fulfilling the relation ∆x∆p = 1/2. Such states are called squeezed states (see Fig. II.1
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Figure II.6: Plot of the Wigner function (II.126) of a squeezed vacuum states |0, r〉
with 5dD of squeezing (r ≈ 0.57).

for the plot of a squeezed wave function) and can be generated through the application
of the squeezing operator Ŝ(r) (see Sec. II.1.3). For instance, for the squeezed vacuum
we obtain:

|0, r〉 = Ŝ(r)|0〉 = e
r
2

(â2− â† 2
)|0〉 =

1

cosh r

∞∑

n=0

√
(2n)!

2nn!
tanh rn|2n〉, (II.138)

and all other minimal uncertainty states can be reach by displacing the squeezed vac-
uum:

|α, r〉 = D̂(α)|0, r〉 = D̂(α)Ŝ(r)|0〉, (II.139)

with mean photon number 〈n̂〉|α,r〉 = |α|2 + sinh2 r. The wave function of the displaced
squeezed vacuum state then reads:

〈x|α, r〉 =
1

π1/4e−r/2
e−(x−ν)2/(2e2r)−iµx+iµν , (II.140)

and the corresponding Wigner function

W|α,r〉〈α,r|(x, p) =
1

π
e−(x−ν)2/e−2r−(p−µ)2/e2r . (II.141)

The amount of squeezing can also be quantified in terms of the squeezing factor s
which is defined as the variance of the squeezed state ∆x2 normalized to the shot noise
limit given by the variance of the vacuum state ∆x2

0, yielding s = ∆x2/∆x2
0 = e−2r. In

experiments the squeezing factor is often given dB scale:

sdB = 10log10s. (II.142)
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One can also generate two-mode squeezed states through application of the two-
mode squeezing operator Ŝ2(r) (see Sec. II.1.3) on a bipartite system. In analogy to
Eq. (II.138), we define the two-mode squeezed vacuum (TMSV) state as:

|r〉TMSV = Ŝ2(r)|0〉a|0〉b = e
r
2

(â⊗â−â†⊗â†)|0〉a|0〉b

=
√

1− λ2

∞∑

n=0

(−λ)n|n〉a|n〉b, (II.143)

where a and b refer to the two modes of the bipartite system and λ = tanh r ∈ [0, 1].
The Wigner function of the TMSV state reads:

WTMSV(xa, pa;xb, pb) =
1

π2
e−

(xa−xb)
2

2e−2r −
(xa+xb)

2

2e2r
− (pa−pb)

2

2e2r
− (pa+pb)

2

2e−2r . (II.144)

The TMSV state (II.143) is also known as Einstein-Podolski-Rosen (EPR) state because,
in the limit r →∞, Eq. (II.144) becomes

WTMSV(xa, pa;xb, pb) =
1

π2
δ(xa − xb)δ(pa + pb), (II.145)

which is the Wigner function of the famous EPR state:

|EPR〉 =

∫ ∞

−∞
dx|x〉a|x〉b =

∫ ∞

−∞
dp|p〉p| − p〉b (II.146)

II.2.4.4 Thermal states

Instead of coherent superpositions of Fock states we can also consider incoherent mix-
tures with a fixed average photon number n̄, so-called thermal states:

ρ̂th =

∞∑

n=0

n̄n

(n̄+ 1)n+1
|n〉〈n|, (II.147)

with the Wigner function:

Wth(x, p) =
1

π(2n̄+ 1)
e−(x2+p2)/(2n̄+1). (II.148)

At this point we note that any single-mode Gaussian state can be generated by the
application of a single-mode Gaussian unitary ÛG on a thermal state (II.147). Fur-
thermore, as we learned in Sec. II.1.3, any single-mode Gaussian unitary operation can
be decomposed into rotations, squeezings and displacements, yielding the most general
Gaussian state:

ρ̂Gauss = D̂(α)R̂(θ)Ŝ(r)R̂(φ)ρ̂thR̂(φ)†Ŝ(r)†R̂(θ)†D̂(α)† (II.149)

whose Wigner function was introduced in Eq. (II.81). And by setting the average photon
number of the thermal state equal to zero we obtain the most general single-mode pure
Gaussian state through |α, θ, r〉 = D̂(α)R̂(θ)Ŝ(r)|0〉.
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Figure II.7: Plot of the Wigner function (II.126) of the even (left) and odd (b,right)
cat states |cat±〉 with cat state amplitudes α = 1 (bottom) and α = 3 (top).

II.2.4.5 Cat states

Up to now we have, apart form the Fock basis states (see Sec. II.2.4.1), only considered
Gaussian states. Now, we want to discuss an example of Non-Gaussian states that can
be produced by superposing coherent states with different amplitudes, referred to as
Schrödinger-Cat states. Even and odd Schrödinger-Cat states are defined as follows:

|cat±〉 =
1

Nα,±
(|α〉 ± | − α〉) , (II.150)

with the normalization factor Nα,± =
√

2(1± e−2|α|2). In the Fock basis representation
the even and odd cat states read:

|cat+〉 =
2

Nα,+
e−|α|

2/2
∞∑

n=0

α2n

√
(2n)!

|2n〉 (II.151)

and

|cat−〉 =
2

Nα,−
e−|α|

2/2
∞∑

n=0

α2n+1

√
(2n+ 1)!

|2n+ 1〉, (II.152)

respectively. The Wigner function of |cat±〉 with α = (ν + iµ)/
√

2 can be expressed
in terms of the Wigner function of two coherent states and the vacuum states (see
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Eq. (II.137)), yielding:

Wcat±(x, p) =
1

N 2
α,±

[
W|α〉〈α|(x, p) +W|−α〉〈−α|(x, p)

±W|0〉〈0|(x, p)2 cos (2xµ− 2νy)
]
. (II.153)

In Fig. II.7 we present plots of the Wigner function of the even and odd cat states
with different cat state amplitudes α. For a larger cat state amplitude it is apparent
that the two Gaussian features in the Wigner functions are due to the first two terms in
Eq. (II.153), while the interference fringes at the origin correspond to a vacuum state
Wigner function modulated by a cosine. The even and odd cat state Wigner functions
differ solely by the fact that the interference fringes at the origin are phase shifted by
a factor of π. For smaller cat state amplitudes (α ' 1) such a decomposition is not as
obvious anymore. In fact, for |α| → 0 the even cat state becomes a vacuum state, while
the Wigner function of an odd cat state tends towards that of a single photon state
(compare with Fig. II.5(b)).

II.3 Experimental realizations

Since in the remainder of this thesis we will mainly be concerned with the implemen-
tation of discrete quantum information processing tasks in systems described by con-
tinuous variables, we discuss here two quantum optical systems that can be used as
a platform to create and manipulate continuous-variable quantum states in a coher-
ent fashion. Thereby, we will focus on two fundamentally different ways to process
continuous-variable degrees of freedom with optical fields. On the one hand, we con-
sider systems of single photons whose spatial distribution can be regarded as a single
particle wave function that can be manipulated with linear optical elements. On the
other hand, we discuss the electromagnetic field quadratures of some fixed spatial and
temporal mode consisting in general of larger numbers of photons. These two ap-
proaches are fundamentally different since we deal, in the first case, with the Hilbert
space of the spatial multi-mode field of a single photon, and, in the second case, with the
multi-photon Fock space of a single mode of the electromagnetic field. Both approaches
have advantages and disadvantages in the production of states, their manipulation and
measurement, respectively, which we discuss in the following.

II.3.1 Spatial distribution of single photons

The spatial degrees of freedom of single photons can be described by the electromagnetic
field composed of spatial optical modes (see also the discussion in Sec. II.2.3) in the
paraxial approximation (II.119) evolving according to the paraxial Helmholtz equation
(II.120). In the single photon regime this spatial multi-mode field can be regarded as
a single particle wave function representing the probability amplitude for the detection
of the photon in the transverse plane [Lvovsky and Raymer, 2009; Tasca et al., 2009,
2011]. The general situation is depicted in Fig. II.8. We assume that the coordinates x
and p refer to the transverse position and momentum (or the wave-vector) of a single
photon. These variables are related to the source (position plane) and Fourier plane
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S D

Figure II.8: Schematic representation of a single photon with spatial profile along the
x-axis propagating in z-direction that has been produced in a source (S). The transverse
spread of the photon is assumed to be small in the paraxial approximation (kx � kz).
Finally, the spatial distribution of the photon is measured in using an appropriate
detector (D), e.g. a position resolving CCD camera.

(momentum plane) of the single-photon field. Also, we restrict ourselves to the one
dimensional case because the Hilbert space associated to the two-dimensional spatial
photon field is a tensor product of the Hilbert spaces associated with the two orthogonal
transverse directions of the photon (see Eq. (II.114).

II.3.1.1 Manipulation of the spatial single photon field

Implementing single-mode continuous-variable gates (see Sec. II.1.3) on the transverse
degrees of freedom of single photons can be achieved by using linear optical elements
only. Yet, we have to account for the free evolution of the single-photon wave func-
tion U(x) before and after the application of such optical elements. As mentioned in
Sec. II.2.3, this evolution is determined by the paraxial Helmholtz equation:

(
∂2

∂x2
+ 2ik

∂

∂z

)
U(x, z) = 0, (II.154)

with k = 2π/λ, where λ is the corresponding wave length. Equation (II.154) is a
Schrödinger type wave equation with fictitious time coordinate z. To see this more
clearly, we rewrite (II.154) in terms of an appropriate operator formalism in which
the transverse position of the photon is described by the position operator x̂ and the
differential operator −i∂/∂x refers to the momentum operator p̂, fulfilling the usual
commutation relation [x̂, p̂] = i. Now, we can express Eq. (II.154) in braket notation
with U(x, z) = 〈x|U(z)〉, as:

i
∂

∂z
|U(z)〉 =

p̂2

2k
|U(z)〉, (II.155)

yielding the general solution

|U(z)〉 = e−izp̂
2/(2k)|U(0)〉. (II.156)

In Eq. II.155 we identify the free-space propagation operator

P̂z = e−izp̂
2/(2k), (II.157)
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z z
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Figure II.9: Schematic representation of the optical setup of a single-lens system. The
optical field (red line) is entering through the input plane (IN), propagates freely for a
distance z, passes through a lens (L) with focal length f , propagates again freely for a
distance z and exits the setup through the output plane (OUT).

which implements the propagation of the transverse single photon wave function U(x)
from the origin to a distance z. Hence, by simply evolving the single photon through
space we are able to implement a momentum-shear operation with variable parameter
z. The latter is related to the normal shear operation by the application of the Fourier
transform operator (see Sec. II.1.3).
Other continuous-variable unitary operations can be implemented by placing optical

elements in the path of the freely propagating photon. For instance, an ordinary shear
operation (see Eq. (II.40)) can be implemented directly using a single lens [Stoler, 1981;
Tasca et al., 2011]:

L̂f = e−ikx̂
2/(2f), (II.158)

with the focal length of the lens f . We can use the operations (II.157) and (II.158)
to create other continuous-variable gates by concatenation. However, note that finite
size effects of the photon’s transverse wave function, as appearing in every realistic
experimental situation, lead to coarse grained resolution in terms of the corresponding
conjugate variables. This has the consequence that only a finite amount of information
can be encoded in the spatial distribution of a single photon. In what follows we will
neglect such finite size effects that might also lead to diffraction effects at the edges
of the implemented lenses. Furthermore, we consider only perfect lenses free of any
aberration effects.
Combining the single lens operation (II.158) with the free-propagation (II.157) we

can realize a single lens system, shown in Fig. II.9, that implements the operation:

ÛSL(z, f) = P̂zL̂f P̂z, (II.159)

which transforms the position and momentum operators as follows:

Û †SL(z, f)x̂ÛSL(z, f) = (1− z

f
)x̂+

z

k
(2− z

f
)p̂, (II.160)

Û †SL(z, f)p̂ÛSL(z, f) = (1− z

f
)p̂+

z

f
x̂. (II.161)
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(L)(IN) (OUT)(L)

f1 f2f1 f2

Figure II.10: Schematic representation of the optical setup of a two-lenses system
implementing two consecutive Fourier transforms with different focal lengths, f1 and
f2.

The single lens system operation (II.159) is a Gaussian operation which acts linearly
on the position and momentum operator, as discussed in Sec. II.1.3. Equations (II.160)
and (II.161) seem familiar to the Gaussian quadrature rotation (II.38), and indeed for
z = 2f sin2 θ/2 and f = f ′/ sin θ we get:

F̂†d,θx̂F̂d,θ = cos θx̂+ sin θd2
θp̂ (II.162)

F̂†d,θp̂F̂d,θ = −sin θ

d2
θ

x̂+ cos θp̂, (II.163)

where dθ =
√
f ′ sin θ/k and F̂d,θ = ei

θ
2

(x̂2/d2
θ+d2

θ p̂
2) denotes the operator of a rescaled

fractional Fourier transform, which becomes a rescaled Fourier transform F̂d = ei
π
4

(x̂2/d2+d2p̂2)

for θ = π/2:

F̂†d x̂F̂d = d2p̂, (II.164)

F̂†d p̂F̂d = − 1

d2
x̂, (II.165)

with d = dπ/2 =
√
f/k. Note, that above introduced rescaled transformation differ

from the ordinary operations, introduced in Sec. II.1.3, solely by a scaling factor dθ
which can always be accounted for by defining new rescaled position and momentum
variables x̂′ = x̂/dθ and p̂′ = dθp̂ [Tasca et al., 2011]. Yielding F̂θ = ei

θ
2

(x̂′2+p̂′2) with

F̂†θ x̂′F̂θ = cos θx̂′ + sin θp̂′ (II.166)

F̂†θ p̂′F̂θ = − sin θx̂′ + cos θp̂′, (II.167)

and F̂ = ei
π
4

(x̂′2+p̂′2) with

F̂†x̂′F̂ = p̂′ (II.168)

F̂ p̂′F̂ = −x̂′, (II.169)

as familiar from Sec. II.1.3.
Using a two-lens system, as depicted in Fig. II.10, we can also implement more com-
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x (LPS1) (LPS2)

k

Figure II.11: Schematic representation of two possible realizations of a linear phase-
shifter. LPS1: Transparent plate with linearly varying refractive index n(x) = n0x.
LPS2: Transparent wedge shaped plate. The red area indicates the profile of the optical
beam with wave vector k passing through the phase-shifters while propagating in z-
direction.

plicated operations. For instance, consider a combination of two one-lens system (see
Fig. II.9), each implementing a Fourier transform F̂d, with focal lengths f and f ′,
respectively. Together they realize the operation:

F̂†d2
F̂†d1

x̂F̂d1F̂d2 = −d
2
1

d2
2

x̂ = −f1

f2
x̂, (II.170)

F̂†d2
F̂†d1

p̂F̂d1F̂d2 = −d
2
2

d2
1

p̂ = −f2

f1
p̂, (II.171)

which is nothing but a single-mode squeezing operation (see Eq. (II.39)) with the squeez-
ing parameter r defined as r = ln (f1/f2). Hence, we can define an optical squeezing
gate as Ŝr = F̂d1F̂d2 = ÛSL(f1, f1)ÛSL(f2, f2). Note, that this transformation does not
depend on the definition of the above rescaled coordinates x̂′ and p̂′.
In order to complete the set of single-mode Gaussian operations on the transverse

single photon field we have to find an optical realization of the displacement operations
(II.34). To do so, we use that a displacement in the position or momentum variables cor-
responds to the linear phase shift in its conjugate (momentum or positon) variables. In
position we can implement such a phase shift using a linear position phase-shifter, real-
ized, for instance, by a transparent plate of length l with a linear transverse modulation
of its refractive index n(x) = n0x (see Fig. II.11(LPS1)), yielding a displacement by ln0

in momentum space. Another way to implement such a position phase shift is by using
a transparent wedge shaped plate with constant refractive index (see Fig. II.11(LPS2)).
Displacements in position space can be realized with the same linear phase-shifters
sandwiched between two Fourier transforms.
Finally, we introduce a very powerful optical element that allows us to implement all

the so far introduced operations with a single device, a so-called spatial light modulator
(SLM). A SLM works in a similar manner as an ordinary computer screen, consist-
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ing of a transparent or reflective liquid crystal display divided into a certain number
(depending on the resolution of the SLM) of pixels whose refractive index can be ad-
justed individually through the application of some voltage controlled by a computer.
In general, this enables one to apply arbitrary phases and amplitude modulation to the
spatial profile of an incident light beam. We will focus on the possibility to implement
arbitrary phase modulations yielding the operation:

USLM = eif(x̂), (II.172)

where f(x) is an arbitrary user-defined function. Similarly, one can implement phase
modulations in momentum space by combining a SLM with the Fourier transform F̂ .

II.3.1.2 Two-photon gates

The experimental implementation of the above introduced single-photon gates in terms
of linear optical elements is relatively simple. For two-photon gates the situation changes
since one needs to realize more challenging non-linear optical processes in order to
generate photon-photon interactions. In [Tasca et al., 2011] a proof-of-principle was
given how a non-linear 4-wave-mixing interaction can be used to entangle the spatial
variables of two initially separable photons |x1〉|x2〉, yielding an EPR state:

|Ψ〉 =

∫
dx|x1 + x2 − x〉1|x〉2. (II.173)

The non-linearity problem occurs also in other quantum optical frameworks for quan-
tum information processing. For instance, one needs non-linear optical elements to
implement controlled logic gates on single-mode photonic qubits [Milburn, 1989]. To
overcome these difficulties Knill, Laflamme and Milburn (KLM) proposed a method
based on gate teleportation [Gottesman and Chuang, 1999] that allows to realize uni-
versal quantum logic gates with photonic qubits using only linear optical elements and
post-selection [Knill et al., 2001]. Following the work by KLM several experimental
realizations of probabilistic multi-photon logic gates have been reported [O’Brien et al.,
2003; Langford et al., 2005; Kiesel et al., 2005; Okamoto et al., 2005; Lanyon et al.,
2009]. However, this proposals do not focus on the transverse degrees of freedom of the
photons as platform to process information. In Sec. V.2.3, we will propose one more
such multi-photon logic gate allowing for the implementation of controlled logical gates
of qudits encoded in the transverse degrees of freedom of the photons.
Another way to avoid the problem of implementing non-linear gate operations is to

use off-line8 entanglement generation which then can be used as a resource for further
computations. Such a procedure is very close to the model of measurement-based quan-
tum computation in which one performs coordinated measurements with feed-forward
on parts of a large entangled resource state in order to yield the desired computation
at some output mode [Raussendorf and Briegel, 2001; Menicucci et al., 2006]. At this
point we will not further go into details of this quantum computation model and focus

8Off-line entanglement or squeezing generation refers to the possibility of entangling or squeezing
known quantum states. If the entangling or squeezing is applied to an unknown state we call it
on-line.
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Figure II.12: Density plot of the joint-probability densities of the state (II.174) in
units of the parameter L/K for different widths of the pump beam profile σp = L/K,
2L/K, 4L/K (from left to right).

on the generation of bi-partite entangled state which will be important later on in this
thesis.

II.3.1.3 Spatial correlations from parametric down-conversion

An efficient way to generate pairs of entangled photons is by using spontaneous para-
metric down-conversion. Therein, a non-linear birefringent crystal is pumped by an
intense pump laser field with frequency ωL and produces in a down-conversion pro-
cess pairs of entangled signal and idler photons with frequency ωs and ωi, respectively.
These photon pairs can be entangled in the polarization, spatial or temporal degrees
of freedom. For the sake of clarity let’s disregard here the polarization and temporal
degrees of freedom and we focus on the spatial entanglement properties of the photons.
In particular, SPDC generates photon paris whose spatial distribution is described by
states of the form:

|Ψ〉 =

∫∫
dxdx′ϑ(x+ x′)γ(x− x′)|x〉s|x′〉i, (II.174)

where |x〉s and |x〉i are single photon Fock state of a spatial mode with position x
and x′, respectively, the function ϑ(x+ x′) is determined by the pump field profile and
γ(x − x′) =

√
2L/(π2K)sinc(Lx2/K), with the pump beam wave number K and the

crystal thickness L, reflects the properties of the considered SPDC process.
In Fig. II.12 we present a plot of the probability density of a typical entangled bi-

photon wave function produced in SPDC with a pump beam profile given by ϑ(x) ∝
e−x

2/2σ2
p . By changing the width of the pump beam σp we can continuously scan between

the creation of correlated, non-correlated and anti-correlated photon pairs. In order to
assert the production of entanglement one has to apply an appropriate continuous-
variable entanglement criteria. For instance, the Mancini–Giovannetti–Vitali–Tombesi
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(MGVT) criteria [Mancini et al., 2002]:

〈∆2X̂±〉〈∆2P̂∓〉 ≥ 1 (II.175)

where we introduced the global operators X± = x̂1 ± x̂2 and P̂∓ = p̂1 ∓ p̂2. Inequality
(II.175) can be violated by sufficiently correlated or anti-correlated states and thus
allows to detect entanglement in the spatial degrees of freedom of the photons. Note
that, even though Fig. II.12(b) shows almost no correlations, the underlying state is
not separable because the spatial correlations have been transferred to the phase of the
bi-photon state [Walborn et al., 2010].
There exist many other entanglement criteria for continuous-variable measurements

[Duan et al., 2000; Simon, 2000; Braunstein and van Loock, 2005; Adesso and Illumi-
nati, 2007] which have also been violated in experiments using spatially correlated pho-
tons [Gomes et al., 2009; D’Angelo et al., 2004]. EPR correlations, which are stronger
then entanglement but weaker then Bell nonlocality, have been observed as well using
spatially entangled photons [Howell et al., 2004; Walborn et al., 2011]. The demon-
stration of Bell nonlocality proofed to be more difficult because of the need of either
non-Gaussian states or measurements in order to violate a Bell inequality, but was fi-
nally achieved using measurements of the spatial parity of the single transverse wave
function [Abouraddy et al., 2012, 2007].
In Sec. V.3 we will discuss how to use create specific types of spatially entangled

photon states consisting of spatially encoded qudits.

II.3.2 Single-mode multi-photon field

Quantum states of a single mode of the electromagnetic field living in a single-mode
Fock space (see Sec. II.2.1) are fundamentally different from those describing the spatial
degrees of freedom of single photons. While in the latter case, linear optical elements
allowed us to implement all single mode operations (Gaussian and non-Gaussian), we
will now see that for the manipulation of the quadratures of the electromagnetic field
this is no longer the case. In fact, as the name suggests, with linear optical elements
we can only implement operations which act linearly on the quadrature operators. In
this Section we will discuss how to realize some of the most important CV gates using
linear optical elements and explain how non-linear processes can be used to produce
non-classical states of light, e.g. squeezed states. Finally, we discuss the detection
procedure of for the electromagnetic field quadratures.

II.3.2.1 From linear optical operations. . .

In order to perform operations on the quadratures of a single mode of the electromag-
netic field one has to be able to manipulate, for instance, its phase. Theoretically, the
phase rotation of the quadrature operators was introduced in Eq. (II.38), allowing to
transform back and forth between different quadrature operators X̂θ and X̂θ′ (see also
Eqs. (II.110) and (II.111)). However, note that, in practice, the phase implemented by
such a rotation has to be seen as relative to some mode-matched reference field, some-
times also referred to as local oscillator. Hence, in order to implement such a phase
shift experimentally we simply have to increase the optical path length of the considered
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light beam with respect to the local oscillator by inserting a transparent material with
higher refractive index then vacuum.
Another very useful linear optical device is a four-port beam splitter (BS) which is

acting on two modes (1 and 2) of the electromagnetic field according to the operator:

B̂(θ) = eθ(â
†
1â2−â1â

†
2) = eiθ(X̂1P̂2−X̂1P̂2), (II.176)

where â1 (â†1) and â†2 (â†2) are the annihilation (creation) operators of mode one and
two, respectively. In the Heisenberg picture Eq. (II.176) realizes the transformations:

B̂†â1B̂ =
√
τ â1 +

√
1− τ â2, B̂†â†1B̂ =

√
τ â†1 +

√
1− τ â†2, (II.177)

B̂†â2B̂ =
√
τ â2 −

√
1− τ â1, B̂†â†1B̂ =

√
τ â†2 −

√
1− τ â†1, (II.178)

where τ = cos2 θ ∈ [0, 1] represents the transmissivity of the beam splitter. Equivalently,
the beam splitter operation can be expressed as a transformation of the mode vector
v̂ = (X̂1, P̂1, X̂2, P̂2)T in terms of the symplectic matrix

MBS(τ) =

( √
τ12

√
1− τ12

−
√

1− τ12
√
τ12

)
. (II.179)

With the help of the beam splitter operation (II.176) we are able to implement some
important CV gates. For instance, we can realize a phase-space displacement D̂(α) by
superposing the considered light beam with an intense coherent state |α〉 on a highly
transmissive (τ → 1) beam splitter [Paris, 1996]. Furthermore, using two beam splitter
operations and two squeezing operations (II.39) we can implement the controlled phase
gate ĈZ (II.35). This decomposition is possible due to the Bloch-Messiah decomposition
which allows to split up any Gaussian transformation into a combination of linear op-
tical elements (phase shifters and beam splitter), single-mode squeezing operations and
phase-space displacements [Braunstein, 2005]. Thus, in order to implement universal
Gaussian computations we need to complement the above linear optical operations with
an appropriate single-mode squeezing operations. In the next section, we will discuss
a commonly used method that permits the creation of squeezed vacuum states of light
using a non-linear interaction. In this case one speaks also of off-line squeezing because
it cannot be applied as gate operation to an arbitrary unknown input state.

II.3.2.2 . . . to Gaussian quantum computation

One way to produced squeezed states of light is by using an optical parametric oscillator
(OPO). Therefore, we pump a Fabry Perot cavity containing a dielectric crystal with
a non-zero non-linear susceptibility χ(2) with a strong laser beam which can lead to
a down-conversion of the pump photons with frequency ωp into pairs of photons with
lower energy. Not taking into account the cavity, this process has to fulfil the energy
conservation, ωp = ωs + ωi, and phase matching (momentum conservation) condition
kp = ks + ki. The second condition can be fulfilled due to the birefringence of the
optical medium which has different refraction indices for different polarizations leading
to two types of possible phase matching conditions, referred to as type I and type II
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(see below). This down-conversion process can be described through the Hamiltonian:

ĤDC = i
g

2

[
âpâ
†
sâ
†
i + â†pâsâi

]
(II.180)

where g is related to the strength of the non-linear process. If we now assume that
the two down-converted beams are degenerate in polarization (âi = âs) while the pump
beam has a different polarization (type I phase matching) and that the pump field is
in a strong coherent state |α〉, we can solve the corresponding Heisenberg equations of
motion, yielding:

â(t) = â(0)cosh(αgt)− â†(0)sinh(αgt). (II.181)

The corresponding time evolution operation of this process is

ÛI(t) = e
αg
2

(â2− â† 2
)t, (II.182)

which is just the single-mode squeezing operator with squeezing factor r = αgt (see
Sec. II.1.3 or II.2.4.3). In the case of type II phase matching the two generated photons
are not polarization entangled but one of them has the same polarization as the pump
beam, leading to a two-mode squeezing evolution:

ÛII(t) = e
αg
2

(âsâi−â†sâ†i )t. (II.183)

The above explained down-conversion process is very weak which has to be compen-
sated by increasing the pump power or the interaction time tint in order to achieve a
considerable amount of squeezing. In practice, this is usually done by placing the non-
linear crystal inside an optical cavity because the crystal size is finite and the pump
power of a continuous-wave (cw) laser field cannot be increased arbitrarily. However,
the cavity will alter the dynamics of the field operators âi (âs) and thus has to be in-
cluded in the theoretical description of the down-conversion process. However, such a
description goes beyond the scope of this thesis and will not be further discussed here.

Hence, now we have the ability to create squeezed vacuum states by pumping an
OPO which can be further processed using linear optical elements. This is a progress
but still not enough to implement any Gaussian unitary operation for which in-line
squeezing would be necessary. For this reason, the most common quantum computation
model that uses the quadratures of the optical fields is measurement-based quantum
computation [Raussendorf and Briegel, 2001; Menicucci et al., 2006]. Therein, as briefly
mentioned in the last section, judiciously chosen measurements on an initially produced
resource state yield the desired computation on some output mode of the resource state.
Such resource states are, for instance, Gaussian cluster states which can be produced
through application of ĈZ-gates on independently momentum squeezed modes [Zhang
and Braunstein, 2006]:

|ΨCluster〉 =
∏

(i,j)∈Γ

(ĈZ)i,j |0〉⊗Np (II.184)

where Γ is the set of all adjacent modes (i, j) of the cluster state and |0〉⊗Np denotes
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a collection of infinitely momentum squeezed modes. Experimentally, such states can
be produced by applying a linear optics setup to a collection of independently squeezed
vacuum modes and are thus within reach of the previously introduced methods [van
Loock et al., 2007].
Note that in an actual experiment the degree of squeezing of the produced cluster

states (II.184) is restricted by the amount of squeezing of the initially squeezed vacuum
states. Therefore, one deals in general with finite squeezing noise which leads to errors
in the implemented computation [Gu et al., 2009]. To overcome this problem one has to
apply an appropriate error correction procedure which counteracts the errors induced by
finite squeezing [Gottesman et al., 2001]. This leads to a minimum squeezing threshold
of the finitely squeezed cluster states in order to render the implemented CV quantum
computation fault-tolerant [Menicucci, 2014].
Finally, having in hand a quantum computer that is able implement all Gaussian

operations fault-tolerantly, we have to accompany it with at least one non-Gaussian
gate in order to achieve universal quantum computations (see Sec. II.1.3). Such a
non-Gaussian gate can be any unitary operation that is of order three or higher in its
generating Hamiltonian [Lloyd and Braunstein, 1999]. There exist some proposals for
experimental implementations of such a non-Gaussian gate [Gottesman et al., 2001;
Gu et al., 2009; Marshall et al., 2015], however, they are in general very challenging
because they require some non-Gaussian resource. That is, either non-Gaussian mea-
surements, such as photon counting, on a Gaussian cluster state or the production of
non-Gaussian states which can then be used as resource states in a gate teleportation
process [Gottesman et al., 2001; Menicucci, 2014].

II.3.2.3 Homodyne detection

In the last Section we mentioned the term Gaussian measurements without giving a
detailed explanation of it. Here we want to catch up with this and define a mea-
surement as being Gaussian if it yields Gaussian distributed outcomes when applied
to Gaussian states (see Sec. II.1.6 for the definition of Gaussian states) [Weedbrook
et al., 2012]. The most prevalent Gaussian measurement used in continuous-variable
quantum computation is homodyne detection which theoretically corresponds to a pro-
jective measurements of one of the quadratures X̂θ of a mode of the electromagnetic
field. The outcome Xθ of this measurement yields a probability density P (Xθ) which
is one of the marginals of the corresponding Wigner function W (Xθ, Xθ+π

2
).

Experimentally a homodyne measurement can be realized by combining the target
mode with an intense local oscillator |αLO〉 at a beam splitter with equal reflectivity
and transmissivity, and measuring the intensity of the two outgoing modes, respectively
[Braunstein and van Loock, 2005]. If we approximate the local oscillator as classical field
with amplitude αLO = ||α|eiθ〉, we obtain for the output modes of the beam splitter:

â1 =
1√
2

(αLO + âin), (II.185)

â2 =
1√
2

(αLO − âin). (II.186)

Next, we measure the intensity of the field î1 = qâ†1â1 (̂i2 = qâ†2â2) in output mode one
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(two) and take the difference:

î1 − î2 = q(α∗LOâin + αLOâ
†
in) = q|αLO|(e−iθâin + eiθâ†in), (II.187)

where q is a constant. Hence, the difference of the two photo currents (II.187) at the
output of the beam splitter yield, up to a multiplicative constant, directly the value of
the corresponding field quadrature Xθ, where θ can be adjusted through the phase of
the local oscillator field αLO.
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II.4 Summary

In this Chapter we have built the theoretical and experimental foundations for the top-
ics that will be discussed in the remainder of this manuscript.

We started by introducing basic elements of quantum information theory. Motivated
by the classical concept of a bit we defined its quantum mechanical analog, the qubit
(II.1), and showed how systems of qubits states can be manipulated in terms of unitary
gate sets. We further discussed the properties of some important gate sets, e.g. Clif-
ford gates, and introduced briefly the concept of mixed states and the density matrix
formalism (II.13). Then, after having generalized the theory of qubits to d-dimensional
(qudits) and continuous-variable (CV) quantum systems, we presented several popular
ways to represent states of finite and infinite dimensional quantum systems. This in-
cluded the Bloch vector (II.53) representation for finite dimensional systems and the
Wigner function (II.71) representation for systems that are described by continuous
variables. We took this possibility to say some words about the theory of measure-
ments (see Sec. II.1.4) in quantum mechanics and to define Gaussian states (II.81). We
closed the Section about basics of quantum information theory with a discussion about
entanglement, its detection and relation to nonlocality (see Sec. IV.1).

Since a large part of this thesis will be concerned with applications in quantum optics
experiments we introduced in Sec. II.2 the main concepts of the quantum theory of
light. Thereby, we first discussed the quantization of the free radiation field and and
then turned to explain its representation in terms of different spatial or temporal modes
(see Sec. II.2.2). We also presented examples of quantum states belonging to the single
mode Fock space, e.g. coherent, squeezed, thermal or cat states. They will become
important in subsequent Chapters which are dedicated to the search of nonlocality in
quantum optical systems.

Finally, we introduced two experimental platforms that allow to experimentally pro-
cess quantum information in terms of continuous variables. They are, on the one hand,
the spatial degrees of freedom of a single photon (see Sec. II.3.1) and, on the other
hand, the quadratures of a single mode of the electromagnetic field (see Sec. II.3.2). We
summarized the most important features of both systems and discussed their advan-
tages and disadvantages in terms of state production, manipulation and measurements.
While the former platform will be mainly used in Chapter III and IV, the latter will
concern us more in Chapter V.
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III Quantum information processing
with modular variables

We devise a theoretical framework with the aim to adapt known quantum information
protocols, originally formulated for discrete systems, to a phase space formulation com-
prising the case of continuous-variables. The framework is based on the formalism of
modular variables which provides a convenient way to encode and process discrete quan-
tum information in phase space in terms of a particular class of periodic states and
operators. It turns out that the most convenient way to express those logical compo-
nents is in terms of the so-called modular representation that can be associated with
the common eigenbasis of the modular position and momentum operators. To demon-
strate our framework we show, on the one hand, its application to tests of fundamental
properties of quantum mechanics, such as Bell nonlocality and contextuality, involving
measurements of modular variables. On the other hand, the role of modular variables as
an inevitable tool in continuous-variable quantum computations is discussed. Finally,
we elaborate on experimental implementations of our ideas within different important
quantum optical platforms.

III.1 Modular variables formalism

The term modular variables dates back to the year 1969 when Aharonov and co-
workers studied the conspicuous aspects of non-local interactions in quantum mechanics
[Aharonov et al., 1969]. This Section is devoted to a general introduction of the formal-
ism of modular variables. We start with an elaboration of mathematical peculiarities of
modular variables and specifically discuss the role of the modular position and momen-
tum as pair of commuting observables. This brings us to the definition of the modular
representation being the natural choice when dealing with periodic states and/or ob-
servables.

III.1.1 Periodic observables or modular variables

When we speak about modular variables we refer to a class of observables whose elements
are defined by being periodic functions of a pair of canonically conjugate observables.
Therefore, we recall that, given an arbitrary self-adjoint operator Â with continuous
and non-degenerate spectrum {a ∈ R}, an operator function is defined as

F (Â) =

∫ ∞

−∞
daF (a)|a〉〈a| (III.1)

where |a〉〈a| is the projector on the eigenspace of the corresponding eigenvalue a and
F : R → R is an arbitrary real function. Since Â is an arbitrary self-adjoint operator

65
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with continuous spectrum we can associate it with a dimensionless position operator
x̂, as introduced in Sec. II.1.3. Furthermore, the position operator x̂ is related to the
momentum operator p̂ through the Fourier transform operator (II.33), making them a
pair of conjugate observables. Now, we are in the position to define a periodic observable
f(x̂) as a Fourier series of the position operator:

f(x̂) =
∑

n∈Z
fne

2πinx̂/x0 (III.2)

where fn denotes the Fourier coefficients of the function f(x) and x0 the period of
the function f . Equivalently, we can define a periodic operator g(p̂) in terms of the
momentum operator:

g(p̂) =
∑

n∈Z
gne

2πinp̂/p0 (III.3)

with Fourier coefficients gn and period p0. Periodic observables, as (III.2) and (III.3),
are often referred to as modular variables1 because their expectation values are deter-
mined solely by the corresponding modular operators ˆ̄x = x̂ modx0 and ˆ̄p = p̂ modp0,
respectively. Indeed we have that f(x̂) = f(ˆ̄x) and g(p̂) = g(ˆ̄p). Modular variables have
some interesting properties that we are going to discover in the subsequent sections.
A somehow unusual but crucial property of such periodic observables, as defined in

Eq. (III.2) and (III.3), is their commutativity for a specific choice of the periods x0 and
p0. To see this, let us consider the commutator of Eq. (III.2) and (III.3):

[f(x̂), g(p̂)] =
∑

n∈Z
gn[f(x̂), e2πinp̂/p0 ]

=
∑

n∈Z
gn

(
f(x̂)e2πinp̂/p0 − e2πinp̂/p0f(x̂)

)

=
∑

n∈Z
gne

2πinp̂/p0

(
e−2πinp̂/p0f(x̂)e2πinp̂/p0 − f(x̂)

)

=
∑

n∈Z
gne

2πinp̂/p0 (f(x̂+ 2πm/p0)− f(x̂)) , (III.4)

where we used at the last equality that the operator e−2πinp̂/p0 implements a dis-
placement in position by 2πm/p0. Equation (III.4) thus shows that f(x̂) and g(p̂)
commute if the product of their periodicities is x0p0 = 2π. One can even show that
(III.2) and (III.3), with x0p0 = 2π, are the only non-trivial solutions of the equation
[f(x̂), g(p̂)] = 0. Indeed, in [Busch and Lahti, 1986; Busch et al., 1987] it was demon-
strated that [f(x̂), g(p̂)] = 0 if and only if f(x̂) and g(p̂) are periodic and x0p0 = 2πk,
with k ∈ Z. This commutativity can be used to define a set of eigenstates of two such
periodic observables and consequently a new representation. In Sec. III.1.4 we will de-
fine such a modular representation in terms of the common eigenbasis of the modular
position and momentum operators.
The observables (III.2) and (III.3) can also be represented by their corresponding

1In the following, with the term modular variables we usually refer to the corresponding operator.
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Wigner functions (see Sec. II.1.6), which read:

Wf(x̂)(x, p) =
1

2π
f(x), (III.5)

Wg(p̂)(x, p) =
1

2π
g(p). (III.6)

Motivated by Eqs. (III.5) and (III.6) we can also introduce more general types of periodic
observables which are non-diagonal in the position and momentum basis. For instance,
let’s define an observable F̂ with a Wigner function representation proportional to a
two-dimensional Fourier series F (x, p):

WF̂ (x, p) =
1

2π

∑

n∈Z
dn,me

2πinx/x0−2πimp/p0 , (III.7)

where dn,m denote the Fourier coefficients defining the precise shape of the function and,
x0 and p0, the periodicities in x and p, respectively. From the discussion in Sec. II.1.6
we know that the Wigner function is defined as the inverse Fourier transform of the
characteristic function (II.66), yielding:

χF̂ (ν, µ) =
1

2π

∫∫ ∞

−∞
dxdpe−iµx+iνpWF̂ (x, p)

=
1

(2π)2

∑

n∈Z
dn,m

∫ ∞

−∞
dxeix(2πn/x0−µ)

∫ ∞

−∞
dpeip(ν−2πm/p0),

=
∑

n∈Z
dn,mδ(2πn/x0 − µ)δ(ν − 2πm/p0), (III.8)

which, according to Eq. (II.65), can be used to express the operator F̂ as

F̂ =

∫∫ ∞

−∞
dνdµ χF̂ (ν, µ)D̂(ν, µ)

=
∑

n∈Z
dn,m

∫∫ ∞

−∞
dνdµδ(2πn/x0 − µ)δ(ν − 2πm/p0)D̂(ν, µ)

=
∑

n∈Z
dn,m e

2πinx̂/x0−2πimp̂/p0
︸ ︷︷ ︸
=D̂(2πm/p0,2πn/x0)

. (III.9)

being a sum of displacements by integer multiples of 2π/p0 and 2π/x0 in position and
momentum, respectively. Later on, we will denote F̂ always as F (x̂, p̂) emphasizing
its structure as a function of the position and momentum operators, defined through
Eq. (III.9).
Next, we discuss a specific example of modular variables that will be important for

applications later on in this Section.
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III.1.2 Modular variables and the characteristic function

An important set of modular variables is given by the hermitian components of the
displacement operator D̂(ν, µ) = eiµx̂−iνp̂, which are defined as:

Re(D̂(ν, µ)) =
1

2
(D̂(ν, µ) + D̂†(ν, µ)) = cos (µx̂− νp̂), (III.10)

Im(D̂(ν, µ)) =
1

2i
(D̂(ν, µ)− D̂†(ν, µ)) = sin (µx̂− νp̂), (III.11)

and thus yield D̂(ν, µ) = cos (µx̂− νp̂) + i sin (µx̂− νp̂). The observables (III.10) and
(III.11) can be seen as special cases of the more general modular variable:

Q̂ϕ(ν, µ) =
1

2

[
eiϕD̂(ν, µ) + e−iϕD̂†(ν, µ)

]
= cos (ϕ+ µx̂− νp̂), (III.12)

with φ = 0 and ϕ = −π/2, respectively. An important properties of the expectation
value of (III.12) is:

〈Q̂ϕ(ν, µ)〉 = 〈cos (ϕ+ µx̂− νp̂)〉 ≤ 1, (III.13)

for all values of ν, µ and ϕ. The boundedness of the modular variables (III.12) is
crucial for the formulation of nonlocality or contextuality tests, as we will see later on
in Sec. IV.2.

Further on, we want to comment on the possibility to determine the characteristic
function χρ̂(ν, µ) = 1

2π tr[ρ̂D̂
†(ν, µ)] (see also Eq. (II.66)) by measuring the modular

variables (III.12). Since the characteristic function χρ(ν, µ) is proportional to the ex-
pectation value of the adjoint displacement operator 〈D̂†(ν, µ)〉, we can write

χρ(ν, µ) = 〈Q̂0(ν, µ)〉+ i〈Q̂π
2
(ν, µ)〉, (III.14)

thus allowing us to determine the complex characteristic function solely through mea-
surements of modular variables. Furthermore, as we have seen in Sec. II.1.6, the Wigner
function follows from Eq. (III.14) via an inverse Fourier transform:

Wρ̂(x, p) =
1

2π

∫∫ ∞

−∞
dµdνeiµx−iνpχρ̂(ν, µ). (III.15)

Hence, measurements of the modular variables Q0(ν, µ) and Qπ
2
(ν, µ) for an appropri-

ately large set of values (ν, µ), one is able to reconstruct the Wigner function of the
state the state ρ̂. With respect to this, note that, as discussed in Sec. II.1.4, the expec-
tation value the bounded observables (III.12) can be measured in terms of a two-valued
POVM, thus by coupling ancilla atom to the CV system under consideration. This
state tomography in terms of ancilla measurements can be of great advantage in opti-
cal [Machado et al., 2013; Hor-Meyll et al., 2014] but also in optomechanical systems
[Gittsovich et al., 2015].

In the next Section we will continue the discussion about modular variables using the
example of the modular position and momentum operators.
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x

`

p

p

x`

Figure III.1: (a) Schematic representation of the spectra of the position and mo-
mentum operator divided into boxes of length ` and 2π/`, respectively, and (b) of the
bounded spectra of the modular position and momentum operator.

III.1.3 Modular position and momentum

Let us consider the dimensionless position x̂ and momentum p̂ momentum operators
in one dimension fulfilling the canonical commutation relation [x̂, p̂] = i, as defined in
Sec. II.1.3. Each of these two conjugate operators has a unbounded continuous spectrum
whose eigenvalues are denoted as x and p, and corresponding eigenstates |x〉x and |p〉p,
which define the position and momentum representation, respectively.
In the following, we seek a different representation in terms of two commuting modular

variables (see Sec. III.1.1), called the modular position and momentum. To derive this
representation we divide the spectrum of x̂ and p̂ into boxes of lengths `, where ` is a
dimensionless scaling factor, and 2π/`, respectively, and redefine them, as:

x̂ = `N̂ + ˆ̄x, (III.16)

p̂ =
2π

`
M̂ + ˆ̄p. (III.17)

where we introduced the two discrete operators N̂ and M̂ , which have integer eigenval-
ues, and the modular position and momentum operators, ˆ̄x = (x̂ − x`)mod` + x` and
ˆ̄p = (p̂− p`)mod2π/`+ p`, with bounded spectra given by the intervals [x`, x` + `[ and
[p`, p` + 2π/`[, respectively. The variables x` and p` define the starting points of the
bounded spectra of the two modular operators which can be set at will. In the following,
we will use the convention x` = −`/2 and p` = −π/`.
In Fig. III.2(a) we plot the eigenvalues of both modular operators as a function of the

position and momentum, respectively, showing that they are periodic while the product
of their periods is equal to 2π. Hence, we can conclude, taking into account the discus-
sion about the commutativity of periodic observables in Sec. III.1.1, that the modular
position and momentum operators, ˆ̄x and ˆ̄p, commute. In the next Section, we will
make use of this commutativity to construct a alternate representation in terms of the
common eigenstates |x̄, p̄〉 of the modular position ˆ̄x and momentum ˆ̄p operators. But,
before we proceed with the derivation of this eigenbasis, let’s discuss some qualitative
consequences of the commutativity the modular position and momentum operators. We
will see that in order to get a complete picture we also have to take into account the
commutators between the modular variables and their discrete counterparts, N̂ and M̂ .
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Figure III.2: Plot of the eigenvalues of the modular position and momentum operators,
ˆ̄x and ˆ̄p, as a function of the eigenvalues of the position and momentum, x̂ and p,
respectively.

It is well known that from a classical point of view quantum mechanics limits the
information that an observer can extract from a physical system due to the non-
commutativity of pairs of certain observables. In the case of the position and momentum
operator this non-commutativity manifests itself in the Heisenberg uncertainty relation
∆x∆p ≥ 1/2 (remember that in Sec. II.1.3 we have set ~ = 1), making it impossible to
measure at the same time the position and momentum with arbitrary precision. In con-
trast, the modular position and momentum are two observables that give only partial
information about the position and momentum of a particle which is reflected by their
commutativity. Hence, we can simultaneously determine their precise values without
violating the Heisenberg uncertainty principle. This is illustrated in Fig. III.2(b), where
we schematically plot the result of a simultaneous modular position and momentum
measurement in a phase space representation. While the modular variables can be de-
termined exactly, a full information about the position and momentum would require
also the corresponding values of the integer position and momentum observables N̂
and M̂ . The latter, however, have non-zero commutation relations with the modular
position and momentum.

The remaining uncertainty between position and momentum, that cannot be revealed
by a measurement of the corresponding modular values alone, is reflected by the com-
mutator relations among the modular and integer operators in Eqs. (III.16) and (III.17),
respectively. For instance, for the modular position and its discrete momentum coun-
terpart, we find

[ˆ̄x, M̂ ] = i
`

2π

(
1− `

∫ π/`

−π/`
dp̄|`/2, p̄〉〈`/2, p̄|

)
, (III.18)

where the second term on the right-hand side consists of a sum of projectors on mod-
ular eigenstates (see Sec. III.1.4) that is due to the boundedness of the domain of x̄.
Equivalently, the commutator relation between the modular momentum and its discrete
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position counterpart, reads:

[N̂ , ˆ̄p] =
i

`

(
1− 2π

`

∫ `/2

−`/2
dx̄|x̄, π/`〉〈x̄, π/`|

)
, (III.19)

with a similar projector on the right-hand side of the equation. For a mathematical
derivation of the these modular-integer commutation relations we refer the reader to
Appendix B. For completeness, the commutator of the two integer operators, N̂ and
M̂ , can be calculated using the relation

[N̂ , M̂ ] =
i

2π
1− 1

`
[ˆ̄x, M̂ ]− `

2π
[N̂ , ˆ̄p], (III.20)

which follows directly from Eqs. (III.18) and (III.19), and the commutators [x̂, p̂] = i
and [ˆ̄x, ˆ̄p] = 0.

Having available the commutators (III.18) and (III.19), we are also able to derive
uncertainty relations for the corresponding observables using the Robertson uncertainty
relation, which for two arbitrary observables Â and B̂, reads:

∆A∆B ≥ 1

2

∣∣∣〈[Â, B̂]〉
∣∣∣ (III.21)

where ∆A (∆B) denotes the standard deviation of Â (B̂). When applied to the com-
mutators (III.18) and (III.19), Equation (III.21) becomes:

∆x̄∆M ≥ `

4π
(1− `P1(Ψ)), (III.22)

∆N∆p̄ ≥ 1

2`
(1− 2π

`
P2(Ψ)), (III.23)

with state dependent terms P1(Ψ) and P2(Ψ). Hence, for states which yield P1(Ψ) =
P2(Ψ) = 0, we recover the canonical form of the position and momentum uncertainty
relations, but in the general case, the value of minimal uncertanty depends on the state
under consideration and thus on the experimental context.

To demonstrate the behaviour of the uncertainty relations (III.22) and (III.23) we
consider the following example: a superposition of N distinct wave packets Ψ(x) =∑N−1

n=0 ψ(x − nL), with separation L. For the following discussion the choice of the
exact shape of the wave packets ψ(x) is rather flexible, as long as their width σx is
small compared to their separation L. For instance, we can choose them to be Gaussian
wave functions, as discussed in Sec. II.1.3. Then, we find for the state-dependent term
on the right-hand side of Eq. (III.23), P2(Ψ) = (1 + (−1)N+1)/2, where we set ` = L
and assumed σx � L. Hence, we see that, in the case of a single localized wave packet
(N = 1), we have P2(Ψ) = 1 and thus ∆N∆p̄ ≥ 0, showing that one can always
determine the exact values of the integer position N and the modular momentum p̄. In
contrast, for a superposition of many wave packets (N →∞) we recover the canonical
form of the uncertainty relation ∆N∆p̄ ≥ 1/(2`), showing that Nx and p̄ cannot be
resolved to arbitrary precision.
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III.1.4 The modular representation

In this Section we derive the analytical expressions of the common eigenstates of the
modular position and momentum operator. As mentioned in the last section such a set
of eigenstates is characterized by the bounded values of the modular position and mo-
mentum, x̄ and p̄, and thus can be expressed as {|x̄, p̄〉|x̄ ∈ [−`/2, `/2[, p̄ ∈ [−π/`, π/`[}.
In the following, we will introduce the modular eigenstates as superpositions of position
or momentum eigenstates, |x〉 and |p〉, respectively.

Let’s start by noting that the common basis {|x̄, p̄〉|x̄ ∈ [−`/2, `/2[, p̄ ∈ [−π/`, π/`[}
is defined such that:

ei
ˆ̄pµ`|x̄, p̄〉 = eip̄µ`|x̄, p̄〉 (III.24)

ei2π
ˆ̄xν/`|x̄, p̄〉 = ei2πx̄ν/`|x̄, p̄〉. (III.25)

Further on, for position and momentum displacements by n` and m2π/`, respectively,
we have that eip̂r`/~ = ei ˆ̄pr`/~ and ei2πx̂s/` = ei2π ˆ̄xs/`, with r, s ∈ Z, yielding

〈x′|ei2πx̂s/`eip̂r`|x̄, p̄〉 = ei2πsx̄/`eip̄r`〈x′|x̄, p̄〉, (III.26)

when acting on the ket |x̄, p̄〉, and

〈x′|ei2πx̂s/`eip̂r`|x̄, p̄〉 = ei2πsx̄
′/`〈x′ + r`|x̄, p̄〉, (III.27)

when acting on the bra 〈x′|. By combining Eqs. (III.26) and (III.27) we obtain the
equation:

ei2πsx̄/`eip̄r`〈x′|x̄, p̄〉 = ei2πsx̄
′/`〈x′ + r`|x̄, p̄〉 (III.28)

which, for r = 0, yields the solution 〈x′|x̄, p̄〉 = Aδ(x̄ − x̄′), with an arbitrary constant
A that will be defined later on. Using this solution in Eq. (III.28), we find:

〈x′ + r`|x̄, p̄〉 = eip̄r`Aδ(x̄− x̄′), (III.29)

what allows us to express an arbitrary modular eigenstate as

|x̄, p̄〉 =

∫ +∞

−∞
dx′〈x′|x̄, p̄〉|x′〉 =

∫ `/2

−`/2
dx̄′

+∞∑

r=−∞
〈x′ + r`|x̄, p̄〉|x′ + r`〉

=

∫ `/2

−`/2
dx̄′

+∞∑

r=−∞
eip̄r`Aδ(x̄− x̄′)|x′ + r`〉 = A

+∞∑

r=−∞
eip̄r`|x̄+ µ`〉. (III.30)

where we used the resolution of the identity (II.30). Alternatively, by inserting |x〉 =∫
dp〈p|x〉|p〉, we can turn Eq. (III.30) into an expression that involves momentum eigen-
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states:

|x̄, p̄〉 =
A√
2π~

+∞∑

r=−∞
eip̄r`/~

∫ +∞

−∞
e−ip

′(x̄+r`)/~|p′〉dp′

=
A√
2π

+∞∑

s=−∞
e−i2πsx̄/`

∫ π/`

−π/`
dp̄′
(

+∞∑

r=−∞
ei(p̄−p̄

′)r`

)
e−ip

′x̄|p̄′ + sh/`〉,

=
A
√

2π

`
e−ip̄x̄

+∞∑

s=−∞
e−i2πsx̄/`|p̄+ s2π/`〉. (III.31)

where we used that 2π
` δ

(2π/`)(p̄− p̄′) =
∑+∞

r=−∞ e
i(p̄−p̄′)r`, where δ(2π/`)(p̄− p̄′) is a comb

of delta functions with period2π/`. In the following, we will often use the shorthand
notation δ(x̄− x̄′) and δ(p̄− p̄′) to refer to combs of delta functions with period ` and
2π/`, respectively. Next, we check the orthogonality of the modular basis:

〈x̄′, p̄′|x̄, p̄〉 = |A|2
+∞∑

r,s=−∞
e−ip̄

′s`eip̄r`〈x̄′ + s`|x̄+ r`〉

= |A|2δ(x̄′ − x̄)
+∞∑

s=−∞
ei(p̄−p̄

′)s`/~ =
2π|A|2
`

δ(x̄′ − x̄)δ(p̄′ − p̄) (III.32)

deducing the normalization factor A = eiϕ
√
`/(2π), with an arbitrary phase ϕ. From

now on we will omit the phase factor eiϕ because it amounts to an unimportant global
phase. To summarize, we found that the modular eigenstates can be expressed in terms
of position and momentum eigenstates as

|{x̄, p̄}〉 =

√
`

2π

+∞∑

n=−∞
eip̄n`|x̄+ n`〉x, (III.33)

=

√
1

`
e−ip̄x̄

+∞∑

m=−∞
e−i2πmx̄/`|p̄+m2π/`〉p. (III.34)

fulfilling the completeness relation:

∫ `/2

−`/2
dx̄

∫ π/`

−π/`
dp̄|x̄, p̄〉〈x̄, p̄| = `

h

∫ `

0
dx̄

+∞∑

r,s=−∞

(∫ π/`

−π/`
dp̄eip̄(r−s)`

)

︸ ︷︷ ︸
2π
`
δr,s

|x̄+ r`〉〈x̄+ s`|

=

∫ `/2

−`/2
dx̄

+∞∑

r=−∞
|x̄+ r`〉〈x̄+ r`| =

∫ ∞

−∞
dx|x̄〉〈x̄| = 1. (III.35)

Inversely, we can define the position and momentum eigenstates in terms of the modular
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eigenstates, as:

|x〉x = |x̄+ n`〉x =

√
`

2π

∫ π/`

π/`
dp̄ e−ip̄n`|x̄, p̄〉 (III.36)

|p〉p = |p̄+m
2π

`
〉p =

√
1

`

∫ `/2

−`/2
dx̄ eix̄p̄ei2πmx̄/`|x̄, p̄〉. (III.37)

Hence, having derived all the symbolic expression of the modular eigenstates, we can
now express arbitrary quantum states, such as |Ψ〉 =

∫
dx Ψx(x)|x〉, in the modular

representation:

|Ψ〉 =

∫ `/2

−`/2

∫ π/`

−π/`
dx̄dp̄ Ψ(x̄, p̄)|x̄, p̄〉, (III.38)

with the modular wave function ψ(x̄, p̄), defined through

Ψ(x̄, p̄) =

√
`

2π

∞∑

n=−∞
Ψx(n`+ x̄)e−inp̄`, (III.39)

or for a state with the wave function Ψp(p) defined in the momentum representation,
we get

Ψ(x̄, p̄) =

√
1

`
eix̄p̄

∞∑

m=−∞
Ψp(m2π/`+ p̄)e2πimx̄/`. (III.40)

The same representation was introduced by J. Zak in 1967 under the term k, q-representation
[Zak, 1967]. The modular wave function, Ψ(x̄, p̄) is normalised as follows

1 = 〈ψ|ψ〉 =

∫ `/2

−`/2
dx̄

∫ π/`

−π/2
dp̄ |Ψ(x̄, p̄)|2. (III.41)

The above introduced representation can be seen as a mapping from the Hilbert space
of square integrable functions on R (position or momentum) onto the Hilbert space of
square integrable functions on a bounded domain of R2, defined by the product of the
intervals [−`/2, `/2[ and [−π/`, π/`[ of the modular position and momentum, x̄ and
p̄, respectively. The resulting representation is characterized by the quasi-periodicity
relations:

Ψ(x̄+ `, p̄) = eip̄`Ψ(x̄, p̄), (III.42)

Ψ(x̄, p̄+
2π

`
) = Ψ(x̄, p̄), (III.43)

through which the defined representation can be extended also to values outside of
the domain [−`/2, `/2[×[−π/`, π/`[. This is important, for instance, if one wants to
calculate the inverse transform and recover the position or momentum representation
from the modular one. Issues concerning the (quasi-)periodicity of the modular basis
were discussed in more detail in [Englert et al., 2006].
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Equivalently, in a bipartite system, states in the modular representation read:

|ψ〉 =

∫ +∞

−∞
dx1

∫ +∞

−∞
dx2Ψ(x1, x2)|x1〉|x2〉

=

∫ `/2

−`/2
dx̄1/2

∫ π/`

−π/`
dp̄1/2Ψ(x̄1, p̄1, x̄2, p̄2)|x̄1, p̄1〉|x̄2, p̄2〉. (III.44)

with the bipartite modular wave function

Ψ(x̄1, p̄1, x̄2, p̄2) =
`

2π

+∞∑

n1/2=−∞
Ψ(x̄1 + n1`, x̄2 + n2`)e

−ip̄1n1`e−ip̄2n2`. (III.45)

Or we can define the modular representation of an arbitrary operator Â, as follows:

Â =

∫∫ `/2

−`/2
dx̄dx̄′

∫∫ π/`

−π/`
dp̄dp̄′ 〈x̄, p̄|Â|x̄′, p̄′〉︸ ︷︷ ︸

=A(x̄,p̄;x̄′,p̄′)

|x̄, p̄〉〈x̄′, p̄′|. (III.46)

with the matrix elements A(x̄, p̄; x̄′, p̄′), which, by using the definition of the modular
eigenstates in Eq. (III.34), can be expressed as

A(x̄, p̄; x̄′, p̄′) =
`

2π

∞∑

r,s=−∞
ei(p̄

′r−p̄ s)`〈x̄+ s`|Â|x̄′ + r`〉. (III.47)

As an example, we use Eqs. (III.46) and (III.47) to derive the modular representation
of the operator N̂x and N̂p. To this end, let’s first claculate the matrix elements of the
momentum operator which, according to Eq. (III.47), read

p(x̄, p̄; x̄′, p̄′) =

∫ ∞

−∞
dp p〈x̄, p̄|p〉〈p|x̄′, p̄′〉 (III.48)

and by using the definition of the modular eigenstates (III.34) can be brought into the
form

p(x̄, p̄; x̄′, p̄′) = `δ(x̄− x̄′)δ(p̄− p̄′) + i
(
eip̄(x̄−x̄

′) ∂

∂x̄′

[
δ(x̄− x̄′)

]
δ(p̄− p̄′)

)
. (III.49)

where the first term simply represents the modular position operator ˆ̄p with diagonal
matrix elements in the modular basis. In order to further simplify the second term
in Eq. (III.49) we calculate its action on an arbitrary state expressed in the modular
representation and after some algebra (see Appendix B for details of the calculation),
we find

N̂pΨ(x̄, p̄) =
i`

2π

∂

∂x̄
Ψ(x̄, p̄)− `

2π
p̄Ψ(x̄, p̄), (III.50)
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Figure III.3: Schematic plot of the modular (left) and the position (right) wave func-
tion of a modular eigenstates |x̄′, p̄′〉. While the modular wave function consists of a
single delta peak (black dot) in the bounded domain [−`/2, `/2[×[−π/`, π/`[, the posi-
tion wave function is given by a comb of delta functions (colored arrows) over the real
line each multiplied by a phase factor eip̄′n`. Different colors indicate different phase
factors.

thus showing that in the modular representation we have

N̂p =
`

2π

(
i
∂

∂x̄
− ˆ̄p

)
. (III.51)

where the first terms on the right-hand side corresponds to the momentum operator
p̂ = i∂/∂x̄. In the same way one can derive the symbolic expressions of the position x̂
and integer position N̂x operator in the modular representation.

III.1.5 Examples of states in the modular representation

In this Section we will present several important examples of states expressed in the
modular representation. Thereby, in order to improve our intuition, we will first dis-
cuss the position and momentum representation of the modular eigenstates |x̄, p̄〉 itself.
Let’s start with the most simple case |x̄ = 0, p̄ = 0〉 =

√
`

2π

∑+∞
n=−∞ |`n〉x, which in

the modular domain consists of a single delta peak at the origin and in the position
representation of a comb of equally separated delta functions with distance `. Mod-
ular eigenstates with nonzero values of the modular position and momentum, such as
|x̄′, p̄′〉, then lead to a shift of this delta comb by x̄′ and to phase factors eip̄′m` multiplied
with each peak in this comb, as illustrated in Fig. III.3. A similarly picture holds in
the momentum representation, where a modular eigenstate consists of a comb of delta
functions with separation 2π/`, shifted by p̄′ from the origin and multiplied with phase
factors e2πnx̄′/`.
As being infinite superpositions of position or momentum eigenstates, the modular

eigenstates are nonphysical in a twofold sense. On the one hand, each position or
momentum eigenstate is infinitely localized in phase space and thus by itself not nor-
malizable. On the other hand, the infinite superposition which defines the modular
eigenstate reflects a complete delocalization in position and momentum space. In order
to construct physically sound states we need to consider continuous superpositions of
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Figure III.4: Plots of the probability density of the state |ΨG,c〉 in the modular (left)
and position (right) representation. For the modular probability density the full widths
at half maximum (FWHM) in the modular position and momentum are given by ∆̃ =
2
√

ln 2∆ and κ̃ = 2
√

ln 2κ, respectively, where ∆ = 0.06` and κ = 0.06/` are the
standard deviations that define the corresponding modular wave function (III.53). In
the position representation ∆̃ denotes the FWHM of to the individual Gaussian spikes,
and κ̃ is the inverse of the FWHM of the Gaussian envelope, provided ∆/` � 1 and
κ`� 1 hold. In the momentum representation one would obtain the a similar function
with the roles of ∆̃ and κ̃ exchanged.

modular eigenstates in terms of a normalizable wave function, as discussed in the las
Section. For instance, we can replace each delta function in Fig. III.3) by a finitely
squeezed Gaussian spike with width ∆ and multiply them with a Gaussian envelope of
width 1/κ. The resulting wave function in the position representation then reads:

ΨG,c(x) =
N

(π∆2)
1
4

e−(xκ)2/2
∞∑

n=−∞
e−(x−nL)2/2∆2

, (III.52)

with a normalization factor N . In the limit ∆/L � 1 and κL � 1, of a large en-
velope and sufficiently thin spikes, respectively, the latter can be approximated by
N ≈

√
Lκ/
√
π. Then, transforming Eq. (III.52) to the modular representation with

the help of Eq. (III.34), yields:

ΨG,c(x̄, p̄) = T (x̄)C(p̄), (III.53)

where

T (x̄) =
1

(π∆2)
1
4

∞∑

n=−∞
e−(x̄−n`)2/2∆2

, (III.54)

C(p̄) =
1

(πκ2)
1
4

∞∑

m=−∞
e−(p̄−m2π/`)2/2κ2

. (III.55)

To obtain the above result we used that according to the Poisson sum formula we
have

√
a
∑

m e
−πa(m−b)2

=
∑

n e
2πinbe−πn

2/a, and that in the limit of large Gaussian
envelopes we can approximate e−xκ2/2 ≈ e−(nLκ)2/2. Hence, the corresponding modular
wave function 〈x̄, p̄|ΨG,c〉 is given by a Gaussian function with standard deviations ∆ and
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Figure III.5: Plots of the probability density of the state |ΨG,c〉 in the modular (left)
and position (right) representation, for two sets of parameters: ∆ = 0.1`, κ = 0.2/`
(top) and ∆ = 0.1`, κ = 0.01/` (bottom).

κ in the modular position and momentum variables, respectively, that is normalized and
has quasi-periodic boundary conditions (see Eqs. (III.42) and (III.43)) on the domain
[−`/2, `/2[×[−π/`, π/`[. In Fig. III.4 we present plots of the probability density of the
position wave function (III.52), as well as of its modular counter part (III.53).

With smaller and smaller values of κ, while keeping ∆ constant, the modular wave
function becomes squeezed in the modular momentum compared to the modular posi-
tion. This manifests itself in the position representation by an increasing width of the
Gaussian that envelopes the Gaussian spikes with individual widths ∆ (see Fig. III.4).
Taking the limit κ→ 0 thus yields C(p̄) =

∑
m δ(p̄−m2π/`) in Eq. (III.55), and leaves

us with a modular wave function that is infinitely squeezed in the modular position:

ΨG,c(x̄, p̄)→ T (x̄)δ(p̄). (III.56)

The wave function (III.56) is nonnormalizable and thus to some extend nonphysical even
though it corresponds to a superposition of finitely squeezed Gaussian spikes in the po-
sition representation. Nevertheless, in limiting physical situation, such nonnormalizable
wave functions can be used to make valid predictions. For instance, Eq. (III.56) can de-
scribe the wave front of a plane wave after it has passed through an infinitely extended
diffraction grating. This scattering scenario will be the main subject of Chapter IV.

Up to now we have seen that states which are periodic in position or momentum
space can be expressed nicely in the modular representation if the modular parameter
` is chosen equal to the corresponding period of the wave function (see Fig. III.4 and
III.5). However, we can also express any other state in the modular representation.
For instance, let’s consider the state |ΨGauss〉 with arbitrary Gaussian position wave
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(a) (b) (c)

Figure III.6: Plots of the probability density of the Gaussian state |ΨGauss〉 in the
modular representation located at the origin, x0 = 0 and p0 = 0, for the widths: (a)
σ = 0.1`, (b) σ = 0.4` and (c) σ = `.

function (see also Eq. (II.32) and Fig. II.1 in Sec. II.1.3):

ΨGauss(x) =
1

π1/4σ1/2
e−

(x−x0)2

2σ2 +ip0x−ix0p0 (III.57)

where x0 and p0 are the position and momentum offsets, respectively, and σ denotes
the width of the Gaussian in position. Note that, up to a phase space rotation (II.38),
Eq. (III.57) is the wave function of a general Gaussian state (see Eq. (II.80) and (II.81)
in Sec. II.1.6). Transformed to the modular representation, with the help of Eq. (III.39),
the wave function (III.57) reads:

ΨGauss(x̄, p̄) =

√
`

2π

+∞∑

n=−∞

e−ip̄n`

π1/4σ1/2
e−

(x̄+n`−x0)2

2σ2 +i(x̄+n`)p0−ix0p0

=

√
`

2π

e−
(x̄−x0)2

2σ2 +ix̄p0−ix0p0

π1/4σ1/2

+∞∑

n=−∞
e
−2in

(
`(p̄−p0)

2
−i `(x̄−x0)

2σ2

)
e
n2 ln

[
exp (− `2

2σ2 )
]

=

√
`

2π
ΨG(x̄) Θ3

(`(p̄− p0)

2
− i`(x̄− x0)

2σ2
, exp (− `2

2σ2
)
)

(III.58)

with the the third elliptic theta-function

Θ3(u, q) =
+∞∑

n=−∞
qn

2
e−2inu = 1 + 2

∞∑

n=1

qn
2

cos (2nu). (III.59)

Hence, we see that the modular wave function (III.58) is given by a product of itself,
restricted to the bounded modular position domain [−`/2, `/2[, and of a more compli-
cated part which is defined in terms of the elliptic theta function (III.59). In Fig. III.6
we present three plots of the probability density of the modular wave function (III.58)
for different widths σ of the Gaussian (III.57). We see that for small and large values of
σ, compared to the length scale `, the modular wave function becomes constant in the
modular momentum and position coordinate, respectively, while the other coordinate
displays the Gaussian profile corresponding to the position and momentum representa-
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tion of |ΨGauss〉. This can also be seen analytically by taking the limit `/σ → ∞, for
which exp (− `2

2σ2 )→ 0, and Eq. (III.58) becomes

ΨGauss(x̄, p̄)→
√

`

2π
ΨGauss(x̄), (III.60)

where we used that Θ3(u, q) → 1 for q → 0. A similar argument holds for the reverse
limit `/σ → 0, because then the width of the wave function in momentum space becomes
small compared to the length of the modular momentum interval [−π/`, π/`[. In an
intermediate regime, as presented in Fig. III.6(b), the modular wave functions exhibits
features of both the position and momentum wave functions.
As last example of states in the modular representation we want to mention an

entangled two-mode state. The ideal nonnormalizable EPR state |ΨEPR〉 =
∫
dx|x〉|x+

q〉 has the position wave function

ΨEPR(x) = δ(x1 − x2 + q). (III.61)

Transformed to the modular representation it becomes:

ΨEPR(x̄1, p̄1; x̄2, p̄2) =
`

2π

+∞∑

n1/2=−∞
δ(x1 + q − x2)e−ip̄1n1`/e−ip̄2n2`

= e−ip̄2(x̄1+q−x1+q)`/δ(x1 + q − x̄2)δ(p̄1 + p̄2), (III.62)

where we used
∑+∞

n1=−∞ e
−i(p̄1+p̄2)n1` = 2π

` δ(p̄1 + p̄2). If we also set q = 0, we arrive at:

Ψq=0
EPR = (x̄1, p̄1; x̄2, p̄2) = δ(x̄1 − x̄2)δ(p̄1 + p̄2), (III.63)

or

|Ψq=0
EPR〉 =

∫ `/2

−`/2
dx̄

∫ π/`

−π/`
dp̄|x̄,−p̄〉|x̄, p̄〉. (III.64)

With that we finish the general discussion about modular variables and their prop-
erties. In particular, we have seen that the commutativity of the modular position and
momentum yields an alternative representation of the Hilbert space allowing to express
CV quantum states in terms of a basis that is characterized by two bounded modular
values. Finally, we presented several important examples of states expressed in the
modular representation.

III.2 Dichotomizing the Hilbert space

In this Section we will show how the Hilbert space of a continuous-variable system can
be divided in two or more equally sized parts in order to encode discrete quantum in-
formation in continuous-variable logical states. Doing so in the modular representation
yields logical qubit states that are periodic with respect to the position and momen-
tum. Further on, we introduce appropriate phase-space logical operations that allow to
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manipulate the logical qubit states and thus the encoded discrete quantum information.

III.2.1 Identifying qubits in the modular variables representation

In the following, we will introduce logical qubit states by dichotomizing the Hilbert
space with respect to the modular position x̄. Therefore, let’s start by recognizing that
every state |Ψ〉, expressed in the modular representation (III.38), can be rewritten in
a qubit-like fashion. From now on we will use a slightly more convenient definition
of the modular position operator ˆ̄x in Eq. (III.16) by setting x` = −`/4, such that
x̄ ∈ [−`/4, 3`/4[. Then, we split the domain of the integration over x̄, in Eq. (III.38),
into two equally sized domains. Such a splitting can be done in infinitely many ways,
and in order to illustrate the principles of our ideas we discuss in detail the splitting
into two subintervals, [−`/4, `/4[ and [`/4, 3`/4[, that yields:

|Ψ〉 =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ Ψ(x̄, p̄)|{x̄, p̄}〉+ ψ(x̄+ `/2, p̄)|{x̄+ `/2, p̄}〉. (III.65)

Further on, we redefine the complex modular wave function Ψ(x̄, p̄) = |Ψ(x̄, p̄)|eiϕ(x̄,p̄)

as:

Ψ(x̄, p̄) := f(x̄, p̄) cos (θ(x̄, p̄)/2), (III.66)

Ψ(x̄+ `/2, p̄) := f(x̄, p̄)eiφ(x̄,p̄) sin (θ(x̄, p̄)/2). (III.67)

where f(x̄, p̄) = |f(x̄, p̄)|eiε(x̄,p̄) is a complex function with
∫ `/4
−`/4 dx̄

∫ π/`
−π/` dp̄|f(x̄, p̄)|2 =

1, and ε(x̄, p̄), θ(x̄, p̄) and φ(x̄, p̄) are real functions, all defined on the domain [−`/4, `/4[
×[−π/`, π/`[. Inversely, they are related to the modular wave function Ψ(x̄, p̄) through:

|f(x̄, p̄)| =
√
|Ψ(x̄, p̄)|2 + |Ψ(x̄+ `/2, p̄)|2, (III.68)

ε(x̄, p̄) = ϕ(x̄, p̄), (III.69)

and

θ(x̄, p̄) = 2 arccot
∣∣∣∣

Ψ(x̄, p̄)

Ψ(x̄+ `/2, p̄)

∣∣∣∣, (III.70)

φ(x̄, p̄) = ϕ(x̄+ `/2, p̄)− ϕ(x̄, p̄). (III.71)

Hence, we can express every state as:

|Ψ〉 =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄f(x̄, p̄)|Ψ̃(x̄, p̄)〉, (III.72)

where

|Ψ̃(x̄, p̄)〉 = cos

(
θ(x̄, p̄)

2

)
|x̄, p̄〉+ sin

(
θ(x̄, p̄)

2

)
eiφ(x̄,p̄)|x̄+ `/2, p̄〉. (III.73)

(compare with Eq. (II.1) in Sec. II.1.1). Since Eq. (III.73) defines a continuum of two-
level systems {|x̄, p̄〉, |x̄+`/2, p̄〉} labeled by the pairs (x̄, p̄), we can interpret Eq. (III.72)
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Figure III.7: (a) Schematic representation of the modular position and momentum
domain split into to equally sized parts with respect to the modular position x̄, and (b)
the same splitting in the position domain. (c) The corresponding logical qubit states
defined on the blue and red domains, respectively. The arrows in (a) illustrate the
displacements implementing the three logical Pauli operation X̂, Ŷ and Ẑ, as introduced
in Sec. III.2.2.

as a continuous superposition of qubit states weighted by the complex factors f(x̄, p̄).
We emphasize that, so far, no approximation or dichotomization has been performed
and Eq. (III.72) provides simply an alternative way of writing an arbitrary state in the
modular representation. Note that the choice of ` is also arbitrary, and modifying it
for a given state modifies the definition of the functions (III.68)-(III.71) [Vernaz-Gris
et al., 2014; Ketterer et al., 2016].
Equivalently, it is possible to define such a qubit structure in terms of the modular

momentum p̄. In this case, one splits the integration over p̄, in Eq. (III.65), into two
parts and obtains a similar result to Eqs. (III.72) and (III.73), now with

|Ψ̃p(x̄,p̄)〉 = cos (
θp(x̄, p̄)

2
)|x̄, p̄〉+ sin (

θp(x̄, p̄)

2
)eiφp(x̄,p̄)|x̄, p̄+ π/`〉. (III.74)

The p-subscripts in Eq. (III.74) emphasizes that the splitting was performed with
respect to p̄, and the corresponding relations for changing the representation are equiv-
alent to Eqs. (III.68)-(III.71). In the remainder we omit this subscript because, if not
indicated differently, we restrict ourselves to splittings with respect to x̄. A generaliza-
tion of the above equations to the case of qudit systems, by splitting the integration in
Eq. (III.65) into d-parts instead of two, is possible and will be provided later on.
In the following, in order to encode discrete quantum information in CV states, we

assume that θ(x̄, p̄) = θ and φ(x̄, p̄) = φ are constant functions such that Eq. (III.72)
becomes |Ψ〉 = cos (θ/2)|0L〉+ sin (θ/2)eiφ|0L〉 with logical qubit states, defined as:

|0L〉 =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄f(x̄, p̄)|x̄, p̄〉, (III.75)

|1L〉 =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄f(x̄, p̄)|x̄+ `/2, p̄〉, (III.76)



III.2 Dichotomizing the Hilbert space 83

�̃

x

̃�1

x

p
�̃

̃

-10 -5 0 5 10
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Figure III.8: Plots of the probability densities of the logical states |0L〉 and |1L〉 in
the modular (left) and position (right) representation. For the modular probability
density the full widths at half maximum (FWHM) in the modular position and mo-
mentum are given by ∆̃ = 2

√
ln 2∆ and κ̃ = 2

√
ln 2κ, respectively, where ∆ = 0.1` and

κ = 0.1(2π/`) are the standard deviations that define the corresponding modular wave
function (III.53). The distance between the Gaussian spikes of each state |0L〉 and |1L〉,
respectively, are chosen to be ` = 2

√
π.

These logical qubit states (Eqs. (III.75) and (III.76)) reflect a dichotomization of the
Hilbert space with repsect to the modular position x̄, as illustrated in Fig. III.7. The
exact choice of f(x̄, p̄) is arbitrary as long as it emerges from a properly defined mod-
ular wave function Ψ(x̄, p̄) (see Sec. III.1.4). In this respect, Eqs. (III.42)-(III.43) and
(III.68)-(III.71) imply that f(x̄, p̄) fulfills the periodicity conditions, f(x̄ + `/2, p̄) =
f(x̄, p̄)eiφ and f(x̄, p̄+ 2π/`) = f(x̄, p̄).
For instance, we can choose f(x̄, p̄) as being a two dimensional Gaussian function

centered at the origin with widths ∆ and κ in the modular position and momentum
variables, respectively. In position space these states belong to two combs of Gaussian
spikes with width ∆ and a Gaussian envelope of width κ−1 that are shifted with respect
to each other by `/2, in accordance with the discussion in Sec. III.1.5. In Fig. III.8, we
present the plots of the probability densities of this type of logical states in the mod-
ular and position representation, respectively. Note, that this correspondence between
modular and position wave functions is true if ∆/` � 1 and κ` � 1, as discussed in
Sec. III.1.4. It ensures also that the corresponding modular wave functions vanish on
the boundaries of their domains such that the above periodicity conditions for f(x̄, p̄)
hold.
Finally, we want to discuss a special case of the logical states |0L〉 and |1L〉. If,

in the above example, we take the limit ∆, κ → 0, that is of vanishing width of the
two-dimensional Gaussian f(x̄, p̄), we arrive at the following logical states:

|0GKP〉 = |x̄ = 0, p̄ = 0〉 =
∑

n

|`(2n)/2〉x, (III.77)

|1GKP〉 = |x̄ =
`

2
, p̄ = 0〉 =

∑

n

|`(2n+ 1)/2〉x. (III.78)

This particular case of the logical states (III.75) and (III.76) is known by a previous
work of Gottesman, Kitaev and Preskill (GKP), who studied how to encode a qubit in
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Figure III.9: Schematic plots of the wave functions of the GKP logical states |0GKP〉
and |1GKP〉 in the position (left) and momentum (right) representation, respectively.
The arrows represent combs of delta function shifted by `/2 with respect to each other.
The lower two plots depict the the logical states of the alternative basis |±GKP〉 =
(|0GKP〉 ± |1GKP〉)/

√
2. If one chooses ` = 2

√
π the the two logical bases |(0/1)GKP〉

and |±GKP〉 have a symmetric structure because they are shifte by the same amount in
the position and momentum representation, respectively.

an oscilltor [Gottesman et al., 2001]. In the particular case ` = 2
√
π, the states (III.77)

and (III.78) become symmetric in the position and momentum space (2π/` =
√
π), as

illustrated in Fig. III.9.

This encoding, in the following referred to as GKP encoding, has several useful prop-
erties, some of which will come back later on in the course of this thesis. However,
its drawback is that the logical states |0GKP〉 and |1GKP〉 are modular eigenstates, i.e.
infinite superpositions of position eigenstates, and thus unphysical. GKP deal with this
problem by using imperfect logical states, similar to those shown in Fig. III.8, that are
close to the real logical states (III.77) and (III.78), but introduce errors when used in
actual computations. In turn this problem can be solved by applying an appropriate er-
ror correction protocol that allows to counteract the errors induced by imperfect logical
states [Gottesman et al., 2001; Glancy and Knill, 2006]. Even though this might be the
right strategy to follow if one wants to implement full-fledged fault-tolerant quantum
computer operating on a CV system, for realizations of more modest quantum infor-
mation protocols, involving a small number of logical qubits and gates, it is a rather
excessive endeavor. That is why here we focus on the more general definitions (III.75)
and (III.76), allowing for a freedom of choice of the wave function f(x̄, p̄). In the fol-
lowing we will show how to manipulate these logical states with appropriately defined
logical operations.
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III.2.2 Single and two qubit logical operations

III.2.2.1 Logical Pauli operations

In this section, we will continue by introducing logical operations that allow for a manip-
ulation of the logical qubit states introduced in the last Section. One of the most basic
set of single qubit operations is that of the single qubit Pauli operations (II.3), (II.4) and
(II.5). In order to find such logical Pauli operations implemented by unitary phase space
operations, we start by expressing the single mode phase space displacement operator
(II.63) in the modular representation. Calculating its action on a modular eigenstate
(III.34), yields

D̂(ν, µ)|x̄, p̄〉 = e−i
νµ
2
e−ip̄x̄√

`

+∞∑

m=−∞
e−i(p̄+m

2π
`

)νe−i2πmx̄/`|p̄+mh/`+ µ〉, (III.79)

and, together with (III.37) and
∑+∞

m=−∞ e
i2πm(x̄′−x̄−ν)/` = `

∑+∞
n=−∞ δ(x̄

′− x̄− ν − n`),
becomes

D̂(ν, µ)|x̄, p̄〉 = e−i
νµ
2 ei(p̄+µ)(x̄+ν)e−ip̄(x̄+ν)|x̄+ ν, p̄+ µ〉. (III.80)

Hence, we find that

D̂(ν, µ) = e−i
νµ
2

∫ 3`/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ei(p̄+µ)(x̄+ν)e−ip̄(x̄+ν)|x̄+ ν, p̄+ µ〉〈x̄, p̄|. (III.81)

where overlined values denote the corresponding modular parts of position and mo-
mentum, respectively. Equation (III.81) shows that a phase space displacement by
(ν, µ) leads to a displacement of the corresponding modular position and momentum
accompanied by the generation of additional relative phases. The latter encode in-
formation about the change of the discrete position and momentum values, `N̂x and
2π/`N̂p, induced by displacements in position or momentum that are large then ` or
2π/`, respectively.

It is the displacement operator (III.81) that we exploit to define logical Pauli op-
erations. For instance, by setting the displacements (ν, µ) equal (0, 2π/`) or (`/2, 0),
respectively, and by splitting the integration over x̄ in two parts, as in Eq. (III.65) in
the last Section, we reveal the operators:

Ẑ = e2πix̂/` =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄e2πix̄/`σ̂z(x̄, p̄), (III.82)

X̂ = e−ip̂`/2 =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄e−ip̄`/2σ̂x(x̄, p̄), (III.83)

where we introduced the (x̄, p̄)-dependent Pauli matrices

σ̂z(x̄, p̄) = ||x̄, p̄〉〈x̄, p̄|| − ||x̄+ `/2, p̄〉〈x̄+ `/2, p̄||, (III.84)
σ̂x(x̄, p̄) = ||x̄, p̄〉〈x̄+ `/2, p̄||+ ||x̄+ `/2, p̄〉〈x̄, p̄||, (III.85)
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with ||x̄, p̄〉 = e−ip̄`/4|x̄, p̄〉 and ||x̄+ `/2, p̄〉 = eip̄`/4|x̄ + `/2, p̄〉. Equations (III.82) and
(III.83) thus provide analogs of the Pauli operators σ̂z and σ̂x acting on the logical qubit
states (III.75) and (III.76). The analog of the third Pauli operator σ̂y can be obtained
from the product of the former two Ŷ = iX̂†Ẑ†, yielding:

Ŷ =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄eip̄`/2−2πix̄/`σ̂y(x̄, p̄), (III.86)

with

σ̂y(x̄, p̄) = i(||x̄+ `/2, p̄〉〈x̄, p̄|| − ||x̄, p̄〉〈x̄+ `/2, p̄||). (III.87)

On the other hand, using the commutator rules for the phase space displacement op-
erator, we find that X̂†Ẑ† = −iD̂†(`/2, 2π/`), yielding Ŷ = D̂†(`/2, 2π/`). Thus, as
illustrated in Fig. III.7(a), the three displacements implementing the logical Pauli op-
erations X̂, Ŷ and Ẑ, form a triangular in phase space that encloses an area of π/2.
The latter is closely related to the fact that the anti-commutators between the dis-
placements (III.83), (III.82) and (III.86), vanish [Asadian et al., 2015], yielding the
anti-commutation relations of our logical Pauli operators:

{Ẑ, X̂} = {Ẑ, Ŷ } = {X̂, Ŷ } = 0, (III.88)

as expected from the algebra of Pauli matrices.
However, despite the similarities, the above defined logical operations are not com-

pletely equivalent to a Pauli algebra in the general case. This becomes apparent from
their commutation relations which are found to be [X̂, Ŷ ] = 2iẐ†, [Ẑ, X̂] = 2iŶ † and
[Ŷ , Ẑ] = 2iX̂†. They resemble those of the Pauli matrices (compare with Eq. (II.6)),
but since the operators X̂, Ŷ and Ẑ are not hermitian, deviate in the fact that the
commutator between each of them yields the adjoint of the third one. Hence, the above
introduced logical Pauli operations do not form a Pauli algebra (see Sec. II.1.1) but, as
we will see in the remainder of this Chapter, they are still useful with respect to the
implementation of certain quantum information protocols. We further note that, in the
specific case when applying X̂, Ŷ and Ẑ to perfect GKP states, i.e. those logical states
(III.75) and (III.76) which are equal to modular eigenstates, they operate as usual Pauli
matrices. Restricted to this subspace, our logical Pauli operations act as Hermitian op-
erators (X̂ = X̂†, Ŷ = Ŷ † and Ẑ = Ẑ†), and the above commutation relations become
those of a perfect Pauli algebra.
The fact that we are dealing with a nonperfect Pauli algebra has some consequences.

For instance, if we calculate the square of one of the logical Pauli operators we get:

Ẑ2 = e4πix̂/` =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄e4πix̄/`1(x̄, p̄), (III.89)

with 1(x̄, p̄) = ||x̄, p̄〉〈x̄, p̄|| + ||x̄+ `/2, p̄〉〈x̄+ `/2, p̄||, which differs from an identity
through the appearance of a x̄ dependent phase factor under the integral. Similarly,
such phase factors also appear when manipulating the states |0L〉 and |1L〉 with one of
the logical operations (III.82), (III.83) or (III.86). We will see later on that these phase
factors become redundant if one considers only protocols involving a specific class of
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modular variables as readout observables. In the light of the definition of these read-
out observables, which will be given in Sec. III.3, we will also introduce appropriate
rotation operators allowing to perform measurements according to different mutually
unbiased bases of the logical space (see Sec. III.3.2). Consequently, the above defined
logical states and Pauli operations, together with the modular readout observables and
the corresponding rotations (see Sec. III.3), establish a solid framework to handle CV
quantum information from a quantum measurement point of view. In particular, this
renders the formulation of test of fundamental properties of quantum mechanics possi-
ble, as presented in Chapter IV.

III.2.2.2 Logical Clifford operations

Further on, before proceeding with the definition of the above mentioned modular read-
out observables and the corresponding rotation operations in Sec. III.3, we want to
review some other single and two qubit logical operations, which have been introduced
also by GKP [Gottesman et al., 2001].
Let’s start with the single qubit phase gate Ŝ (see Eq. (II.11)) which can be realized

by the CV shear operation N̂(s) = eisx̂
2 (see Sec. II.1.3), with s = 1/(2d2) and d =

`/(2
√
π). It transforms the logical Pauli operators, (III.82) and (III.83), as:

X̂ →
∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄e2πix̄/`−ip̄`/2σ̂y(x̄, p̄) = iX̂†Ẑ† = Ŷ , (III.90)

and Ẑ → Z. In this case, the shear implements a rotation of X̂ around the z-axis of
the Bloch sphere. Further on, the Hadamard gate Ĥ can be directly realised using a
rescaled Fourier transform F̂d = ei

π
4

(x̂2/d2+p̂2d2) (compare with the optical Fourier trans-
form introduced in Sec. II.3.1), with d chosen as above, which transforms the logical
Pauli operators as X̂ → Ẑ and Ẑ → X̂−1. In combination with the above defined logical
phase-gate, we can define the Fourier transformed shear eip̂2d2/2, which implements a
π/2-rotation of Ẑ around the x-axis, namely Ẑ → Ŷ and X̂ → −Ŷ . This gate will play
an important role in the next Chapter IV, where we will introduce a framework to pro-
cess quantum information based on the near-field interference of the spatial distribution
of single photons (see Sec. II.3.1). Finally, the two-qubit Clifford operator ĈNOT can be
realized by the two-mode Gaussian unitary e−ix̂a⊗p̂b which implements the operations
X̂a ⊗ X̂b → X̂a ⊗ X̂b−a and Ẑa ⊗ Ẑb → X̂a+b ⊗ Ẑb, with a, b = 0, 1. Note, that the
logical controlled-phase gate ĈZ follows from ĈNOT by an additional application of F̂
on the second mode.
Note that the above logical operations implement the desired Clifford group operation

only if applied to perfect GKP logical states |0GKP〉 = |0, 0〉 and |1GKP〉 = |`/2, 0〉. This
can be seen more clearly when calculating the action of the corresponding operations
on modular eigenstates |x̄, p̄〉. For the shear this yields, for instance:

eix̂
2/(2d2)|x̄, p̄〉 = eix̄

2/(2d2)/|x̄, p̄+ 2x̄/d2〉. (III.91)

thus showing that, if we restrict ourselves to the subspace spanned by |0, 0〉 and |`/2, 0〉,
we recover the single qubit phase operation. Similarly, the action of the Fourier trans-
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form F̂ and of the two-mode ĈX operator, on a modular eigenstate (III.34), yield:

F̂ |x̄, p̄〉 =
1

d
√

2
e−ix̄p̄

[
|p̄d2,−x̄/d2〉 +e−i2πx̄/`|p̄d2 + `/2,−x̄/d2〉

]
, (III.92)

and

eix̂a⊗x̂b/d
2 |x̄a, p̄a〉|x̄b, p̄b〉 = eix̄x̄

′/d2 |x̄, p̄+ x̄′/d2〉|x̄′, p̄′ + x̄/d2〉, (III.93)

respectively. As for the shear, when restricted to the GKP subspace, Eq. (III.92) and
(III.93) perfectly implement the qubit gates Ĥ and ĈNOT.
This shows that, as discussed at the end of Sec. III.2.1, finite squeezing of the logical

states |0L〉 and |1L〉 (see Fig. III.8) leads to a faulty implementation of the above defined
logical Clifford operations. Faulty means here that, after several gate operations, the
signal will blur out and a distinction of |0L〉 and |1L〉 is not possible anymore. To
circumvent such errors one has to apply an error correction protocol, consisting of
syndrome measurements and correction operations, in order to keep the squeezing on a
tolerable level [Gottesman et al., 2001; Glancy and Knill, 2006; Menicucci, 2014].
Finally, even though this is beyond the scope of this thesis, we want to mention the

possibility to render the above operations universal by supplementing them with one
single qubit non-Clifford operation, such as the π/8-gate (see Eq. II.10). In [Gottesman
et al., 2001], it was shown that such a logical non-Clifford operation can be realized
on GKP states with the unitary Û = exp

[
iπ4 (2(x̂2/`)3 + (x̂2/`)2 − 2(x̂2/`))

]
, which is

equal to a product of Gaussian and one non-Gaussian operations. As already discussed
in Sec. II.3.1 and II.3.2, an implementation of such a unitary is straightforward when
exploiting the spatial degrees of freedom of single photons as CV system, but rather
challenging in terms of the quadratures of a single mode of the electromagnetic field.
Alternatively, the π/8-gate can be realized by gate teleportation of so-called magic
states [Gottesman et al., 2001].
We finish here our deliberations about different logical operations and turn to the

question of how to readout the encoded discrete quantum information from our CV
logical states in terms of measurements of modular variables.

III.3 State readout with modular variables

In this Section, we will discuss how the discrete quantum information that is encoded in
the above introduced logical states can be readout through measurements of judiciously
chosen modular variables. In this respect, we start first by introducing an abstract set
of observables whose expectation values are related to the Bloch vector of the encoded
qubit state and discuss some of their properties. Later on, we will relate these observ-
ables to specific classes of modular variables revealing their role as proper phase space
observables.

III.3.1 Definition of modular readout observables

The readout of discrete quantum information that is encoded with respect to the logical
states (III.75) and (III.76) can be performed using a specific set of hermitian operators,
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to which we refer to as modular readout observables. In analogy to the logical Pauli
operations, introduced in Sec. III.2.2, we define such set of readout observables as:

Γ̂β =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ ζβ(x̄, p̄)σ̂β(x̄, p̄), β = x, y, z (III.94)

where ζβ(x̄, p̄) are arbitrary real functions with domain [−`/4, `/4[×[−π/`, π/`[, and the
operators σ̂β(x̄, p̄) are defined as in Eqs. (III.84), (III.85) and (III.87). In Sec. III.3.3
we will show which class of general phase space operators F (x̂, p̂) obey such a repre-
sentation, however, for the moment we take their form as granted in order to discuss
several important properties. We note first that the operators (III.84), (III.85) and
(III.87) behave as Pauli operators in each of the subspaces defined by the tuples (x̄, p̄),
as reflected by the relation:

σ̂α(x̄, p̄)σ̂β(x̄′, p̄′) = δ(x̄′ − x̄)δ(p̄′ − p̄)
[
i
∑

γ=x,y,z

εαβγ σ̂γ(x̄, p̄) + δα,β1(x̄, p̄)

]
(III.95)

where α, β = x, y, z and 1(x̄, p̄) = ||x̄, p̄〉〈x̄, p̄|| + ||x̄+ `/2, p̄〉〈x̄+ `/2, p̄||. The relation
(III.95) resembles the one of a real Pauli algebra, which was given in Eq. (II.6), with
additional delta functions ensuring that the products of Pauli operators corresponding
to different subspaces, labeled by (x̄, p̄) and (x̄′, p̄′), respectively, vanish. Furthermore,
the matrix elements of these (x̄, p̄)-dependent Pauli matrices in the modular basis read:

〈x̄′, p̄′|σ̂z(x̄0, p̄0)|x̄, p̄〉 = δ(p̄− p̄0)δ(p̄′ − p̄0)

×
[
δ(x̄− x̄0)δ(x̄′ − x̄0)± δ(x̄− `

2
− x̄0)δ(x̄′ − `

2
− x̄0)

]
, (III.96)

〈x̄′, p̄′|σ̂x(x̄0, p̄0)|x̄, p̄〉 = δ(p̄− p̄0)δ(p̄′ − p̄0)

×
[
δ(x̄′ − x̄0)δ(x̄− `

2
− x̄0)e−ip̄`/2 + δ(x̄′ − `

2
− x̄0)δ(x̄− x̄0)eip̄`/2

]
, (III.97)

〈x̄′, p̄′|σ̂y(x̄0, p̄0)|x̄, p̄〉 = −iδ(p̄− p̄0)δ(p̄′ − p̄0)

×
[
δ(x̄′ − x̄0)δ(x̄− `

2
− x̄0)e−ip̄`/2 − δ(x̄′ − `

2
− x̄0)δ(x̄− x̄0)eip̄`/2

]
. (III.98)

Using Eqs. (III.95)-(III.98), we can calculate the expectation value of the observables
(III.94) with respect to an arbitrary CV state expressed in the modular representation
(III.72), yielding:

〈Γ̂x〉 =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ζx(x̄, p̄)|f(x̄, p̄)|2 sin (θ(x̄, p̄)) cos (φ(x̄, p̄)), (III.99)

〈Γ̂y〉 =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ζy(x̄, p̄)|f(x̄, p̄)|2 sin (θ(x̄, p̄)) sin (φ(x̄, p̄)), (III.100)

〈Γ̂z〉 =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄_βz(x̄, p̄)|f(x̄, p̄)|2 cos (θ(x̄, p̄)). (III.101)

For a more detailed calculation we refer to Appendix B.2. In a vector notation we can
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express Eqs. (III.99)-(III.101) as

〈Γ̂〉 =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄|f(x̄, p̄)|2 (ζ(x̄, p̄) · v(x̄, p̄)) , (III.102)

where ζ(x̄, p̄) = (ζx(x̄, p̄), ζy(x̄, p̄), ζz(x̄, p̄))
T, and

v(x̄, p̄) = (vx(x̄, p̄), vy(x̄, p̄), vz(x̄, p̄))
T

= (sin (θ(x̄, p̄)) cos (φ(x̄, p̄)), sin (θ(x̄, p̄)) sin (φ(x̄, p̄)), cos (θ(x̄, p̄)))T. (III.103)

Further on, we can show that the sum over the squares of the expectation values
(III.99), (III.100) and (III.101) is bounded:

〈Γ̂〉2 =〈Γ̂x〉2 + 〈Γ̂y〉2 + 〈Γ̂z〉2 ≤
(

max
x̄,p̄,α
|ζβ(x̄, p̄)|

)2
, (III.104)

where we used that (vβ(x̄, p̄) − vβ(x̄′, p̄′))2 ≥ 0, the triangle inequality and that the
Bloch vector of a pure qubit state is normalized to 1 (see Appendix B for more details
of this calculation). Hence, we found that the norm of the vector formed by the ex-
pectation values of the operators (III.94) with respect to an arbitrary state CV state
|Ψ〉 is bounded by maxx̄,p̄,α |ζβ(x̄, p̄)|. Furthermore, if we restrict ourselves to the case
θ(x̄, p̄) = θ and φ(x̄, p̄) = φ, and thus encode a single qubit state with Bloch vector
v = (sin θ cosφ, sin θ sinφ, cos θ)T into the CV state |Ψ〉 in terms of the logical states
|0L〉 and |1L〉, we find that the expectation values (III.99), (III.100) and (III.101) be-
come:

〈Γ̂β〉|Ψ〉 = Kβ vβ, (III.105)

where β = x, y, z, Kβ =
∫ `/4
−`/4 dx̄

∫ π/`
−π/` dp̄ ζβ(x̄, p̄)|f(x̄, p̄)|2 and vβ are the Bloch vector

components of the qubit state that has been encoded into the CV state |Ψ〉. Hence,
we find that the expectation values of the observables (III.94) are proportional to the
Bloch vector of the encoded qubit states, whereas the proportionality factors Kβ are
determined by the overlap of the modulus square of the logical wave function f(x̄, p̄) with
the functions ζβ(x̄, p̄) that define the exact form of the observables (III.94). This allows
one to draw conclusions about the state of the logical qubit through measurements of
the expectation values 〈Γ̂β〉.
The form of the operators (III.94) is chosen so as to be operationally analogous

to the logical Pauli operations, defined in Eqs. (III.82), (III.83) and (III.86). Inter-
estingly, unwanted phase factors, appearing when manipulating the states |0L〉 and
|1L〉 with some logical operation, disappear. For instance, if we consider the op-
erator Ẑ2 (see Eq. (III.89)) and apply it to an arbitrary state of the logical space
|Ψ〉 = cos θ|0L〉 + sin θeiφ|1L〉, we obtain |Ψ′〉 = Ẑ2|Ψ〉, where |Ψ′〉 differs from |Ψ〉
by a modular position (momentum) dependent phase factor, but the expectation value
(III.105) yields 〈Γ̂β〉ψ = 〈Γ̂β〉ψ′ , for all β = x, y, z. Therefore, for implementations of
protocols involving measurements of the expectation values 〈Γ̂β〉|ψ〉, the Ẑ2 operator
acts as the identity. Similarly, phase factors that appear due to the application of the
logical Pauli operations (III.82), (III.83) and (III.86) to a logical state |Ψ〉, are invisible
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to measurements of the expectation values of (III.94). Consequently, as discussed at the
end of Sec. III.2.2.1, this allows one to establish a solid framework for handling discrete
quantum information encoded in the CV logical states |0L〉 and |1L〉.
Prominent examples of the observables (III.94) are the modular variables Re(X̂),

Re(Ŷ ) and Re(Ẑ) (see also Sec. III.1.2), which can be expressed in the form of Eq. (III.94)
with the functions ζx(x̄, p̄) = cos (p̄`/2), ζy(x̄, p̄) = cos (2πx̄/`− p̄`/2) and ζz(x̄, p̄) =
cos (2πx̄/`), respectively.2 We note that these modular variables, as one would expect
from a set of qubit readout observables, are noncommuting which is related to the fact
that the product of their periods with respect to the position or momentum is not equal
to 2π (see also Sec. III.1.1). This is in contrast to the case of the modular position or
momentum operator where this is the case (see Sec. III.1.3). A more general discussion
of the commutation relations of the observables (III.94) can be found in Sec. III.3.3.4.
Further on, we note that the general definition of the observables (III.94) leads only

in the case ζβ(x̄, p̄) = 1, for all β, to a real set of Pauli operators. However, if one aims
at an experimental implementation in terms of measurements of continuous variables,
it is desirable to keep the freedom of choice of the functions ζβ(x̄, p̄) making (III.94),
in general, an operator with a continuous spectrum. As compared to truly binary case
(ζβ(x̄, p̄) = 1), such operators can be accessed via POVMs (see Sec. II.1.4) in a plethora
of physical systems, such as the spatial degrees of freedom of photons [Machado et al.,
2013; Hor-Meyll et al., 2014], vibrational modes of ions [Lake et al., 2015; Monroe et al.,
1996] and mechanical oscillators [Rabl et al., 2009; Lambert et al., 2011; Gittsovich
et al., 2015]. In Sec. III.4, we will go more into details of an experimental implementation
of such measurements.
In Sec. III.3.3, we will discuss the conditions a general phase space observable F (x̂, p̂),

where F is a real-valued symmetrized function, has to fulfill such that it can be written in
the form (III.94). We emphasize that once the corresponding phase space representation
of the observables (III.94) is known, their outcomes can be inferred from true phase-
space measurements of the canonically conjugate quantities under consideration, e.g.
the position and momentum. This is in crucial contrast to other dichotomic observables,
such as the photon number parity P̂ = exp (iπn̂), which have an unbounded, possibly
infinitely localized, phase-space distribution and resolve quantum properties that cannot
be always accessed through phase space measurements alone. Hence, our modular
readout observables (III.94) have a clear classical correspondence in terms of the Weyl
correspondence principle (see also the discussion in Sec. II.1.6). The potential of such
classical measurements for the implementation of a macroscopic test of Bell nonlocality
was also discussed in [Arora and Asadian, 2015].
We can also define spatial and temporal correlations among the observables (III.94)

which are important for the implementation of many quantum information protocols.
For instance, for the detection of spatial correlations, such as entanglement or Bell
nonlocality, one often has to measure correlation functions of the form:

Cβ1,β2,...,βn = 〈Γ̂(1)
β1
⊗ Γ̂

(2)
β2
⊗ . . .⊗ Γ̂

(n)
βn
〉 (III.106)

where Γ̂
(k)
βk

acts on the kth subsystem, respectively, and β1, . . . , βn = x, y, z. On the
other hand, for the realization of test of non-contextuality or Leggett-Garg inequalities

2Equivalently, one can consider the imaginary parts of X̂, Ŷ and Ẑ.
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one often has to measure temporal correlation functions, being defined as:

Tβ;t1,t2,...,tn = 〈Γ̂β(t1)Γ̂β(t2) . . . Γ̂β(tn)〉 (III.107)

where Γ̂β(t) = Û(t)Γ̂βÛ
†(t), with a unitary evolution operator Û(t) that can represent

either the free evolution of the system or the application of some unitary gate before
the measurement. Correlation functions involved in contextuality tests are special cases
of Eq. (III.107), where the observables are pairwise commuting.

III.3.2 Rotations of the logical basis

In the last Section we have created the possibility to retrieve the discrete quantum infor-
mation encoded in our CV logical states through measurements of appropriately chosen
readout observables. Thereby, the three observables Γ̂β=x,y,z, defined in Eq. (III.94),
correspond to measurements according to mutually unbiased bases of the logical space.
For instance, the observables Γ̂z and Γ̂x reflect measurements of the mutually unbiased
bases {|0L〉, |1L〉} and {|±L〉 = (|0L〉 ± |1L〉)/

√
2}, respectively. However, many tests of

fundamental properties of quantum mechanics require the possibility of performing mea-
surements according to different sets of mutually unbiased bases which are related by
a unitary transformation. Therefore, we devise a way that allows to scan continuously
between different mutually unbiased bases in terms of logical qubit rotations.
In Sec. II.1.1, we have seen that single qubit rotations (II.8) can be generated by

exponentiating the Pauli operators (II.7) with the proper multiplicative factors. Here,
in order to define analogous rotations of our logical qubits, we would like to apply the
same procedure to the logical Pauli operations X̂, Ŷ and Ẑ, defined in Sec. III.2.2.1.
This is, however, a priori not possible because these logical Pauli operations are not
hermitian. Instead, we consider the hermitian operators (III.94) with the particular
choice ζβ(x̄, p̄) = 1, for all x̄, p̄ and β, which correspond to the case of binary projective
measurements. To make this distinction clear, we will denote these observables in the
following as Γ̂

(1)
β .

Now we are in the position to define a unitary rotation operator in our logical space:

ei
φ
2

(Γ̂
1·n) = cos (

φ

2
)1 + i sin (

φ

2
)(Γ̂

1 · n), (III.108)

where Γ̂
(1)

= (Γ̂
(1)
x , Γ̂

(1)
y , Γ̂

(1)
z )T and n = (nx, ny, nz)

T indicates the axis of rotation.
Equation (III.108) allows to perform rotations of the general observables (III.94) with-
out changing the function ζβ(x̄, p̄) and thus to implement measurements in different
mutually unbiased bases of the logical space. Note that, in contrary to logical opera-
tions discussed in Sec. III.2.2.2, the operators (III.108) perform well not only on the
subspace spanned by perfect GKP states but on the whole space spanned by the logical
states |0L〉 and |1L〉. A proposal of an experimental implementation of these rotation
operations using the spatial distribution of single photons is discussed in Sec. III.4.

III.3.3 Phase space representation of modular readout observables

After having discussed several important properties of the abstract readout observables
(III.94) we proceed by studying their representation in phase space. In this respect,
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we search for classes of phase space observables that admit the form (III.94) when
transformed to the modular representation.

An arbitrary observable in phase space, i.e. a real and symmetric function of the
position and momentum operator, represented in the modular basis, reads:

F (x̂, p̂) =

∫∫ `

0
dx̄dx̄′

∫∫ 2π/`

0
dp̄dp̄′ 〈x̄, p̄|F (x̂, p̂)|x̄′, p̄′〉︸ ︷︷ ︸

≡F (x̄,p̄;x̄′,p̄′)

|x̄, p̄〉〈x̄′, p̄′|. (III.109)

with matrix elements F (x̄, p̄; x̄′, p̄′). Using the definition of the modular eigenstates (III.34),
we can express these matrix elements as:

F (x̄, p̄; x̄′, p̄′) =
`

2π

∞∑

r,s=−∞
ei(p̄

′s−p̄ r)`〈x̄+ r`|F (x̂, p̂)|x̄′ + s`〉. (III.110)

Further on, if we assume that the function F (x̂, p̂) is periodic with respect to x̂ and p̂
with periods L and 2π/L′, respectively, we can, according to the discussion in Sec. III.1.1,
rewrite it as a superposition of displacement operators:

F (x̂, p̂) =
∞∑

n=−∞

∞∑

m=−∞
dn,mD̂(mL, 2πn/L′),

=

∞∑

n=−∞

∞∑

m=−∞
dn,me

2πinx̂/L′−iLmp̂, (III.111)

where the dn,m’s are the complex Fourier coefficients of the Wigner function represen-
tation WF̂ (x, p) of (III.111) which is a two-dimensional Fourier series in x and p (see
Eq. (III.7)). The coefficients dn,m obey the normalization condition

∑
n∈Z

∑∞
m=−∞ |dn,m|2 =

1, and we have by definition: WF̂ (x + L, p + 2π/L′) = WF̂ (x, p). In the following, we
discuss which classes of periodic observables (III.111) can be expressed in the form
(III.94).

III.3.3.1 Γ̂z-operator

To start, we review what are the matrix elements Fz(x̄, p̄; x̄′, p̄′) of to the operator Γ̂z,
and then compare them to the matrix elements of an arbitrary periodic observable
(III.111). Since the observable Γ̂z is diagonal in the modular basis its matrix elements
read:

Fz(x̄, p̄; x̄
′, p̄′) = δ(x̄− x̄′) δ(p̄− p̄′) F̃z(x̄, p̄). (III.112)
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In addition, they have to fulfil the periodicity condition F̃z(x̄, p̄) = −F̃z(x̄ − `/2, p̄),
yielding

Fz(x̂, p̂) =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ F̃z(x̄, p̄)

(
|x̄, p̄〉〈x̄, p̄| − |x̄+

`

2
, p̄〉〈x̄+

`

2
, p̄|
)

=

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ F̃z(x̄, p̄)σ̂z(x̄, p̄) ≡ Γ̂z. (III.113)

where we defined

σ̂z(x̄, p̄) = e+iθ− |x̄, p̄〉〈x̄, p̄|e−iθ− − e+iθ+ |x̄+
`

2
, p̄〉〈x̄+

`

2
, p̄|e−iθ+ , (III.114)

for −`/4 ≤ x̄ < `/4 and −π/` ≤ p̄ < π/`, and with phases θ± = θ±(x̄, p̄) which, up to
now, can assume any value.

Now, if we assume a phase space operator of the form (III.111), with L = L′ = `, and
use Eq. (III.110) we get

Fz(x̄, p̄; x̄
′, p̄′) =

`

2π

∞∑

r,s,n,m=−∞
ei(p̄

′s−p̄r)`dn,m〈x̄+ r`|e2πinx̂/`−i`mp̂|x̄′ + s`〉

=
`

2π

∞∑

r,s,n,m=−∞
ei(p̄

′s−p̄r)`dn,me
−iπnme2πinx̄′ e2πin(s+m)

︸ ︷︷ ︸
=1

δ(x̄− x̄′)δr,s+m

=
`

2π

∞∑

n,m=−∞
e−ip̄m`dn,me

−iπnm
∞∑

s=−∞
ei(p̄

′−p̄)s`

︸ ︷︷ ︸
= 2π

`
δ(p̄−p̄′)

e2πinx̄′/`δ(x̄− x̄′)

= F̃ (x̄, p̄)δ(x̄− x̄′)δ(p̄− p̄′). (III.115)

We thus find that periodic phase space operators with periodicity ` and 2π/` in x̂ and
p̂, respectively, lead to diagonal operators in the modular representation with matrix
elements F̃ (x̄, p̄) =

∑∞
n,m=−∞ dn,me

2πinx̄−ip̄m`e−iπnm. Moreover, to obtain the operator
Γ̂z, the condition F̃ (x̄ + `/2, p̄) = −F̃ (x̄, p̄) needs to be enforced as well. The latter is
true if dn,m = 0, for all even n, leading to the following form of the diagonal elements
in Eq. (III.112):

F̃z(x̄, p̄) =
∞∑

n′,m=−∞
d2n′+1,me

2πi(2n′+1)x̄′/`−ip̄m`e−iπm.

(III.116)

which correspond to the phase space observable:

Fz(x̂, p̂) =

∞∑

n′,m=−∞
d2n′+1,mD̂(`m, 2π(2n+ 1)/`), (III.117)

Hence, with Eq. (III.117) we provide a specific class of modular variables which in
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the modular representation can be expressed in the form of Γ̂z, with ζz(x̄, p̄) chosen
according to Eq. (III.116). A particular example of the observable (III.117) is obtained
by choosing only two nonzero coefficients d+1,0 = 1/2 and d−1,0 = 1/2, leading to
Fz(x̂, p̂) = cos (2πx̂/`) = Re(Ẑ) and Fz(x̄, p̄) = cos (2πx̄/`), as discussed in Sec. III.3.1.

III.3.3.2 Γ̂x-operator

Next, we focus on the observable Γ̂x whose matrix elements can be expressed as follows:

Fx(x̄, p̄; x̄′, p̄′) = F̃x(x̄, p̄)δ(p̄− p̄′)

×
{
e+iκx(x̄,p̄) δ(x̄− (x̄′ + `/2)), for −`/4 ≤ x̄ ≤ `/4
e−iκx(x̄,p̄) δ(x̄− (x̄′ − `/2)), for `/4 ≤ x̄ ≤ 3`/4

, (III.118)

with the periodicity properties F̃x(x̄+ `/2, p̄) = F̃x(x̄, p̄) and κx(x̄+ `/2, p̄) = κx(x̄, p̄),
leading to

Fx(x̂, p̂) =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ F̃x(x̄, p̄)

×
(
e−iκx(x̄,p̄)|x̄, p̄〉〈x̄+

`

2
, p̄|+ eiκx(x̄,p̄)|x̄+

`

2
, p̄〉〈x̄, p̄|

)

=

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ F̃x(x̄, p̄)σ̂x(x̄, p̄) ≡ Γ̂x. (III.119)

where we defined

σ̂x(x̄, p̄) =e+iθ− |x̄, p̄〉〈x̄+
`

2
, p̄|e−iθ+ + e+iθ+ |x̄+

`

2
, p̄〉〈x̄, p̄|e−iθ− , (III.120)

with θ+(x̄, p̄)− θ−(x̄, p̄) = κx(x̄, p̄).
Further on, we want to find the conditions on the general periodic phase space ob-

servable (III.111), such that its matrix elements can be expressed as in Eq. (III.118).
Therefore, we assume L = L′ = `/2 and dn,m = 0, for all even m, what yields:

Fx(x̄, p̄; x̄′, p̄′) =
`

2π

∞∑

r,s,n,m=−∞
dn,2m+1e

i(p̄′s−p̄r)`〈x̄+ r`|e4πinx̂/`−i`(2m+1)p̂/2|x̄′ + s`〉

=
`

2π

∞∑

r,s,n,m=−∞
dn,2m+1e

i(p̄′s−p̄r)`eiπne4πinx̄′/`〈x̄+ r`|x̄′ + `

2
+ (s+m)`〉

=
`

2π

∞∑

r,s,n,m=−∞
dn,2m+1e

i(p̄′s−p̄r)`eiπne4πinx̄′/`

×
[
〈x̄+ r`|x̄′ + `

2
+ (s+m)`〉Θ1(x̄′)

+ 〈x̄+ r`|x̄′ − `

2
+ (s+m+ 1)`〉Θ2(x̄′)

]
(III.121)

where we split up the domain of x̄′ with the two rectangular functions Θ1(x̄) = Θ(x̄+
`/4) − Θ(x̄ − `/4) and Θ2(x̄) = Θ(x̄ − `/4) − Θ(x̄ − 3`/4), defined in terms of the
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Heaviside stepfunction Θ(x̄′). With this, Eq. (III.121) becomes:

Fx(x̄,p̄; x̄′, p̄′) =
`

2π

∞∑

r,s,n,m=−∞
dn,2m+1e

i(p̄′s−p̄r)`eiπne4πinx̄′/`

×
[
δ(x̄− (x̄′ +

`

2
))δr,s+mΘ1(x̄′) + δ(x̄− (x̄′ − `

2
))δr,s+m+1Θ2(x̄′)

]

=δ(p̄′ − p̄)
∞∑

n,m=−∞
dn,2m+1e

iπne4πinx̄′/`−i`mp̂

[
δ(x̄− (x̄′ +

`

2
))δr,s+mΘ1(x̄′) + e−ip̄`δ(x̄− (x̄′ − `

2
))δr,s+m+1Θ2(x̄′)

]

=F̃x(x̄, p̄)δ(p̄− p̄′)
{
e+ip̄`/2 δ(x̄− (x̄′ + `/2)), for −`/4 ≤ x̄ ≤ `/4
e−ip̄`/2 δ(x̄− (x̄′ − `/2)), for `/4 ≤ x̄ ≤ 3`/4

.

(III.122)

where

F̃x(x̄, p̄) =

∞∑

n,m=−∞
dn,2m+1e

iπne4πinx̄−ip̄ `
2

(2m+1). (III.123)

We thus find that all operators of the form

Fx(x̂, p̂) =
∞∑

n,m=−∞
dn,2m+1D̂(`(2m+ 1)/2, 4πn/`), (III.124)

where we set L = L′ = `/2 and dn,m = 0, for all even m, can be expressed as Γ̂x with
ζx(x̄, p̄) = F̃x(x̄, p̄) and κx(x̄, p̄) = p̄`/2. An example of Eq. (III.124) is given by the
operator Re(X̂) = cos (p̂`/2), where only d0,1 = 1/2 and d0,−1 = 1/2 are nonzero, which
is equal to Γ̂x with ζx(x̄, p̄) = Fx(x̄, p̄) = cos (p̄`/2).

III.3.3.3 Γ̂y-operator

Finally, we consider the operator Γ̂y which has matrix elements

Fy(x̄, p̄; x̄
′, p̄′) = F̃y(x̄, p̄)δ(p̄− p̄′)

×
{

(+i)e+iκy(x̄,p̄) δ(x̄− (x̄′ + `/2)), for −`/4 ≤ x̄ ≤ `/4
(−i)e−iκy(x̄,p̄) δ(x̄− (x̄′ − `/2)), for `/4 ≤ x̄ ≤ 3`/4

, (III.125)

that lead, together with the periodicity properties F̃y(x̄ + `/2, p̄) = −F̃y(x̄, p̄) and
κy(x̄+ `/2, p̄) = κy(x̄, p̄), to the operator

Fy(x̂, p̂) =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ F̃y(x̄, p̄)i(e

iκx(x̄,p̄)|x̄+
`

2
, p̄〉〈x̄, p̄| − e−iκx(x̄,p̄)|x̄, p̄〉〈x̄+

`

2
, p̄|)

=

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ F̃y(x̄, p̄)σ̂x(x̄, p̄) ≡ Γ̂y, (III.126)
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where we defined

σ̂y(x̄, p̄) = + e+iθ+ |x̄+
`

2
, p̄〉〈x̄, p̄|e−iθ− − ie+iθ− |x̄, p̄〉〈x̄+

`

2
, p̄|e−iθ+ , (III.127)

with θ+(x̄, p̄)− θ−(x̄, p̄) = κy(x̄, p̄).
Further on, we search again for the conditions on the general periodic phase space

observable (III.111), such that its matrix elements can be expressed as in Eq. (III.125).
The latter can be achieved with L = `/2 and L′ = `, and dn,m = 0 for all even n and
m, yielding the matrix elements

Fy(x̄, p̄; x̄
′, p̄′) =

`

2π

∞∑

r,s,n,m=−∞
ei(p̄

′s−p̄r)`dn,m〈x̄+ r`|e2πinx̂/`−i`mp̂/2|x̄′ + s`〉

=F̃y(x̄, p̄)δ(p̄− p̄′)
[
ieip̄`/2δ(x̄− (x̄′ + `/2))Θ1(x̄) −ie−ip̄`/2δ(x̄− (x̄′ − `/2))Θ2(x̄)

]

=F̃y(x̄, p̄)δ(p̄− p̄′)
{

(+i)e+ip̄`/2 δ(x̄− (x̄′ + `/2)), for −`/4 ≤ x̄ ≤ `/4
(−i)e−ip̄`/2 δ(x̄− (x̄′ − `/2)), for `/4 ≤ x̄ ≤ 3`/4

,

(III.128)

with

F̃y(x̄, p̄) =
∞∑

n,m=−∞
d2n+1,2m+1e

iπ(n+m)e2πi(2n+1)x̄−ip̄(2m+1)`/2. (III.129)

We thus find that all operators of the form

Fy(x̂, p̂) =
∞∑

n,m=−∞
d2n+1,2m+1D̂(`(2m+ 1)/2, 2π(2n+ 1)/`), (III.130)

where we set L = `/2, L′ = ` and dn,m = 0, for all even n and m, can be expressed
as Γ̂y with ζy(x̄, p̄) = F̃y(x̄, p̄) and κy(x̄, p̄) = p̄`/2. An example of Eq. (III.130) is
given by Re(Ŷ ) = cos (2π/`x̂− p̂`/2), corresponding to the case where only d1,1 = 1/2
and d−1,−1 = −1/2 are nonzero, which is equal to Γ̂y with ζy(x̄, p̄) = Fy(x̄, p̄) =
cos (2π/`x̄− p̄`/2).

III.3.3.4 Commutation relations

Finally, we want to study shortly the commutation relations between the modular read-
out observables Γ̂β , with β = x, y, z. In particular, with the help of Eq. (III.95) we
find

[Γ̂α, Γ̂β] =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ ζα(x̄, p̄)ζβ(x̄, p̄)σ̂γ(x̄, p̄). (III.131)

The commutation relations thus differ from those of the logical Pauli operations intro-
duced in Sec. III.2.2.1, which is due to the fact that here we are dealing with hermitian
and in general nonunitary operators. As mentioned earlier, only in the particular case
ζβ(x̄, p̄) = 1, for all β, we recover the binary case of hermitian and unitary Pauli opera-
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tors. Now, one could ask the question why the observables Γ̂x and Γ̂z, which according
to our preceding elaborations are equal to specific sets of modular variables, are non-
commuting and what makes them different from a commuting pair of modular variables,
such as ˆ̄x and ˆ̄p. The answer to this question was given in Sec. III.1.1, where we showed
that a pair of modular variables commutes if and only if the product of their periods
is equal to 2π (see also Eqs. (III.2) and (III.3)). The latter is not the case for different
pairs of the set of observables {Γ̂β|β = x, y, z}. For instance, in the case of the earlier
discussed example, Γ̂x = cos (p̂`/2) and Γ̂y = cos (2π/`x̂), we can easily verify that the
products of the periods of the two cosine’s is equal to π.

III.4 Experimental proposal using the spatial distribution of
single photons

In this Section we outline a possible experimental implementation of our modular vari-
ables framework using the transverse degrees of freedom of single photons. Using this
system, we will show how to create appropriate states with periodic wave functions, how
to manipulate them using linear optical operations and finally how to perform a readout
of the encoded discrete quantum information from the spatial field of the photons.
As outlined in Sec. II.3.1, we will assume in the following that the coordinates x̂ and

p̂ refer to the transverse position and momentum of a single photon. If we remain in the
paraxial approximation (see Eq. (II.119) and the discussion in the same Section) the
wave function of this field can be seen as the wave function of a single point particle, here
being the photon. A general quantum state of the transverse momentum (or position)
of the photon can be written in the modular basis, as shown in (III.72).

III.4.1 Creation of single photon states with periodic wave function

One major advantage in using the transverse degrees of freedom of single photons is that
we can very efficiently produce states with a periodic wave function, as those presented
in Fig. III.4. To do so, we simply pass the photons through a periodic diffraction grating,
as indicated in Fig. III.10. If the photon that is impinging on the grating has a Gaussian
transverse wave function fG(x) ∝ e−(xκ)2/2, with width κ−1, and the transmission
function of the grating is given by

∑
m ame

imx2π/L, where am = exp (−1
2m

2(2π∆/L)2)
with slit width ∆ and distance L, the resulting wave function of the diffracted photons
has the form (III.53). Hence, by by adjusting the slit widths and distances of the
grating, we can produce the logical qubit states |0〉L and |1〉L. In Fig. III.10, the
photons are also sent through a lens system before the grating in order to prepare them
in approximate plane waves. This allows us additionally to adjust the width κ−1 of the
Gaussian envelope of the wave function (III.53), which corresponds to the quality of
the prepared plane waves. Experimentally gratings are often realized using spatial light
modulators (SLMs) (see discussions at the end of Sec. II.3.1.1).
Note that the propagation of the diffracted photons will lead to a blurring in the

photon’s transverse wave function. This is due to the fact that the photon field is
initially in a Gaussian state and thus can cover only a finite number of slits in the
grating. The dependency of this blurring on the number of irradiated slits is illustrated
in Fig. III.11, where we present the fidelity of the initially prepared wave function
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Figure III.10: (color online) Scheme showing the production, processing and detection
of the transverse degrees of single photons. The photons are produced in a source (S)
and then send through a lens systems (LS) in order to prepare them in approximate
plane waves. Further on, a periodic refraction grating prepares the photon’s transverse
wave function in a periodic state. The photons can be manipulated using a spatial light
modulator (SLM) implementing the unitary operation ÛSLM, or optionally F̂ÛSLMF̂†
if placing lenses (L1,L2) before and after the SLM. Finally, the photons are measured
with a spatially resolving detector (D) or sent through an interferometric scheme, as
presented in Sec. III.4.3.2.

with its revivals after specific propagation distances. These revivals are related to a
near field interference effect, referred to as Talbot effect, which refers to the complex
diffraction pattern of a wave that has passed through a periodic diffraction grating (see
Sec. V.1 for a discussion of the Talbot effect). The Talbot effect can also be used to
implement single qubit operations on qubits that are encoded in periodic wave functions
and is thus closely related to the presently developed framework. In Chapter IV, we
will independently introduce the Talbot effect and a quantum information processing
framework based upon it. One finds that for currently available diffraction gratings a
fidelity higher than 0.9 can be maintained for a propagation distance of about 10 times
the Talbot distance. This might be enough to demonstrate the implementation of some
single and two qubit gates, and their corresponding readout, but is of course not enough
for a scalable implementation of our framework. For that, as discussed previously, it
is inevitable to implement GKP error correction, as introduced in [Gottesman et al.,
2001].
Once it is known how to prepare single photons in the corresponding logical states
|0L〉 and |1L〉, we can try to entangle a pair of photons which then can be further
used to demonstrate entanglement or nonlocal correlations, and to implement certain
quantum information protocols. One possibility to do so is by producing polarization
entangled states in a type-2 parametric down-conversion process [Walborn et al., 2010]
and subsequently swapping the polarization entanglement to the spatial distribution
of the photon pair, as suggested in [Ketterer et al., 2015]. Therefore, the photons
are sent through a Mach-Zehnder interferometer made up of polarization dependent
beam-splitters, half- and quater-wave plates and diffraction gratings, similar as the one
depicted in Fig. 3(c) of the main text. The output states of the interferometers will yield
to 50% the desired spatially entangled photons, while the other half of the emerging
photons has to be discarded.
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Figure III.11: Fidelity of an initial logical state |0L〉 with respect to itself after the
free-propagation of a distance 2mzT , with an integer m and the Talbot distance zT (see
Sec. V.1 for a precise definition of the Talbot distance), for different initial widths of
the Gaussian envelope σ = κ−1 and varying number of illuminated slits l. While this
fidelity decays rapidly for small values of σ = κ−1 it is well preserved for values of the
order of 102 illuminated slits, as is the case in the experiment reported in [Case et al.,
2009].

In more detail, the entangled state of the down-converted photons reads 1√
2
(|H〉a|H〉b+

|V〉a|V〉b), produced by pumping two adjacent nonlinear crystals (type I) with a laser
beam polarized at 45◦. Next, depending on what kind of spatially entangled state we
want to produce, we have to apply local unitary transformations on each of the entangled
photons, realized by a combination of half- and quater-wave plates, as indicated in
Fig. III.12. For instance, for the logical entangled state (IV.87) we need to transform
the above down-converted state into the form:

|ψpol〉 =
1

N±

[
|H〉a|H〉b + |V〉a|V〉b ± i(

√
2∓ 1) (|H〉a|V〉b + |V〉a|H〉b)

]
, (III.132)

where N± = 2
√

2−
√

2. Thereby, the transverse wave function of the two photons
remains in the separable Gaussian state |ψg〉a|ψg〉b. Next, we have to swap the en-
tanglement from the polarization to the transverse degrees of freedom of the photons
according to |H〉a/b|ψG〉a/b → |H〉a/b|f〉a/b and |V〉a/b|ψG〉a/b → |V〉a/b|f̄〉a/b. This swap-
ping is realized experimentally using an interferometer with polarizing beam-splitters
(see Fig. III.12). The latter separates the photons with opposite polarization by sending
them in different spatial modes (arms) of the interferometer and thus allows to apply
polarization dependent operations to the transverse field of the photons. In this way
we can realize the operations |ψG〉 → |f〉 and |ψG〉 → |f̄〉, by placing diffraction grat-
ings in each arm of the interferometer that are slightly displaced with respect to each
other. In order to assure that H-polarized a-photons will go through the same arm of
the interferometer as H-polarized b-photons, we have to apply an additional half-wave
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Figure III.12: Proposed experimental setup to create a spatially entangled two photon
state |Ψ〉 of the form (IV.87). L: laser, NC: nonlinear crystals (type I), HWP: half-wave
plate, WP1/WP2: combination of half- and quater-wave plates, PBS: polarizing beam
splitter, G: diffraction grating.

plate (HWP) to the photon in mode b before it enters into the polarizing beam-splitter.
Finally, one uses half-wave plates oriented at the angle π/8 in the path of both photons
and polarizing beam-splitters in order to factorize the polarization from the transverse
degrees of freedom yielding a conditional preparation of the desired state (IV.87) with
a 50% probability. Equivalently, we can produce the logical entangled state (IV.80) by
applying another set of wave plates to each photon of the down-converted pair.
Another possibility to create the desired entangled states, that will be discussed in

detailed in Sec. V.3 and published soon in [Barros et al., 2016], is to take directly ad-
vantage of the spatial correlations of photon pairs produced in spontaneous parametric
down-conversion (see discussion in Sec. II.3.1.3). This method takes the transverse state
of the two photons

|ψ〉12 =

∫∫
dx1dx2ψ12(x1, x2)|x1〉|x2〉, (III.133)

with the transverse wave function

ψ12(x1, x2) = ϑ(x1 + x2)γ(x1 − x2), (III.134)

and transforms it deterministically into the desired entangled state after applying a set
of linear optical elements to each photon individually.

III.4.2 Logical operations realized by linear optical elements

Now, we will discuss how the logical qubit operations can be implemented using the
transverse distribution of single photons. In the light of the discussion about experimen-
tal implementations of CV gate operations in this experimental platform (see Sec. II.3.1),
a realization of single qubit Pauli or Clifford operations, as defined in Sec. III.2.2.1 and
III.2.2.2, respectively, is straightforward. For this reason, we will focus here on the
experimental implementation of the rotation operations, introduced in Sec. III.3.2. As
explained previously, the latter form a particular group of operations because, in con-
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trast to the Clifford operations, they perform exact operations not only on a subspace
defined by modular eigenstates but on the whole logical space defined in Sec. III.2.1.

In order to implement the logical rotation operator

ei
φ
2

(Γ̂
1·n) = cos (

φ

2
)1+ i sin (

φ

2
)(Γ̂

1 · n), (III.135)

where Γ̂
1

= (Γ̂1
x, Γ̂

1
y, Γ̂

1
z) and n = (nx, ny, nz) is the rotation axis, we need to employ

a spatial light modulator (see Sec. II.3.1). We focus on rotation around the two main
axes of Γ̂z and Γ̂x, which by composition allow to implement any desired single qubit
rotation. Therefore, we remind the reader that

Γ̂1
z =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ σ̂z(x̄, p̄)

=

∫ 3`/4

−`/4
dx̄

∫ π/`

−π/`
dp̄sz(x̄)|x̄, p̄〉〈x̄, p̄|, (III.136)

with the step function sz(x̄) that takes the value +1 if x̄ ∈ [−`/4, `/4[ and −1 if
x̄ ∈ [`/4, 3`/4[. By means of the discussion in Sec. III.3.3 we know that Eq. (III.136)
reads in the position representation as follows:

Γ̂1
z =

∫ ∞

−∞
dxsz(x)|x〉〈x|, (III.137)

where s(x) is a `-periodic rectangular function taking the value +1 if x ∈ [−(2n)`/4, (2n)`/4[
and −1 if x ∈ [(2n+ 1)`/4, (2n+ 1)3`/4[, with integers n. Hence, the rotation operator
(III.135) reads:

ei
φ
2

Γ̂1
z =

∫ ∞

−∞
dxei

φ
2
sz(x)|x〉〈x|, (III.138)

which is a simple position phase gate that can be implemented through the SLM op-
eration ÛSLM with f(x) = φ

2 sz(x). For an introduction of the SLM operation see the
discussion at the end of Sec. II.3.1.1.

Similarly, we can write

Γ̂1
x =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ σ̂x(x̄, p̄)

=

∫ 3`/4

−`/4
dx̄

∫ π/`

−π/`
dp̄sx(x̄, p̄)|x̄, p̄〉〈x̄, p̄|, (III.139)

where sx(x̄, p̄) that takes the value eip̄`/2 if x̄ ∈ [−`/4, `/4[ or eip̄`/2 if x̄ ∈ [`/4, 3`/4[.
And again, by following the arguments in Sec. III.3.3, we find that Eq. (III.139) can be
written in the momentum representation as

Γ̂1
x =

∫ ∞

−∞
dpsx(p)|p〉〈p|, (III.140)
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where sx(p) is a 4π/`-periodic rectangular function which takes the value +1 if p ∈
[−(2m)π/`, (2m)π`/4[, and −1 if p ∈ [(2m+ 1)π/`, (2m+ 1)3π/`[, with integer values
m. From Eq. (III.140) then follows directly

ei
φ
2

Γ̂1
x =

∫ ∞

−∞
dpei

φ
2
sx(p)|p〉〈p|, (III.141)

which is a momentum phase gate that can be implemented with a SLM operation pro-
grammed with the function f(x) = φ

2 sx(x), sandwiched between two Fourier transforms,
as discussed previously. Figure III.10 depicts the sequence of optical elements allowing
for an implementation of the rotations (III.138) and (III.141) on the transverse degrees
of freedom of a single photon. The lenses (L1) and (L2) must be removed or inserted
to perform either of the operations.

III.4.2.1 Controlled two photon gate

For the sake of completeness, we comment in here briefly on the possibility of imple-
menting a two photon controlled phase gate in terms of a recently proposed device,
called spatially dependent beam splitter (SPBS) [Farías et al., 2015]. For a more re-
fined introduction to this device we refer the reader to Sec. V.2.3. A SPBS has, in
contrast to an ordinary beam splitter with complex transmission and reflection coeffi-
cients t and r, such that |t|2 + |s|2 = 1, spatially dependent coefficients t(x) and s(x),
where x denotes one of the transverse position coordinates of the incoming light field,
such that |t(x)|2 + |s(x)|2 = 1 for all x. We can thus imagine a device applying different
transmission and reflection coefficients to different regions of our logical states which in
position space correspond to periodic wave functions with period ` (see Fig. (2) in the
main text). By combining three such SDBC in a row one can realize probabilistically a
controlled phase gate between two photonic logical qubits with a success probability of
1/9. We do not comment further on this scheme because our main source of entangled
photons is spontaneous parametric downconversion, however, for more details we refer
the reader to the work [Farías et al., 2015].

III.4.3 Measuring the readout observables Γ̂β

Finally, we discuss two possible strategies for measurements of the modular readout
observables Γ̂β , that have been introduced in Sec. III.3. The first possibility, hereafter
referred to as direct measurement approach, consists in measuring first the position of
the photon and then to calculate the expectation values of Γ̂β by a post-processing of
the measured data. The second one is to measure these expectation values indirectly
by coupling the system to an additional ancilla state, and therefore referred to as the
indirect measurement approach.

III.4.3.1 Direct measurement

We first remind that the observables Γ̂β , with β = x, y, z, correspond to phase space
operators F (x̂, p̂) fulfilling certain periodicity constraints, as discussed in Sec. III.3.3. If
we further consider only those readout observables which can be expressed as a function
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of a general quadrature x̂φ = sin (φ)x̂+cos (φ)p̂, we can write them in the corresponding
diagonal form

Fβ(x̂φ) =

∫ ∞

−∞
dxFβ(x)|x〉φ〈x|φ (III.142)

where the subscripts φ of the bras and kets indicate the corresponding x̂φ-representation.
Examples, as mentioned in Sec. III.3, are Γ̂x = cos (p̂`/2), Γ̂z = cos (2πx̂/`) and Γ̂y =
cos (2πx̂/`− p̂`/2) = cos (2π

` g(sin (φ′)x̂+ cos (φ′)p̂), being functions of x̂π
2
, x̂0 and x̂φ′ ,

where g =
√

1 + `4/(4π)2 and φ′ = arctan (−`2/(4π)). Accordingly, the expectation
value of the operator (III.142) reads:

〈Fβ(x̂φ)〉 =

∫ ∞

−∞
dxFβ(x) |〈x|φ|Ψ〉|2, (III.143)

which is solely determined by the probability density pφ(x) = |〈x|φ|Ψ〉|2. We can
reproduce the same reasoning in a bipartite system where we get for a product of two
readout observables Γ̂β ⊗ Γ̂β′ :

Fβ(x̂φ1)⊗ Fβ′(x̂φ2) =

∫∫ ∞

−∞
dx1dx2Fβ(x2)Fβ(x1)

× |x1〉φ|x2〉θ〈x1|φ1〈x2|φ2 (III.144)

and the corresponding expectation value:

〈Fβ(x̂φ1)⊗ Fβ′(x̂φ2)〉 =

∫∫ ∞

−∞
dx1dx2Fβ(x2)Fβ(x1)

× |〈x1|φ1〈x2|φ2 |Ψ〉|2, (III.145)

with the join-probability density pφ1,φ2(x1, x2) = |〈x1|φ1〈x2|φ2 |Ψ〉|2.

In an experimental setup with pairs of single photons we can determine the position
or momentum probability densities p0(x) or pπ

2
(p), by detecting the position of the

photons in the near- or far-field with respect to the output plane of the source of the
photons. Position measurements of single photons can be performed either by scanning
a single photon counter in the transverse plane of the photon or by using a single-photon
sensitive camera [Moreau et al., 2014; Aspden et al., 2013]. Arbitrary quadratures x̂φ
can be assessed via fractional Fourier transforms realized with lens systems [Ozaktas
et al., 2001; Tasca et al., 2008], allowing to determine arbitrary distributions pφ(x).
Finally, we can use Eq. (III.143) to calculate expectation values of the desired readout
observables Γ̂β .

The same measurement schemes can be applied to entangled pairs of photons (see
Sec. III.4.1), using respectively two single photon counters or two single photon sensi-
tive cameras, in order to determine the joint-probability distributions pφ1,φ2(x1, x2) =

|〈x1|φ1〈x2|φ2 |Ψ〉|2 and to calculate the expectation values of products of operators Γ̂β
through Eq. (III.145).
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L L

SLM

BS

BS

Figure III.13: (a) Quantum circuit allowing for the measurement of the observables
(III.94). Ĥ depict Hadamard gates and a controlled unitary gate Û is applied if the
ancilla is in the state |0〉. The expectation value of (III.94) is given by p0 − p1, where
p0 (p1) are the probabilities of detecting the ancilla in the state |0〉 (|1〉). In the case
of the specific example mentioned in the text we choose Û = X̂, Ŷ , Ẑ. (b) Proposal of
an experimental implementation of circuit (a) using the spatial field of single photons
passing through a Mach-Zehnder interferometer. Controlled unitaries are realized by
linear optical transformations inserted in one arm of the interferometer. Unitaries of
the form eih(x̂) or eih(p̂) can be implemented using a SLM and lenses (L) allowing to
switch from the position to the momentum space.

III.4.3.2 Indirect measurement

In order to indirectly measure the expectation values of the observables Γ̂β , β = x, y, z,
we first show that the latter can be obtained from measurements of positive operator
valued measures (POVMs) which then can be realized by coupling the system to an
ancilla qubit (see discussion in Sec. II.1.4). We assume in the following the the spectrum
of the operators Γ̂β is bounded by one. Let us define the following POVM elements:

Ê+ =
1

2
(1+ Γ̂β) (III.146)

Ê− =
1

2
(1− Γ̂β) (III.147)

which satisfy the relation Ê+ + Ê− = 1. The probability to obtain the outcome + or −
is thus given by p+ = 〈Ê+〉 or p− = 〈Ê−〉 = 1− p+, respectively, and we can calculate
〈Γ̂β〉 = 〈Ê+ − Ê−〉 = p+ − p−. Hence, the expectation value of every Γ̂β can always
be measured in terms of a two-valued POVM. More generally, if the spectrum of Γ̂β is
bounded between γ− and γ+, one can simply rescale the spectrum of the corresponding
POVM to reproduce the same argument [Horodecki, 2003].
Further on, we show how to implement a measurement of Ê± by coupling our CV

system to an ancilla qubit. Consider the quantum circuit shown in Fig. III.13(a) of the
main text which implements the operation

|Ψ〉|0〉 → 1

2
(1+ Û)|Ψ〉|0〉+

1

2
(1− Û)|Ψ〉|1〉 (III.148)
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on the initial state |Ψ〉|0〉. Hence, by measuring the ancilla state in the basis |0(1)〉,
we project the system state onto |Ψ±〉 = D̂±|Ψ〉 = 1

2(1 ± Û)|Ψ〉 with the probability
p0/1 = 〈Ψ±|Ψ±〉 = 〈Ψ|D̂†±D̂±|Ψ〉 = 〈Ψ|Ê±|Ψ〉, which is equivalent to measuring the
POVM Ê± with the corresponding measurement operators D̂±. With a general unitary
operator Û = eig(x̂,p̂), where g(x̂, p̂) is a real and symmetric function of position and
momentum operator, we can also write Ê± = 1

2 [1 ± cos (g(x̂, p̂))], leading to p+ −
p− = 〈cos (f(x̂, p̂))〉. Now, in order to measure any of the observables Γ̂β , we define
g(x̂, p̂) = arccos (F (x̂, p̂)), with the corresponding phase-space operator Fβ(x̂, p̂) (see
Sec. III.3.3), yielding p+ − p− = 〈Fβ(x̂, p̂)〉 = 〈Γ̂β〉.
The above measurement strategy can be straightforwardly implemented with sin-

gle photons passing through balanced Mach-Zehnder interferometers, as depicted in
Fig. III.13(b) of the main text. Therein, the spatial distribution of the single photons
represent the CV system and the path of the interferometer the state of the ancilla.
Controlled unitary operations are realized via linear optical elements placed in one of
the arms of the interferometer, and measurements of the ancilla state by detecting pho-
tons that exit form one of the two output ports using single photon bucket detectors.
In the most general case we use a SLM with the option of additionally placing it in the
Fourier plane between to lenses allowing us to perform arbitrary position or momentum
phase gates, eif(x̂) or eif(p̂), where f(·) is user defined on the SLM. As discussed pre-
viously x and p can be considered as the near- and far-field variables with respect to
the output plane of the source. Phase gates eif(x̂φ) in terms of an arbitrary quadrature
x̂φ = sin (φ)x̂+cos (φ)p̂ can be realized through fractional Fourier transform before and
after the SLM using lens systems [Ozaktas et al., 2001; Tasca et al., 2008]. Hence, we
have the ability to implement a broad class of unitaries on the spatial distribution of
the photons allowing us to measure expectation values through p+ − p− = 〈cos f(x̂φ)〉,
in order to measure 〈Γ̂β〉 as described above.
At this point we note that the indirect measurement of the observables Γ̂β , as de-

scribed in this Section, is less expensive in terms of the number of measurements that
need to be performed in order to determine the expectation values 〈Γ̂β〉, than the direct
measurement strategy, introduced in the previous Section [Machado et al., 2013; Hor-
Meyll et al., 2014]. Also, as already mentioned in Sec. II.1.4, the indirect measurement
strategy can be realized in several other experimental platforms using, for instance,
trapped ions, cold atoms or micro-mechanical oscillators. To do so, one has to couple
the considered system to an additional physical ancilla atom in order to implement the
interferometer operation (III.148). In this case, one refers to such measurement strate-
gies usually as Ramsey correlation measurements [Asadian et al., 2014; Gittsovich et al.,
2015; Asadian et al., 2015].

III.5 Discussion

We presented a general framework that allows to encode, manipulate and readout dis-
crete quantum information in phase space in terms of continuous variables states. This
was possible by using the modular variables formalism that naturally leads to an intu-
itive definition of a set of logical qubit states and the corresponding logical operations.
We demonstrated its strong relationship with the GKP formalism and show that, as
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far as one is interested in performing quantum protocols involving expectation values of
bounded periodic observables, so called modular variables, it is possible to encode binary
quantum information in more general states than the ones introduced by GKP. The de-
velopment of the present framework was strongly guided by its promising experimental
applicability in terms of the transverse degrees of freedom of single photons. Never-
theless, other experimental platforms, such as trapped ions or micro-/nano-mechanical
oscillators, that might profit from our ideas were discussed, as well.
From a fundamental point of view, our framework shows how to reveal naturally dis-

crete structures of states and operations written in a continuous variable representation.
This partially answers to the long-standing question of what is the most adapted way
to process discrete quantum information in terms of continuous-variable states. Here
we showed that, what concerns protocols involving measurements according to different
mutually unbiased bases, our framework yields advantages compared to previous ap-
proaches. We will further demonstrate this point in the next Chapter which is devoted
to the study of tests of fundamental properties of quantum mechanics. Furthermore,
our framework provides a unifying formalism that shows how measurements of modular
variables can be employed in quantum information protocols. In particular, we estab-
lished a relation between a certain class of modular variables and their corresponding
logical states which is a connection that was not known in previous studies involving
measurements of modular variables.
An application of our ideas in hybrid quantum systems, which use CV besides some

discrete degree of freedom, as is the case for single photons, could be advantageous for
future experimental implementations of quantum information protocols. Moreover, the
role of modular variables as phase space observables with a clear classical correspondence
could be advantageous in macroscopic implementations of test of fundamental properties
of quantummechanics. Finally, we note that a generalization of the presented framework
to d-dimensional logical encodings is rather straightforward and will be concluded in
future work [Vernaz-Gris et al., 2014].
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IV Tests of fundamental properties of
quantum mechanics

The topic of the present Chapter is the study of fundamental properties of quantum me-
chanics in Hilbert spaces of various dimensions. In particular, we will focus on three
of them: entanglement, Bell nonlocality and contextuality. For each of these properties
we will first discuss its basic definition and review some known tools for its detection
in terms of measurements of observables with finitely many outcomes. Following these
introductions we will, for each fundamental property, propose methods that allow for gen-
eralizations of known criteria to the case of measurements of observables with bounded
continuous outcomes, acting on infinite dimensional Hilbert spaces. Specifically, we will
show how to drive entanglement witnesses and how to test discrete variable Bell inequal-
ities in terms of measurements of bounded observables. In the case of contextuality we
elucidate the peculiar structure obeyed by the spectrum of observables leading to state-
independent maximal violation of contextuality. Examples demonstrating our insights
are discussed in each of the following Sections, respectively, whereas we put special em-
phasis on applications of the modular variables framework introduced in the previous
Chapter.

IV.1 Entanglement

In this Section we will give first a definition of entanglement and discuss some basic
methods for its detection in terms of entanglement witnesses. Further on, we show
how the stabilizer formalism can be used to derive entanglement witnesses and discuss
applications for measurements of modular variables.

IV.1.1 Some basics about entanglement

When entanglement was discussed by Einstein, Podolsky and Rosen in 1935 in their
seminal paper “Can Quantum-Mechanical Description of Physical Reality Be Consid-
ered Complete?” it was not yet clear how great the impact of this seemingly weird
property on modern quantum physics would become [Einstein et al., 1935]. While at
that time the greatest motivation was to find a reasonable explanation of entanglement,
nowadays no one is questioning its crucial role as resource for many quantum infor-
mation protocols. In the following, we will remind the definition of entanglement and
discuss some quantities that can be used to detect it.
In practice, the nonlocal nature of entanglement reveals itself as correlations between

two or more parties that are imprinted in the multi-partite quantum mechanical state
vector |Ψ〉 ∈ H. More precisely, we say that a quantum state |Ψ〉 is entangled if it is not
separable, meaning that it cannot be written as a tensor product state of its individual

109
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parties:

|Ψ〉 =
n⊗

k=1

|ψk〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ . . .⊗ |ψn〉, (IV.1)

where |ψk〉 ∈ Hk and H =
⊗n

k=1Hk [Nielsen and Chuang, 2000]. Famous examples of
entangled qubits states are the Bell states:

|Ψ±〉 =
1√
2

[|01〉 ± |10〉] and |Φ±〉 =
1√
2

[|00〉 ± |11〉] . (IV.2)

For mixed states entanglement is defined similarly. A density matrix ρ̂ is called entan-
gled if it cannot be written as a classical mixture of product state:

ρ̂ =
∑

λ

pλ

n⊗

k=1

ρ̂
(i)
k =

∑

λ

pλρ̂
(λ)
1 ⊗ ρ̂(λ)

2 ⊗ . . .⊗ ρ̂(λ)
n , (IV.3)

with a normalized probability distribution {pi}. In the following, we will mostly focus
on bipartite entanglement which, for the remainder of this thesis, is the most relevant
one.

IV.1.1.1 Entanglement witnesses

In this Section we want to discuss some possibilities to detect and quantify entanglement
in terms of entanglement witnesses and measures, respectively. Thereby, we will also
compare the two seemingly similar concepts of entanglement witnesses, on the one hand,
and Bell inequalities, on the other hand.

In general, entanglement witness are defined as hermitian operators Ŵ which fulfil:

〈Ŵ 〉ρ̂s ≥ 0 (IV.4)

for all separable states ρ̂s [Terhal, 2002; Horodecki et al., 2009; Gühne and Tóth, 2009].
Hence, if one finds 〈Ŵ 〉ρ̂e < 0 one can conclude that ρ̂e is entangled. Entanglement
witnesses have a clear geometrical interpretation, because the condition 〈Ŵ 〉 = 0 defines
a hyper-plane in the space of all quantum states dividing it into two parts. Namely, one
part which contains the whole subspace of separable states, and a second part which
contains the remaining entangled quantum states. The existence of entanglement wit-
nesses is guaranteed by the convexity of the set of separable states. In principle, it is
possible to find for each entangled state an appropriate entanglement witness that is
capable of detecting it [Horodecki et al., 1996]. However, the construction of entangle-
ment witnesses is a mathematically no-trivial task and, in general, one would require
an infinite number of witnesses in order to completely characterize the set of separable
states [Ioannou and Travaglione, 2006; Gühne and Tóth, 2009]. In Sec. IV.1.2, we will
discuss a method to derive entanglement witnesses based on the stabilizer formalism.
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IV.1.1.2 Entanglement measures

For completeness, we mention also one possible measure of entanglement, namely the
entanglement entropy. This measure relies on the fact that the reduced subsystems of a
pure entangled system will be in a mixed state. Hence, by measuring the mixedness of
the reduced density matrices of an entangled state we can quantify its entanglement. In
order to measure the mixedness of a quantum states ρ̂ we introduce the von Neumann
entropy :

S(ρ̂) = −tr[ρ̂ ln (ρ̂)] = −
∑

i

λi ln (λi), (IV.5)

where {λi} denotes the set of eigenvalues of the density operator ρ̂. It is easy to see that
the von Neumann entropy is equal to zero if ρ̂ = |Ψ〉〈Ψ| is a pure state, because then ρ̂
has only one non-zero eigenvalue λ = 1. Thus, for non-pure state we have S(ρ̂) > 0, and
for maximally mixed states (ρ̂mm = 1/d) we reach the maximal value ln (d) of Eq. (IV.5).
Now, we can define the entanglement entropy of a pure state ρ̂AB ∈ HA ⊗ HB as the
von Neumann entropy of any of the two reduced states, ρ̂A = trB[ρ̂] or ρ̂B = trA[ρ̂]
[Nielsen and Chuang, 2000]:

E(ρ̂AB) := S(ρ̂A) = S(ρ̂A) (IV.6)

Hence, we have that E(ρ̂AB) = 0 if ρ̂AB is in a product state and E(ρ̂AB) > 0 if ρ̂AB
is entangled. It is important to note that the entanglement entropy provides only for
pure states a meaningful measure of entanglement in the above sense.
With this we close this short introduction to the detection and quantification of

entanglement. Some of the above introduced concepts will appear again in subsequent
sections of this manuscript.

IV.1.2 Stabilizer formalism and entanglement detection

In the following we will review how the stabilizer formalism can be employed to derive
entanglement witnesses. In this respect we will give first a brief introduction to the
stabilizer formalism and show how it can be used to characterize classes of entangled
states by so called stabilizer operators. The latter are then used to derive entanglement
witnesses for the respective stabilized entangled states.
The goal of the stabilizer theory is to describe a quantum state through a set of

so-called stabilizer operators instead of using its state vector [Gottesman, 1996, 1997].
In particular, one says that |Ψ〉 is stabilized by the operator Ŝk if |Ψ〉 is an eigenstate
of Ŝk with eigenvalue +1:

Ŝk|Ψ〉 = |Ψ〉. (IV.7)

From this condition follows immediately that if two operators Ŝk and Ŝl stabilize the
same state |Ψ〉 then also their product ŜkŜl stabilizes the same state. Furthermore,
different stabilizers commute and we have Ŝ2

k = 1. From these observations if follows
that the stabilizer operators form a commutative group, referred to as stabilizer, which
is closed under multiplications. In particular, for an n-qubit quantum state the group



112 IV Tests of fundamental properties of quantum mechanics

of stabilizer operators has 2n elements, but is generated by only N group generators ĝk.
Using the stabilizer operators we can write |Ψ〉〈Ψ| = 1/(2n)

∑2n

k=1 Ŝk = Πn
l=1ĝl.

An example of an entangled state that can be expressed through stabilizer operators
is the n-qubit Greenberger-Horne-Zeillinger (GHZ) state:

|GHZn〉 =
1√
2

(|0〉1|0〉2 . . . |0〉n + |1〉1|1〉2 . . . |1〉n) , (IV.8)

which is stabilized by the operators:

Ŝ
(GHZn)
1 =

n∏

k=1

σ̂(k)
x , (IV.9)

Ŝ
(GHZn)
k = σ̂(k)

z σ̂(k−1)
z , (IV.10)

for k = 2, . . . , n, and where σ(k)
α , with α = x, y, z, denotes the three Pauli operators (see

Sec. II.1.1) acting on the kth qubit. It is straightforward to check that the operators
(IV.9) and (IV.10) stabilize the GHZ state (IV.8) uniquely and we thus have:

Ŝ
(GHZn)
k |GHZn〉 = |GHZn〉 (IV.11)

for all k = 1, . . . , n. As mentioned previously the GHZ state is not only stabilized by
the operators Ŝ(GHZn)

k but also by their products which are part of the same stabilizer
group denoted as S(GHZn).

Using the stabilizer operators (IV.9) and (IV.10) we can derive entanglement wit-
nesses detecting entanglement around the n-qubit GHZ states, which read:

Ŵ (GHZn) = c1− Ŝ(GHZn)
k − Ŝ(GHZn)

l , (IV.12)

where

c = maxρ̂∈Ssep〈Ŝ
(GHZn)
k − Ŝ(GHZn)

l 〉, (IV.13)

and Ssep denotes the set of separable states. However, the witness (IV.12) is only capable
of detecting entanglement if c is smaller than 〈Ŝ(GHZn)

k + Ŝ
(GHZn)
l 〉 for entangled states.

Whether or not this is the case depends on the local commutativity of the stabilizer
operators contained in (IV.12). In particular, Ŝ(GHZn)

k and Ŝ
(GHZn)
l are called locally

commuting if each of the local operators σ̂(k)
α and σ̂(l)

α′ forming the tensor products (IV.9)
and (IV.10) are commuting. In this case, they share a common eigenstate and we find
that 〈Ŝ(GHZn)

k + Ŝ
(GHZn)
l 〉 = 2 for separable and entangled states. Hence, to detect

entanglement in terms of stabilizer operators we have to choose them to be locally
non-commuting [Tóth and Gühne, 2005; Gühne and Tóth, 2009].
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Once we accepted this, we can show that for product states we have:

〈Ŝ(GHZn)
1 〉+ 〈Ŝ(GHZn)

k 〉 = 〈σ̂(1)
x 〉 . . . 〈σ̂(n)

x 〉+ 〈σ̂(k−1)
z 〉〈σ̂(k)

z 〉
≤ |〈σ̂(k−1)

x 〉||〈σ̂(k)
x 〉|+ |〈σ̂(k−1)

z 〉||〈σ̂(k)
z 〉|

≤
√
〈σ̂(k−1)
x 〉2 + 〈σ̂(k−1)

z 〉2 +

√
〈σ̂(k)
x 〉2 + 〈σ̂(k)

z 〉2
≤ 1 (IV.14)

where we used the Cauchy-Schwarz inequality and the boundedness of the Bloch vector
〈σ̂(k)
x 〉2 + 〈σ̂(k)

z 〉2 ≤ 〈σ̂(k)
x 〉2 + 〈σ̂(k)

y 〉2 + 〈σ̂(k)
z 〉2 ≤ 1. Convexity, extends the bound in

Eq. (IV.14) also to separable states. Hence, we find that c = 1 and the GHZ state
witness reads:

Ŵ (GHZn) = 1− Ŝ(GHZn)
1 − Ŝ(GHZn)

k , (IV.15)

with k = 2, . . . , n. One can also construct witnesses involving more than two stabilizer
operator, e.g. Ŵ (GHZn) = 1− Ŝ(GHZn)

1 − Ŝ(GHZn)
k − Ŝ(GHZn)

1 Ŝ
(GHZn)
k , leading to a higher

noise tolerance [Tóth and Gühne, 2005].
Similarly, we can construct entanglement witnesses also for other types of entangled

states that can be uniquely described by a stabilizer. For instance, for cluster states
|Cn〉 which are stabilized by the operators:

Ŝ
(Cn)
1 = σ̂(1)

x σ̂(2)
z , (IV.16)

Ŝ
(Cn)
k = σ̂(k−1)

z σ̂(k)
x σ̂(k+1)

z , (IV.17)

Ŝ(Cn)
n = σ̂(n−1)

z σ̂(n)
x , (IV.18)

with k = 2, . . . , n− 1, or for general graph states |Gn〉 whose stabilizers read:

Ŝ
(Gn)
k = σ̂(k)

x

∏

l 6=k
(σ̂(l)
z )Ωkl , (IV.19)

with the adjacency matrix Ω. A graph state is defined by a graph consisting of N
vertices which are connected by edges according to the adjacency matrix Ω. Thus, we
have Ωkl = 1 or 0 depending if two vertices are connected or not.
For more details about the entanglement detection in terms of stabilizer operators,

for instance, for a generalization to multi-partite entanglement detection, we refer the
reader to the literature [Tóth and Gühne, 2005; Gühne and Tóth, 2009]. Instead, in
the following, we want to apply the above formalism to derive entanglement witnesses
involving measurements of modular variables.

IV.1.3 Modular variables entanglement witnesses

Now we turn to the entanglement detection in phase space in terms of suitably designed
entanglement witnesses involving measurements of modular variables. To do so we
will first employ the above introduced stabilizer formalism to the case of continuous
variables and show how to stabilize classes of entangled states in terms of unitary
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phase space operations. These stabilizer operations then lead us to (novel) modular-
variable entanglement witnesses detecting entanglement in the logical space introduced
in Sec. III.2.1.
Let us recall that in Sec. III.2.1 we introduced logical states (III.75) and (III.76) by

dichotomizing the Hilbert space with respect to the modular position x̄ (see Fig. III.7).
In the same Section we also discussed the role of GKP states (III.77) and (III.78) as
a nonphysical example of these logical states, since they consist of superpositions of
infinitely squeezed position and momentum eigenstates. For convenience, we recall
their definitions here:

|0GKP〉 = |x̄ = 0, p̄ = 0〉 =
∑

n

|`(2n)/2〉x, (IV.20)

|1GKP〉 = |x̄ =
`

2
, p̄ = 0〉 =

∑

n

|`(2n+ 1)/2〉x. (IV.21)

In [Gottesman et al., 2001], the author’s particular interest in this set of states was mo-
tivated by the fact that they can be characterized by two unitary stabilizer operations:

Ŝ
(GKP)
1 = e4πix̂/`, (IV.22)

Ŝ
(GKP)
2 = eip̂`, (IV.23)

which yield some convenient error correction properties (see [Gottesman et al., 2001] for
more details). Equivalently, the GKP stabilizer operations can be expressed through
the logical Pauli operations (III.82) and (III.83) as: Ŝ(GKP)

1 = Ẑ2 and Ŝ
(GKP)
2 = X̂2,

respectively.
Similarly to the discussion in the previous Section, we can now use the logical Pauli

operations Ẑ and X̂ also to define stabilizer operations characterizing entangled states
in the GKP logical basis |0GKP〉 and |1GKP〉. For instance, an n-mode GHZ state in the
GKP basis:

|GHZ(n)
GKP〉 =

1√
2

(
|0GKP〉1|0GKP〉2 . . . |0GKP〉n + |1GKP〉1|1GKP〉2 . . . |1GKP〉n

)
, (IV.24)

is stabilized by the operations:

ˆ̃S
(GHZn)
1 =

N∏

k=1

X̂(k), (IV.25)

ˆ̃S
(GHZn)
k = Ẑ(k)Ẑ(k−1). (IV.26)

with k = 2, . . . , n, where Ẑ(k) and X̂(k) denote the logical operations (III.82) and
(III.83) acting on mode k. At this point we emphasize that the stabilizer operations
(IV.25) and (IV.26) can only characterize uniquely the non-physical GHZ state (IV.24).
Nevertheless, in the following we would like to exploit them to construct entanglement
witnesses capable of detecting physical continuous-variable GHZ states that are close
to the nonphysical ones defined in Eq. (IV.24).
According to the remarks made in Sec. IV.1.2, it would be desirable to define such



IV.1 Entanglement 115

entanglement witnesses as a straightforward generalization of the finite dimensional
witness (IV.15), as

ˆ̃W (GHZn) = 1− ˆ̃S
(GHZn)
1 − ˆ̃S

(GHZn)
k . (IV.27)

However, even though the stabilizer operations ˆ̃S
(GHZn)
1 and ˆ̃S

(GHZn)
k are locally non-

commuting (see commutation relations of the logical Pauli operations Ẑ and X̂ in
Sec. III.2.2.1), they are defined as products of phase space displacements and thus
nonphysical quantities. To define a measurable, thus hermitian, entanglement witness
operator we have to consider quantities involving real (or imaginary) parts of the above
stabilizer operations, for instance:

ˆ̃W
(GHZn)
R = 1− R̂(GHZn)

1 − R̂(GHZn)
k , (IV.28)

where

R̂
(GHZn)
1 =

n∏

k=1

Re
[
X̂(k)

]
, (IV.29)

R̂
(GHZn)
k = Re

[
Ẑ(k)

]
Re
[
Ẑ(k−1)

]
, (IV.30)

with k = 2, . . . , n. Remember that the operators Re
[
X̂(k)

]
and Re

[
Ẑ(k)

]
are ex-

amples of the modular variables discussed in Sec. III.1.2 and also particular cases
of the general readout observables (III.94), introduced in Sec. III.3.1. Let us write
Γ̂

(k)
x = Re

[
X̂(k)

]
= cos (p̂k`/2) and Γ̂

(k)
z = Re

[
Ẑ(k)

]
= cos (x̂k2π/`). We also note that,

as previously discussed in Sec. III.3.3.4, the operators Γ̂
(k)
x and Γ̂

(k)
z are non-commuting

due to the fact that the product of their periods is not equal to 2π. Hence, the correla-
tion operators (IV.29) and (IV.30) do not commute locally and are thus good candidates
for the detection of entangled states that are close to the logical GHZ state (IV.24).

Further on, with the help of the triangle and Cauchy-Schwarz inequalities we can
show that for product states:

〈R̂(GHZn)
1 〉+ 〈R̂(GHZn)

k 〉 = 〈Γ̂(1)
x 〉 . . . 〈Γ̂(n)

x 〉+ 〈Γ̂(k−1)
z 〉〈Γ̂(k)

z 〉
≤ |〈Γ̂(k−1)

x 〉||〈Γ̂(k)
x 〉|+ |〈Γ̂(k−1)

z 〉||〈Γ̂(k)
z 〉|

≤
√
〈Γ̂(k−1)
x 〉2 + 〈Γ̂(k)

z 〉2
√
〈Γ̂(k)
x 〉2 + 〈Γ̂(k−1)

z 〉2
≤ 1 (IV.31)

where the last inequality holds due the relation (III.104), namely that the sum of the
modulus squares of the operators Γ̂

(k)
β is bounded by (maxx̄,p̄,α |ζβ(x̄, p̄)|)2. And, as

discussed in Sec. III.3.1, in the particular case of the modular variables Re
[
X̂(k)

]
and

Re
[
Ẑ(k)

]
this bound is equal to one. On the other hand, if we consider the operator

R̂
(GHZn)
1 + R̂

(GHZn)
k =

n∏

l=1

Γ̂(l)
x + Γ̂(k−1)

z Γ̂(k)
z (IV.32)
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and evaluate its expectation value with respect to a physical GHZ state in the logical
basis {|0L〉, |1L〉}:

|GHZ(n)
L 〉 =

1√
2

(
|0L〉1|0L〉2 . . . |0L〉n + |1L〉1|1L〉2 . . . |1L〉n

)
, (IV.33)

we expect to violate the separability bound in Eq. (IV.31), for an appropriate choice
of the logical state wave functions fk(x̄(k), p̄(k)). And indeed the expectation value of
(IV.32) with respect to the state (IV.33) reads:

〈R̂(GHZn)
1 + R̂

(GHZn)
k 〉 =

n∏

l=1

∫ `
4

− `
4

dx̄(l)

∫ π
`

−π
`

dp̄(l) cos (p̄(l) `

2
)|fl(x̄(l), p̄(l))|2

+

k∏

l=k−1

∫ `
4

− `
4

dx̄(l)

∫ π
`

−π
`

dp̄(l) cos (x̄(l) 2π

`
)|fl(x̄(l), p̄(l))|2, (IV.34)

which can be simplified by assuming that the wave functions fk(x̄(k), p̄(k)) = f(x̄(k), p̄(k))
are equal for all k:

〈R̂(GHZn)
1 + R̂

(GHZn)
k 〉 = Kn

x +K2
z (IV.35)

where

Kx =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ cos (p̄

`

2
)|f(x̄, p̄)|2, (IV.36)

Kz =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ cos (x̄

2π

`
)|f(x̄, p̄)|2. (IV.37)

Thus, the expectation value (IV.35) solely depends on the valuesKx,Kz and the number
of modes n.

To study a numerical example of the values Kx and Kz we choose f(x̄, p̄) to be a
Gaussian with widths ∆ and κ in the modular position and momentum, respectively,
and with periodic boundary conditions on the domains [−`/4, `/4[×[−π/`, π/`[. In
particular, as studied in Sec. (III.1.5), we have f(x̄, p̄) = N T (x̄ − ax̄)C(p̄ − ap̄) (see
Eq. (III.53)), where T (x̄− ax̄) and C(p̄− ap̄) are defined according to Eqs. (III.54) and
(III.55), respectively, and with L = `/2. The parameters ax̄ and ap̄ fix the location of the
Gaussian inside the domain [−`/4, `/4[×[−π/`, π/`[. Note that, if the limits ∆/L� 1
and κLk � 1 hold, this modular wave function corresponds to a comb of Gaussian spikes
with widths ∆, that are separated by the distance `/2 and enclosed by an envelope of
width 1/κ (see Figs. III.4 and III.5 for examples). The constantN ensures that the wave
function f(x̄, p̄) is normalized on the domain [−`/4, `/4[×[−π/`, π/`[. Accordingly, in
the above limit we have N ≈ 1 reproducing Eq. (III.53).
Figure IV.1 shows a density plot of the modulus square of the Gaussian wave func-

tion f(x̄, p̄) and indicates the location (ax̄, ap̄) of the Gaussian in the modular domain
[−`/4, `/4[×[−π/`, π/`[. On the right-hand side of Fig. IV.1 we present a plot of the
value Kx (Kz) as a function of ap̄ (ax̄), for different modular position and momentum
widths, ∆ and κ. Thereby, it is enough to plot Kx as a function of ap̄ and Kz as a
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Figure IV.1: (Left) Density plot of the modulus square of the wave function f(x̄, p̄)
in the case of a Gaussian with ` = 2

√
π, as discussed in the text. The two dou-

ble arrows indicate the position of the Gaussian (ax̄, ap̄) in the modular domain
[−`/4, `/4[×[−π/`, π/`[. (Right) Plot of the value Kx (Kz), in the case of the Gaus-
sian wave function f(x̄, p̄), as a function of the position ap̄ (ax̄) of the Gaussian
in the modular momentum (position) direction. Different curves correspond to dif-
ferent widths in the modular momentum: κ = 0.02(2π/`) (blue), κ = 0.06(2π/`)
(red), κ = 0.1(2π/`) (green), κ = 0.14(2π/`) (purple), κ = 0.18(2π/`) (orange),
κ = 0.22(2π/`) (pink), κ = 0.26(2π/`) (Cyan), κ = 0.3(2π/`) (brown), κ = 0.34(2π/`)
(magenta), κ = 0.38(2π/`) (gray). The values are ordered from the topmost to the
bottommost curve with respect to the origin ap̄(ax̄) = 0. In the case of Kz we choose
the same widths for ∆ multiplied by `/2 instead of 2π/`.

function of ax̄, because (IV.36) and (IV.37) are independent with respect to the posi-
tion of the Gaussian wave function in the modular position and momentum direction,
ax̄ and ap̄, respectively. To see this, we recall that the functions ζx(x̄, p̄) = cos (p̄`/2)
and ζz(x̄, p̄) = cos (x̄2π/`), which define the observables Γ̂x and Γ̂z, are independent
of the modular position x̄ and momentum p̄, respectively, and thus the integration in
Eqs. (IV.36) and (IV.37) factorizes. Furthermore, the behaviour of Kx and Kz as a
function of ap̄ and ax̄, respectively, is identical because for the choice ` = 2

√
π we have

`/2 = 2π/` =
√
π.

It is solely the behaviour of Kx and Kz which finally determines the expectation value
(IV.35) and shows if the witness (IV.28) is capable to detect the logical GHZ states
(IV.33). If we choose the Gaussian f(x̄, p̄) centered around the origin (ax̄, ap̄) = (0, 0)
we find that, for sufficiently squeezed modular wave functions (sufficiently small ∆ and
κ), Kx and Kz approach values near to 1 and thus the expectation value (IV.35) exceeds
the separability bound of one. However, if we choose the Gaussian centered at one of
the corners of the modular domain (ax̄, ap̄) = (±`/2,±2π/`), both Kx and Kz are near
to zero and thus the GHZ state (IV.33) cannot be detected.
At this point we close our elaborations about the detection of entanglement in terms

of modular-variable entanglement witnesses and turn to the study of Bell nonlocality.
However, keep in mind that the above introduced techniques are not restricted to GHZ
states and it will be a task of future work to find other interesting states that might be
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detectable by such witnesses.

IV.2 Nonlocality

In this Section our aim is to study Bell nonlocality which we introduce in the follow-
ing on the basis of a general treatment of nonlocal correlations in terms of discrete
joint-probability distributions. We will see how Bell inequalities can be used to detect
nonlocal correlations and discuss their relation to entanglement. As part of our results,
we show how to adapt the CHSH inequality to more general measurements setups in-
volving measurements of bounded continuous variables. Finally, we discuss examples of
our considerations in terms of measurements of modular variables.

IV.2.1 Mathematical characterization of correlations

In order to introduce the concept of Bell nonlocality we consider the typical Bell ex-
periment depicted in Fig. IV.2(a). A source (S) distributes two physical systems (for
instance two particles) to two distant observers, usually referred to as Alice (A) and Bob
(B). Each of the two observers then performs measurements of m different observables,
labeled by Ai and Bj , respectively, with i, j = 1, . . . ,m, each yielding n possible out-
comes denoted by a, b = 1, . . . , n. For the following considerations the precise choice of
Alice’s and Bob’s observables, Ai and Bi, is not of importance. We are only interested
in recording the outcomes a and b of measurements corresponding to different measure-
ment settings i and j, where the latter simply label different measurement possibilities
without giving further details.
The outcomes of the experiment are distributed according to a joint-probability distri-

bution p(a, b|i, j) which can be experimentally estimated by repeating the measurements
a sufficient number of times. We thus have n2m2 joint probabilities that completely
characterize the Bell experiment. These probabilities are often expressed in a vector
notation p = {p(a, b|i, j)} and referred to as correlations (or behaviours). Each exper-
imental situation can thus be viewed as a point in a (n2m2)-dimensional vector space
P. By including the positivity and normalization condition of the joint probabilities
p(a, b|i, j) we are left with a ((n− 1)2m2)-dimensional space.
However, the vector space P of all normalized joint-probability distributions is still

very large and, a given physical model used to calculate the probabilities p(a, b|i, j), will
in general impose constraints on the correlations p which then live in a subspace of P.
The first constraints we want to discuss here are called the non-signalling constraints:

n∑

b=1

p(a, b|i, j) =
n∑

b=1

p(a, b|i, j′), for all a, i, j, j′ (IV.38)

n∑

a=1

p(a, b|i, j) =

n∑

a=1

p(a, b|i′, j), for all a, i, i′, j (IV.39)

which imply that Alice’s and Bob’s marginal distributions p(a|i, j) = p(a|i) and p(a|i, j) =
p(a|j) are independent of each others measurement settings hindering a direct and in-
stantaneous communication between them. The latter would lead to a violation of rel-
ativity thus making the no-signalling constraints (IV.39) a reasonable physical assump-
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Alice Bob
Ai Bj

L
Q

NS p · s  SL

pNL

(a) (b)

i 2 {1, . . . , n} j 2 {1, . . . , n}

a 2 {1, . . . , m} b 2 {1, . . . , m}

Figure IV.2: (a) Scheme of a Bell experiment. A source (S) creates two physical sys-
tems and distributes them to two distant observers, referred to as Alice (A) and (Bob).
Alice and Bob each perform n measurements on their subsystems with observables Ai
and Bj , respectively. Each measurement can yield up to m different outcomes a and b.
(b) Schematic representation of the three sets of correlations L, Q and NS projected
onto a two dimensional plane. The thick black line depicts a Bell inequality and the
black point an element pNL of the quantum set Q violating the Bell inequality p·s > SL.

tion. The remaining correlations p fulfilling the no-signalling constraints are elements
in a subspace NS of the whole space P [Brunner et al., 2014].
Next, we want to consider the so-called locality constraint whose discovery is consid-

ered one of the main achievements of J. Bell [Bell, 1964]. The idea is to assume that
the outcomes a and b of our Bell experiment are governed by some causal influence that
is determined by a set of past factors described by the variable λ, referred to as local
hidden variable (LHV). If the variable λ accounts for all past factors that might have
caused correlations between the outcomes a and b, we can consequently factorize the
joint probabilities as:

p(a, b|i, j, λ) = p(a|i, λ)p(b|j, λ). (IV.40)

Hence, the ouctomes on Alice’s and Bob’s side depend solely on their local measurement
settings i and j, respectively, and on the common hidden variable λ. Further on, in a
more general description we have to assume that the hidden variable will, in general,
not be constant during different runs of the experiment because its precise nature is
unknown. The final joint probabilities are then given by an average over the hidden
variable λ according to a probability distribution q(λ). Taking all this into account, we
thus arrive at the locality constraint:

p(a, b|i, j) =

∫
dλ q(λ)p(a|i, λ)p(b|j, λ), (IV.41)

which contains the additional assumption that the choice of the measurement settings
i and j is made independently by Alice and Bob and thus is independent of λ. Equa-
tion (IV.41) represents a concise definition of locality imposed on the joint probabilities
calculated within the context of local hidden variable theories (or local realistic theo-
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ries). It is straightforward to see that the local joint probabilities always satisfy the
no-signalling constraints (IV.39) making the set of local correlations L a subset of the
set of no-signalling correlations NS.
Finally, we introduce the set of quantum correlations Q which consists of all joint-

probability distributions that can be expressed as a result of a quantum mechanical
measurements (see Sec. II.1.4), as

p(a, b|i, j) = tr
[
Êa|i ⊗ Êb|j ρ̂AB

]
(IV.42)

where ρ̂AB is the joint density matrix on Alice’s and Bob’s tensor product space H =
HA ⊗ HB, and {Êa|i}i=1,...,m and {Êb|j}j=1,...,m are sets of POVMs on HA and HB,
respectively, characterizing their local measurement strategies. It is easy to show that
all local correlations admit a representation according to Eq. (IV.42), thus making
the local set L a subset of the quantum set Q [Pitowsky, 1986]. However, there are
quantum correlations that fulfill the no-signalling constraint but do not belong to the
local set L [Rastall, 1985; Popescu and Rohrlich, 1994]. This implies the inclusion
relation L ⊂ Q ⊂ NS.
Furthermore, the three sets L, Q and NS have the same dimensions = 2(n− 1)m+

(d − 1)2m2 [Pironio, 2005], they are bounded and convex [Pitowsky, 1986]. A sim-
plified graphical representation of the discussed sets in two dimensions is presented in
Fig. IV.2(b). To decide if a given p belongs to one of the three sets L, Q or NS one
can make use of the hyperplane separation theorem, which states that for each p, that
does not belong to one of the three latter sets, one can find a hyperplane that separates
this p from the corresponding set (see Fig. IV.2(b)). Meaning, if p /∈ L,Q,NS, then
there exists an inequality:

p · s =
∑

a,b,i,j

sa,b;i,jp(a, b|i, j) ≤ SL,Q,NS , (IV.43)

which is violated if p /∈ L,Q,NS. In the particular case of the local set L, such inequal-
ities are called Bell inequalities and the correlations p which violate a Bell inequality
are called nonlocal correlations. Therefore, in this context the term nonlocality refers
specifically to the possibility of violating Bell inequalities. Furthermore, the bound on
the inequalities which characterize the quantum set SQ is called Tsirelson bound and
SNS no-signalling bound.
One specific example of the above Bell experiment is the one which considers n = 2

measurements on each subsystem yielding m = 2 different (binary) outcomes. In this
case, the corresponding Bell inequality characterizing the set of local correlations L is
known as Clauser-Horne-Shimony-Holt (CHSH) inequality [Clauser et al., 1969] and
mostly known in the form

−2 ≤ B = 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 2. (IV.44)

Further on, if we assume that the binary measurement outcomes are given by a, b = ±1,
we can express the correlation functions contained in (IV.44) as 〈AiBj〉 =

∑
a,b ab p(a, b|i, j),

allowing to express (IV.44) in the form (IV.43) with SL = 2. Correspondingly, the
Tsirelson and no-signalling bound on the CHSH inequality read SQ = 2

√
2 and SNS = 4.
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To show the violation of the CHSH inequality in quantum mechanics let’s consider
the entangled quantum state |ψ〉 = (|0〉a|1〉b − |1〉a|0〉b)/

√
2. Further on, we consider

the local measurements on Alice’s side to be A1 = σ̂x and A2 = σ̂z, and on Bob’s side
B1 = −(σ̂x + σ̂z)/

√
2 and B2 = (σ̂z − σ̂x)/

√
2. For Pauli operations it is easy to show

that the correlation function in the above entangled state yields 〈σ̂iσ̂j〉|ψ〉 = −δij . Using
this in the CHSH term (IV.44), we find that:

〈A1(B1 +B2) +A2(B1 −B2)〉 = −
√

2〈σ̂xσ̂x〉 −
√

2〈σ̂zσ̂z〉 = 2
√

2 > 2. (IV.45)

Hence, the locality bound of two can be violated for a specific class of nonlocal states
and appropriately chosen measurements. In the following, we will discuss more the
relationship between such nonlocal states and entangled states.

IV.2.1.1 Entanglement vs. nonlocality

Entanglement is closely related to nonlocality. For instance, it is easy to see that every
separable quantum state is local in the sense that it obeys a local joint-probability
distribution (compare with Eq. (IV.41)):

P (a1, a2) = tr[ρ̂(Êa1 ⊗ Êa2)]

=
∑

λ

pλtr[ρ̂
(λ)
1 Êa1 ]tr[ρ̂(λ)

2 Êa2 ]

=
∑

λ

pλP (a1, λ)P (a2, λ). (IV.46)

Hence, we can conclude that every quantum state which gives rise to nonlocal cor-
relations, i.e. which violates a Bell inequality, will be also entangled. Entanglement
is thus a necessary ingredient for the observation of nonlocal correlations in quantum
mechanics. A natural question to ask is thus if entanglement is also sufficient for the
observation of nonlocal correlations. In the case of pure states the answer is yes. For
every pure quantum state it is possible to find local measurements such that the re-
sulting measurement statistics violate a Bell inequality [Gisin, 1991; Home and Selleri,
2008].

Since entanglement is a necessary condition to violate any Bell inequality and thus the
CHSH inequality (IV.44) can also be interpreted as entanglement witness. In particular,
we can define the entanglement witness operator ŴB = 21−B̂, with the CHSH operator
B̂ defined as

B̂ = Â1 ⊗ B̂1 + Â1 ⊗ B̂2 + Â2 ⊗ B̂1 − Â2 ⊗ B̂2. (IV.47)

However, one can improve the CHSH witness by assuming separability of the considered
quantum states, instead of the stronger nonlocality condition (IV.41). This leads to a
separability bound Ssep for the CHSH witness, which depends on the choice of the
observables Âi and B̂i and is in general lower than the nonlocality bound SL = 2
[Roy, 2005]. For instance, for the choice Â1 = σx, Â2 = σz, B̂1 = (σx + σz)/

√
2 and
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B̂2 = (σx − σz)/
√

2, we find that the CHSH operator (IV.47) is given by:

B̂ =
√

2σx ⊗ σx +
√

2σz ⊗ σz (IV.48)

whose expectation value for separable states is bounded by Ssep =
√

2 (as shown in
Sec. IV.1.2). This highlights the difference between a device-independent test of nonlo-
cality and a device-dependent entanglement test. While, in the former case, a violation
of the bound SL assures a violation of local-realism no matter if Alice and Bob trusted
their measurement devices, in the latter case, a violation of Ssep implies the detection
of entanglement only if the correct quantum measurements have been performed (see
Eq. (IV.48)). Further on, the degree of violation of the CHSH value 〈B̂〉 is often also
considered as a quantifier of entanglement since its maximal value, the Tsirelson bound
2
√

2, is reached for maximally entangled states (see for example Eq. (IV.2)).
For mixed states the situation is a bit more subtle. It was first shown by Werner

[Werner, 1989] that there exist mixed entangled quantum states which do not lead to
nonlocality. Those so-called Werner states are given by all states that are invariant
under the unitary transformation Û ⊗ Û with an arbitrary unitary operator Û . For two
qubits the Werner states are all mixtures between the singlet Bell state |Ψs〉 and the
white noise:

ρ̂Wp = p|Ψ−〉〈Ψ−|+ (1− p)1/4. (IV.49)

In [Werner, 1989] it was shown that (IV.49) is separable if and only if p ≤ 1/3, but they
admit a local hidden variable model if p ≤ 5/12 [Barrett, 2002]. Hence, there is a range
of the parameter p in which ρ̂Wp is entangled but not nonlocal. This discussion shows
that there is a non-trivial relation between entanglement and nonlocality which is up
to today not completely understood [Brunner et al., 2014].
One way to activate the nonlocality of mixed states is by using entanglement distil-

lation. The latter transforms N copies of a mixed entangled state ρ̂ into some smaller
number of states which are almost maximally entangled. Thus, if one is able to distill
pure entanglement from a finite number of copies of a mixed state one can reveal its
nonlocality. However, not all mixed states are distillable. Peres even conjectured in
1999 that all non-distillable entangled states, referred to also as bound entangled states,
do admit a local hidden variable model [Peres, 1999]. This conjecture was recently
disproven by showing the violation of a Bell inequality with a specific bound entan-
gled state [Vértesi and Brunner, 2014]. For multi-partite systems the situation becomes
even more complicated and will not be further subject of this thesis [Chen et al., 2014;
Cavalcanti et al., 2011; Raeisi et al., 2015].

IV.2.2 Experimental demonstration of Bell nonlocality

In the past 30 years there has been many demonstrations of Bell inequality violations
in different types of physical system. Especially, the development of spontaneous para-
metric down-conversion techniques and the accompanied improvement of sources of
entangled pairs of photons, has made Bell inequalities violations an almost trivial task.
However, for many years, some stubborn realists have been refusing to accept these
experiments as reliable demonstrations of Bell nonlocality due to the following experi-
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mental loopholes.
First, the limited detection efficiency of single-photon detectors used in experiments

opens the so called detection loophole and forces the experimenters to do the so called
fair-sampling assumption. This means that the subset of all detected photons provides
a fair sample of all photon pairs produced in the experiments and the measured data
is representative of the data that would have been measured if the detectors had unit
efficiency. The detection loophole can be closed if the efficiency of the detectors exceeds
a certain threshold efficiency η∗.
In order to determine this threshold efficiency we assume a Bell test in terms of

the above discussed CHSH scenario with measurements yielding binary outcomes ±1.
Further on, we assume that Alice and Bob share a maximally entangled state and
perform appropriate local measurements leading principally to a maximal violation of
the CHSH inequality of 2

√
2. However, Alice and Bob have a limited detection efficiency

of η and assign to lost detection events the outcome +1. This leads to the following three
cases. Either, with probability η2, both detectors click and the outcomes obtained by
Alice and Bob are completely correlated (B = 2

√
2), or, with probability η(1− η), only

one detector clicks leading to completely uncorrelated measurement results (B = 0),
or, with probability (1− η)2, no detector clicks which yields always equal measurement
outcomes for Alice and Bob (B = 2).
The detection loophole can be closed if the CHSH value B, after including all the

aforementioned cases, is still larger then the local-realism bound [Mermin, 1986]:

2
√

2η2 + 2(1− η)2 > 2, (IV.50)

leading to the following threshold efficiency

η∗ =
2

1 +
√

2
≈ 82.8%. (IV.51)

Other threshold efficiencies can be found for more complicated Bell experiments involv-
ing either more measurement settings, outcomes or parties [Brunner et al., 2014]. The
detection loophole has been closed independently in experiments using entangled pho-
ton pairs [Giustina et al., 2013; Christensen et al., 2013]. A recent alternative approach
that aims at demonstrating nonlocality, but avoids the necessity of closing the detection
loophole, by doing the assumption of limited detection efficiencies, was discussed and
realized in [Pütz et al., 2016].
Another important loophole, the so called locality loophole, is opened if one cannot

exclude the possibility of Alice and Bob communicating over some hidden channel that
transmits classical signals at the speed of light. In turn, such classical communication
would allow in principle to explain the observed correlations, that lead to violations
of Bell inequalities, by purely local mechanism. Hence, in order to close the locality
loophole one has to assure that Alice and Bob are space-like separated making hidden
classical communication between them impossible.
Furthermore, one has to be sure that the measurement setting of one of the two parties

is not determined by an earlier event that might be causally related to the measurement
setting on the respective other party. Thus, the measurement settings must be chosen
randomly and freely with respect to the measurement settings on the other side. If this
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is not the case one opens the so called freedom of choices or measurement-independence
loophole.
Mathematically, the locality and the freedom of choice loophole can be expressed as:

p(a|i, j, b, λ) = p(a|i, λ), p(b|i, j, a, λ) = p(b|j, λ), (IV.52)

and

q(λ|i, j) = q(λ), (IV.53)

respectively, leading together to the earlier introduced locality condition (IV.41). The
first experiment which conclusively closed the locality loophole was the one by A. Aspect
et al. in 1982 [Aspect et al., 1982a]. They used high-speed electro-optic modulators,
controlled by two independent quantum random number generators, to switch between
two polarization measurement bases on each side and therefore excluded any classical
communication between Alice and Bob which were separated by about 100 meters.
Other experiments following the one by Aspect et al. were performed more than a
decade later [Weihs et al., 1998; Scheidl et al., 2010]. The latter enforced a space-like
separation also between the quantum random number generators and the source of the
entangled photons.
Note that, strictly speaking, closing the locality loophole completely is not possible.

Doing so requires a space-like separation between the moment determining the mea-
surement settings on one side and the corresponding measurements on the other side.
However, it is never possible to determine these moments exactly. How do we know that
the choices of the measurement setting was determined at time t = 0 and not earlier?
Or, how do we determine the exact moment of the measurement without doing assump-
tions of the measurement process itself [Kent, 2005]? Furthermore, the random choices
of the measurement settings are taken according to random processes in quantum the-
ory and we cannot be sure that these processes are also genuinely random according
to some deeper, up to now unknown, theory. This aspect was discussed more deeply
in [Vaidman, 2001]. In conclusion, since these last aspects have a rather philosophical
touch, one usually refers to the reasonable locality loopholes as the ones mentioned in
the previous paragraphs.
The first experiment that reported the closure of both the detection and the locality

loophole was reported last year in [Hensen et al., 2015]. Therein, the CHSH inequality
was tested using entangled electron spins of nitrogen-vacancy defect centers in diamond
that were entangled using an event-ready scheme originally proposed in [Żukowski et al.,
1993; Simon and Irvine, 2003]. The efficient readout of the electron spins thereby assured
to avoid the fair-sampling assumption and the use of random basis selection together
with fast spin readout of the 1.3km distant spins closed the locality loophole. Finally,
they report a violation of the CHSH inequality of B = 2.42±0.20, and conclude, by a null
hypothesis test, that a local-realistic model of space-like separated parties describing
their measured data can be excluded with a probability of at most 3.9%. This value
was tightened considerably in two other loophole free Bell test using entangled photon
pairs performed shortly after [Shalm et al., 2015; Giustina et al., 2015].
Having discussed some of the most important aspects concerning nonlocal correla-

tions, their detection and experimental demonstration, in the case of measurements
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with finitely many outcomes, we will turn now to the main question of this Section.
Can we test the CHSH inequality with observables yielding infinitely many outcomes?

IV.2.3 Bell inequalities for bounded observables

In the remainder of this Section we will discuss the possibility of performing tests of
local-realism in terms of measurements of bounded observables with possibly continuous
outcomes. Examples of the latter are for instance measurements of modular variables,
as discussed in Chapter III. In this respect, we need to derive a Bell inequality that
can be applied to measurements of such observables. For the derivation of the CHSH
inequality, and the Tsirelson bound, the assumption of binary measurement outcomes,
e.g. ±1, was crucial. In the following, we will discuss to what extend Eq. (IV.44) can
be applied also for more general measurements yielding non-binary outcomes [Ketterer
et al., 2015].

IV.2.3.1 Bounded discrete measurement outcomes

One way of deriving a Bell inequality for measurements with bounded observables is
by assuming discretized measurement scenario. In this respect, we consider pairs of
observables, Ai and Bj , with i, j = 1, 2, on Alice and Bob’s subsystem, respectively,
each yielding d discrete outcomes: a1, a2, b1, b2 = −(d − 1)/2, . . . , (d − 1)/2, where we
assumed d being even. The experimental average of a product of two such observables
is thus given by:

〈AiBj〉 =
∑

a,b

ab p(a, b|i, j), (IV.54)

with the joint-probabilities p(a, b|i, j) for obtaining the outcomes a and b given the choice
of the observables Ai and Bj . The joint-probabilities p(a, b|i, j) are directly obtained
from the experimental coincidence counts N(a, b|i, j) through the simple formula:

p(a, b|i, j) =
N(a, b|i, j)∑
a,bN(a, b|i, j) . (IV.55)

In the following, we want to derive a Bell inequality by assuming that the outcomes
of the observables Ai and Bj are determined by a local hidden variable theory. In
order to do so we follow the strategy presented in [Collins et al., 2002] and intro-
duce d4 probabilities cα1,α2,β1,β2 , where α1, α2, β1, β2 = −(d − 1)/2, . . . , (d − 1)/2 and∑

α1,α2,β1,β2
cα1,α2,β1,β2 = 1, which specify that on Alice’s side the measurement of the

observables A1 and A2 yield the outcomes α1 and α2, respectively, and on Bob’s side the
measurement of the observables B1 and B2 yield the outcomes β1 and β2, respectively.
Note that this is a deterministic strategy because the measurement outcomes are com-
pletely determined by the value of the local variables α1, α2 and β1, β2. Starting from
a nondeterministic local hidden variable model is possible, however, one can rephrase
every probabilistic hidden variable theory in the above way by incorporating the local
randomness in the probabilities cα1,α2,β1,β2 [Percival, 1998].
Further on, within the fixed local variable theory, the joint-probabilities for pair-

measurements of observables on Alice’s and Bob’s side, respectively, read p(A1 =
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α1, B1 = β1) =
∑

α2,β2
cα1,α2,β1,β2 , and analogously for p(A1 = α1, B2 = β2), p(A2 =

α2, B1 = β1) and p(A2 = α2, B2 = β2), and the expectation values of the products of
the respective observables can be calculated as follows:

〈A1B1〉 =
∑

α1,α2,β1,β2

α1β1cα1,α2,β1,β2 , 〈A1B2〉 =
∑

α1,α2,β1,β2

α1β2cα1,α2,β1,β2 , (IV.56)

〈A2B1〉 =
∑

α1,α2,β1,β2

α2β1cα1,α2,β1,β2 , 〈A2B2〉 =
∑

α1,α2,β1,β2

α2β2cα1,α2,β1,β2 . (IV.57)

Now, by combining the different products in Eqs. (IV.56) and (IV.57) in a CHSH-like
expression we find

〈A1B1〉+ 〈A1B2〉+〈A2B1〉 − 〈A2B2〉 =
∑

α1,α2,β1,β2

[α1β1 + α1β2 + α2β1 − α2β2] cα1,α2,β1,β2

=
∑

α1,α2,β1,β2

[α1(β1 + β2) + α2(β1 − β2)] cα1,α2,β1,β2 , (IV.58)

whose absolute value is easily shown to be bounded by 2(d− 1)2/22 = (d− 1)2/2, since
the maximum outcomes of each individual observable are equal to ±(d−1)/2. Hence, if
we rescale the measurement outcomes such that they are within the interval [−K,+K],
by dividing the outcomes by (d − 1)/(2K), we find that Eq. (IV.58) is bounded by
2K2. In the particular case K = 1 we thus recover a CHSH-like inequality for discrete
bounded observables:

〈A1B1〉+ 〈A1B2〉+〈A2B1〉 − 〈A2B2〉 ≤ 2. (IV.59)

Note that the bound of inequality (IV.59) does not depend on the number of outcomes d,
thus holds particularly in the limit d→∞ of measurements with continuous outcomes.
However, from an experimental point of view this is not of great importance because,
due to the finite measurement precision for measurements of continuous variables, one
ultimately has to rely on the discrete case. Nevertheless, in the following we will show
an alternative way of proving Eq. (IV.59) by using directly observables with bounded
continuous outcomes without going back to the discrete case.

IV.2.3.2 Bounded continuous measurement outcomes

Let’s consider once again pairs of observables, Ai and Bj , with i, j = 1, 2, on Alice
and Bob’s subsystem, respectively, whereas each observable yields now bounded and
continuous outcomes contained within the interval [−K,K]. Further on, if we assume
that the outcomes of the above observables are predicted by a local and realistic theory,
we know, from the discussion in Sec. IV.2.1, that the corresponding joint-probability
density p(a, b|i, j), for obtaining pairs of continuous outcomes a, b ∈ [−K,K] given the
measurement settings i, j ∈ {1, 2}, reads:

p(a, b|i, j) =

∫

Λ
dλq(λ)p(a|i, λ)p(b|j, λ), (IV.60)
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with the hidden-variable λ living on the hidden-parameter space Λ distributed according
to the probability density q(λ). Using Eq. (IV.60) we can calculate the expectation value
of products between observables on Alice’s and Bob’s side, yielding:

〈AiBj〉 =

∫ K

−K
da

∫ K

−K
db a b p(a, b|i, j). (IV.61)

=

∫

Λ
dλ q(λ)

∫ K

−K
da

∫ K

−K
db ab p(a|i, λ)p(b|j, λ), (IV.62)

=

∫

Λ
dλ q(λ)āi(λ)b̄j(λ) (IV.63)

where āi(λ) =
∫ K
−K da a p(a|i, λ) (b̄j(λ) =

∫ K
−K db b p(b|j, λ)) refers to the correspond-

ing local expectation value on Alice’s (Bob’s) side. Note that, according to Fubini’s
theorem we are allowed to exchange the integrations over a, b and λ, since the func-
tion f(a, b, λ) = ab q(λ)p(a|i, λ)p(b|j, λ) is integrable, meaning that the whole integral
(IV.62) is bounded if one replaces the integrand with its absolute value |f(a, b, λ)|. Now,
in order to derive a Bell inequality for bounded continuous measurements we combine
the expectation values (IV.63) in a CHSH-like expression (compare with (IV.44)), to
obtain

B = 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉

=

∫
dλq(λ)

[
ā1(λ)(b̄1(λ) + b̄2(λ)) + ā2(λ)(b̄1(λ)− b̄2(λ))

]
︸ ︷︷ ︸

=X(λ)

. (IV.64)

The maximum of Eq. (IV.64) is directly related to the maximum of the quantity X(λ)
which is attained when the local expectation values āi(λ) and b̄j(λ) take their maximum
values ±K. In this extremal case it is easy to see that |X(λ)| can only be equal to 2K2,
and we find that:

|B| ≤ 2K2. (IV.65)

For observables that are bounded by K = 1, we thus recover the same inequality as
in Eq. (IV.59). Hence, for measurements of bounded observables, we can always apply
the CHSH inequality with the generalized bound (IV.65) in order to test for nonlocal
correlations.
An interesting feature of the generalized CHSH inequality (IV.65) is that, even though

it involves measurements with continuous outcomes, it can be tested in terms of pure bi-
nary measurements only. If one considers, for instance, the observable Ax (the same rea-
soning will apply also to By) with K = 1, we find that its expectation value is bounded
by K = 1 and can expressed as 〈Âi〉 = p+ − p−, with probabilities p±. Thereby, ±
refer to some binary property whose measurement outcomes reproduce the expectation
value of the observable Ai. Hence, every Bell inequality that involves measurements of
bounded observables can be tested by measuring an appropriately chosen binary observ-
able. In the quantum realm, this refers to the discussion of Sec. II.1.4, where we showed
that the expectation value of every quantum observable can be measured in terms of
a two-valued POVM. Later on, when discussing possible experimental realizations of
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measurements of bounded observables, we will make use of this fact (see Sec. III.4.3).
Finally, we would like to emphasize that the Bell inequality (IV.65) involves expecta-

tion values of products of the observables Ai and Bj and not normalized correlation func-

tions, such as E(Ai, Bj) = 〈AiBj〉/
√
〈A2

i 〉〈B2
i 〉. This difference is important because

in general we have 〈AiBj〉 6= E(Ai, Bj). Only in the case of measurements of binary
observables A(bin)

i and B(bin)
j , yielding outcomes {±1}, we have (A

(bin)
i )2, (B

(bin)
j )2 = 1

and thus 〈A(bin)
i B

(bin)
j 〉 = E(A

(bin)
i , B

(bin)
j ). This issue is also discussed in [Barut and

Meystre, 1984], where the authors rightfully argue that a CHSH inequality involving cor-
relations functions E(Ai, Bj), with bounded continuous observables Ai and Bj , cannot
exist. In particular, they find that the CHSH inequality, involving normalized corre-
lation functions, can be violated also by measurements of a classical spin which yields
bounded continuous outcomes. And indeed, the authors emphasize that in their case
the violation of the local-realism bound of the CHSH inequality is due to the normal-
ization of the correlation functions and not due to a violation of local-realism. In this
sense the above derived Bell inequality (IV.65) is not in contradiction with the results
presented in [Barut and Meystre, 1984].

IV.2.3.3 Nonlocality test with modular variables

In the following, we will use the generalized CHSH inequality (IV.65) to perform non-
locality tests in terms of measurements of modular variables. In Sec. III.1.1 we found
that the most general quantum modular variables F (x̂, p̂) can be expressed as a super-
position of displacement operators (see Eq. (III.9)) and thus has a phase-space Wigner
representation (II.71) that is equal to a two-dimensional Fourier series in position and
momentum WF (x, p) = F (x, p)/(2π) (see Eq. (III.7)). Hence, the modular variables
F (x̂, p̂) have a clear classical analog which is given by the function F (x, p). In order to
make them admissible for the above nonlocality test we just have to choose a Fourier de-
composition of F (x, p) that is bounded. Examples are the modular variables Q̂ϕ(ν, µ),
discussed in Sec. III.1.2, which are bounded by one.
Further on, we choose the four observables Âi and B̂j , for i, j = 1, 2, equal to bounded

modular variables, with bound K, and define the CHSH operator

B̂ = Â1B̂1 + Â1B̂2 + Â2B̂1 − Â2B̂2, (IV.66)

whose phase-space distribution is given by

WB̂(x, p) = WÂ1
(x, p)

(
WB̂1

(x, p) +WB̂2
(x, p)

)
+WÂ2

(x, p)
(
WB̂1

(x, p)−WB̂2
(x, p)

)
,

(IV.67)

where we made use the linearity of the Wigner function (see Eq. (II.72)). Due to the
boundedness of the modular variables Âi and B̂j , which implies 2π|WÂi,B̂j

(x, p)| ≤ K,
we can also deduce a bound on the phase-space distribution (IV.67):

2π|WB̂(x, p)| ≤ 2K2. (IV.68)

Moreover, since the expectation value of B̂, with respect to an arbitrary quantum state
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ρ̂, can be calculated according to the identity (II.73):

〈B̂〉 = 2π

∫∫ ∞

−∞
dxdpWB̂(x, p)Wρ̂(x, p) (IV.69)

we find that

|〈B̂〉| ≤ 2K2

∫∫ ∞

−∞
dxdpWρ̂(x, p) = 2K2, (IV.70)

which holds only if Wρ̂(x, p) is a strictly non-negative function. Hence, a violation of
local-realism in terms of measurements of modular variables is only possible if the cor-
responding quantum state has a Wigner distribution that is not strictly non-negative
(in the next Section we will derive such states). This is in marked contrast to demon-
strations of nonlocality in terms of measurements of observables having an unbounded
Wigner distribution, such as the displaced parity operator, which can be achieved also
with states that have a positive Wigner function [Banaszek and Wódkiewicz, 1998,
1999]. Similar conclusions were drawn independently in [Arora and Asadian, 2015].
In practice, we will have two possibilities to measure expectation values of the modular

variables F (x̂, p̂) which, due to the Heisenberg uncertainty principle, cannot be accessed
directly through measurements of x̂ and p̂. Either, we find an appropriate binary
measurement strategy (POVM) that allows us to determine the expectation value of
F (x̂, p̂) indirectly (see discussion in Sec. II.1.4), or we are able to measure directly in
the eigenbasis of the observable F (x̂, p̂), what allows us to calculate its expectation
value through simple post processing. Both variants have been elaborated in detail
in Sec. III.4.3, where we discussed possible experimental measurement strategies of
modular variables.

IV.2.4 Violation of local-realism with modular variables

Following the discussion of the last Section we can test the CHSH inequality (IV.44)
with all bounded modular variables according to Eq. (IV.65). Therefore, in particular,
we can consider the set of observables Re(X̂), Re(Ŷ ) and Re(Ẑ), which in the modular
representation read:

Γ̂x =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ cos (ip̄`/2)σ̂x(x̄, p̄), (IV.71)

Γ̂y =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ cos (2πix̄/`− ip̄`/2)σ̂y(x̄, p̄), (IV.72)

Γ̂z =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ cos (2πix̄/`)σ̂z(x̄, p̄). (IV.73)

as we have seen in Sec. III.3.1. The observables (IV.71), (IV.72) and (IV.73), are
examples of the modular variables discussed in Sec. III.1.2, and thus bounded by K = 1.
We emphasize once more that the above operators are non-commuting, as discussed in
Sec. III.3.3.4, and thus are good candidates for the detection of nonlocality. We could
have also chosen a different set of modular variables with similar commutation relations
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that lead to another set of functions ζα in Eq. (IV.71)-(IV.73). Such novelly defined
modular variables yield as well a local-realism threshold of two in the CHSH inequality
(see also Eqs. (IV.44) and (IV.65)), as long as the individual observables are bounded
by one.

IV.2.4.1 Approach 1: Using logical rotations

In analogy to nonlocality tests with qubits, we choose the observables on Alice’s and
Bob’s side as Âi = e−iΓ̂

1
zφi/2Γ̂xe

iΓ̂1
zφi/2 and B̂j = e−iΓ̂

1
zθj/2Γ̂xe

iΓ̂1
zθj/2, whereas the angles

φi and θj , with i, j = 0, 1, define different measurement settings, respectively. The
unitary transformations e−iΓ̂1

zφi/2 and e−iΓ̂
1
zθj/2 can, as discussed in Sec. III.3.2, be

considered as rotations around the z-axis of the Bloch sphere of the encoded logical
qubits. Written in the modular representation, we thus have:

Âi =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ cos (ip̄`/2)σ̂φi(x̄, p̄), (IV.74)

B̂j =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ cos (ip̄`/2)σ̂θj (x̄, p̄), (IV.75)

where σ̂φi(x̄, p̄) and σ̂θj (x̄, p̄) define, in analogy to Eqs. (III.84), (III.85) and (III.87), the
corresponding (x̄, p̄)-dependent Pauli matrices in the directions n̂φi and n̂θj , respectively.
Mathematically, we have σ̂φ(x̄, p̄) = nφ · σ̂(x̄, p̄), where nφ = (nφx, n

φ
y , n

φ
z ) and σ̂(x̄, p̄) =

(σ̂x(x̄, p̄), σ̂y(x̄, p̄), σ̂z(x̄, p̄)).
With quantum mechanical analogs of the observables Ai and Bj in hand we can write

down the CHSH operator (IV.66) which, after inserting the observables (IV.74) and
(IV.75), reads:

B̂ =

∫∫ `/4

−`/4
dx̄adx̄b

∫∫ π/`

−π/`
dp̄adp̄b cos (p̄a`/2) cos (p̄b`/2)B̂(x̄a, p̄a; x̄b, p̄b), (IV.76)

where

B̂(x̄a, p̄a, x̄b, p̄b) =σ̂φ1(x̄a, p̄a)σ̂θ2(x̄b, p̄b) + σ̂φ1(x̄a, p̄a)σ̂θ2(x̄b, p̄b)

+σ̂φ2(x̄a, p̄a)σ̂θ2(x̄b, p̄b)− σ̂φ2(x̄a, p̄b)σ̂θ2(x̄b, p̄b). (IV.77)

Thereby, the operator (IV.77) has a phase-space Wigner representation that is equal to
a sum of delta functions and therefore unbounded (see also the discussion about perfect
GKP states at the end of Sec. III.2.1). Only after integration over x̄ and p̄, with an
appropriate weight function cos (p̄a`/2) cos (p̄b`/2), it is possible to recover a proper Bell
operator (IV.76) with a well-defined phase space distribution as in Eq. (IV.67).
Even though Eq. (IV.77) does not provide a proper Bell operator, we can take ad-

vantage of it in order to diagonalize the actual Bell operator (IV.76). Therefore, we
consider Eq. (IV.77) as a matrix acting on the four-dimensional subspace spanned by
the modular eigenstates {|x̄a, p̄a〉|x̄b, p̄b〉, |x̄a, p̄a〉|x̄b+ `/2, p̄b〉, |x̄a+ `/2, p̄a〉|x̄b, p̄b〉, |x̄a+
`/2, p̄a〉|x̄b + `/2, p̄b〉}, which can be diagonalized easily. Further on, if we choose the
angles which fix the measurement settings equal to φ1 = 0, φ2 = π/2, θ1 = π/4 and
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φ4 = −π/4, this diagonalization yields two non-zero eigenvalues ±2
√

2 with the corre-
sponding eigenvectors:

|ψ±1(x̄a, p̄a; x̄b, p̄b)〉 =
1√
2

(|x̄a, p̄a〉|x̄b + `/2, p̄b〉 ± |x̄a + `/2, p̄a〉|x̄b, p̄b〉) . (IV.78)

and the Bell operator (IV.76) can be expressed as

B̂ =2
√

2
∑

n=±1

n

∫∫ `/4

−`/4
dx̄adx̄b

∫∫ π/`

−π/`
dp̄adp̄b

× cos (p̄a`/2) cos (p̄b`/2)|ψn(x̄a, p̄a; x̄b, p̄b)〉〈ψn(x̄a, p̄a; x̄b, p̄b)|. (IV.79)

We thus see that the entangled states (IV.78) violate the CHSH inequality maximally if
we choose the modular momenta, p̄a and p̄b, equal to zero, while the modular positions,
x̄a and x̄b, can take arbitrary values.

At this point we emphasize that the entangled states (IV.78) are modular eigenstates
and thus nonnormalizable superpositions of position eigenstates (see also Eq. (III.34)).
In order to obtain physically sound states we need to superpose them with an ap-
propriate wave function. Remember that we have to choose the wave function only
on the domain [−`/4, `/4[×[−π/`, π/`[ on Alice and Bob system, respectively, yield-
ing implicitly the wave function on the whole domain [−`/4, 3`/4[×[−π/`, π/`[ through
Eq. (IV.78). Furthermore, since we are interested in the entanglement with respect to
our logical states |0L〉 and |1L〉, introduced in Sec. III.2.1, we choose the wave function
to be separable within this subspace, namely: fab(x̄a, p̄a; x̄b, x̄b) = fa(x̄a, p̄a)fb(x̄b, p̄b).
With this choice we can construct the physically sound entangled state:

|Ψent〉 =

∫∫ `/4

−`/4
dx̄adx̄b

∫∫ π/`

−π/`
dp̄adp̄bfab(x̄a, p̄a; x̄b, x̄b)|ψ±1(x̄a, p̄a; x̄b, p̄b)〉

=
1√
2

(|0L〉|1L〉 ± |1L〉|0L〉) , (IV.80)

where |0L〉 and |1L〉 are defined according to Eqs. (III.75) and (III.76), respectively.
The expectation value of the Bell operator (IV.79) with respect to the state (IV.80)
then becomes:

〈B̂〉 = ±K(a)K(b)2
√

2, (IV.81)

with

K(a,b) =

∫ `/4

−`/4
dx̄i

∫ π/`

−π/`
dp̄i cos (p̄a,b`/2)|fa,b(x̄a,b, p̄a,b)|2. (IV.82)

Equation (IV.81) shows that a violation of the CHSH inequality with the entangled
logical state (IV.80) is possible if we choose the functions fa,b(x̄a,b, p̄a,b) such that they
have a large overlap (IV.82) with the corresponding function that defines the observables
(III.94) (here cos (p̄`/2)).
In the following, in order to discuss the behaviour of (IV.81) numerically, we choose

the wave function fa,b(x̄a, p̄a; x̄b, p̄b) equal to a Gaussian function with identical widths
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Figure IV.3: Plots of the expectation value of the Bell operator (IV.79) according to
the state (IV.80) as a function of ap̄, for ` = 2

√
π. Each curve corresponds to a different

width in the modular position with increasing order from the uppermost to the lowest
curve at the origin of the x-axis: κi = 0.05(2π/`) (blue, uppermost), κi = 0.1(2π/`)
(red), κi = 0.15(2π/`) (green), κi = 0.2(2π/`) (purple), κi = 0.25(2π/`) (orange),
κi = 0.3(2π/`) (pink), κi = 0.35(2π/`) (cyan), κi = 0.4(2π/`) (brown), κi = 0.45(2π/`)
(magenta,lowest) and κi = 0.5(2π/`) (grey,lowest). All parameters are chosen equal for
i = a, b. The black curve shows the function 2

√
2 cos2 (ap̄`/2) and the black dashed line

indicates the local-realism threshold.

on Alice’s and Bob’s side, respectively. In particular, we set fa,b(x̄a, p̄a; x̄b, p̄b) =
f(x̄a, p̄a)f(x̄b, p̄b), where f(x̄, p̄) is a two-dimensional Gaussian function with widths
∆ and κ and with periodic boundary conditions on the domain [−`/4, `/4[×[−π/`, π/`[
(for more details see also the discussion at the end of Sec. IV.1.3).

In Fig. IV.3, we present a plot of the expectation value of the CHSH operator (IV.79)
with respect to the above defined wave function fab(x̄a, p̄a; x̄b, x̄b) as a function of its
location ap̄ in the interval [−π/`, π/`[ and for different modular momentum widths
κ. The value 〈B〉 is invariant under the variation of ax̄ and ∆ because for ζx(x̄, p̄) =
cos (p̄`/2) the integrand in Eq. (IV.82) with respect to x̄ is a normalized Gaussian
and thus its integral is independent of these parameters (see also Sec. IV.1.3). From
Fig. IV.3 we deduce that a violation of the CHSH inequality is possible if the squeezing
in the modular momentum is κ . 0.27(2π/`), i.e. the width 1/κ of the envelope of the
Gaussian comb in the position representation is large enough. If this condition is fulfilled
a violation is found if the wave function fa,b(x̄a,b, p̄a,b) is located in an interval centered
around ap̄ = 0. The behavior of the curves plotted in Fig. IV.3 reflects the characteristics
of the precise choice of the function ζx(x̄, p̄) = cos (p̄`/2), thus of the measured modular
variable Γ̂x. In particular, in the limit κ→ 0, we have fa,b(x̄a,b, p̄a,b) ∝ δ(p̄a,b− ap̄) and
thus 〈B̂〉 = 2

√
2 cos2 (ap̄`/2), as indicated by the black curve.
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IV.2.4.2 Approach 2: Using the shear operation

In the last Section we have demonstrated the violation of the CHSH inequality in terms
of measurements of the modular variable Γ̂x in combination with the rotation operations
(III.108). Further on, we want to present one more way to perform such a nonlocality
test that avoids the use of the rotations defined in Sec. III.3.2, but rather uses one of the
single mode Clifford operations introduced in Sec. III.2.2.2. The reason for this is that
the experimental implementation of the rotations (III.108) in terms of the transverse
degrees of freedom of photons requires the use of a specific optical element, e.g. a
spatial light modulator, while here we show that it is possible to restrict ourselves to
the free-propagation of the photons only (see also Sec. II.3.1).
Let’s consider the operator Γ̂z = Re(Ẑ) in the modular representation:

Γ̂z =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ cos (x̄2π/`)σ̂z(x̄, p̄), (IV.83)

as in Eq. (IV.73). Furthermore, to specify different measurement settings we define the
transformed operator Γ̂′φ = Û †(φa)ÂsaÛ(φa), using the the Fourier transformed shear
operation Û(φa) = eip̂

2`2φ/(2π)2 , introduced in Sec. III.2.2.2. Specifically, by choosing
φ = π/2, we get:

Γ̂′π
2

=

∫ `/2

0
dx̄

∫ h/`

0
dp̄ cos (x̄2π/`− p̄`/(2~))σ̂y(x̄, p̄),

(IV.84)

what is equal to Γ̂y = Re(Ŷ ). Using the operators (IV.83) and (IV.84) we can define
the following Bell operator:

B̂ = Γ̂(1)
z Γ̂(2)

z + Γ̂(1)
z Γ̂(2)

y + Γ̂(1)
y Γ̂(2)

z − Γ̂(1)
y Γ̂(2)

y . (IV.85)

In contrast to the Bell operator (IV.76) found in the last Section, Eq. (IV.85) can not be
written as an integral over a (x̄, p̄)-dependent Bell operator (IV.77), due to the different
functions under the integral in Eq. (IV.83) and (IV.84). Nevertheless, candidates of
entangled states that lead to a violation of local-realism can be found by diagonalizing
the operator

B̂(x̄a, p̄a, x̄b, p̄b) = σ̂z(x̄a, p̄a)σ̂z(x̄b, p̄b) + σ̂z(x̄a, p̄a)σ̂y(x̄b, p̄b)

+ σ̂y(x̄a, p̄a)σ̂z(x̄b, p̄b)− σ̂y(x̄a, p̄b)σ̂y(x̄b, p̄b), (IV.86)

expressed in the basis {|{x̄a + i`/2, p̄a}〉|{x̄b + j`/2, p̄b}〉}, with i, j = 0, 1. This yields
two nonzero eigenvalues ±2

√
2 and the corresponding eigenvectors:

|ψ±(x̄a, p̄a; x̄b, p̄b)〉 =
1

N±
[|x̄a, p̄a〉|x̄b, p̄b〉+ |x̄a + `/2, p̄a〉|x̄a + `/2, p̄a〉

± i(
√

2∓ 1) (|x̄a, p̄a〉|x̄a + `/2, p̄a〉+ |x̄a + `/2, p̄a〉|x̄a, p̄a〉)],
(IV.87)
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Figure IV.4: Plots of the expectation value of the Bell operator (IV.85) in terms of
the state (IV.87) with a Gaussian wave function as a function of ax̄, for ` = 2

√
π,

κi = 0.1(2π/`), ap̄ = 0 (left) and ap̄ = 0.1(2π/`) (right). Each curve corresponds to
a different width in the modular position with increasing order from the uppermost to
the lowest curve at the origin of the x-axis: ∆i = 0.05` (blue, uppermost), ∆i = 0.075`
(red), ∆i = 0.1` (green), ∆i = 0.125` (purple), ∆i = 0.15` (orange), ∆i = 0.175`
(pink), ∆i = 0.2` (cyan), ∆i = 0.225` (brown), ∆i = 0.25` (magenta) and ∆i = 0.275`
(grey,lowest). All parameters are chosen equal for i = a, b. The black curve shows the
function 2

√
2 cos2 (ax̄`/2) and the black dashed line indicates the local-realism threshold.

where N± = 2(2∓
√

2)1/2. These nonnormalizable states violate the CHSH inequality
maximally for the choice x̄a/b = 0 and p̄a/b = 0, yielding 〈B̂〉 = ±2

√
2. Furthermore, we

can construct physically sound states by continuously superposing the states (IV.87)
with Gaussian wave packets, as discussed in the last Section.
In Fig. IV.4, we present numerical results of 〈B̂〉 according to Eq. (IV.85) as a function

of ax, for different values of the parameters ∆, κ and ap̄, showing a violation of the CHSH
inequality for the entangled state (IV.87) superposed with a Gaussian wave packet. In
contrast to the last section, the expectation value 〈B̂〉 is not invariant under one of the
parameters ax̄, ap̄, ∆ and κ, because the function ζy(x̄, p̄) = cos (x̄2π/`− p̄`/2) depends
on both the modular position and momentum. In Fig. IV.4(a), where we set ap̄ = 0
and κ = 0.1(2π/`), all curves are symmetric with respect to the origin ax̄ = 0 and a
violation occurs for a modular position width of ∆ . 0.12`. The finite value of κ results
in an overall decrease of the expectation value 〈B̂〉, as compared to Fig. IV.3. Also here
the curves have a cos2-shape for small values of the modular position and momentum
widths ∆ and κ, respectively. In Fig. IV.4(b), we set ap̄ = 0.1(2π/`) leading to a
asymmetric curve shape and a slight decrease of the values of 〈B̂〉.
Having shown the theoretical violation of the CHSH inequality we will move on now

and discuss the use of measurements of modular variables in the context of contextuality
tests of quantum mechanics.

IV.3 Contextuality

This Section is devoted to the study of contextuality as yet another fundamental prop-
erty of quantum mechanics which, in contrast to entanglement and Bell nonlocality, is
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Figure IV.5: (a) Graph representing nine observables each consisting of four vertices
that are connected by colored edges. (b) The same graph including black dots repre-
senting pre-determined outcomes to each of the nine observables. At least one of the
observables cannot assign a unique pre-determined value (red star).

not based on correlations between two or more spatially separated subsystem. In this re-
spect, we will first give an introduction in order to explain the terms (non)contextuality
and discuss the Peres-Mermin square as a possible approach for its detection. Following
this we will turn to the main subject of this Section and discuss the generalization of
the Peres-Mermin scenario to Hilbert spaces of arbitrary dimension and demonstrate
our findings at examples, including the case of modular variables.

IV.3.1 Contextuality and the Peres-Mermin square

The question of whether physical systems have intrinsic non-contextual properties is a
long standing debate that was turned upside down with the advent of quantum physics.
The measurement outcome dependence upon previously made measurements is at the
heart of the Einstein-Podolsky-Rosen (EPR) paradox [Einstein et al., 1935], that evi-
dences the conflict between classical and quantum views of realism. The contextuality
of quantum theory, contrary to its classical analog, is ensured by the Kochen-Specker
theorem [Kochen and Specker, 1967].
In a non-contextual theory, the result of a measurement of an observable A depends

only on the state of the system and the observable A being measured. Additionally,
measurement outcomes can depend on some (possibly hidden) variable λ describing the
state of the system. If one knows λ then one can predict the outcome of any measure-
ment: we say thus that measurement outcomes are pre-determined. This corresponds
to the classical view in which every system is in a well defined state. In particular,
in a non-contextual theory, measurement outcomes do not depend on the compatible
observables that are measured together with A.
The initial argument by Kochen-Specker to show the contextuality of quantum me-

chanics used a set of 117 vectors in a 3-dimensional space [Kochen and Specker, 1967].
To give a simpler, more intuitive explanation of why quantum mechanics is contextual
we consider a four -dimensional Hilbert space and on it, eight observables, each defined
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by four orthonormal eigenvectors. In Fig. IV.5, we present these observables and their
corresponding eigenvectors in a graph. Each vertex of the graph depicts one of the 16
eigenvectors and the vertices are connected by colored edges forming nine observables.
It is evident that a measurement of one of the nine observables can lead to results
whose corresponding eigenvectors are shared by other observables in the graph. In a
non-contextual theory one has to assign predetermined outcomes to each of the observ-
ables. Examples of such predetermined values are depicted in Fig. IV.5(b) by black dots
covering one vertex of the corresponding measured observables. If we now try to assign
predetermined outcomes to all the observables depicted in the graph, we see that this is
not possible. Either one of the observables cannot yield a single determined outcome or
the measurement outcomes cannot be predefined. This contradiction demonstrates that
the measurement outcomes in quantum mechanics cannot be reproduced by a classical
theory, in which measurement results are predetermined by some hidden variables.
Since Kochen-Specker many attempts have been made to refine the definition of the

contextuality argument in order to turn it into an experimentally testable property. The
contextuality of quantummechanics was proven for a particular state and a Hilbert space
of dimension 4 by Peres [Peres, 1990]. Mermin showed that this argument could be recast
to find a state independent proof of contextuality [Mermin, 1990]. Mermin’s arguments
were also used later on to derive state independent non-contextuality inequalities, i .e.
inequalities that can be violated by any state if contextuality holds [Cabello, 2008;
Kleinmann et al., 2012; Yu and Oh, 2012]. One way to obtain such inequalities is by
using the so-called Peres Mermin square (PMS) which is particularly attractive from
an experimental perspective. Indeed there have been experimental demonstrations of
contextuality based on the PMS with trapped ions [Kirchmair et al., 2009], nuclear spin
ensembles [Moussa et al., 2010] and photons [Amselem et al., 2009, 2012; D’Ambrosio
et al., 2013]. In addition, it has been proven that contextuality is a critical resource
for quantum computing [Veitch et al., 2012; Raussendorf, 2013; Howard et al., 2014;
Delfosse et al., 2015; Raussendorf et al., 2015].
In order to recall the principles of the PMS let us consider a set of nine dichotomic ob-

servables {Ajk}, i, j = 1, 2, 3, and present them in a table as depicted in Fig. IV.6(left).
The observables are chosen such that they are mutually commuting whenever they share
a common subscript. Thus, products of observables occupying the same row or column
in the table (see Fig. IV.6(left)) can be measured simultaneously and we can construct
the following measurable quantity:

〈X〉 =〈A11A12A13〉+ 〈A21A22A23〉+ 〈A31A32A33〉 (IV.88)
+ 〈A11A21A31〉+ 〈A12A22A32〉 − 〈A13A23A33〉. (IV.89)

In a non-contextual theory, where observables assign pre-determined values −1 or 1, one
can show that the maximum value of 〈X〉 is equal to 4, simply by testing all possible
combination of outcomes of the observables {Ajk} [Cabello, 2008].
In contrast, if one considers quantum theory the observables {Aij} are given by

hermitian operators with a binary spectrum, for instance by products of Pauli operators
(see Eqs. (II.3)-(II.5)), as depicted in Fig. IV.6(right). In this case one can easily check
that the observables in the same row or column are mutually commuting. However,
because the product of operators along each row and column is equal to 1 and for the
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Ajk k = 1 k = 2 k = 3
j = 1 �̂x ⌦ 1 1 ⌦ �̂x �̂x ⌦ �̂x

j = 2 1 ⌦ �̂z �̂z ⌦ 1 �̂z ⌦ �̂z

j = 3 �̂x ⌦ �̂z �̂z ⌦ �̂x �̂y ⌦ �̂y

Ajk k = 1 k = 2 k = 3
j = 1 A11 A12 A13

j = 2 A21 A22 A23

j = 3 A31 A32 A33

Quantum:Classical:

Figure IV.6: The Peres-Mermin square for measurements of classical binary observ-
ables Aij ∈ {±1} (left) and for measurements of tensor products of Pauli operators
(II.7), σ̂x,y,z (right).

last column equal to −1, one finds that the maximum value of the quantity (IV.89) is
given by 〈X〉QM = 6 and thus violates the classical bound of four. This proves that
measurement outcomes predicted by quantum mechanics can not be reproduced by a
non-contextual theory. Moreover, the latter holds independently of which state the
system is prepared in.

Even though the study of contextuality was originally focused on discrete variable
system, such as qubits and qudits, it is also possible to find state independent non-
contextual inequalities for continuous variables in the PMS [Plastino and Cabello, 2010;
Asadian et al., 2015]. In this case, one notes that the operators used to derive the
inequalities have a bounded spectrum. This last property ensures that their expectation
values can be expressed as the ones of dichotomic observables defined in an extended
space [Horodecki, 2003]. The bounded observables used in [Plastino and Cabello, 2010;
Asadian et al., 2015] can be obtained by measuring bounded functions of observables
with an arbitrary spectrum. Similar techniques were used in [Ketterer et al., 2015;
Arora and Asadian, 2015] to test Bell inequalities [Einstein et al., 1935; Bell, 1964;
Clauser et al., 1969], a particular case of non-contextual inequalities (see Sec. IV.2).
Nevertheless, ruling out local realism in experiments requires to satisfy more stringent
constraints as those necessary to prove the contextuality of quantum mechanics. The
contextuality of quantum mechanics can be proven, in principle, by measuring well
chosen observables, independently of the system’s particular state [Badzia̧g et al., 2009].
It is thus of interest to characterize which properties observables must have in order to
reveal contextuality and to maximally violate non-contextuality inequalities.

So far, the contextuality of quantum mechanics has been shown for specific observ-
ables defined by continuous or discrete variables. In addition, according to the consid-
ered case, the border between contextual and non-contextual theories varies. It is nat-
ural to seek to identify the common features of the existing results and try to formalize
the general conditions quantum observables must fulfill in order to demonstrate state
independent contextuality irrespectively of their dimensionality. Such understanding
would potentially enable state-independent tests of this fundamental property of quan-
tum mechanics in quantum system of various dimensions. In other words, what are the
common/distinctive properties and features of non-contextual inequalities? How can
one build a suitable inequality from arbitrary observables permitting the demonstration
of state-independent contextuality?
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IV.3.2 Peres-Mermin square for arbitrary unitary operators

After having introduced the reader to the topic of contextuality we will seek now to
formulate tests of contextuality in Hilbert spaces of arbitrary dimensions. As discussed
in Sec. IV.3.1, contextuality is another fundamental property of quantum mechanics
which, in contrast to entanglement and nonlocality, does not rely on correlations between
two spatially separated parties. Using the Peres-Mermin square (see Table IV.6) one can
construct inequalities (see Eq. (IV.89)), involving measurements of binary observables,
that allow to demonstrate the contextuality through its violation. Let’s reproduce this
inequality here:

〈X〉 =〈A11A12A13〉+ 〈A21A22A23〉+ 〈A31A32A33〉
+ 〈A11A21A31〉+ 〈A12A22A32〉 − 〈A13A23A33〉 < 4, (IV.90)

where each term AijAklAst is a commuting product of binary observables contained in
the same row or column of the Peres-Mermin square (see Fig. IV.6). As explained in
Sec. IV.3.1, in the quantum case one can choose the observables Aij equal to tensor
products of Pauli operators (II.7) leading to a state-independent violation of inequal-
ity (IV.90). This state-independence constitutes a particularly interesting aspect of
the contextuality of quantum mechanics which will be at the heart of our following
considerations.
In the following we show that a generalized version of the Peres-Mermin square ap-

proach can be formulated using complex functions (continuous or discrete) with absolute
values equal to 1, instead of the above real binary observables Aij . This leads to in-
equalities involving measurements of the real and imaginary parts of such functions
which both are bounded within the interval [−1, 1] and thus can represent, for instance,
bounded modular variables F (x, p). Enlightening results that will help us here as guide-
lines were obtained by Asadian et al. [Asadian et al., 2015], where the particular case
of contextuality tests in terms of phase space displacement operators was studied. In
this work, several interesting conditions for testing contextuality in phase space were
obtained that can be understood further in the light of the framework that we devise
here.
Non-contextual inequalities involving complex functions can be derived by choosing

the Ajk’s appearing in the PMS as Ujk = ARjk+ iAIjk, with |ARjk|2 + |AIjk|2 = 1, as shown
by the left table in Fig. IV.7. In quantum mechanics in turn, the complex functions Ujk
become unitary operators which we can choose to be defined on a bipartite system, as
shown in Fig. IV.7, with three unitary operations Ûj , with j = 1, 2, 3, defined on one of
the two subsystems, respectively. A similar notation was used in [Asadian et al., 2015],
with the important difference that in the mentioned reference the authors focused on
the specific case of displacement operators, while here we consider arbitrary unitary
operators Ûj defined in a Hilbert space of arbitrary dimension. By doing so, we can
identify the original Peres-Mermin square (see Fig. IV.6) as a particular case of the
generalized Peres-Mermin square with arbitrary complex function or unitary operators
(see Fig. IV.7).
If we multiply rows and columns of the classical Peres-Mermin square in Fig. IV.7,

we arrive at a quantity that involves complex functions as well. In order to transform
it into a real quantity we have to take its real or imaginary part. For instance, taking
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Ûjk k = 1 k = 2 k = 3

j = 1 Û†
1 ⌦ ⌦ Û †

1 Û1 ⌦ Û1

j = 2 ⌦ Û†
2 Û†

2 ⌦ Û2 ⌦ Û2

j = 3 Û1 ⌦ Û2 Û2 ⌦ Û1 Û3 ⌦ Û3

Quantum:Classical:
Ujk k = 1 k = 2 k = 3

j = 1 U11 U12 U13

j = 2 U21 U22 U23

j = 3 U31 U32 U33

Figure IV.7: The Peres-Mermin square for measurements of classical complex ob-
servables Uij (left) with absolute value 1 and for measurements of tensor products of
arbitrary unitary operators Ûj , with j = 1, 2, 3 (right).

the real part leads to

〈Re(X)〉 = 〈R1〉+ 〈R2〉+ 〈R3〉+ 〈C1〉+ 〈C2〉 − 〈C3〉, (IV.91)

where Rj and Ck denote the real parts of a product of operators contained in a row or
a column, respectively, which can be expressed in terms of the real and imaginary parts
of the complex functions Uij , yielding:

Rj = (ARj1A
R
j2 −AIj1AIj2)ARj3 − (AIj1A

R
j2 +ARj1A

I
j2)AIj3, (IV.92)

Ck = (AR1kA
R
2k −AI1kAI2k)AR3k − (AI1kA

R
2k +AR1kA

I
2k)A

I
3k. (IV.93)

In order to derive a classical bound on the quantity (IV.91) we assign deterministic out-
comes to the quantities ARij and A

I
kl that take values in the interval [−1, 1]. If we further

assume that they take only the maximal values ±1 we find that the classical bound on
the quantity (IV.91) is given by 12. However, by extending the results of [Asadian et al.,
2015] to arbitrary complex functions we can lower the non-contextual bound and arrive
at: 〈Re(X)〉 ≤ 3

√
3. To show this one has to exploit the fact that the complex func-

tions Uij have absolute values equal to 1 which is a condition that is always true also
for unitary operators Ûij . Enforcing this constraint while maximizing 〈Re(X)〉 allows
us to arrive at a new classical bound. The maximization can be perform by employing
the theory of Lagrange multipliers. In this respect, we introduce an auxiliary function:

〈Re(X)〉(aux) = 〈Re(X)〉 − λ
∑

ij

∣∣(ARij)2 + (AIij)
2 − 1

∣∣ , (IV.94)

which, through the condition∇〈Re(X)〉(aux) = 0, can be used to calculate the maximum
of 〈Re(X)〉 under the constraint |Uij | = 1, and with the ARij ’s and A

I
kl’s being classical

random variables taking values in the interval [−1, 1]. Eventually one finds that, for λ ≥
2, this maximum is given by 3

√
3 defining a new noncontextual bound on the quantity

(IV.91). We note that constraints, such as |Uij | = 1, impose additional assumptions
on the observables contained in Eq. (IV.91) which might open a loophole that can be
exploited to fake the violation of the bound 3

√
3. However, in order to circumvent

this problem we can use directly the expression 〈Re(X)〉(aux), whose classical bound is
also given by 3

√
3, without doing any assumptions on the observables being measured.
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Finally, we can recover the known Peres-Mermin square for qubits, shown in Fig. IV.6,
by assuming that the real or imaginary part of the complex functions Uij is equal to
zero and the other yields binary outcomes. In this case, the above maximization of
(IV.91) recovers the known noncontextual bound of 4.
We now move to the quantum description of the PMS using unitary operators (see

Fig. IV.7(right)). Unitary operators are in general not observables but can be measured
in terms of their real and imaginary parts, ÂRjk and ÂIjk, which themselves are observ-
ables. In order to maximally violate the non-contextual inequality 〈Re(X)〉 ≤ 3

√
3 we

have to enforce that products of operators in each row and column of the Peres-Mermin
square (see Fig. IV.7(right)) are equal to 1, with the exception of the last column that
must yield −1. Futhermore, unitaries in the same row or column must be compatible
which leads to the constraints [Û1, Û3] = 0 or {Û1, Û3} = 0, and similarly for Û2 and
Û3. These conditions cannot be verified all at the same time, and the only possibility
to obtain a state independent maximal violation of the considered noncontextuality in-
equality is to enforce {Û1, Û3} = 0 and {Û2, Û3} = 0. Combining the above ingredients
leads to the following conditions for maximal violation of noncontextuality inequalities
derived from the Peres-Mermin square: Û1Û2Û3 = ±i1 and Û2Û1Û3 = ∓i1, which can
be expressed in a more compact way as:

{Û1, Û2} = 0, (IV.95)

Û3 = ±iÛ †2 Û †1 . (IV.96)

From the conditions (IV.95) and (IV.96) we see that a state independent maximal
violation of the Peres-Mermin inequality requires that the unitary operators U1 and
U2 are anti-commuting and that they completely determine the operator U3 through
the relation (IV.96). Hence, if the unitary operators in the Peres-Mermin square (see
Fig. IV.7(right)) fulfill the commutation relations:

{Ûi, Ûj} = 2δijÛ
2
i , (IV.97)

[Ûi, Ûj ] = ±2iεijkÛ
†
k , (IV.98)

the expectation (IV.91) maximally violates the noncontextuality inequality with 〈Re(X)〉 =
6, no matter in which state |Ψ〉 the system is in. Conditions (IV.95) and (IV.96) are
general, and to our knowledge, have not been established so far. Previous results show-
ing the possibility of violation of the non-contextual inequalities are particular cases
obeying these conditions. Examples are state independent contextuality using two-
level systems [Cabello, 2008] and displacement operators [Plastino and Cabello, 2010;
Asadian et al., 2015].
Now, we make a step further beyond the relations (IV.95) and (IV.96), and answer to

the following question: given a unitary operator Û1, what are the necessary and sufficient
conditions for finding two other operators Û2 and Û3 such that (IV.95) and (IV.96) are
satisfied and thus lead to a maximal violation of noncontextuality inequalities derived
from the Peres-Mermin square? To answer this question we show first that a given
unitary operator Û , acting on a Hilbert space H, admits an anti-commuting partner if
and only if for each eigenvalue λi of Û , we find a corresponding eigenvalue −λi whose
eigenspace has the same dimension Ki as the one of λi. Once we have found an operator
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that fulfills this statement we can express it in some basis as a direct sum:

Û =
N⊕

i=1

λiσ
(i)
z , (IV.99)

where ±λi are the eigenvalues of Û , σ̂(i)
z =

⊕Ki
j=1 σ̂z is a direct sum of Pauli matrices

(II.5) acting on the eigenspace associated to the eigenvalue ±λi with degeneracy Ki,
and N is an arbitrary, possibly infinite, integer value that is smaller than the Hilbert
space dimension. In the particular case of a nondegenerate spectrum σ̂

(i)
z = σ̂z acts on

a two dimensional subspace.

To prove the above statement we assume first that Û fulfills the above condition
on the spectrum and prove that it admits an anti-commuting partner. We restrict
ourselves here to the finite dimensional case. Let’s define the set of eigenvalues of Û
as {λ1, . . . , λN ,−λ1, . . . ,−λN}, and the set of eigenvectors associated to each of the
eigenvalues ±λi as {|e±i,j〉}, with possible degeneracy j ∈ {1, . . . ,Ki}. Since Û is a
unitary operator, we know that the set of eigenvectors {|e±i,j〉} represents an orthonormal
basis of the Hilbert space. Further on, we define an operator Û ′ through: Û ′|e±i,j〉 =

λ′i|e∓i,j〉, where λ′i are arbitrary complex numbers with absolute value 1, which maps an
orthonormal basis to another orthonormal basis thus providing a unitary operator. A
simple calculation yields:

(Û Û ′ + Û ′Û)|e±i,j〉 = λ′iÛ |e∓i,j〉 ± λiÛ ′|e±i,j〉
= ∓λiλ′i|e∓i,j〉 ± λiλ′i|e∓i,j〉 = 0. (IV.100)

showing that Û and Û ′ are anti-commuting. Hence, we have found an anti-commuting
partner to Û defined through the condition Û ′|e±i,j〉 = λ′i|e∓i,j〉, leading to the expression:

Û ′ =
N⊕

i=1

λ′iσ
(i)
x , (IV.101)

where σ(i)
x =

⊕Ki
j=1 σx. Diagonalization of Eq. (IV.101) yields for Û2 the same form as

in (IV.99).

To prove the converse statement let’s assume that we have two unitary operators Û
and Û ′ satisfying {Û , Û ′} = 0. We denote by λ an eigenvalue of Û with the correspond-
ing eigenvectors |{ei}〉, where i = 1 . . .K. Using the anti-commutation relation we can
prove that Û ′|ei〉 is an eigenvector of Û with eigenvalue −λ:

(Û Û ′ + Û ′Û)|ei〉 = Û Û ′|ei〉+ Û ′λ|ei〉 (IV.102)

⇒ Û Û ′|ei〉 = −λÛ ′|ei〉. (IV.103)

Since {|ei〉} is an orthonormal set and Û ′ is a unitary operator, {Û ′|ei〉} is also an
orthonormal set, which proves that −λ is an eigenvalue of Û of dimension larger or
equal than K. The same reasoning can be applied to the set of eigenvectors of Û with
eigenvalue −λ to show that the dimension of the eigenspace associated to λ is higher or
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equal than the dimension of the eigenspace associated to −λ and thus equal.
With respect to testing noncontextuality inequalities, the above statement allows us

to decide whether a unitary operator Û1 admits anti-commuting partners Û2 and Û3,
such that the three of them can be used to demonstrate a state-independent maximal
violation of the Peres-Mermin inequality. Furthermore, if Û1 has an anti-commuting
partner Û2, it follows that, in some basis, they can be expressed in the form (IV.99)
and (IV.101), respectively. Once Û1 and Û2 are found, the third unitary operator Û3 is
directly determined by Eq. (IV.96), yielding:

Û3 = ±
N⊕

i=1

(λiλ
′
i)
∗σ(i)
y . (IV.104)

This shows that maximal state-independent contextuality in the PMS is a very peculiar
property related to binary spectrum of operators whose spectral decomposition, con-
tinuous or discrete, can be written in terms of finite or infinite direct sums of Pauli
matrices.
We will now continue and study examples of operators satisfying the above introduced

conditions and show how they relate to the particular cases that were discussed in
previous works.

IV.3.3 Contextuality in finite dimensional Hilbert spaces

The decompositions (IV.99), (IV.101) and (IV.104) reveal the binary structure of the
spectrum of the unitary operators Ûi, with i = 1, 2, 3, which is at the heart of a max-
imal violation of the Peres-Mermin non-contextuality inequality for finite N . Thus,
state independent maximal violation of contextuality in a Peres-Mermin scenario is
only possible in a Hilbert space of even dimension and formed by two parties which
are themselves also of even dimension. In [Asadian et al., 2015], the authors reached a
similar conclusion for the case of discrete displacements in phase space. Thanks to the
generality of the conditions obtained here, we can analyze in more detail a scenario con-
taining measurements of finite discrete dimensional quantum systems, so-called qudits
(see Sec. II.1.2 for an introduction).
To begin let’s consider the simplest case of qubit measurements, corresponding to

N = 1 in Eq. (IV.99), (IV.101) and (IV.104), for which we recover the Peres-Mermin
scenario discussed in Sec. IV.3.1 with the Peres-Mermin squares depicted in Fig. IV.6.
When moving to higher dimensional systems, for instance, a pair of spin S particles,
contextuality can be demonstrated using the following rotation operators:

R̂1 = eiŜxt1 , R̂2 = eiŜyt2 , R̂3 = eiŜzt3 , (IV.105)

where Ŝx, Ŝy and Ŝz are the three vector components of the spin S operator Ŝ (recall
Eqs. (II.22)-(II.24)), generating the group SU(2) of all unitary rotations in a d = 2S+1
dimensional Hilbert space. In order to build a Peres-Mermin square, one must choose
t1, t2 and t3 such that R1, R2 and R3 verify (IV.95) and (IV.96). The matrix elements
of the z-component of Ŝ read (Sz)ab = (S + 1 − b)δa,b, and the eigenvalues of R1 are
exp(i(S + 1− b)t1), for b = 0, . . . , d− 1. Hence, condition (IV.95) and (IV.96) are only
satisfied if t3 = π and, since Sx and Sy are unitarily equivalent to Sz, if t1 = t2 = π. In
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this case, R1, R2 and R3 lead to a maximal violation of the Peres-Mermin inequality in
terms of rotations of half-integer spins, generalizing the qubit case presented in Sec. IV.3.

IV.3.4 Contextuality in infinite dimensional Hilbert spaces

We can also study observables which are defined in infinite dimensional Hilbert spaces.
For instance, if one considers the Hilbert space of a single mode of the electromagnetic
field (see Sec. II.2) spanned by single mode Fock basis {|n〉|n = 0, 1, . . . ,∞}, we can de-
fine the photon number parity operator as P̂ = (−1)n̂, where n̂ is the photon number op-
erator fulfilling n̂|n〉 = n|n〉. The parity operator has two eigenvalues ±1 which are both
infinitely degenerate and thus can be expressed as in Eq. (IV.99) withN = 1, λ1 = 1 and
K1 =∞. To see this, we write in the Fock basis P̂ =

∑∞
n=0 |2n〉〈2n| − |2n+ 1〉〈2n+ 1|

which is equivalent to
⊕∞

j=1 σ̂z and thus to Eq. (IV.99). According to Eqs. (IV.101)
and (IV.104) we can define two anti-commuting partners of the parity operator P̂ = P̂z
which read:

P̂x =
∞⊕

j=1

σ̂x, P̂y =
∞⊕

j=1

σ̂y. (IV.106)

These kind of pseudospin operators were also used to show that the EPR state (II.146)
can lead to a maximal violation of nonlocality in terms of the CHSH inequality [Chen
et al., 2002].

IV.3.5 Contextuality with modular variables

Our results can also be used to demonstrate state independent contextuality for mea-
surements of observables with continuous spectrum. In particular, we want to formulate
a contextuality test that involves measurements of modular variables, as introduced in
Sec. III.3. To do so we consider the logical Pauli operations (III.83), (III.86) and (III.82)
which are equal to three displacement operators (the three displacements are illustrated
in Fig. III.7) and in the modular representation read:

Ẑ =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄e2πix̄/`σ̂z(x̄, p̄), (IV.107)

X̂ =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄e−ip̄`/2σ̂x(x̄, p̄), (IV.108)

Ŷ =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄eip̄`/2−2πix̄/`σ̂y(x̄, p̄), (IV.109)

These logical operators fulfill by definition the relations (IV.97) and (IV.98), as discussed
in Sec. III.2.2.1, and thus lead to a maximal violation of the Peres-Mermin inequality.
Thereby, the corresponding real and imaginary parts contained in Eqs. (IV.92) and
(IV.93) correspond to measurements of a particular set of modular variables, namely of
the hermitian components of the displacement operators (IV.107), (IV.108) and (IV.109)
(see Sec. III.1.2).
A similar result has been obtained in [Asadian et al., 2015], where it was shown that
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for a phase space displacement operator D(α1) = eα1â†−α∗1â, one can always find other
displacement operators D(α2) and D(α3), such that they satisfy the relations (IV.95)
and (IV.96).1 The condition for this to hold is that α1, α2 and α3 fulfill the relations
Im(αiα

∗
j ) = ±π/2 and α1 + α2 + α3 = 0. However, it is the modular representation

which allows us to write the displacements (IV.108), (IV.109) and (IV.107), namely
those displacements that form a rectangular triangle in phase space (see Fig. III.7), as a
continuous superposition of Pauli operators σ̂β(x̄, p̄), with β = x, y, z (see Eqs. (III.84),
(III.85) and (III.87)). Hence, we find that Eqs. (IV.107)-(IV.109) are equivalent to
the general unitary operators Ûi, with i = 1, 2, 3, defined in Eqs. (IV.99), (IV.101)
and (IV.104), with eigenvalues λ(x̄, p̄) = e2πix̄/` of Û1, λ′(x̄, p̄) = eip̄`/2 of Û2 and
(λ(x̄, p̄)λ′(x̄, p̄))∗ = eip̄`/2−2πix̄/` of Û3. Remember that according to our remarks in
Sec. IV.3.2 also −λ(x̄, p̄), −λ′(x̄, p̄) and −(λ(x̄, p̄)λ′(x̄, p̄))∗ are eigenvalues of the three
unitary operators, respectively. Hence, we find that the three unitary operators Û1, Û2

and Û3 are completely determined by the functions λ(x̄, p̄) and λ′(x̄, p̄). In contrast to
the case of the parity operator, here all eigenvalues are nondegenerate, i.e. K(x̄, p̄) = 1,
and we can read the integrals in Eqs. (IV.107)-(IV.109) equivalently as a continuous
direct sum over Pauli matrices σ̂β , with β = x, y, z, weighted by the functions λ(x̄, p̄),
λ′(x̄, p̄) and (λ(x̄, p̄)λ′(x̄, p̄))∗, respectively.
In conclusion, we have derived general conditions for unitary operators in order to lead

to a maximal violation of noncontextualilty inequalities derived from the Peres-Mermin
square irrespectively of the dimension of the system used to test it. In particular, we find
a characterization of these operators that allows us to naturally decompose them into
direct sums of Pauli matrices thereby revealing a relation between the binary properties
of their spectrum and the ability to lead to maximal state independent contextuality. A
consequence of our results is that it is not possible to maximally violate such inequal-
ities state independently with bipartite systems if one of them is described by an odd
dimensional Hilbert space. Nevertheless, we show how contextuality can be demon-
strated with infinite dimensional systems characterized by either discrete or continuous
variables.

IV.4 Discussion

In this Chapter we have studied tests of fundamental properties of quantum mechanics,
namely entanglement, nonlocality and contextuality, in Hilbert spaces of various dimen-
sions. Thereby, one of our central concerns was to find appropriate tools to test for these
properties in terms of measurements of judiciously chosen modular variables. Finally,
with these tools in hand we were able to demonstrate the applicability of our quantum
information framework, developed in Chapter III. However, some considerations made
in the previous Sections proved themselves useful regardless of the specific application
to measurements of modular variables.
First, after a short introduction to some basics methods of entanglement detection,

we showed how to use the stabilizer formalism for continuous-variable systems to de-
rive entanglement witnesses involving measurements of modular variables. The derived
witnesses are capable of detecting entanglement of multipartite states defined with re-

1A definition of the displacement operator as function of α = (ν + iµ)/
√
2 was given in Eq. (II.136).
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spect to the logical basis {|0L〉, |1L〉}, defined in Sec. III.2.1, and thus demonstrate the
usefulness of measurements of modular variables for the detection of a certain class of
continuous-variable entangled states.
The second part of this Chapter was devoted to the study of Bell nonlocality. In this

respect, we first gave a mathematical characterization of different types of correlations
in terms of joint-probability distribution and showed how to detect nonlocal correla-
tions in terms of Bell inequalities involving measurements with finitely many outcomes.
Then, we turned to the question of how to test for nonlocality with observables yielding
bounded but possibly infinite many outcomes. Our special attention was thereby on the
use of the CHSH inequality in the context of such, more general measurement setups.
Our results help creating a general environment for CHSH inequality tests without the
need of binning procedures or prior knowledge of the physical properties of the system,
rendering CHSH inequalities tests accessible to a broader class of experimental systems.
Finally, we discussed numerical examples of CHSH inequality tests using measurements
of modular variables and show how to violate it in terms of entangled states defined in
the logical basis {|0L〉, |1L〉}.
Finally, we studied the contextuality of quantum mechanics as a fundamental prop-

erty that does not rely on correlations between two spatially separated subsystems but
rather on the incompatibility of measurements in general. Also here, we first gave
a short introduction to contextuality itself and reviewed one of the most famous ap-
proaches to detect contextuality in a state-independent fashion using the Peres-Mermin
square. Further on, we derived general conditions for operators to maximally violate
non–contextuality inequalities in the Peres-Mermin scenario. A consequence of our re-
sults is that it is not possible to maximally violate such inequalities for any state using
bipartite systems where one of the systems is described by an odd dimensional Hilbert
space. Nevertheless, we show how contextuality can be demonstrated using systems of
arbitrarily high dimensional subsystems and with continuous-variable measurements.
In both the discrete and continuous case we find a characterization in terms of the
spectrum of the observables that can be used to maximally violate the non-contextual
bound in the Peres-Mermin inequality. This characterization allow us to find a natural
decomposition of the observables in terms of direct sums of Pauli matrices.
Perspectives of our results are the implementation of the discussed methods in a wide

range of physical systems which are characterized either by discrete- or by continuous-
variable degrees of freedom. Examples of which are the transverse degrees of freedom
of single photons, the quadratures of the electromagnetic field, or the motional degrees
of freedom of trapped ions or micro-mechanical oscillators (see Chapter I for appropri-
ate references). Since such tests are the basis of many quantum information protocols,
that use fundamental properties of quantum mechanics as a resource, they might prove
themselves useful for hybrid technologies making use of both discrete- and continuous-
variable encodings simultaneously. Especially applications with macroscopic systems
seem feasible due to the clear classical correspondence of the modular variables mea-
surements and by their accesibility in terms of positive operator valued measurements.
Future work could involve improvements of the developed techniques in order to

make the detection of a larger class of entangled or nonlocal states in terms of modular
variables measurements possible. This might render our methods more attractive in
systems for which the above logical basis is a rather unnatural choice. Moreover, we
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might think of applying our ideas also to detect other interesting properties, such as
steering or quantum coherence.



V Quantum information processing by
means of the Talbot-Effect

While in the last two Chapters our focus was rather on devising and applying a general
theoretical framework for quantum information processing in phase space, we turn now
to a more specific experimentally motivated situation and show how the Talbot effect can
be exploited to process discrete quantum information encoded in the spatial degrees of
freedom of single photons. The Talbot effect occurs when plane waves are diffracted by
periodic gratings leading to replications of the wavefront’s structure after multiples of a
characteristic propagation distance, referred to as the Talbot length. We will see that
this effect, in combination with one additional linear optical element, is sufficient to
perform universal single mode operations of d-dimensional quantum systems. Further-
more, entangling operations based on a novel beam-splitter devise and on spontaneous
parametric down-conversion are discussed. The latter permits to create deterministi-
cally d-dimensional entangled photon pairs which can be used as a resource for quantum
information processing with photons besides the commonly used polarization or orbital
angular momentum degrees of freedom. Finally, we demonstrate the produced entangle-
ment by violating d-dimensional Bell inequalities and discuss potential implementations
with entangled matter waves apart from single photons.

V.1 Near-field interference behind diffraction gratings

In this first Section we aim at providing the most important basics of near-field interfer-
ence after periodic diffraction gratings and introduce the above mentioned Talbot effect.
First, we will derive the expression of the scattered spatial wave function of the light
field as a function of its propagation distance after the grating. Further on, we ana-
lyze the particular structure of this so-called Talbot carpet and emphasize characteristic
propagation distances for which the spatial wave front depicts different periodicities.
For this introduction we will stay close to the lines of the article [Case et al., 2009].
Now, we consider the following experimental setup, depicted in Fig. V.1(a). A plane

wave with wave number k = 2π/λ (wavelength λ) is propagating in the z-direction and
impinging onto a periodic diffraction grating, placed at position z = 0 in the (x, y)-
plane, with periodic modulation in the x-direction and periodicity `. The size of the
slits in the y-direction is assumed to be very large compared to the wavelength λ of the
incoming plane wave such that no diffraction occurs in this direction and we can restrict
ourselves to the interference in the (x, z)-plane. Directly after the grating at position
z = 0 the wave takes the same form as the transmission function of the grating:

Ψ(x, 0) = ψ0(x) =
∑

m

Ame
imxk` (V.1)
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Figure V.1: (a) Schematic representation of an experimental setup used to measure
the Talbot effect. A light field emitted by a source (S) is sent through a lens system that
spatially filters and expands the beam in order to create parallel plane waves. The plane
wave then falls at position z = 0 onto a grating (G) and creates a periodic diffraction
pattern that is recorded with an appropriate detector, for instance, a CCD camera, at
different positions z. (b) Density plot of the absolute value of the wave function (V.2)
for rectangular slits with distance ` and width a = 0.1`. For propagation distances
z = zT and z = 2zT the wave function produces an image of the grating transmission
function.

which imprints multiples of the phase k` = 2π/` into the transverse momentum of
the outgoing field. The Fourier coefficients Am determine the precise shape of the
outgoing periodic wave function and, in the case of rectangular slits with width a,
reads: Am = (a/`)e−imπa/`sinc(2mπa/`). Another possibility is to choose a grating
whose transmission function is given by a comb of Gaussians with width ∆: Am =
e−(2πm∆)2/(2`2) (for an example see Fig. III.5 in the last Chapter).

Further on, as discussed in Sec. II.3.1.1, the free-space propagation of the transverse
light field is determined by the paraxial Helmholtz (II.154) equation and, according to
Eq. (II.155), simply imprints an additional phase eizkz on the transverse wave function.
Remember that in the paraxial approximation (see Sec. II.2.3) the transverse wave
vector component kx is small compared to the total wave vector k =

√
k2
x + k2

z , leading
to kz ≈ k − (mk`)

2/2k and thus to the wave function:

Ψ(x, z) =
∑

m

Ame
imxk`eizkz ≈

∑

m

Ame
imxk`e−iπm

2z/zT (V.2)
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where we defined a new characteristic length zT = `2/λ, the so-called Talbot length.
We note that Equation (V.2) aims at describing the near-field interference after the
diffraction grating and will not predict accurately the transition to the far-field regime
in which the condition ` sin θ = nλ determines the position of interference minima and
maxima. Reasons for this are the assumptions of an infinitely extended grating that
is illuminated by a plane wave. For more realistic descriptions, that account also for
the transition between near- and far-field, one has to assume either a finitely extended
grating that is illuminated by a plane wave or a infinitely extended grating and a finitely
extended incoming wave packet.

To investigate the behavior of the wave function (V.2) let’s consider the following
specific propagation distances:

z = (s+ q/r)2zT , (V.3)

where s, q and r are integers, and q and r are relative primes. In this case, Eq. (V.2)
becomes

Ψ(x, z) =
r−1∑

j=0

ajψ0

(
x− j

r
`

)
, (V.4)

where

aj =
1

r

r−1∑

n=0

e−2πi(n2−jn)q/r. (V.5)

showing that the transverse wave-function is a linear combination of r replicas of the
initial state ψ0(x) each displaced in the x direction by integer multiples of `/r. Thereby,
the coefficients aj define the weight and phase of the corresponding linear combinations,
which depend on p and r. One can see that the wave function (V.4) is 2zT periodic
and for the propagation distance z = zT it reproduces the grid transmission profile
shifted in x-direction by half of the slit distance `. Both situations can be observed
in Fig. V.1(b), which presents a density plot of the wave function (V.4), also referred
to as Talbot carpet. This self replication effect was observed first by Talbot in 1936
and explained theoretically by Rayleigh in 1881. A measurement of the whole Talbot
carpet |Ψ(x, z)|2 can be found in [Case et al., 2009]. The Talbot effect has also been
observed experimentally with atomic matter waves [Nowak et al., 1997], and Bose-
Einstein condensates [Mark et al., 2011].

For other propagation distances, apart from those in Eq. (V.3), the Talbot carpet
displays a more complicated fractal behavior, referred to as irrational Talbot effect
[Berry and Klein, 1996]. In the following, we will solely restrict ourselves to the rational
Talbot effect, corresponding to propagation distances given by Eq. (V.3), and show it
can be used to process discrete quantum information encoded in the transverse wave
function (V.4).
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V.2 Processing information by weaving Talbot carpets

V.2.1 Definition of logical states

After this short introduction to near-field interference and the Talbot effect we proceed
now and use the Talbot effect in order to process D-dimensional quantum system en-
coded in the transverse wave function (V.4). To do so, we consider a discrete set of
basis states {|jd〉|j = 0, . . . , d− 1} defined in terms of the spatial wave functions

〈x|jd〉 = ψ0(x− j

d
`). (V.6)

Hence, each basis state corresponds to a periodic wave function ψ0(x), defined by the
Fourier coefficients Am and the periodicity `, that is displaced by the factor d

D `. Exper-
imental means that allow for a production of such Talbot qudits are very close to those
discussed in Sec. III.4.1. One can, for instance, send single photons through diffraction
gratings and post-select only those photons that pass through the grating. Or, for a
deterministic production, one can use pump-engineering techniques for the spatial de-
grees of freedom of photon pairs produced by spontaneous parametric down-conversion
[Monken et al., 1998; Walborn et al., 2010], and produce heralded single-photons pre-
pared in one of the above logical states. For instance, by pumping the non-linear crystal
with a laser field that has a spatial distribution ψ0(xp) we produce two entangled pho-
tons and the detection of one of them prepares the other photon in the state ψ0(x).
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Figure V.2: Plot of the mean orthogonality 2
∑

j>j′ |〈jd|j′d〉|2/d(d− 1) for the Talbot
qudit logical basis states as function of a/`. For higher dimensions d (or D inside the
caption of the figure) the inter-slits distance ` has to be much greater than the slit size
a, in order to assure orthogonality among the basis states. This figure was taken from
the publication [Farías et al., 2015].

Since the overlap among the different wave functions (V.6) is in general nonzero, the
Talbot basis state |jd〉 are not perfectly orthogonal. For example, for a rectangular
transmission function this overlap depends on the ratio between the slit width a and
their distance `. To understand for which ratios a/` our Talbot basis states are still
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sufficiently orthogonal we present in Fig. V.2 a plot of their mean orthogonality, which
is defined as 2

∑
j>j′ |〈jd|j′d〉|2/d(d − 1), between all the states of the computational

basis, for a given dimension d, as a function of a/` [Farías et al., 2015]. Figure V.2
shows numerically that for small encoded qudits, namely d ≤ 5, perfect orthogonality
is achieved for a

` ∈ {0, 1
d}. If we interpolate this rule to higher dimensions we find that

the number of orthogonal states that one can encode is given by d = `/a.
Another limitation that one has to consider for a realistic experimental implementa-

tions is the finite initial extension of the transverse photon wave packet and the resulting
illumination of only a finite number of slits in the grating. This issue was discussed al-
ready previously in Sec. III.4.1, where we presented the fidelity of an one element of the
logical basis, e.g. |0d〉, with respect to itself after multiples of the free-propagation dis-
tance 2zT for different values of the initial envelope of the single photon wave packet σ
and the corresponding number of illuminated slits l (see Fig. III.11). While the fidelity
decays rapidly for small values of σ, it is well preserved for larger values of the number
of illuminated slits, as also reported experimentally in [Case et al., 2009].

V.2.2 Logical operations

In [Farías et al., 2015], it was shown that, on this logical qudit space, one can define a
complete set of single mode operations that are realized in terms of two optical primi-
tives: the near-field propagation of the optical field after the grating, namely the Talbot
effect, and one additional optical element that allows to imprint a position dependent
phase on the field, called spatial light modulator (SLM). Adding a single two-mode
operation, implemented by a position dependent beam splitter, proposed in the same
paper, allows us to complete the set of operations on the encoded qudit space for uni-
versal quantum computation. In the following we summarize these logical operations,
following Ref. [Farías et al., 2015].

V.2.2.1 The Talbot gate

The main advantage of processing quantum information encoded in perfectly periodic
wave functions, as defined in Eq. (V.6), is that their free-propagation itself implements
a specific classes of single qudit logical operations. The aim of this Section is to show
what kind of transformations can be realized in this way depending on the specific
choice of the propagation distance z = (s+ q/r)2zT . For this purpose, we introduce the
gate T̂q/r which represents the unitary transformation that can be associated to a given
propagation distances q/r with respect to the length 2zT (see also Eq. (V.3)):

Ψ(x, q/r) = 〈x|T̂q/r|jd〉. (V.7)

In the following we will distinguish between the cases of even and odd dimensions d.
First, for even dimensions d, we consider the propagation distances 1/r, where r is an

integer. In particular, for propagation distances given by r = 2d we find that, according
to Eq. (V.4), the wave function of one of the m’th qudit basis states is given by:

Ψ(x− m

D
`, z = 1/(2d)) =

d−1∑

j=0

a2jψ0

(
x− m+ j

d
`

)
. (V.8)



152 V Quantum information processing by means of the Talbot-Effect

with

a2j =
1√
d
e−i

π
4 ei

πj2

d . (V.9)

Hence, the free-propagation transforms each state |md〉 of the Talbot computational
basis (V.6) into an equally weighted superposition:

T̂1/(2d)|md〉 =
d−1∑

j=0

a2j |(j +m)d〉, (V.10)

where we introduced the modulo d summation (j +m)d = (j +m)modd, with relative
phase factors a2j given by Eq. (V.9). In terms of the generalized Pauli operator σ̂(d)

x

(see Eq. (II.17)), the action of the Talbot gate T̂1/2d can be expressed as follows:

T̂1/(2d)|md〉 =
d−1∑

j=0

a2j(σ̂
(d)
x )j |md〉. (V.11)

For odd dimensions d, we define the Talbot gate analogously for propagation distances
1/d. In this case, the free-propagation transforms the Talbot basis states according to
the operation

Û1/d =
d−1∑

j=0

aj(σ̂
(d)
x )j . (V.12)

where

aj =
1√
d

(
2
d

)
ei
π
4

(j−1)ei
π(d+1)2j2

d (V.13)

with the Jacobi symbol
(
a
b

)
defined for odd integers b, which, depending on the di-

mension, takes values ±1. Hence, as in the even case, the Talbot gate takes the com-
putational basis states and transforms them into equally weighted superpositions with
relative phases given by Eq. (V.13). Note, that for even and odd dimension the Talbot
gate is associated to different propagation distances, 1/(2d) and 1/d, respectively, and
thus depends on the parity of the dimension of the system that is encoded into the
periodic wave function (V.4). For a discussion of the mathematical properties of the
gate T̂1/r and its relation to the discrete Fourier transform we refer the reader to the
publication [Farías et al., 2015].

V.2.2.2 Diagonal gates

Even though the free-propagation of the encoded Talbot qudit states implements a whole
family of interesting single qudit operations, it is not sufficient to perform universal
single qudit operations. To achieve the latter we introduce one additional operation
that relies on the application of a spatial light modulator (see also the discussion at
the end of Sec. II.3.1.1) and allows to implement a position dependent phase to the
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transverse optical field:
Ψ(x) −→ eiφ(x)Ψ(x). (V.14)

This operation allows us to apply constant phases φj to the periodic regions on which
the wave function of a computational basis state |jd〉 is nonzero, and thus enables the
realization of diagonal phase gates, defined as:

Ẑ~φ =
d−1∑

j=0

eiφj |jd〉〈jd|, (V.15)

where ~φ = (φ0, . . . , φD−1), which transform an arbitrary qudit state |Ψ〉 =
∑d−1

j=0 cj |jd〉
as

|Ψ〉 −→
d−1∑

j=0

λde
iφj |jd〉. (V.16)

The above defined diagonal phase gate Ẑ~φ, with a fixed phase vector ~φ, together with
the previously defined Talbot gate T̂1/(2d), generate all single qudit Clifford operations
(see discussion about the Clifford group in Sec. II.1.1 and II.1.2). In particular, in [Farías
et al., 2015] it was shown how to implement the quantum Fourier transform. In order to
make the above set of gates universal we need to supplement it with a non-Clifford gate
which can be trivially realized using the diagonal gate Ẑ~φ′ and an appropriate phase

vector ~φ′ [Howard and Vala, 2012]

V.2.2.3 The Talbot qubit

In order to strengthen our intuition of the above introduced gates, we demonstrate their
action in the simplest case, for d = 2. The Talbot gate T̂1/(2d) reads in this case:

T̂1/4 =
e−i

π
4√

2
(1 + iσ̂x) = e−i

π
4 ei

π
4
σ̂x , (V.17)

which leads to T̂1/2 = (T̂1/4)2 = σ̂
(d)
x . In combination with the diagonal phase gate Ẑ~φ

and the identity e−i
π
2 ei

π
4
σ̂xei

π
4
σ̂zei

π
4
σ̂x = Ĥ this leads us to the implementation of the

Hadamard gate:
Ĥ = T̂1/4Ẑπ/4T̂1/4, (V.18)

where Ẑπ/4 = eiπ/4|02〉〈02| + e−iπ/4|12〉〈12|. Now, we can exploit the Hadamard gate
to prepare arbitrary single qubit unitary operations, using the identity [Nielsen and
Chuang, 2000]:

R̂z

(π
2

+ φ
)
ĤR̂z(θ)Ĥ|0〉 = cos(θ)|0〉+ eiφsin(θ)|1〉. (V.19)

where R̂z(θ) denotes a rotation around the z-axis of the Bloch sphere and thus simply a
diagonal phase gate Ẑθ = eiθ|02〉〈02|+ e−iθ|12〉〈12|. In Fig. V.3, we illustrate the prepa-
ration of an arbitrary qubit state, according to Eq. (V.19), using only free-propagation
and diagonal gates.
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Figure V.3: This Figure, which was taken from [Farías et al., 2015], shows in (a) a
circuit consisting of Hadamard gates and rotations around the z-axis that prepares an
arbitrary single qubit states. The colors illustrate the application of a phase gate at
the beginning of the corresponding region. This circuit requires a free-propagation of
2zT . For comparison, (b) shows the Talbot carpet for the same propagation distance
2zT without the application of intermediate phase gates.

V.2.3 Spatially Dependent Beam Splitter

For completeness, we want to elaborate now on the possibility to render our Talbot
quantum information processing framework universal using a novel optical beam split-
ter device introduced in [Farías et al., 2015]. This device will enable us to entangle
probabilistically two individual Talbot qudits and thus can be used to define an ap-
propriate two qudit gate. In comparison to the usual symmetric beam splitter (see
Sec. II.3.2) with reflection and transmission coefficients t and r, we consider here a
spatially-dependent beam splitter, denoted as SDBS, whose transmission and reflection
coefficients depend on the coordinate x. We restrict ourselves to only one spatial di-
mension x leading to transmission and reflection coefficients t(x) and r(x), respectively,
with |t(x)|2 + |r(x)|2 = 1 ∀x. The SDBS device can be applied to our Talbot qudits
with piecewise constant coefficients td and rd corresponding to each periodic region of
the computational basis wave functions 〈x|jd〉 For an illustration of such a spatially
dependent beam-splitter see Fig. V.4. The SDBS transforms the Talbot qudit basis
states as

|jd〉a −→ td|jd〉a + ird|jd〉b (V.20a)
|jd〉b −→ td|jd〉b + ird|jd〉a. (V.20b)
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Figure V.4: Example of a spatially dependent beam splitter (SDBS) for spatial quDits.
Shown is an example for D = 3. The colored regions represent parts of the beam splitter
with different transmission coefficients td and reflection coefficients rd. The Figure was
taken from [Farías et al., 2015].

Further on, we show how one can perform a two-photon phase gate for spatial Talbot
qudits via post-selection using SPBSs, as shown in Figure V.5. A two-photon interfer-
ence on a first SDBS device with tk = 1/

√
3, rk =

√
2/3 for a fixed basis state k, and

td = 0, rd = 1 for all other values of d ∈ {0, . . . , k − 1, k + 1, . . . , D − 1}, is followed by
additional SDBSs with coefficients tk = 1, rk = 0 for fixed basis state k, and td = 1/

√
3,

rd =
√

2/3 for d ∈ {0, . . . , k− 1, k+ 1, . . . , D− 1} in modes a and b, respectively. If we
consider only events where one photon leaves the outputs of each of the final SDBSs,
all different combinations of computational basis states result in one of the following:

|kD〉a|kD〉b −→ −
1

3
|kD〉a|kD〉b −→ −

1

3
|kD〉a|kD〉b, (V.21)

|kD〉a|dD〉b −→
1√
3
|kD〉a|dD〉b −→

1

3
|kD〉a|dD〉b, (V.22)

|dD〉a|kD〉b −→
1√
3
|dD〉a|kD〉b −→

1

3
|dD〉a|kD〉b, (V.23)

|dD〉a|dD〉b −→ |dD〉a|dD〉b −→
1

3
|dD〉a|dD〉b, (V.24)

with the input state in the first column, the state after the two-photon interference at
the first SDBS in the second column and the state after the last two SDBS in the third
column. This transformation results in a π phase shift if the two photons are in state
k, and no phase shift for all other possibilities. For d = 2, we thus find the controlled-
phase gate, ĈZ (see Sec. II.1.1). Due to the post-selection of the photons this gate has
a success probability of 1/9 and is thus not very efficient. A discussion how the above
gate could be applied for a scalable implementation can be found in [Farías et al., 2015].
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Figure V.5: Realization of a controlled gate between Talbot Qudits. SDBSs are spa-
tially dependent beam splitters with different transmission and reflection coefficients.
The Figure was taken from [Farías et al., 2015].

In the next Section we will introduce a novel scheme to create deterministically d-
dimensional entangled Talbot photon pairs from spontaneous parametric down-conversion
and linear optical elements only.

V.3 Creation of entangled Talbot carpets

In this Section we introduce a method which enables us to create deterministically
D-dimensional entangled Talbot states, such as

|ETd〉 =
1√
D

D−1∑

d=0

|dD〉|dD〉. (V.25)

from spontaneous parametric down-conversion in combination with linear optical oper-
ations. The latter have been both discussed independently in Sec. II.3.1.1 and II.3.1.3,
respectively. At the heart of our method presented in the following is a scheme that
allow us to produce arbitrary single mode Talbot qudits. We will introduce this scheme
first and show later on how it can be used to produced entangled Talbot qudits (V.25).

V.3.1 Talbot carpet synthesizer

Now we will present a device that converts a monochromatic single-photon field into
an arbitrary superposition of Talbot basis states (V.6). The scheme is illustrated in
Fig. V.6. An almost plane wave is incident on a d-slit Young aperture with slit width
a and distance s. Assuming that the incident wave function Ein(x) is approximately
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GLS L1 L2D-SPW

f f f f

Figure V.6: Schematic representation of the proposed scheme to produce arbitrary
Talbot states. A lens system (LS) prepares a nearly plane wave (PW) which is incident
on a D-slit aperture (D-S) creating the state ψD(x), followed by the transformation
shown in Eq. (V.27). Lenses (L1,L2) of focal length f implement two Fourier transforms
and the grating (G) is placed in the Fourier plane in between (L1) and (L2). (D) denotes
the detector.

constant over each slit, directly after the aperture the outgoing wave function is given
by

Sd(x) =

d−1∑

j=0

cjS(x− js), (V.26)

where S(x) defines the transmission profile of each of the identical slits, and the complex
amplitudes are given by cj ∝ Ein(ds) and

∑d−1
j=0 |cj |2 = 1. The state (V.26) is an

arbitrary superposition state of the D states describing the passage through each on of
the d slits. In principle, one can control the amplitudes cd by controlling the amplitude
and phase of the input field before the slit aperture. In order to transform Eq. (V.26) into
a D-dimensional Talbot state, we apply a lens (L1) to implement a Fourier transform,
and place a grating G at the Fourier plane of the lens. A second lens (L2) performs a
second Fourier transform. For simplicity we assume that each lens has focal length f .
The wave function of the state resulting from this transformation is given by:

ψout(x) = F{G(x) · F{Sd(x)}} = (F{G} ∗ Sd) (x), (V.27)

where F is the Fourier transform and ∗ denotes the convolution. In the second equality
in Eq. (V.27) we used the convolution theorem for Fourier transforms. We see that the
output field at the Fourier plane of lens L2 is the convolution of the Fourier transform
of the grating G with the original d-slit state Sd. Writing the grating transmission
function as G(x) =

∑
mAme

2πimx/`g , the Fourier transform of G(x) is given by

F{G}(x′) =
+∞∑

m=−∞
Amδ

(
m

`g
− x′

fλ

)
. (V.28)
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Figure V.7: Plots of the wave function ψd=3(x) (left column) and its transformed
version ψ̃d=3(x) (right column), with a Gaussian slit transmission profile S(x) with
width ∆ = 0.025s, a Gaussian grating transmission functionG(x) with width κ = 0.025s
and slit distance `g = s. Shown are two examples: amplitudes c0 = 1, c1 = 0, c2 = 0 in
(a,b) and cj = 1/

√
d in (c,d).

Using equations (V.26) and (V.28) in (V.27), we have

ψout(x) =
d−1∑

j=0

cjTj(x), (V.29)

where

Tj(x) =
m=+∞∑

m=−∞
AmS

(
x− js− mfλ

`g

)
(V.30)

describes the transmission function of an effective grating consisting of an infinite peri-
odic comb of slit functions S, each centered at ds−mfλ`g. The period of the effective
grating is ` = mfλ/`g. The function Tj(x) can then be chosen as the wave function of
the Talbot basis states: Tj(x) = 〈x|jd〉. The state at the output plane (V.29) is thus
an arbitrary superposition of Talbot states, controlled by the amplitudes cj .
As example, we treat the case where the transmission profile S(x) of the slits in the d-

slits aperture is Gaussian function with width ∆, and the grating transmission function
is given by a Gaussian comb with Fourier coefficients Am = e−(2πmσ)2/(2`2g), where σ is
the width of the Gaussian spikes and `g the distance between them. In Fig. V.7, we
plot examples of the wave functions S(x) and ψ̃d(x) for this case with d = 3. We chose
Gaussian functions for computational simplicity, however any function can be used.
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(NC)(Laser)
(D-S) (G)(L1) (L2) (SC)

Figure V.8: Experimental proposal: A laser is incident on a non-linear crystal (NC)
producing two down-converted photons in the state |ψ〉12 and subsequently pass through
individual D-slits apertures (D-S) creating the state |ψ〉12,g. The following elements
implement on each photon the same transformation as in Fig. V.6. (SC) denotes the
detection screen.

V.3.2 Entangled Talbot qudits

We now turn to the question of how to produce a D-dimensional entangled Talbot state
from spontaneous parametric down-conversion. The corresponding experimental scheme
for this task is depicted in Fig. V.8. The basic idea is to use the Talbot state synthesizer
from last section, one for each photon, and engineer the spatial correlations to control
the entanglement in the Talbot basis. We start by recalling that the transverse state of
two photons produced in SPDC can be expressed as follows [Walborn et al., 2010]:

|ψ〉12 =

∫∫
dx1dx2ψ12(x1, x2)|x1〉|x2〉, (V.31)

where

ψ12(x1, x2) = ϑ(x1 + x2)γ(x1 − x2), (V.32)

is the transverse wave function of the twin photons and |x1〉|x2〉 a two mode Fock
state describing a single transverse mode of each photon (see also Sec. II.3.1.3). The
functions ϑ(x1 + x2) and γ(x1 − x2) are determined by the pump field profile and the
phase mathcing function of the down-conversion process, respectively. In typical down-
conversion experiments, one can employ the double gaussian approximation [Walborn
et al., 2010] in which both ϑ and γ are described by Gaussian functions with widths κ1

and κ2, respectively. The ratio R = κ1/κ2 describes the amount of spatial entanglment
between the photons. Plots of the wave function (III.134) are presented in Fig. V.9 for
different values of R. As shown in the Fig. V.8, we send the down-converted photons
through the same optical elements as in Fig. V.6. First, after the identical D-slit
apertures the wave function (III.134) becomes:

ψ
(d)
12 (x1, x2) = Sd(x1)Sd(x2)ϑ(x1 + x2)γ(x1 − x2), (V.33)
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Figure V.9: (color online) Density plots of the wave function ψ12(x1, x2) with ϑ(x) and
γ(x) chosen as Gaussians with widths κ1 = 2` and κ2 = 1/2`(left), 1/18`(right). The
fact that the two plotted probability densities are reduced with respect to the variable
x1− x2, as compared to the variable x1 + x2, clearly shows that the transverse position
of photons are correlated (see also the discussion in Sec. II.3.1.3).

where Sd is the transmission functions of the d-slit apertures given in Eq. (V.26). It is
well known that under proper conditions the two-photon wave function (V.33) describes
entangled Young qudits [Neves et al., 2005; Carvalho et al., 2012]. In particular, when
the ratio R is sufficiently large, the photons can be made to always pass through the
same slit. To illustrate this, plots of the wave function (V.33) with S(x) given by a
Gaussian, are presented in Fig. V.10 for different amounts of spatial entanglement R.

After the d-slits we apply to both photons the same sequence of operations: a Fourier
transform, a grating operation and another Fourier transform (see Eq. (V.27)), giving:

Ψ(x1, x2) = [F{G}(x1)F{G}(x2)] ∗ ψ(d)
12 (x1, x2). (V.34)

Using Eqs. (V.28) and (V.33), we arrive at

Ψ(x1, x2) =
∑

j1,j2

∞∑

m1=−∞

∞∑

m2=−∞
A1,m1A2,m2ψ12

(
x1 −

m1fλ

`g
, x2 −

m2fλ

`g

)

× S
(
x1 −

m1fλ

`g
− j1s

)
S

(
x2 −

m2fλ

`g
− j2s

)
. (V.35)

If the width a of the slit functions S is small compared to κ±, we can approximate

ψ12

(
x1 −

m1fλ

`g
, x2 −

m2fλ

`g

)
≈ ϑ(j1s+ j2s)γ(j1s− j2s). (V.36)



V.3 Creation of entangled Talbot carpets 161

Figure V.10: (color online) Density plots of the wave function ψ(d)
12 (x1, x2) with κ1 = 2`

and κ2 = 1/2`(left), 1/18`(right) and a Gaussian transmission profile ψ0(x) with width
δ = 0.05` for d = 3.

Using Eq. (V.30) we can rewrite this equation as

Ψ(x1, x2) =
∑

j1,j2

Cj1,j2Tj1(x1)Tj2(x2) (V.37)

where

Cj1,j2 = ϑ(j1s+ j2s)γ(j1s− j2s)

= A exp

(
− s2

4∆2
+

(
j2
1 +

2∆2
+

∆2
−
j1j2 + j2

2

))
, (V.38)

and A is a normalization factor, such that
∑

j1,j2
|Cj1,j2 |2 = 1. Here 1/∆2

± = 1/κ2
+ ±

1/κ2
−.

The final state (V.37) is a superposition of effective grating states for photons 1 and
2. The entanglement depends explicitely on the coefficients Cd1,d2 . In the coefficient
of the cross term ∆2

+/∆
2
− in (V.38) we identify the spatial correlation coefficient of the

photon pair defined above: ∆2
+/∆

2
− = −R. When the spatial correlation is large so

that κ− << κ+ and R ≈ 1, we have Cd1,d2 ≈ exp[−s2(d1 − d2)2/4∆2
+]. To ensure

a large amount of entanglement in the D × D dimensional two photon Talbot state
requires s2/4∆2

+ >> 1, resulting in κ2
− << s2. In other words, to produce entangled

Talbot states we need a transverse correlation length at the spontaneous parametric
down-conversion source that is smaller than the distance between slits in the D-slit
apparatus.

As example, we plot the wave function Ψ(x1, x2) in the case of a D = 2 and D = 3
slit apertures in Fig. V.11 using the same Gaussian slit profile and grating transmission
functions as in previous examples.
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Figure V.11: (color online) Density plots of the wave function Ψ(x1, x2) with κ1 = 2`,
κ2 = 1/18`, a Gaussian transmission profile ψ0(x) with width δ = 0.05` and a Gaussian
grating transmission function with slit width σ = 0.05` and distance `g = ` for d = 2
(left) and d = 3 (right). Note that the photons are correlated with respect to the
definition of the logical Talbot states. This is in contrast to Fig. V.9, where the photons
are correlated with respect to the position x1 and x2.

V.4 Nonlocality test with entangled Talbot carpets

The possibility to produce deterministically d-dimensional entangled Talbot states makes
our Talbot quantum information processing framework an interesting alternative to
other schemes that encode discrete information into the transverse degrees of freedom
of single photons, e.g. using the orbital angular momentum. In order to further un-
derline the usefulness of our framework we will show in the following Section how to
violate d-dimensional Bell inequalities with entangled Talbot states. We will first focus
on the pedagogically valuable case of the CHSH inequality (see Eq. (IV.44)) and then
turn to Bell inequalities that rely on measurements with more then two outcomes.

V.4.1 CHSH scenario

First, we focus on the well-known CHSH inequality (see Eq. IV.44) that involves only
measurements of observables with binary outcomes (d = 2). We consider a bipartite
system consisting of subsystems that are referred to Alice and Bob who each carry out
two possible measurements, A1, A2 and B1, B2, respectively. The CHSH inequality was
discussed in detail in Sec. IV.2 and, for convenience, we reproduces its expression here:

|〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉| ≤ 2. (V.39)

For each measurement setting i = 1, 2 and j = 1, 2, the correlation function 〈AiBj〉 =∑
a,b=±1 abp(a, b|i, j), between outcomes a and b of measurements Ai and Bj , respec-

tively, is determined by the corresponding joint-probability distribution p(a, b|i, j).
In a quantum mechanical description of the above measurement scenario the sets of

observables Ai and Bj become hermitian operators Âi and B̂j , and the joint probability
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distributions p(a, b|i, j) are equal to expectation values of some measurement operators
Π̂a|i and Π̂b|j , according to

p(a, b|i, j) = tr[Πa|i ⊗Πb|j ρ̂]. (V.40)

with the bipartite quantum state ρ ∈ H1 ⊗ H2 living in the tensor product space of
two Hilbert spaces with dimension d = 2. As discussed in Sec. IV.2.1, a maximum
value violation 2

√
2 of Eq. (V.39) can be obtained with a maximally entangled state

|φ+〉 = 1√
2
(|00〉 + |11〉) if Alice choses to measure the observables Â1 = X̂ and Â2Ẑ,

while Bob measures B̂1 = (X̂ + Ẑ)/
√

2 and B̂2 = (X̂ − Ẑ)/
√

2.

For what will come after it is convenient to assume that both Alice and Bob perform
their measurements in the computational basis {|0〉, |1〉}, and different measurement
setting are chosen in terms of appropriate unitary transformations ÛAi and ÛBj that
map the eigenbasis of the corresponding observables Âi and B̂j onto the computational
basis. In particular, in order to achieve a maximal violation of the CHSH inequality
with the above Bell state |φ+〉, Alice needs to apply the unitary transformations ÛA1 =
R̂y(π/2) and ÛA2 = 1, before the measurement in the computational basis (see Eq. (II.8)
for the definition of the single qubit rotation operator R̂y(π/2)). On Bob’s side, the
corresponding unitaries read: ÛB1 = R̂y(π/4) and ÛB2 = R̂y(3π/4).

After some algebraic manipulations one finds that all of Alice’s and Bob’s measure-
ment settings can be realized by the composition of two basic gates, introduced in
Sec. V.2.2:

Ûγ = T̂1/4Ẑγ T̂1/4 =

(
sin(γ) cos(γ)
cos(γ) − sin(γ)

)
, (V.41)

the qubit Talbot gate T̂1/4 = e−iπ/4(1 + iσ̂x)/
√

2 (see Eq. (V.11) and (V.17)) and
the diagonal phase gate Ẑγ = eiγ |0〉〈0| + e−iγ |1〉〈1| (see Eq. (V.15)). The respective
parameters in Eq. (V.41) are γ = π/4 on Alice’s side and γ = −5π/8 and γ = π/8 on
Bob’s side.

Hence, using the free-propagation of single photons plus one spatial light modulator
and position measurements of the spatial photon distribution, we can violate the CHSH
inequality (V.39) with an entangled Talbot state |ET2〉 (see Sec. V.3).

V.4.2 Measurements with more outcomes

A generalization of the CHSH inequality for measurements with arbitrary many finite
outcomes was developed by Collins et al. in [Collins et al., 2002]. Assume that Alice
and Bob carry out two possible measurements A1 or A2 and B1 or B2, respectively,
which can have d possible outcomes: 0, . . . , d−1. Further on, in a local realistic theory,
one can show that the following inequality holds

ID =

[d/2]−1∑

k=0

(
1− 2k

d− 1

)
Jk ≤ 2, (V.42)
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where

Jk =P (A1 = B1 + k)− P (A1 = B1 − k − 1)

+P (B2 = A1 + k)− P (B2 = A1 − k − 1)

+P (B1 = A2 + k + 1)− P (B1 = A2 − k)

+P (A2 = B2 + k)− P (A2 = B2 − k − 1), (V.43)

and

P (a = b+ k) =
d−1∑

j=0

P (a = j, b = j + k mod d), (V.44)

yield the joint-probabilities that the outcomes a and b, of A1/2 and B1/2, differ by
k mod d. For d = 2, Eq. (V.42) recovers the CHSH inequality (V.39).

Maximal violation of the inequality (V.42) is reached for maximally entangled qudit
states of the form

|φd〉 =
1√
d

d−1∑

j=0

|jd〉|jd〉, (V.45)

and projective measurements by Alice and Bob in the bases [Collins et al., 2002]:

|fα〉 =
1√
d

d−1∑

j=0

e2πij(f+α)/d |jd〉 , (V.46)

∣∣f ′β
〉

=
1√
d

d−1∑

j=0

e2πij(−f ′+β)/d |jd〉 , (V.47)

where f, f ′ = 0, . . . , d − 1, and with α1 = 0, α2 = 1/2, β1 = 1/4 and β2 = −1/4,
respectively. Interestingly, the inequalities (V.42) provide an increase in the quantum
mechanical violation with increasing of d. The maximal violation according to the state
(V.45) and the measurements in the bases (V.46) and (V.47) reads:

I
(QM)
d = 4d

[d/2]−1∑

k=0

(
1− 2k

d− 1

)
(qk − q−(k+1)) (V.48)

where qc = 1/(2d3 sin2 (π(c+ 1/4)/d)). Hence, for d = 2 we obtain the Tsirelson bound
I

(QM)
2 = 2

√
2, and, for d −→ ∞ the quantum mechanical bound of Eq. (V.42) yields

I
(QM)
∞ ≈ 2.96981 [Collins et al., 2002].

As in the CHSH case we assume that Alice and Bob are able to measure in the compu-
tational basis {|jd〉|j = 0, . . . , d− 1}, and different measurement settings, according to
the bases (V.46) and (V.47), are chosen in terms of appropriate unitary transformations
ÛA and ÛB before the measurement. These unitaries have to map the corresponding
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measurement bases onto the computational basis, according to:

ÛA |fα〉 = eif(f) |jd〉 (V.49)

ÛB
∣∣f ′β
〉

= eig(f
′) |jd〉 , (V.50)

where f(k) and g(l) define arbitrary phases. It is easy to see that the unitary operations
which perform these mappings are given by:

ÛA = |jd〉 〈fα| =
1√
d

d−1∑

j′=0

e−
2πij′(f+α)

d |jd〉
〈
j′d
∣∣ (V.51)

ÛB = |jd〉
〈
f ′β
∣∣ =

1√
d

d−1∑

j′=0

e
2πij(f ′−β)

d |jd〉
〈
j′d
∣∣ . (V.52)

To achieve these operators with the Talbot effect a combination of Talbot gates and
general phase gates can be used (see Eq. (V.11) and (V.15)). Let us define the diagonal
operation through

θj =
π

4
− 2πγj

d
− πj2

d
, (V.53)

where γ = α, β. Considering ÛA = T1/(2d)Zθ, where one can show that

T̂1/(2d)Zθ =
d−1∑

j=0

e−iπd
2/D|jd〉〈jγ |, (V.54)

which is the required form for the operators ÛA, ÛB. Thus, through application of the
phase gate and the Talbot gate, it is possible to project the bases (V.46) and (V.47)
into the computational basis, allowing to test the d-dimensional Bell inequalities (V.42)
in terms of the the Talbot effect.
In the next Section we will discuss as perspective the implementation of the above

discussed Bell experiment using material particles and matter waves.

V.4.3 Perspectives: Bell test with material particles and matter waves

The observation of interference effects with material particles is one of the clearest
demonstrations of the wave-like behaviour of matter in quantum mechanics. In a
Young’s D-slit experiment interference can be revealed if the width a of the slits in
the D-slit aperture and the de Broglie wavelength λB = h/(mv), where m is the mass
and v the velocity of the particles, are of the same order of magnitude. Consequently,
an observation of the Talbot effect with matter waves in the near-field after a D-slits
aperture is not only possible, but in the last few decades scientists have been successfully
observing matter wave interference effects with atoms and molecules with increasingly
big masses [Arndt et al., 2014]. In this Section, we discuss briefly the possibility of
performing a Bell inequality test with entangled material particles using the Talbot
effect.
First, we need to create a spatially entangled pair material particles in an EPR state,

which then can be used as starting point for implementing the scheme introduced in Sec.
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V.3. However, while the wave-like behavior of atoms and large molecules is routinely
observed in state-of-the-art experiments, the creation of entanglement between such ma-
terial particles is rather difficult. Here, we comment on two experimental proposals that
allow for the creation of pairs of entangled atoms originating from Bose-Einstein con-
densates (BECs). The first one is based on a four-wave mixing process of two colliding
BECs induced by a stimulated Raman transitions. If the collision strength is sufficiently
weak, the production of entangled EPR pairs of metastable helium atoms becomes fea-
sible [Perrin et al., 2007; Kofler et al., 2012; Bonneau et al., 2013]. The second proposal
is based on controlled molecular Feshbach dissociation of molecules in a dilute BEC by
applying weak dissociation pulses [Kheruntsyan et al., 2005; Kheruntsyan, 2006; Köhler
et al., 2006]. In both proposals the atoms can be further processed while falling in free
space.
Once a spatially entangled EPR pair of two atoms has been produced, the entangle-

ment creation scheme in Sec. V.3 can be applied in order to transform the EPR state
into an entangled Talbot state. Thus, we need to find analogs of the optical elements
used to implement the D-slits, the gratings and the Fourier transform. D-slits and
gratings with an appropriate slit width and distance can be implemented using either
nano-fabricated material gratings, or optical phase gratings which themselves are re-
alized by laser fields [Arndt et al., 2014]. Furthermore, free propagating particles will
independently undergo a Fourier transform via propagation from the near-field to the
far-field region after the respective optical elements.
At this stage we have in hand an entangled Talbot state of material particles that

can in principle be used to perform a test of the Bell inequalities discussed in Sec. V.4.
Thereby, the most challenging part will be to implement the phase gate (V.11) with
propagating atoms. One possibility might be to manipulate the matter wave with light
pulses that themselves are controlled via a SLM in a similar manner as discussed in
[Carrat et al., 2014].

V.5 Discussion

This Chapter was specifically devoted to the development of means that allow to pro-
cess discrete d-dimensional quantum information encoded in the transverse degrees of
freedom of single photons via the optical Talbot effect. While many aspects of the devel-
opments in this Chapter seemed conceptually similar to the more general considerations
made in Chapter III, here, our main concern was to focus on a very specific experimen-
tal platform. We found that single mode encoded qudit states can be processed using
solely the free-propagation of the single photons in combination with one additional lin-
ear optical element, a spatial light modulator. Entanglement operations can be either
performed probabilistically using a novel spatially dependent beam-splitter device or
by, by employing spontaneous parametric down-conversion in combination with linear
optical operations. The latter allowed us to show, for the first time, how to prepare
deterministically d-dimensional spatially entangled photons pairs without the need of
post-selection. Finally, we showed how to violate d-dimensional Bell inequalities using
the produced states and outline a possible macroscopic Bell test in terms of entangled
material particles.



VI Nonlocality of hybrid entangled
states

The following Chapter is devoted to an investigation of the nonlocal properties of hy-
brid entangled states between particle-like single photon Fock states and wave-like optical
coherent states. Both of the latter classes of states allow to encode discrete quantum
states by exploiting their even and odd parity subspaces, but have completely different
properties what concerns state preparation, manipulation and detection. Hybrid entan-
gled states offer the possibility to combine these two strategies and thus might lead to
protocols that profit from the advantages of both, particle- and wave-like optical qubits. In
this respect, we develop a hybrid scheme to test the CHSH inequality with discrete- and
continuous-variable measurements enabling the demonstration of the nonlocal properties
of the considered hybrid entanglement. Finally, accounting for realistic experimental
losses allows us to assess the feasibility of an experimental demonstration of hybrid
nonlocality in quantum optics experiments. Our elaborations are strongly motivated by
the recent experimental demonstration of such hybrid entanglement in the group of J.
Laurat at Laboratoire Kastler Brossel in Paris. Many of the subsequent elaborations
and calculations were inspired and performed in close collaboration with experimental-
ists from this group.

VI.1 Hybrid entanglement

As mentioned in Chapter I the term hybrid systems refers to many different experimental
contexts. In this Section we are particularly interested in the study of hybrid entangled
states of the electromagnetic field. To introduce the reader to this concept we will first
discuss the class of hybrid entangled states we are dealing with in the following and
show how they can be produced in a quantum optics experiment. Afterwards we will
turn to the question of how to test such states for nonlocal correlations.

VI.1.1 Hybrid entanglement between particle- and wave-like states

Processing quantum information in continuous variables often relies on a specific en-
coding allowing to define logical subspaces corresponding to the eigenspaces of some
dichotomic observable. One way of doing so was discussed in Chapter III, where we
dichotomized the Hilbert space with respect to the modular position. Here, we want to
focus on another dichotomic observable enabling the definition of discrete logical states:
the photon-number parity P̂ = (−1)n̂, where n̂ is the photon number operator (see also
Sec. IV.3.4). The parity operator thus has two eigenvalues ±1 and its eigenstates fulfill
the relation P̂ |even,odd〉 = ±|even,odd〉. It is this even and odd parity subspaces that
we will use in the following to encode information.

167
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One of the most famous parity encodings is the one that exploits the presence and the
absence of single photons in order to encode logical qubits. This scheme attracted much
attention because it is at the heart of the first demonstration that efficient universal
quantum computation, using only linear optical operations and single photon sources,
is possible [Knill et al., 2001; Kok et al., 2007].

An alternative encoding involves using even and odd cat states to define logical qubits.
Cat states are superposition of coherent states with opposite phases, e.g. |cat±〉 ∝
|α〉 ± | − α〉, referred to as even or odd depending on their relative phase. It is easy
to see that the cat states |cat±〉 also belong to the even and odd parity subspaces,
respectively. Such types of cat state encodings, as well as the related coherent state
encoding | ± α〉, have attracted considerable attention during the last decade leading
to proposals for realizing universal quantum computation [Jeong and Kim, 2002; Ralph
et al., 2003; Lund et al., 2008; Albert et al., 2016], but also quantum communication
protocols can profit from such wave-like optical qubits [Sangouard et al., 2010; Brask
et al., 2010].

The two aforementioned parity encodings have very different properties in what con-
cerns state manipulations and measurements. The cat state encoding usually benefits
from the experimental toolbox used to process continuous quadrature amplitudes of
electromagnetic fields. This includes, for instance, the deterministic state production
through nonlinear processes, their manipulation via linear optical elements and the ef-
ficient measurement via homodyne detection (see Sec. II.3.2). However, such states
usually suffer from decoherence effects, such as photon loss and dephazing. Moreover,
due to technical reasons continuous-variable states can never be produced with unit
fidelity leading to intrinsic inaccuracies. The same toolbox is principally also avail-
able for the processing of qubits encoded in single photon states, though supplemented
with the additional complication that many operations can only be realized probabilis-
tically. Furthermore, the efficiency of single-photon detections, which for this encoding
are sometimes more desirable, is usually not as high as that of homodyne detections
(see Sec. II.3.2.3).

A possibility to combine the advantages of both encodings is by using an hybrid ap-
proach of single photon and cat state encoded qubits [van Loock, 2011]. For instance, in
[Lee and Jeong, 2013] it was shown how to perform near-deterministic quantum telepor-
tation in terms of all-optical hybrid entanglement or, in [Rigas et al., 2006; Wittmann
et al., 2010], its usefulness for quantum key distribution was exploited. Hybrid entan-
gled states are also used in quantum bus approaches which interactions of single photon
states are avoided and mediated by a common optical mode [van Loock et al., 2008].
Such hybrid entangled states might be of the form:

|Ψγ〉 =
1√
2

[
|0〉|cat−〉+ |1〉|cat+〉

]
(VI.1)

where |cat±〉 = 1/N±(|γ〉 ± | − γ〉) with normalization factor N± =
√

2± 2e−2|γ|2 .
The states |0〉 and |1〉 represent vacuum and single photon states, respectively, and
|γ〉 is a coherent state with complex amplitude γ. A plot of the two-mode Wigner
function W (xa, pa;xb, pb)is presented in Fig. VI.1. In the limit of large |γ| we can
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Figure VI.1: Plot of the two-mode Wigner function W (xa, pa;xb, pb) of the hybrid
entangled state (VI.1) for γ = 3 in the planes (a) pa = pb = 0 and (b) xa = xb = 0.

replace N± →
√

2 and approximate the state (VI.1) as:

|Ψγ〉 ≈
1√
2

[|+〉|γ〉 − |−〉| − γ〉] , (VI.2)

where |±〉 = 1/
√

2(|0〉 ± |1〉).
An optical measurement induced creation of hybrid entangled states at a distance

of the form (VI.1) was proposed and implemented recently in [Morin et al., 2014]. In
the following, we will briefly review the preparation of such states and then turn to the
study of their nonlocal properties.

VI.1.2 Experimental production of hybrid entangled states

The optical circuit which allows for the generation of the hybrid entangled state (VI.1)
is illustrated in Fig. VI.2. Two spatially separated parties, referred to as Alice and
Bob, use the single-photon and the cat state qubit encoding, respectively, in order
to process information. In order to establish hybrid entanglement between each other
Alice and Bob first produce locally and independently a nonclassical state of light. Alice
prepares, on her side, a two-mode squeezed state |ψin〉 = |0〉s|0〉i + λ|1〉s|1〉i + O(λ2)
by pumping an optical parametric oscillator, as outlined in Sec. II.3.2.2. On the second
subsystem, Bob produces locally an even cat state |cat+〉 by exploiting one of the well
established methods presented in [Ourjoumtsev et al., 2006, 2007]. One possibility is,
for instance, to subtract a single photon from a squeezed vacuum state generating an
even cat state with amplitude |γ| . 1 which depends on the squeezing factor of the
initial state [Ourjoumtsev et al., 2006].
Next, the even cat state |cat+〉a on Alice side is sent through a beam-splitter with

small reflection coefficient ra, where the subscript a refers to mode-a. In the limit of
small reflectivity ra = sin θ ≈ θ � 1, the beam-splitter operation can be approximated
as B̂(θ) = eθ(âb̂

†−â†b̂) ≈ 1 + θ(âb̂† − â†b̂). Together with the two-mode squeezed state
on Bob’s side the initial state on all four modes reads:

|Ψin〉 = (1 + θ(b̂′)†â′)(1 + λĉ†d̂†)|cat+〉a|0〉b′ |0〉c|0〉d (VI.3)

where a′ and b′ denote the output modes of the beam-splitter on Alice’s side. Further,
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Figure VI.2: Experimental setup showing the generation of the hybrid entangled state
(VI.1). Mode a is prepared in an even cat state and sent though a beam-splitter (BS)
with high transmissivity such that a single photon is subtracted. Simultaneously, the
two modes of the two-mode squeezed state |0〉s|0〉i + λ|1〉s|1〉i are split into two spatial
modes, denoted by c and d. Further on, mode b′ and c are sent through another beam-
splitter and detected in the output mode c′. The latter detection heralds the generation
of the hybrid state in the modes a′ and d.

the modes b′ and c are sent to a router in order to herald the production of the hybrid
entanglement. Once arrived at the router mode b′ and c are mixed by another beam-
splitter with transmission t and reflection r. According to the relations (II.177) and
(II.178) we then arrive at the state:

|Ψ′〉 =
[
1 + θâ′(t(b̂′′)† + r(ĉ′)†) + λd̂†(t(ĉ′)† − r(b̂′′)†)

]
|cat+〉a|0〉b′ |0〉c|0〉d (VI.4)

where we neglected the second-order term proportional to λθ. A detection of a single
photon in mode c′ then heralds the production of the state:

|Ψ′′〉 = θr|0〉d(â′)†|cat+〉a′ + λt|1〉d|cat+〉a′ . (VI.5)

Hence, since the subtraction of a single photon from an even cat state produces an odd
cat state â†|cat+〉 = γ|cat−〉, the heralded state can be written as:

|Ψout〉 = θrγ|0〉d|cat−〉a′ + λt|1〉d|cat+〉a′ , (VI.6)

An equal superposition can be obtained by adjusting the reflection/transmission rates
of the beam-splitter as r/t = λ/(θγ). Once the weights are balanced we can write the
state (VI.6) with proper normalizations as:

|Ψout〉 =
1√
2

[
|0〉d

1

N− (|γ〉a′ − | − γ〉a′) + |1〉d
1

N+
(|γ〉a′ + | − γ〉a′)

]
. (VI.7)

with the normalization factors N± =
√

2± 2e−2|γ|2 . To express (VI.7) in a rotated
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basis we can write:

|Ψout〉 =
1√
2

[(
1

N− |0〉d +
1

N+
|1〉d

)
|γ〉a′ −

(
1

N− |0〉d −
1

N+
|1〉d

)
| − γ〉a′

]
. (VI.8)

which in the limit of approximately orthogonal coherent states 〈γ| − γ〉 � 1 yields
Eq. (VI.2).

VI.1.3 Measurement and experimental losses

The two-mode hybrid state is then characterized by high efficiency homodyne detec-
tion (see Sec. II.3.2.3) that is taking datapoints on each mode for different choices of
quadratures. Note that using homodyne detection is rather an experimentally moti-
vated choice. Other measurements, i.e. photon number resolving detections, can be
envisioned but are technically not as well developed as homodyne detections. The sub-
sequent post-processing of the measured data depends on the specific protocol one wants
to implement. In the following, we shortly discuss some possible strategies allowing to
perform nonlocality and entanglement tests.
For a nonlocality test we have to take data points for random choices of quadratures

yielding the corresponding joint-probability distribution p(a, b; θ, φ), where a (b) denotes
the outcome of a measurement of the quadrature xθ (xφ) on Alice’s (Bob’s) side. The
joint-probabilities p(a, b; θ, φ) can then be used to test, for instance, the continuous-
variable Bell inequality derived by E. G. Cavalcanti et al. which involves first and
second moments of the measured quadratures [Cavalcanti et al., 2007]. Another pos-
sibility to perform a nonlocality test is to use a binning procedure where one assigns
binary values (for instance ±1) to the outcomes of the quadrature measurements de-
pending on, i.e. their sign [Wenger et al., 2003; García-Patrón et al., 2004]. The binned
outcomes can then be used to test the CHSH inequality (IV.44). Similarly, one can also
test the CHSH inequality in terms of modular variables measurements whose expecta-
tion values can be calculated from the joint-probability distribution p(a, b; θ, φ) of the
performed quadrature measurements [Ketterer et al., 2015]. However, with none of the
mentioned methods, we were able to theoretically demonstrate the nonlocality of the
hybrid entangled states (VI.1).
Another, slightly different approach for testing the CHSH inequality is by using pho-

ton number parity measurements which also yield binary measurement outcomes. In
[Banaszek and Wódkiewicz, 1998, 1999; Chen et al., 2002], it was shown that in this way
one can demonstrate the nonlocality also for states having a strictly positive Wigner
function. However, the parity has the disadvantage that it is inaccessible for homodyne
measurements and thus requires photon number resolving detectors. Nevertheless, in
Sec. VI.3 we will show that it is still possible to demonstrate the nonlocality of the
hybrid entangled state (VI.1) by violating the CHSH inequality in terms of parity mea-
surements.
In turn, if one aims at demonstrating hybrid entanglement instead of nonlocality one

can follow a more straightforward approach. Homodyne measurements for an equally
distributed choice of quadratures allow one to reconstruct the full two-mode density
matrix using a maximum likelihood algorithm [Lvovsky and Raymer, 2009]. Having
available the experimentally reconstructed density matrix of the produced hybrid en-
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tangled state we can then straightforwardly calculate entanglement criteria including
the two-mode correlation functions contained in the CHSH inequality. In this case, the
violation of the CHSH inequality can, however, only be regarded as a demonstration of
entanglement and not of nonlocality. This is due to the fact that the process of recon-
structing the density matrix does already imply the validity of quantum mechanics and
thus cannot be considered as device-independent (see Sec. IV.2).
In the following, we will summarize some losses occurring in different steps of the

experiment outlined in the last Section. The mentioned numerical values are rough
estimates of the real transmission and loss rates present in the experiment discussed
in [Morin et al., 2014]. During the process of generating the states two main kinds of
losses are of importance:

1. The losses in the crystal of the OPO, where the two-mode squeezed states are
generated, leading to a transmission of about 96%. These losses are fixed and can
only be improved by changing the crystal or the coatings inside the cavity.

2. The losses due to the imperfect detection are about 15%. For instance, the finite
efficiency of the photodiodes used to perform the homodyne detection, the phase-
matching of the analyzed beam with the local oscillator, optical isolators and beam
splitters. The latter are very well known and do not occur before the produced
state under consideration is measured.

The overall transmission taking into account these losses is about 81% leading to 66%
for two modes, but 92% if corrected for detection losses. On top of these losses on has
to take into account the finite fidelity of the generated states with the real state (VI.1)
which is about 94%. Hence, by combining the experimental losses with the imperfect
fidelity of the states we get an overall transmission of about 86%.

VI.2 Qubit, parity and hybrid CHSH inequality

As discussed in previous Chapters, the CHSH inequality (IV.44) was first derived under
the condition that the measured observables have binary outcomes. In the quantum
realm such observables are given by superpositions of Pauli operators (II.3)-(II.5), which
physically correspond, for instance, to polarization or spin measurements and can violate
the classical bound 2 of the CHSH inequality:

B = 〈σ̂va σ̂vb〉+ 〈σ̂va σ̂vb′ 〉+ 〈σ̂va′ σ̂vb〉 − 〈σ̂va′ σ̂vb′ 〉 ≤ 2
√

2, (VI.9)

for some entangled state |Ψent〉, where σ̂v = v · σ̂ with v = (vx, vy, vz), |v| = 1
and the Pauli operator σ̂ = (σ̂x, σ̂y, σ̂z). In spherical coordinates we can write v =
(sin (θ) cos (φ), sin (θ) cos (φ), cos (θ)) and thus get

σ̂v = sin (θ) cos (φ)σ̂x + sin (θ) cos (φ)σ̂y + cos (θ)σ̂z

=

(
cos θ e−iφ sinφ

eiφ sinφ − cos θ

)
(VI.10)

The maximum value of B that can be obtained according to the laws of quantum
mechanics is 2

√
2 and referred to as Tsirelson bound (see Sec. IV.2). Given a set of
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Figure VI.3: Density plot of the Wigner function of the two-mode entangled cat state
|Φ〉, for γ = 3, in the planes (a) Im(α) = Im(β) = 0 and (b) Re(α) = Re(β) = 0. The
inset shows an enlargement of the interference fringes for smaller values of Im(α) and
Im(β) including the sampling points that lead to a violation of the CHSH inequality.

measurement settings a, b, a′, b′, maximum violation of the inequality (IV.44) occurs for
some maximally entangled states |ψ〉, e.g. |ψ〉 = 1/

√
2(|0〉|0〉+ |1〉|1〉) (see Sec. IV.2 for

an example).
In general, the CHSH inequality can also be tested with states living in higher than

two-dimensional Hilbert spaces provided the observables under consideration have a bi-
nary spectrum. In the following, we will test the CHSH-inequality using measurements
of the photon number parity operator P̂ = eiπâ

†â, where n̂ = â†â is the photon number
operator and â (â†) is the photon annihilation (creation) operator of the corresponding
optical mode. The eigenspaces corresponding to the two eigenvalues of the parity oper-
ator are infinite dimensional and spanned by the Fock states containing either even 2n
or odd 2n + 1 photons. Further on, we consider measurements of the displaced parity
operator

Π̂(α) = D̂(α)P̂ D̂(−α), (VI.11)

where D̂(α) = D̂(ν, µ) is the phase space displacement operator with α = (ν + iµ)/
√

2
(see also Sec. II.2.4.2), in order to mimic different measurement settings a, b, a′ and
b′. Note, that the expectation value of the displaced parity operator is directly related
to the Wigner function W (x, p) = W (α = (x + ip)/

√
2) of the state under consid-

eration, through 〈Π̂(α)〉 = π
2W (α) [Lutterbach and Davidovich, 1997; Banaszek and

Wódkiewicz, 1998; Banaszek et al., 1999].
This leads to the following representation of the CHSH-inequality in terms of parity

measurements:

Bpar = 〈Π̂(α)Π̂(β)〉+ 〈Π̂(α)Π̂(β′)〉+ 〈Π̂(α′)Π̂(β)〉 − 〈Π̂(α′)Π̂(β′)〉 ≤ 2
√

2. (VI.12)

The parity CHSH value Bpar violates the local-realism threshold of two, for instance,
with a two-mode squeezed state |r〉TMSV =

√
1− λ2

∑∞
n=0(−λ)n|n〉a|n〉b, for which we
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get:

BTMSS = exp
[
−2 cosh (2r)(|α|2 + |β|2) + 2 sinh (2r)(αβ + α∗β∗)

]
(VI.13)

and in the infinite squeezing limit yields BTMSS → 8/3( 9
8

) ≈ 2.32, for α = −α′ =
β′/2 =

√
ln (3)/(16 cosh 2r) and β = 0 [Jeong et al., 2003]. Almost maximal violation

of Equation (VI.12) can be reached with a two-mode entangled cat state |Φ〉 = (|γ〉|γ〉+
| − γ〉| − γ〉)/Nγ , where Nγ =

√
2(1 + e−4γγ∗). If we set γ = 3, and the measurement

settings equal to α = β = −0.035 and α′ = β′ = 0.095, as shown in [Milman et al.,
2005], we find that Bγ=3 = 2.77. In order to obtain maximal violation we have to take
the limit γ →∞ of very large cat states, yielding Bγ→∞ → 2

√
2, if the sampling points

α, β, α′ and β′ at the same time go to zero as 1/γ. In Fig. VI.3, we present a density plot
of the two-mode Wigner function W (α, β) = 4

π2 〈Π̂(α)Π̂(β)〉 of the entangled cat state
|Φ〉 in the planes Im(α) = Im(β) = 0 and Re(α) = Re(β) = 0. The sampling points
leading to a violation of the CHSH inequality are indicated inside the plot. In the case
of the two-mode entangled cat state one has to choose imaginary sampling points near
to the interference fringes at the origin otherwise no violation can be observed.
Finally, we can also consider a combination of the CHSH inequality (VI.9) and its

parity version (VI.12) in order to test Hybrid systems for nonlocal correlations (see
Sec. VI.1). More precisely, we perform Pauli measurements σ̂v on first subsystem and
displaced parity measurements Π̂(β) on the second subsystem. In this case, the corre-
sponding CHSH value reads:

Bhyb = 〈σ̂vΠ̂(β)〉+ 〈σ̂vΠ̂(β′)〉+ 〈σ̂v′Π̂(β)〉 − 〈σ̂v′Π̂(β′)〉 ≤ 2
√

2. (VI.14)

where σv(′) and Π̂(β(′)) defined according to Eq. (VI.10) and Eq. (VI.11), respectively.
In the next Section we will discuss how to demonstrate the nonlocality of the hybrid
entangled state (VI.1) using the inequality (VI.14).

VI.3 Nonlocality of hybrid entanglement

VI.3.1 Theoretical violation of the CHSH inequality

In this Section we will use the methods discussed in Sec. VI.2 to test the CHSH inequality
with the hybrid entangled state

|Ψγ〉 =
1√
2

[
|0〉|cat−〉+ |1〉|cat+〉

]
, (VI.15)

where we will restrict ourselves to cat state sizes γ ≤ 3. This choice is motivated by the
fact that the experimental techniques discussed in Sec. VI.1.2 allow for the production
of cat states with γ . 2, and thus values γ > 3 are experimentally out of reach. Even
for cavity quantum electro-dynamics (QED) or circuit QED techniques the production
of cat states with g > 3 is very challenging [Deleglise et al., 2008; Vlastakis et al., 2015].

First, we will use the parity CHSH inequality (VI.12) to test the hybrid entangled
state (VI.15). Further on, since the expectation value of the tensor product of two dis-
placed parity operators Π̂(α)Π̂(β) is related to the two-mode Wigner function W (α, β),
where α = (xa + ipa)/

√
2 (β = (xb + ipb)/

√
2), we simply have to find an appropriate
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Figure VI.4: (a) Plot of the maximized CHSH value B(max)
par as a function of g = γ. (b)

Density plot of the Wigner function W (α, β) in the plane Re(α) = Re(β) = 0 including
the sampling points α, α′, β and β′.

set of points α, α′, β and β′ of the Wigner function that maximizes the CHSH value (see
Fig. VI.1):

Bpar = 〈Π̂(α)Π̂(β)〉+ 〈Π̂(α)Π̂(β′)〉+ 〈Π̂(α′)Π̂(β)〉 − 〈Π̂(α′)Π̂(β′)〉 ≤ 2
√

2. (VI.16)

In Fig. VI.4(a) we present a plot of the B(max)
par , maximized over the values α, β, α′

and β′, as a function of the size of the cat states γ. We see that for small values of
γ the local-realism bound of two is not violated and only for cat state sizes γ & 2
a demonstration of Bell nonlocality can be achieved. For γ = 3 we find the largest
CHSH value B(max)

par ≈ 2.21 in the interval γ ∈ [0, 3], for α = i0.35, α′ = −i0.55,
β = −i0.49 and β′ = i0.28. These values form a square in phase space as we can see
in Fig. VI.4(b), where we present a density plot of the Wigner function W (α, β) in the
plane Re(α) = Re(β) = 0.

Next, we want to compare the violation achieved with displaced parity measurements
on Alice’s and Bob’s side using Eq. (VI.16) with a hybrid measurement strategy which
employs Pauli measurements on Alice’s and displaced parity measurements on Bob’s
side (see Eq. (VI.14)). In order to do so we first have to evaluate the hybrid correlation
functions contained in Eq. (VI.14), yielding:

〈σ̂vΠ̂(α)〉Ψγ =
1

2

[
〈0|σ̂v|0〉〈γ|Π̂(α)|γ〉+ 〈0|σ̂v|1〉〈γ|Π̂(α)| − γ〉

+ 〈1|σ̂v|0〉〈−γ|Π̂(α)|γ〉+ 〈1|σ̂v|1〉〈−γ|Π̂(α)| − γ〉
]
. (VI.17)
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Figure VI.5: Plot of the maximal CHSH value B(max)
hyb as a function of the size γ of

the Hybrid Cat State |Ψγ〉.

where

〈γ|Π̂(α)|δ〉 = 〈γ|D̂(α)P̂ D̂†(α)|δ〉 = 〈γ|D̂(α)P̂ |δ − α〉e−iIm(αδ∗)

= 〈γ|D̂(α)|α− δ〉e−iIm(αδ∗)

= 〈γ|2α− δ〉e−iIm(αδ∗)eiIm(−αδ∗)

= 〈γ|2α− δ〉eiIm[2αδ∗]. (VI.18)

To evaluate the Eq. (VI.18) we used the relations D̂(γ + δ) = D̂(γ)D̂(δ)e−iIm[γδ∗] for
the product of two displacement operators and that 〈γ|δ〉 = e−

1
2

(|γ|2+|δ|2−2δγ∗). Further
on, we insert the terms (VI.17) into Eq. (VI.14) and numerically maximize Bhyb over
all free parameters θ, φ, θ′, φ′, β and β′. In Fig.VI.5 we present a plot the maximum
value B(max)

hyb as a function of the cat state size γ.
We find that the hybrid cat state |Ψγ〉 violates the hybrid CHSH inequality (VI.14) for

all values of the cat state size γ ∈ [0, 3[. In particular, in the limit γ → 0 the CHSH value
converges to the finite value 2.44, and in the limit of large γ, B(max)

hyb converges towards
the upper quantum bound 2

√
2. In the former case, this is due to the fact that the odd

cat state |cat−〉 converges towards a single photon state |1〉 in the limit of small γ, and
the even cat state |cat+〉 towards a vacuum state. Thus, in the limit γ → 0 the hybrid
state (VI.15) becomes a single photon entangled state |Ψγ→0〉 = (|0〉|1〉+ |1〉|0〉)/

√
2. In

contrast, in the opposite limit of large γ, the two cat states |cat〉± become orthogonal
and we end up in a maximally entangled state with respect to the single photon encoding
|0L(1L)〉 = |0(1)〉 on Alice’s side and the cat state encoding |0L(1L)〉 = |cat±〉 on Bob’s
side. In both cases the limiting state is entangled with respect to parity measurements
and thus yields a violation of the CHSH inequality.
Figure VI.5 also confirms that the hybrid measurement strategy leads to an improved

violation of the CHSH inequality, as compared to the previously discussed case with
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parity measurements on both Alice’s and Bob’s side (see Fig. VI.4(a)). This is due to
the fact that arbitrary Pauli measurements (VI.10) on the first subsystem have a larger
flexibility in choosing different measurement bases in the single photon logical space,
compared to displaced parity measurements. The dependency of the observed violation
on the specific basis choice on Alice’s system is further illustrated in Fig. VI.6, where
we plot for γ = 1 and θ = φ = 0 the maximized value B(max)

hyb (maximized with respect
to β and β′) as a function of θ′ and φ′. Hence, for further investigations which include
the influence of losses on the observed violation of the CHSH inequality we will restrict
ourselves to the hybrid measurement strategy (see Eq. (VI.14)).
In the next Section we will study the influence of losses on the observed violation of

the CHSH inequality. In particular, we will give a threshold on the amount of losses
that can be tolerated in each mode without jeopardizing the violation of local-realism.
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Figure VI.6: Plot of the CHSH value Bqu,par as a function of the angle θ′ and φ′ for
γ = 1, β = 0.156 and β′ = −0.156.

VI.3.2 Nonlocality under the influence of losses

An important question concerning the experimental demonstration of nonlocality in
terms of the hybrid inequality (VI.14) is to what extend the observed violation is resilient
with respect to optical losses. Possible experimental losses in an optical implementation
were discussed in Sec. VI.1.3. Theoretically we can model them by applying beam-
splitter operations with transmission η on each mode of the ideal hybrid state (VI.15),
and subsequently tracing out the two reflected output modes of the beam splitters.
The state resulting from this procedure depends on the parameter η which mimics the
efficiency of the experiment. Maximizing B for different values of η thus allows us to
study the violation of the CHSH inequality under the influence of different amounts of
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Figure VI.7: Plot of the maximized CHSH value B(max)
hyb as a function of γ for η =

1 calculated using the analytical expression (VI.17) (red line) and the approximate
expression by truncating the Fock space for photon numbers n > 6 (blue dashed line).
It is apparent that the latter approximation breaks down for sizes γ & 1.5 of the hybrid
entangled state |Ψγ〉.

losses (keep in mind that the total transmission on both modes is given by η2).
To start we calculate the action of the beam splitter operations on the hybrid state

(VI.15). The beam-splitter with transmission η was discussed in Sec. II.3.2.1 and is
easily summarized by the following transformations of the annihilation (creation) op-
erators of the corresponding input modes: a(†) → √

ηa(†) +
√

1− ηb(†) and b(†) →√
ηb(†) −√1− ηa(†). Applying them to each mode of the hybrid state (VI.15) together

with an additional third and fourth vacuum mode leads to the expression:

|Ψγ〉noise =
1√

2N−

[
|√ηα〉|

√
1− ηα〉|0〉|0〉 − | − √ηα〉| −

√
1− ηα〉|0〉|0〉

]

+
1√

2N+

[√
η |√ηα〉|

√
1− ηα〉|1〉|0〉+

√
1− η |√ηα〉|

√
1− ηα〉|0〉|1〉

+
√
η | − √ηα〉| −

√
1− ηα〉|1〉|0〉+

√
1− η | − √ηα〉| −

√
1− ηα〉|0〉|1〉

]
.

(VI.19)

Next, we calculated the density matrix belonging to the state (VI.19) and trace over
the modes a′ and b′. In order to be able to calculate the partial trace we replace the
coherent states in Eq. (VI.19) by their Fock state representation, truncate terms in
the expansion that are of the order n > 61 and use the resulting approximate state to
calculate the reduced density matrix numerically. The expectation values contained in

1The justification of the choice n > 6 is discussed shortly after.
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Figure VI.8: Plot of the maximized CHSH value B(max)
hyb as a function of the trans-

mission parameter η for γ = 1, θ1 = 0, φ1 = 0, θ2 = 1.57, φ2 = −1.57, β = i0.156
and β′ = −i0.156. The blue dashed horizontal line indicates the local realism threshold
given by the CHSH inequality.

the CHSH inequality (VI.14) can then be calculated using Eq. (VI.10) and the Laguerre
polynomial expansion of the displaced parity operator:

Π̂(α) =
∑

n

|2n, α〉〈2n, α| − |2n+ 1, α〉〈2n+ 1, α|, (VI.20)

where

|n, α〉 = e−
|α|2

2

∑

m

(α∗)n−m
√
m!

n!
Ln−mm (|α|2)|m〉, (VI.21)

with the generalized Laguerre polynomials L`p (see Appendix A for a definition of L`p(x)).
Equation (VI.20) and (VI.21) can be combined to get the simpler expression:

Π̂(α) =
2

π
e−|α|

2/2
∑

k,l

(−1)k
√
l!

k!
(2α∗)k−l Lk−ll

(
4|α|2

)
|k〉〈l|, (VI.22)

for k ≥ l and

Π̂(α) =
2

π
e−|α|

2/2
∑

k,l

(−1)l
√
k!

l!
(2α)l−k Ll−kk

(
4|α|2

)
|k〉〈l|, (VI.23)

for k < l.
Before we proceed the calculations with transmission rates η < 1, we have to verify
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for which sizes of the entangled hybrid state (VI.15) our numerical method, using a
truncated Fock basis, yields a valid approximation of the exact results. Therefore, we
plot in Fig. VI.7 the maximum value of the CHSH inequality as a function of γ with the
transmission rate η = 1, calculated using the truncated Fock state method and using
the exact method discussed in Sec. VI.1. We see that, for a Fock state dimension of
n = 6 on each mode, our numerical method yields a good approximation if |γ| ≤ 1.5,
and thus can be used to predict the experimental results for |γ| . 1.
Further on, we investigate the dependency of the violation of the CHSH inequality on

different values of the optical transmission η. If the minimal transmission η, which still
yields a violation of the CHSH inequality, is below the transmission ηexp that is present
in the experiment [Morin et al., 2014], an experimental observation of nonlocality is
within reach. To find out if this is the case, we choose the parameters in the CHSH
inequality equal to those values that resulted in a maximum for γ = 1 and η = 1, in
Fig. VI.7, and plot the corresponding CHSH value as a function of the transmission
rate η, as presented in Fig. VI.8. We find that the CHSH value decays with decreasing
transmission η making a violation of the CHSH inequality impossible for η < 0.9. Hence,
the total optical transmission in the experiment has to be not less than of the order
of η2 = 0.81, in order to witness trustworthily the nonlocality of the entangled hybrid
state (VI.15).

VI.4 Discussion

In conclusion we have shown how to demonstrate the nonlocality of hybrid entangled
states between particle-like and wave-like optical qubits of the form

|Ψγ〉 =
1√
2

[
|0〉|cat−〉+ |1〉|cat+〉

]
, (VI.24)

realized by single photon (|0L(1L)〉 = |0(1)〉) and cat state (|0L(1L)〉 = |cat±〉) en-
codings, on Alice’s and Bob’s subsystem, respectively. After a short introduction of
interesting properties and the experimental production of such hybrid entangled states
in quantum optics experiments, we reviewed known approaches allowing to test the
CHSH inequality using arbitrary Pauli and displaced parity measurements. Using the
latter we found that the nonlocality of the considered hybrid states can be revealed with
displaced parity measurements on Alice’s and Bob’s subsystem, respectively. Further
on, by combining Pauli measurements and displaced parity measurements in a hybrid
measurement setup we were able to find an improved violation of the CHSH inequality.
In particular, the state |Ψγ〉 violates the defined hybrid Bell inequality for all values
of the cat state size γ and thus might be especially of interest for hybrid protocols
exploiting different qubit encodings simultaneously. Finally, we also included possible
experimental losses in our theoretical consideration showing that a demonstration of
hybrid nonlocality, with γ of the order of unity, is possible if the overall experimental
transmission in each mode is not less than 90%.
Possible future investigations could include the search for other appropriate device

independent strategies for the detection of entanglement or Bell nonlocality of hybrid
entangled states in terms of homodyne measurements. This would be desirable because
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the discussed parity measurements require the use of photon resolving detectors which
are not as well developed as standard homodyne detections. One possibility of doing
so might be to derive novel entanglement witnesses involving measurements of modular
variables, similar to those discussed in Sec. IV.1.3, that allow to detect hybrid entan-
glement. The latter can be assesed by homodyne detection and simple post processing
of the measurement outcomes.
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VII Summary and conclusions

In this thesis we developed theoretical means that allow to process discrete quantum
information encoded into system characterized by degrees of freedom described by con-
tinuous variables. Thereby, we specifically focused on the use of modular variables as
helpful technique for revealing discrete structures of continuous-variable states, opera-
tions and observables. Further on, we derived tests of fundamental properties of quan-
tum mechanics in Hilbert spaces of various dimensions and showed how to apply them
within our modular varibles quantum information processing framework. Our devel-
opments were strongly guided by the potential of future experimental implementations
using the transverse degrees of freedom of single photons.
In the first part of this manuscript we devised a framework for quantum information

processing in phase space based on the technique of modular variables. Using the latter
we dichotomized the Hilbert space of a single mode of continuous variables with respect
to the modular position in order to define appropriate logical states, operations and
readout observables. These three ingredients thus provided us with a solid framework
for handling discrete quantum information encoded into continuous variables. Moreover,
with our judiciously chosen modular variables readout observables we established an in-
teresting and yet unexplored connection between specific classes of modular variables
and their associated sets of logical wave functions. This connection was shown to be
useful later on in order to find violations of modular variables entanglement witnesses
and Bell inequalities. The appeal of such modular variables as readout observables
is that they can be assessed via POVM measurements in different physical systems.
Here, we focused on implementations using the transverse degrees of freedom of single
photons, but also cold atoms or micro-mechanical oscillators are suitable platforms for
manipulating and measuring modular variables. In the former case we showed that
linear optical elements are sufficient to manipulate the spatial distribution of single
photons and we worked out two schemes to measure the corresponding readout observ-
ables, using direct photon position measurements, on the one hand, and an indirect
interferometric scheme, on the other hand.
A second big theme of this thesis was the study of test of fundamental properties of

quantum mechanics with measurements of observables living in Hilbert spaces of various
dimensions. In particular, we focused on entanglement, Bell nonlocality and contextu-
ality. For each of these properties we derived appropriate entanglement witnesses, Bell
inequalities and contextuality tests. The developed techniques have a rather general
character but can be seen as a natural application of the previously introduced modular
variables phase space framework. First, we used a continuous-variable stabilizer formal-
ism to derive entanglement witnesses which involve measurements of modular variables
and are capable of detecting entanglement among the previously introduced modular
variables logical states. Further on, we showed how to test discrete-variable Bell in-
equalities, such as the CHSH inequality, in terms of arbitrary bounded observables.
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These Bell inequalities turn out to be closely related to the aforementioned entangle-
ment witnesses for modular-variable measurements. Finally, we found conditions on sets
of observables in order to yield maximal state-independent violations of contextuality
inequalities in discrete and continuous variables. These conditions highlight common
features of observables that lead to maximal violations of contextuality inequalities in
Hilbert spaces of different dimensions.
After having devised a rather theoretically oriented framework for quantum informa-

tion processing in phase space we turned to a more experimentally motivated scheme
allowing to process discrete quantum information encoded in the transverse degrees of
freedom of single photons. Specifically, we exploited the optical Talbot effect in order to
manipulate d-dimensional quantum systems encoded in the periodic near-field interfer-
ence pattern of plane waves after having passed through periodic diffraction gratings. In
particular, we saw that the free-propagation of the single photons in combination with
a single optical element, a spatial light modulator, allows to implement universal single
qudit operations. Furthermore, we discussed means to perform two-mode operations of
photons carrying such an encoding and we showed how to produce deterministically d-
dimensional entangled photon pairs using spontaneous parametric down-conversion and
linear optical elements only. Finally, we demonstrated the applicability of this quantum
information processing scheme by showing how to violate d-dimensional Bell inequali-
ties with the corresponding entangled states. An outlook on possible realization of such
a Bell test in terms of material particles was given at the end of the corresponding
Chapter, as well.
Finally, we changed gears a little bit and investigated the nonlocal properties of

so-called hybrid entanglement between particle-like and wave-like optical qubits. The
latter might bear potential improvements for hybrid quantum information protocols,
such as quantum teleportation or quantum key distribution. We first reviewed different
strategies that can be followed to test for the nonlocality of such states using homodyne
measurements and photon resolving detections. Further on, we showed that a hybrid
measurement strategy, that makes use of Pauli measurements and displaced parity mea-
surements on the two subsystems of the hybrid entangled state, respectively, yields a
violation of the CHSH inequality for all parameters of the hybrid entangled state. The
latter also holds after accounting for optical losses in the calculations of the corre-
sponding terms in the CHSH inequality. Hence, theoretically a demonstration of the
nonlocality of the considered hybrid entangled states is possible while its experimental
implementation remains a challenging task.
In conclusion, we have discussed a whole range of concepts that are of potential inter-

est for future developments of hybrid techniques. The latter include, on the one hand,
the formulation of new quantum information protocols that profit from the simultane-
ous use of discrete- and continuous-variable encodings. Since such protocols make use of
fundamental properties of quantum mechanics as resources they might benefit from our
considerations about entanglement, nonlocality and contextuality detection in terms of
modular-variable measurements. On the other hand, we contributed to the development
of experimental hybrid techniques which exploit different degrees of freedom of a single
quantum systems, e.g. the polarization and spatial degrees of freedom of photons, by
providing new ways to encode discrete quantum information in continuous variables.
But also hybrid networks, that consist of various physical systems, e.g. trapped ions
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and atoms or micro- and nano-mechanical oscillators, depend on the formulation such
theoretical means since their vibrational degrees of freedom often require a treatment
in a continuous variable representation.
At last, the work presented in this dissertation can be seen as a starting point of

many new interesting investigations to be carried out in the future. One big issue that
was touched only slightly during our elaborations about modular variables is their im-
portant role for fault-tolerant implementations of universal quantum computations in
continuous-variable systems. An interesting question to explore deeper is why up to
today the only way of achieving fault-tolerance in continuous variables is by using a
modular variables logical encoding. Furthermore, might quantum computation algo-
rithms also profit from a state readout in terms of modular variables measurements
as do the presently introduced test of fundamental properties of quantum mechanics?
The formulation of specific modular-variable quantum computation algorithms could
be an interesting task for future work. In particular, the model of measurement based
quantum computation is thereby of great importance due to the existing experimental
capabilities of producing large continuous-variable cluster states.
Another route of research consists of generalizations of the presented modular-variable

techniques. For instance, a desirable goal is to formulate novel modular-variables crite-
ria that allow to test for entanglement or nonlocality of a broader class of continuous-
variable states, e.g. the hybrid entangled states discussed in the previous Chapter or
more general classes of entangled cat states. One way of doing so might be to find appro-
priate phase space operations that stabilize such states approximately such that the re-
sulting entanglement witnesses can detect their correlations at least partially. However,
also other mathematical techniques, such as the use of matrices of moments, have previ-
ously proved to be useful to derive entanglement witnesses for different classes of states
and could be helpful for our considerations. In the case of contextuality, future studies
of other contextuality inequalities and their conditions for maximal state-independent
violations can be envisioned in order to clarify the generality of our conditions.
Furthermore, modular-variable techniques might be of interest also for the detection of

other quantum mechanical resources, such as steering or quantum coherence. The latter
are properties for which the use of such techniques is rather unexplored but might be
of interest due to the accessibility of modular variables through POVM measurements.
Moreover, the investigation of such resources in macroscopic systems consisting of a
large number of degrees of freedom, is an active research topic that might profit from
techniques involving the manipulation and measurement of modular variables.
Concerning the presented Talbot quantum information processing scheme one of the

main perspectives for future work will be its application to systems of material particles.
Even though, we have already elaborated briefly on the possibility of experimentally
implementing such a scheme with atoms, our considerations are up to now not mature
enough and require further investigations. Thereby, one of the main issues is the real-
ization of a position phase gate on the transverse field of a propagating matter wave,
which with light fields is straightforwardly implemented using a spatial light modulator.
Also, the question how to produce spatially entangled material particles, with the size
of an atom or larger, is worth to be further investigated. Finally, other interesting test
of quantum mechanical properties, e.g. contextuality, in terms of photons or material
particles could be envisioned.
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A Laguerre- and Hermite polynomials

A.1 Laguerre polynomials

The Laguerre polynomials are defined as the solutions of the Laguerre differential equa-
tion [Messiah, 1979, 1991]:

x y′′(x) + (1− x) y′(x) + ny(x) = 0 n = 0, 1, . . . , (A.1)

and can be expressed as follows:

Ln(x) =
ex

n!

dn

dxn
(xne−x) =

n∑

j=1

(−1)j

j!

(
n
j

)
xj . (A.2)

Examples are:

L0(x) = 1, (A.3)
L1(x) = −x+ 1, (A.4)

L2(x) =
1

2
(x2 − 4x+ 2), (A.5)

and higher orders can be calculated using the following recursion relations:

(n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x), (A.6)
xL′n(x) = nLn(x)− nLn−1(x). (A.7)

The associated Laguerre polynomials are then defined as:

Lkn(x) = (−1)k
dk

dxk
Ln+k(x) =

n∑

j=1

(−1)j

j!

(
n+ k
n− j

)
xj . (A.8)

which fulfill the associated Laguerre differential equation:

x y′′(x) + (k + 1− x) y′(x) + n y(x) = 0, n = 0, 1, . . . , k ≤ n. (A.9)

Corresponding examples are:

Lk0(x) = 1, (A.10)

Lk1(x) = −x+ k + 1, (A.11)

Lk2(x) =
1

2

[
x2 − 2 (k + 2)x+ (k + 1)(k + 2)

]
, (A.12)
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and higher orders can be calculated with:

Lkn(x) =
k + 1− x

n
L`+1
n−1(x)− x

n
Lk+2
n−1(x), (A.13)

Ln−kk (x) =
n− k + 1− x

k
L
n−(k−1)
k−1 (x)− x

k
L
n−(k−2)
k−2 (x). (A.14)

A.2 Hermite polynomials

The Hermite polynomials are defined as the solutions of the Hermite differential equation
[Messiah, 1979, 1991]:

H ′′n(x)− 2x ·H ′n(x) + 2n ·Hn(x) = 0 (n = 0, 1, 2, . . . ), (A.15)

and can be expressed as follows:

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
= ex

2/2

(
x− d

dx

)n
e−x

2/2 (A.16)

or explicitely

Hn(x) = (−1)n
∑

k1+2k2=n

n!

k1!k2!
(−1)k1+k2(2x)k1 . (A.17)

Examples are:

H0(x) = 1, (A.18)
H1(x) = 2x, (A.19)

H2(x) = 4x2 − 2, (A.20)

and higher orders can be calculated using the following recursion relations:

Hn+1(x) = 2xHn(x)− 2nHn−1(x), (A.21)
H ′n(x) = 2nHn−1(x). (A.22)



B Modular variables: explicit
calculations

B.1 Commutators of modular and integer operators

In this Appendix we will give explicit derivations of the commutators (III.18) and
(III.19), given in Sec. III.1.3. For convenience we reproduce these expressions here:

[ˆ̄x, M̂ ] = i
`

2π

(
1− `

∫ π/`

−π/`
dp̄|`/2, p̄〉〈`/2, p̄|

)
, (B.1)

[N̂ , ˆ̄p] =
i

`

(
1− 2π

`

∫ `/2

−`/2
dx̄|x̄, π/`〉〈x̄, π/`|

)
. (B.2)

We will begin with Eq. (B.1) and note first that the modular position and momentum
operators read in the modular representation (see Sec. III.1.4), as follows:

ˆ̄x =

∫ `/2

−`/2

∫ π/`

−π/`
dx̄dp̄ x̄|x̄, p̄〉〈x̄, p̄|, (B.3)

ˆ̄p =

∫ `/2

−`/2

∫ π/`

−π/`
dx̄dp̄ p̄|x̄, p̄〉〈x̄, p̄|. (B.4)

In order to express the integer operator M̂ = (p̂− ˆ̄p)`/(2π) in the modular representation
we first have to find the modular representation of the momentum operator p̂. The latter
can be obtained using the decomposition of the identity (III.35), as follows:

p̂ =

∫∫ `/2

−`/2
dx̄1/2

∫∫ π/`

−π/`
dp̄1/2

∫ ∞

−∞
dp p 〈x̄1, p̄1|p〉〈p|x̄2, p̄2〉|x̄1, p̄1〉〈x̄2, p̄2|

=
1

`

∫∫ `/2

−`/2
dx̄1/2

∫ π/`

−π/`
dp̄
∑

m∈Z
(p̄+ 2πm/`)eix̄1(p̄+m2π/`)e−ix̄2(p̄+2πm/`)|x̄1, p̄〉〈x̄2, p̄|

=
1

`

∫∫ `/2

−`/2
dx̄1/2

∫ π/`

−π/`
dp̄ p̄

∑

m∈Z
ei2πm(x̄1−x̄2)/`

︸ ︷︷ ︸
=`δ(x̄1−x̄2)

eip̄(x̄1−x̄2)|x̄1, p̄〉〈x̄2, p̄|

+
1

`

∫∫ `/2

−`/2
dx̄1/2

∫ π/`

−π/`
dp̄
∑

m∈Z
2πm/`ei2πm(x̄1−x̄2)/`

︸ ︷︷ ︸
=i d

dx̄2
(`δ(x̄1−x̄2))

eip̄(x̄1−x̄2)|x̄1, p̄〉〈x̄2, p̄| (B.5)
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where we used the relation (III.37) and that p = p̄ + 2πm/`. By further simplifying
Eq. (B.5) we obtain:

p̂ = ˆ̄p+
i`

2π

∫∫ `/2

−`/2
dx̄1dx̄2

∫ π/`

−π/`
dp̄ eip̄(x̄1−x̄2) dδ(x̄1 − x̄)

dx̄

∣∣∣∣
x̄=x̄2

|x̄1, p̄〉〈x̄2, p̄| (B.6)

and thus have

M̂ =
i`

2π

∫∫ `/2

−`/2
dx̄1dx̄2

∫ π/`

−π/`
dp̄ eip̄(x̄1−x̄2) dδ(x̄1 − x̄)

dx̄

∣∣∣∣
x̄=x̄2

|x̄1, p̄〉〈x̄2, p̄|, (B.7)

and a similar calculation leads to the integer position operator N̂ . If we now multiply
ˆ̄x with M̂ we obtain

ˆ̄xM̂ =
i`

2π

∫∫ `/2

−`/2
dx̄1dx̄2

∫ π/`

−π/`
dp̄ x̄1e

ip̄(x̄1−x̄2) dδ(x̄1 − x̄)

dx̄

∣∣∣∣
x̄=x̄2

|x̄1, p̄〉〈x̄2, p̄|. (B.8)

Further on, in order to derive the commutator relation (B.1) we calculate the action of
ˆ̄xM̂ on an arbitrary state |Ψ〉 =

∫ `/2
−`/2 dx̄

∫ π/`
−π/` dp̄Ψ(x̄, p̄)|x̄, p̄〉, yielding:

ˆ̄xM̂ |Ψ〉 =

∫ `/2

−`/2
dx̄1

∫ π/`

−π/`
dp̄

[
i`

2π
x̄1

∫ `/2

−`/2
dx̄2e

ip̄(x̄1−x̄2) dδ(x̄1 − x̄)

dx̄

∣∣∣∣
x̄=x̄2

Ψ(x̄2, p̄)

]
|x̄1, p̄〉

(B.9)

and the corresponding modular wave function reads:

〈x̄1, p̄|ˆ̄xM̂ |Ψ〉 =
i`

2π
x̄1

∫ `/2

−`/2
dx̄2e

ip̄(x̄1−x̄2) dδ(x̄1 − x̄)

dx̄

∣∣∣∣
x̄=x̄2

Ψ(x̄2, p̄)

=
i`

2π
x̄1

[
eip̄(x̄1− `2 )Ψ(

`

2
, p̄)δ(x̄1 −

`

2
)− eip̄(x̄1+ `

2
)Ψ(− `

2
, p̄)δ(x̄1 +

`

2
)

]

︸ ︷︷ ︸
=0

− i`

2π
x̄1

[
(−i)p̄Ψ(x̄1, p̄) +

dΨ(x̄, p̄)

dx̄

∣∣∣∣
x̄=x̄1

]

=− `

2π
x̄1p̄Ψ(x̄1, p̄)−

i`

2π
x̄1

dΨ(x̄, p̄)

dx̄

∣∣∣∣
x̄=x̄1

, (B.10)

where in the first step we used partial integration and in the second step the quasi-
periodicity condition (III.42). Equivalently, the second term of the commutator becomes

〈x̄1, p̄|M̂ ˆ̄x|Ψ〉 =
i`2

2π
δ(x̄1 −

`

2
)Ψ(

`

2
, p̄) + Ψ(x̄1, p̄)

− `

2π
x̄1p̄Ψ(x̄1, p̄)−

i`

2π
x̄1

dΨ(x̄, p̄)

dx̄

∣∣∣∣
x̄=x̄1

, (B.11)
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and together with Eq. (B.10) we obtain

〈x̄1, p̄|[ˆ̄x, M̂ ]|Ψ〉 =
i`

2π

[
Ψ(x̄1, p̄)− `δ(x̄1 −

`

2
)Ψ(

`

2
, p̄)

]
, (B.12)

what yields the commutator relation (B.1). The second relation (B.2) can be shown
with an analogous calculation.

B.2 Bound on expectation values of readout observables

In this Appendix we will summarize some more details of mathematical derivations
made in Sec. III.3. Let us start by reproducing the definition of our modular readout
observables:

Γ̂β =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ ζβ(x̄, p̄)σ̂β(x̄, p̄), β = x, y, z (B.13)

where ζβ(x̄, p̄) are arbitrary real functions with domain [−`/4, `/4[×[−π/`, π/`[, and the
operators σ̂β(x̄, p̄) are defined as in Eqs. (III.84), (III.85) and (III.87). Next, the matrix
elements of the operators (III.84), (III.85) and (III.87) in the modular basis read:

〈x̄′, p̄′|σ̂z(x̄0, p̄0)|x̄, p̄〉 = δ(p̄− p̄0)δ(p̄′ − p̄0)

×
[
δ(x̄− x̄0)δ(x̄′ − x̄0)± δ(x̄− `

2
− x̄0)δ(x̄′ − `

2
− x̄0)

]
, (B.14)

〈x̄′, p̄′|σ̂x(x̄0, p̄0)|x̄, p̄〉 = δ(p̄− p̄0)δ(p̄′ − p̄0)

×
[
δ(x̄′ − x̄0)δ(x̄− `

2
− x̄0)e−ip̄`/2 + δ(x̄′ − `

2
− x̄0)δ(x̄− x̄0)eip̄`/2

]
, (B.15)

〈x̄′, p̄′|σ̂y(x̄0, p̄0)|x̄, p̄〉 = −iδ(p̄− p̄0)δ(p̄′ − p̄0)

×
[
δ(x̄′ − x̄0)δ(x̄− `

2
− x̄0)e−ip̄`/2 − δ(x̄′ − `

2
− x̄0)δ(x̄− x̄0)eip̄`/2

]
. (B.16)

Now, using Eqs. (III.95)-(III.98), we can show that the (x̄, p̄)-dependent Pauli matrices
σα(x̄, p̄), with α = x, y, z, fulfill the relation:

σ̂α(x̄, p̄)σ̂β(x̄′, p̄′) = δ(x̄′ − x̄)δ(p̄′ − p̄)
[
i
∑

γ=x,y,z

εαβγ σ̂γ(x̄, p̄) + δα,β1(x̄, p̄)

]
(B.17)

where α, β = x, y, z and 1(x̄, p̄) = ||x̄, p̄〉〈x̄, p̄|| + ||x̄+ `/2, p̄〉〈x̄+ `/2, p̄||. The relation
(III.95) resembles the one of a real Pauli algebra, which was given in Eq. (II.6), with
additional delta functions ensuring that the products of Pauli operators corresponding
to different subspaces, labeled by (x̄, p̄) and (x̄′, p̄′), respectively, vanish. Further on,
we can calculate the expectation value of the observables (III.94) with respect to an
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arbitrary CV state expressed in the modular representation (III.72), yielding:

〈Γ̂x〉 =

∫∫∫ `/4

−`/4
dx̄ dx̄1dx̄2

∫∫∫ π/`

−π/`
dp̄ dp̄1dp̄2 ζx(x̄, p̄)f∗(x̄1, p̄1)f(x̄2, p̄2)

× 〈Ψ(x̄1, p̄1)|σ̂x(x̄, p̄)|Ψ(x̄2, p̄2)〉

=

∫∫∫ `/4

−`/4
dx̄ dx̄1dx̄2

∫∫∫ π/`

−π/`
dp̄ dp̄1dp̄2 ζx(x̄, p̄)f∗(x̄1, p̄1)f(x̄2, p̄2)

×
[
cos (

θ(x̄1, p̄1)

2
) sin (

θ(x̄2, p̄2)

2
)eφ(x̄2,p̄2) + cos (

θ(x̄2, p̄2)

2
) sin (

θ(x̄1, p̄1)

2
)eφ(x̄1,p̄1)

]

× δ(x̄1 − x̄)δ(x̄− x̄2)δ(p̄1 − p̄)δ(p̄− p̄2)

=

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ζx(x̄, p̄)|f(x̄, p̄)|22 cos (

θ(x̄, p̄)

2
) sin (

θ(x̄, p̄)

2
) cos (φ(x̄, p̄))

=

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ζx(x̄, p̄)|f(x̄, p̄)|2 sin (θ(x̄, p̄)) cos (φ(x̄, p̄)), (B.18)

In the second step of the computation (III.99) we dropped cross terms that are propor-
tional to products of delta functions, such as δ(x̄1 + `/2 − x̄)δ(x̄ − x̄2). The latter are
nonzero only in a single point (set of measure zero) and thus vanish upon integration
of x̄1 and x̄2 over the interval [−`/4, `/4[. Equivalently, the expectation values of the
observables Γ̂y and Γ̂z read:

〈Γ̂y〉 =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ζy(x̄, p̄)|f(x̄, p̄)|2 sin (θ(x̄, p̄)) sin (φ(x̄, p̄)), (B.19)

〈Γ̂z〉 =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄_βz(x̄, p̄)|f(x̄, p̄)|2 cos (θ(x̄, p̄)). (B.20)

Or, we can write:

〈Γ̂〉 =

∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄|f(x̄, p̄)|2 (ζ(x̄, p̄) · v(x̄, p̄)) , (B.21)

where ζ(x̄, p̄) = (ζx(x̄, p̄), ζy(x̄, p̄), ζz(x̄, p̄))
T, and

v(x̄, p̄) = (vx(x̄, p̄), vy(x̄, p̄), vz(x̄, p̄))
T

= (sin (θ(x̄, p̄)) cos (φ(x̄, p̄)), sin (θ(x̄, p̄)) sin (φ(x̄, p̄)), cos (θ(x̄, p̄)))T. (B.22)

Further on, we show that the sum over the squares of the expectation values (III.99),
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(III.100) and (III.101) is bounded:

〈Γ̂〉2 =〈Γ̂x〉2 + 〈Γ̂y〉2 + 〈Γ̂z〉2

=

∫∫ `/4

−`/4
dx̄dx̄′

∫∫ π/`

−π/`
dp̄dp̄′

∑

β=x,y,z

|f(x̄, p̄)|2|f(x̄′, p̄′)|2ζβ(x̄, p̄)ζβ(x̄′, p̄′)

× vβ(x̄, p̄)vβ(x̄′, p̄′)

≤
∫∫ `/4

−`/4
dx̄x̄′

∫∫ π/`

−π/`
dp̄dp̄′

∑

β=x,y,z

|f(x̄, p̄)|2|f(x̄′, p̄′)|2ζβ(x̄, p̄)ζβ(x̄′, p̄′)

× 1

2
[vβ(x̄, p̄)2 + vβ(x̄′, p̄′)2]

≤
(

max
x̄,p̄,β
|ζβ(x̄, p̄)|

)2
∫∫ `/4

−`/4
dx̄x̄′

∫∫ π/`

−π/`
dp̄dp̄′|f(x̄, p̄)|2|f(x̄′, p̄′)|2

× 1

2


 ∑

β=x,y,z

v2
β(x̄, p̄) +

∑

β=x,y,z

v2
β(x̄′, p̄′)




︸ ︷︷ ︸
=1

=
(

max
x̄,p̄,β
|ζβ(x̄, p̄)|

)2
(∫ `/4

−`/4
dx̄

∫ π/`

−π/`
dp̄ |f(x̄, p̄)|2

)2

≤
(

max
x̄,p̄,β
|ζβ(x̄, p̄)|

)2
, (B.23)

where we used that (vβ(x̄, p̄) − vβ(x̄′, p̄′))2 ≥ 0, the triangle inequality and that the
Bloch vector of a pure qubit state is normalized to 1. Hence, we found that the norm
of the vector formed by the expectation values of the operators (III.94) with respect to
an arbitrary state CV state |Ψ〉 is bounded by maxx̄,p̄,β |ζβ(x̄, p̄)|.
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