J. Yick, B. Mukherjee, and D. Ghosal, Wireless sensor network survey, Computer Networks, vol.52, issue.12, pp.2292-2330, 2008.
DOI : 10.1016/j.comnet.2008.04.002

S. Movassaghi, M. Abolhasan, J. Lipman, D. Smith, and A. Jamalipour, Wireless Body Area Networks: A Survey, IEEE Communications Surveys & Tutorials, vol.16, issue.3, pp.1658-1686, 2014.
DOI : 10.1109/SURV.2013.121313.00064

URL : http://hdl.handle.net/1885/39349

M. Swan, Emerging Patient-Driven Health Care Models: An Examination of Health Social Networks, Consumer Personalized Medicine and Quantified Self-Tracking, International Journal of Environmental Research and Public Health, vol.28, issue.2, pp.4921660-4601492, 2009.
DOI : 10.3390/ijerph6020492

Y. Hao and R. Foster, Wireless body sensor networks for health-monitoring applications, Physiological Measurement, vol.29, issue.11, p.27, 2008.
DOI : 10.1088/0967-3334/29/11/R01

C. M. Brigante, N. Abbate, A. Basile, A. C. Faulisi, and S. Sessa, Towards Miniaturization of a MEMS-Based Wearable Motion Capture System, IEEE Transactions on Industrial Electronics, vol.58, issue.8, pp.3234-3241, 2011.
DOI : 10.1109/TIE.2011.2148671

S. J. Roundy, Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion, 2000.

S. Roundy, Micro-Electrostatic Vibration-to-Electricity Converters, Microelectromechanical Systems, 2002.
DOI : 10.1115/IMECE2002-39309

M. Stordeur and I. Stark, Low power thermoelectric generator-self-sufficient energy supply for micro systems, XVI ICT '97. Proceedings ICT'97. 16th International Conference on Thermoelectrics (Cat. No.97TH8291), pp.575-577, 1997.
DOI : 10.1109/ICT.1997.667595

T. Starner, Human-powered wearable computing, IBM Systems Journal, vol.35, issue.3.4, pp.618-629, 1996.
DOI : 10.1147/sj.353.0618

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. S. Shenck and J. A. Paradiso, Energy scavenging with shoe-mounted piezoelectrics, IEEE Micro, vol.21, issue.3, pp.30-42, 2001.
DOI : 10.1109/40.928763

A. Mehra, X. Zhang, A. A. Ayon, I. A. Waitz, M. A. Schmidt et al., A six-wafer combustion system for a silicon micro gas turbine engine, Journal of Microelectromechanical Systems, vol.9, issue.4, pp.517-527, 2000.
DOI : 10.1109/84.896774

U. Olgun, C. C. Chen, and J. L. Volakis, Design of an efficient ambient WiFi energy harvesting system, IET Microwaves, Antennas Propagation, pp.1200-1206, 2012.
DOI : 10.1049/iet-map.2012.0129

J. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol.414, issue.6861, pp.359-367, 2001.
DOI : 10.1142/9789814317665_0024

M. Swan, Sensor Mania! The Internet of Things, Wearable Computing, Objective Metrics, and the Quantified Self 2.0, Journal of Sensor and Actuator Networks, vol.24, issue.3, pp.217-253, 2012.
DOI : 10.1126/science.1199644

C. Bachmann, Low-power wireless sensor nodes for ubiquitous long-term biomedical signal monitoring, IEEE Communications Magazine, vol.50, issue.1, pp.20-27, 2012.
DOI : 10.1109/MCOM.2012.6122528

A. Siligaris, A 60 GHz UWB impulse radio transmitter with integrated antenna in CMOS 65nm SOI technology, 11th IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems (SiRF), pp.153-156, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00799975

B. Marr, B. Degnan, P. Hasler, and D. Anderson, Scaling energy per operation via an asynchronous pipeline Very Large Scale Integration (VLSI) Systems, IEEE Trans. on, vol.21, issue.1, pp.147-151, 2013.
DOI : 10.1109/tvlsi.2011.2178126

A. D. Young, M. J. Ling, and D. K. Arvind, Imusim: A simulation environment for inertial sensing algorithm design and evaluation, Information Processing in Sensor Networks (IPSN) 10th International Conference on, pp.199-210, 2011.

P. Asare, R. F. Dickerson, X. Wu, J. Lach, and J. A. Stankovic, BodySim, Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, SenSys '13, pp.721-72, 2013.
DOI : 10.1145/2517351.2517392

M. Meredith and S. Maddock, Motion capture file formats explained, pp.241-244, 2001.

P. Aggarwal, Z. Syed, X. Niu, and N. El-sheimy, A standard testing and calibration procedure for low cost mems inertial sensors and units Available: https://www.cambridge.org/core/article/ a-standard-testing-and-calibration-procedure-for-low-cost-mems-inertial-sensors-and-units, Journal of Navigation, vol.61, issue.2, pp.323-336, 2008.
DOI : 10.1017/s0373463307004560

I. Skog and P. Händel, Calibration of a mems inertial measurement unit, XVII IMEKO World Congress, pp.17-22, 2006.

K. Benkic, M. Malajner, P. Planinsic, and Z. Cucej, Using RSSI value for distance estimation in wireless sensor networks based on ZigBee, 2008 15th International Conference on Systems, Signals and Image Processing, pp.303-306, 2008.
DOI : 10.1109/IWSSIP.2008.4604427

T. Ayhan, T. Redant, M. Verhelst, and W. Dehaene, Towards a Fast and Hardware Efficient Sub-MM Precision Ranging System, 2012 IEEE Workshop on Signal Processing Systems, pp.203-208, 2012.
DOI : 10.1109/SiPS.2012.20

M. Bocquet, C. Loyez, M. Fryziel, and N. Rolland, Millimeter-wave broadband positioning system for indoor applications, 2012 IEEE/MTT-S International Microwave Symposium Digest, pp.1-3, 2012.
DOI : 10.1109/MWSYM.2012.6258333

URL : https://hal.archives-ouvertes.fr/hal-00802532

A. Muhammad, Evaluation of tdoa techniques for position location in cdma systems, 1997.

R. D. Errico and L. Ouvry, A statistical model for on-body dynamic channels, Int. Journal of Wireless Information Networks, vol.17, pp.3-4, 2010.

M. Mackowiak and L. Correia, A Statistical Model for the Influence of Body Dynamics on the Gain Pattern of Wearable Antennas in Off-Body Radio Channels, Wireless Personal Communications, vol.46, issue.1???2, pp.381-399, 2013.
DOI : 10.1007/s11277-013-1193-x

S. S. Haykin, Kalman filtering and neural networks, 2001.
DOI : 10.1002/0471221546

J. L. Marins, X. Yun, E. R. Bachmann, R. B. Mcghee, and M. J. Zyda, An extended Kalman filter for quaternion-based orientation estimation using MARG sensors, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180), pp.2003-2011, 2001.
DOI : 10.1109/IROS.2001.976367

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Wang, Y. Yang, R. R. Hatch, and Y. Zhang, Adaptive filter for a miniature mems based attitude and heading reference system, Position Location and Navigation Symposium, pp.193-200, 2004.

R. Mahony, T. Hamel, and J. M. Pflimlin, Nonlinear Complementary Filters on the Special Orthogonal Group, IEEE Transactions on Automatic Control, vol.53, issue.5, pp.1203-1218, 2008.
DOI : 10.1109/TAC.2008.923738

URL : https://hal.archives-ouvertes.fr/hal-00488376

S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, Estimation of IMU and MARG orientation using a gradient descent algorithm, 2011 IEEE International Conference on Rehabilitation Robotics, pp.1-7, 2011.
DOI : 10.1109/ICORR.2011.5975346

E. M. Diaz, F. De-ponte-müller, A. R. Jiménez, and F. Zampella, Evaluation of AHRS algorithms for inertial personal localization in industrial environments, 2015 IEEE International Conference on Industrial Technology (ICIT), pp.3412-3417, 2015.
DOI : 10.1109/ICIT.2015.7125605

N. T. Trung, Y. Makihara, H. Nagahara, Y. Mukaigawa, and Y. Yagi, Inertial-sensorbased walking action recognition using robust step detection and inter-class relationships, Pattern Recognition (ICPR), 2012 21st International Conference on, pp.3811-3814, 2012.

A. Lin, J. Zhang, K. Lu, and W. Zhang, An efficient outdoor localization method for smartphones, 2014 23rd International Conference on Computer Communication and Networks (ICCCN), pp.1-8, 2014.
DOI : 10.1109/ICCCN.2014.6911788

X. L. Meng, Z. Q. Zhang, S. Y. Sun, J. K. Wu, and W. C. Wong, Biomechanical model-based displacement estimation in micro-sensor motion capture, Measurement Science and Technology, vol.23, issue.5, pp.551010957-0233, 2012.
DOI : 10.1088/0957-0233/23/5/055101

M. A. Brubaker, L. Sigal, and D. J. Fleet, Estimating contact dynamics, 2009 IEEE 12th International Conference on Computer Vision, pp.2389-2396, 2009.
DOI : 10.1109/ICCV.2009.5459407

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. A. Costa, N. Patwari, A. O. Hero, and . Iii, Distributed weighted-multidimensional scaling for node localization in sensor networks, ACM Transactions on Sensor Networks, vol.2, issue.1, pp.39-64, 2006.
DOI : 10.1145/1138127.1138129

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. F. Cox and M. A. Cox, Multidimensional Scaling, 2000.
DOI : 10.1007/978-3-540-33037-0_14

P. Domingos and M. Pazzani, On the optimality of the simple bayesian classifier under zero-one loss, Machine learning, pp.103-130, 1997.

J. A. Suykens and J. Vandewalle, Least squares support vector machine classifiers, Neural processing letters, pp.293-300, 1999.

G. Huang, Q. Zhu, and C. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, Neural Networks Proceedings. 2004 IEEE International Joint Conference on, pp.985-990, 2004.

J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, vol.61, pp.85-117, 2015.
DOI : 10.1016/j.neunet.2014.09.003

URL : http://arxiv.org/abs/1404.7828

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.9, issue.7553, pp.436-444, 2015.
DOI : 10.1007/s10994-013-5335-x

H. Abdi and L. J. Williams, Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics, vol.1, issue.4, pp.433-459, 2010.
DOI : 10.1002/wics.101

URL : https://hal.archives-ouvertes.fr/hal-01259094

H. L. Daniel-roetenberg and P. Slycke, Xsens mvn: Full 6dof human motion tracking using miniature inertial sensors, 2013.

B. K. Horn, Closed-form solution of absolute orientation using unit quaternions, Journal of the Optical Society of America A, vol.4, issue.4, pp.629-642, 1987.
DOI : 10.1364/JOSAA.4.000629

A. J. Hanson, Visualizing quaternions, ACM SIGGRAPH 2005 Courses, ser. SIGGRAPH '05, 2005.
DOI : 10.1145/1198555.1198701

M. D. Ercegovac, L. Imbert, D. W. Matula, J. M. Muller, and G. Wei, Improving Goldschmidt division, square root, and square root reciprocal, IEEE Transactions on Computers, vol.49, issue.7, pp.759-763, 2000.
DOI : 10.1109/12.863046

URL : https://hal.archives-ouvertes.fr/inria-00072909

W. Li and J. Wang, Effective Adaptive Kalman Filter for MEMS-IMU/Magnetometers Integrated Attitude and Heading Reference Systems, Journal of Navigation, vol.1, issue.01, pp.99-113, 2012.
DOI : 10.2514/2.4228

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

V. Daniel, Practical motion capture in everyday surroundings, ACM Trans. on Graphics, vol.26, p.35, 2007.

H. P. Bruckner, C. Spindeldreier, and H. Blume, Energy-efficient inertial sensor fusion on heterogeneous FPGA-fabric/RISC System on Chip, 2013 Seventh International Conference on Sensing Technology (ICST), pp.506-511, 2013.
DOI : 10.1109/ICSensT.2013.6727704

A. Aulery, C. Roland, J. Diguet, Z. Zheng, O. Sentieys et al., Radio signature based posture recognition using WBSN, Proceedings of the 14th International Conference on Information Processing in Sensor Networks, IPSN '15, pp.322-323, 2015.
DOI : 10.1145/2737095.2737141

URL : https://hal.archives-ouvertes.fr/hal-01119109

A. Aulery, J. P. Diguet, C. Roland, and O. Sentieys, Low-complexity energy proportional posture/gesture recognition based on WBSN, 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp.1-6, 2015.
DOI : 10.1109/BSN.2015.7299414

URL : https://hal.archives-ouvertes.fr/hal-01163581

H. Chung and Y. Lee, MCML: motion capture markup language for integration of heterogeneous motion capture data, Computer Standards & Interfaces, vol.26, issue.2, pp.113-130, 2004.
DOI : 10.1016/S0920-5489(03)00071-0