E. F. Garman, Radiation damage in macromolecular crystallography: what is it and why should we care?, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.468, pp.339-51, 2010.
DOI : 10.1107/S0907444910008656

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852297

H. N. Chapman, C. Caleman, and N. Timneanu, Diffraction before destruction, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.1, issue.Pt 4, p.20130313, 2014.
DOI : 10.1107/S0907444910007262

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052855

R. Neutze, R. Wouts, D. Van-der-spoel, E. Weckert, and J. Hajdu, Potential for biomolecular imaging with femtosecond X-ray pulses, Nature, vol.406, issue.6797, pp.752-757, 2000.
DOI : 10.1038/35021099

H. N. Chapman, Femtosecond X-ray protein nanocrystallography, Nature, vol.65, issue.7332, pp.73-77, 2011.
DOI : 10.1038/nature09750

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429598

L. Lomb, Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser, Physical Review B, vol.84, issue.21, p.214111, 2011.
DOI : 10.1103/PhysRevB.84.214111

A. Barty, Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements, Nature Photonics, vol.83, issue.1, pp.35-40, 2011.
DOI : 10.1038/nphoton.2011.297

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783007

F. Stellato, Room-temperature macromolecular serial crystallography using synchrotron radiation, IUCrJ, vol.33, issue.4, pp.204-212, 2014.
DOI : 10.1107/S2052252514010070/it5001sup1.pdf

URL : http://doi.org/10.1107/s2052252514010070

P. Nogly, Lipidic cubic phase serial millisecond crystallography using synchrotron radiation, IUCrJ, vol.46, issue.2, pp.168-176, 2015.
DOI : 10.1107/S2052252514026487/jt5008sup1.pdf

URL : http://doi.org/10.1107/s2052252514026487

V. I. Veksler, A New Method of the Acceleration of Relativistic Particles, 1944.

E. M. Mcmillan, The Synchrotron???A Proposed High Energy Particle Accelerator, Physical Review, vol.68, issue.5-6, pp.143-144, 1945.
DOI : 10.1103/PhysRev.68.143

F. R. Elder, R. V. Langmuir, and H. C. Pollock, Radiation from Electrons Accelerated in a Synchrotron, Physical Review, vol.74, issue.1, pp.52-56, 1948.
DOI : 10.1103/PhysRev.74.52

C. M. Castelli, N. M. Allinson, K. J. Moon, and D. L. Watson, High spatial resolution scintillator screens coupled to CCD detectors for X-ray imaging applications, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.348, issue.2-3, pp.649-653, 1994.
DOI : 10.1016/0168-9002(94)90817-6

M. W. Tate, A Large-Format High-Resolution Area X-ray Detector Based on a Fiber-Optically Bonded Charge-Coupled Device (CCD), Journal of Applied Crystallography, vol.28, issue.2
DOI : 10.1107/S0021889894007867

R. L. Walter, High-resolution macromolecular structure determination using CCD detectors and synchrotron radiation, Structure, vol.3, issue.8, pp.835-844, 1995.
DOI : 10.1016/S0969-2126(01)00218-0

URL : http://doi.org/10.1016/s0969-2126(01)00218-0

J. M. Madey, Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field, Journal of Applied Physics, vol.92, issue.5, p.1906, 1971.
DOI : 10.1103/PhysRev.128.2207

L. R. Elias, W. M. Fairbank, J. M. Madey, H. A. Schwettman, and . Smith, Observation of Stimulated Emission of Radiation by Relativistic Electrons in a Spatially Periodic Transverse Magnetic Field, Physical Review Letters, vol.36, issue.13, pp.717-720, 1976.
DOI : 10.1103/PhysRevLett.36.717

O. H. Seeck and B. M. Murphy, X-ray diffraction : modern experimental techniques
DOI : 10.1201/b15674

J. C. Kendrew, A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis, Nature, vol.178, issue.4610, pp.662-666, 1958.
DOI : 10.1002/hlca.19490320118

G. Petsko and D. Ringe, From Sequence to Structure, Protein Struct. Funct, vol.237, pp.2-4810, 2004.

S. Tan, H. T. Tan, and M. C. Chung, Membrane proteins and membrane proteomics, PROTEOMICS, vol.11, issue.19, pp.3924-3956, 2008.
DOI : 10.1002/pmic.200800597

R. John and . Helliwell, Macromolecular Crystallography with Synchrotron Radiation, 1992.

S. H. White, Membrane Proteins of Known 3D Structure, Biomol.Uci.Edu/Mpstruc, vol.1085, pp.3-5, 2016.

Z. Otwinowski and W. Minor, International Tables for Crystallography. International Tables for Crystallography Volume F: Crystallography of biological macromolecules F, 2006.

J. Drenth and J. Mesters, Principles of protein X-ray crystallography: Third edition. Principles of Protein X-Ray Crystallography: Third Edition, 2007.
DOI : 10.1007/978-1-4757-2335-9

P. Sliz, S. C. Harrison, and G. Rosenbaum, How does Radiation Damage in Protein Crystals Depend on X-Ray Dose?, Structure, vol.11, issue.1, pp.13-19, 2003.
DOI : 10.1016/S0969-2126(02)00910-3

C. C. Blake and D. C. Phillips, In Biological Effects of Ionizing Radiation at the Molecular Level, pp.183-191, 1962.

W. P. Burmeister, Structural changes in a cryo-cooled protein crystal owing to radiation damage, Acta Crystallographica Section D Biological Crystallography, vol.56, issue.3, pp.328-341, 2000.
DOI : 10.1107/S0907444999016261

M. Weik, Specific chemical and structural damage to proteins produced by synchrotron radiation, Proc. Natl. Acad. Sci. 97, pp.623-628, 2000.
DOI : 10.1126/science.279.5358.1940

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC15380/pdf

M. Weik, Solvent behaviour in flash-cooled protein crystals at cryogenic temperatures, Acta Crystallographica Section D Biological Crystallography, vol.57, issue.4, pp.566-573, 2001.
DOI : 10.1107/S0907444901001196

C. Nave and E. Garman, Towards an understanding of radiation damage in cryocooled macromolecular crystals, Journal of Synchrotron Radiation, vol.12, issue.3, pp.257-260, 2005.
DOI : 10.1107/S0909049505007132

O. Carugo and K. D. Carugo, When X-rays modify the protein structure: radiation damage at work, Trends in Biochemical Sciences, vol.30, issue.4, pp.213-219, 2005.
DOI : 10.1016/j.tibs.2005.02.009

E. F. Garman, Macromolecular crystallography radiation damage research: what's new?, Journal of Synchrotron Radiation, vol.49, issue.3, pp.313-317, 2011.
DOI : 10.1107/S0909049511013859

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083910

M. Warkentin, R. Badeau, J. B. Hopkins, and R. E. Thorne, Spatial distribution of radiation damage to crystalline proteins at, pp.25-300

P. Roedig, Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering, Journal of Applied Crystallography, vol.97, issue.3, pp.968-975, 2016.
DOI : 10.1107/S1600576716006348

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886986

N. Coquelle, Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams, Acta Crystallographica Section D Biological Crystallography, vol.68, issue.5, pp.1184-1196, 2015.
DOI : 10.1107/S1399004715004514/kw5115sup1.pdf

URL : https://hal.archives-ouvertes.fr/hal-01162621

I. Usón and G. M. Sheldrick, Advances in direct methods for protein crystallography, Current Opinion in Structural Biology, vol.9, issue.5, pp.643-648, 1999.
DOI : 10.1016/S0959-440X(99)00020-2

G. L. Taylor, Introduction to phasing, Acta Crystallographica Section D Biological Crystallography, vol.59, issue.4, pp.325-363, 2010.
DOI : 10.1107/S0907444910006694

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852296

M. G. Rossmann, Molecular replacement ??? historical background, Acta Crystallographica Section D Biological Crystallography, vol.57, issue.10, pp.1360-1366, 2001.
DOI : 10.1107/S0907444901009386

A. Wlodawer, W. Minor, Z. Dauter, and M. Jaskolski, Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures, FEBS Journal, vol.40, issue.1, pp.1-21, 2008.
DOI : 10.1111/j.1742-4658.2007.06178.x

A. T. Brünger, Free R value: a novel statistical quantity for assessing the accuracy of crystal structures, Nature, vol.355, issue.6359, pp.472-475, 1992.
DOI : 10.1038/355472a0

P. Ma, Observing the overall rocking motion of a protein in a crystal, Nature Communications, vol.53, pp.1-24, 2015.
DOI : 10.1038/ncomms9361

URL : https://hal.archives-ouvertes.fr/hal-01233308

S. Murakami, R. Nakashima, E. Yamashita, and A. Yamaguchi, Crystal structure of bacterial multidrug efflux transporter AcrB, Nature, vol.11, issue.6907, pp.587-593, 2002.
DOI : 10.1107/S0021889891004399

N. Bocquet, X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation, Nature, vol.3, issue.7225, pp.111-114, 2009.
DOI : 10.1523/JNEUROSCI.3467-06.2006

U. Weierstall, Liquid sample delivery techniques for serial femtosecond crystallography, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.18, issue.6, p.20130337, 2014.
DOI : 10.1364/OE.18.005713

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052872

. Silson, Available at: http://www.silson.com

T. A. White, : a software suite for snapshot serial crystallography, Journal of Applied Crystallography, vol.67, issue.2, pp.335-341, 2012.
DOI : 10.1107/S0021889812002312

URL : http://bib-pubdb1.desy.de/record/96109/files/White2012-JAppCryst-CrystFEL.pdf

A. J. Duisenberg, Indexing in single-crystal diffractometry with an obstinate list of reflections, Journal of Applied Crystallography, vol.25, issue.2, pp.92-96, 1992.
DOI : 10.1107/S0021889891010634

M. , N. Ulam, and S. , The Monte Carlo method, J. Am. Stat. Assoc, vol.44, pp.335-341, 1949.

R. A. Kirian, Femtosecond protein nanocrystallography???data analysis methods, Optics Express, vol.18, issue.6, p.5713, 2010.
DOI : 10.1364/OE.18.005713

URL : http://bib-pubdb1.desy.de/record/92690/files/Kirian%202010%20OpticsExpress.pdf

K. Diederichs and P. A. Karplus, Better models by discarding data?, Acta Crystallographica Section D Biological Crystallography, vol.67, issue.7, pp.1215-1237, 2013.
DOI : 10.1107/S0907444913001121

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689524

P. R. Evans, An introduction to data reduction: space-group determination, scaling and intensity statistics, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.4, pp.282-92, 2011.
DOI : 10.1107/S090744491003982X

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3069743

E. J. Levin, D. A. Kondrashov, G. E. Wesenberg, and G. N. Phillips, Ensemble Refinement of Protein Crystal Structures: Validation and Application, Structure, vol.15, issue.9, pp.1040-52, 2007.
DOI : 10.1016/j.str.2007.06.019

P. D. Adams, : a comprehensive Python-based system for macromolecular structure solution, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.2, pp.213-221, 2010.
DOI : 10.1107/S0907444909052925

R. A. Kirian, Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals, Acta Crystallographica Section A Foundations of Crystallography, vol.92, issue.2, pp.131-171, 2011.
DOI : 10.1016/j.ultramic.2010.10.016

A. J. Mccoy, crystallographic software, Journal of Applied Crystallography, vol.40, issue.4, pp.658-674, 2007.
DOI : 10.1107/S0021889807021206

P. Emsley and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2132, 2004.
DOI : 10.1107/S0907444904019158

W. L. Delano, The PyMOL Molecular Graphics System, Version 1.1. Schrödinger LLC http, 2002.

C. Gati, grown microcrystals using synchrotron radiation, IUCrJ, vol.1, issue.2, pp.87-94, 2014.
DOI : 10.1107/S2052252513033939/jt5002sup1.pdf

M. S. Hunter, Fixed-target protein serial microcrystallography with an x-ray free electron laser, Scientific Reports, vol.12, issue.1, p.6026, 2014.
DOI : 10.1088/1367-2630/12/3/035021

URL : http://doi.org/10.1038/srep06026

P. Roedig, A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering, Scientific Reports, vol.14, issue.1, p.10451, 2015.
DOI : 10.1110/ps.051516405

S. Oghbaey, Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography, Acta Crystallographica Section D Structural Biology, vol.525, issue.8, pp.944-55, 2016.
DOI : 10.1107/S2059798316010834/gm5046sup1.pdf

C. G. Roessler, Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography, Structure, vol.24, issue.4, pp.631-671, 2016.
DOI : 10.1016/j.str.2016.02.007

URL : http://dx.doi.org/10.1016/j.str.2016.02.007

E. M. Landau and J. P. Rosenbusch, Lipidic cubic phases: A novel concept for the crystallization of membrane proteins, Proceedings of the National Academy of Sciences, vol.26, issue.15, pp.14532-14535, 1996.
DOI : 10.1021/bi00389a032

V. I. Gordeliy, Molecular basis of transmembrane signalling by sensory rhodopsin II???transducer complex, Nature, vol.50, issue.6906, pp.484-487, 2002.
DOI : 10.1038/23512

V. Cherezov, High-Resolution Crystal Structure of an Engineered Human ??2-Adrenergic G Protein-Coupled Receptor, Science, vol.22, issue.5, pp.1258-65, 2007.
DOI : 10.1093/bioinformatics/btk023

U. Weierstall, Droplet streams for serial crystallography of proteins, Experiments in Fluids, vol.5, issue.5, pp.675-689, 2008.
DOI : 10.1007/s00348-007-0426-8

D. P. Deponte, Gas dynamic virtual nozzle for generation of microscopic droplet streams, Journal of Physics D: Applied Physics, vol.41, issue.19, p.7, 2008.
DOI : 10.1088/0022-3727/41/19/195505

U. Weierstall, Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography, Nature Communications, vol.66, p.3309, 2014.
DOI : 10.1038/ncomms4309

URL : http://doi.org/10.1038/ncomms4309

W. Liu, Serial Femtosecond Crystallography of G Protein-Coupled Receptors, Science, vol.66, issue.Pt 4, pp.175-180, 2013.
DOI : 10.1107/S0907444910007493

P. Nogly, Lipidic cubic phase serial millisecond crystallography using synchrotron radiation, IUCrJ, vol.46, issue.2, pp.168-76, 2015.
DOI : 10.1107/S2052252514026487/jt5008sup1.pdf

URL : http://doi.org/10.1107/s2052252514026487

S. Botha, Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams, Acta Crystallographica Section D Biological Crystallography, vol.46, issue.2, pp.387-397, 2015.
DOI : 10.1107/S1399004714026327/wa5078sup2.xlsx

URL : http://hdl.handle.net/11858/00-001M-0000-0026-CE24-0

M. A. Jordan and L. Wilson, Microtubules as a target for anticancer drugs, Nature Reviews Cancer, vol.4, issue.4, pp.253-265, 2004.
DOI : 10.1038/nrc1317

U. Weierstall, Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography, Nature Communications, vol.66, p.3309, 2014.
DOI : 10.1038/ncomms4309

URL : http://doi.org/10.1038/ncomms4309

F. Cipriani, CrystalDirect: a new method for automated crystal harvesting based on laser-induced photoablation of thin films, Acta Crystallographica Section D Biological Crystallography, vol.38, issue.10, pp.1393-1402, 2012.
DOI : 10.1107/S0907444912031459/kw5049sup2.wmv

U. Zander, Automated harvesting and processing of protein crystals through laser photoablation, Acta Crystallographica Section D Structural Biology, vol.68, issue.4
DOI : 10.1107/S2059798316000954/wa5104sup7.mp4

H. Wel and K. Loeve, Isolation and Characterization of Thaumatin I and II, the Sweet-Tasting Proteins from Thaumatococcus daniellii Benth, European Journal of Biochemistry, vol.261, issue.2, pp.221-225, 1972.
DOI : 10.1016/0003-9861(59)90090-6

G. Hassaine, X-ray structure of the mouse serotonin 5-HT3 receptor, Nature, vol.57, issue.7514, pp.276-281, 2014.
DOI : 10.1038/nature13552

URL : https://hal.archives-ouvertes.fr/hal-01102530

N. Bocquet, A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family, Nature, vol.98, issue.7123, pp.116-119, 2007.
DOI : 10.1038/nature05371

URL : https://hal.archives-ouvertes.fr/hal-00122527

K. Imoto, A ring of uncharged polar amino acids as a component of channel constriction in the nicotinic acetylcholine receptor, FEBS Letters, vol.254, issue.2, pp.193-200, 1991.
DOI : 10.1016/0014-5793(91)81068-J

L. Sauguet, Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels, The EMBO Journal, vol.8, issue.5, pp.728-769, 2013.
DOI : 10.1073/pnas.1009313107

URL : https://hal.archives-ouvertes.fr/hal-01084646

V. N. Morozov and T. Morozova, Viscoelastic properties of protein crystals: Triclinic crystals of hen egg white lysozyme in different conditions, Biopolymers, vol.7, issue.3, pp.451-467, 1981.
DOI : 10.1002/bip.1981.360200304

R. Krauss, I. Sica, F. Mattia, C. A. Merlino, and A. , Increasing the X-ray Diffraction Power of Protein Crystals by Dehydration: The Case of Bovine Serum Albumin and a Survey of Literature Data, International Journal of Molecular Sciences, vol.12, issue.12, pp.3782-800, 2012.
DOI : 10.3390/ijms13033782

B. Heras and J. L. Martin, Post-crystallization treatments for improving diffraction quality of protein crystals, Acta Crystallographica Section D Biological Crystallography, vol.61, issue.9, pp.1173-1180, 2005.
DOI : 10.1107/S0907444905019451

M. C. Vaney, S. Maignan, M. Riès-kautt, and . Ducriux, High-Resolution Structure (1.33 ??) of a HEW Lysozyme Tetragonal Crystal Grown in the APCF Apparatus. Data and Structural Comparison with a Crystal Grown under Microgravity from SpaceHab-01 Mission, Acta Crystallographica Section D Biological Crystallography, vol.52, issue.3, pp.505-522, 1996.
DOI : 10.1107/S090744499501674X

I. R. Kleckner and M. P. Foster, An introduction to NMR-based 125

K. Lindorff-larsen, P. Maragakis, S. Piana, and D. E. Shaw, Picosecond to Millisecond Structural Dynamics in Human Ubiquitin, The Journal of Physical Chemistry B, vol.120, issue.33, pp.8313-8320, 2016.
DOI : 10.1021/acs.jpcb.6b02024

URL : http://doi.org/10.1021/acs.jpcb.6b02024

E. C. Johnson, G. A. Lazar, J. R. Desjarlais, and T. M. Handel, Solution structure and dynamics of a designed hydrophobic core variant of ubiquitin, Structure, vol.7, issue.8, pp.967-976, 1999.
DOI : 10.1016/S0969-2126(99)80123-3

D. N. Ermolenko, B. Dangi, A. Gvritishvili, A. M. Gronenborn, and G. Makhatadze, Elimination of the C-cap in ubiquitin???structure, dynamics and thermodynamic consequences, Biophysical Chemistry, vol.126, issue.1-3, pp.25-35, 2007.
DOI : 10.1016/j.bpc.2006.03.017

H. M. Berman, The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-242, 2000.
DOI : 10.1093/nar/28.1.235

J. S. Fraser, Accessing protein conformational ensembles using room-temperature X-ray crystallography, Proceedings of the National Academy of Sciences, vol.40, issue.3, pp.16247-52, 2011.
DOI : 10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182744

K. Y. Huang, G. A. Amodeo, L. Tong, and A. Mcdermott, The structure of human ubiquitin in 2-methyl-2,4-pentanediol: A new conformational switch, Protein Science, vol.47, issue.3, pp.630-639, 2011.
DOI : 10.1002/pro.584

K. Cowtan, P. Emsley, and K. S. Wilson, From crystal to structure with CCP4, Acta Crystallographica Section D Biological Crystallography, vol.67, issue.4, pp.233-234, 2011.
DOI : 10.1107/S0907444911007578

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3069737

H. Frauenfelder, Thermal expansion of a protein, Biochemistry, vol.26, issue.1, pp.254-261, 1987.
DOI : 10.1021/bi00375a035

D. A. Keedy, Crystal Cryocooling Distorts Conformational Heterogeneity in a Model Michaelis Complex of DHFR, Structure, vol.22, issue.6, pp.899-910, 2014.
DOI : 10.1016/j.str.2014.04.016

V. Berejnov, Effects of cryoprotectant concentration and cooling rate on vitrification of aqueous solutions, Journal of Applied Crystallography, vol.39, issue.2, pp.244-251, 2006.
DOI : 10.1107/S0021889806004717

S. Wang, Molecular Dynamics Analysis Reveals Structural Insights into Mechanism of Nicotine N-Demethylation Catalyzed by Tobacco Cytochrome P450 Mono-Oxygenase, PLoS ONE, vol.394, issue.8, p.23342, 2011.
DOI : 10.1371/journal.pone.0023342.s001

G. N. Phillips, Comparison of the dynamics of myoglobin in different crystal forms, Biophysical Journal, vol.57, issue.2, 1990.
DOI : 10.1016/S0006-3495(90)82540-6

. Hingefind, Available at

S. Tsujino, Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature, Scientific Reports, vol.67, issue.1, p.25558, 2016.
DOI : 10.1107/S0021889897006766

URL : http://doi.org/10.1038/srep25558

A. S. Soares, plates and on a movable crystal conveyor belt, Journal of Synchrotron Radiation, vol.39, issue.6, pp.1231-1240, 2014.
DOI : 10.1107/S1600577514017731

K. Ayyer, Macromolecular diffractive imaging using imperfect crystals, Nature, vol.70, issue.7589, pp.202-206, 2016.
DOI : 10.1038/nature16949

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839592