V. 3. Nouvelle-méthode-d-'asservissement-d-'un, . Laser, . Trou, . Spectral, . La et al., Le régime continu à montré des largeurs spectrales des trous brûlés spectraux de 3.3 kHz, et a été

A. B. Sur-la-figure, C. De-beauvoir, O. Schwob, L. Acef, L. Jozefowski et al., Les vibrations de plus forte amplitude correspondent aux étapes du cycle thermodynamique où la pression varie brusquement sous la chambre d'expérience Metrology of the hydrogen and deuterium atoms : determination of the rydberg constant and lamb shifts, The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, vol.5, issue.12 1, pp.61-93, 2000.

A. Shelkovnikov, R. J. Butcher, C. Chardonnet, and A. Amy-klein, Stability of the Proton-to-Electron Mass Ratio, Physical Review Letters, vol.100, issue.15, p.150801, 2008.
DOI : 10.1103/PhysRevLett.100.150801

URL : https://hal.archives-ouvertes.fr/hal-00263674

R. Bouchendira, P. Cladé, S. Guellati-khélifa, F. Nez, and F. Biraben, New Determination of the Fine Structure Constant and Test of the Quantum Electrodynamics, Physical Review Letters, vol.106, issue.8, p.80801, 2011.
DOI : 10.1103/PhysRevLett.106.080801

URL : https://hal.archives-ouvertes.fr/hal-00547525

M. Gurov, J. Mcferran, B. Nagorny, R. Tyumenev, Z. Xu et al., Optical Lattice Clocks as Candidates for a Possible Redefinition of the SI Second, IEEE Transactions on Instrumentation and Measurement, vol.62, issue.6, pp.1568-1573, 2013.
DOI : 10.1109/TIM.2013.2242638

B. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen et al., LIGO: the Laser Interferometer Gravitational-Wave Observatory, Reports on Progress in Physics, vol.72, issue.7, p.76901, 2009.
DOI : 10.1088/0034-4885/72/7/076901

URL : http://arxiv.org/abs/0711.3041

C. Chou, D. Hume, T. Rosenband, and D. Wineland, Optical Clocks and Relativity, Science, vol.47, issue.5, pp.1630-1633, 2010.
DOI : 10.1103/PhysRevA.47.3554

C. Gattano, S. B. Lambert, and C. Bizouard, Observation of the Earth???s nutation by the VLBI: how accurate is the geophysical signal, Journal of Geodesy, vol.6, issue.3, pp.1-8, 2016.
DOI : 10.13168/AGG.2016.0005

URL : https://hal.archives-ouvertes.fr/hal-01376213

L. Zotov, C. Bizouard, and C. Shum, A possible interrelation between Earth rotation and climatic variability at decadal time-scale, Geodesy and Geodynamics, vol.7, issue.3, pp.216-222, 2016.
DOI : 10.1016/j.geog.2016.05.005

URL : http://doi.org/10.1016/j.geog.2016.05.005

F. Riehle, Frequency standards : basics and applications, 2006.
DOI : 10.1002/3527605991

G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann et al., Quantum Projection Noise in an Atomic Fountain: A High Stability Cesium Frequency Standard, Physical Review Letters, vol.82, issue.23, p.4619, 1999.
DOI : 10.1103/PhysRevLett.82.4619

J. Vanier and C. Audoin, The quantum physics of atomic frequency standards, 1989.
DOI : 10.1201/b18738

V. Yudin, A. Taichenachev, C. Oates, Z. Barber, N. Lemke et al., Hyper-Ramsey spectroscopy of optical clock transitions, Physical Review A, vol.82, issue.1, p.11804, 2010.
DOI : 10.1103/PhysRevA.82.011804

R. Hobson, W. Bowden, S. King, P. Baird, I. Hill et al., Modified hyper-Ramsey methods for the elimination of probe shifts in optical clocks, Physical Review A, vol.93, issue.1, p.10501, 2016.
DOI : 10.1103/PhysRevA.93.010501

T. Zanon-willette, E. De-clercq, and E. Arimondo, Probe light-shift elimination in generalized hyper-Ramsey quantum clocks, Physical Review A, vol.93, issue.4, p.42506, 2016.
DOI : 10.1103/PhysRevA.93.042506

C. J. Bordé, C. Salomon, S. Avrillier, A. Van-lerberghe, C. Bréant et al., Optical Ramsey fringes with traveling waves, Physical Review A, vol.30, issue.4, p.1836, 1984.
DOI : 10.1103/PhysRevA.30.1836

A. Makdissi and E. De-clercq, Evaluation of the accuracy of the optically pumped caesium beam primary frequency standard of BNM-LPTF, Metrologia, vol.38, issue.5, p.409, 2001.
DOI : 10.1088/0026-1394/38/5/6

R. Wynands and S. Weyers, Atomic fountain clocks, Metrologia, vol.42, issue.3, p.64, 2005.
DOI : 10.1088/0026-1394/42/3/S08

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic et al., Advances in atomic fountains, Comptes Rendus Physique, vol.5, issue.8, pp.829-843, 2004.
DOI : 10.1016/j.crhy.2004.09.003

C. Vian, P. Rosenbusch, H. Marion, S. Bize, L. Cacciapuoti et al., BNM-SYRTE Fountains: Recent Results, IEEE Transactions on Instrumentation and Measurement, vol.54, issue.2, pp.833-836, 2005.
DOI : 10.1109/TIM.2005.843573

G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann et al., Quantum Projection Noise in an Atomic Fountain: A High Stability Cesium Frequency Standard, Physical Review Letters, vol.82, issue.23, p.4619, 1999.
DOI : 10.1103/PhysRevLett.82.4619

W. Oskay, S. Diddams, E. Donley, T. Fortier, T. Heavner et al., Single-Atom Optical Clock with High Accuracy, Physical Review Letters, vol.97, issue.2, p.20801, 2006.
DOI : 10.1103/PhysRevLett.97.020801

N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, Systematic Uncertainty, Physical Review Letters, vol.116, issue.6, p.63001, 2016.
DOI : 10.1103/PhysRevLett.116.063001

P. Dubé, A. A. Madej, M. Tibbo, and J. E. Bernard, Clock Using the Time-Dilation Effect, Physical Review Letters, vol.112, issue.17, p.173002, 2014.
DOI : 10.1103/PhysRevLett.112.173002

K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke et al., Direct comparison of a Ca^+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement, Optics Express, vol.20, issue.20, pp.22034-22041, 2012.
DOI : 10.1364/OE.20.022034

C. Chou, D. Hume, J. Koelemeij, D. Wineland, and T. Rosenband, Optical Clocks, Physical Review Letters, vol.104, issue.7, p.70802, 2010.
DOI : 10.1103/PhysRevLett.104.070802

J. Keupp, A. Douillet, T. Mehlstäubler, N. Rehbein, E. Rasel et al., A highresolution ramsey-bordé spectrometer for optical clocks based on cold Mg atoms, The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, vol.36, issue.3, pp.289-294, 2005.

G. Wilpers, C. Oates, S. A. Diddams, A. Bartels, T. M. Fortier et al., Absolute frequency measurement of the neutral 40 Ca optical frequency standard at 657 nm based on microkelvin atoms, p.146, 2007.

K. Yamanaka, N. Ohmae, I. Ushijima, M. Takamoto, and H. Katori, Optical Lattice Clocks beyond the SI Limit, Physical Review Letters, vol.114, issue.23, p.230801, 2015.
DOI : 10.1103/PhysRevLett.114.230801

N. Hinkley, J. Sherman, N. Phillips, M. Schioppo, N. Lemke et al., An Atomic Clock with 10-18 Instability, Science, vol.100, issue.14, pp.1215-1218, 2013.
DOI : 10.1103/PhysRevLett.100.140801

URL : http://arxiv.org/abs/1305.5869

B. Bloom, T. Nicholson, J. Williams, S. Campbell, M. Bishof et al., An optical lattice clock with accuracy and stability at the 10???18 level, Nature, vol.4, issue.7486, pp.71-75, 2014.
DOI : 10.1007/s00340-012-4952-6

URL : http://arxiv.org/abs/1309.1137

M. Schioppo, R. Brown, W. Mcgrew, N. Hinkley, R. Fasano et al., Ultrastable optical clock with two cold-atom ensembles, Nature Photonics, vol.107, issue.1, 2016.
DOI : 10.1038/nphoton.2016.231

URL : http://arxiv.org/abs/1607.06867

G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke et al., Optical Clock with Ultracold Neutral Atoms, Physical Review Letters, vol.89, issue.23, p.230801, 2002.
DOI : 10.1103/PhysRevLett.89.230801

URL : http://arxiv.org/abs/physics/0205049

R. Dicke, The Effect of Collisions upon the Doppler Width of Spectral Lines, Physical Review, vol.89, issue.2, p.472, 1953.
DOI : 10.1103/PhysRev.89.472

F. M. Penning, Die glimmentladung bei niedrigem druck zwischen koaxialen zylindern in einem axialen magnetfeld, Physica, vol.3, issue.9, pp.873-894, 1936.
DOI : 10.1016/S0031-8914(36)80313-9

H. G. Dehmelt, Radiofrequency Spectroscopy of Stored Ions I: Storage, Advances in Atomic and Molecular Physics, pp.53-72, 1968.
DOI : 10.1016/S0065-2199(08)60170-0

W. Paul and M. Raether, Das elektrische Massenfilter, Zeitschrift f???r Physik, vol.140, issue.3, pp.262-273, 1955.
DOI : 10.1007/BF01328923

S. Chu, J. Bjorkholm, A. Ashkin, and A. Cable, Experimental Observation of Optically Trapped Atoms, Physical Review Letters, vol.57, issue.3, p.314, 1986.
DOI : 10.1103/PhysRevLett.57.314

H. Katori, M. Takamoto, V. Pal-'chikov, and V. Ovsiannikov, Ultrastable Optical Clock with Neutral Atoms in an Engineered Light Shift Trap, Physical Review Letters, vol.91, issue.17, p.173005, 2003.
DOI : 10.1103/PhysRevLett.91.173005

I. Courtillot, A. Quessada, R. P. Kovacich, A. Brusch, D. Kolker et al., Clock transition for a future optical frequency standard with trapped atoms, Physical Review A, vol.68, issue.3, p.30501, 2003.
DOI : 10.1103/PhysRevA.68.030501

URL : https://hal.archives-ouvertes.fr/hal-00016399

G. J. Dick, Local oscillator induced instabilities in trapped ion frequency standards, 1987.

A. Quessada, R. P. Kovacich, I. Courtillot, A. Clairon, G. Santarelli et al., The Dick effect for an optical frequency standard, Journal of Optics B: Quantum and Semiclassical Optics, vol.5, issue.2, p.150, 2003.
DOI : 10.1088/1464-4266/5/2/373

P. G. Westergaard, J. Lodewyck, and P. Lemonde, Figure 9, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.57, issue.3, pp.623-628, 2010.
DOI : 10.1109/TUFFC.2010.1457/mm1

R. , L. Targat, L. Lorini, Y. L. Coq, M. Zawada et al., Experimental realization of an optical second with strontium lattice clocks, Nature communications, vol.4, 2013.

D. Nicolodi, B. Argence, W. Zhang, R. Le-targat, G. Santarelli et al., Spectral purity transfer between optical wavelengths at the 10???18 level, Nature Photonics, vol.8, issue.3, pp.219-223, 2014.
DOI : 10.1364/OL.19.001777

URL : https://hal.archives-ouvertes.fr/hal-00995888

R. V. Pound, Frequency Stabilization of Microwave Oscillators, Proceedings of the IRE, vol.35, issue.12, pp.1405-1415, 1947.
DOI : 10.1109/JRPROC.1947.226198

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford et al., Laser phase and frequency stabilization using an optical resonator, Applied Physics B Photophysics and Laser Chemistry, vol.17, issue.2, pp.97-105, 1983.
DOI : 10.1007/BF00702605

K. Numata, A. Kemery, and J. Camp, Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities, Physical Review Letters, vol.93, issue.25, p.250602, 2004.
DOI : 10.1103/PhysRevLett.93.250602

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman et al., Making optical atomic clocks more stable with 10???16-level laser stabilization, Nature Photonics, vol.54, issue.3, pp.158-161, 2011.
DOI : 10.1038/nphoton.2010.313

URL : http://arxiv.org/abs/1101.1351

S. Amairi, T. Legero, T. Kessler, U. Sterr, J. B. Wübbena et al., Reducing the effect of thermal noise in optical cavities, Applied Physics B, vol.49, issue.6, pp.233-242, 2013.
DOI : 10.1007/s00340-013-5464-8

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero et al., 8??????????????10^???17 fractional laser frequency instability with a long room-temperature cavity, Optics Letters, vol.40, issue.9, pp.2112-2115, 2015.
DOI : 10.1364/OL.40.002112

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr et al., A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity, Nature Photonics, vol.2, issue.10, pp.687-692, 2012.
DOI : 10.1038/nphoton.2012.217

URL : http://arxiv.org/abs/1112.3854

G. D. Cole, W. Zhang, B. J. Bjork, D. Follman, P. Heu et al., High-performance near- and mid-infrared crystalline coatings, Optica, vol.3, issue.6, pp.647-656, 2016.
DOI : 10.1364/OPTICA.3.000647

URL : http://arxiv.org/abs/1604.00065

M. Dejneka and B. Samson, Rare-Earth-Doped Fibers for Telecommunications Applications, MRS Bulletin, vol.23, issue.214, pp.39-45, 1999.
DOI : 10.1557/S0883769400053057

C. Thiel, T. Böttger, and R. Cone, Rare-earth-doped materials for applications in quantum information storage and signal processing, Journal of Luminescence, vol.131, issue.3, pp.353-361, 2011.
DOI : 10.1016/j.jlumin.2010.12.015

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, Efficient quantum memory for light, Nature, vol.74, issue.7301, pp.1052-1056, 2010.
DOI : 10.1038/nature09081

URL : http://hdl.handle.net/1885/57252

F. Bussières, C. Clausen, I. Usmani, A. Tiranov, N. Sangouard et al., Quantum memories with rare-earth-ion doped crystals, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR), pp.2-2, 2013.
DOI : 10.1109/CLEOPR.2013.6599944

R. L. Cone, C. Thiel, Y. Sun, T. Böttger, and R. Macfarlane, Quantum Information, Laser Frequency Stabilization, and Optical Signal Processing with Rare-Earth Doped Materials, Frontiers in Optics 2013, pp.1-3, 2013.
DOI : 10.1364/LS.2013.LTu1G.3

L. Rippe, B. Julsgaard, A. Walther, and S. Kröll, Laser stabilization using spectral hole burning, 2006.

B. Julsgaard, A. Walther, S. Kröll, and L. Rippe, Understanding laser stabilization using spectral hole burning, Optics Express, vol.15, issue.18, pp.11444-11465, 2007.
DOI : 10.1364/OE.15.011444

M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, and T. Rosenband, Frequency stabilization to 6??????10???16 via spectral-hole burning, Nature Photonics, vol.5, issue.11, pp.688-693, 2011.
DOI : 10.1088/1742-6596/228/1/012032

S. Massari and M. Ruberti, Rare earth elements as critical raw materials: Focus on international markets and future strategies, Resources Policy, vol.38, issue.1, pp.36-43, 2013.
DOI : 10.1016/j.resourpol.2012.07.001

R. Macfarlane and R. Shelby, Sub-kilohertz optical linewidths of the 7F0 ??? 5D0 transition in Y2O3:Eu3+, Optics Communications, vol.39, issue.3, pp.169-171, 1981.
DOI : 10.1016/0030-4018(81)90048-1

A. J. Freeman and R. Watson, Theoretical Investigation of Some Magnetic and Spectroscopic Properties of Rare-Earth Ions, Physical Review, vol.127, issue.6, p.2058, 1962.
DOI : 10.1103/PhysRev.127.2058

W. B. Jensen, The Origin of the s, p, d, f Orbital Labels, Journal of Chemical Education, vol.84, issue.5, p.757, 2007.
DOI : 10.1021/ed084p757

O. Guillot-noël, P. Goldner, Y. L. Du, E. Baldit, P. Monnier et al., : An electron paramagnetic resonance spectroscopy study, Physical Review B, vol.74, issue.21, p.214409, 2006.
DOI : 10.1103/PhysRevB.74.214409

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, crystal, Physical Review B, vol.47, issue.22, p.14741, 1993.
DOI : 10.1103/PhysRevB.47.14741

P. Goldner and O. Guillot, Calculations of rare earth hyperfine structures and application to quantum information, Journal of Alloys and Compounds, vol.451, issue.1-2, pp.682-685, 2008.
DOI : 10.1016/j.jallcom.2007.04.071

W. Mims, Amplitudes of Superhyperfine Frequencies Displayed in the Electron-Spin-Echo Envelope, Physical Review B, vol.6, issue.9, p.3543, 1972.
DOI : 10.1103/PhysRevB.6.3543

P. C. Sousa-filho, J. F. Lima, and O. A. Serra, From Lighting to Photoprotection: Fundamentals and Applications of Rare Earth Materials, Journal of the Brazilian Chemical Society, vol.26, issue.12, pp.2471-2495, 2015.
DOI : 10.5935/0103-5053.20150328

B. Judd, Optical Absorption Intensities of Rare-Earth Ions, Physical Review, vol.127, issue.3, p.750, 1962.
DOI : 10.1103/PhysRev.127.750

G. Ofelt, Intensities of Crystal Spectra of Rare???Earth Ions, The Journal of Chemical Physics, vol.49, issue.3, pp.511-520, 1962.
DOI : 10.1080/00268975900100391

O. Malta, W. Azevedo, E. Gouveia, and G. Sá, On the 5D0???7F0 transition of the Eu3+ ion in the {(C4H9)4N}3Y(NCS)6 host, Journal of Luminescence, vol.26, issue.3, pp.337-343, 1982.
DOI : 10.1016/0022-2313(82)90060-6

A. Stoneham, Shapes of Inhomogeneously Broadened Resonance Lines in Solids, Reviews of Modern Physics, vol.41, issue.1, p.82, 1969.
DOI : 10.1103/RevModPhys.41.82

A. Abragam, The principles of nuclear magnetism, 1961.

C. P. Slichter, Principles of magnetic resonance, 2013.

F. Petersen, D. Mcdonald, J. Cupp, B. Danielson, R. Brewer et al., Laser spectroscopy, pp.171-191, 1974.
URL : https://hal.archives-ouvertes.fr/tel-00405200

G. Liu, M. Joubert, R. Cone, and B. Jacquier, Photon echo relaxation and hole burning in Tb 3+ : LiYF 4 and LiTbF 4, Journal of Luminescence, vol.40, pp.551-552, 1988.
DOI : 10.1016/0022-2313(87)90053-6

R. Macfarlane and R. Shelby, Magnetic field dependent optical dephasing in LaF3:Er3+, Optics Communications, vol.42, issue.5, pp.346-350, 1982.
DOI : 10.1016/0030-4018(82)90245-0

T. Böttger, C. Thiel, Y. Sun, and R. Cone, concentration, Physical Review B, vol.73, issue.7, p.75101, 2006.
DOI : 10.1103/PhysRevB.73.075101

R. Orbach, Spin-Lattice Relaxation in Rare-Earth Salts, Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, pp.458-484, 1961.
DOI : 10.1098/rspa.1961.0211

D. Mccumber and M. Sturge, Lines in Ruby, Journal of Applied Physics, vol.34, issue.6, pp.1682-1684, 1963.
DOI : 10.6028/jres.057.008

R. Yano, M. Mitsunaga, and N. Uesugi, Nonlinear laser spectroscopy of Eu^3+:Y_2SiO_5 and its application to time-domain optical memory, Journal of the Optical Society of America B, vol.9, issue.6, pp.992-997, 1992.
DOI : 10.1364/JOSAB.9.000992

M. Mitsunaga, R. Yano, and N. Uesugi, Time- and frequency-domain hybrid optical memory: 16-kbit data storage in Eu^3+:Y_2SiO_5, Optics Letters, vol.16, issue.23, pp.1890-1892, 1991.
DOI : 10.1364/OL.16.001890

H. Riesen, B. F. Hayward, and A. Szabo, Side-hole to anti-hole conversion in time-resolved spectral hole burning of ruby: Long-lived spectral holes due to ground state level population storage, Journal of Luminescence, vol.127, issue.2, pp.655-664, 2007.
DOI : 10.1016/j.jlumin.2007.03.015

B. F. Hayward and H. Riesen, Side-hole to anti-hole conversion in time-resolved transient spectral hole-burning of emerald: ground state level versus excited state population storage in low magnetic fields, Physical Chemistry Chemical Physics, vol.36, issue.13, pp.2579-2586, 2005.
DOI : 10.1039/b502079d

H. J. Scheel, P. Capper, and P. Rudolph, Crystal Growth Technology : Semiconductors and Dielectrics, 2011.

R. Macfarlane, Y. Sun, R. Cone, C. Thiel, and R. Equall, Optical dephasing by disorder modes in yttrium orthosilicate (Y2SiO5) doped with Eu3+, Journal of Luminescence, vol.107, issue.1-4, pp.310-313, 2004.
DOI : 10.1016/j.jlumin.2003.12.029

J. Czochralski, Ein neues verfahren zur messung der kristallisationsgeschwindigheit der metalle, Z. phys. Chemie, vol.92, pp.219-221, 1918.
DOI : 10.1515/zpch-1918-9212

A. Ferrier, B. Tumino, and P. Goldner, Variations in the oscillator strength of the 7F0<mml:math altimg="si0016.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mo>???</mml:mo></mml:math>5D0 transition in <mml:math altimg="si0017.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msup superscriptshift="75%"><mml:mrow><mml:mi>Eu</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo form="prefix">+</mml:mo></mml:mrow></mml:msup><mml:mo>:</mml:mo><mml:mrow><mml:msub subscriptshift="65%"><mml:mrow><mml:mi mathvariant="normal">Y</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:msub subscriptshift="65%"><mml:mrow><mml:mi>SiO</mml:mi></mml:mrow><mml:mrow><mml:mn>5</mml:mn></mml:mrow></mml:msub></mml:math> single crystals, Journal of Luminescence, vol.170, pp.406-410, 2016.
DOI : 10.1016/j.jlumin.2015.07.026

M. H. Randles, J. E. Creamer, and R. F. Belt, Disordered oxide crystal hosts for diode pumped lasers, Journal of Crystal Growth, vol.128, issue.1-4, pp.1016-1020, 1993.
DOI : 10.1016/S0022-0248(07)80089-3

W. Gifford, The Gifford-McMahon Cycle, Advances in Cryogenic Engineering, pp.152-159, 1966.
DOI : 10.1007/978-1-4757-0522-5_16

G. Grynberg, A. Aspect, and C. Fabre, Introduction to quantum optics : from the semiclassical approach to quantized light, 2010.
DOI : 10.1017/CBO9780511778261

K. Harvey and C. Myatt, External-cavity diode laser using a grazing-incidence diffraction grating, Optics Letters, vol.16, issue.12, pp.910-912, 1991.
DOI : 10.1364/OL.16.000910

J. G. Ziegler and N. B. Nichols, Optimum Settings for Automatic Controllers, Journal of Dynamic Systems, Measurement, and Control, vol.115, issue.2B, 1942.
DOI : 10.1115/1.2899060

D. R. Leibrandt, M. J. Thorpe, M. Notcutt, R. E. Drullinger, T. Rosenband et al., Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments, Optics Express, vol.19, issue.4, pp.3471-3482, 2011.
DOI : 10.1364/OE.19.003471

N. Wong and J. L. Hall, Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection, Journal of the Optical Society of America B, vol.2, issue.9, pp.1527-1533, 1985.
DOI : 10.1364/JOSAB.2.001527

W. Zhang, M. Martin, C. Benko, J. Hall, J. Ye et al., Reduction of residual amplitude modulation to 1 ?? 10^-6 for frequency modulation and laser stabilization, Optics Letters, vol.39, issue.7, 1980.
DOI : 10.1364/OL.39.001980

D. R. Leibrandt, M. J. Thorpe, M. Notcutt, R. E. Drullinger, T. Rosenband et al., Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments, Optics Express, vol.19, issue.4, pp.3471-3482, 2011.
DOI : 10.1364/OE.19.003471

D. B. Leviton and B. J. Frey, Temperature-dependent absolute refractive index measurements of synthetic fused silica, Optomechanical Technologies for Astronomy, pp.62732-62732, 2006.
DOI : 10.1117/12.672853

L. Ma, P. Jungner, J. Ye, and J. L. Hall, Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path, Optics Letters, vol.19, issue.21, pp.1777-1779, 1994.
DOI : 10.1364/OL.19.001777

B. Argence, E. Prevost, T. Lévèque, R. L. Goff, S. Bize et al., Prototype of an ultra-stable optical cavity for space applications, Optics Express, vol.20, issue.23, pp.25409-25420, 2012.
DOI : 10.1364/OE.20.025409

P. Sellin, N. Strickland, J. Carlsten, and R. Cone, Programmable frequency reference for subkilohertz laser stabilization by use of persistent spectral hole burning, Optics Letters, vol.24, issue.15, pp.1038-1040, 1999.
DOI : 10.1364/OL.24.001038

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel et al., Photonic microwave signals with zeptosecond-level absolute timing noise, Nature Photonics, vol.113, issue.1, 2016.
DOI : 10.1038/nphoton.2016.215

URL : http://arxiv.org/abs/1610.01445

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier et al., Towards highly multimode optical quantum memory for quantum repeaters, Physical Review A, vol.93, issue.3, p.32327, 2016.
DOI : 10.1103/PhysRevA.93.032327

URL : http://arxiv.org/abs/1512.02936

C. Witchalls, Nobel prizewinner: we are running out of helium, New Scientist, vol.207, issue.2773, p.29, 2010.
DOI : 10.1016/S0262-4079(10)61965-3

M. Atrey, Cryogenic engineering, 2014.

R. Radebaugh, Cryocoolers: the state of the art and recent developments, Journal of Physics: Condensed Matter, vol.21, issue.16, p.164219, 2009.
DOI : 10.1088/0953-8984/21/16/164219