
HAL Id: tel-01499904
https://theses.hal.science/tel-01499904

Submitted on 1 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Détection des interactions photon-photon dans un
circuit supraconducteur

Lijing Jin

To cite this version:
Lijing Jin. Détection des interactions photon-photon dans un circuit supraconducteur. Supracon-
ductivité [cond-mat.supr-con]. Université Grenoble Alpes, 2016. Français. �NNT : 2016GREAY002�.
�tel-01499904�

https://theses.hal.science/tel-01499904
https://hal.archives-ouvertes.fr


THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : PHYSIQUE THEORIQUE

Arrêté ministériel : 7 août 2006

Présentée par

LIJING JIN

Thèse dirigée par Manuel HOUZET et
codirigée par Julia S. MEYER et Frank W.J. HEKKING

préparée au sein du Laboratoire de Physique et Modélisation
des Milieux Condensés
dans l'École Doctorale de physique de Grenoble

Détection des interactions
photon-photon dans un circuit
supraconducteur

Thèse soutenue publiquement le 10 Février 2016,
devant le jury composé de :

M. Fabien PORTIER
Chercheur, Service de Physique de l'Etat Condensé, CEA Saclay,
Rapporteur
Mme. Inès SAFI
Chargée de recherche, Laboratoire de Physique des Solides, Université
Paris-Sud 11, Rapporteur
Mme. Wiebke GUICHARD
Professeur des universités, Université Joseph Fourier, Président
M. Fabio PISTOLESI
Directeur de Recherche, Laboratoire Ondes et Matière d'Aquitaine,
Université de Bordeaux and CNRS, Examinateur
Mme. Julia S. MEYER
Professeur des universités, Université Joseph Fourier, Co-Directeur de
thèse
M. Manuel HOUZET
Researcher, Service de Physique Statistique, Magnétisme et
Supraconductivité, CEA Grenoble, Directeur de thèse





To my parents JIN You-tai and LI Xian-zhi





Table of Contents

Abstract (English version) iii

Abstract (French version) v

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . 1
1.2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Key elements of the studied circuit 11
2.1 Josephson junction . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Current-voltage characteristic . . . . . . . . . . . . . . . 13
2.1.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Cooper pair box . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Weakly anharmonic oscillator . . . . . . . . . . . . . . . 16
2.2.2 Charge qubit . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 LC transmission line . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Josephson junction chain . . . . . . . . . . . . . . . . . . 25
2.3.2 Transmission line . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Dynamical Coulomb blockade theory in Josephson junctions 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Cooper pair tunnelling rates . . . . . . . . . . . . . . . . . . . . . 37
3.3 Phase-phase correlator: linear regime . . . . . . . . . . . . . . . 42

3.3.1 Electromagnetic environment: the transmission line . . . . 43
3.3.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Phase-phase correlator: nonlinear regime . . . . . . . . . . . . . 49
3.4.1 Green’s function perturbation theory . . . . . . . . . . . . 49
3.4.2 Path integral method . . . . . . . . . . . . . . . . . . . . 59
3.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 63

i



ii Table of Contents

4 Detecting photon-photon interactions in a transmission line side-coupled
with a weakly anharmonic oscillator 65
4.1 The studied circuit . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 The linear regime . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Two-point Green’s function . . . . . . . . . . . . . . . . 69
4.2.2 Phase-phase correlator . . . . . . . . . . . . . . . . . . . 72
4.2.3 Current-voltage characteristic . . . . . . . . . . . . . . . 72

4.3 The weakly nonlinear regime . . . . . . . . . . . . . . . . . . . . 75
4.3.1 Two-point Green’s function . . . . . . . . . . . . . . . . 76
4.3.2 Four-point Green’s function . . . . . . . . . . . . . . . . 77
4.3.3 Phase-phase correlator . . . . . . . . . . . . . . . . . . . 79
4.3.4 Current-voltage characteristic . . . . . . . . . . . . . . . 79

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Detecting photon-photon interactions in a transmission line side-coupled
with a charge qubit 83
5.1 Hamiltonian of the system . . . . . . . . . . . . . . . . . . . . . 83
5.2 Phase-phase correlator . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Single photon processes . . . . . . . . . . . . . . . . . . 85
5.2.2 Two photon processes . . . . . . . . . . . . . . . . . . . 90
5.2.3 Multiple photon processes . . . . . . . . . . . . . . . . . 94

5.3 Spin-spin Green’s function . . . . . . . . . . . . . . . . . . . . . 98
5.4 Current-voltage characteristic . . . . . . . . . . . . . . . . . . . . 101
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Conclusion and perspectives 105

A The Hamiltonian of the studied circuit 107

B Quantum theory of the transmission line 111

C Photon-photon interactions: weakly nonlinear regime 113

D Time-ordered Green’s function: strongly nonlinear regime 115

E Two-point Green’s functions in k-space 119

Bibliography 119

Acknowledgement 135



Abstract (English version)

Creating strong photon-photon interactions in circuit quantum electrodynam-
ics attracts increasing attention due to both fundamental reasons and its potential
application in quantum communication science. In this thesis, we focus on de-
tecting photon-photons interactions in a superconducting circuit. In particular, a
local interaction between photons can be engineered by coupling a nonlinear sys-
tem to a transmission line. The required transmission line can be conveniently
formed from a chain of Josephson junctions. The nonlinearity is generated by
side-coupling this chain to a Cooper pair box. We propose to probe the result-
ing photon-photon interactions via a voltage-biased Josephson junction (the probe
junction) connected to the line. When a finite voltage V (smaller than the super-
conducting gap voltage) is applied, a Cooper pairs tunnel inelastically through the
probe junction, simultaneously releasing the energy 2eV (e is elementary charge)
to the environment via emitting one or several photons. The emission depends on
the properties of the environment. In our case, individual photons freely propagate
down the transmission line and are scattered by the side-coupled Cooper pair box.
In contrast, when multiple photons are emitted, these photons may interact with
each other. The elastic and inelastic scattering properties of photons will in turn
influence the current through the probe junction. Therefore, the dc current-voltage
characteristic of the Josephson junction provides a probe to study photon-photon
interactions in a nonlinear environment.

We first investigate the weakly nonlinear regime where the Cooper pair box
can be described as a weakly anharmonic oscillator with resonant frequency ωs.
Using Green’s function theory, we find that the non-linearity renormalizes the res-
onance frequency to ω �

s for single photon processes. As a result, the I−V charac-
teristic shows a resonance feature around 2eV = ω �

s. By contrast, the interactions
due to the non-linearity yield an additional resonance features at 2eV = 2ω �

s due to
two-photon processes. Such a feature is thus a clear indication of photon-photon
interactions. Using realistic parameters, we estimate that the current signal of the
two-photon interaction feature can reach up to 1 pA which is well within reach of
current measurement technology.

We then switch to the strongly nonlinear regime. In this regime, the Cooper
pair box is reduced to a charge qubit under certain conditions. The environment

iii



iv Abstract

seen by the probe junction can be described by a spin-boson model, which consists
of a charge qubit (the spin) bilinearly coupled to the photons in the transmission
line line (the bosons). Using Green’s function theory and the path integral method,
we compute the environmental phase-phase correlators that are directly related to
the current through the probe junction. Our results indicate that scattering of
individual photons by the side-coupled qubit results in a resonance feature in the
I−V characteristic of the probe junction at 2eV =ωqb, where ωqb is the resonance
frequency of the qubit. We further propose to use Bloch equations to obtain the
contribution from the photon-photon interaction in this regime.



Abstract (French version)

La génération d’une forte interaction photon-photon en électrodynamique
quantique des circuits attire une attention croissante, tant pour des raisons fon-
damentales que pour son application potentielle en communication quantique.
Dans cette thèse, je m’intéresse plus particulièrement la détection de l’interaction
photon-photon dans un circuit supraconducteur. Une interaction locale entre les
photons peut être conue en couplant un système non linéaire avec une ligne de
transmission. Cette dernière peut être réalisée grâce à une chaı̂ne de jonctions
Josephson. La non-linéarité, quant à elle, est générée en couplant une jonction de
la chaı̂ne à une boı̂te à paires de Cooper. Nous proposons de sonder les interac-
tions photon-photon résultantes via une jonction Josephson (nommée “jonction-
sonde”) connectée à la ligne et polarisée en tension. La théorie du blocage de
Coulomb dynamique prédit que les paires de Cooper traversent la jonction de
la sonde par effet tunnel inélastique, libérant une énergie égale a 2eV (où e est
la charge fondamentale et V la tension de polarisation) dans l’environnement
par l’émission d’un ou plusieurs photons. Les photons individuels se propagent
librement le long de la ligne et sont diffusés par la boı̂te à paires de Cooper
couplée à la chaı̂ne. Par ailleurs, deux (ou plusieurs) photons peuvent intera-
gir. Les propriétés de diffusion élastique et inélastique des photons vont à leur
tour influencer le courant é travers la jonction-sonde. Par conséquent, la carac-
tristique courant-tension de la jonction Josephson fournit une sonde pour étudier
l’interaction photon-photon dans un milieu non linéaire.

Nous étudions d’abord un régime faiblement non linéaire où la boı̂te à paires
de Cooper est assimilée à un oscillateur faiblement anharmonique avec une frquence
de résonance ωs. En utilisant la théorie des fonctions de Green, nous trouvons que
la non-linéarité renormalise la fréquence de résonance à ω �

s pour les processus à
photon unique. En conséquence, la caractéristique I(V ) présente une résonance
autour de 2eV = ω �

s. Lorsque plusieurs canaux de photons sont impliqués, la non-
linéarité excite l’interaction photon-photon, conduisant à une structure résonante
dans courant continu à travers la jonction-sonde autour de 2eV = nω �

s(n ≥ 2).
Cette structure peut être considérée comme une signature directe des interactions
photon-photon. En utilisant des paramètres réalistes, nous estimons que le signal
de courant peut atteindre 1 pA, ce qui est à la portée des technologies actuelles de
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mesure de courant.
Nous considérons enfin le régime fortement non linéaire. Dans ce cas, la

boı̂te à paires de Cooper est peut être équivalente à un qubit de charge. L’environne-
ment vu par la jonction-sonde peut être décrit par un Hamiltonien de type spin-
boson. En combinant la théorie des fonctions de Green et l’intégrale de chemin,
nous calculons les corrélateurs phase-phase dans la ligne de transmision, qui in-
terviennent dans le calcul du courant à travers la jonction-sonde. Nos résultats
indiquent que la diffusion de photons individuels par le qubit couplé latéralement
donne lieu à une résonance dans la caractéristique courant-tension de la jonction
de la sonde à 2eV = ωqb, où ωqb est la fréquence de résonance du qubit. Par-
tant de ce résultat, il sera intéressant de voir comment l’interaction photon-photon
modifie les caractéristiques de la résonance dans ce régime.



CHAPTER 1
Introduction

1.1 Background and Motivation
Photons, the elementary particles which describe light, do not interact with

each other in vacuum. They just pass through each other without having an effect
on each other. This is apparent from classical electrodynamic: Maxwell’s equa-
tions are linear and therefore do not describe any interactions. However, this is
not the case in a medium. Non-linear optical media have previously been used
to indirectly alter one beam of light using another one. This process involves
electromagnetic energy striking the medium, which then alters the second beam.
Normally, this technique involves the use of vast quantities of light particles. Very
recently, such interactions were also realized at the level of individual photons [1].
The two simultaneous photons that interact show a completely different behaviour
than single photons.

Creating strong photon-photon interactions [2–14] attracts increasing atten-
tion due to both fundamental reasons [15–18] and its potential application [15,
19–22]. Studying individual quantum systems provides us with the means of di-
rectly testing the foundation the quantum theory. Besides, photons are excellent
carriers of quantum information owing to their long lifetime and ease of distribu-
tion. Thus, entangled photons are able to carry out quantum information process-
ing [23–28]. Moreover, for many other applications in quantum technology, the
interactions among photons are a crucial prerequisite as well, e.g., 1) for building
single-photon transistors1 [29]. They are devices for quantum computing which
deals with the question how and whether one can build a quantum computer; 2)
for quantum teleportation [30–32]: it is a process by which quantum informa-
tion (e.g., the exact state of a photon) can be transmitted from one location to
another. This can be realized with the help of classical communication and previ-
ously shared quantum entanglement between the sending and receiving location;
3) for metrology beyond the standard quantum limit [33].

1It is a device in which a gate light pulse switches the transmission of a target light pulse with
a gain above unity.

1



2 Chapter 1

On the way to explore photon-photon interactions, impressive results have
already been achieved in various systems, for instance: 1) in a system exhibit-
ing electromagnetically induced transparency [34–37] which is a coherent optical
nonlinearity which renders a medium transparent over a narrow spectral range
within an absorption line; 2) in an ultra-thin glass fibre, a team [1] from Univer-
sity of Vienna created a strong interaction between two photons; 3) in nanoscale
surface plasmons [23], which enables strong, coherent coupling between indi-
vidual photons in conducting nano-structures, via excitation of guided plasmons
localized to nanoscale dimensions; 4) in cavity quantum electrodynamic (cavity
QED), where a single confined electromagnetic mode is coupled to an atomic
system (e.g. a Rydberg atom, or a quantum dot) [38–42].

The achievements we mentioned above are mainly in optical frequencies.
Recently, circuit quantum electrodynamic (circuit QED), which studied quantum
interactions between light (the electromagnetic field) and atoms in the framework
of electric circuits, are gradually becoming a routine tool for exploring the in-
teractions between microwave photons [43–45]. In the world of electric circuits,
photons can be understood as the quantized excitations of the electromagnetic
field. As in cavity QED, a single photon within a single mode cavity coherently
couples to a quantum object (atom). Interaction between the atom and a beam of
light is very weak due to the unstable atom. As a result, it is hard to observe the
effects which arise at the single-particle level. Normally, the solution is to confine
the light in a cavity so that it bounces back and forth. In this way, a single photon
can interact with an atom many times before it decays. In contrast, the photon
in circuit QED is stored in a one-dimensional on-chip resonator and the quantum
object is not a natural atom but an artificial one. The artificial atom is made of
a small electronic circuit which can be positioned very precisely. It enable us to
realize a strong coupling between the microwave field and the artificial atom. Be-
yond this, there are several other key advantages of circuit QED: 1) it gives us a
huge amount of flexibility in how we design them – subject only to the engineer-
ing limitations of the fabrication techniques; 2) one can tune and tweak all the
operating the desired parameters; 3) quantum effects in “macroscopic” systems
are available to be explored. This opens up a new territory for quantum mechan-
ics. Actually, circuit QED is worthwhile and interesting, not only because of the
advantages mentioned above, but also for its potential applications. It is a promi-
nent example for quantum information processing and a promising candidate for
quantum computation.

As we argued above, the prototypical system for achieving strong photon-
photon interactions in circuit QED consists of a quantum system coupled to a
one-dimensional resonator. Such systems were first proposed theoretically [10,
24, 46–48], and soon afterwards achieved experimentally by means of a metallic



Detecting photon-photon interactions in a superconducting circuit 3

nanowire coupled to a quantum dot2 [49, 50], and a transmission line coupled to
one or several qubits3 [51–54].

The strength of the coupling between the local quantum system and the trans-
mission line (or nanowire) has been studied theoretically in detail in the ohmic
spin-boson model, which consists of a single two-level system (the spin) linearly
coupled to the photons in the line (the bosons). It was shown [55, 56] that the
coupling parameter is set by the ratio of the line impedance, Z, to the quantum of
resistance, RQ = h/(2e)2 ≈ 6.45kΩ. The impedance of typical transmission lines
(consisting of only geometric inductors and capacitors) is of order the vacuum
impedance, Zvac ≈ 377Ω, thereby allowing only weak coupling.

Superconducting circuits are a promising platform for exploring strong cou-
pling phenomena, and, indeed, the first experiments observing such phenomena
have appeared [57, 58]. One benefit of using superconducting circuits is that a
chain of Josephson-coupled superconducting islands acts as a transmission line
with a large tunable impedance Z ≤ RQ, which is only limited by the supercon-
ductor/insulator transition [59]. Such transition originates from the competition
between the charging energy and the Josephson energy of the Josephson junctions.
More precisely, the Josephson junctions chain might be insulating at zero temper-
ature even though each island is still superconducting. In the classical limit, i.e.,
the Josephson energy is much larger than the charging energy, the chain turns su-
perconducting at low temperatures since the fluctuations of the phases are weak
and the system is globally phase coherent. In the opposite limit (charging energy
dominates over Josephson energy), the chain becomes a Mott insulator since the
charges on each island are localized and an activation energy of the order of the
charging energy is required to transport charges through the system (Coulomb
blockade of Cooper pairs). Strong quantum fluctuations of the phases prevent
the system from reaching long-range phase coherence in this regime. Recent
experiments have studied the microwave properties of such Josephson junction
chains [60–63]. Moreover, superconducting circuits allow the realization of a va-
riety of quantum systems that behave like artificial atoms [15, 64]. In particular,
these artificial atoms are usually realized using Josephson junction devices. As the
only nonlinear dissipationless circuit element we know, Josephson junctions ex-
hibit an atom-like energy spectrum. Last but not least, it is noticeable that quantum
effects we studied are quite sensitive to the influence of the environment. Never-
theless, superconducting circuits provide a good platform. The superconducting
state involves macroscopic degrees of freedom and thus exhibits better quantum
coherence. By reducing the size of the superconductor, one can weaken the cou-
pling between the superconducting state and the environment and thereby further

2Tiny particles or nanocrystals of a semiconducting material in the nanometer range.
3Two-state quantum systems that can be in a superposition of both states at the same time.
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improve the quantum coherence. Owing to this, we have a non-dissipative system
to study photon-photon interactions.

Using the superconducting circuit elements discussed above, we may con-
struct a dual geometry (similar to cavity) in which a quantum system (realized
by Josephson junction devices) is placed inside a transmission line (constituted
by a chain of Josephson junctions). In fact, such experiments have already been
reported [65, 66]. In the absence of coupling, photons propagate freely down the
transmission line. A coupling between the quantum system and the line generates
an effective photon-photon interaction that causes correlations among the photons.
Thus, Josephson junction devices embedded in a chain of Josephson junctions (in
the transmission line regime) constitute a good system to explore photon-photon
interactions.

Other than the ones we have mentioned above, superconducting circuits are
investigated widely in many aspects [67]. In particular, Josephson junction de-
vices are supposed to be a two-level quantum system (qubit) at certain condi-
tions [68]. More precisely, devices based on low-capacitance Josephson junctions
exploit the coherence of the superconducting state, combined with the possibil-
ity to control individual charges by Coulomb blockade effects. Actually, various
other physical systems were also suggested as possible realizations of qubits and
gates, e.g., ions in electro-magnetic traps manipulated by laser irradiation [69],
nuclear magnetic resonance on ensembles of molecules in liquids [70, 71], and
cavity QED systems [72]. In comparison, the Josephson junction qubits are more
easily embedded in electronic circuits and scaled up to large registers. This makes
them appealing from the viewpoint of readout and gate implementation.

A long-term goal in quantum superconducting circuits is to build and cou-
ple several quantum bits in a controllable way for the ultimate design of prac-
tical quantum computers which may run exponentially faster than the classical
ones. Impressive achievements such as the qubit control, entanglement [73–77],
and demonstration of simple quantum algorithms [78] have already been obtained
along the way. Specifically, the experiments show that two nearby qubits can
be readily coupled with local interactions. However, realizing gates between an
arbitrary pair of distant qubits is highly desirable for any quantum computer ar-
chitecture. Very recently, Majer et al. [79] demonstrated a coherent, non-local
coupling between two qubits [strongly coupled to a cavity (as a “qubit bus”)] in
a circuit QED experiment. Theoretically, a possible qubit bus is proposed to be
a one-dimensional waveguide [80]. By calculating the second-order correlation
function g2(t), they indicated that a high degree of long-distance entanglement is
generated between two qubit. In the system, quantum information carried by the
“qubit bus” is transferred from one qubit to another one using microwave photons
as the intermediary. As we argued before, the interactions among photons are
essential for the information processing. Motivated by this, it will be interesting
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to study photon-photon interactions in a system of one or several superconduct-
ing qubits embedded in a chain of Josephson junctions (in the transmission line
regime). As a starting point, we study the case involving one qubit in this work.

Above, we discussed photon-photon interactions in a superconducting cir-
cuit. Then, a natural question is how to detect the interactions? To answer it,
we first see the consequences of photon-photon interactions. It has led to, for
instance, the prediction of Kondo physics [81], anti-bunching resulting from a
photon-blockade effect [82, 83], inelastic photon scattering [82, 84, 85], and giant
Kerr nonlinearities [86]. These effects in turn can be used to probe photon-photon
interactions. In addition to these, a Josephson junction itself is actually a direct
and simple probe to detect photon-photon interactions generated by the studied
circuits. In particular, this can be done by measuring the dc current-voltage char-
acteristic of an additional Josephson junction connected to the transmission line.
According to dynamical Coulomb blockade theory [87,88], Cooper pairs can tun-
nel inelastically through the probe junction provided that they can emit one or
several photons into the environment, which in our case consists of the transmis-
sion line with the side-coupled circuit. Therefore, the dc current reflects both the
elastic and inelastic scattering properties of photons.

The aim of this thesis is to describe the interaction between light and matter
in circuit QED. In particular, we focus on probing the interactions of photons in a
superconducting circuit. A long-term goal will be to understand how to generate
and manipulate photons thanks to time-resolved electric control of the circuit.

1.2 Structure of the thesis

In this thesis we propose a method to realize and detect photon-photon in-
teractions in a superconducting circuit. As shown in the dashed box of Fig. 1.1,
the system we consider consists of a transmission line to which a nonlinear ele-
ment is capacitatively side-coupled. The transmission line is realized by a chain
of Josephson junctions with the Josephson energy dominating over the charging
energy. In this regime, the phase fluctuations are largely suppressed and, thus,
the chain behaves like a LC transmission line. In the absence of side-coupling,
photon modes propagate freely down the line. The nonlinear element is real-
ized by a Cooper pair box, which consists of a superconducting island coupled
to a superconducting electron reservoir by a small Josephson junction. The cou-
pling between the line and the Cooper pair box generates effective photon-photon
interactions. We propose to detect this interaction using another voltage-biased
Josephson junction (outside of the dashed box, named “probe”). Obviously, the
current-voltage characteristic of the probe junction is influenced by the external
environment in which photons interact with each other. Thus, we may use the
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I −V characteristic to probe the photon-photon interactions.

Figure 1.1: Schematic of the setup. The system consists of a transmission line and
a side-coupled Cooper pair box, shown inside the dashed box. In absence of the
side-coupling, photons propagate freely down the transmission line. The coupling
between the line and the Cooper pair box generates photon-photon interactions.
The resulting interactions are probed using another Josephson junction (outside
the dashed box) whose current-voltage characteristic is sensitive to the properties
of the photons.

We study the system in both the weakly and strongly nonlinear regimes.
This can be achieved by modifying the two externally controllable electrody-
namic parameters of the Cooper pair box: the gate voltage Vg, and the ratio of
Josephson energy EJ to the charging energy Ec. In particular, varying the ratio
EJ/Ec can be realized by replacing the Josephson junction of the Cooper pair
box by two Josephson junctions in a loop configuration [i.e., the superconducting
quantum interference device (SQUID)]. In this way, the effective Josephson cou-
pling energy EJ(Φ) = EJ cos(πΦ/Φ0) is tunable, where Φ0 denotes the quantum
flux. By applying a flux Φ through the loop, we can get the desired ratio EJ/Ec.
When EJ/Ec � 1 (weakly nonlinear regime), the Cooper pair box behaves as an
weakly anharmonic oscillator; while for EJ/Ec � 1 (strongly nonlinear regime)
the Cooper pair box effectively reduces to a two-level quantum system under cer-
tain conditions.

The thesis is organized in this way: we first introduce the elements of the
studied circuit in chapter 2, as well as the needed theories and methods in chapter
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3, respectively. After the two introductory chapters, we present our work in chap-
ter 4 (weakly nonlinear regime) and chapter 5 (strongly nonlinear regime). We
finally conclude in chapter 6.

In chapter 2, we introduce three elements of the studied circuit. Josephson
junctions, being the basic elements in superconducting circuits, are presented at
the beginning. The current-voltage characteristic of an ideal Josephson junction is
also recalled. Then, the Cooper pair box is discussed. The relevant quantum de-
grees of freedom are excess Cooper pair charges on the small island. Under certain
conditions, it allows us to realize different nonlinear elements. In the weakly non-
linear regime, when the Josephson energy dominates over the charging energy, the
Cooper pair box behaves as a weakly anharmonic oscillator. In the strongly non-
linear regime, the Cooper pair box reduces to a quantum two-level system (qubit)
with two states differing by one Cooper pair charge on the superconducting is-
land. Next, we describe the properties of Josephson junction chains, including the
superconductor/insulator transition [89]. In the regime where the Josephson en-
ergy dominates over charge energy, the chain behaves as a high-impedance (com-
pared to the vacuum impedance) LC transmission line which contains the modes
of propagating photons. Last but not least, Josephson junctions are a direct means
to detect the influence of their environment. The photon properties in the environ-
ment affect the current-voltage characteristic of the Josephson junctions. Based
on these elements, we can construct the studied circuit shown in Fig. 1.1.

In chapter 3, the adopted theories and methods are presented. First of all,
we introduce dynamical Coulomb blockade theory [also called P(E)-theory] [87],
which describes how the current-voltage characteristic of a tunnel junction is in-
fluenced by its environment. In particular, we are interested in how the photon-
photon interaction generated in the nonlinear electromagnetic system (dashed box
of Fig. 1.1) affects the I −V characteristic of the probe junction. P(E) theory
states that the current flowing through the probe junction is expressed in terms of
the exponential phase-phase correlation function �eiφ (t)e−iφ (0)�Henv of the nonlin-
ear electromagnetic environment, φ being the phase of the probe node and Henv is
the environmental Hamiltonian. Physically, we can interpret the correlation func-
tion in terms of photon processes. These processes can be decomposed into single
photon processes (corresponding to two-point correlators), and n (n � 2)-photon
processes (corresponding to 2n-point correlators). If Henv is linear, the multiple
photons propagate freely. Otherwise photons may interact with each other. To
compute the exponential phase-phase correlation function in nonlinear regime,
we will adopt two different methods: Green’s function perturbation theory and
the path integral method. The former one will be applied to evaluate the two-point
and four-point phase-phase correlators in both chapter 4 and chapter 5. The advan-
tage of this method one is that it provides a clear physical picture which helps us
to understand the scattering processes of photons, and particularly the interactions



8 Chapter 1

between photons. By contrast, when the multiple photon processes do play a role,
one must take care of the 2n (n � 3)-point correlators, and the calculations for the
perturbation theory become cumbersome. Then we use the path integral method,
which can be a convenient way to compute the entire exponential phase-phase
correlation function. We will see an example in detail in chapter 5.

In chapter 4, we consider a weakly nonlinear system that consists of a trans-
mission line to which a weakly anharmonic oscillator is side-coupled. As a start-
ing point, we consider the linear regime, where photons do not interact with each
other. The side-coupled element is a harmonic oscillator with resonance frequency
ωs. Green’s functions are used to compute the phase-phase correlation functions,
which are needed to calculate the current flowing through the probe junction. By
numerically solving the integral equation defining the P(E) function, we obtain
a resonant feature around 2eV = h̄ωs (h̄ is Plank constant) in the current-voltage
characteristic of the probe junction. This resonance corresponds to single photon
processes. The result can be understood: when a Cooper pair tunnels through the
probe junction, it releases energy 2eV by emitting one or several photons to the
environment. For single photon processes, the photon is exactly resonant on the
side-coupled oscillator, thus no current flows as the photon is completely blocked.
Whereas for the multiple photons processes, all the photons can not be on reso-
nance with the side-coupled circuit at the same time, and therefore this results in
a finite current.

We then add the effect of a weak nonlinearity. Green’s function perturbation
theory is applied to compute single photon processes and two photons processes,
respectively. For the single photon processes, we find that the weak nonlinear-
ity renormalizes the resonance frequency to ω �

s. For the two-photon processes,
the interaction between two photons causes new contributions. This leads to an
additional feature at 2eV = 2h̄ω �

s in the current-voltage characteristic. Cooper
pairs tunnel through the probe junction, emitting photons with total energy 2ω �

s to
the environment. When each photon carries half of the emitted energy (namely
ω �

s), both photons are resonant with the oscillator, and thus, they interact strongly.
Comparing with the linear regime, we find that the resonant feature at 2eV = 2h̄ω �

s
in the current-voltage characteristic of the probe is a direct signature of the photon-
photon interaction in the system.

The amplitude of the resonant feature due to photon-photon interactions is
estimated using realistic parameters [90–92]. It may reach amplitudes in the pA
range which is well within current experimental measuring techniques.

In chapter 5, we study the strongly nonlinear regime. In contrast with chap-
ter 4, the Cooper pair box reduces to a charge qubit which is described by a spin-
1/2 representation. Furthermore, the diagonalized form of the transmission line
can be written as a collection of photons (boson). Therefore, the system is de-
scribed by a spin-boson Hamiltonian Hsb.
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In order to evaluate the current through the probe junction, the exponential
phase-phase correlator �eiφm(t)e−iφm(0)�Hsb needs to be computed as before. We
first use perturbation theory to evaluate the two-point and four-point phase-phase
correlators, respectively. With this step, we fine that computing phase-phase cor-
relators is transformed to calculating spin-spin correlator at the “impurity” (the
qubit). Then, the problem can be mapped to the well-studied problem that a two-
state system coupled to a bosonic bath. In particular, the coupling term between
the transmission line and the qubit is used as the perturbation. We sum up the in-
teraction series to all orders. When the coupling between the transmission line and
the charge qubit is weak, we may neglect higher orders contributions. However,
when we are interested in strong coupling, the contributions of the 2n (n� 3)-point
correlators must be considered. In this case, the calculations using perturbation
theory become complicated. Therefore we prefer using the path integral method to
compute the entire correlator. The resulting phase-phase correlator is expressed in
terms of spin-spin Green’s functions. Next, we use Bloch equations (in the weak
coupling regime) to evaluate the two-point spin-spin Green’s function.

Our results indicate that scattering of individual photons by the side-coupled
qubit results in a resonant feature in the I −V characteristic of the probe junction
at 2eV = h̄ωqb, where ωqb is the resonance frequency of the qubit. With this result
as a starting point, it will be interesting to see how photon-photon interactions
modify the resonant features in this regime.

In chapter 6, we list the main findings. Furthermore, future perspectives are
elucidated with a description of the upcoming work.

Finally, we attach several appendices, in which we provide the details of
some derivations/calculations.
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CHAPTER 2
Key elements of the studied circuit

This chapter aims to present the three key elements needed in our stud-
ied circuit. We start by reviewing the Josephson effect in Sec. 2.1, where the
current-voltage characteristic of an ideal Josephson junction is discussed. Next,
the Cooper pair box is described in Sec. 2.2. It enables us to realize two dif-
ferent elements: the anharmonic oscillator in the weakly nonlinear regime and
the charge qubit in the strongly nonlinear regime. Finally, we introduce the LC
transmission line in Sec. 2.3. Josephson junction chains are proposed to realize
a high impedance (higher than the vacuum impedance) transmission line. The
superconductor-insulator transition in the chain is discussed. In the superconduct-
ing regime, the chain behaves as an effective LC transmission line with freely
propagating electromagnetic modes (photons).

2.1 Josephson junction
Superconductivity is a well-known macroscopic quantum phenomenon, with

zero electrical resistance and expulsion of magnetic fields, occurring in certain
materials when cooled below a critical temperature [93]. In a superconductor the
electrons close to the Fermi energy µ bind together to form Cooper pairs which
are bosons with charge 2e. All the Cooper pairs in the boson condensate are in
the same quantum state and can be characterized by a single wave function, also
called the superconducting order parameter ψ = ψ0eiφ , with the amplitude ψ0
and phase φ . Another essential property of superconductors is the existence of an
energy gap 2Δ. In a superconductor, energy 2Δ is needed to break a Cooper pair.
This is unlike the normal metal where the state of an electron can be changed by
adding an arbitrarily small amount of energy.

A Josephson junction is formed when we separate two superconductors by
a thin insulating layer, shown in Fig. 2.1. For simplification, we assume that
the energy gaps of the two superconductors to be the same. The Cooper pair
state in the left (right) superconductor of the junction is described by ψL(R)e

iφL(R) .
Because the barrier is quite thin, the wave functions of the two superconductors

11
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can overlap, allowing the tunneling of Cooper pairs. This implies that the current
could flow through the Josephson junction even without a voltage source. The
amplitude of the current is proportional to the sine of the phase difference (Δφ =
φL −φR) across the junction, which was first predicted by Josephson [94]:

I = Ic sin(Δφ) , (2.1)

where the critical current Ic is the maximum supercurrent that the junction can
support. At zero magnetic field and zero temperature, the critical current Ic =
πΔ/(2eRN) (RN is the normal state resistance of the junction) which is called the
Ambegaokar-Baratoff relation [95]. The relation (2.1) describes the well-known
dc Josephson effect. As long as the current I is smaller than the critical current Ic,
it can flow through the Josephson junction without any voltage drop.

Figure 2.1: Diagram of a Josephson junction which consists of two supercon-
ductors separated by a thin insulator. The wave function ψL(R)e

iφL(R) is used to
describe the Cooper pair state in the left (right) superconductor.

When a finite voltage V is applied, the phase across the junction evolves.
The dynamics of this effect, known as the ac Josephson effect, is governed by the
equation [94]:

d
dt

(Δφ) =
2e
h̄

V, (2.2)

Plugging Eq. (2.2) into Eq. (2.1), we obtain

I(V, t) = Ic sin(2eVt/h̄) . (2.3)

That is, the current oscillates with a frequency ν/V = 2e/h ≈ 483.6 GHz/mV
(h = 2π h̄). The quantum energy hν equals the energy change of a Cooper pair
transferred across the junction.
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Using the Josephson relations (2.1) and (2.2), one can directly derive the
energy stored in the junction

F ≡
�

dt V (t)I(t) =
h̄
2e

Ic

�
d (Δφ)sinΔφ =−EJ cosΔφ + const., (2.4)

where the Josephson energy EJ = h̄Ic/2e is the coupling energy.

2.1.1 Current-voltage characteristic
The current-voltage characteristic schematic of an ideal voltage-biased Joseph-

son junction is shown in Fig. 2.2 (a). There is no current flow until |V |= 2Δ/e. Be-
yond this point, the current is proportional to the applied voltage, i.e., the current-
voltage characteristic is of the same form as an ohmic resistor, i.e., I =V/RN .

Figure 2.2: (a) The schematic of current-voltage characteristic of a voltage-biased
Josephson junction. The density of states is plotted horizontally vs. energy ver-
tically at zero temperature for two different voltage regimes: (b) |V | > 2Δ/e and
(c) |V | < 2Δ/e . The parts labelled as “Filled states” mean states occupied by
quasiparticles. The horizontal arrow in (b) depicts quasiparticles tunnelling.

To understand this characteristic, we introduce the density of states in the
superconducting leads on each side of the Josephson junction, shown in Fig. 2.2
(b) for |V | > 2Δ/e and (c) for |V | < 2Δ/e, respectively. There are two kinds of
charge carriers, namely Cooper pairs and quasiparticles. At zero temperature, all
states up to the Fermi level µ are filled, and no quasiparticles is excited. At finite
temperature T , the probability of the quasiparticles (with excitation energy Eqp �
Δ) which are excited in thermal equilibrium is given by the usual Fermi function
f (Eqp) = (1+ eEqp/kBT )−1. Considering the condition Δ � kBT , the probability
of thermal excitation f (Eqp) goes to zero. Thus, it is a good approximation for
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us to neglect the thermal fluctuations. Next, we discuss the two different voltage
regimes, respectively.

In the regime |V |> 2Δ/e, the potential difference supplies enough energy to
break a Cooper pair, creating a hole on one side and a particle on the other. One
can see from Fig.2.2 (b) that the quasiparticles from the left “Filled states” band
can tunnel into the “Empty states” on the right. Since the density of states of the
quasiparticles is infinite at the gap edges, it turns out that there is a discontinuous
jump in current at |V |= 2Δ/e.

In the regime |V | < 2Δ/e, the dc current vanishes. Indeed, the time average
of the current [Eq. (2.3)] over a time period h/2eV , turns out to be zero. Actually,
this can be understood from Fig. 2.2 (c). When a finite voltage V is applied,
the Fermi level of the left superconductor moves up to µ + eV . It is apparent
that Cooper pair states can not tunnel through from left to right. In addition, the
potential difference cannot provide enough energy to excite quasiparticles from
the left “Filled states” to the “Empty states” on the right. Instead, Cooper pairs
oscillate coherently between the leads.

However, what we discussed above is true only in the ideal case (dissipa-
tionless system). In real experiments, the current-voltage characteristic of the
Josephson junction is definitely modified by the environment. Take the regime
|V | < 2Δ/e as an example, Cooper pairs described in Fig. 2.2 (c) can tunnel in-
elastically by releasing energy 2eV to the dissipative environment. Detailed dis-
cussions will be deferred to chapter 3.

2.1.2 Summary
In this section, the dc and ac Josephson effects were recalled briefly. More-

over, we discussed the current-voltage characteristic of an ideal voltage-biased
Josephson junction.

As fundamental elements in superconducting circuits, Josephson junctions
are needed for the realization of other usable elements or devices. In our project,
we will concentrate on two elements: a Cooper pair box, which is the simplest
solid state device to realize a quantum bit; and a Josephson junction chain, which
can be used to realize a high impedance (compared to vacuum impedance) trans-
mission line.

2.2 Cooper pair box

In this section, we introduce a simple and controllable superconducting de-
vice: the Cooper pair box, which can be used to realize a weakly anharmonic
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oscillator or a charge qubit under certain conditions.
The Cooper pair box was first proposed theoretically [96, 97] and afterwards

realized in experiments [98]. As shown in Fig. 2.3, it consists of a superconducting
island (green box) connected to a superconducting electron reservoir via a small
Josephson junction. In classical regimes, a Josephson junction acts naturally like a
capacitor with capacitance C. Therefore we often model the Josephson junction as
a tunnel junction in parallel with a capacitor. Electrons tunnel from the reservoir
to the island by means of a gate voltage Vg connected to the island via a gate
capacitance Cg.

Figure 2.3: Schematic of a Cooper pair box. It is formed of a superconducting
island (green box) coupled by a Josephson junction (with capacitance C) to a su-
perconducting reservoir. Excess Cooper pairs tunnel into the island by applying a
gate voltage Vg via a gate capacitor Cg. The system is described by the Hamilto-
nian (2.5).

Comparing with the Cooper pair tunnelling described in Sec. 2.1, there is
one important difference. In addition to the Josephson energy EJ , a second en-
ergy scale: the Coulomb charging energy Ec = e2/CΣ (CΣ = C +Cg is the total
capacitance of the island), the energy needed to add an extra electron charge to
the island, plays an important role when it exceeds the thermal energy kBT (kB is
the Boltzmann constant). This has become possible because low capacitances (by
reducing the dimensions of the junction) are able to be fabricated with the devel-
opment of microfabrication techniques. Taking an example, a Josephson junction
with an area of 0.1× 0.1µm2 and a typical oxide layer thickness of 1nm has a
capacitance of about 1fF corresponding to a temperature close to 1K. Of course,
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by decreasing capacitance, this restriction on temperature becomes more relaxed.
Hence, the Hamiltonian of the Cooper pair box is written as

Hcpb =
(Q+CgVg)

2

2CΣ
−EJ cosφ , (2.5)

where CgVg corresponds to the charge induced on the gate capacitance; Q is the
charge operator of the excess Cooper pairs in the island, and φ is the operator of
the phase difference across the Josephson junction. As charge is quantized (in
units of 2e), its conjugate variable is periodic. The competition between these two
canonically conjugated variables is captured by the following Heisenberg relation,

[φ ,Q] = 2ie. (2.6)

The interplay between charging effects and the Josephson effect causes interesting
behaviours. In particular, taking different ratios of EJ/Ec, we realize two different
kinds of nonlinear elements: a weakly anharmonic oscillator and a charge qubit.

2.2.1 Weakly anharmonic oscillator
If we consider the regime where the Josephson energy is much larger than the

charging energy, the Josephson junction behaves as an inductor. Consequently, the
Cooper pair box behaves like a quantum LC oscillator. At EJ � EC, fluctuations
of the phase are small. Thus, one may expand the cosine potential around one of
its minima, e.g., φ = 0. Phase slip events that connect two different minima of
the cosine potential are exponentially suppressed in this regime and may therefore
be neglected. Therefore, we expand the cosine up to second order (and drop the
zeroth order term that is just a constant). Doing so, the Hamiltonian (2.5) reduces
to

H(0)
cpb =

(Q+CgVg)
2

2CΣ
+

EJ

2
φ 2. (2.7)

The Hamiltonian (2.7) is diagonalized by using a mechanical analogue: the posi-
tion coordinate corresponds to the phase φ , while the role of the conjugate mo-
mentum is played by the charge Q+CgVg. Rewriting the phase and charge op-
erators in terms of creation and annihilation operators, i.e., φ = (2Ec/EJ)

1/4(a+
a†) and Q+CgVg = (e/i)(2Ec/EJ)

1/4(a− a†), and then substituting them into
Eq. (2.7), we obtain the standard diagonalized form: H(0)diag = h̄ωcpb(a†a+1/2),
where ωcpb =

√
8EcEJ/h̄ is the resonance frequency (known as the Josephson

plasma frequency).
Actually, the Josephson junction is a nonliner inductor. Beyond the harmonic

case, we may expand the Josephson energy up to the quartic term in the phase, i.e.,
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−EJ cosφ ≈ −EJ + φ 2EJ/2− φ 4EJ/24, which allows us to construct a weakly
nonlinear element with the Hamiltonian

Hcpb = H(0)
cpb −

EJ

24
φ 4. (2.8)

Using φ = (2Ec/EJ)
1/4(a+a†), we write the weakly anharmonic term in a simple

form which is useful for first order perturbation theory,

− EJ

24
φ 4 =− 1

12
Ec

�
a† +a

�4
≈−Ec

2

�
a†a†aa+2a†a

�
. (2.9)

Here we dropped terms in which the number of creation and annihilation operators
is not the same, because they do not contribute in perturbation theory.

Substituting H(0)
cpb and Eq. (2.9) into Eq. (2.8), the second term of Eq. (2.9) can

be combined with H(0)diag. Doing so, we find that the quartic term renormalizes
the resonance frequency

Hcpb = h̄ν �(a†a+1/2)− Ec

2
a†a†aa (2.10)

where the renormalized resonance frequency reads ν � = ν −Ec/h̄. Using the def-
inition of ωcpb, we obtain the shifted frequency

δν = Ec/h̄ = ω2
cpb/(8EJ). (2.11)

The second term of Eq. (2.10) introduces the anharmonicity. In particular,
it describes two-particle processes. We will see that it plays an important role in
chapter 4.

We studied the weakly nonlinear regime of the Cooper pair box. The advan-
tage of this regime is that the charge noise is largely reduced, since the energy
spectrum is approximately independent of gate charge.

2.2.2 Charge qubit
In contrast with the weakly nonlinear regime discussed above, we now switch

to the opposite regime. In particular, we consider a low capacitance Josephson
junction whose charging energy Ec dominates over the Josephson energy EJ . In
this case, the superconducting energy gap Δ is assumed as the largest energy, i.e.,
larger than thermal energy kBT and the charging energy e2/(2CΣ). Under these
conditions, electrons on the island all are paired and condense into a single macro-
scopic ground state, separated by the superconducting gap from the excited states
with quasiparticles. When the gate voltage Vg is switched on, Cooper pairs are
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transferred from the reservoir to the island. Therefore the only degree of freedom
of the island is the number of excess Cooper pairs n which is related to the total
charge of the island by Q = −2en. Note that n can take any integer values. The
island is electrically neutral for n = 0. Positive n represents Cooper pairs tun-
nelling onto the island, while negative n means Cooper pairs tunnelling out of the
island. It is convenient to introduce number operator n̂ whose eigenstate |n� are
the charge states of the island:

n̂|n�= n|n�. (2.12)

Using this basis, we rewrite the Hamiltonian (2.5) as

Hcpb = 4Ec ∑
n
(n̂−ng)

2|n��n|− EJ

2 ∑
n

�
eiφ |n��n|+ e−iφ |n��n|

�
, (2.13)

where we inserted an identity matrix ∑n |n��n| = I, and ng = −CgVg/(2e) is the
dimensionless gate charge and acts as a control parameter. The commutation re-
lation (2.6) of the operators becomes [φ , n̂] = i. Additionally, two useful relations
are

eiφ |n�= |n+1�, e−iφ |n�= |n−1�, (2.14)

which indicate that the operator eiφ creates a Cooper pair on the island, while e−iφ

destroys a Cooper pair. Substituting Eq. (2.14) into Eq. (2.13), and rewriting it in
a symmetric form, we get

Hcpb = 4Ec ∑
n
(n−ng)

2|n��n|− EJ

2 ∑
n
(|n��n+1|+ |n+1��n|) . (2.15)

As EJ � Ec, the charging energy dominates. In the limit EJ = 0, the eigenstates
of the Hamiltonian are the Cooper pair number states |n� with electrostatic energy
En = 4Ec(n− ng) as their eigenvalues . The energy spectrum (dashed parabolas)
is plotted in Fig. 2.4. The electrostatic energy varies with ng periodically1. The
adjacent states are degenerate when ng is half-integer. As the voltage (namely ng)
is swept, the Cooper pairs enter the island one by one at the degeneracy point.
Therefore the average value of the Cooper pair number n is quantized and exhibits
a step-like function with a period of ng = 1, as shown in Fig. 2.5.

When the Josephson energy EJ is finite, the energy spectrum is modified. For
most values of ng the energy levels are still dominated by the electrostatic energy.
However, when ng is approximately half-integer, i.e., the electrostatic energies of

1In the weakly nonlinear regime, i.e., EJ � Ec, the case is different. We find that the en-
ergy scale [expressing as Δωcpb/ωcpb ∼ (Ec/EJ)

1/4 exp(−
�

EJ/Ec)] related to oscillation is much
smaller than the shifted frequency [see Eq.(2.11)]. As a result, the eigenstates and the eigenvalues
are independent of the gate voltage. This consequence will be seen clearly in chapter 4.



Detecting photon-photon interactions in a superconducting circuit 19

Figure 2.4: The energy spectrum of the Cooper pair box is shown as a function of
the dimensionless gate charge ng with different numbers of extra Cooper pairs n
on the island (dashed parabolas). Near degeneracy points, the weaker Josephson
coupling mixes the charge states and modifies the energy of the eigenstates (solid
lines). In the vicinity of these points, the system effectively reduces to a two-level
quantum system.

two adjacent states are close to each other, and the Josephson tunnelling mixes
them strongly. As a result, the degeneracy points are lifted by the Josephson term.
This can be seen clearly from the solid lines of Fig. 2.4, which are obtained by
calculating numerically the eigenvalues of the Hamiltonian (2.15). Let us concen-
trate on the voltage range near a degeneracy point (e.g. ng = 0.5) where only two
charge states, say |0� and |1�, play a role, while all other charge states, having
much higher energies, can be ignored. In this case, the Cooper pair box reduces
to a two-level quantum system (qubit) with the two states differing by one Cooper
pair charge on the island.

Next, we can straightforwardly obtain the two-level Hamiltonian by taking
n = 0,1 only in Eq. (2.15). Transforming it to matrix form, we obtain

Hqb =

�
4Ecn2

g −EJ/2
−EJ/2 4Ec(1−ng)

2

�
(2.16)

We can identify this expression with the Hamiltonian of a spin-1/2 in a magnetic
filed �B by expressing Hqb using Pauli matrices σx,σy,σz. The Hamiltonian above
is then rewritten as

Hqb = Ec
�
(1−2ng)

2 +1
�
I−Bzσz −Bxσx =−�B ·�σ + const., (2.17)
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Figure 2.5: The average number of excess Cooper pairs on the island dependent
of ng in the absence of Josephson coupling energy (EJ = 0) at zero temperature.

where I is the unit matrix, and the constant term can be dropped. �σ is the spin op-
erator with components (σx,σy,σz). The magnetic field �B consists of components
in the (x,y,z) space. The z-component of the magnetic field, Bz = 2Ec(1− 2ng)
(which is controlled by the gate voltage) corresponds to the charging energy split-
ting, while the Josephson energy provides the x-component of the magnetic field,
Bx = EJ/2 (see Fig. 2.6).

For later convenience we rewrite the Hamiltonian (2.17) as

Hqb =−ΔE
2

(cosησz + sinησx) , (2.18)

where ΔE =
�
[4Ec(1−2ng)]2 +E2

J is the energy difference between the ground

state and the excited state, and η = tan−1 [EJ/4EC(1−2ng)] determinates the di-
rection of the magnetic field in the x− z plane (see Fig. 2.6). At the degeneracy
points, i.e., η = π/2, the splitting energy reduces to EJ and the system Hamilto-
nian becomes Hqb =−(EJ/2)σx.

We denote the ground (excited) stated as |g�(|e�). The eigenvalues Eg(e) and
eigenstates are solved from Eq. (2.18). Namely

Eg = −ΔE
2
, Ee =

ΔE
2
. (2.19)

|g� = cos
η
2
|0�+ sin

η
2
|1�, |e�=−sin

η
2
|0�+ cos

η
2
|1�,

where |0� = (0,1)T and |1� = (1,0)T , correspond to zero and one excess Cooper
pair states, respectively. The ground state is a superposition of states |0� and |1�.
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Figure 2.6: Spin representation for the charge qubit. The qubit Hamiltonian (2.18)
is seen as a spin-1/2 interacting with an external magnetic field �B.

Then the average number of excess Cooper pairs is no longer quantized but varies
continuously with the gate voltage ng. We can compute the average number of
Cooper pairs on the island by projecting n̂ on the ground state:

�n�= �g|n|g�= sin2 η
2
=

1
2
(1− cosη) . (2.20)

Substituting the definition of η and defining the ratio ϒ = EJ/4Ec, we obtain

�n�= 1
2

�
1− 1−2ng�

(1−2ng)2 +ϒ2

�
. (2.21)

According to Eq. (2.21), we plot the average number of the Cooper pairs on the is-
land dependent of ng with different ratio ϒ, as shown in Fig. 2.7. By increasing the
value of ϒ, the fluctuations of the charge are stronger and stronger. Consequently
the slope at the degeneracy point (ng = 0.5), which is equal to 1/ϒ, gradually
flattens.

Taking advantage of the period of ng = 1, we can extend the results to the
whole ng range, as shown in Fig. 2.8. Comparing to the case with zero coupling
energy (see Fig. 2.5), the steps become round due to the existence of charge fluc-
tuations. This feature was verified experimentally [98].

Finally, we transform the charge Q+CgVg = 2e(n̂−ng) on the island to the
spin-representation, which will be needed when we study the charge coupling
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Figure 2.7: The average number value of excess Cooper pairs on the island as a
function of ng, with different ϒ = 0.01,0.1,1.

between a charge qubit and a transmission line in chapter 5. In matrix form, it
reads

Q+CgVg = 2e
�
�0|n̂−ng|0� �0|n̂−ng|1�
�1|n̂−ng|0� �1|n̂−ng|1�

�
=−eσz, (2.22)

where we dropped the constant term (1−2ng).
We showed that the Cooper pair box reduces to an effective charge qubit in

the strongly nonlinear regime. The interplay between the charging effects and
the Josephson coupling results in a coherent quantum superposition of two charge
states. Experimentally, this was first realized by the Saclay group [98], where
they used a single-electron transistor coupled to a Cooper pair box and the aver-
age value of the charge of the box was measured. Their results provided the direct
evidence that the ground state of a Cooper pair box can be a coherent superposi-
tion of only two charge states. Later, the NEC group [99] applied a short voltage
pulse via a gate electrode, shown in Fig. 2.9. The applied pulse modified the ener-
gies of the two charge states non-adiabatically, and brought them into resonance.
The resulting superposition of the two charge states was detected by a tunnelling
current through a probe junction. It was shown that the coherent oscillations can
be observed in the time domain. Their results demonstrated electrical coherent
control of a charge qubit.

2.2.3 Summary
The Cooper pair box, as a controllable nonlinear device, was discussed in

two different regimes. On the one hand, it can be used to realize a weakly anhar-
monic oscillator in the weakly nonlinear regime. Moreover, this weak nonlinearity
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Figure 2.8: The average number of excess Cooper pairs on the island as a function
of ng with ϒ = 0.1.

Figure 2.9: (a) Micrograph of the sample: Single Cooper pair box with a probe
junction. (b) Circuit diagram of the device. (c) Pulse-induced current dependent
of the pulse length. Inset: Josephson energy EJ as a function of the magnetic flux
Φ penetrating through the loop. (from reference [99])

renormalizes the resonance frequency of the oscillator. On the other hand, in the
strongly nonlinear regime, the Cooper pair box effectively reduces to a charge
qubit. The relative energy of the two levels can be controlled through the gate
voltage.

2.3 LC transmission line
An LC transmission line consists of a chain of discrete components: induc-

tances L and capacitances C0, as shown in Fig. 2.10. It is a discrete model of a one
dimension waveguide which is usually used to transmit electromagnetic signals
which are composed of microwave photons [100].
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Assume the line is infinite and in the continuum limit, then the dispersion re-
lation (the relationship between frequencies and wave vectors) of photons behaves
linear [87], i.e., ωk = ω0ka, where ω0 = 1/

√
LC0, k is the wave vector, and a is

the lattice parameter in this discrete model.

Figure 2.10: Schematic diagram of an LC transmission line. It consists of a set of
discrete inductances L and ground capacitances C0.

The impedance of the infinite transmission line, Z(ω), which is defined as
the ratio of the amplitudes of voltage and current of a single photon propagating
along the line, is independent of frequency [87]. In this discrete model, we have
the relation Z(ω) = Z0, where Z0 =

�
L/C0. Here, L and C0 are only determined

by geometrical factors, as well as the dielectric constant and permeability of the
materials that are used to make them. Assuming that they do not deviate much
from vacuum constant, we find Z0 ∼ 100 Ω. One can see it is of the order of
vacuum impedance2. As Zvac ≈ 377 Ω and the quantum resistance RQ = 6.45 kΩ,
we find that the impedance of a normal transmission line is much smaller than the
quantum resistance.

As stated in chapter 1, a transmission line with higher impedance (approach-
ing the quantum resistance) is needed, since we want to characterize a strongly dis-
sipative electromagnetic environment. Apparently, the normal transmission line
can not meet this requirement. As an alternative way, a chain of Josephson junc-
tions, which benefit from a large kinetic inductance [101] [Lk = (Φ0/2π)2/EJ .
By decreasing EJ , a large Lk can be achieved], are demonstrated to be a high
impedance transmission line under certain conditions. In addition to this point,
another advantage is that Josephson junctions are controllable. We can get the
desired impedance by tuning the relevant parameters of the chain.

In the following, we first briefly review the physics and modelling of Joseph-
son junction chain. In particular, the superconducting-insulating transition of the
chain is discussed. Next, we pay special attention to the superconducting regime
where the chain reduces to an effective transmission line for microwave photons.

2The vacuum impedance, Zvac =
�

µ0/ε0, where µ0 is vacuum permeability and ε0 is vacuum
permittivity.
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2.3.1 Josephson junction chain
A Josephson junction chain consists of superconducting islands (green boxes),

connected to each other by Josephson junctions (cross boxes), shown in Fig 2.11
(a). We consider a chain made out of N homogeneous Josephson junctions. Each
Josephson junction has a Josephson energy EJ and a capacitance C, and the is-
land between two Josephson junctions has a capacitance C0 to ground. As in
Sec. 2.2, we take the superconducting gap energy to be the largest energy in
the problem. With this condition, quasiparticle tunnelling is suppressed and only
Cooper pairs tunnel between the superconducting islands via the Josephson junc-
tions. The degrees of the freedom on the islands are described by the conju-
gate variables: phases φn and charges Qn. They satisfy the commutation relation
[φn,Qm] = 2ieδnm. Here, the charge factor is 2e because we concentrate on Cooper
pair tunnelling.

Figure 2.11: (a) Three islands of a homogeneous Josephson junction chain. Each
Josephson junction has a Josephson energy EJ and a capacitance C, whereas the
superconducting island between two junctions is capacitively connected to the
ground by means of the capacitance C0. The phase and charge in the n-th island
are denoted as φn and Qn, respectively. (b) Kirchhoff’s current conservation law
(2.23) is applied at node n. The arrows indicate the direction of the current.

To derive the system Hamiltonian, we use the standard way: the method
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allows us to write down the Hamiltonian of any quantum circuits consisting of
capacitors, inductors and Josephson junctions, which was first proposed by Yurke
and Denker [102], and then analyzed in detail by Devoret [103]. The procedure
is as follows: present the equations of motion of the phase, write down the La-
grangian of the circuit, check the Lagrangian is fine, and finally obtain the Hamil-
tonian. Here, we present only the key steps. The complete derivation is shown in
Appendix A.

First of all, the equation of motion is derived by applying Kirchhoff’s current
conservation law at node n: namely the sum of currents flowing into the node is
equal to the sum of currents flowing out of that node [see Fig 2.11 (b)]. Thus,

Ic sin(φn−1 −φn) +
h̄
2e

C(φ̈n−1 − φ̈n) = Ic sin(φn −φn+1) (2.23)

+
h̄
2e

C(φ̈n − φ̈n+1)+
h̄
2e

C0φ̈n,

where we used that the current flowing through a capacitor is expressed as (h̄/2e)Cφ̈ ,
as the voltage across the capacitor is U = (h̄/2e)φ̇ . Indeed, the latter relation is the
dynamic equation (2.2) of the superconducting phase evolution. Besides, the crit-
ical current of the Josephson Junction is related to the Josephson coupling energy
Ic = 2eEJ/h̄.

Then, the Lagrangian that yields Eq. (2.23) as its equation of motion is given
by

Lchain = ∑
n

��
h̄
2e

�2 C0

2
φ̇ 2

n +

�
h̄
2e

�2 C
2
�
φ̇n − φ̇n+1

�2
+EJ cos(φn −φn+1)

�
.

(2.24)
From Eq. (2.24), we find the charge Qn, conjugate to the node phase φn, as

Qn =
2e
h̄

∂L
∂ φ̇n

=
h̄
2e

�
(C0 +2C)φ̇n −Cφ̇n−1 −Cφ̇n+1

�
. (2.25)

Furthermore, one can rewrite it in matrix form,

Qn =
h̄
2e ∑

m
Cn,mφ̇m, (2.26)

where the capacitance matrix Cn,m is defined as

Cn,m = (C0 +2C)δn,m −Cδn+1,m −Cδn−1,m. (2.27)

In terms of the matrix Cn,m, the Lagrangian (2.24) becomes

Lchain =
1
2

�
h̄
2e

�2

∑
n,m

φ̇nCn,mφ̇m +∑
n

EJ cos(φn −φn+1). (2.28)



Detecting photon-photon interactions in a superconducting circuit 27

Finally it is straightforward to obtain the Hamiltonian of the Josephson junction
chain3,

Hchain = ∑
n

φ̇nQn −Lchain =
1
2 ∑

n,m
QnC−1

n,mQm −∑
n

EJ cos(φn −φn+1). (2.29)

In the Hamiltonian (2.29), the first term is the electrostatic energy which is
the energy needed to add extra Cooper pairs to a neutral island; while the second
one represents the Josephson energy, associated with the tunnelling of Cooper
pairs between neighbouring islands.

The competition between these two energy scales leads to a variety of phe-
nomena, for instance, superconductor-insulator transitions [104–106]. In particu-
lar, the charging energy want to localize the charge on each islands. As a result,
the chain behaves as a Mott insulator. To transport charges from one island to
another one, it require an activation energy of the order of charging energy. The
Josephson energy plays an inverse role, i.e., delocalizing the charge from the is-
land. Therefore, the chain turns to superconducting when the Josephson energy
dominates.

Indeed, the mutual capacitance C and the grounding capacitance C0 play dif-
ferent role in the transition. In the regime C � C0, the superconductor-insulator
transition occurs as a function of the ratio EJ/EC0 , where EC0 = e2/(2C0) is the
Coulomb charging energy of the island. In particular, the transition to the insulat-
ing state occurs when EJ/EC0 becomes smaller than ∼ 1. Actually, this transition
condition can also be characterized in terms of the impedance Z0/RQ =

�
EC0/EJ .

As long as the impedance Z0 do not exceeds the quantum impedance, the chain
shows superconducting behavior. However, this is not the case when the mutual
capacitance C is involved. In such chains, the phase slips due to C is unavoidable.
This leads to superconductor-insulator transition in the thermodynamic limit, even
when EJ/EC0 ≥ 1.

In our project, we focus on the superconducting regime which requires the
Josephson energy to dominate over the charging energy. In this regime, the Joseph-
son junction chain behaves as an effective transmission line [60, 61]. In addition,
the impedance of the line can reach quantum resistance but still keep in supercon-
ducting state, if we consider that the grounding capacitance is much larger than
the mutual capacitance.

2.3.2 Transmission line
In the superconducting regime, the Josephson junctions of the chain behave

as inductors (see Fig. 2.12), the relation between the critical current of the junc-
tion and the inductance is L = h̄/(2eIc). As a result, the Josephson junction chain

3For details see Appendix A



28 Chapter 2

reduces effectively to a LCC0 transmission line. The properties of dispersion rela-
tion and impedance of the line are now analysed.

Figure 2.12: Three nodes of a transmission line with inductance L, capacitance
C, and the ground capacitance C0. Kirchhoff’s current conservation law (2.30) is
applied at node n. The arrows indicate the direction of the current.

As before, we apply Kirchhoff’s current conservation law at node n, obtain-
ing the equation of motion

φn−1 −φn

L
+C(φ̈n−1 − φ̈n) =

φn −φn+1

L
+C(φ̈n − φ̈n+1)+C0φ̈n, (2.30)

where the terms on the left hand represent the currents flowing in the node, while
the right terms are means the currents flowing out the node (see Fig. 2.12).

For later convenience, the equation above is rewritten as

(φn−1 −φn+1 −2φn)+
1

ω2
p

�
φ̈n−1 − φ̈n+1 −2φ̈n

�
− 1

ω2
0

φ̈n = 0, (2.31)

where we define the plasma frequency ωp = 1/
√

LC, and ω0 = 1/
√

LC0. The next
step is solving this equation of motion.

Supposing the transmission line is semi-infinite (n � 0), namely the total
number of nodes N → ∞, we may assume that the propagating modes, which are
described by the equation of motion (2.31), have a plane wave form. Namely

φn,t = φ0ei(kn−ωt) +φ �
0ei(−kn−ωt), (2.32)

where these two terms represent modes travelling to the right and left, respectively.
The prefactors φ0 and φ �

0 are the amplitude of the modes. Here, k is measured in
units of 1/a.
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Dispersion relation

Substituting Eq. (2.32) into Eq. (2.31), we obtain the dispersion relation, re-
lating the frequency ωk and k. It reads

ω2
k = ω2

p
1− cosk

1− cosk+C0/2C
. (2.33)

Taking different parameters Λ =
�

C0/C, we plot the dispersion relation, ω as
a function of the wave vector k, shown in Fig. 2.13. When Λ = 0, i.e., in the
absence of the ground capacitance, Eq. (2.33) reduces to the dispersionless limit
ωk =ωp which is independent of k. When the ratio Λ has a finite value, the disper-
sion relation exhibits a linear behaviour for small k and then reaches a maximum
value ωmax = ωp/

�
1+(Λ/2)2 which is always below the plasma frequency. By

increasing the ratio, the linear dispersion regime becomes wider, but ωmax de-
creases.

Figure 2.13: Plot of the dispersion relation (2.33) of a semi-infinite transmission
line with different values of the parameter Λ = 0,0.1,1,10. In the regime k �
min [1,Λ], the dispersion relation is linear (ωk = ω0|k|).

At k � 1, the dispersion (2.33) reduces to

ω2
k = ω2

p
k2

k2 +Λ2 . (2.34)

For k � Λ, the dispersion relation behaves linear, i.e., ωk = ω0|k| as anticipated
above. The condition for linear regime (i.e., k � min[1,Λ]) corresponds to a cut-
off high frequency, i.e., ω � min[ω0,ωp].
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Impedance

Now we compute the impedance of the semi-infinite transmission line “seen”
at node n = 0: Z(ω) ≡ V (ω)/I(ω). With this condition, we only have modes
travelling to the right, i.e., φ �

0 in Eq. (2.32) equals zero. Therefore the voltage of
the node n is

Vn(ω)≡ h̄
2e

φ̇n = iω
h̄
2e

φ0ei(kn−ωt). (2.35)

Then, the current flowing through the line is connected with the voltage drop along
the chain through the total impedance of the inductor L and the capacitor C,

ZLC =
1

1
iωL + iωC

=
iωL

1− ω2

ω2
p

, (2.36)

so

In(ω)≡ Vn −Vn+1

ZLC
=

h̄
2e

1
L

�
1− ω2

ω2
p

��
1− eik

�
φ0ei(kn+ωt). (2.37)

Using Eqs. (2.35) and (2.37), we get the impedance of the transmission line,

Z(ω)≡ V (ω)

I(ω)
=

iωL�
1− ω2

ω2
p

��
1− eik

� . (2.38)

Using the dispersion relation (2.33) and the definition of ωmax, the equation above
can be rewritten in a simple form. It reads

Z(ω) =
Z0�

1−
�

ω
ωmax

�2
+ i Λ/2√

1+(Λ/2)2
ω

ωmax

, (2.39)

from which the real part of the impedance (see Fig. 2.14) is formulated as

Re[Z(ω)] = Z0

�
1−

�
ω

ωmax

�2

1− 1
1+(Λ/2)2

�
ω

ωmax

�2 . (2.40)

In the linear dispersion relation regime, the frequency ω is always much
below the maximum frequency, i.e., ω � ωmax, which can be seen clearly from
Fig. 2.13. As a consequence, the impedance of the transmission line keeps Z0 (see
Fig. 2.14).
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Figure 2.14: The real part of the impedance of the transmission line dependent of
the frequency for k � 1. In linear dispersion relation regime, the impedance is a
constant Z0.

Impedance of a Josephson junction chain

As we mentioned before, the impedance of the transmission line is of the
order of the vacuum impedance (much smaller than the quantum resistance) if
one uses only geometrical inductors and capacitors. By contrast, we now estimate
how large an impedance can be achieved if the line is realized using a chain of
Josephson junctions.

Basically, Josephson junction chains have three controllable parameters: the
critical current Ic, the mutual capacitance C, and the ground capacitance C0. It
should be noticed that Ic and C of a Josephson junction cannot be varied inde-
pendently because both of them are proportional to the junction area. The criti-
cal current is given as Ic = (πΔ/2e)GN ∝ A (GN is the normal conductance of
Josephson junction) and as the capacitance C ∝ A , where A is the cross-section
of the junctions, respectively. Therefore, it is reasonable to have a relation

Ic/C = α. (2.41)

Actually, α cannot be much varied. In most of the experiments, the junction is
made of Al/AlOxAl. Using realistic parameters [90–92], the dimensional con-
stant α is estimated in the range of ∼ 107 A/F.

By contrast, using different geometries, the mutual and ground capacitances
C and C0 are tuned independently. Then, the chain impedance normalized by the
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quantum resistance can be rewritten as

Z0

RQ
=

1
2π

�
C
C0

�
L
C
(2e)2

h̄
. (2.42)

Using the relation L = h̄/(2eIc) and Eq. (2.41), we further obtain

Z0

RQ
=

1
2π

�
C
C0

Ityp

Ic
, (2.43)

where we defined the typical current Ityp =
�
(2e)3α/h̄. Using the constant α , we

may estimate Ityp as tens of nA. As we argued before, we need a larger impedance
transmission line. From Eq. (2.43), we see that the impedance can approach the
quantum resistance by controlling either the rate C/C0 or the critical current Ic.
In the regime C/C0 � 1, the impedance Z0 is restricted to not exceed quantum
impedance4. This condition Z0 ≤ RQ require that the critical current Ic should be
a smaller values. In the opposite regime, i.e., C/C0 � 1, the suitable parameters
for the critical current under the same condition are relatively flexible. But, the
chain maybe turn to insulating regime.

The Hamiltonian

The Hamiltonian of the transmission line is obtained by expanding the Joseph-
son energy in Eq. (2.29) up to the second order in φn:

HT =
1
2 ∑

n,m

�
QnC−1

n,mQm +

�
h̄
2e

�2

φnL−1
n,mφm

�
, (2.44)

where we define an inverse inductance matrix L−1 that is similar to the capacitance
matrix C−1,

L−1
n,m =

2
L

δn,m − 1
L

δn+1,m − 1
L

δn−1,m. (2.45)

It is known that electromagnetic signals are always composed of photons, al-
though in the circuit domain those signals are carried as voltages and currents
on the elements, and the discreteness of the photon’s energy is usually not ev-
ident. Theoretically, the photons modes are apparent when we diagonalize the
Hamiltonian (2.44) to the standard form (see details in appendix B)

Hdiag
T = ∑

k
h̄ωk

�
a†

kak +
1
2

�
, (2.46)

4For Z0 > RQ, the chain behaves as a Mott insulator. This is not our interested regime.
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by using the following expansions with respect to photon operators a†
k , ak

φn =
1√
N ∑

k
αkeikn

�
ak +a†

−k

�
, Qn =

e√
N ∑

k

1
iαk

eikn
�

ak −a†
−k

�
(2.47)

with

α2
k =

e2

h̄

�
L
C

�
1

1− cosk+C0/2C
1

1− cosk
. (2.48)

In linear regime, i.e., k � min [1,Λ], the amplitude α2
k reduces to

α2
k = π

Z0

RQ

1
|k| . (2.49)

The photon operators above satisfy the commutation relation [ak1 ,a
†
k2
] = δk1,k2 .

And, we find that ωk in Eq. (2.46) is consistent with the dispersion relation (2.33).
In linear regime, ωk = ω0|k|.

2.3.3 Summary
A high-impedance (compared to vacuum impedance) transmission line can

be realized by using Josephson junction chains in the superconducting regime. We
derived the Hamiltonian of the transmission line, as well as its diagonal form. At
low frequency, we obtained a linear spectrum for microwave photons, correspond-
ing to an ohmic environment. This provides a good background for studying the
scattering problems in chapter 4 and chapter 5.
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CHAPTER 3
Dynamical Coulomb blockade theory
in Josephson junctions

In this chapter, the dynamical Coulomb blockade theory [or P(E)-theory] is
reviewed. We start with the description of the Coulomb blockade phenomenon
in tunnelling junctions. Then, we restrict ourselves to a Josephson junction in
the Cooper pair tunnelling regime in Sec. 3.1. We study how the current-voltage
characteristic of a Josephson junction is influenced by its environment which is de-
scribed by the Hamiltonian Henv. We show in detail the derivation of the Cooper
pair tunnelling rates in Sec. 3.2. At zero temperature, the tunnelling rates are pro-
portional to the P(E) function, which is the probability for the Josephson junction
to emit photons with total energy E in the electromagnetic environment. The re-
sulting P(E) function is the Fourier transform of a phase-phase correlator. To
compute this correlator, we consider two different cases: 1) If Henv is quadratic,
the correlator can be evaluated with the P(E) function which can be calculated ex-
actly, cf., in Sec. 3.3. Taking an infinite transmission line as the electromagnetic
environment, we study how the current-voltage characteristic of the Josephson
junction is influenced by the line impedance. 2) If Henv is not quadratic, it is im-
possible to compute the exponential phase-phase correlator exactly. Thus other
methods are needed. We propose two methods in Sec. 3.4: Green’s function per-
turbation theory and path integral method.

3.1 Introduction

The concept of Coulomb blockade was first proposed by Gorter [107] in
1951 as an explanation for the observation [108, 109] of an anomalous increase
of the resistance of thin granular metallic films as temperature is reduced. He
assumed that the films consisted of separate grains or blocks. When the temper-
ature was decreased to a certain value such that thermal energy was smaller than
the charging energy, which was associated with the separation between a pos-

35
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itive and a negative charge located on a grain, the electron flowing in the film
was suppressed. As a result, the resistance increased. Thanks to the advance of
modern lithography which allows to fabricate capacitances in the range C � 1fF,
such charging effects in ultra-small multiple-junctions were observed by Fulton
and Dolan [110] thirty years later. The striking electric-field-induced oscillations
were seen in the current-voltage characteristic of the junctions arranged in a low-
capacitance multiple-junction configuration.

In ultra-small junctions, new effects emerge due to charging effects. The es-
sential physics is that the tunnelling electron gains energy eV at bias voltage V ,
but must pay a charging cost of Ec. This leads to interesting consequences in-
cluding the Coulomb blockade [111, 112], the Coulomb staircase [113, 114], and
various oscillatory and dynamic effects [110, 115, 116]. These behaviours arise
from the tunnelling of individual electrons, charging and discharging the capac-
itance. At the beginning, the charging effects were observed only in multiple-
junctions due the difficulties associated with stray capacitances. As for single
normal-metal junction, one can see only the suppression of the tunnelling current
at voltage V < e/2C; and for higher voltages, the I −V characteristic is offset
by the Coulomb gap, i.e., e/2C. But, the direct features of Coulomb blockade
at voltage V < e/2C was hard seen experimentally. Indeed, it was realized soon
that the charging effect was influenced strongly by the nature of the environment
(e.g., the metallic leads and pads) coupled to the junction. Quantum fluctuations
of the environment may smear out the Coulomb gap [117–119]. As a conse-
quence, the behaviour of the system, e.g., the current-voltage characteristic, may
change quantitatively or even qualitatively. This phenomenon, called dynamical
Coulomb blockade, has been investigated widely in different kinds of junctions
(see a review [87]).

In addition to normal metal junctions, the dynamical Coulomb blockade was
also studied in Josephson junctions [120–123] (see Fig. 3.1). In this case we have
two kinds of charge carriers: quasi-particles and Cooper pairs. We will restrict
ourselves to the Cooper pair tunnelling regime. In a voltage-biased Josephson
junction, this regime can be achieved at low temperature (T < Tc, the supercon-
ducting critical temperature) and weak bias (eV < 2Δ, the energy gap). Within
this regime, the current-voltage characteristic of an ideal Josephson junction is
shown in Fig. 2.2 (a), where we can see that no current flows through the junction.
However, the characteristic will be changed when the influence of the environ-
ment is involved. In particular, the supercurrent provides a direct mean to access
the properties of the environmental.

As shown in Fig. 3.2 (a), we now consider a Josephson junction (with ca-
pacitance CJ and Josephson energy EJ) coupled to a voltage source V via an ex-
ternal circuit which is described by its impedance Z(ω). The environment [see
the dashed box of Fig. 3.2 (a)] seen by the junction consists of the external circuit
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Figure 3.1: The experimental I −V characteristic of submicron-size Pb-alloy sin-
gle Josephson junction attached to thin-film NiCr leads [120]. (a) the attached
leads with low impedance 22kΩ. (b) the attached leads with high impedance
200kΩ.

and the capacitance. When a voltage V is applied, the Cooper pairs can tun-
nel inelastically across the junction by dissipating the gained energy 2eV to the
electromagnetic environment via emitting (or absorbing) one or several photons.
These excitations, in turn, affect the tunnelling of Cooper pairs. As a result, the
current-voltage characteristic of the junction will be modified.

In the following, we first show how the I −V characteristic of the Josephson
junction is modified by the environment. To do so, Cooper pair tunnelling rates are
derived using perturbation theory. Next, we discuss not only linear environments
which are described by a quadratic Hamiltonian; but also we extend the theory to
nonlinear environments (with a non-quadratic Hamiltonian). As for the latter one,
Green’s function perturbation theory and the path integral method are introduced
to handle the non-linearity.

3.2 Cooper pair tunnelling rates
In order to determine the current-voltage characteristic, one needs to cal-

culate the tunnelling rates from both directions [see the arrows in Fig. 3.2 (b)]
through the Josephson junction while taking into account the environment. First
of all, the circuit is described by the Hamiltonian

H =−EJ cosφ +Henv, (3.1)

where the first term is the coupling free energy [see Eq. (2.4)] of the Josephson
junction, and φ the phase difference across the junction. The environment is de-
scribed by the Hamiltonian Henv. The phase of the coupling node between the
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Figure 3.2: (a) A voltage-biased Josephson junction with Josephson energy EJ
coupled to a electromagnetic environment [ which is described by the impedance
Z(ω)]. The Josephson junction capacitance CJ and the external circuit make up
the environment (see the dashed box). (b) Schematic drawing of a single Joseph-
son junction. The arrows indicate forward (from left to right) and backward (from
right to left) Cooper pair tunnelling through the barrier.

junction and the environment is denoted as φc. The relation of the two phases
reads

φ = 2eVt −φc. (3.2)

In the framework of circuit QED, the dissipative environment is usually modelled
as a set of LC-oscillators [124] (with degrees of freedom: phase φn and charge Qn,
n represents the nodes) which are linearly coupled to φ . This can be seen more
clearly from the system Hamiltonian involving a term (2Ln)(φn −φ)2 (see details
in reference [87]). Indeed, this is not the only case. The coupling between the
junction and the environment can also be local. We will give an example in the
next section.

In order to clearly see the physical processes of the Cooper-pair tunnelling,
we rewrite the Josephson term as

EJ cosφ =
EJ

2
e−iφ +H.c.. (3.3)

Physically, the operator e−iφ changes the charge Q on the junction by 2e accord-
ing to the commutator (2.6). This process is related to the tunnelling of a Cooper
pair from the left lead to the right one and exchanging energy 2eV with the envi-
ronment. Next, we show in detail the derivation of the Cooper pair tunnelling rate
in the Josephson junction.

Before the calculation, we point out that the P(E)-theory described below is
valid only for incoherent tunnelling of Cooper pairs, namely, one by one across
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the junction. Moreover, we consider the regime where Josephson energy EJ is
small in the problem. It means that charge is well defined. Then, we can regard
the tunnelling Hamiltonian −EJ cosφ as a perturbation, and use the Fermi golden
rule to calculate the tunnelling rates:

Γi→ f =
πE2

J
2h̄

|� f |e−iφ + eiφ |i�|2δ (Ei −E f ). (3.4)

Equation above gives the rates for transitions between the initial states |i� and the
final states | f �. In the absence of the Josephson junction tunnelling Hamiltonian,
we may write the states of the environment Henv, i.e., the reservoir states |R� with
energy ER. The initial states and final states are written as |i�= |R� and | f �= |R��,
with energies ER and E �

R, respectively. Hence, the matrix element in Eq. (3.4)
naturally becomes

� f |e−iφ + eiφ |i�= �R�|e−iφ |R�+ �R�|eiφ |R�. (3.5)

In order to compute the total rate, one has to sum up all the possible initial and final
states weighted by the thermal probability. Since we are considering the tunnelling
processes from the left lead to the right lead, only the first term of Eq. (3.5) plays
a role while the second term describes the inverse processes. Hence, we write the
total tunnelling rates as

−→
Γ (V ) =

πE2
J

2h̄ ∑
R,R�

|�R�|e−iφ |R�|2Pβ (R)δ (ER −E �
R), (3.6)

where ER −E �
R is the energy difference of Cooper pairs associated with the tun-

nelling process, and the probability to find the initial reservoir states |R� reads

Pβ (R) = �R|ρβ |R�. (3.7)

The equilibrium density matrix at inverse temperature β = 1/(kBT ) is

ρβ =
e−βHenv

Z
, (3.8)

with the partition function of the environment, Z = Tr[e−βHenv ]. Therefore, the
average of an operator X over the environmental equilibrium distribution takes
the form �X�Henv = �R|Xe−βHenv |R�Henv/Z.

In order to simplify Eq. (3.6), we rewrite the delta function as

δ (ER −E �
R) =

1
2π h̄

∞�

−∞

dtei(ER−E �
R)t/h̄. (3.9)
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Upon substituting Eq. (3.9) into Eq. (3.6), replacing the junction phase φ by φc
[using Eq. (3.2)], and transforming the result into the Heisenberg picture1, finally,
Eq. (3.6) becomes

−→
Γ (V ) =

E2
J

4h̄2

∞�

−∞

dt ei2eVt/h̄ ∑
R,R�

�R|eiφc(t)|R���R�|e−iφc(0)|R�Pβ (R)

=
E2

J

4h̄2

∞�

−∞

dt ei2eVt/h̄ ∑
R
�R|eiφc(t)e−iφc(0)|R�Pβ (R). (3.10)

Substituting Eqs. (3.7) and (3.8) into Eq. (3.10), we obtain naturally

∑
R
�R|eiφc(t)e−iφc(0)|R�Pβ (R) = �eiφc(t)e−iφc(0)�Henv . (3.11)

Now, we obtain the expression for the total tunnelling rates from the left lead to
the right lead

−→
Γ (V ) =

E2
J

4h̄2

∞�

−∞

dt ei2eVt/h̄�eiφc(t)e−iφc(0)�Henv . (3.12)

Mathematically, it will be quite convenient to introduce a new function P(E),
which is the Fourier transform of the exponential phase-phase correlation func-
tion,

P(E) =
1

2π h̄

∞�

−∞

dt eiEt/h̄�eiφc(t)e−iφc(0)�Henv . (3.13)

With this definition, Eq. (3.12) is rewritten in a simple form,

−→
Γ (V ) =

π
2h̄

E2
J P(2eV ). (3.14)

Here, we interpret P(E) as the probability to release energy E (E > 0)2 to the envi-
ronment via emitting one or several photons. Indeed, this is already verified expe-
rientially by Hofheinz, et al. [88]. They measured the radiation emitted by a small
voltage biased Josephson junction embedded in a microwave resonator. In this
experiment, the Cooper pair current and the photon emission rate are measured
simultaneously at the resonance frequency of the resonator. When the Cooper

1The time-dependent operators take the form eiφc(t) = eiHenvt/h̄eiφc e−iHenvt/h̄.
2Reversely, for negative energy (E < 0), it describes the absorption of energy |E| from the

environment.
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pair tunnel inelastically through the Josephson junction, it emits either one or two
photons into the resonator.

The backward tunnelling rates
←−
Γ from the right lead to the left lead can be

computed the same way. However, it is much easier to obtain the result from the
symmetry of a voltage-biased single junction as

←−
Γ (V ) =

−→
Γ (−V ). (3.15)

Note that Eq.(3.15) is valid when �eiφc(t)e−iφc(0)�Henv = �e−iφc(t)eiφc(0)�Henv . This
relation requires that the environmental Hamiltonian Henv has symmetry in phase
φ and charge Q [125]. One can easily certify it as follows: �eiφc(t)e−iφc(0)�Henv =
(1/Z)

�
D[φ(t)]

�
D[Q(t)]eiφc(t)e−iφc(0)e−s, where Z =

�
D[φ(t)]

�
D[Q(t)]e−s is the

partition function. The term −s =
� ∞

0 dt
�

iQ(t)φ̇(t)−Henv [φ(t),Q(t)]
�

is the ac-
tion. If we have φ →−φ , and Q →−Q in Henv, then Eq.(3.15) is verified.

Finally, the total current flowing through the Josephson junction is given by
the tunnelling Cooper pair charge 2e (corresponding to each tunnelling process)
multiplied with the difference of the forward and backward tunnelling rates,

I(V ) = 2e
�−→

Γ (V )−←−
Γ (V )

�
=

eπE2
J

h̄
[P(2eV )−P(−2eV )] . (3.16)

At zero temperature, the thermal fluctuations of the environment are completely
suppressed. Thus, there is no absorption from the environment, i.e., P(E < 0) = 0.
Only the emission processes contribute. Consequently, Eq. (3.16) immediately
reduces to

I(V ) =
eπE2

J
h̄

P(2eV ). (3.17)

The current is proportional to the P(E) function, which enables us to measure the
properties of the environment directly. We will apply this idea in chapter 4 and
chapter 5.

So far, we have introduced the dynamical Coulomb blockade theory of Joseph-
son junctions in the Cooper pair tunnelling regime. The current flowing through
the junction is influenced by the environment. In particular, the current-voltage
characteristic is directly related to the P(E) function, which is the Fourier trans-
form of phase-phase correlation function �eiφc(t)e−iφc(0)�Henv . Next, the task is to
compute this correlator. Though P(E)-theory is usually presented in the context of
a linear environment (Henv is assumed to be quadratic) [87, 126–128], Eqs. (3.13)
and (3.16) hold more generally for a nonlinear environment [129]. In the follow-
ing, we will discuss the linear and the nonlinear environment, respectively.
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3.3 Phase-phase correlator: linear regime
We consider a linear environment which is described by the quadratic Hamil-

tonian H(0), given by Eq. (2.44). Then the operator φc is expressed in terms of a
linear combination of creation and annihilation operators [see Eq. (2.47)]. As a
result, the phase-phase correlator can be simplified by exploiting the Wick’s the-
orem. To do so, we first construct a function f (γ) = �eiγφc(t)e−iγφc(0)�H(0) , then

d f (γ)
dγ

= i
�
�φc(t)eiγφc(t)e−iγφc(0)�H(0) −�eiγφc(t)φc(0)e−iγφc(0)�H(0)

�
. (3.18)

Expanding the exponentials on the right hand side of Eq. (3.18), and applying the
Wick’s theorem, we obtain

d f (γ)
dγ

= 2γ�[φc(t)−φc(0)]φc(0)�H(0) f (γ), (3.19)

where we used �φ 2
c (t)�H(0) = �φ 2

c (0)�H(0) (valid under stationary and equilibrium
conditions).

Solving the differential equation (3.19), and using the initial condition f (0)=
1, we arrive at a general expression3 for the exponential phase-phase correlation
function:

�eiφc(t)e−iφc(0)�H(0) ≡ f (1) = exp
�
�φc(0) [φc(t)−φc(0)]�H(0)

�
. (3.20)

For later convenience, we introduce the abbreviation

J0(t) = �φc(0) [φc(t)−φc(0)]�H(0) (3.21)

for the two-point phase-phase correlation function, namely, the average taken over
the environmental degrees of freedom. To compute the correlator J0(t), we use
the retarded Green’s function G(0)

R (φc,φc; t) = i/h̄Θ(t)�[φc(t),φc(0)]�H(0) , where
Θ(t) is the Heaviside step function. The relation between the two is written in
frequency space (see details in Appendix ??):

J0(t) =
h̄
π

∞�

0

dω Im
�
G(0)

R (φc,φc;ω)
�
[(cosωt −1)cosh(h̄ωβ/2)− isinωt] .

(3.22)
At zero temperature, it reduces to

J0(t) =
h̄
π

∞�

0

dω Im
�
G(0)

R (φc,φc;ω)
��

e−iωt −1
�
. (3.23)

3Eq. (3.20) is also verified later using the path integral method [see Eq. (3.87)].
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Normally, the retarded Green’s function G(0)
R (φc,φc;ω) is solved from its equation

of motion, which can be derived with the given Hamiltonian H(0). We will show
this in detail using a specific electromagnetic environment in the next subsection.

3.3.1 Electromagnetic environment: the transmission line

As shown in Fig. 3.3, we now apply the P(E)-theory to a probe Josephson
junction with Josephson energy EJ and capacitance CJ connected (at node m) to
a transmission line. We constrict to the case of low frequency regime where the
transmission line behaves as an ohmic environment (see Sec. 2.3). To simplify the
calculation, we further concentrate on the case that the ground capacitance C0 is
much larger than the mutual capacitance C.

Figure 3.3: The system consists of a voltage-biased (voltage source V ) Josephson
junction with Josephson energy EJ and capacitance CJ side-coupled with an infi-
nite transmission line at node m. The transmission line is realized using identical
LC0 oscillators. At low frequency, the line behaves as an ohmic environment.

First of all, the Hamiltonian of the transmission line is obtained from Eq. (2.44)
by taking the condition C �C0:

HT = ∑
n

Q2
n

2C0
+

�
h̄
2e

�2 (φn −φn+1)
2

2L
. (3.24)

The environment seen by the Josephson junction consists of the transmission line
and the capacitance CJ . The charging energy associated with the capacitance CJ
is located at node m, so the linear environmental Hamiltonian reads

H(0) = ∑
n

Q2
n

2(C0 +CJδn,m)
+

�
h̄
2e

�2 (φn −φn+1)
2

2L
. (3.25)
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Then, the local retarded Green’s function G(0)
R [φm,φm;ω] is needed according to

the discussion above.
The equation of motion of the retarded Green’s function G(0)

R [φn(t),φm(0)]
can be derived. The first derivation with respect to time is

∂tG
(0)
R [φn(t),φm(0)] =

i
h̄

δ (t)�[φn(t),φm(0)]�H(0) +
i
h̄

Θ(t)�[∂tφn(t),φm(0)]�H(0)

=
i
h̄

Θ(t)�[∂tφn(t),φm(0)]�H(0) . (3.26)

Substituting ∂tφn(t)4 into Eq. (3.26),

∂tG
(0)
R [φn(t),φm(0)] =

i
h̄

2e
C0 +CJδn,m

Θ(t)�[Qn(t),φm(0)]�H(0) . (3.27)

The second derivation with respect to time is

∂ 2
t G(0)

R [φn(t),φm(0)] =
i
h̄

2e
C0 +CJδn,m

�
δ (t)�[Qn(t),φm(0)]�H(0) (3.28)

+Θ(t)
��

∂Qn(t)
∂ t

,φm(0)
��

H(0)

�
.

Substituting ∂tQn(t)5 into Eq. (3.28),

∂ 2
t G(0)

R [φn(t),φm(0)] =
1
h̄

(2e)2

C0 +CJδn,m
δ (t)δn,m − 1

L(C0 +CJδn,m)
(3.29)

�
2G(0)

R [φn(t),φm(0)]−G(0)
R [φn−1(t),φm(0)]−G(0)

R [φn+1(t),φm(0)]
�
.

Taking the Fourier transform of Eq. (3.29) with respect to time, we obtain the
equation of motion of the retarded Green’s function in frequency space,

ω2G(0)
R (φn,φm;ω) − 1

L(C0 +CJδn,m)

�
2G(0)

R [φn,φm;ω]−G(0)
R [φn−1,φm;ω]

−G(0)
R [φn+1,φm;ω]

�
+

1
h̄

(2e)2

C0 +CJδn,m
δn,m = 0. (3.30)

Eq. (3.30) describes that photons (excited by the inelastic tunnelling of Cooper
pairs) are emitted from the Josephson junction at node m, and then propagate
along the transmission line in both left and right directions (see Fig. 3.4).

4It equals (i/h̄)[H(0),φn(t)] = (2e/h̄)Qn(t)/(C0 +CJδn,m).
5It equals (i/h̄)[H(0),Qn(t)] =−(1/2e)[2φn(t)−φn−1(t)−φn+1(t)]/L.
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Figure 3.4: Inelastical tunnelling of Cooper pairs excites the electromagnetic en-
vironment. The resulting photons propagate down the transmission line, as de-
scribed by the equation of motion (3.31).

The solution of Eq. (3.30) can be written using a plane wave basis,

G(0)
R (φn,φm;ω) = Aeik(n−m)Θ(n−m)+Ae−ik(n−m)Θ(m−n), (3.31)

where we already used the boundary condition6 at n = m. The coefficient A needs
to be determined. Substituting Eq. (3.31) into Eq. (3.30) and taking n = m, we
obtain

Aω2 − h̄
L(C0 +CJ)

(2A−Aeik −Aeik)+
1
h̄

(2e)2

C0 +CJ
= 0. (3.32)

At low frequencies that requires k� 1, the coefficient A is obtained from Eq. (3.32)
as

A = i
π

h̄ω
Zt(ω)

RQ
, (3.33)

where the total impedance is Z−1
t (ω) = 1/Z0 + iωCJ with Z0 =

�
L/C0 as the

impedance of the transmission line. The impedance can be computed in different
ways. Here, we choose Green’s functions since it is a convenient tool to study
the nonlinear case. The result of a transmission line can be easily generalized to
other complex cases. Physically, the total impedance seen by the probe junction
can be regarded as the impedance of the line in parallel with the capacitance of the
probe. For later convenience, we normalize the total impedance by the quantum
resistance, namely

Zt(ω)

RQ
=

Z0

RQ

1
1+ iω/ωcut−off

, (3.34)

6At n = m, the Heaviside function Θ(n−m) = 1/2. Thus, we have G(0)
R (φm+0+ ,φm;ω) =

G(0)
R (φm+0− ,φm;ω) = A.
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where the frequency ωcut−off = 1/(Z0CJ) describes the effective cut-off of the total
impedance due to the existence of the junction capacitance CJ .

Substituting the coefficient (3.33) into Eq. (3.31), and taking n = m, we get
the local retarded Green’s function at node m

G(0)
R (φm,φm;ω) = i

π
h̄ω

Zt(ω)

RQ
. (3.35)

Using the relation (3.22), we obtain the correlation function

J0(t) =
∞�

0

dω
ω

Re[Zt(ω)]

RQ

�
cosh

βω
2

(cosωt −1)− isinωt
�
. (3.36)

Integral equation for the P(E)-function

Substituting Eq. (3.20) into Eq. (3.13), we simplify P(E) as

P(E) =
1

2π h̄

∞�

−∞

dt exp [J0(t)+ iEt/h̄] . (3.37)

Generally, it is impossible to calculate P(E) analytically. In the zero temperature
limit, P(E) can be solved numerically from an integral equation inspired by the
idea of Minnhagen [130]. Using Eq. (3.36), the phase-phase correlation function
at T = 0 reads

J0(t) =
∞�

0

dω
ω

Re[Zt(ω)]

RQ

�
e−iωt −1

�
. (3.38)

Taking the time derivative of exp[J0(t)], we get

deJ0(t)

dt
=−2ieJ0(t)

∞�

0

dω
Re[Zt(ω)]

RQ
e−iωt . (3.39)

Taking the Fourier transform on both sides of Eq. (3.39), yields
∞�

−∞

dt ei E
h̄ t deJ0(t)

dt
=−2i

∞�

0

dω
Re[Zt(ω)]

RQ

∞�

−∞

dt ei E−h̄ω
h̄ teJ0(t). (3.40)

Then, we make use of the convolution on the left hand side, and use the definition
of P(E) [see Eq. (3.37)] to write

− i
E
h̄

P(E) =−2i
∞�

0

dω
Re[Zt(ω)]

RQ
P(E − h̄ω). (3.41)
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Next, we change the variable on the right hand side, i.e., E − h̄ω = E �. Moreover,
considering the fact that P(E) vanishes for negative E at zero temperature, we
obtain the integral equation for P(E):

EP(E) = 2
E�

0

dE �
Re
�
Zt

�
E−E �

h̄

��

RQ
P(E �). (3.42)

Finally, we can solve this equation numerically. Technically, we start with an
arbitrary value P(0) and then use the normalization condition

� Ecut−off
0 dE P(E)= 1

to complete the numerical evaluation. Ecut−off is a cut-off energy corresponding
to the cut-off frequency ωcut−off in Eq. (3.34).

The current-voltage characteristic

We obtain numerically the current-voltage characteristic for various values
of the normalized impedance Z0/RQ by substituting Eq. (3.34) into the integral
equation (3.42) and ensuing numerical calculation. The result is shown in Fig. 3.5.
In the weak impedance regime, i.e., Z0/RQ < 0.5, the current is peaked at V = 0
and then decreases with voltage. As for the opposite case of high impedance, the
current increases with voltage for small voltage, and has a peak centered around
2eV = 4Ec. In addition, Coulomb blockade appears for large impedance (e.g.,
Z0/RQ = 40).

To better understand the results, we discuss further two extreme impedance
regimes.

When the impedance Z0 is much larger than the quantum resistance RQ, the
real part of the total impedance (3.34) becomes a delta function:

Re[Zt(ω)]

RQ
= lim

Z0/RQ→∞

Z0/RQ

1+[π(Z0/RQ)h̄ω/(4Ec)]2
≈ 4Ec

h̄
δ (ω). (3.43)

Plugging Eq. (3.43) into Eq. (3.38), we obtain the phase correlation J(t) which is
formulated at low frequencies means that the short time expansion

J0(t) =
4Ec

h̄

∞�

0

dωδ (ω)(−it) =−4iEct/h̄. (3.44)

Substituting it into Eq. (3.17), we obtained the current

I(V ) =
eπE2

J
h̄

δ (2eV −4Ec). (3.45)

Equation above shows that the current is sharply peaked at V = 4Ec/2e [e.g.,
Z0/RQ = 40 in Fig. 3.5]: the tunnelling of Cooper pair with charge 2e gains energy
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.

Figure 3.5: The current-voltage characteristic of a voltage-biased Josephson junc-
tion. The junction is coupled to an infinite transmission line with five differ-
ent impedance values Z0/RQ = 0.1,0.3,0.8,2,40. The current is normalized by
I0 = eπE2

J /h̄Ec.

2eV , but must pay a cost 4Ec = (2e)2/CJ to charge the capacitance CJ , which leads
to Coulomb blockade.

Now we consider the case with a weak impedance, i.e., Z0/RQ � 1. In such
a situation, we may write approximately the term eJ(t) as 1+ J(t), since J(t) is
proportional to Z0/RQ [see Eq. (3.38)]. Using the expression with Eqs. (3.37) and
(3.17), the current at finite V is obtained at zero temperature:

I(V ) =
Z0

RQ

πE2
J

2h̄V
. (3.46)

At voltage V → 0, the current goes divergent. Indeed, this is due to the limitation
of the P(E)-theory. The range of validity7 is given by V � (1/2π)IcZ0, where Ic
is the critical current of the Josephson junction. Beyond this voltage, the theory
is correct and Cooper pair tunnels incoherently through the Josephson junction.
Otherwise Cooper pair tunnels coherently and results in a supercurrent. In some
sense, the peak (at low voltage) in the current-voltage characteristic can be seen
as a precursor of the supercurrent branch. Comparing with the strong impedance

7In the derivation of P(E)-theory, we assumed that the Josephson energy EJ is small. From
an analysis of higher order term, one can obtain that the theory is valid only if EJP(2eV ) � 1.
Obviously, the condition depends on the voltage as well as the impedance of the environment.
Taking the ohmic environment discussed in this section as an example, we find the condition
becomes V � (1/2π)IcZ0.
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regime, the Coulomb blockade effect disappears. This is due to the quantum fluc-
tuation of the environment that activate the charge transfer across the junction. It
smears the Coulomb charging effect. With increasing voltage, the current starts to
decrease as 1/V . In chapter 4, we will concentrate on this regime.

3.3.2 Summary

In this section, we solved the current flowing through the Josephson junction
with P(E)-function which characterize the influence of the environment. Tak-
ing the transmission line as the electromagnetic environment, we discussed the
current-voltage characteristic of the junction. At high impedances of the line,
charging effect dominated and the Coulomb blockade manifested at voltage be-
low that charging energy. At low impedances, the current increased inversely with
the voltage, which is a precursor of the supercurrent branch in an ideal Josephson
junction.

3.4 Phase-phase correlator: nonlinear regime

We now switch to nonlinear electromagnetic environments which are de-
scribed by a non-quadratic Hamiltonian Hnl. Then the phase-phase correlator in
Eq. (3.13) is impossible to compute exactly. The Green’s function perturbation
theory and path integral method offer a possibility to obtain the results. In the
following, we first present the ideas of Green’s function perturbation theory, and
then introduce the Feynman diagrams which are a valuable tool for organizing
and understanding the perturbative calculations. Next, we introduce the path in-
tegral method. In order to see how it works, we apply it to a specific (quadratic)
environment, i.e., a transmission line.

3.4.1 Green’s function perturbation theory

To use the Green’s function perturbation theory, we write the Hamiltonian of
the nonliner system as

Hnl = H(0) +V, (3.47)

where H(0), is a solvable quadratic Hamiltonian; and the interaction V includes
all remaining parts of Hnl. Starting with a system described by H(0), we then add
perturbatively the effect of V to see how it changes the relevant property.

The Hamiltonian Hnl describes an interacting system, therefore the phase-
phase correlation function in Eq. (3.13) can no longer be written as a simple closed
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form expression [e.g., Eq. (3.20)]. Instead we expand it in powers of φc as follows:

�eiφc(t)e−iφc(0)�Hnl = 1+ i�φc(t)−φc(0)�Hnl

+�[φc(t)−φc(0)]φc(0)�Hnl

+
i
2
�φc(t)φc(0)[φc(t)−φc(0)]�Hnl

+
1
4
�[φ 2

c (t)−φ 2
c (0)]φ

2
c (0)�Hnl

−1
6
�[φ 3

c (t)−φ 3
c (0)]φc(0)�Hnl

−1
6
�[φc(t)−φc(0)]φ 3

c (0)�Hnl

+O
�

φ 5
c

�
. (3.48)

As before, we still use Green’s functions to evaluate the correlators in Eq. (3.48).
Indeed, the relation (3.22) can be extended to compute multiple-point correlators.
In addition to the two-point retarded Green’s function GR(φc,φc;ω) we used for
linear cases, we may need one-point retarded Green’s function GR(φc;ω), three-
point retarded Green’s functions GR(φ 2

c ,φc;ω) and GR(φc,φ 2
c ;ω), as well as four-

point retarded Green’s functions GR(φ 2
c ,φ 2

c ;ω), GR(φ 3
c ,φc;ω), and GR(φc,φ 3

c ;ω).
In order to be able to use perturbation theory to evaluate these Green’s functions,
we switch to imaginary-time-ordered or Matsubara Green’s functions, G . When
the nonlinear Hamiltonian Hnl is symmetric in phase and charge, the odd-point
retarded Green’s functions will vanish (this can be verified using the argument
given in Sec. 3.2). We will check the specific cases in Chapter 4 and Chapter 5.

For convenience, we write the needed Green’s functions in a uniform formal-
ism, i.e., G [φ α

c (τ),φ β
c (0)] (α +β � 1, α , β are non-negative integers). At zero

temperature, we define

G
�
φ α

c (τ),φ β
c (0)

�
= �Tτφ α

c (τ)φ β
c (0)�Hnl , (3.49)

where Tτ is the time-ordering operator. And �· · ·�Hnl ≡ �| · · · |�Hnl refers to aver-
aging over eigenstates |�Hnl of the system. Initially, |�Hnl is of course not known
since that is exactly what is to be determined by using the Green’s functions.

To compute the Green’s function (3.49) which is based on the unknown
ground states |�Hnl , we use the interaction representation8. It allows us to iso-
late the effect of the interacting Hamiltonian from the unperturbed Hamiltonian.
The idea is to treat the main Hamiltonian H(0) in the Heisenberg representation,

8Such choice does not change the results of problem comparing with using Schrödinger or
Heisenberg representations.
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but to handle the interaction V in the Schrödinger representation. As a result, the
operators have a time dependence, e.g., φc(τ) = eH(0)τφce−H(0)τ , while the wave
functions ψ(τ) vary as

∂
∂τ

ψ(τ) =−V (τ)ψ(τ). (3.50)

Indeed, the wave functon at τ = 0, i.e., ψ(0), describes the state |�Hnl .
For later convenience, we introduce the S matrix as the operator S(τ,τ �)

which connects the wave function ψ(τ �) and ψ(τ), namely

ψ(τ) = S(τ,τ �)ψ(τ �). (3.51)

Using Eq. (3.50), we obtain

∂
∂τ

S(τ,τ �) =−V (τ)S(τ,τ �), (3.52)

from which the solution is obtained by a couple of steps: integrate both sides of
the equation above with respect to time, iterate repeatedly the obtained solution,
introduce the time-ordering operator, and rewrite the result9. It is expressed as

S(τ,τ �) = Tτ exp


−

τ�

τ �

dτ1V (τ1)


 . (3.53)

Using the S matrix, we now establish the relation between the ground states of
perturbed and the unperturbed Hamiltonian: |�Hnl = S(0,−∞)|�H(0) [132], where
|�H(0) is defined as the ground state of the unperturbed Hamiltonian H(0). We used
the assertion that |�H(0) is equal to ψ(−∞). The argument is that one starts in the
past (τ = −∞) with a unperturbed state |�H(0) , then the operator S(0,−∞) brings
the state to the present (τ = 0), i.e., |�Hnl . It is the ground state of Hnl which
contains the effects of the interaction V . As argued before, |�H(0) is solvable,
therefore one can get |�Hnl and further compute the trace in Eq. (3.49). We finally
obtain [131]

G
�
φ α

c (τ),φ β
c (0)

�
=

�Tτφ α
c (τ)φ β

c (0)S(∞,−∞)�H(0)

�S(∞,−∞)�H(0)
, (3.54)

where we used the relation H(0)�S(−∞,0)|= H(0)�S(∞,0)|/H(0)�|S(−∞,∞)|�H(0) . It
is seen that the expectation values in the unknown ground states |�Hnl are now
expressed in terms of the expectation values in the solvable ground state |�H(0) .

9The details can be found in the book [131], page 68.
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In the absence of the interaction, i.e., V = 0, the S matrix is unity according
to Eq. (3.53). Thus, Eq. (3.54) reduces to a unperturbed time-ordered Green’s
function,

G (0)
�
φ α

c (τ)φ β
c (0)

�
= �Tτφ α

c (τ)φ β
c (0)�H(0) . (3.55)

Indeed, we will see later that this equation corresponds to the zeroth order contri-
bution of a perturbation series.

When the interaction is involved, the Green’s function (3.54) is evaluated by
expanding the S matrix in a series, namely

G
�
φ α

c (τ),φ β
c (0)

�
=

∞

∑
n=0

1
n!

∞�

−∞

dτ1

∞�

−∞

dτ2 · · ·
∞�

−∞

dτn (3.56)

×�Tτ φ α
c (τ)φ β

c (0)V (τ1)V (τ2) · · ·V (τn)�H(0)

�V (τ1)V (τ2) · · ·V (τn)�H(0)
.

As H(0) is quadratic, we can use Wick’s theorem to evaluate the time-ordered
brackets. The operators in the bracket are paired and aligned according to the
time order.

In order to see in detail the way of constructing pairings, to introduce the
Feynman diagrams, and to understand the relevant physical meaning, we intro-
duce a simple case: the unperturbed Hamiltonian H(0) is given by a quadratic
form with phase and charge [e.g., Eq. (2.44)]; and the interaction is added to the
coupling node [see Fig. 3.2 (a), the coupling node was labelled by φc] between
the Josephson junction and the environment. We do not specify the interaction but
only state that it reads as a quartic form, namely

V =
λ
4!

φ 4
c , (3.57)

where the constant λ describes the coupling strength. Such choice was indeed
inspired by the well-known quartic self-interacting scalar field theory [133, 134],
which is frequently used to study interacting problems.

For a quartic interaction, the odd orders in Eq. (3.48) do not contribute while
only even orders are left. In the following, we use Eqs. (3.56) and (3.57) to
evaluate the two-point Green’s function G [φc(τ),φc(0)] as well as the four-point
Green’s function G [φ 2

c (τ),φ 2
c (0)]. Of course, the results can be generalized to

other theories of interest. As the interaction considered in chapter 4 will be quar-
tic as well, we will see the method addressed below can be conveniently mapped
to the problem.
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Two-point Green’s function

Substituting Eq. (3.57) into Eq. (3.56), and taking α = β = 1, we now look
at the first few terms of the expansion [see Eq. (3.56)] of the two-point Green’s
function G [φc(τ),φc(0)].

To zeroth order in λ , namely by taking n = 0 in Eq. (3.56), the numerator
reduces to �Tτφc(τ)φc(0)�H(0) , while the denominator is equal to one. Therefore
we obtain

G [φc(τ),φc(0)] = G (0)[φc(τ),φc(0)]+O(λ ), (3.58)

where we used the definition of unperturbed Green’s function (3.55).
To first order in λ , namely taking n = 1 in Eq. (3.56), the numerator becomes

�Tτ φc(τ)φc(0)�H(0) − λ
4!

∞�

−∞

dτ1�Tτ φc(τ)φc(0)φ 4
c (τ1)�H(0) . (3.59)

Since H(0) is quadratic, we can use Wick’s theorem to simplify the time-ordered
bracket of the second term. According to the rules, the bracket can be rewritten as
the summation of all the possible pairings, and each of these pairings will either be
a time-ordered Green’s function (different time) or number operator (same time).
Moreover, the time ordering of each pair is given by the proper time ordering to
the entire result. Using these rules, we get

�Tτ φc(τ)φc(0)φ 4
c (τ1)�H(0) = 3�Tτ φc(τ)φc(0)�H(0)

�
�φ 2

c (τ1)�H(0)

�2

+12�Tτ φc(τ)φc(τ1)�H(0)�φ 2
c (τ1)�H(0)�Tτ φc(τ1)φc(0)�H(0) . (3.60)

In Eq. (3.60) above, the two terms correspond to two different types of pairings.
For the first term, the operators of the interaction pair with each other, while they
pair with φc(τ) and φc(0) for the second one. The difference will be seen more
clearly in the representation of Feynman diagrams. Besides, the pre-factors 3 and
12 count the number of ways that the same time-ordered pairings repeat. For the
similar pre-factors appearing in the following calculations, we do not explain this
any more it is due to the same reason.

Plugging Eq. (3.60) into Eq. (3.59), we obtain the numerator of Eq. (3.56) up
to first order in λ :

�Tτ φc(τ)φc(0)�H(0) − 3λ
4!

�Tτ φc(τ)φc(0)�H(0)

∞�

−∞

dτ1
�
�φ 2

c (τ1)�H(0)

�2

−12λ
4!

∞�

−∞

dτ1�Tτ φc(τ)φc(τ1)�H(0)�φ 2
c (τ1)�H(0)�Tτ φc(τ1)φc(0)�H(0) .(3.61)
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Similarly, the denominator of the Eq. (3.56) is expanded to the first order in λ as

1− 3λ
4!

∞�

−∞

dτ1
�
�φ 2

c (τ1)�H(0)

�2
+O(λ 2). (3.62)

Substituting Eqs. (3.61) and (3.62) into Eq. (3.56), we find it is hard to further
simplify. However, if we expand the interaction of the numerator beyond the first
order, it comes to:



1− 3λ

4!

∞�

−∞

dτ1
�
�φ 2

c (τ1)�H(0)

�2
+O(λ 2)



×

�
�Tτ φc(τ)φc(0)�H(0)

−12λ
4!

∞�

−∞

dτ1�Tτ φc(τ)φc(τ1)�H(0)�φ 2
c (τ1)�H(0)�Tτ φc(τ1)φc(0)�H(0)

+O(λ 2)
�
. (3.63)

We now collect the two equations above, i.e., the results of numerator and denom-
inator, the denominator cancel exactly one part of the numerator. Later we will
see that this part corresponds to the disconnected Feynman diagrams which do not
contribute. Thus, the two-point Green’s function to the first order in λ reads

G [φc(τ),φc(0)] = G (0) [φc(τ)φc(0)]−
λ
2

∞�

−∞

dτ1G
(0) [φc(τ)φc(τ1)]

×�φ 2
c (τ1)�H(0)G (0) [φc(τ1)φc(0)]+O(λ 2). (3.64)

Making Fourier transform with respect to time upon the equation above, we rewrite
it in Matsubara frequency space:

G [φc,φc; iων ] = G (0) [φc;φc; iων ] (3.65)

−G (0) [φc,φc; iων ]

�
λ
2
�φ 2

c �H(0)

�
G (0) [φc,φc; iων ]+O(λ 2).

When the second order is much smaller than the first one, the first order expansion
is enough for the result. Otherwise, the result is no longer true. Indeed, it is
possible to go beyond the first order expansion by realizing that (−λ/2)�φ 2

c �H(0)

is the lowest term of the self-energy10 Σ. The Dyson’s equation is expressed as:

G [φc,φc; iων ] = G (0) [φc;φc; iων ]+G (0) [φc,φc; iων ] Σ G [φc,φc; iων ] . (3.66)
10The self-energy is summation of an infinite number of series, and it is defined as an irreducible

part of the Green’s function. Normally, it is impossible to get exactly, and one must be content
with an approximate result.
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Dyson’s equation state that the time-ordered Green’s functions G can be obtained
from Eq. (3.66) by simply knowing the unperturbed time-ordered Green’s func-
tion G (0) and the self-energy Σ. Basically, Dyson’s equation is useful only in
weak coupling theory where the perturbation is sufficiently weak that an ade-
quate approximation is obtained with a few terms in Σ. In our case, when λ � 1,
Σ ≈ (−λ/2)�φ 2

c �H(0) .

Feynman diagrams for two-point Green’s function

The Feynman diagrams are both an exact mathematical representation of per-
turbation theory to infinite order and a powerful pictorial method that elucidates
the physical content of the complicated expressions. We now introduce the Feyn-
man diagrams for the two-point Green’s functions.

As a starting point, the basic graphical vocabulary is defined in Fig. 3.6. We
use thick lines and thin lines to represent the full (G [φc(τ)φc(0)]) and unperturbed
(G (0)[φc(τ)φc(0)]) time-ordered Green’s functions, respectively. An arrow is often
included to represent the direction. Note that the arrow does not means τ > 0. We
use a closed circle, which starts and terminates at the same time point (e.h., τ1),
representing the term �φ 2

c (τ1)�H(0) . Using these basic diagrams, we can interpret
the calculations above using the language of Feynman diagrams.

Figure 3.6: The Feynman diagrams of (a) the full time-ordered Green’s function
G (τ,0), (b) the unperturbed time-ordered Green’s function G (0)(τ,0), and (c) the
term �φ 2

c (τ1)�H(0) .

Collecting the numerator [see Eq. (3.61)] and the denominator [see Eq. (3.62)],
we obtain the Feynman diagrams for the two-point Green’s function to the first or-
der in λ . The denominator represents the vacuum fluctuation and the first order
correction; while the numerator consists of both connected diagrams and discon-
nected diagram. In order to see clearly which parts of the diagrams play a role, we
expand λ beyond the first order, then the numerator becomes Eq. (3.63). The cor-
responding Feynman diagrams are shown in Fig. 3.7. We can see the diagrams of
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the dominator cancel11 exactly the disconnected diagrams of the numerator, and
only the connected diagrams are left. Indeed, this conclusion can be generalized
into an important theorem that the vacuum polarization terms �S(∞,−∞)�H(0) will
exactly cancel the disconnected diagrams in the numerator expression. Conse-
quently, only connected diagrams are necessary in the calculation of time-ordered
Green’s function. For the evaluation of the four-point Green’s function, we will
directly use this theorem.

Figure 3.7: The Feynman diagrams of the two-point Green’s function
G [φc(τ),φc(0)] beyond the first order contribution. The numerator corresponds
to Eq. (3.63).

The Feynman diagram of Dyson’s equation (3.66) is shown in Fig. 3.8.

Figure 3.8: The Feynman diagrams of the Dyson’s equation Eq. (3.66). In
weak coupling limit, the self-energy Σ can be approximated as the lowest term
(−λ/2)�φ 2

c �H(0) .

In summary, two-point Green’s function was evaluated. The perturbed Green’s
function can be expressed in terms of the unperturbed Green’s function and the
self-energy. Moreover, we introduced the Feynman diagrams. It was verified the
visual clarity is obtained without loss of mathematical rigour. When Green’s func-
tions are used to handle the specific problems in chapter 4 and chapter 5, we will
try to use the Feynman diagrams instead of the complex integral formalisms.

11Note that the pre-factors of each diagram are shown in Eqs. (3.61) and (3.63).
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Four-point Green’s function

We now switch to evaluate the four-point Green’s function G [φ 2
c (t)φ 2

c (0)].
As before, substituting Eq. (3.57) into Eq. (3.56), but taking α = β = 2, we study
the first few terms of the expansion [see Eq. (3.56)]. We already learned that the
terms in the dominator cancel exactly those with disconnected Feynman diagrams
in the numerator. Therefore, only the terms with connected Feynman diagrams in
the numerator should be kept. The numerator of Eq. (3.56) takes the form:

∞

∑
n=0

�
λ
4!

�n 1
n!

∞�

−∞

dτ1

∞�

−∞

dτ2 · · ·
∞�

−∞

dτn (3.67)

�Tτ φ 2
c (τ)φ

2
c (0)φ

4
c (τ1)φ 4

c (τ2) · · ·φ 4
c (τn)�H(0) .

To zeroth order in λ , i.e., taking n = 0 in Eq. (3.67), the equation above reduces to
�Tτ φ 2

c (τ)φ 2
c (0)�H(0) . Using Wick’s theorem, it is expressed in terms of two-point

functions, i.e., 2[�Tτ φc(τ)φc(0)�H(0) ]2. In the representation in terms of Feynman
diagrams (see Fig. 3.9), it consists of two thin lines.

Figure 3.9: The Feynman diagrams of four-point Green’s function to the zeroth
order in λ . It reads in term of two-point Green’s functions.

To first order in λ , i.e., taking n = 1 in Eq. (3.67), becomes

�Tτ φ 2
c (τ)φ

2
c (0)�H(0) +

λ
4!

∞�

−∞

dτ1�Tτ φ 2
c (τ)φ

2
c (0)φ

4
c (τ1)�H(0) . (3.68)

The time-ordered bracket of the first order correction [the second term of Eq. (3.68)]
can be simplified using Wick’s theorem. According to the rules argued before, we
now have two possible ways for pairing:

i) the interaction term φ 4
c (τ1) pairs only with two of the operators φ 2

c (τ)φ 2
c (0),

i.e., φc(τ) and φc(0); while the other two operators pair with each other, consisting
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of a two-point time-ordered correlator �Tτ φc(τ)φc(0)�H(0) . Thus, we obtain12

48�Tτ φc(τ)φc(0)�H(0)�Tτ φc(τ)φc(τ1)�H(0)�φ 2
c (0)�H(0)�Tτ φc(τ1)φc(0)�H(0) ,

(3.69)
The corresponding Feynman diagrams of the equation above is shown in Fig. 3.10
(a). Comparing with the Feynman diagrams [Fig. 3.9] of the zeroth order contri-
bution, the interaction corrects only one of the lines.

Figure 3.10: The Feynman diagrams of four-point Green’s function to the first
order in λ , with the pairing way i) (a) and ii) (b).

ii) the interaction term pairs with each operator of φ 2
c (τ)φ 2

c (0). As a result,
the time-ordered bracket becomes

24
�
�Tτ φc(τ)φc(τ1)�H(0)�Tτ φc(τ1)φc(0)�H(0)

�2
. (3.70)

The corresponding Feynman diagram is shown in Fig. 3.10 (b). It is seen that the
interaction couples the two lines together.

Plugging Eqs. (3.69) and (3.70) into Eq. (3.68), and recovering the corre-
lators by the time-ordered Green’s functions, we obtain the four-point Green’s
function to the first order in λ :

G
�
φ 2

c (τ)φ
2
c (0)

�
= 2G (0)[φc(τ)φc(0)]+2λG (0)[φc(τ)φc(0)] (3.71)

×
∞�

−∞

dτ1G
(0)[φc(τ)φc(τ1)]�φ 2

c (0)�H(0)G (0)[φc(τ1)φc(0)]

+λ
∞�

−∞

dτ1

�
G (0)[φc(τ)φc(τ1)]G

(0)[φc(τ1)φc(0)]
�2

+O(λ 2).

12The pre-factors 48 count the number of ways that the same time-ordered pairings repeat. The
same reason for the pre-factor in Eq. (3.70).
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In summary, four-point Green’s function G [φ 2
c (τ)φ 2

c (0)] was evaluated. Com-
paring with the two-point Green’s function, there were two different pairing ways,
results in two kinds of contributions. For the first one, the interaction term only
interacts with one of the lines; while the left two operators paired with each other.
As for the second one, the interaction term interacts with both lines. As a result,
the two lines couple together. In many-particle physics, it represents particle-
particle interaction.

3.4.2 Path integral method

Green’s function perturbation theory offers a solution to compute the phase-
phase correlation functions if we consider a nonlinear system. However, the
computational complexity of the multiple-point correlators increases dramatically
with the perturbation theory. Nevertheless, the path integral method provides a
convenient way to compute the time-ordered Green’s functions. Especially for
the exponential phase-phase correlator, e.g., �eiφc(t)e−iφc(t)�Hnl in Eq. (3.13), other
methods are tough, but the path integral method can simplify the calculations.
Another aspect is that it allows obtaining some relations between two objects that
one of them is hard to compute while the other one is already known well.

As before, the task is to compute the phase-phase correlator �eiφc(t)e−iφc(0)�Hnl .
In order to be able to use path integral, one needs to switch to the imaginary time-
ordered representation, namely, �Tτeiφc(τ)e−iφc(0)�Hnl . Here, we do not present
the derivation of the path integral but directly use the method to evaluate time-
ordered correlators. The derivation can be found in details in reference [135] and
book [136].

First of all, we take the nonlinear electromagnetic environment [described by
Hnl] characterized by two canonically conjugate variables: the phase φ and the
charge Q.

Taking advantage of the path integral representation [136], the partition func-
tion Z = Tr[e−βHnl ] (β is the inverse temperature) is expressed via a functional
integral

Z =
�

Dφ(τ)
�

DQ(τ)e−s, (3.72)

where
�

Dφ(τ) [
�

DQ(τ)] means the integration over all possible functions φ(τ)
[Q(τ)]. They can be thought of as a “function of a function” acting as functional
over a continuous range of functions. The action term reads

− s =
1
h̄

β h̄�

0

dτ
�
iQ(τ)φ̇(τ)−Hnl(φc(τ),Qc(τ))

�
. (3.73)
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Then the time-ordered phase-phase correlator is expressed as [136]

�Tτeiφ(τ)e−iφ(0)�Hnl =
1
Z

�
Dφ(τ)

�
DQ(τ)eiφ(τ)e−iφ(0)e−s. (3.74)

For computing the equation above, we need a cornerstone formula: a Gaussian
integral over N complex variables u,

�
∏

i

� duidu∗i
2πi

�
exp

�
−∑

i, j
u∗i Ci ju j +∑

i
(h∗i ui +hiu∗i )

�
=

exp

�
∑
i, j

hi(C−1)i jh∗j

�

det(C)

(3.75)
where C is an N ×N matrix.

In order to further show how to use path integrals to evaluate correlation
functions, we consider a specific case which was discussed in subsection 3.3.1 but
with the approach of Green’s functions. Indeed, the linear case constitutes a good
starting point to present the generic process and technique of the calculation. As
for the nonlinear system, we will postpone the calculation to chapter 5. The basic
procedures will be the same, we just have to add the nonlinearity.

Here, we do not repeat the relevant physical things but only take care of
the mathematical calculations. The task now is to compute the local phase-phase
correlator, i.e., �eiφm(t)e−iφm(0)�HT , where HT was given in Eq. (3.24).

Using the path integral representation, the phase-phase correlator is expressed
as the functional integral

�Tτeiφm(τ)e−iφm(0)�HT =
1
Z

�
Dφn(τ)DQn(τ)eiφm(τ)e−iφm(0)e−s, (3.76)

where the partition function is
�

Dφn(τ)DQn(τ)e−s with the action,

− s =
1
h̄

β h̄�

0

dτ ∑
n

iQn(τ)
h̄
2e

φ̇n(τ)−HT . (3.77)

In order to solve Eq. (3.76), we introduce two useful relations:

φn(τ) = (1/βL )∑
q

eiqrφq, Qn(τ) = (1/βL )∑
q

eiqrQq, (3.78)

where q ≡ (k,ωn), r ≡ (n,τ) and qr ≡ kn−ωnτ; and L represents the length of
the transmission line.

Substituting the two relations above into Eq. (3.77), we obtain the action in
q-space:

− s =
1

βL h̄ ∑
q

�
ωnQ−q

h̄
2e

φq −
QqQ−q

2C0
−
�

h̄
2e

�2

k2 φqφ−q

2L

�
. (3.79)
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It is useful to rewrite the action in matrix form, namely

−s =
1

βL h̄ ∑
q

�
φ−q Q−q

�
M−1

�
φq
Qq

�

= −1
2

1
βL h̄ ∑

q

�
φ−q Q−q

�
�

( h̄
2e)

2 k2

L
h̄
2eωn

− h̄
2eωn

1
C0

��
φq
Qq

�
, (3.80)

where the matrix M reads

M =

�
( h̄

2e)
2 k2

L
h̄
2eωn

− h̄
2eωn

1
C0

�−1

=
1

ω2
n +(kω0)2

�
(2e

h̄ )
2 1

C0
−2e

h̄ ωn
2e
h̄ ωn

k2

L

�
. (3.81)

In the same way, the exponential correlators in q space are formulated as

eiφm(τ)e−iφm(0) = exp

�
1

βL ∑
q

A−qφq

�
, (3.82)

where the amplitude
A−q = eikm(e−iωnτ −1). (3.83)

Plugging Eqs. (3.80) and (3.82) into Eq. (3.76), we obtain

�Tτeiφm(τ)e−iφm(0)�HT =
1
Z

�
Dφq(τ)DQq(τ)exp

�
−1

2
1

βL h̄ ∑
q

��
φ−q Q−q

�

· M−1
�

φq
Qq

�
−
�

iA−qh̄ 0
�� φq

Qq

�
−
�

φ−q Q−q
�� −iAqh̄

0

���
,

(3.84)

where the partition function Z is rewritten in matrix form as well, namely

Z =
�

Dφq(τ)DQq(τ)exp

�
−1

2
1

βL h̄ ∑
q

�
φ−q Q−q

�
M−1

�
φq
Qq

��
. (3.85)

Combining the two equations above, and using the Gaussian integral, i.e., Eq. (3.75),
we straightforwardly obtain

�eiφm(τ)e−iφm(0)�HT = exp

�
−1

2
1

βL h̄ ∑
q

�
iA−qh̄ 0

�
M
�

−iAqh̄
0

��
. (3.86)

Substituting the matrix (3.81) into Eq. (3.86), we further get

�eiφm(τ)e−iφm(0)�HT = exp [J0(τ)] , (3.87)
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where

J0(τ) =− 1
βL

(2e)2

h̄ ∑
q

1
C0

1− cosωnτ
ω2

n +(kω0)2 . (3.88)

The next step is to compute J0(τ). At zero temperature, and for an infinite
transmission line, i.e., L → ∞, Eq. (3.88) can be rewritten as

J0(τ) = −
∞�

−∞

dk
2π

∞�

−∞

dω
2π

(2e)2

h̄
1

C0

1− cosωτ
ω2 +(kω0)2 . (3.89)

where the function f (k) consists of three integrals:

∞�

−∞

dω
2π

1
ω2 +(kω0)2 −

∞�

−∞

dω
4π

eiωτ

ω2 +(kω0)2 −
∞�

−∞

dω
4π

e−iωτ

ω2 +(kω0)2 . (3.90)

Using the residue theorem, we get

J0(τ) =
Z0

RQ

∞�

0

dk
k
(e−kω0|τ|−1). (3.91)

Finally, we need to transform the result back to the real time space, i.e., to find
J0(t). This can be directly obtained from J(τ) by just doing the Wick’s rotation,
i.e., τ = it +ηSign(t), where η = 0+ and Sign(t) is the sign function. For t > 0,
we get

J0(t) =
Z0

RQ

∞�

0

dk
k
(e−ikω0t −1)≡ Z0

RQ

∞�

0

dk
k
(e−ikt −1). (3.92)

This matches well with the result [see Eq. (3.38), taking CJ = 0] we obtained
before using the approach of Green’s functions.

Furthermore, Eq. (3.87) can be rewritten in real time space as well, namely

�eiφm(t)e−iφm(0)�HT = exp [J0(t)] . (3.93)

The result verifies Eq. (3.20). As we argued before, Eq. (3.93) is valid as long as
HT is quadratic.

In summary, the path integral method was introduced. In particular, we ap-
plied it to a linear system, i.e., an infinite transmission line. The resulting phase-
phase correlator matched well with the results obtained from Green’s function
approach.
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3.4.3 Summary
Green’s function perturbation theory and the path integral method were intro-

duced to compute the phase-phase correlator in a (nonlinear) system. We briefly
explained the ideas of the theory and method, as well as introduced the Feynman
diagrams. Using perturbation theory, we may choose the nonliner term (interac-
tion) as the perturbation, and then sum up the perturbation to the leading order
(and sometimes all the orders). With the help of the path integral, the phase-phase
correlators were expressed by functional integrals. Moreover, we used the path
integral method to verify the simplification of exponential phase-phase correlator
with a quadratic Hamiltonian.

So far, we have introduced all the needed elements as well as the adopted
theories and methods. In the next two chapters, we will use them to analyze
special problems. In particular, in chapter 4 we will deal with a weakly nonlinear
environment. The strongly nonlinear regime will be studied in chapter 5.
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CHAPTER 4
Detecting photon-photon interactions
in a transmission line side-coupled
with a weakly anharmonic oscillator

A local interaction between photons can be engineered by coupling a nonlin-
ear system to a transmission line. In the framework of superconducting circuits,
the transmission line can be conveniently formed from a chain of Josephson junc-
tions; while the nonlinearity is generated by side-coupling this chain to a Cooper
pair box. We propose to probe the resulting photon-photon interactions via their
effect on the current-voltage characteristic of a voltage-biased Josephson junc-
tion connected to the transmission line. This chapter is organized as follows. In
Sec. 4.1, we introduce the Hamiltonian that describe the environment seen by the
probe junction. The current-voltage characteristic of the probe junction is char-
acterized by the dynamical Coulomb blockade theory. Then, we calculate the
current-voltage characteristic in two different regimes, respectively. 1) the linear
regime in Sec. 4.2: considering the Cooper pair box to be in the harmonic regime,
the environment is thus described by a quadratic Hamiltonian. 2) the nonlinear
regime in Sec. 4.3: considering the Cooper pair box to be in the weak anharmonic
regime, we include a nonlinear correction and study the effect of the resulting
photon-photon interaction on the current-voltage characteristic. Finally, we sum-
marize our results in Sec. 4.4.

4.1 The studied circuit

We are interested in the interaction of photons propagating in a nonlinear
electromagnetic environment. In particular, we study a transmission line, consist-
ing of a chain of Josephson junctions, to which a Cooper pair box acting as the
nonlinear element is side-coupled at node n= 0 as shown in Fig. 4.1 (dashed box).
We assume weak coupling, namely the coupling capacitance, Cc, is much smaller

65
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than the characteristic capacitances of the chain and the nonlinear element.

Figure 4.1: The system consists of a transmission line that is capacitively coupled
(capacitor Cc) to a Cooper pair box, shown inside the dashed box. The transmis-
sion line is realized using a chain of Josephson junctions with Josephson energy
EJ much larger than the charging energy EC. The system is probed at node m
using another Josephson junction (outside the dashed box) whose current-voltage
characteristic is sensitive to the properties of the system.

The Hamiltonian of the system is, thus, assembled from three parts,

H = HT +HJ +Hc, (4.1)

where HT is the Hamiltonian of the transmission line, HJ is the Hamiltonian of
the side-coupled Josephson junction, and Hc is the coupling Hamiltonian.

As we argued in Sec. 2.3, a transmission line with large impedance can be
realized using a chain of Josephson junctions in the limit where the Josephson en-
ergy EJ is much larger than the charging energy EC. We further consider the case
where the capacitance to the ground C0 is much larger than the mutual capacitance
C. Then, for frequencies much smaller than the plasma frequency of Josephson
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junctions in the chain, the Hamiltonian takes the simple form, namely Eq. (3.24).
For ease of reference, we write it down again.

HT = ∑
n

�
Q2

n
2C0

+

�
h̄
2e

�2 (φn −φn+1)
2

2L

�
, (4.2)

where the inductance is L = h̄2/(4e2EJ). At frequencies ω � ω0, where ω0 ≡
1/
√

LC0, the transmission line has a linear spectrum (see Fig. 2.13), correspond-
ing to a frequency-independent impedance, i.e., Z(ω) = Z0. Such impedance pro-
vides a good background for studying the scattering effect when the side-coupling
element is involved.

The side-coupled Cooper pair box with Josephson energy Es
J is described by

the Hamiltonian [see Eq. (2.5)]

HJ =
(Qδ +CgVg)

2

2CΣ
−Es

J cosφδ , (4.3)

where Qδ and φδ are the conjugate charge and phase operators at node δ (see
Fig. 4.1). Furthermore, Cg and Vg are the gate capacitance and gate voltage, re-
spectively, and CΣ = Cs +Cg is the total capacitance of the side-coupled Cooper
pair box.

Finally, we turn to the coupling Hamiltonian Hc. When the coupling capaci-
tance is small, Cc �C0,CΣ, the coupling Hamiltonian reads1

Hc =
Cc

C0CΣ
Q0(Qδ +CgVg), (4.4)

where we used the fact that for C �C0 the coupling is local2, i.e., the side-coupled
Josephson junction couples only to the charge Q0 at n = 0. The Hamiltonian H
fully describes our nonlinear system.

As a next step, we introduce the probe circuit used to characterize the photon-
photon interactions generated by the nonlinear system. The probe circuit consists
of yet another Josephson junction, with Josephson energy Ep

J and in series with
a voltage source as shown in Fig. 4.1, coupled to the transmission line at node
m [129, 137]. The current-voltage characteristic of the probe Josephson junction
is influenced by the correlations of the phase φm(t) at node m, correlations that
depend on the fluctuations in the nonlinear environment. The I-V characteristic
may, thus, be used to characterize the photon-photon interactions in the nonlinear
system.

1More details are shown in Appendix A.
2This can be seen from the Eq. (A.20).
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In particular, using dynamical Coulomb blockade theory introduced in chap-
ter 3, it can be shown that at zero temperature the current flowing through the
probe Josephson junction takes the form [see Eq. (3.17)]

I(V ) =
πe
�
Ep

J
�2

h̄
P(2eV ), (4.5)

for voltages eV < 2Δ, where Δ is the superconducting gap, and

P(E) =
1

2π h̄

∞�

−∞

dt eiEt/h̄�eiφm(t)e−iφm(0)�Henv (4.6)

is the probability of the probe Josephson junction to emit energy E to its envi-
ronment, described by the Hamiltonian Henv. In general, the environment seen
by the probe junction consists of both the nonlinear system and the capacitance
Cp. However, the Hamiltonian of the environment in Eq. (4.6) may be replaced
by the Hamiltonian H of the nonlinear system we want to characterize, if the ca-
pacitance of the probe Josephson junction is sufficiently small. In particular, the
probe capacitance is side-coupled (at node m, see Fig. 4.1) to the chain, so its
charging energy modifies the first term of Eq. (4.2) to Q2

n/[2(C0 + δnmCp)]. As
Cp �C0, we have Henv = H. Indeed, this condition guarantees that we are in the
photonic regime of the dynamical Coulomb blockade. Our task is then to compute
the phase correlator �eiφm(t)e−iφm(0)�H .

4.2 The linear regime

As a first step, we will consider the system in the linear regime, where pho-
tons do not interact. That is, we assume Es

J � e2/(2CΣ) and approximate the
junction Hamiltonian HJ in Eq. (4.3) by

H(0)
J =

(Qδ +CgVg)
2

2CΣ
+

Es
J

2
φ 2

δ . (4.7)

In this section, we study the behavior of this simplified system described by
H(0) = HT +H(0)

J +Hc to set the basis for investigating interaction effects, the
main focus of our work, in the following section. In this regime, the gate voltage
Vg can be gauged out of the Hamiltonian, and the side-coupled circuit behaves as
an harmonic oscillator with plasma frequency ωs ≡ (2e/h̄)

�
Es

J/CΣ. We will as-
sume that ωs � ω0, associated with a linear spectrum and frequency-independent
impedance.
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As the system is non-interacting, the system Hamiltonian H(0) is harmonic,
the phase-phase correlator �eiφm(t)e−iφm(0)�H(0) can be simplified. Using Eq. (3.20),
it reduces as eJ0(t) with J0(t) ≡ �[φm(t)−φm(0)]φm(0)�H(0) . To evaluate the two-
point correlator J0(t), we use the retarded Green’s function referred in Sec. 3.3.
The relation between the two was easily written in frequency space [see Eq. (3.22)].
As a result, we need to first evaluate the local Green’s function G(0)

R (φm,φm;ω).
This can be done by deriving its equation of motion and using scattering theory.

4.2.1 Two-point Green’s function

Taking the same procedures as we did on the case of a pure transmission line
(see details in subsection 3.3.1), we derived the coupled equations of motion for
G(0)

R (φn,φm;ω) and G(0)
R (φδ ,φm;ω):

ω2G(0)
R (φn,φm;ω)−ω2

0

�
1+

C2
c

C0CΣ
δn0

�
(4.8)

×
�
2G(0)

R (φn,φm;ω)−G(0)
R (φn+1,φm;ω)−G(0)

R (φn−1,φm;ω)
�

−Cc

C0
ω2

s G(0)
R (φδ ,φm;ω)δn0 +

�
2e
h̄

�2 1
C0

δnm = 0,

Cc

CΣ
ω2

0

�
2G(0)

R (φ0,φm;ω)−G(0)
R (φ1,φm;ω)−G(0)

R (φ−1,φm;ω)
�

(4.9)

=
�
ω2 −ω2

s
�

G(0)
R (φδ ,φm;ω) .

Combining Eqs. (4.8) and (4.9) then yields the equation for G(0)
R (φn,φm;ω),

ω2G(0)
R (φn,φm;ω)−ω2

0

�
1+

C2
c

C0CΣ

ω2

ω2−ω2
s

δn0

��
2G(0)

R (φn,φm;ω)

−G(0)
R (φn+1,φm;ω)−G(0)

R (φn−1,φm;ω)
�
=−

�
2e
h̄

�2 1
C0

δnm. (4.10)

In absence of the side-coupling, i.e., Cc = 0, Eq. (4.10) recovers Eq. (3.30) (taking
CJ = 0, namely neglecting the charging effect). It describes photons propagating
freely along the transmission line. At low frequencies, i.e., ω � min[ω0,ωp]

3. the
solution is G(0)

R (φn,φm;ω) = i[π/(h̄ω)](Z0/RQ)eik|n−m|.
When the side-coupling is involved, it leads to scattering of photons at the

node n = 0. The transport processes are simply shown in Fig. 4.2. Then, for

3It corresponds to the linear dispersion, which was argued in chapter 2
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Figure 4.2: Photons are emitted from the source at node n = m, some of them
propagate in the right direction; while others propagate in the left direction. The
side-coupling “barrier” leads to the reflection and transition of photons at the node
n = 0. The process can be mathematically described by Eq. (4.11).

m > 0, the solution may be written in the form

G(0)
R (φn,φm;ω) = AeiknΘ(n−m)+B

�
e−ikn + r(ω)eikn

�
Θ(n−m)Θ(n)

+Bt(ω)e−iknΘ(−n), (4.11)

where the reflection and transmission coefficients, r(ω) and t(ω), and the ampli-
tudes A and B have to be determined using the boundary conditions at n = 0 and
n = m.

One finds t(ω) = 1+ r(ω) with r(ω) given as,

r(ω) =−
�

1−2i
ω0

ω

�
1+

C0CΣ
C2

c

ω2 −ωs
2

ω2

��−1

. (4.12)

Under the conditions specified above, C0CΣ/C2
c � 1 and ωs � ω0, the reflection

coefficient has a narrow resonance at ω = ωs with width

Γ =
1
4

C2
c

C0CΣ

ωs

ω0
ωs. (4.13)

Close to the resonance, we can approximate Eq. (4.12) as r(ω) =−1/[1− i(ω −
ωs)/Γ].

Furthermore,

B = i
π

h̄ω
Z0

RQ
eikm, (4.14)

A = B
�
e−2ikm + r(ω)

�
. (4.15)
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The result is obtained by substituting Eqs. (4.12), (4.14), and (4.15) into Eq. (4.11).
Generalizing to arbitrary m, we find

G(0)
R (φn,φm;ω) = i

π
h̄ω

Z0

RQ

�
eik|n−m|+ r(ω)eik(|n|+|m|)

�
. (4.16)

In particular, the local Green’s function needed to evaluate P(E) reads

G(0)
R (φm,φm;ω) = i

π
h̄ω

Z0

RQ

�
1+ r(ω)e2ik|m|

�
. (4.17)

While this is the only Green’s function needed in the linear case, more Green’s
functions will be required in the non-linear case. Using Eq. (4.9), we obtain

G(0)
R (φδ ,φm;ω) =−2

π
h̄ω

1
RQCcω

r(ω)eik|m|. (4.18)

Similarly, the Green’s functions G(0)
R (φm,φδ ;ω) and G(0)

R (φδ ,φδ ;ω) obey cou-
pled equations of motion. One may show that G(0)

R (φm,φδ ;ω) = G(0)
R (φδ ,φm;ω),

whereas the equation of motion for G(0)
R (φδ ,φδ ;ω) is derived is the same way.

�
ω2 −ω2

s
�

G(0)
R (φδ ,φδ ;ω) − Cc

CΣ
ω2

0

�
2G(0)

R (φ0,φδ ;ω)−G(0)
R (φ1,φδ ;ω)

−G(0)
R (φ−1,φδ ;ω)

�
=−

�
2e
h̄

�2 1
CΣ

. (4.19)

Using Eq. (4.18), one obtains

G(0)
R (φδ ,φδ ;ω) =−4i

π
h̄ω

1
RQZ0(Ccω)2 r(ω). (4.20)

Using the explicit expression for r(ω), Eq. (4.20) may be rewritten as

G(0)
R (φδ ,φδ ;ω) = − 2π

h̄RQCΣ

1

ω2 −ω2
s + i C2

c
2C0CΣ

ω2

ω0
(ω −2iω0)

. (4.21)

Finally, using the fact that C2
c/(C0CΣ)� 1, we approximate

G(0)
R (φδ ,φδ ;ω)�− 2π

h̄RQCΣ

1
ω2 − (ωs − iΓ)2 . (4.22)

This result also allows us to evaluate

�φ 2
δ �H(0) =

h̄
π

∞�

0

dω Im
�
G(0)

R (φδ ,φδ ;ω)
�
=

h̄ωs

2Es
J
. (4.23)
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4.2.2 Phase-phase correlator

Using the local Green’s function (4.17) and the relation Eq. (3.23), one ob-
tains

J(t) =
2

RQ

∞�

0

dω
ω

Re [Z(ω)] (e−iωt −1), (4.24)

as expected from P(E)-theory, with the impedance

Z(ω) =
Z0

2

�
1+ r(ω)e2i ω

ω0
m
�
. (4.25)

The prefactor 1/2 corresponds to the fact that the probe junction ‘sees’ an envi-
ronment consisting of two half-infinite transmission lines. As shown in Fig. 4.3,
the impedance is unaffected by the side-coupled Josephson junction as r(ω)→ 0
when it is far from the resonance at ωs. In contrast, at the resonance, photons are
strongly scattered. In particular when the probe and the scatterer are coupled to
the same node (m = 0), r(ωs) = −1 so that transport is completely blocked due
to destructive interference. Changing the distance between the probe and the scat-
terer modulates the phase difference between incoming and reflected photons and,
thus, creates an interference pattern.

Figure 4.3: The reflection probability (left) and the impedance (right) depend of
the frequency when placed at m = 0. The parameters are Γ/ωs = 0.02. At the
resonance frequency ωs, the reflection probability is one. Photons are completely
blocked due to destructive interference.

4.2.3 Current-voltage characteristic

To compute the current-voltage characteristic, we need to determine P(E).
This can be done numerically using the integral equation [see Eq. (3.42)] as be-
fore.
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The resulting current-voltage characteristic is plotted in Fig. 4.4 for several
values of the impedance of the transmission line. The characteristic current is
given by

I0 =
πe(Ep

J )
2

h̄2ωs

Z0

RQ
. (4.26)

The background current decreases with increasing voltage. In addition, there is a
clear resonance feature at 2eV = h̄ωs.

Figure 4.4: The linear regime: current-voltage characteristic of the probe
Josephson junction when placed at m = 0. The parameters are Γ/ωs = 0.02,
Ecut-off/(h̄ωs) = 20, and different Z0 (Z0/RQ = 0.01, 0.1, 0.2). The side-coupled
Josephson junction causes a resonance at 2eV = h̄ωs. In the limit Z0/RQ → 0, the
current vanishes at the resonance.

This result can be understood as follows. The starting point is to recognize
that when a bias voltage V is applied, Cooper pairs can flow through the probe
junction provided that they can release their energy by emitting one or several
photons into the environment.

First, let us concentrate on the regime Z0/RQ � 1. In that case, multi-photon
processes are suppressed, and we can expand eJ(t) � 1+ J(t). Thus, the current
is proportional to the Fourier transform of J(t) at frequency 2eV . It is straightfor-
ward to show that for a constant impedance this yields a current that decays with
increasing voltage as I(V ) ∝ 1/V . This is apparent in Fig. 3.5, where we consider
the case of a pure transmission line with a constant impedance. On top of this,
the resonance in the impedance at ωs due to the side-coupled Josephson junction
leads to a resonance in the current-voltage characteristic at 2eV = h̄ωs. Namely,
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the correction to the current δ I1(δV ) at voltages V = h̄ωs/(2e) + δV takes the
form

δ I1(δV )

I0
=

−Γ2

(2eδV )2 +Γ2

�
cosα − 2eδV

Γ
sinα

�
, (4.27)

where α = 2mωs/ω0. This leads to a complete extinction of the current at δV = 0
(at the one photon level) when the probe is coupled to the same node as the side-
coupled Josephson junction (m = 0). The shape of the resonance for different α
is shown in Fig. 4.5; note the sensitivity to the placement of the probe produced
by interference effects. The width of the resonance is given by W1 = Γ/e where Γ
is given in Eq. (4.13).

Figure 4.5: The resonance in the current-voltage characteristic for different val-
ues of the distance between the side-coupled Josephson junction and the probe
Josephson junction, α = 2mωs/ω0. Results in the single-photon, linear regime
are plotted [Eq. (4.27)] with Γ/ωs = 0.02. Note the effect of interference on the
shape of the resonance.

Let us now turn to multi-photon processes corresponding to higher order
terms in J(t). These processes modify the resonance at 2eV = h̄ωs. In particular,
while the scattering from the side-coupled Josephson junction may completely
block the single-photon process at that voltage, this is not the case for the multi-
photon processes: at most one photon can be on resonance, whereas the other
photons will be off resonance and therefore propagate freely. Thus, the multi-
photon processes lead to a finite current at the resonance. As an n-photon pro-
cess yields a current contribution proportional to (Z0/RQ)

n, the resonant structure
weakens with increasing Z0/RQ due to the increasing importance of multi-photon
processes.
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In addition, one might expect that multi-photon processes lead to higher order
resonances at voltages 2eV = nh̄ωs (n ≥ 2). We find, however, that this is not the
case. While 2eV = nh̄ωs is indeed a resonance condition for an n-photon process,
the non-resonant background from the entire frequency range is large enough to
completely overwhelm that contribution.

Thus, in the linear regime where photons do not interact, the side-coupled
Josephson junction leads to a single resonance in the current-voltage characteristic
at 2eV = h̄ωs. As we will show in next section, additional features at 2eV = nh̄ωs
with n ≥ 2 are a signature of photon-photon interactions.

4.3 The weakly nonlinear regime

To investigate photon-photon interactions, we now take into account the non-
linearity of the side-coupled Josephson junction. In particular, we concentrate on
the case of weak nonlinearity in the regime Es

J � e2/(2CΣ). To do so, we expand
Eq. (4.3) up to fourth order in φδ ,

HJ ≈ H(0)
J +V, (4.28)

where

V =−Es
J

24
φ 4

δ . (4.29)

In the following, we treat V as a perturbation. Since we are considering a quartic
interaction, the results of the perturbation theory developed in Sec. 3.4 can be
used. The only difference is that the interaction −(Es

J/24)φ 4
δ originates from the

side-coupling element.
As the Hamiltonian Hwnl

.
= H(0) +V describes an interacting system, we

can no longer write a closed form expression for the phase-phase correlator in
Eq. (4.6) in terms of �φn(t)φm(0)�Hwnl . Instead we expand the correlator in powers
of φm [see Eq. (3.48)]. As we argued in Sec. 3.4, only the even-point correlators
contribute if the weakly nonlinear Hamiltonian has symmetry in phase and charge.
In this regime, it is clearly seen that Hwnl satisfies the symmetry: φn → −φn,
Qn → −Qn, and Qδ → −Qδ (note that the gate voltage does not play a role in
weakly nonlinear regime).

Here, we concentrate on only the two-point phase-phase correlator and four-
point phase-phase correlators. The former correlator represents single photon pro-
cesses, whereas the latter ones correspond to two photon processes. As before,
we still use Green’s functions to evaluate the correlators. In addition to the two-
point Green’s function GR(φm,φm;ω), we now also need the four-point Green’s
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functions GR(φ 2
m,φ 2

m;ω), GR(φ 3
m,φm;ω), and GR(φm,φ 3

m;ω). To be able to facili-
tate doing perturbation theory in the interaction V , we switch to imaginary-time-
ordered or Matsubara Green’s functions, G .

4.3.1 Two-point Green’s function
Let us first evaluate the two-point Green’s function G [φn(τ)φm(0)], corre-

sponding to single photon processes.
Consider only first order in the perturbation V and using Wick’s theorem

yields

G [φn(τ)φm(0)] � G (0) [φn(τ)φm(0)] (4.30)

+

∞�

0

dτ1 G (0) [φn(τ)φδ (τ1)]
Es

J
2
�φ 2

δ �H(0)G (0) [φδ (τ1)φm(0)] .

After Fourier transformation and analytical continuation, one obtains the corre-
sponding retarded Green’s function,

GR (φn,φm;ω)� G(0)
R (φn,φm;ω)+G(0)

R (φn,φδ ;ω)
Es

J
2
�φ 2

δ �H(0)G
(0)
R (φδ ,φm;ω).

(4.31)
While far from the resonance at ω = ωs the second term is much smaller than
the first one, this is no longer true close to the resonance. Thus, this first order
expansion is not sufficient to describe the modifications to the resonance due to
the perturbation. According to the discussion in Sec. 3.4, it is possible to go
beyond the first order expansion and sum up the perturbation series to all orders
in the interactions by realizing that Es

J�φ 2
δ �H(0)/2 is a local self-energy, Σ(φδ ,φδ ).

Thus, one obtains the Dyson’s equation

GR (φn,φm;ω) = G(0)
R (φn,φm;ω)+G(0)

R (φn,φδ ;ω)
Es

J
2
�φ 2

δ �H(0)GR (φδ ,φm;ω) ,

(4.32)
A similar equation can be written for the Green’s function GR (φδ ,φm;ω). Namely,

GR (φδ ,φm;ω) = G(0)
R (φδ ,φm;ω)+G(0)

R (φδ ,φδ ;ω)
Es

J
2
�φ 2

δ �H(0)GR (φδ ,φm;ω) .

(4.33)
The representation in terms of Feynman diagrams is shown in Fig. 4.6.

Combining Eqs. (4.32) and (4.33), we obtain the result

GR (φn,φm;ω) = G(0)
R (φn,φm;ω)+

G(0)
R (φn,φδ ;ω)

Es
J

2 �φ 2
δ �H(0)G

(0)
R (φδ ,φm;ω)

1− Es
J

2 �φ 2
δ �H(0)G

(0)
R (φδ ,φδ ;ω)

.

(4.34)
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Figure 4.6: Dyson equation for the two-point Green’s function. The non-linearity
results in a self energy, Σ = Es

J�φ 2
δ �H(0)/2.

Then, using the Green’s functions G(0)
R of the linear problem derived in Sec. 4.2,

we find that the local Green’s function preserves its form though with a shifted
resonance frequency ω �

s. Namely,

GR (φm,φm;ω) = i
π
ω

Z0

RQ

�
1+ r�(ω)e2i ω

ω0
m
�
, (4.35)

where

r�(ω) =−
�

1−2i
ω0

ω

�
1+

C0CΣ
C2

c

ω2 −ω �
s
2

ω2

��−1

(4.36)

with ω �
s ≈ ωs[1−ωs/(8Es

J)]. In the same way, we can show that this is true for
all two-point Green’s functions. As we argued in Eq. (2.11), δωs = ω2

s /(8Es
J)�

ωs coincides with the shift of the excitation energy between the ground and first
excited states of the Hamiltonian (4.28).

4.3.2 Four-point Green’s function
We turn to the four-point Green’s functions, corresponding to two-photon

processes. Using perturbation theory, we may express them in terms of the two-
point Green’s functions. As we saw in Sec. 3.4, it is essential to sum up the per-
turbation series to all orders in V to obtain these two-point Green’s functions. By
contrast, we will keep only the lowest order term in V accounting for interactions
between the two photons. Then, the four-point Green’s function GR

�
φ 2

n ,φ 2
m;ω

�

has two contributions: the first one describes the independent propagation of the
two photons, whereas the second one describes the interaction effects. More pre-
cisely, the imaginary-time-ordered four-point Green’s function may be written as
G
�
φ 2

n (τ)φ 2
m(0)

�
= 2G 2 [φn(τ)φm(0)]+δG int �φ 2

n (τ)φ 2
m(0)

�
with

δG int �φ 2
n (τ)φ

2
m(0)

�
� Es

J

∞�

0

dτ1 {G [φn(τ)φδ (τ1)]G [φδ (τ1)φm(0)]}2 . (4.37)
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Figure 4.7: The Feynman diagrams for the interaction correction to the four-
point Green’s functions. (a) δG int �φ 2

n (τ)φ 2
m(0)

�
. (b) G

�
φ 3

n (τ)φm(0)
�

and
G
�
φ 3

n (τ)φm(0)
�
.

The corresponding Feynman diagram is shown in Fig. 4.7(a).
Taking the Fourier transform upon Eq. (4.37) and then performing the an-

alytical continuation from Matsubara to real frequencies, iων → ω + i0+, and
using standard methods of contour integration, we obtain the four-point retarded
Green’s function δGint

R
�
φ 2

m,φ 2
m;ω

�
, which is needed to further compute the in-

teraction contribution to the current-voltage characteristic. As a result, the local
retarded Green’s function at zero temperature takes the form δGint

R
�
φ 2

m,φ 2
m;ω

�
�

(Es
J/π2) f 2(ω), where

f (ω) = ∑
±

∞�

0

dω1 Im [GR(φm,φδ ;ω1)]GR(φm,φδ ;ω±ω1). (4.38)

The leading order term for the other four-point Green’s functions GR
�
φ 3

n ,φm;ω
�

and GR
�
φn,φ 3

m;ω
�

is linear in Es
J . In particular, we find the local Green’s func-

tions

GR(φ 3
m,φm;ω) � Es

J
π2 GR(φδ ,φm;ω)

∞�

0

dω1

∞�

0

dω2 Im [GR(φm,φδ ;ω1)] (4.39)

×Im [GR(φm,φδ ;ω2)] ∑
s1,s2=±

GR(φm,φδ ;ω + s1ω1 + s2ω2)

and GR(φm,φ 3
m;ω) = GR(φ 3

m,φm;ω). The Feynman diagrams for the correspond-
ing time-ordered Green’s functions are shown in Fig. 4.7(b).
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4.3.3 Phase-phase correlator

With the above results we can now write the phase-phase correlator needed
to compute P(E) in the following form

�eiφm(t)eφm(0)�Hwnl � eJ�(t) +δJint(t), (4.40)

with

J�(t) =
h̄
π

∞�

0

dω Im [GR(φm,φm;ω)] (e−iωt −1), (4.41)

and the interaction part is derived with the help of the relation (3.23),

δJint(t) � h̄
π

∞�

0

dω
�1

4
Im
�
δGint

R (φ 2
m,φ

2
m;ω)

�
(4.42)

−1
3

Im
�
GR(φ 3

m,φm;ω)
��

(e−iωt −1).

4.3.4 Current-voltage characteristic

Using Eq. (4.40) to compute P(E), we obtain the current

I(V ) � e
h̄

�
Ep

J
�2
� 1

2h̄

∞�

−∞

dt exp
�
i2eVt + J�(t)

�
(4.43)

+
1
4

Im
�
δGint

R (φ 2
m,φ

2
m;2eV )

�
− 1

3
Im
�
GR(φ 3

m,φm;2eV )
��

.

The first line describes the resonant structure discussed in Sec. 4.2. Here the only
effect of the non-linearity is to shift the resonance from ωs to ω �

s. The second line
describes interaction effects between two photons. The current-voltage character-
istic including these effects is shown in Fig. 4.8: it displays additional structure at
2eV = 2ω �

s.
The new peak at 2eV = 2h̄ω �

s comes from the contribution δGint
R (φ 2

m,φ 2
m;2eV ).

This contribution describes a process in which a Cooper pair tunnels through
the probe Josephson junction emitting two photons. When both photons are
on resonance with the side-coupled Josephson junction, they interact strongly.
This happens when each photon takes away half of the energy of the Cooper
pair, ω = eV/h̄ � ω �

s. The resulting correction to the current is obtained using
Eq. (4.37). As shown in Appendix C, for voltages V = h̄ω �

s/e+ δV , it takes the
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Figure 4.8: The weakly nonlinear regime: current-voltage characteristic of the
probe Josephson junction when placed at m = 0. The parameters are h̄ω �

s/Es
J =

0.9, Γ/ω �
s = 0.02, Ecut-off/(h̄ω �

s) = 20, and Z0/RQ = 0.2. Photon-photon interac-
tions lead to a second resonant feature at 2eV = 2h̄ω �

s. A zoom on that feature
with amplitude δ I2/I0 ∝ (Z0/RQ)(h̄ω �

s/Es
J) is shown in the inset.

form

δ I2(δV ) = −I0
π
32

Z0

RQ

h̄ω �
s

Es
J

Γ2

[(eδV )2 +Γ2]2
(4.44)

×
�

ΓeδV cos(2α �)− 1
2
[(eδV )2 −Γ2]sin(2α �)

�
,

where α � = 2mω �
s/ω0.

The characteristic amplitude A2 of the change in current is, thus, much smaller
than I0 or the single-photon resonant structure δ I1,

A2 =
π
64

Z0

RQ

h̄ω �
s

Es
J

I0 � I0. (4.45)

Here, the suppression factor Z0/RQ is due to the fact that it is a two-photon pro-
cess, whereas the suppression factor h̄ω �

s/Es
J is due to the fact that it is an interac-

tion effect. Notice that the widths of the resonances at 2eV = h̄ω �
s and 2eV = 2h̄ω �

s
are the same. The dependence of the shape of the second resonance on the dis-
tance ∝ α � between the side-coupled Josephson junction and the probe Josephson
junction is shown in Fig. 4.9.

We finally consider the current contribution stemming from GR(φ 3
m,φm;ω).

While it is of the same order as the current contribution from δGint
R (φ 2

m,φ 2
m;ω), i.e.,
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Figure 4.9: The second resonance in the current-voltage characteristic for different
values of the distance between the side-coupled Josephson junction and the probe
Josephson junction, α � = 2mω �

s/ω0. Results are plotted near 2eV = 2h̄ω �
s in the

two-photon, nonlinear regime [Eq. (4.44)] with Γ/ω �
s = 0.02.

it is proportional to (Z0/RQ)(ω �
s/Es

J)I0, in this case it is impossible to fulfill the
resonance condition simultaneously for all the photons involved. Therefore, this
contribution acquires an additional suppression factor Γ/ω �

s, and we can neglect
it.

The main interaction effect is, thus, the appearance of a resonance at 2eV =
2h̄ω �

s due to two-photon processes. Higher order processes are expected to lead
to additional features at 2eV = nh̄ω �

s (n ≥ 3). However, their amplitude decreases
rapidly with increasing n and may be estimated as An ∼ [(Z0/RQ)(h̄ω �

s/Es
J)]

n−1I0 �
A2.

Taking typical parameters for realistic system [90–92], we may estimate the
the amplitude A2. To do so, we needs the characteristic current I0 according to
Eq. (4.45). Furthermore, the characteristic current is restricted to be below than
the minimum of the critical currents, including Ic (the chain junctions), Is

c (the
side-coupling junction), and Ip

c (the probe junction). We then examine these three
current scales, respectively.

For Ic: as we argued in Sec. 2.3, the Josephson energy EJ and the mutual ca-
pacitance C of a junction depend mainly on the junction area and, thus, cannot be
varied independently; and the capacitance to ground C0 depends on the geometry
and is therefore tunable. As a result, the impedance of the transmission line reads
Z0/RQ = 1/(2π)

�
C/C0(Ityp/Ic) with the current Ityp is estimated on the order of
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tens of nA. In the regime C0 � C, the requirement that the impedance Z0 ≤ RQ
4

limits the critical current, thus one may have Ic ∼ Ityp ∼ 10 nA.
For Is

c: the critical current of the side-coupled junction should be smaller than
the chain junction, i.e., Is

c � Ic due to the two facts: i) the linear spectrum requires
ωs � ω0, namely,

�
Es

JEs
cΣ �

�
EJEc0 . ii) weakly nonlinear regime for the side-

coupled junction, and linear regime for the Josephson junction chain. As a result,
Es

J/Es
cΣ � EJ/Ec0 .
For Ip

c : we have I0/Ip
c = (Z0/RQ)(E

p
J /Es

J)(E
s
J/h̄ωs)≤ 1[see Eq. (4.26)]. With

the conditions Z0 ≤ RQ and Es
J � ωs, the probe Josephson energy Ep

J must be
smaller than the side-coupling junction Es

J , therefore Ip
c < Is

c .
With the analyses above, it is reasonable to estimate I0 ≤ Ip

c ∼ 100 pA and
Is
c ∼ 1 nA while Ic ∼ 10 nA. Finally, we may estimate the amplitude A2 as ∼ 1 pA

using Eq. (4.45). This is well within the reach of current experimental measuring
techniques. In the opposite regime C � C0, where one could use junctions with
a much larger critical current. We may then estimate the critical currents as, Ic ∼
1 µA, Is

c ∼ 100 nA, and I0 ≤ Ip
c ∼ 10 nA. As a consequence, the amplitude A2 may

approach ∼ 100 pA. In this regime, the coupling between the chain and the side-
coupling junction is no local. This would make the theoretical analysis somewhat
more complicated, but we expect that the results would not change qualitatively.

4.4 Summary
We have shown that the dc current-voltage characteristic of a Josephson junc-

tion provides a sensitive probe to study photon-photon interactions in a nonlinear
environment. In particular, we investigated the case of a transmission line side-
coupled to another Josephson junction whose non-linearity leads to local photon-
photon interactions. Scattering of individual photons by the side-coupled Joseph-
son junction results in a resonance feature in the current-voltage characteristic of
the probe Josephson junction at 2eV = h̄ω �

s, where ω �
s is the plasma frequency of

the side-coupled Josephson junction. By contrast, the interactions due to the non-
linearity yield an additional resonance feature at 2eV = 2h̄ω �

s due to two-photon
processes. Such a feature is thus a clear indication of photon-photon interactions.
The current amplitude of the feature is estimated on the order of pA which is well
within the reach of current experimental measuring techniques. While we con-
centrated here on the regime of a weak non-linearity, it will be interesting to see
how these features are modified in the strongly nonlinear regime. This will be
discussed in chapter 5.

4In the regime C � C0, Josephson junction chain transforms to the insulating state when the
impedance larger than quantum resistance [138, 139].



CHAPTER 5
Detecting photon-photon interactions
in a transmission line side-coupled
with a charge qubit

In this chapter, we still focus on detecting the photon-photon interaction cre-
ated by a Cooper pair box in a transmission line. While the last chapter concen-
trated on the weakly nonlinear regime, we now switch to the strongly nonlinear
regime. In this regime, the Cooper pair box provides a physical realization of a
charge qubit. The system can be described using a spin-boson model that a qubit
(spin) is linearly coupled with the travelling photons (boson). This chapter is or-
ganized as follows. We first introduce the spin-boson Hamiltonian that describes
the strongly nonlinear system in Sec. 5.1. Then, the following task is to compute
phase-phase correlators1 in Sec. 5.2. To do so, we apply two kinds of methods: the
first one uses Green’s function perturbation theory to calculate the two-point cor-
relator as well as the four-point correlator; while the second one uses path integral
method to compute the entire phase-phase correlator. Both the resulting phase-
phase correlators are expressed in terms of spin-spin correlators, which represents
the influence of the side-coupled qubit. Next, spin-spin correlators are evaluated
in Sec. 5.3. This can be mapped to the problem of a two-level system coupled
to an ohmic bosonic bath. In particular, Bloch equations are used to compute the
two-point spin-spin correlator. Furthermore, the current-voltage characteristic of
the probe junction is discussed in Sec. 5.4. Finally, we summarize in Sec. 5.5.

5.1 Hamiltonian of the system
We consider the same superconducting circuit as in chapter 4 (see Fig. 4.1).

The system Hamiltonian H was addressed in Eq. (4.1). It consists of the transmis-
sion line Hamiltonian HT , the side-coupled Cooper pair box Hamiltonian HJ , and

1The same as in the weakly nonlinear regime. See details in chapter 4.

83
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the coupling Hamiltonian Hc. Before the following discussion, it should be men-
tioned that we are making the same approximations2 as in chapter 4, except in the
case of the nonlinear regime. In this chapter, we consider the strongly nonlinear
regime.

Firstly, the transmission line Hamiltonian takes the form (4.2), namely

HT = ∑
n

�
Q2

n
2C0

+

�
h̄
2e

�2 (φn −φn+1)
2

2L

�
. (5.1)

Next, for the side-coupled Cooper pair box, we are interested in the strongly non-
linear regime, i.e. when the charging energy e2/2CΣ dominates over the Josephson
coupling energy Es

J . In this regime, the Cooper pair box is effectively reduced to
a two-state quantum system (a charge qubit) when the dimensionless gate charge
CgVg/2e is close to a half-integer3. Correspondingly, the Cooper pair box Hamil-
tonian HJ is replaced by the charge qubit Hamiltonian (2.18). Specifically, at the
degeneracy points, e.g., CgVg/2e = 1/2, the qubit Hamiltonian (2.18) reduces to

Hqb =−Es
J

2
σx. (5.2)

For later convenience, we define the resonance frequency of the qubit as ωqb =
Es

J/h̄.
Finally, the coupling Hamiltonian Hc is obtained from Eq. (4.4). It is neces-

sary to rewrite the coupling charge term Qδ +CgVg using the spin-1/2 representa-
tion. It reads −eσz [see Eq. (2.22)]. Hence,

Hc =−λQ0σz, (5.3)

where λ = eCc/(C0CΣ) is the coupling factor between the charge qubit and the
transmission line.

Collecting Eqs. (5.1) - (5.3) together, we obtain a spin-boson model with an
ohmic environment:

Hsb = HT +Hqb +Hc. (5.4)

The next step is the same as in chapter 4: computing the phase-phase corre-
lator �eiφm(t)e−iφm(0)�Hsb . With the result, one can compute the P(E) function and
further obtain the current flowing through the probe junction.

2We take C �C0, EC0 � EJ , and Cc �C0,CΣ. See details in chapter 4.
3They corresponds to the charge degeneracy points in Fig. 2.4
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5.2 Phase-phase correlator
Since the Hamiltonian Hsb is not quadratic, the phase-phase correlator can-

not be simplified to the form expressed in Eq. (3.20). Instead, using the ap-
proach introduced in Sec. 3.4, we expand �eiφm(t)e−iφm(0)�Hsb in powers of φm,
cf., Eq. (3.48). The resulting phase-phase correlator is expressed in terms of a
single-point correlator, two-point correlators, and n-point correlators.

Then, we use Green’s function perturbation theory to compute each phase-
phase correlator. The coupling term (5.3) is set as the interaction V , while the
unperturbed Hamiltonian H(0) is contributed from the transmission line and the
side-coupled qubit, namely

H(0) = HT +Hqb (5.5)

At the degeneracy points, we find that the spin-boson Hamiltonian [Eq.(5.4)] has
the following symmetry: φn →−φn, Qn →−Qn, and σz →−σz. This leads to the
odd-point phase-phase correlators vanishing and only the even-point correlators
contributing according to the arguments specified in Sec. 3.4.

In the following, we first use Green’s function perturbation theory to evalu-
ate the two-point phase-phase correlator �φm(t)φm(0)�Hsb (corresponding to single
photon processes) as well as the four-point phase-phase correlators �φ 2

m(t)φ 2
m(0)�Hsb ,

�φ 3
m(t)φm(0)�Hsb , and �φm(t)φ 3

m(0)�Hsb (two photon processes). When it comes to
2n (n � 3)-point phase-phase correlators (multiple photon processes), the calcu-
lations using perturbation theory become cumbersome. As an alternative we will
use the path integral method.

5.2.1 Single photon processes
We now compute the two-point phase-phase correlator �φm(t)φm(0)�Hsb , which

represents the single photon processes. For spin-boson systems, we will see that
the boson-boson correlators can be expressed in terms of local spin-spin corre-
lators. As for the latter correlators, they were often mapped to the well-studied
problem [140, 141] where a two-level system couples with a bosonic bath.

As before, the phase-phase correlator is formulated using the corresponding
retarded Green’s function GR[φn(t),φm(0)]. In order to be able to use perturbation
theory, we switch to the imaginary-time Green’s function formalism, G .

Let us evaluate the two-point time-ordered Green’s function G [φn(t)φm(0)].
Using Eq. (3.56) and the pairing rules argued in Sec. 3.4, we expand the interac-
tion V to the first few orders in λ . The interaction term V is bilinear in charge
operator Q0 and spin operator σz. As a result, only the even order remains in
the expansion of the interaction since phase and charge operators must appear in
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pairs in the bracket. One more thing we specify is that the spin operators do not
obey a Wick’s theorem, thus they can not be decoupled into two-point spin-spin
correlators. Considering these rules, the Green’s function reads4

G [φn(τ)φm(0)] = G (0)[φn(τ)φm(0)]+λ 2
β�

0

dτ1

β�

0

dτ2 G (0)[φn(τ)Q0(τ1)]

×G (0)[σz(τ1)σz(τ2)]G
(0)[Q0(τ2)φm(0)]+

λ 4

2

β�

0

dτ1

β�

0

dτ2

β�

0

dτ3

β�

0

dτ4

×G (0)[φn(τ)Q0(τ1)]G
(0)[σz(τ1)σz(τ2)σz(τ3)σz(τ4)]G

(0)[Q0(τ3)Q0(τ4)]

×G (0)[Q0(τ2)φm(0)]+O(λ 6). (5.6)

It is seen that the second (fourth) order correction contains the two (four)-point
spin-spin Green’s function. If we consider higher orders corrections, e.g., 2n
(n � 3, n integer)-th orders corrections, there will be additional spin-spin Green’s
functions G (0)[σz(τ1)σz(τ2) · · ·σz(τ2n−1)σz(τ2n)].

To interpret the results using Feynman diagrams, we first define the ba-
sic diagrams in Fig. 5.1. The thin (blue) solid line (a) represents the unper-
turbed time-ordered Green’s functions G (0)[X(τ)Y (0)]; while the thick (blue)
solid line (b) represents G [X(τ)Y (0)], where X , Y are either phase or charge op-
erators. Spin-spin time-ordered Green’s functions are drawn as (orange) dashed
ovals. The thin dashed oval (c) represents the two-point unperturbed time-ordered
Green’s function G (0)[σz(τ1)σz(τ2)]; while the thick dashed oval (d) represents
G [σz(τ1)σz(τ2)]. Besides, the diagrams (e) and (f) correspond to the four-point
time-ordered Green’s function G (0)[σz(τ1)σz(τ2)σz(τ3)σz(τ4)] and the six-point
time-ordered Green’s function G (0)[σz(τ1)σz(τ2)σz(τ3)σz(τ4)σz(τ5)σz(τ6)], re-
spectively.

Using the diagrams defined above, we interpret Eq. (5.6) in terms of Feynman
diagrams, shown in Fig. 5.2.

Next, we use the same procedure to evaluate the two-point spin-spin Green’s

4The detailed calculation is presented in Appendix D.
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Figure 5.1: The basic Feynman diagrams of the corresponding time-ordered
Green’s functions in strongly nonlinear regime. The unperturbed (perturbed)
phase-phase propagators are represented by a thin (a) [thick (b)] solid lines;
while the unperturbed (perturbed) spin-spin propagators are represented by thin
(c) [thick (d)] dashed ovals. Besides, the diagrams (e) and (f) correspond to the
unperturbed four-point and six-point Green’s functions. We will use these dia-
grams to interpret the perturbation results.

function G [σz(τ1),σz(τ2)]. Expanding to the fourth order in λ , we obtain

G [σz(τ1)σz(τ2)] = G (0)[σz(τ1)σz(τ2)]+
λ 2

2

β�

0

dτ3

β�

0

dτ4 G (0)[Q0(τ3)Q0(τ4)]

×G (0)[σz(τ1)σz(τ2)σz(τ3)σz(τ4)]+
λ 4

8

β�

0

dτ3

β�

0

dτ4

β�

0

dτ5

β�

0

dτ6

×G (0)[Q0(τ3)Q0(τ4)]G
(0)[σz(τ1)σz(τ2)σz(τ3)σz(τ4)σz(τ5)σz(τ6)]

×G (0)[Q0(τ5)Q0(τ6)]+O(λ 6). (5.7)

The Feynman diagrams of the equation above are shown in Fig. 5.3.
Considering the perturbation series to all orders in λ (see Appendix D), and

comparing with the expressions of G [φn(τ)φm(0)] and G [σz(τ1)σz(τ2)], we get
a relatively simpler result. The two-point phase-phase Green’s function can be
expressed only in terms of the full two-point spin-spin time-ordered Green’s func-
tion as well as the two-point phase-phase (and phase-charge) unperturbed Green’s
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Figure 5.2: The Feynman diagrams of the two-point time-ordered Green’s func-
tion G [φn(τ)φm(0)]. It corresponds to Eq. (5.6).

Figure 5.3: The Feynman diagrams for the two-point time-ordered Green’s func-
tion G [σz(τ1)σz(τ2)]. The corresponding time-ordered Green’s function is shown
in Eq. (5.7).

functions. Namely,

G [φn(τ)φm(0)] = G (0)[φn(τ)φm(0)]+λ 2
β�

0

dτ1

β�

0

dτ2 G (0)[φn(τ)Q0(τ1)]

×G [σz(τ1)σz(τ2)]G
(0)[Q0(τ2)φm(0)]. (5.8)

The representation in term of Feynman diagrams is shown in Fig. 5.4. It
is indeed easily obtained by comparing the Feynman diagrams of Fig. 5.2 and
Fig. 5.3, the orange part (including the inside) of the diagrams in Fig. 5.2 can
be exactly replaced by the thick dashed oval. Note that the pre-factors5 of the
corresponding diagrams are the same as well.

Figure 5.4: A simplified Feynman diagram of G [φn(τ)φm(0)] expressed in term
of G [σz(τ1)σz(τ2)]. The corresponding time-ordered Green’s function is shown
in Eq. (5.8).

Taking the Fourier transform of Eq. (5.8), and replacing the resulting Mat-
subara frequency iων by ω + i0+, we get the retarded Green function which is

5See details in Appendix D.
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useful for further computing the phase-phase correlator. It reads

GR(φn,φm;ω)=G(0)
R (φn,φm;ω)+λ 2G(0)

R (φn,Q0;ω)GR(σz,σz;ω)G(0)
R (Q0,φm;ω),

(5.9)
where the term λ 2GR(σz,σz;ω) can be regarded as the T matrix .

The unperturbed retarded Green’s functions G(0)
R in the equation above are

easily solved. First of all, the two-point phase-phase Green’s function was al-
ready computed in chapter 3 when we studied the case of a pure transmission
line. It reads G(0)

R (φn,φm;ω) = i[π/(h̄ω)](Z0/RQ)eik|n−m|. Then, we evaluate
the other two-point phase-charge Green’s functions by rewriting the phase and
charge operators in terms of the creation (a†

k) and annihilation (a−k) operators
[see Eq. (2.47)]. The resulting two-point Green’s functions in-k space are eval-
uated in Appendix E. Using Eqs. (E.4) and (E.5), we obtain G(0)

R (φn,Q0;ω) =

G(0)
R (Q0,φn;ω) = λe/(h̄ω0)eiω/ω0|n|.

Substituting the results of these unperturbed Green’s functions into Eq. (5.9),
we obtain

GR(φn,φm;ω) = i
π

h̄ω
Z0

RQ
ei ω

ω0
|n−m|−

�
λe
h̄ω0

�2

GR (σz,σz;ω)ei ω
ω0

(|n|+|m|)
. (5.10)

Using the definition of λ , the dimensionless coupling factor (λe/h̄ω0) can be
expressed in a more physical way:

λ̄ =
π
2

Cc

CΣ

Z0

RQ
. (5.11)

As we took and Cc/CΣ � 1, in additional to the superconductor-insulator transition
restricts Z0/RQ � 1, the coupling strength λ̄ between the transmission line and the
qubit is weak.

Taking n = m, the local retarded Greens function needed to compute the two-
point phase-phase correlator, thus, reads

GR(φm,φm;ω) = i
π

h̄ω
Z0

RQ
− λ̄ 2GR (σz,σz;ω)e2i ω

ω0
|m|
. (5.12)

If there is no side-coupling, namely λ̄ = 0, Eq. (5.12) recovers the case of a pure
transmission line [see Eq. (3.35)]. The second term is a contribution from the
side-coupled qubit.

To further compute the phase-phase correlator, we make use of the rela-
tion (3.22). To do so, we obtain that the contribution of the single photon pro-
cesses, i.e., J(t) = �[φm(t)−φm(0)]φm(0)�Hsb equals J0(t)+ J1(t). J0 is given by
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Eq. (3.23), and J1 reads

J1(t) = −λ̄ 2 h̄
π

∞�

0

dω Im
�
GR (σz,σz;ω)e2i ω

ω0
|m|�

×
�

coth
�

h̄ωβ
2

�
(cosωt −1)− isinωt

�
. (5.13)

In the zero temperature limit, J1(t) reduces to

J1(t) =−λ̄ 2 h̄
π

∞�

0

dω Im
�
GR (σz,σz;ω)e2i ω

ω0
|m|��e−iωt −1

�
. (5.14)

Using Green’s function perturbation theory, we have transformed the calculation
of a two-point phase-phase correlator into that of a two-point spin-spin Green’s
function. Since the latter one has been widely studied, we can directly use part of
the results.

5.2.2 Two photon processes
Now, we turn to the study of two photons processes. Compared to the case

of single photon processes with the exception of freely propagating photons, it
becomes now possible to have an effective photon-photon interaction through the
strong coupling between the transmission line and the side-coupled qubit. This is
likely to lead to new features on the current-voltage characteristic.

We will use the same method as for single photon processes to evaluate the
four-point time-ordered Green’s functions, which are needed to compute the four-
point phase-phase correlators. Since the calculations are rather long, we will only
present the calculation of G [φ 2

n (τ)φ 2
m(0)], and write down directly the results of

the other two Green’s functions, G [φ 3
n (τ)φm(0)] and G [φn(τ)φ 3

m(0)], that are com-
puted in the same way.

The four-point time-ordered Green’s function G [φ 2
n (τ)φ 2

m(0)] is evaluated
perturbatively. As a starting point, the Feynman diagrams of the zeroth order ex-
pansion (no coupling) are drawn as two thin lines. It describes two photons freely
propagating along the transmission line. As before, the coupling term is taken as
the perturbation. Expanding the interaction series to all orders, we obtain that the
four-point Green’s function consists of two different kinds of contributions. The
first one is that the perturbation term interacts with only one of the line, corre-
sponding to two photons propagate freely; the second one is that the perturbation
term interacts with both of the lines. As a result, two photons interact with each
other. More precisely, the imaginary-time-ordered four-point Green’s function is
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written as G [φ 2
n (τ)φ 2

m(0)] = 2G (0)[φn(τ)φm(0)]G [φn(τ)φm(0)]+δG int[φ 2
n (τ)φ 2

m(0)]
where the latter term reading

λ 4
β�

0

dτ1

β�

0

dτ2

β�

0

dτ3

β�

0

dτ4 G (0)[φn(τ)Q0(τ1)]G
(0)[φn(τ)Q0(τ2)]

×G (0)[σz(τ1),σz(τ2),σz(τ3),σz(τ4)]G
(0)[Q0(τ3)φm(0)]G (0)[Q0(τ4)φm(0)]

+
λ 6

2

β�

0

dτ1

β�

0

dτ2

β�

0

dτ3

β�

0

dτ4

β�

0

dτ5

β�

0

dτ6 G (0)[φn(τ)Q0(τ1)]

×G (0)[φn(τ)Q0(τ2)]G
(0)[σz(τ1),σz(τ2),σz(τ3),σz(τ4),σz(τ5),σz(τ6)]

×G (0)[Q0(τ5)Q0(τ6)]G
(0)[Q0(τ3)φm(0)]G (0)[Q0(τ4)φm(0)]

+O(λ 8). (5.15)

The representation in terms of Feynman diagrams is shown in Fig. 5.5.

Figure 5.5: The Feynman diagrams of the four-point time-ordered Green’s func-
tion δG int[φ 2

n (τ)φ 2
m(0)]. The corresponding time-ordered Green’s function is

shown in Eq. (5.15).

Next, we evaluate the four-point spin-spin time-ordered Green’s function
G [σz(τ1),σz(τ2),σz(τ3),σz(τ4)]. Expanding the interaction series to the second
order in λ , we obtain

G [σz(τ1),σz(τ2),σz(τ3),σz(τ4)] = G (0)[σz(τ1),σz(τ2),σz(τ3),σz(τ4)]

+
λ 2

2

β�

0

dτ5

β�

0

dτ6 G (0)[σz(τ1),σz(τ2),σz(τ3),σz(τ4),σz(τ5),σz(τ6)]

×G (0)[Q0(τ5)Q0(τ6)]+O(λ 4). (5.16)

The corresponding Feynman diagrams are shown in Fig. 5.6.
Expanding λ to higher orders6, and comparing with δG int[φ 2

n (τ)φ 2
m(0)] and

the four-point Green’s function G [σz(τ1)σz(τ2)σz(τ3)σz(τ4)], or considering the

6The calculation is similar to the two-point case, which is presented in Appendix D.
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Figure 5.6: The Feynman diagrams of the four-point time-ordered Green’s func-
tion G [σz(τ1)σz(τ2)σz(τ3)σz(τ4)]. The corresponding time-ordered Green’s func-
tion is shown in Eq. (5.16).

Feynman diagrams of Fig. 5.5 and Fig. 5.6, we obtain

δG int[φ 2
n (τ)φ

2
m(0)] = λ 4

β�

0

dτ1

β�

0

dτ2

β�

0

dτ3

β�

0

dτ4 G (0)[φn(τ)Q0(τ1)]

×G (0)[φn(τ)Q0(τ2)]G [σz(τ1),σz(τ2),σz(τ3),σz(τ4)]

×G (0)[Q0(τ3)φm(0)]G (0)[Q0(τ4)φm(0)]. (5.17)

The representation in terms of Feynman diagrams is shown in Fig. 5.7.

Figure 5.7: A simplified Feynman diagram of δG int[φ 2
n (τ)φ 2

m(0)] expressed in
term of G [σz(τ1)σz(τ2)σz(τ3)σz(τ4)]. It corresponds to Eq. (5.17).

In order to evaluate the contribution of photon-photon interactions, we first
rewrite Eq. (5.17) in Matsubara frequency space, namely

δG int(φ 2
n ,φ

2
m; iων) = λ 4 ∑

iωa,iωb

G (0)(φn,Q0; iωa)G
(0)(φn,Q0; iωb) (5.18)

×G (σz,σz,σz,σz; iωa, iωb, iων − iωa − iωb)

×G (0)(Q0,φm; iων − iωa)G
(0)(Q0,φm; iων − iωb).
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To evaluate the unperturbed Green’s functions G (0), we first rewrite the phase and
charge operators with the creation and annihilation operators. Then, the resulting
new Green’s functions7 in k space are easily solved from their equations of motion.
Substituting them into Eq. (5.18), and replacing Matsubara frequency iων by ω +
i0+, we obtain the corresponding retarded Green’s function:

δGint
R (φ 2

n ,φ
2
m;ω) = λ̄ 4ei ω

ω0
(|n|+|m|) ∑

iωa,iωb

G (σz,σz,σz,σz; iωa, iωb,ω), (5.19)

where the coupling strength λ̄ wad defined in Eq. (5.11).
Furthermore, the local retarded Green’s function which is needed to compute

the correlator is obtained by taking n = m, namely

δGint
R (φ 2

m,φ
2
m;ω) = λ̄ 4e2i ω

ω0
|m| ∑

iωa,iωb

G (σz,σz,σz,σz; iωa, iωb,ω). (5.20)

Next, the other two four-point local retarded Green’s functions GR(φ 3
n ,φm;ω) and

GR(φn,φ 3
m;ω) are evaluated. In particular, we find the results similar to Eq. (5.20):

GR
�
φ 3

m,φm;ω
�
=−λ̄ 4e2i ω

ω0
|m| ∑

iωa,iωb

G [σz,σz,σz,σz; iωa, iωa + iωb;ω]. (5.21)

The Feynman diagram for the corresponding time-ordered Green’s function is
shown in Fig. 5.8(a), from which one can see that it only contains the contribu-
tion of photon-photon interactions. Besides, we also calculate GR

�
φm,φ 3

m;ω
�
=

GR
�
φ 3

m,φm;ω
�
. The Feynman diagram for the corresponding time-ordered Green’s

function is shown in Fig. 5.8(b).
At the end, with the help of the relation (3.22), we use the retarded Green’s

functions to compute the four-point phase-phase correlators. Collecting these cor-
relators, they are written as three part, i.e., J2

0(t)/2+ J0(t)J1(t)+ δJint(t). While
J0 and J1(t) were already addressed in Eq. (3.23) and Eq. (5.13), respectively; the
additional contribution from interaction δJint(t) takes the same form as Eq. (4.42).
Namely,

δJint(t) � h̄
π

∞�

0

dω
�1

4
Im
�
δGint

R (φ 2
m,φ

2
m;ω)

�
(5.22)

−1
3

Im
�
GR(φ 3

m,φm;ω)
��

(e−iωt −1).

7More details see Appendix E
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Figure 5.8: Feynman diagrams of (a) G [φn(τ)φ 3
m(0)] and (b) G [φ 3

n (τ)φm(0)] ex-
pressed in term of G [σz(τ1)σz(τ2)σz(τ3)σz(τ4)] (the dotted oval diagrams).

To summarize, we computed the four-point time-ordered Green’s functions
using perturbation theory. In contrast with the single photon processes, the inter-
actions between photons lead to additional contributions that add to those of the
freely propagating photons. In particular, the Green’s functions which represent
the photon-photon interaction processes are expressed in terms of the four-point
spin-spin Green’s function G [σz,σz,σz,σz].

5.2.3 Multiple photon processes

To compute 2n-point (n � 3, integer) phase-phase correlators (multiple pho-
ton processes), perturbation theory is still valid but becomes extremely tedious.
Therefore, as an alternative we use the path integral method. It is indeed a conve-
nient way to extend the results of Green’s function theory to all orders. That is we
may compute the entire phase-phase correlator �eiφm(t)e−iφm(0)�Hsb .

The procedures of the path integral method were already shown in Sec. 3.4.2.
In chapter 3, we considered a linear system, i.e., a pure transmission line. In
contrast, we now add the nonlinearity.

In order to use the path integral method, we switch to time-ordered correla-
tors in imaginary time space, namely �Tτ eiφm(τ)e−iφm(0)�Hsb .

Comparing with the linear case studied in Sec. 3.4.2, the coupling between
the transmission line and the side-coupled qubit has to be considered. As a result,
the action (3.74) in q ≡ (k,ωn) space becomes

− s =−1
2

1
βL h̄ ∑

q

��
φ−q Q−q

�
M−1

�
φq
Qq

�
−2λσzQq

�
. (5.23)
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Note that the spin operator σz is only a “spectator”, thus we do not specify its
representation.

Using this action, the time-ordered phase-phase correlator can be written in
the form

�Tτ eiφm(τ)e−iφm(0)�Hsb =
1
Z

�
Dφq(τ)DQq(τ)exp

�
−1

2
1

βL h̄

×∑
q

��
φ−q Q−q

�
M−1

�
φq
Qq

�
−
�

iA−qh̄ 0
�� φq

Qq

�

−
�

φ−q Q−q
�� −iAqh̄

0

�
− 2λσzQq

��
, (5.24)

where Aq [see Eq. (3.83)] is the Fourier amplitude of the operator [φm(τ)−φm(τ)],
and the partition function becomes

Z =
�

Dφq(τ)DQq(τ)exp

�
−1

2
1

βL h̄ ∑
q

��
φ−q Q−q

�
M−1

�
φq
Qq

�

− 2λσzQq
��

. (5.25)

Computing the phase-phase correlator amounts to a phase shift (δφq) and a charge
shift (δQq), which can be absorbed by using the new variables: φ̃q = φq+δφq and
Q̃q = Qq +δQq. Using φ̃q and Q̃q, the integrand of Eq. (5.24) is rewritten in two
parts: the first takes the same form as the partition function (5.25), and the second
one is a constant that depends of δφq and δQq. More precisely, it reads

1
Z

�
Dφ̃q(τ)DQ̃q(τ)exp

�
−1

2
1

βL h̄ ∑
q

��
φ̃−q Q̃−q

�
M−1

�
φ̃q
Q̃q

�
(5.26)

−2λσz(−ωn)Q̃q
��

×exp

�
1
2

1
βL h̄ ∑

q

��
δφ−q δQ−q

�
M−1

�
δφq
δQq

�
−2λσzδQq

��

where the constants δφq and δQq are exactly cancel the second and third terms
(in the parenthesis) of Eq. (5.24). Comparing Eqs. (5.24) and (5.26), we find:

�
δφq
δQq

�
= M

�
iAqh̄

0

�
=

1
ω2

n +(kω0)2

�
i (2e)2

C0
Aq

i2eωnAq

�
. (5.27)

Substituting Eqs. (5.25) and (5.26) into Eq. (5.24), and using the Gaussian integral
[see Eq. (3.75)], we obtain the needed correlator

�Tτ eiφm(τ)e−iφm(0)�Hsb = exp[J0(τ)]�Tτ exp[J�(τ)]�Hsb (5.28)
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with

J0(τ) =
1
2

1
βL h̄ ∑

q

�
δφ−q δQ−q

�
M−1

�
δφq
δQq

�
, (5.29)

J�(τ) = − λ
βL h̄ ∑

q
σzδQq. (5.30)

Using (5.27), the equations above can be rewritten as

J0(τ) = −(2e)2

h̄C0

1
βL ∑

q

1− cosωnτ
ω2

n +(kω0)2 , (5.31)

J�(τ) = −λ
2e
h̄

1
βL ∑

q

iωn

ω2
n +(kω0)2 e−ikm(eiωnτ −1)σz. (5.32)

In absence of side-coupling, namely λ = 0, J�(τ) equals zero. Therefore, Eq. (5.28)
reduces to exp[J0(τ)]. It corresponds to the case of a pure transmission line [see
Eq. (3.88)]. We already evaluated J0(τ) and found that it is a constant depen-
dent the normalized impedance Z0/RQ of the transmission line. In contrast, J�(τ)
contains the spin operator σz, which reflects the role of the side-coupled qubit.

Next, we need to compute J�(τ) and then further calculate �Tτ exp[J�(τ)]�Hsb .
Considering the transmission line to be infinite, i.e., L → ∞, we rewrite

Eq. (5.32) as

J�(τ) =
2λe
h̄ω2

0

1
β ∑

ωn

(eiωnτ −1)σz

∞�

−∞

dk
2πi

e−ikm

k2 +(ωn/ω0)2 . (5.33)

Using the residue theorem to evaluate the second integral, we obtain

J�(τ) =−i
λe
h̄ω0

1
β ∑

ωn

ωn

|ωn|
(eiωnτ −1)σze

− |ωn|
ω0

|m|
. (5.34)

Note that J�(τ) can be written as O(τ)−O(0) with

O(τ) =−i
λe
h̄ω0

1
β ∑

ωn

ωn

|ωn|
eiωnτσze

− |ωn|
ω0

|m|
. (5.35)

Thus, we have

�Tτ exp[J�(τ)]�Hsb = �Tτ exp[O(τ)−O(0)]�Hsb . (5.36)

The equation above is evaluated using the same idea of computing the phase-
phase correlator in nonlinear case [see Eq. (3.48)]. We expand it in powers of
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O(τ) (in terms of the spin operator σz). As a result, Eq. (5.36) is expressed in
terms of single-point, two-point, etc., spin correlators. They correspond to the
first order correction, second order correction, etc., which reflect the effect of the
side-coupled qubit. As we argued at the beginning of this section, at the charge
degeneracy points the contributions of the odd order corrections equal zero, thus
only the even order corrections contribute. Indeed, one can verify the second order
correction corresponds to J1(t) we obtained before. The fourth order correction
representing photon-photon interaction corresponds to δJint(t).

With the results above, we now write the phase-phase correlator needed to
calculate the current-voltage characteristic in the following form:

�eiφm(t)e−iφm(0)�Hsb � exp
�
J(0)(t)

��
1+ J1(t)+δJint(t)

�
. (5.37)

In term of Feynman diagrams, the corresponding time-ordered Green’s function of
the equation above is expressed in Fig. 5.9. In particular, J(0)(t) [see Eq. (3.92)]
corresponds to the contribution of photons freely propagating down the trans-
mission line. Then, J1(t) which is expressed in terms of the two-point spin-spin
Green’s function (corresponding to the first diagram of Fig, 5.9) was shown in
Eq. (5.14). This contribution originates from the coupling between a single pho-
ton and the side-coupled qubit. Finally, δJint(t) which is expressed in terms of
four-point spin-spin Green’s functions (corresponding to the last three diagrams
of Fig. 5.9) was shown in Eq. (5.22). It is the contribution of interactions between
two photons. In the following calculations, we will use the contribution of J(0)(t)
as a background, and then add the corrections from J1(t) and δJint(t).

Figure 5.9: Feynman diagrams of the time-ordered Green function that corre-
sponds to the phase-phase correlator �eiφm(t)e−iφm(0)�Hsb .
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5.3 Spin-spin Green’s function
In the last section, we obtained the result that the phase-phase correlators

[e.g., J1(t) and δJint(t)] are expressed in terms of the spin-spin Green’s functions.
In particular, the two-point as well as the four-point spin-spin Green’s functions
are needed. As we stated before spin-1/2 commutation relations are not fermionic
nor bosonic, therefore we are not allowed to apply Wick’s theorem and perturba-
tion theory to do the calculations. To work around this difficulty, we use Bloch
equations.

If we neglect the Kondo effect, then the Bloch approach [142] is appropri-
ate to compute the spin-spin susceptibility χzz, and further obtain the two-point
retarded Green’s function GR(σz,σz;ω).

In absence of the coupling, λ = 0, the system Hamiltonian which contains
spin operators reduces to −(Es

J/2)σx. The eigenstates are a superposition of the
“spin-up” state |0� and “spin-down” state |1� [see Eq. (2.19)]. As a result, the
evolution of �σz(t)� takes the form

�σz(t)�= cos(ωqb t), (5.38)

i.e., the spin oscillates periodically between the eigenvalues ±1. Such an oscilla-
tion is a clear signature of quantum coherence.

However, when the coupling to the bath is involved, coherence effects will
be destroyed. In particular, we consider the weak-coupling limit. In this way, the
coupling (Hc) is sufficiently weak to treat it as a perturbation. Let us see in detail
the consequences of doing so.

This problem is exactly analogous to that of the well-known nuclear magnetic
resonance of a particle of spin-1/2 in a constant field Es

J in the x direction, while
the bosonic bath causes fluctuations of the field in the z direction. Considering the
Born approximation (the total density matrix is decoupled into spin density matrix
and bosonic density matrix, i.e., ρtot = ρs(t)⊗ρB) and Markovian evolution (the
evolution of the system at time t does not depend on previous times), we can then
write down the Bloch equations of the system,

d
dt
�σx(t)� = −�σx(t)�−�σx�equi

τ1
, (5.39)

d
dt
�σy(t)� = ωqb�σz(t)�−

�σy(t)�
τ2

, (5.40)

d
dt
�σz(t)� = −ωqb�σy(t)�. (5.41)

Here τ1 represents the spin relaxation time which tends to the thermal equilib-
rium value �σx�equi = tanh(βEs

J/2); while τ2 is the decoherence time. Note that
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the decoherence time does not appear in the equation of σz, simply because the
fluctuating environmental fields are exclusively along the z direction. If we con-
sider the limiting cases that the time scales τ1 and τ2 go to infinity (meaning the
bosonic bath is isolated from the system), the Bloch equations above reduces the
result d�σα(t)�/dt = i/h̄[σα(t),−Es

Jσz/2]. This equation describes the Larmor
precession of the nuclear magnetization in an external magnetic field.

When the influence of the bosonic bath is switched on, the relaxation time
and the decoherence time take finite values. Perturbation theory to second order
in the coupling term yields [140, 141]

τ−1
1 = τ−1

2 = (1/h̄)J (ωqb)coth(βEs
J/2) , (5.42)

where, J (ω) is spectral density of the bath.
The spectral density can be obtained by computing the Fourier transform of

the symmetrized correlation function of the bath operator X = −λQ0 coupled to
σz:

�XX�ω ≡ λ 2

2
�{Q0(t)Q0(0)}�ω = h̄J (ω)coth(β h̄ω/2). (5.43)

Rewriting the charge operator in terms of creation and annihilate operators [see
Eq. (2.47)], and using the diagonal form of HT , we find

�XX�ω =
1
π

�
λe
h̄ω0

�2 RQ

Z0
ω (5.44)

Collecting Eqs. (5.42), (5.43) and (5.44), the relaxation time is expressed as

τ−1
2 =

1
π

�
λe
h̄ω0

�2 RQ

Z0
ωqb. (5.45)

Using the definition of λ , it is expressed as

τ−1
2 =

1
4

C2
c

C0CΣ

ω2
p

ω0
. (5.46)

where ωp is the plasma frequency8 of the Cooper pair box.
Then, taking time derivation upon equation (5.41), using equation (5.40), we

derive the equation of motion of �σz(t)�:

d�σz(t)�
dt2 + τ−1

2
d�σz(t)�

dt
+ω2

qb = 0. (5.47)

8It has the relation ωp =
�

8Es
JECΣ/h̄, where ECΣ = e2/(2CΣ) is the charging energy.
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Using the linear response theory, and considering σy,σz � σx, we can obtain the
spin-spin susceptibility χzz from Eq, (5.47). In frequency space, it takes the form

χzz =−1
h̄

ωqb

ω2 −ω2
qb + i ω

τ2

. (5.48)

Actually, in the language of Green’s functions, we have GR(σz,σz;ω) = χzz,
which can be verified using the linear response theory. Hence,

GR(σz,σz;ω) =−1
h̄

ωqb

ω2 −ω2
qb + i ω

τ2

. (5.49)

Using this result, we can evaluate the two-point phase-phase retarded Green’s
function [Eq. (5.12)] which is required for calculating the current-voltage charac-
teristic of the probe junction. In particular, substituting Eq. (5.49) into Eq. (5.12),
we obtain a similar form as in the case [shown in chapter 4] where a transmission
line was coupled with a harmonic oscillator. It reads

G(0)
R (φm,φm;ω) = i

π
h̄ω

Z0

RQ

�
1+ r̄(ω)e2ik|m|

�
. (5.50)

where the reflection coefficient is given as

r̄(ω) =− 1
π

λ̄ 2 RQ

Z0
ωqbτ2

�
1− i

ω2 −ω2
qb

ωτ−1
2

�−1

. (5.51)

Substituting τ2 into the equation above, we find that the prefactor equals one.
Hence, the expression reduces to

r̄(ω) =−
�

1− i
ω2 −ω2

qb

ωτ−1
2

�−1

. (5.52)

Under the condition C2
c/(C0CΣ)� 1 and ωqb � ω0, the reflection coefficient has

a narrow resonance at ω = ωqb. The width is

Γ̄ = τ−1
2 =

1
4

C2
c

C0CΣ

ω2
p

ω0
, (5.53)

Comparing with the linear case [see Eq. (4.13)] in chapter 4, we fine it has an
exactly same width. Close to the resonance, we can approximate the reflection
coefficient (5.52) by the simple form r̄(ω) =−

�
1− i(ω −ωqb)/Γ̄

�−1.
To summarize, the two-point spin-spin retarded Green’s function was calcu-

lated using the Bloch equations in the weak coupling regime. Using this result,
we computed the local phase-phase retarded Green’s function which is needed to
compute the current-voltage characteristic in the next section. At the single pho-
ton level, the resulting phase-phase retarded Green’s function has a form that is
very similar to the case of side-coupling a harmonic oscillator.
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5.4 Current-voltage characteristic
Using the results obtained in previous sections, we now compute the current

through the probe junction.
As did in chapter 4, we first use Eqs. (5.37), (5.14) and (5.49) to determine

P(E). At zero temperature, the current flowing through the probe junction reads:

I(V )� e(Ep
J )

2





1
2

∞�

−∞

dt exp
�
i2eVt + J(0)(t)

�
+ Im

�
GR(σz,σz;ω)e2i ω

ω0
m
�


 .

(5.54)
Note that the first term describes the I−V characteristic of the background, when
the environment contains only the transmission line. This calculation can be done
numerically using the integral equation [see Eq. (3.42)]. The second term de-
scribes the interaction effects between the single photon and the qubit. The re-
sulting current-voltage characteristic is plotted in Fig. 5.10: the current of the
background decreases with increasing voltage as expected; in addition, there is
a clear resonance feature at 2eV = h̄ωqb. Here, we take the same characteristic
current as in last chapter, namely, I0 = [πe(Ep

J )
2/h̄2ωs](Z0/RQ) [see Eq. (4.26)].

Figure 5.10: The strongly nonlinear regime: current-voltage characteristic of the
probe Josephson junction when placed at m = 0. The parameters are Γ̄/ωqb =
0.02, Ecut-off/(h̄ωqb) = 20, and Z0/RQ = 0.01. The side-coupled qubit causes a
resonance at 2eV = h̄ωqb. The current vanishes at the resonance.

The resonance at 2eV = h̄ωqb originates from the contribution of two-point
spin-spin Green’s function, i.e., GR(σz,σz;ω). It describe a process in which
a Cooper pair tunnels inelastically through the probe junction, simultaneously
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emitting one photon to the environment. The photon travels along the transmission
line. When the photons has a frequency close to the resonance frequency ωqb, it is
on resonance with the qubit. As a result, the photon is blocked completely. Thus,
no current contributes in this process. From the plot, we can see clearly that the
current indeed vanishes for weak impedance, e.g., Z0/RQ = 0.01. This is because
multiple-photon processes are suppressed, and only single photon processes play
a role.

More precisely, the current amplitude δ I(δV ) (at single photon level) of
this feature at voltages V = h̄ωqb + δV is formulated. It takes a similar form
as Eq. (4.27). Namely

δ I(δV )

I0
=

−Γ̄2

(2eδV )2 + Γ̄2

�
cos ᾱ − 2eδV

Γ̄
sin ᾱ

�
, (5.55)

where ᾱ = 2mωqb/ω0. By varying the placement (namely, m) of the probe junc-
tion, the shape of the resonance feature9 is different. Besides, from the equation
above, it is clear that the width of the resonance is given by Γ̄/e, where Γ̄ was
given in Eq. (5.53).

To summarize, the current-voltage characteristic was studied in the strongly
nonlinear regime. we found that there is a resonance arising in the current-voltage
characteristic at 2eV = h̄ωqb. This feature comes from the coupling between the
single photon and the qubit. Using this result as a starting point, it will be inter-
esting to see how the photon-photon interactions (corresponding to the four-point
spin-spin Green’s functions) will modify the resonance feature.

5.5 Summary

In this chapter, we studied the strongly nonlinear system which consists of
a transmission line side-coupled to a charge qubit. As before, a probe junction
attached to the line was used to detect the properties of the photons, which are
created and engineered by the strongly nonlinear system. In particular, the en-
vironment seen by the probe junction can be described by a spin-boson model,
which consists of a charge qubit (the spin) linearly coupled to the photons (the
bosons) in the transmission line. Using Green’s function theory and the path in-
tegral method, we calculated the environmental phase-phase correlators that are
directly related to the current through the probe junction. Our results indicate that
scattering of individual photons by the side-coupled qubit results in a resonance
feature in the current-voltage characteristic of the probe junction at 2eV = ωqb,

9It is shown in Fig. 4.5.
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where ωqb is the resonance frequency of the qubit. In addition, Kondo correla-
tions actually cannot be ignored at low temperature and the charging degeneracy
points of the qubit. For instance, one can check that the correction to the reso-
nance frequency ωqb due to the coupling with the environment has a logarithm
divergence. Therefore, it would be interesting to see whether such Kondo correla-
tions manifest in the multiple photon processes. To do so, one needs to compute
the four-point spin-spin Green’s function or even the exponential-spin correlator
�eiσz(t)e−iσz(0)�. In principle, Bloch equations could still be used.
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CHAPTER 6
Conclusion and perspectives

In this thesis, we mainly proposed a method to detect photon-photon interac-
tions in a superconducting circuit. In particular, a local interaction between pho-
tons can be engineered by coupling a nonlinear system to a transmission line. The
required transmission line can be conveniently formed from a chain of Joseph-
son junctions. The nonlinearity is generated by side-coupling this chain to a
Cooper pair box. We propose to probe the resulting photon-photon interactions
via a voltage-biased Josephson junction (the probe junction) connected to the line.
When a finite voltage V (smaller than the superconducting gap voltage) is applied,
a Cooper pair tunnels inelastically through the probe junction, simultaneously re-
leasing the energy 2eV (e is elementary charge) to the environment via emitting
one or several photons. The emission depends on the properties of the environ-
ment. In our case, individual photons freely propagate along the transmission line
and are scattered by the side-coupled Cooper pair box. When multiple photons
are emitted, these photons may interact with each other. The elastic and inelas-
tic scattering properties of photons will in turn influence the current through the
probe junction. Therefore, the dc current-voltage characteristic of the Josephson
junction provides a probe to study photon-photon interactions in a nonlinear envi-
ronment.

We first considered a weakly nonlinear regime in chapter 4 where the side-
coupled Cooper pair box was simplified as an weakly anharmonic oscillator with
resonance frequency ωs. We used Green’s function perturbation theory to handle
the single photon processes and two (and multiple) photons processes, respec-
tively. For single photon processes, we found that the nonlinearity renormalizes
the resonance frequency to ω �

s with a small shift. The current-voltage character-
istic shows a resonant feature around 2eV = ω �

s. This is easily understood: when
the photon took energy ω �

s, it was tuned to be on resonance with the side-coupled
harmonic circuit, then the system would block the transmission of the photon due
to destructive interference between the directly transmitted photon and the pho-
ton re-emitted by the side-coupling. As for two (and multiple) photon processes,
in addition to freely propagating photons, photon-photon interactions play a role
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as well. Our results show that the interactions due to the nonlinearity yield an
additional resonance features at 2eV = 2ω �

s (two photon processes). Finally, we
also used the realistic parameters to estimate the amplitudes of the peaks, the cur-
rent signal around 2eV = 2ω �

s (reflecting the interaction between two photons)
is expected to be on the order of pA, which is well within the reach of current
measuring techniques.

The strongly nonlinear regime where the charging energy of the Cooper pair
box dominates over the Josephson energy was studied in chapter 5. In this regime,
the side-coupled Cooper pair box reduces effectively to a two-state qubit under
certain conditions. The coupling between the transmission line and the qubit was
described by a spin-boson Hamiltonian. It consists of a charge qubit (the spin)
linearly coupled to the photons (the bosons) in the transmission line. We applied
both perturbation theory and path integral method to compute the phase-phase
correlator. We found that they are related exactly to 2n (n integer)-point spin-
spin Green’s functions. Furthermore, we used Bloch equations to calculate the
spin-spin susceptibility in weak coupling regime, and obtained the corresponding
two-point spin-spin Green’s function. Our result showed that the current flowing
through the probe junction yields a feature around 2eV = h̄ωqb, where ωqb is the
resonance frequency of the qubit. Such a feature appears due to the coupling
between the single-photon and the qubit.

Regarding future studies, we first want to evaluate the four-point spin-spin
Green’s functions or even the entire exponential-spin correlator in the strongly
nonlinear regime. With the results, the current-voltage characteristic of the probe
at two photons level (even multiple level) can be obtained. Furthermore, the fea-
tures due to the photon-photon interactions can be predicted. Moreover, Kondo
correlations may play a role. It will be interesting to study how the Kondo corre-
lations manifest in multiple-photon processes. In our project, we mainly focus on
studying how the current-voltage characteristic of the probe junctions is affected
by a nonlinear environment. As we argued, the probe junction emit simultane-
ously single or multiple photons to the environment. Very recently, the photonic
side was also explored [88, 143]. Therefore, it will be interesting to study the
properties of the radiation emitted by a Josephson junction into the nonlinear en-
vironment. However, the calculation is very involved as it would going beyond the
first order in the Josephson energy of the probe junction. In addition, the work of
chapter 5 is a good starting point for exploring the entanglement of several qubits,
which is quite interesting from the viewpoint of potential application in quantum
information processing.

For the experimental realizations, we expect that our predictions concerning
the resonance features in the current-voltage characteristic of the probe junction
can be observed. It will be interesting since it provides a sensitive probe to explore
photon-photon interaction in circuit QED.



APPENDIX A
The Hamiltonian of the studied
circuit

In this appendix, we show in details the derivation of the Hamiltonian used
in chapter 4 and chapter 5.

As shown in Fig. A.1, the circuit consists of a transmission line1 capacitively
side-coupled to a Cooper pair box. Comparing with the circuit shown in Fig. 4.1,
we now technically replaced the gate voltage Vg of the cooper pair box by a ca-
pacitor CΨ

2.

Figure A.1: Three nodes n0 −1, n0 and n0 +1 of the studied circuit. It consists of
a transmission line capacitively (capacitance Cc) coupled to a Cooper pair box at
node n0. The transmission line is realized by a set of identical LCC0 oscillators.
The gate voltage of the Cooper pair box is replaced by a capacitor CΨ.

1It is formed by a set of LCC0 harmonic oscillators. In chapter 4 and chapter 5, we took C �C0.
2It has the relation CΨ = QΨ/Vg, where QΨ is the charge on node Ψ.
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To derive the system Hamiltonian, we use the standard way: the method
allows us to write down the Hamiltonian of any quantum circuits consisting of
capacitors, inductors and Josephson junctions, which was first proposed by Yurke
and Denker [102], and then analysed in detail by Devoret [103]. The procedure
is as follows: present the equations of motion of the phase, write down the La-
grangian of the circuit, check the Lagrangian is fine, and finally obtain the Hamil-
tonian.

First of all, we apply Kirchhoff’s current conversion laws to an arbitrary node
n (n �= n0) along the line (see Fig. A.1): the currents flowing into the node should
equal the currents flowing out of the node. Thus,

φn−1 −φn

L
+C(φ̈n−1 − φ̈n) =

φn −φn+1

L
+C(φ̈n − φ̈n+1)+C0φ̈n. (A.1)

Similarly, for nodes n0, δ , and Ψ (see Fig. A.1), the additional equations are

φn0−1 −φn0

L
+C(φ̈n0−1 − φ̈n0) =

φn0 −φn0+1

L
+C(φ̈n0 − φ̈n0+1)

+C0φ̈n0 +Cc(φ̈n0 − φ̈δ ),

Cc(φ̈n0 − φ̈δ )+Cg(φ̈Ψ − φ̈δ ) = Csφ̈δ +2eIs
c sinφδ ,

Cg(φ̈Ψ − φ̈δ )+CΨφ̈Ψ = 0, (A.2)

where Is
c is the critical current of the side-coupled Josephson junction with Joseph-

son energy Es
J . The relation between them is Es

J = Is
c/2e.

Then, the system Lagrangian can be constructed as

L(φ̇n,φn, φ̇δ ,φδ ,Ψ̇, t) =
�

h̄
2e

�2

∑
n

�
C(φ̇n−1 − φ̇n)

2

2
+

C0φ̇ 2
n

2
+

Cc(φ̇n0 − φ̇δ )
2

2

+
Cg(φ̇Ψ − φ̇δ )

2

2
+

Csφ̇ 2
δ

2
+

CΨφ̇ 2
Ψ

2
− (φn−1 −φn)

2

2L

�
+Es

J cosφδ (A.3)

The charge operators (Qn, Qδ and QΨ) conjugate to the corresponding phase op-
erators (φn, φδ and φΨ), i.e., Q = (2e/h̄)(∂L/∂ φ̇), are given as

Qn =
h̄
2e

�
(C0 +2C+δn,n0Cc)φ̇n −Cφ̇n−1 −Cφ̇n+1 −δn,n0Ccφ̇δ

�
, (A.4)

Qδ =
h̄
2e

�
(Cc +Cg +Cs)φ̇δ −Ccφ̇n0 −Cgφ̇Ψ

�
, (A.5)

QΨ =
h̄
2e

�
(Cg +CΨ)φ̇Ψ −Cgφ̇δ

�
. (A.6)

In matrix notation, Eq. (A.4) is rewritten as,

Qn =
h̄
2e ∑

m

�
Cn,mφ̇m −δn,n0Ccφ̇δ

�
, (A.7)
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where we define the capacitance matrix Cn,m with elements

Cn,m = (C0 +2C+δn,n0Cc)δn,m −Cδn−1,m −Cδn+1,m. (A.8)

Using the matrices Cn,m and L−1
n,m (see Eq. (2.45)), the Lagrangian (A.3) is rewrit-

ten as

L(φ̇n,φn, φ̇δ ,φδ ,Ψ̇) =

�
h̄
2e

�2
�

1
2 ∑

n,m

�
φ̇nCn,mφ̇m −φnL−1

n,mφm
�
+

1
2
(Cc +Cg

+Cs)φ̇ 2
δ +

1
2
(Cg +CΨ)φ̇ 2

Ψ − Ccφ̇δ φ̇n0 −Cgφ̇Ψφ̇δ
�
+Es

J cosφδ . (A.9)

To check whether the Lagrangian is correct, we drive the equations of motion that
yielded by the Lagrangian (A.9):

∂
∂ t

∂L
∂ φ̇n

− ∂L
∂φn

= ∑
m

�
Cn,mφ̈m −δn,n0Ccφ̈δ +L−1

n,mφm
�
= 0,

∂
∂ t

∂L
∂ φ̇δ

− ∂L
∂φδ

=

�
h̄
2e

�2 �
(Cc +Cg +CJ)φ̈δ − (Ccφ̈n0 +CgΨ̈)

�
+EJ sinφδ = 0,

∂
∂ t

∂L
∂ φ̇Ψ

− ∂L
∂φΨ

= (Cg +CΨ)φ̈Ψ −Cgφ̈δ = 0. (A.10)

Comparing Eq. (A.10) with Eqs. (A.1) and (A.2), we find that they are consistent.
This means the Lagrangian (A.9) well describes the studied circuit.

Next, the system Hamiltonian is obtained as

H =
h̄
2e

�
∑
n

Qnφ̇n +Qδ φ̇δ +QΨΨ̇
�
−L. (A.11)

Since the Hamiltonian is expressed in terms of phases φ (φn,φδ ) and charges Q
(Qn,Qδ ), we have to replace φ̇ of Eq. (A.11) by Q. To to so, we first solve φ̇Ψ
from Eq. (A.6)

φ̇Ψ = 2eVg. (A.12)

Then we substitute Eq. (A.12) into Eq. (A.5) to obtain

2e
h̄
(Qδ +CgVg) = (Cc +Cg +Cs)φ̇δ −Ccφ̇n0 . (A.13)

Using Eq. (A.7), we get

φ̇n =
2e
h̄ ∑

m
C−1

n,mQm +CcC−1
n,n0

φ̇δ . (A.14)
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Thus, for the node n0, the equation above reads naturally,

φ̇n0 =
2e
h̄ ∑

m
C−1

n0,mQm +CcC−1
n0,n0

φ̇δ . (A.15)

Combining Eqs. (A.13) and (A.15), we obtain,

φ̇δ =
2e
h̄

Qδ +CgVg +Cc ∑mC−1
n0,mQm

Cc +Cg +Cs −C2
cC−1

n0,n0

. (A.16)

Substituting Eqs. (A.9), (A.12), and (A.14) into Eq. (A.11), we get

H = ∑
n

Qn

�
∑
m

C−1
n,mQm +CcC−1

n,n0
φ̇δ

�
+

h̄
2e

Qδ φ̇δ +QΨVg

−
�

h̄
2e

�2
�

1
2 ∑

n,m

�
φ̇nCn,mφ̇m −φnL−1

n,mφm
�
− Cc +Cg +Cs

2
φ̇ 2

δ

+Ccδn,n0 φ̇nφ̇δ
�
+

h̄
2e

CgVgφ̇δ −
Cg +CΨ

2
V 2

g −Es
J cosφδ . (A.17)

Using the following three relations,

Qδ φ̇δ =
h̄
2e

�
(Cc +Cg +Cs)φ̇ 2

δ −Ccδn,n0 φ̇nφ̇δ
�
−CgVgφ̇δ , (A.18)

QΨVg = (Cg +CΨ)V 2
g − h̄

2e
CgVgφ̇δ ,

�
h̄
2e

�2

∑
n,m

φ̇nCn,mφ̇m = ∑
n,m

QnC−1
n,mQm +2Cc ∑

n
QnC−1

n,n0
φ̇δ +C2

cC−1
n0,n0

φ̇ 2
δ .

one can simplify Eq. (A.17) as

H =
1
2 ∑

n,m

�
QnC−1

n,mQm +

�
h̄
2e

�2

φnL−1
n,mφm

�

+

�
h̄
2e

�2 Cc +Cg +CJ −C2
cC−1

n0,n0

2
φ̇ 2

δ −EJ cosφδ . (A.19)

Finally, plugging Eq. (A.16) into Eq. (A.19), we obtain the Hamiltonian:

H =
1
2 ∑

n,m

�
QnC−1

n,mQm +

�
h̄
2e

�2

φnL−1
n,mφm

�

+
(Qδ +CgVg +Cc ∑mC−1

n0,mQm)
2

2(Cc +Cg +Cs −C2
cC−1

n0,n0)
−Es

J cosφδ . (A.20)

With the conditions specified in chapter 4, i.e., Cc �C0,Cg +Cs and C �C0, the
Hamiltonian (A.20) reduces to Eq. (4.1).



APPENDIX B
Quantum theory of the transmission
line

In this appendix, we present the quantum theory of the transmission line.
The transmission line described by the Hamiltonian HT is given by Eq. (2.44).

Inspired by the method used in the case of the harmonic crystal in solid state
physics, one can obtain the standard diagonal form,

Hdiag
T = ∑

k
h̄ωk

�
a†

kak +
1
2

�
, (B.1)

by expressing the phase and charge operators in terms of the photon creating op-
erator ak and photon annihilation operator a†

−k:

φn =
1√
N ∑

k
αkeikn(ak +a†

−k), Qn =
e√
N ∑

k

1
iαk

eikn(ak −a†
−k), (B.2)

where αk is a coefficient that needs to be determined. The canonical commutation
relation [φn,Qm] = 2ieδn,m and the identify ∑n ei(k1−k2)n = Nδk1,k2 implies that
[ak1 ,a

†
k2
] = δk1,k2 .

To find αk and ωk, we substitute Eq. (B.2) and the Fourier form of matrices
L and C,

L−1
n,m =

1
N ∑

k
eik(n−m) 2

L
(1− cosk), C−1

n,m =
1
N ∑

k
e−ik(n−m) 1

C0 +2C(1− cosk)
,

(B.3)
into Eq. (2.44), to obtain

HT =
1
2

1
N2 ∑

k1,k2,k3

∑
n,m

�
e2

iαk1

eik1n(ak1 −a†
−k1

)e−ik2(n−m) 1
C0 +2C(1− cosk2)

× 1
iαk3

eik3m(ak3 −a†
−k3

)+

�
h̄
2e

�2

αk1eik1n(ak1 +a†
−k1

)

×eik2(n−m) 2
L
(1− cosk2)αk3eik3m(ak3 +a†

−k3
)

�
. (B.4)
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To simplify the Hamiltonian (B.4), we first sum over n,m. It reduces to delta
functions, i.e., (1/N)∑n exp[i(k1−k2)n] = δk1,k2 and (1/N)∑m exp[i(k2+k3)m] =
δk2,−k3 . Then Eq. (B.4) becomes

HT =
1
2 ∑

k

�
e2

iαk

1
iα−k

1
C0 +2C(1− cosk)

(ak −a†
−k)(a−k −a†

k)

+

�
h̄
2e

�2

α−kαk
2
L
(1− cosk)(a−k +a†

k)(ak +a†
−k)

�
. (B.5)

Using the identity φn = φ †
n , one can certify that α−k equals α∗

k . As a result, the
terms in the square brackets are an even function of k, which means we can change
k by −k if necessary. Moreover, we also apply the commutation relation [ak,a

†
k ] =

1. Using these relations, the Hamiltonian above is rewritten as

HT =
1
2 ∑

k

�
− e2

|αk|2
1

C0 +2C(1− cosk)
+

�
h̄
2e

�2

|αk|2
2
L
(1− cosk)

�

×
�

aka−k +a†
−ka†

k

�

+∑
k

�
e2

|αk|2
1

C0 +2C(1− cosk)
+

�
h̄
2e

�2

|αk|2
2
L
(1− cosk)

�

×
�

a†
kak +

1
2

�
. (B.6)

Comparing with Eq. (B.6) with (2.46), we get the following two relations:

− e2

|αk|2
1

C0 +2C(1− cosk)
+

�
h̄
2e

�2

|αk|2
2
L
(1− cosk) = 0, (B.7)

e2

|αk|2
1

C0 +2C(1− cosk)
+

�
h̄
2e

�2

|αk|2
2
L
(1− cosk) = h̄ωk. (B.8)

From these two equations, we find

α2
k =

e2

h̄

�
L
C

�
1

1− cosk+C0/2C
1

1− cosk
, (B.9)

ωk =

�
1

LC

�
1− cosk

1− cosk+C0/2C
. (B.10)

Eq. (B.10) is exactly the dispersion relation (2.33) which was obtained using the
classical approach.



APPENDIX C
Photon-photon interactions: weakly
nonlinear regime

This appendix aims to calculate the current correction at 2eV = h̄ω �
s studied

in chapter 4. In particular, this resonance feature comes from the contribution of
the four-point retarded Green’s function ∼ δGint

R
�
φ 2

m,φ 2
m;ω

�
. Here, we calculate

this Green’s function in the vicinity of 2eV = h̄ω �
s.

First of all, the four-point retarded Green’s function δGint
R
�
φ 2

m,φ 2
m;ω

�
takes

the form (Es
J/π2) f 2(ω), where f (ω) takes the form [see Eq, (4.38)]:

∑
±

∞�

0

dω1 ℑ [GR(φm,φδ ;ω1)]GR(φm,φδ ;ω±ω1). (C.1)

The integral is dominated by frequencies where both Green’s functions are close to
resonance, ω1 ≈ω±ω1 ≈ω �

s. This requires ω ≈ 2ω �
s. We, thus, approximate ω =

2ω �
s + δω and ω1 = ω �

s + δω1. The Green’s functions (4.18) close to resonance
take the form

GR
�
φδ ,φm;ω �

s +δω
�
� 2

π
ω �

s

1
RQCcω �

s

1

1− iδω
Γ

ei ω �
s

ω0
|m|
. (C.2)

We then rewrite

f (ω)�
�

2π
RQCc(ω �

s)
2

�2

ei ω �
s

ω0
|m|

∞�

−∞

dδω1
sin ω �

s|m|
ω0

+ δω1
Γ cos ω �

s|m|
ω0

1+
�

δω1
Γ

�2
1

1− iδω−δω1
Γ

.

(C.3)
It is straightforward to evaluate the convolution integrals to obtain

Re [ f (ω)] � π
�

πCc

2RQC0CΣ

�2 δω cosα �+2Γsinα �

(δω)2 +4Γ2 , (C.4)

Im [ f (ω)] � −π
�

πCc

2RQC0CΣ

�2 2Γcosα � −δω sinα �

(δω)2 +4Γ2 . (C.5)
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Finally, to compute the current-voltage characteristic, we need

Im
�
δGint

R
�
φ 2

m,φ
2
m;2ω �

s +δω
��

� 2Es
J

π2 Re
�

f (2ω �
s +δω)

�
ℑ
�

f (2ω �
s +δω)

�

�− π2

8Es
J

�
Z0

RQ

�2 4Γ2

[(δω)2 +4Γ2]2

�
2δωΓcos(2α �)−

�
δω2 −4Γ2�

2
sin(2α �)

�
.

(C.6)

This is the result used to compute the current correction δ I2 [see Eq. (4.44)] due
to photon-photon interactions (two photons processes).



APPENDIX D
Time-ordered Green’s function:
strongly nonlinear regime

In this appendix, we present the derivation of the two-point time-ordered
Green’s functions G [φn(τ)φm(0)] in strongly nonlinear regime.

This Green’s function is defined as

�Tτ φn(τ)φm(0)�Hsb =
�Tτ φn(τ)φm(0)S(β )�H(0)

�S(β )�H(0)
, (D.1)

where we used the perturbation theory addressed in chapter 3. The S matrix
S(β ) = Tτ exp

�
−� β

0 dτ V (τ)
�
. Inserting the interaction term, i.e., Eq. (5.3), we

get

S(β ) = 1+
∞

∑
n=1

(−1)nλ n

n!

β�

0

dτ1

β�

0

dτ2 ...

β�

0

dτnTτ σz(τ1)σz(τ2)...σz(τn)

×Q0(τ1)Q0(τ2) · · · · ·Q0(τn).(D.2)

Substituting Eq. (D.2) into Eq. (D.1), we find only the even orders of the perturba-
tion series contribute. This is because each phase/charge operator is expressed in
terms of a combination of creation and annihilation operators, which must appear
in pairs in the bracket. As a result, the numerator of Eq. (D.1) is expressed as

�Tτ φn(τ)φm(0)�H(0) +
∞

∑
n=1

λ 2n

(2n)!

β�

0

dτ1

β�

0

dτ2...

β�

0

dτ2n �Tτ φn(τ)φm(0)

× σz(τ1)σz(τ2)...σz(τ2n)Q0(τ1)Q0(τ2) · · · · ·Q0(τ2n)�H(0) . (D.3)

As we argued in chapter 3, using representation of Feynman diagrams, the vac-
uum polarization diagrams, i.e., the denominator of Eq. (D.1), exactly cancel the
disconnected diagrams in the expansion of Eq. (D.3). Hence we only consider the
connected diagrams.
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As the phase/charge operator commute with the spin operator, the bracket in
Eq. (D.3) is immediately factored into two separate parts

�Tτ φn(τ)φm(0)Q0(τ1)Q0(τ2) · · · · ·Q0(τ2n)�H(0) · �Tτ σz(τ1)σz(τ2)...σz(τ2n)�H(0) .
(D.4)

Using Wick’s theorem for the first part of Eq. (D.4), we consider all the possible
pairings, where each pairing has to be time-ordered. It is easy to see that all the
times τi (i = 1,2, ..,2n) are symmetric, so a convenient way is writing down one
of the possible pairing, and then counting the number of all possible pairings.
Except the operators φn(τ) and φm(0), there are 2n charge operators. We choose
randomly two of them, Q0(τi) and Q0(τ j), to pair with φn(τ) and φm(0), which
yields 2n · (2n−1) possibilities. Here, we write down one of them,

�Tτ φn(τ)Q0(τ1)�H(0)�Tτ Q0(τ2)φm(0)�H(0) . (D.5)

Then the remaining (2n−2) charge operators Q0 (for n ≥ 2) pair with each other,
consisting n−1 charge-charge correlator. To do so, we first choose randomly two
of them (i.e., the first charge-charge correlator), it counts C2

2n−2
1 possibilities, then

the second one counts C2
2n−4 times, and so on till C2

2. Such operation indeed lead
the final possibilities expanding (n− 1)! times2. Now we count all the possible
pairings3

2n · (2n−1) ·C2
2n−2 ·C2

2n−2 · · ·C2
2

(n−1)!
=

2n!
(2n−1)(n−1)!

. (D.6)

One of the paring result is expressed as

�Tτ Q0(τ3)Q0(τ4)�H(0)�Tτ Q0(τ5)Q0(τ6)�H(0) · · ·�Tτ Q0(τzn−1)Q0(τ2n)�H(0) .
(D.7)

In contrast with the charge operators, spin operators in the second part of Eq. (D.4)
can not be decoupled into two-point correlator. Instead, we keep them in a bracket.

Combining Eqs. (D.3) - (D.6), and rewriting the correlation functions by

1Here, Cm
n = n!/[m!(n−m)!] is a combinatorial number in algebra.

2This is due to the pairing rule: the time ordering of each pair gives the proper time ordering
to the entire result.

3Indeed, it is the prefactor of the resulting pairing.
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time-ordered Green’s functions, we obtain

G [φn(τ)φm(0)] = G (0)[φn(τ)φm(0)]+λ 2
β�

0

dτ1

β�

0

dτ2 G (0)[φn(τ)Q0(τ1)]

×G (0)[σz(τ1)σz(τ2)] ·G (0)[Q0(τ2)φm(0)]+
∞

∑
n=2

2(λ 2n)

2n(n−1)!

β�

0

dτ1

β�

0

dτ2...

β�

0

dτ2n G (0)[φn(τ)Q0(τ1)]G
(0)[Q0(τ2)φm(0)]G (0)[σz(τ1)σz(τ2)...σz(τ2n)]

×G (0)[Q0(τ3)Q0(τ4)]G
(0)[Q0(τ5)Q0(τ6)]...G

(0)[Q0(τ2n−1)Q0(τ2n)] (D.8)

Next, we calculate the two-point spin-spin time-ordered Green’s function
G [σz(τ1)σz(τ2)]. We define it as

�Tτ σz(τ1)σz(τ2)�Hsb =
�Tτ σz(τ1)σz(τ2)S(β )�H(0)

�S(β )�H(0)
. (D.9)

Substituting Eq. (D.2) into Eq. (D.9), we obtain that the numerator of Eq. (D.9)
reads4

�Tτ σz(τ1)σz(τ2)�H(0) +
∞

∑
n=2

λ 2(n−1)

[2(n−1)]!

β�

0

dτ3

β�

0

dτ4 · · ·
β�

0

dτ2n �Tτ σz(τ1)

× σz(τ2)σz(τ3)σz(τ4) · · ·σz(τ2n))Q0(τ3)Q0(τ4) · · ·Q0(τ2n))
�

H(0) . (D.10)

The result of Eq. (D.9) comes from the connected diagram of Eq. (D.10). The
spin operators and charge operators are decoupled, and then the charge operators
pair with each other. One of the possible pairing result is

�Tτ Q0(τ3)Q0(τ4)�H(0)�Tτ Q0(τ5)Q0(τ6)�H(0) · · ·�Tτ Q0(τ2n−1)Q0(τ2n)�H(0)

×�Tτ σz(τ1)σz(τ2)�σz(τ3)σz(τ4) · · ·σz(τ2n))�H(0) . (D.11)

In the equation above, 2n− 2 charge operators consist of m− 1 pairings. The
number of all the pairing way is counted as

(2n−2)!
2n−1(n−1)!

. (D.12)

4The odd orders do not contribute. The argument is the same as for two-point phase-phase
Green’s function.
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Collecting Eqs. (D.9)- (D.12), we obtain

G [σz(τ1)σz(τ2)] = G (0)[σz(τ1)σz(τ2)]+
∞

∑
n=2

2λ 2(n−1)

2n(n−1)!

β�

0

dτ3

β�

0

dτ4...

β�

0

dτ2n G (0)[σz(τ1)σz(τ2)...σz(τ2n)]G
(0)[Q0(τ3)Q0(τ4)]G

(0)[Q0(τ5)Q0(τ6)]

×...G (0)[Q0(τ2n−1)Q0(τ2n)]. (D.13)

Comparing Eq. (D.8) and Eq. (D.13), we find a simple relation that related the
two-point phase-phase Green’s function and two-point spin-spin Green’s function:

G [φn(τ)φm(0)] = G (0)[φn(τ)φm(0)]+λ 2
β�

0

dτ1

β�

0

dτ2 G (0)[φn(τ)Q0(τ1)]

×G [σz(τ1)σz(τ2)]G
(0)[Q0(τ2)φm(0)]. (D.14)

The result is given in Eq. (5.8), and the corresponding Feynman diagram is shown
in Fig. 5.4.

Four-point phase-phase Green’s functions can be evaluated in the same way.
The main results are given in Eq. (5.17) [see the corresponding Feynman diagram
in Fig. 5.7].



APPENDIX E
Two-point Green’s functions in
k-space

In order to evaluate unperturbed Green’s functions G(0)
R (φn,Q0), G(0)

R (Q0,φm),
and G(0)

R (Q0,Q0) in chapter 5, we first rewrite the phase/charge operators in terms
of creation (a†

k) and annihilate operator (ak) [see Eq. (2.47)]. Therefore, we need
to know the two-point Green’s functions in k space.

To obtain them, we define

G(0)
R [ak1(t)a

†
k2
(0)] = h̄Θ(t)�[ak1(t),a

†
k2
(0)]�H(0) , (E.1)

where Θ(t) is the Heaviside step function. The unperturbed Hamiltonian H(0) was
given by Eq. (5.5).

Next, let us derive the equation of motion. The time derivative of the Green’s
function reads

∂tG
(0)
R [ak1(t)a

†
k2
(0)] = iδk1k2 − iωk1G(0)

R [ak1(t)a
†
k2
(0)]. (E.2)

Taking Fourier transform of Eq. (E.2), we get

(ω −ωk1)G
(0)
R (ak1 ,a

†
k2

;ω) =−δk1,k2 . (E.3)

Hence,

G(0)
R (ak1 ,a

†
k2

;ω) =− δk1,k2

ω −ωk1

. (E.4)

In the same way, we obtain

G(0)
R (a†

k1
,ak2;ω) =

δk1,k2

ω +ωk1

. (E.5)

Using these two basic Green’s function, the required Green’s functions in chapter
5 can be easily evaluated.
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