B. G. Abdallah, C. Kupitz, P. Fromme, and A. Ros, Crystallization of the Large Membrane Protein Complex Photosystem I in a Microfluidic Channel, ACS Nano, vol.7, issue.12, pp.10534-10543, 2013.
DOI : 10.1021/nn402515q

M. Blakeley, Neutron macromolecular crystallography, Crystallography Reviews, vol.64, issue.1, pp.157-218, 2009.
DOI : 10.1080/10448630801975676

A. Boudjemline, E. Saridakis, M. J. Swann, L. Govada, I. M. Mavridis et al., Use of Dual Polarization Interferometry as a Diagnostic Tool for Protein Crystallization, Analytical Chemistry, vol.83, issue.20, pp.7881-7887, 2011.
DOI : 10.1021/ac2017844

M. Budayova-spano, F. Dauvergne, M. Audiffren, T. Bactivelane, and S. Cusack, Acta Cryst, pp.339-347, 2007.

M. Caffrey, Crystallizing Membrane Proteins for Structure Determination: Use of Lipidic Mesophases, Annual Review of Biophysics, vol.38, issue.1, pp.29-51, 2009.
DOI : 10.1146/annurev.biophys.050708.133655

A. Garcia-caballero, Optimization of Protein Crystallization: The OptiCryst Project, Crystal Growth & Design, vol.11, issue.6, pp.2112-2121, 2011.
DOI : 10.1021/cg1013768

P. Gourdon, J. L. Andersen, K. L. Hein, M. Bublitz, B. P. Pedersen et al., HiLiDe???Systematic Approach to Membrane Protein Crystallization in Lipid and Detergent, Crystal Growth & Design, vol.11, issue.6, pp.2098-2106, 2011.
DOI : 10.1021/cg101360d

W. Kabsch, Acta Cryst, pp.133-144, 2010.

P. A. Karplus and K. Diederichs, Linking Crystallographic Model and Data Quality, Science, vol.65, issue.Pt 2, pp.1030-1033, 2012.
DOI : 10.1107/S0907444908037591

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457925

J. Leng and J. Salmon, Microfluidic crystallization, Lab Chip, vol.196, issue.1, pp.24-34, 2009.
DOI : 10.1039/B807653G

M. Levantino, B. A. Yorke, D. C. Monteiro, M. Cammarata, and A. R. Pearson, Using synchrotrons and XFELs for time-resolved X-ray crystallography and solution scattering experiments on biomolecules, Current Opinion in Structural Biology, vol.35, pp.41-48, 2015.
DOI : 10.1016/j.sbi.2015.07.017

URL : https://hal.archives-ouvertes.fr/hal-01225627

A. Meyer, K. Dierks, D. Hilterhaus, T. Klupsch, P. Mü-hlig et al., Acta Cryst, pp.994-998, 2012.

M. Pusey, Developing a Fluorescence-Based Approach to Screening for Macromolecule Crystallization Conditions, Crystal Growth & Design, vol.11, issue.4, pp.1135-1142, 2011.
DOI : 10.1021/cg1013522

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142472

S. Selimovic´, S. ?. Gobeaux, F. Fraden, and S. , Mapping and manipulating temperature???concentration phase diagrams using microfluidics, Lab on a Chip, vol.46, issue.22, pp.1696-1699, 2010.
DOI : 10.1039/b925661j

S. Talreja, S. L. Perry, S. Guha, V. Bhamidi, C. F. Zukoski et al., Determination of the Phase Diagram for Soluble and Membrane Proteins, The Journal of Physical Chemistry B, vol.114, issue.13, pp.4432-4441, 2010.
DOI : 10.1021/jp911780z

J. Zhang, Protein?Protein Interactions ? Computational and Experimental Tools, research papers J. Appl. Cryst, vol.49, pp.806-813, 2012.

N. Junius, Apparatus for temperature-controlled flow-cell dialysis 813
DOI : 10.1107/s1600576716004635

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886980

N. Arnheim, M. Inouye, L. Law, and A. Laudin, Chemical studies on the enzymatic specificity of goose egg white lysozyme, The Journal of Biological Chemistry, vol.248, issue.1, pp.233-236, 1973.

A. Fleming, On a Remarkable Bacteriolytic Element Found in Tissues and Secretions, Proceedings of the Royal Society B: Biological Sciences, vol.93, issue.653, pp.306-317, 1922.
DOI : 10.1098/rspb.1922.0023

C. C. Blake, D. F. Koenig, G. A. Mair, A. C. North, D. C. Phillips et al., Structure of Hen Egg-White Lysozyme: A Three-dimensional Fourier Synthesis at 2 ??? Resolution, Nature, vol.92, issue.4986, pp.757-761, 1965.
DOI : 10.1107/S0365110X61003442

C. Sauter, F. Otálora, J. A. Gavira, O. Vidal, R. Giegé et al., Structure of tetragonal hen egg-white lysozyme at 0.94????? from crystals grown by the counter-diffusion method, Acta Crystallographica Section D Biological Crystallography, vol.57, issue.8, pp.1119-1126, 2001.
DOI : 10.1107/S0907444901008873/li0396sup1.pdf

G. Wilcox, Insulin and insulin resistance, Clinical Biochemist Reviews, vol.26, issue.2, pp.19-39, 2005.

E. N. Baker, T. L. Blundell, J. F. Cutfield, S. M. Cutfield, E. J. Dodson et al., Norioshi Sakabe, and Numminate M. Vijayan. The structure of 2zn pig insulin crystals at 1.5 a resolution, Philosophical Transactions of The Royal Society B, pp.319369-456, 1195.

R. Boistelle and J. Astier, Crystallization mechanisms in solution, Journal of Crystal Growth, vol.90, issue.1-3, pp.14-30, 1988.
DOI : 10.1016/0022-0248(88)90294-1

M. Budayova, Cristallisation et caractérisation de protéines en solution : Diagrammes de phases, cinétiques de croissance et associations moléculaires, 1998.

S. D. Durbin and G. Feher, PROTEIN CRYSTALLIZATION, Annual Review of Physical Chemistry, vol.47, issue.1, pp.171-204, 1996.
DOI : 10.1146/annurev.physchem.47.1.171

S. Lafont, S. Veesler, J. P. Astier, and R. Boistelle, Comparison of solubilities and molecular interactions of BPTI molecules giving different polymorphs, Journal of Crystal Growth, vol.173, issue.1-2, pp.132-140, 1997.
DOI : 10.1016/S0022-0248(96)00834-2

R. Boistelle, J. P. Astier, G. Marchis-mouren, V. Desseaux, and R. Haser, Solubility, phase transition, kinetic ripening and growth rates of porcine pancreatic ??-amylase isoenzymes, Journal of Crystal Growth, vol.123, issue.1-2, pp.109-120, 1992.
DOI : 10.1016/0022-0248(92)90015-B

URL : https://hal.archives-ouvertes.fr/hal-00314579

M. Budayova, J. Astier, S. Veesler, M. Czjzek, A. Belaich et al., Characterization and crystallization of the Endoglucanase A from Clostridium Cellulolyticum in solution, Journal of Crystal Growth, vol.196, issue.2-4, pp.2-4297, 1999.
DOI : 10.1016/S0022-0248(98)00873-2

M. Budayova-spano, F. Dauvergne, M. Audiffren, T. Bactivelane, and S. Cusack, A methodology and an instrument for the temperature-controlled optimization of crystal growth, Acta Crystallographica Section D Biological Crystallography, vol.63, issue.3, pp.339-347, 2007.
DOI : 10.1107/S0907444906054230/fw5105sup6.avi

URL : https://hal.archives-ouvertes.fr/hal-00143153

J. Ma-garcía-ruiz, Counterdiffusion Methods for Macromolecular Crystallization, Methods in Enzymology, vol.368, pp.130-154, 2003.
DOI : 10.1016/S0076-6879(03)68008-0

A. Mcpherson and J. A. Gavira, Introduction to protein crystallization, Acta Crystallographica Section, vol.70, pp.2-20, 2014.

C. L. Hansen, E. Skordalakes, J. M. Berger, and S. R. Quake, A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion, Proceedings of the National Academy of Sciences, pp.99-16531, 2002.
DOI : 10.1016/0003-9861(72)90530-9

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC139178

P. Tabeling, Introduction to Microfluidics, 2005.

M. Rieutord, Une introduction à la dynamique des fluides, 1997.

M. Todd, S. R. Squires, and . Quake, Microfluidics : Fluid physics at the nanoliter scale, Reviews of Modern Physics, vol.77, issue.3, 2005.

J. Leng and J. Salmon, Microfluidic crystallization, Lab Chip, vol.196, issue.1, pp.24-34, 2009.
DOI : 10.1039/B807653G

L. Li and R. F. Ismagilov, Protein Crystallization Using Microfluidic Technologies Based on Valves, Droplets, and SlipChip, Annual Review of Biophysics, vol.39, issue.1, pp.139-158, 2010.
DOI : 10.1146/annurev.biophys.050708.133630

B. Zheng, L. Spencer-roach, and R. F. Ismagilov, Screening of Protein Crystallization Conditions on a Microfluidic Chip Using Nanoliter-Size Droplets, Journal of the American Chemical Society, vol.125, issue.37, pp.11170-11171, 2003.
DOI : 10.1021/ja037166v

L. Delai, C. J. Chen, R. F. Gerdts, and . Ismagilov, Using microfluidics to observe the effect of mixing on nucleation of protein crystals, Journal of the American Chemical Society, vol.127, issue.27, pp.9672-9673, 2005.

M. Ildefonso, E. Revalor, P. Punniam, J. Salmon, N. Candoni et al., Nucleation and polymorphism explored via an easy-to-use microfluidic tool, Journal of Crystal Growth, vol.342, issue.1, pp.9-12, 2012.
DOI : 10.1016/j.jcrysgro.2010.11.098

URL : https://hal.archives-ouvertes.fr/hal-00697511

S. Zhang, N. Ferté, N. Candoni, and S. Veesler, Versatile Microfluidic Approach to Crystallization, Organic Process Research and Development, pp.1837-1841, 2015.
DOI : 10.1021/acs.oprd.5b00122

URL : https://hal.archives-ouvertes.fr/tel-01230807

V. Sathish, A. Akella, M. Mowitz, S. Heymann, and . Fraden, Emulsion-based technique to measure protein crystal nucleation rates of lysozyme, Crystal Growth and Design, vol.14, issue.9, pp.4487-4509, 2014.

M. Heymann, A. Opathalage, J. L. Wierman, S. Akella, M. E. Doletha et al., Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction, IUCrJ, vol.125, issue.5, pp.349-360, 2014.
DOI : 10.1107/S2052252514016960

W. Du, L. Li, K. P. Nichols, R. F. Ismagilov, and . Slipchip, SlipChip, Lab on a Chip, vol.8, issue.16, pp.2286-2292, 2009.
DOI : 10.1039/b901635j

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719824

K. Dhouib, C. K. Malek, W. Pfleging, B. Gauthier-manuel, R. Duffait et al., Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis, Lab on a Chip, vol.1023, issue.10, pp.1412-1421, 2009.
DOI : 10.1039/b819362b

URL : https://hal.archives-ouvertes.fr/hal-00442911

F. Pinker, P. Mathieu-brun, A. Morin, J. Deman, V. Chateaux et al., ChipX: A Novel Microfluidic Chip for Counter-Diffusion Crystallization of Biomolecules and in Situ Crystal Analysis at Room Temperature, Crystal Growth & Design, vol.13, issue.8, pp.133333-3340, 2013.
DOI : 10.1021/cg301757g

C. L. Hansen, S. Classen, J. M. Berger, and S. R. Quake, Structure Determination, Journal of the American Chemical Society, vol.128, issue.10, pp.3142-3143, 2006.
DOI : 10.1021/ja0576637

B. Zheng, J. D. Tice, L. Spencer-roach, and R. F. Ismagilov, A dropletbased , composite pdms/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip x-ray diffraction, Angewandte Chemie International Edition, issue.19, pp.432508-2511, 2004.

M. Heymann, A. Opathalage, M. Ludwig, and S. Fraden, Microfluidic devices to map protein phase diagrams and nucleation kinetics for in situ x-ray diffraction of protein crystals, 17th International Conference On Miniaturized Systems For Chemistry and Life Sciences, Microtas, pp.1135-1137, 2013.

D. Kashchiev, D. Verdoes, and G. M. Van-rosmalen, Induction time and metastability limit in new phase formation, Journal of Crystal Growth, vol.110, issue.3, pp.373-380, 1991.
DOI : 10.1016/0022-0248(91)90273-8

E. Koller, Aide-mémoire -Génie chimique. Dunod, L'Usine Nouvelle, 2010.

S. Jerome, P. Schultz, and . Gerhardt, Dialysis culture of microorganisms : design, theory, and results, Bacteriological Reviews, vol.33, issue.1, pp.1-47, 1969.

P. Gerhardt and D. M. Gallup, Dialysis flask for concentrated culture of microorganisms, Journal of Bacteriology, vol.86, issue.5, pp.919-929, 1963.

J. D. Herold, J. S. Schultz, and P. Gerhardt, Differential dialysis culture for separation and concentration of a macromolecular product, Applied Microbiology, vol.15, issue.5, pp.1192-1197, 1967.

G. Bahige, C. Abdallah, P. Kupitz, and A. R. Fromme, Crystallization of the large membrane protein complex photosystem i in a microfluidic channel, ACS Nano, vol.7, issue.12, pp.10534-10543, 2007.

S. Talreja, S. L. Perry, S. Guha, V. Bhamidi, C. F. Zukoski et al., Determination of the Phase Diagram for Soluble and Membrane Proteins, The Journal of Physical Chemistry B, vol.114, issue.13, pp.4432-4441, 2010.
DOI : 10.1021/jp911780z

A. Meyer, K. Dierks, D. Hilterhaus, T. Klupsch, P. Mühlig et al., Single-drop optimization of protein crystallization, Acta Crystallographica Section F Structural Biology and Crystallization Communications, vol.82, issue.8, pp.68-994, 2012.
DOI : 10.1107/S1744309112024074/wd5177sup4.pdf

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412791

N. Asherie, Protein crystallization and phase diagrams, Methods, vol.34, issue.3, pp.266-272, 2004.
DOI : 10.1016/j.ymeth.2004.03.028

Y. Liu, X. Wang, and C. B. Ching, Toward Further Understanding of Lysozyme Crystallization: Phase Diagram, Protein???Protein Interaction, Nucleation Kinetics, and Growth Kinetics, Crystal Growth & Design, vol.10, issue.2, pp.548-558, 2010.
DOI : 10.1021/cg900919w

F. Schmid, Biological Macromolecules: UV-visible Spectrophotometry, 2001.
DOI : 10.1038/npg.els.0003142

L. Watson and K. Veeraragavan, Dilution-free protein concentration measurement for high protein concentration samples, BioPharm International, vol.27, issue.2, p.2014

S. Huffman, K. Soni, and J. Ferraiolo, Uv-vis based determination of protein concentration : Validating and implementing slope measurements using variable pathlength technology, BioProcess International, 2014.

R. G. Jorrit-de-jong, M. Lammertink, and . Wessling, Membranes and microfluidics: a review, Lab on a Chip, vol.61, issue.8, pp.1125-1139, 2006.
DOI : 10.1039/b603275c

M. Kornreich, M. Heymann, S. Fraden, and R. Beck, Cross polarization compatible dialysis chip, Lab on a Chip, vol.114, issue.19, pp.3700-3704, 2014.
DOI : 10.1039/C4LC00600C

J. Kåre-hartvig-jensen, T. Lee, H. Bohr, and . Bruus, Osmotically driven flows in microchannels separated by a semipermeable membrane, Lab on a Chip, vol.5, issue.14, pp.2093-2099, 2009.
DOI : 10.1039/b818937d

Y. Jiang, P. Wang, L. E. Locascio, and C. S. Lee, Integrated Plastic Microfluidic Devices with ESI-MS for Drug Screening and Residue Analysis, Analytical Chemistry, vol.73, issue.9, pp.2048-2053, 2001.
DOI : 10.1021/ac001474j

A. Ould-dris, P. Paullier, L. Griscom, C. Legallais, and E. Leclerc, Analysis of the mass transfers in an artificial kidney microchip, Journal of Membrane Science, vol.352, issue.1-2, pp.116-125, 2010.
DOI : 10.1016/j.memsci.2010.02.007

URL : https://hal.archives-ouvertes.fr/hal-00592403

F. Xiang, Y. Lin, J. Wen, D. W. Matson, and R. D. Smith, An Integrated Microfabricated Device for Dual Microdialysis and On-Line ESI-Ion Trap Mass Spectrometry for Analysis of Complex Biological Samples, Analytical Chemistry, vol.71, issue.8, pp.71-1485, 1999.
DOI : 10.1021/ac981400w

N. Xu, Y. Lin, S. A. Hofstadler, D. Matson, C. J. Call et al., A Microfabricated Dialysis Device for Sample Cleanup in Electrospray Ionization Mass Spectrometry, Analytical Chemistry, vol.70, issue.17, pp.3553-3556, 1998.
DOI : 10.1021/ac980233x

D. Robert, C. F. Greenlee, and . Ivory, Protein focusing in a conductivity gradient, Biotechnology Progress, vol.14, issue.2, pp.300-309, 1998.

C. Kim, C. Ryu, . Byung-woo, S. J. Kim, H. Sim et al., Microfluidic Dialysis Device Fabrication for Protein Solution Enrichment and Its Enrichment Enhancement by Plasma Surface Treatment of a Membrane, Journal of the Korean Physical Society, vol.51, issue.3, pp.993-999, 2007.
DOI : 10.3938/jkps.51.993

R. Kurita, N. Yabumoto, and O. Niwa, Miniaturized one-chip electrochemical sensing device integrated with a dialysis membrane and double thin-layer flow channels for measuring blood samples, Biosensors and Bioelectronics, vol.21, issue.8, pp.1649-1653, 2006.
DOI : 10.1016/j.bios.2005.07.016

J. Ou, T. Glawdel, R. Samy, S. Wang, Z. Liu et al., Integration of Dialysis Membranes into a Poly(dimethylsiloxane) Microfluidic Chip for Isoelectric Focusing of Proteins Using Whole-Channel Imaging Detection, Analytical Chemistry, vol.80, issue.19, pp.807401-7407, 2008.
DOI : 10.1021/ac8010928

D. J. Guckenberger, E. Theodorus, A. M. De-groot, D. J. Wan, E. W. Beebe et al., Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices, Lab Chip, vol.25, issue.4, pp.2364-2378, 2015.
DOI : 10.1039/C5LC00234F

G. Perozziello, P. Candeloro, F. Gentile, M. L. Coluccio, M. Tallerico et al., A microfluidic dialysis device for complex biological mixture SERS analysis, Microelectronic Engineering, vol.144, pp.37-41, 2015.
DOI : 10.1016/j.mee.2015.02.015

T. Jack, B. Rundel, V. T. Paul, and . Remcho, Organic solvent nanofiltration for microfluidic purification of poly (amidoamine) dendrimers, Journal of Chromatography A, vol.1162, issue.2, pp.167-174, 2007.

V. Miralles, A. Huerre, F. Malloggi, and M. Jullien, A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications, Diagnostics, vol.92, issue.1, pp.33-67, 2013.
DOI : 10.1002/adfm.200701437

S. Teychené and B. Biscans, Microfluidic Device for the Crystallization of Organic Molecules in Organic Solvents, Crystal Growth & Design, vol.11, issue.11, pp.4810-4818, 2011.
DOI : 10.1021/cg2004535

P. Laval, N. Lisai, J. Salmon, and M. Joanicot, A microfluidic device based on droplet storage for screening solubility diagrams, Lab on a Chip, vol.96, issue.7, pp.829-834, 2007.
DOI : 10.1016/j.jcrysgro.2006.12.044

G. Maltezos, A. Gomez, J. Zhong, F. A. Gomez, and A. Scherer, Microfluidic polymerase chain reaction, Applied Physics Letters, vol.23, issue.24, p.243901, 2008.
DOI : 10.1002/elps.200600061

J. Khandurina, T. E. Mcknight, S. C. Jacobson, L. C. Waters, R. S. Foote et al., Integrated System for Rapid PCR-Based DNA Analysis in Microfluidic Devices, Analytical Chemistry, vol.72, issue.13, pp.722995-3000, 2000.
DOI : 10.1021/ac991471a

J. Yang, Y. Liu, C. B. Rauch, R. L. Stevens, R. H. Liu et al., High sensitivity PCR assay in plastic micro reactors, Lab on a Chip, vol.2, issue.4, pp.179-187, 2002.
DOI : 10.1039/b208405h

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.496.998

C. Guilhem-velve-casquillas, L. Fu, J. Berre, S. Cramer, A. Meance et al., Fast microfluidic temperature control for high resolution live cell imaging, Lab Chip, vol.71, issue.3, pp.484-489, 2011.
DOI : 10.1039/C0LC00222D

G. Velve-casquillas, J. Costa, F. Carlier-grynkorn, A. Mayeux, and P. T. Tran, A Fast Microfluidic Temperature Control Device for Studying Microtubule Dynamics in Fission Yeast, Methods in Cell Biology, vol.97, pp.185-201, 2010.
DOI : 10.1016/S0091-679X(10)97011-8

H. Mao, T. Yang, and P. S. Cremer, A Microfluidic Device with a Linear Temperature Gradient for Parallel and Combinatorial Measurements, Journal of the American Chemical Society, vol.124, issue.16, pp.4432-4435, 2002.
DOI : 10.1021/ja017625x

G. Maltezos, M. Johnston, and A. Scherer, Thermal management in microfluidics using micro-Peltier junctions, Applied Physics Letters, vol.87, issue.15, p.154105, 2005.
DOI : 10.1016/S0925-4005(00)00350-6

J. Wang, L. Chien, T. Hsieh, C. Luo, W. Chou et al., A miniaturized quantitative polymerase chain reaction system for DNA amplification and detection, Sensors and Actuators B: Chemical, vol.141, issue.1, pp.329-337, 2009.
DOI : 10.1016/j.snb.2009.06.034

Z. Jiao, X. Huang, N. Nguyen, and P. Abgrall, Thermocapillary actuation of droplet in a planar microchannel, Microfluidics and Nanofluidics, vol.91, issue.2, pp.205-214, 2008.
DOI : 10.1007/s10404-007-0235-7

Z. Jiao, X. Huang, and N. Nguyen, Manipulation of a droplet in a planar channel by periodic thermocapillary actuation, Journal of Micromechanics and Microengineering, vol.18, issue.4, pp.45027-45028, 2008.
DOI : 10.1088/0960-1317/18/4/045027

B. Selva, I. Cantat, and M. Jullien, Temperature-induced migration of a bubble in a soft microcavity, Physics of Fluids, vol.17, issue.5, p.52002, 2011.
DOI : 10.1002/anie.v45:19

URL : https://hal.archives-ouvertes.fr/hal-00713709

B. Selva, J. Marchalot, and M. Jullien, An optimized resistor pattern for temperature gradient control in microfluidics, Journal of Micromechanics and Microengineering, vol.19, issue.6, p.65002, 2009.
DOI : 10.1088/0960-1317/19/6/065002

B. Selva, J. Marchalot, and M. Jullien, Thermocapillary actuation by optimized resistor pattern: bubbles and droplets displacing, switching and trapping, Lab on a Chip, vol.91, issue.17, pp.1835-1840, 2010.
DOI : 10.1007/s10404-009-0505-7

URL : https://hal.archives-ouvertes.fr/hal-00658744

J. Andrew, M. De-mello, N. L. Habgood, T. Lancaster, R. C. Welton et al., Precise temperature control in microfluidic devices using joule heating of ionic liquids, Lab on a Chip, vol.4, pp.417-419, 2004.

E. Mavraki, D. Moschou, and G. Kokkoris, A continuous flow ??PCR device with integrated microheaters on a flexible polyimide substrate, Procedia Engineering, vol.25, pp.1245-1248, 2011.
DOI : 10.1016/j.proeng.2011.12.307

URL : http://doi.org/10.1016/j.proeng.2011.12.307

D. Vigolo, R. Rusconi, R. Piazza, and H. A. Stone, A portable device for temperature control along microchannels, Lab on a Chip, vol.442, issue.6, pp.795-798, 2010.
DOI : 10.1039/b919146a

A. I. Lao, T. M. Lee, I. Hsing, and N. Y. Ip, Precise temperature control of microfluidic chamber for gas and liquid phase reactions. Sensors and Actuators A : Physical, pp.11-17, 2000.

B. Selva, P. Mary, and M. Jullien, Integration of a uniform and rapid heating source into microfluidic systems, Microfluidics and Nanofluidics, vol.28, issue.9???10, pp.755-765, 2010.
DOI : 10.1007/s10404-009-0505-7

D. Ross, M. Gaitan, and L. E. Locascio, Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye, Analytical Chemistry, vol.73, issue.17, pp.4117-4123, 2001.
DOI : 10.1021/ac010370l

R. M. Guijt, A. Dodge, W. K. Gijs, N. F. Van-dedem, E. De-rooij et al., Chemical and physical processes for integrated temperature control in microfluidic devices, Lab on a Chip, vol.3, issue.1, pp.1-4, 2003.
DOI : 10.1039/b210629a

URL : http://eprints.utas.edu.au/6138/1/RMG10.pdf

R. M. Guijt, A. Dodge, W. K. Gijs, N. F. Van-dedem, E. De-rooij et al., Evaporative cooling in microfluidic channels, Applied Physics Letters, vol.89, p.74107, 2006.

R. P. Oda, M. A. Strausbauch, A. F. Huhmer, N. Borson, S. R. Jurrens et al., Infrared-Mediated Thermocycling for Ultrafast Polymerase Chain Reaction Amplification of DNA, Analytical Chemistry, vol.70, issue.20, pp.704361-4368, 1998.
DOI : 10.1021/ac980452i

J. P. Ferrance, Q. Wu, B. Giordano, C. Hernandez, Y. Kwok et al., Developments toward a complete micro-total analysis system for Duchenne muscular dystrophy diagnosis, Analytica Chimica Acta, vol.500, issue.1-2, pp.223-236, 2003.
DOI : 10.1016/j.aca.2003.08.067

C. Braden, J. Giordano, S. Ferrance, A. F. Swedberg, J. P. Hühmer et al., Polymerase chain reaction in polymeric microchips : Dna amplification in less than 240 seconds, Analytical Biochemistry, vol.291, issue.1, pp.124-132, 2001.

C. Ke, H. Berney, A. Mathewson, and M. M. Sheehan, Rapid amplification for the detection of Mycobacterium tuberculosis using a non-contact heating method in a silicon microreactor based thermal cycler, Sensors and Actuators B: Chemical, vol.102, issue.2, pp.308-314, 2004.
DOI : 10.1016/j.snb.2004.04.083

H. Jagannathan, G. G. Yaralioglu, A. S. Ergun, T. Butrus, and . Khuri-yakub, Acoustic heating and thermometry in microfluidic channels, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE, pp.474-477, 2003.
DOI : 10.1109/MEMSYS.2003.1189789

J. Kondoh, N. Shimizu, Y. Matsui, M. Sugimoto, and S. Shiokawa, Development of temperature-control system for liquid droplet using surface acoustic wave devices. Sensors and Actuators A : Physical, pp.292-297, 2009.

G. Yaralioglu, Ultrasonic heating and temperature measurement in microfluidic channels. Sensors and Actuators A : Physical, pp.1-7, 2011.
DOI : 10.1016/j.sna.2011.05.012

Y. V. Bykov, K. Rybakov, and V. E. Semenov, High-temperature microwave processing of materials, Journal of Physics D: Applied Physics, vol.34, issue.13, pp.55-75, 2001.
DOI : 10.1088/0022-3727/34/13/201

J. J. Shah, J. C. Geist, and M. Gaitan, Microwave-induced adjustable nonlinear temperature gradients in microfluidic devices, Journal of Micromechanics and Microengineering, vol.20, issue.10, p.105025, 2010.
DOI : 10.1088/0960-1317/20/10/105025

A. Kempitiya, D. A. Borca-tasciuc, H. S. Mohamed, and M. M. Hella, Localized microwave heating in microwells for parallel DNA amplification applications, Applied Physics Letters, vol.2004, issue.6, p.64106, 2009.
DOI : 10.1049/PBPO025E

J. Kirsty, P. T. Shaw, J. V. Docker, C. E. Yelland, J. Dyer et al., Rapid pcr amplification using a microfluidic device with integrated microwave heating and air impingement cooling, Lab on a Chip, vol.10, pp.1725-1728, 2010.

K. Orrling and P. Nilsson, Mats Gullberg, and Mats Larhed. An efficient method to perform milliliter-scale pcr utilizing highly controlled microwave thermocycling, Chemical Communications, issue.7, pp.790-791, 2004.

J. J. Shah, S. G. Sundaresan, J. Geist, D. R. Reyes, J. C. Booth et al., Microwave dielectric heating of fluids in an integrated microfluidic device, Journal of Micromechanics and Microengineering, vol.17, issue.11, p.172224, 2007.
DOI : 10.1088/0960-1317/17/11/008

J. C. Geist, J. J. Shah, M. V. Rao, and M. Gaitan, Microwave power absorption in low-reflectance, complex, lossy transmission lines, Journal of Research of the National Institute of Standards and Technology, vol.112, issue.4, pp.177-189, 2007.
DOI : 10.6028/jres.112.015

C. Adam, S. S. Siegel, D. B. Shevkoplyas, D. A. Weibel, A. W. Bruzewicz et al., Cofabrication of electromagnets and microfluidic systems in poly(dimethylsiloxane), Angewandte Chemie Communication, issue.41, pp.456877-6882, 2006.

C. , O. Kappe, and D. Dallinger, The impact of microwave synthesis on drug discovery, Nature Reviews Drug Discovery, vol.5, pp.51-63, 2006.

C. Fermér, P. Nilsson, and M. Larhed, Microwave-assisted high-speed PCR, European Journal of Pharmaceutical Sciences, vol.18, issue.2, pp.129-132, 2003.
DOI : 10.1016/S0928-0987(02)00252-X

D. Issadore, K. J. Humphry, K. A. Brown, L. Sandberg, D. A. Weitz et al., Microwave dielectric heating of drops in microfluidic devices, Lab on a Chip, vol.8, issue.12, pp.1701-1706, 2009.
DOI : 10.1039/b822357b

J. Wu, W. Cao, W. Wen, D. C. Chang, and P. Sheng, Polydimethylsiloxane microfluidic chip with integrated microheater and thermal sensor, Biomicrofluidics, vol.14, issue.1, p.12005, 2009.
DOI : 10.1021/ac050756m

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717591

M. Robert-de-saint, R. Vincent, J. Wunenburger, and . Delville, Laser switching and sorting for high speed digital microfluidics, Applied Physics Letters, vol.92, issue.15, p.154105, 2009.
DOI : 10.1063/1.1713919

URL : https://hal.archives-ouvertes.fr/hal-00389849

H. Kim, S. Vishniakou, and G. W. Faris, Petri dish PCR: laser-heated reactions in nanoliter droplet arrays, Lab on a Chip, vol.16, issue.9, pp.1230-1235, 2009.
DOI : 10.1039/b817288a

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209801

A. T. Ohta, A. Jamshidi, J. K. Valley, . Hsan-yin, M. C. Hsu et al., Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate, Applied Physics Letters, vol.91, issue.7, p.74103, 2007.
DOI : 10.1038/nature03831

R. Barrett, M. Faucon, J. Lopez, G. Cristobal, F. Destremaut et al., X-ray microfocussing combined with microfluidics for on-chip X-ray scattering measurements, Lab on a Chip, vol.90, issue.4, pp.494-499, 2006.
DOI : 10.1039/b517055a

R. Catalano, G. Perozziello, G. Simone, P. Candeloro, F. Gentile et al., Optimized fabrication protocols of microfluidic devices for X-ray analysis, Microelectronic Engineering, vol.124, pp.13-16, 2014.
DOI : 10.1016/j.mee.2014.04.016

B. Weinhausen and S. Köster, Microfluidic devices for X-ray studies on hydrated cells, Lab Chip, vol.9, issue.2, pp.212-215, 2013.
DOI : 10.1039/C2LC41014A

URL : http://resolver.sub.uni-goettingen.de/purl?gs-1/10203

S. L. Perry, S. Guha, A. S. Pawate, A. Bhaskarla, V. Agarwal et al., A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction, Lab on a Chip, vol.18, issue.16, pp.3183-3187, 2013.
DOI : 10.1039/c3lc50276g

S. Guha, S. L. Perry, A. S. Pawate, and P. J. Kenis, Fabrication of X-ray compatible microfluidic platforms for protein crystallization, Sensors and Actuators B: Chemical, vol.174, pp.1-9, 2012.
DOI : 10.1016/j.snb.2012.08.048

M. E. Brennich, J. Nolting, C. Dammann, B. Nöding, S. Bauch et al., Dynamics of intermediate filament assembly followed in micro-flow by small angle X-ray scattering, Lab on a Chip, vol.288, issue.4, pp.708-716, 2011.
DOI : 10.1039/c0lc00319k

G. Kisselman, W. Qiu, V. Romanov, C. M. Thompson, R. Lam et al., X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection, Acta Crystallographica Section D Biological Crystallography, vol.43, issue.6, pp.67533-539, 2011.
DOI : 10.1107/S0907444911011589

W. H. Grover, M. G. Von-muhlen, and S. R. Manalis, Teflon films for chemically-inert microfluidic valves and pumps, Lab on a Chip, vol.15, issue.6, pp.913-918, 2008.
DOI : 10.1039/b800600h

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032772

T. Thorsen, S. J. Maerkl, and S. R. Quake, Microfluidic Large-Scale Integration, Science, vol.298, issue.5593, pp.580-584, 2002.
DOI : 10.1126/science.1076996

URL : http://infoscience.epfl.ch/record/117344

M. A. Unger, H. Chou, T. Thorsen, A. Scherer, and S. R. Quake, Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science, vol.288, issue.5463, pp.288113-116, 2000.
DOI : 10.1126/science.288.5463.113

B. Mosadegh, H. Tavana, S. Cai-lesher-perez, and S. Takayama, High-density fabrication of normally closed microfluidic valves by patterned deactivation of oxidized polydimethylsiloxane, Lab Chip, vol.6, issue.135, pp.738-742, 2011.
DOI : 10.1039/C0LC00112K

W. H. Grover, A. M. Skelley, C. N. Liu, E. T. Lagally, and R. A. Mathies, Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices, Sensors and Actuators B: Chemical, vol.89, issue.3, pp.315-323, 2003.
DOI : 10.1016/S0925-4005(02)00468-9

H. Lai and A. Folch, Design and dynamic characterization of ???single-stroke??? peristaltic PDMS micropumps, Lab Chip, vol.89, issue.2, pp.336-342, 2011.
DOI : 10.1039/C0LC00023J

J. Friend and L. Yeo, Fabrication of microfluidic devices using polydimethylsiloxane, Biomicrofluidics, vol.4, issue.2, p.26502, 2010.
DOI : 10.1063/1.3259624.1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917889

S. Tuomikoski and S. Franssila, Free-standing SU-8 microfluidic chips by adhesive bonding and release etching, Sensors and Actuators A: Physical, vol.120, issue.2, pp.408-415, 2005.
DOI : 10.1016/j.sna.2005.01.012

N. Jasbir, B. Patel, B. L. Kaminska, B. D. Gray, and . Gates, Pdms as a sacrificial substrate for su-8-based biomedical and microfluidic applications, Journal of Micromechanics and Microengineering, vol.18, issue.9, pp.95028-95039, 2008.

D. Bartolo, G. Degré, P. Nghe, and V. Studer, Microfluidic stickers, Lab Chip, vol.304, issue.2, pp.274-279, 2008.
DOI : 10.1039/B712368J

J. Megusar, Low temperature fast-neutron and gamma irradiation of Kapton?? polyimide films, Journal of Nuclear Materials, vol.245, issue.2-3, pp.185-190, 1997.
DOI : 10.1016/S0022-3115(97)00012-3

M. Morel, J. Galas, M. Dahan, and V. Studer, Concentration landscape generators for shear free dynamic chemical stimulation, Lab on a Chip, vol.288, issue.7, pp.1340-1346, 2012.
DOI : 10.1039/c2lc20994b

A. Tarantino, E. Romero, and Y. J. Cui, Advanced Experimental Unsaturated Soil Mechanics, Technology & Engineering, 2005.

M. Durrieu, D. Quemener, C. V. Baquey, and V. Sabaut-heroguez, Biomateriaux bioactifs pour le relargage controle de principes actifs, 2006.

M. Abdelmouleh, S. Boufi, M. N. Abdelhamid-ben-salah, A. Belgacem, and . Gandini, Interaction of Silane Coupling Agents with Cellulose, Langmuir, vol.18, issue.8, pp.3203-3208, 2002.
DOI : 10.1021/la011657g

X. Xiong, L. Zhang, and Y. Wang, Polymer fractionation using chromatographic column packed with novel regenerated cellulose beads modified with silane, Journal of Chromatography A, vol.1063, issue.1-2, pp.71-77, 2005.
DOI : 10.1016/j.chroma.2004.12.002

J. Credou, H. Volland, and T. Berthelot, Photolinker-free photoimmobilization of antibodies onto cellulose for the preparation of immunoassay membranes, J. Mater. Chem. B, vol.137, issue.6, pp.1079-1088, 2015.
DOI : 10.1039/C4TB01138D

URL : https://hal.archives-ouvertes.fr/hal-01156567

M. Spano, N. Junius, and J. Salmon, Puce microfluidique pour la cristallisation de molécules, procédé de préparation, dispositif la comprenant et procédé de cristallisation de molécules, p.2015

H. D. Young, University Physics, 1992.

Z. Luo, A simple method to estimate the physical characteristics of a thermoelectric cooler from vendor datasheets. Electronics Cooling, 2008.

M. Budayova, F. Bonneté, A. Tardieu, and P. Vachette, Interactions in solution of a large oligomeric protein, Journal of Crystal Growth, vol.196, issue.2-4, pp.210-219, 1999.
DOI : 10.1016/S0022-0248(98)00844-6

S. Kumar-bharti and R. Roy, Quantitative 1H NMR spectroscopy, TrAC Trends in Analytical Chemistry, vol.35, pp.5-26, 2012.
DOI : 10.1016/j.trac.2012.02.007

P. Gonzalez-tello, F. Camacho, and G. Blazquez, Density and Viscosity of Concentrated Aqueous Solutions of Polyethylene Glycol, Journal of Chemical & Engineering Data, vol.39, issue.3, pp.611-614, 1994.
DOI : 10.1021/je00015a050

L. Mei, D. Lin, Z. Zhu, and Z. Han, Densities and Viscosities of Polyethylene Glycol + Salt + Water Systems at 20 .degree.C, Journal of Chemical & Engineering Data, vol.40, issue.6, pp.1168-1171, 1995.
DOI : 10.1021/je00022a002

J. Kestin, H. Ezzat-khalifa, and R. J. Correia, Tables of the dynamic and kinematic viscosity of aqueous nacl solutions in the temperature range 20-150?c150?c and the pressure range 0.1-35 mpa, Journal of Physical and Chemical Reference Data, issue.71, p.10, 1981.

B. Heras and J. L. Martin, Post-crystallization treatments for improving diffraction quality of protein crystals, Acta Crystallographica Section D Biological Crystallography, vol.61, issue.9, pp.1173-1180, 2005.
DOI : 10.1107/S0907444905019451

H. John, G. F. Mcclendon, and . Somers, Simple large scale ultrafiltration using osmotically forced dialysis, Plant Physiology, vol.30, issue.5, p.485, 1955.

J. H. Mcclendon, The Osmotic Pressure of Concentrated Solutions of Polyethylene Glycol 6000, and its Variation with Temperature, Journal of Experimental Botany, vol.32, issue.4, pp.861-866, 1981.
DOI : 10.1093/jxb/32.4.861

N. Junius, E. Oksanen, M. Terrien, C. Berzin, J. Ferrer et al., A crystallization apparatus for temperature-controlled flow-cell dialysis with real-time visualization, Journal of Applied Crystallography, vol.300, issue.3, pp.806-813, 2016.
DOI : 10.1107/S1600576716004635

URL : https://hal.archives-ouvertes.fr/hal-01446539

S. Consta and J. Chung, in a Vacuum and Aqueous Nanodroplets, The Journal of Physical Chemistry B, vol.115, issue.35, pp.10447-10455, 1984.
DOI : 10.1021/jp204559y

S. Bouranene, A. Szymczyk, P. Fievet, and A. Vidonne, Influence of inorganic electrolytes on the retention of polyethyleneglycol by a nanofiltration ceramic membrane, Journal of Membrane Science, vol.290, issue.1-2, pp.216-221, 2007.
DOI : 10.1016/j.memsci.2006.12.031

URL : https://hal.archives-ouvertes.fr/hal-00187040

A. Escoda, P. Fievet, S. Lakard, A. Szymczyk, and S. Déon, Influence of salts on the rejection of polyethyleneglycol by an NF organic membrane: Pore swelling and salting-out effects, Journal of Membrane Science, vol.347, issue.1-2, pp.174-182, 2010.
DOI : 10.1016/j.memsci.2009.10.021

URL : https://hal.archives-ouvertes.fr/hal-00919816

A. Victor, R. K. Bloomfield, and . Dewan, Viscosity of liquid mixtures, Journal of Physical Chemistry, vol.75, issue.20, pp.3113-3119, 1971.

G. Belfort, R. H. Davis, and A. L. Zydney, The behavior of suspensions and macromolecular solutions in crossflow microfiltration, Journal of Membrane Science, vol.96, issue.1-2, pp.1-58, 1994.
DOI : 10.1016/0376-7388(94)00119-7

L. Song, Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling, Journal of Membrane Science, vol.139, issue.2, pp.183-200, 1998.
DOI : 10.1016/S0376-7388(97)00263-9

C. Brunchi and G. Luminita, Peg in aqueous salt solutions. viscosity and separation ability in a tio2 suspension, Revue Roumaine de Chimie, vol.58, issue.2-3, pp.183-188, 2013.

B. A. Wolf, Polyelectrolytes Revisited: Reliable Determination of Intrinsic Viscosities, Macromolecular Rapid Communications, vol.3, issue.2, pp.164-170, 2007.
DOI : 10.1002/marc.200600650

J. R. Molek and A. L. Zydney, Ultrafiltration characteristics of pegylated proteins, Biotechnology and Bioengineering, vol.16, issue.3, pp.474-482, 2006.
DOI : 10.1002/bit.21020

P. Haney, K. Herting, B. S. , S. Smith, and M. S. , Molecular weight cut-off (mwco) specifications and rates of buffer exchange with slide-a-lyzer dialysis devices and snakeskin dialysis tubing. https ://www.thermofisher.com/fr/fr/home/life- science/protein-biology/protein-biology-learning-center/protein-biology-resourcelibrary/protein-biology-application-notes/separation-characteristics-dialysismembranes, 2013.

C. Sauter and R. Giegé, La cristallogenèse des macromolécules biologiques, Regard sur la Biochimie, vol.3, pp.21-31, 2001.

B. Lorber, C. Sauter, J. D. Ng, D. W. Zhu, R. Giegé et al., Characterization of protein and virus crystals by quasi-planar wave X-ray topography: a comparison between crystals grown in solution and in agarose gel, Journal of Crystal Growth, vol.204, issue.3, pp.357-368, 1999.
DOI : 10.1016/S0022-0248(99)00184-0

H. Koizumi, S. Uda, K. Fujiwara, M. Tachibana, K. Kojima et al., Technique for High-Quality Protein Crystal Growth by Control of Subgrain Formation under an External Electric Field, Crystals, vol.13, issue.8, p.95, 2016.
DOI : 10.1107/S0907444902014312

V. Stojanoff, B. Cappelle, Y. Epelboin, J. Hartwig, A. B. Moradela et al., High Resolution Imaging as a Characterization Tool for Biological Crystals, Annals of the New York Academy of Sciences, vol.160, issue.1, pp.48-55, 2004.
DOI : 10.1196/annals.1324.005

E. Cacioppo and M. L. Pusey, The solubility of the tetragonal form of hen egg white lysozyme from pH 4.0 to 5.4, Journal of Crystal Growth, vol.114, issue.3, pp.286-292, 1991.
DOI : 10.1016/0022-0248(91)90043-5

J. Salmon and J. Leng, Application of microevaporators to dynamic exploration of the phase diagram, Journal of Applied Physics, vol.107, issue.8, p.84905, 2010.
DOI : 10.1021/ac0508651

A. Mark, B. K. Eddings, and . Gale, A pdms-based gas permeation pump for on-chip fluid handling in microfluidic devices, Journal of Micromechanics and Microengineering, vol.16, pp.2396-2402, 2006.

A. Lamberti, S. L. Marasso, and M. Cocuzza, PDMS membranes with tunable gas permeability for microfluidic applications, RSC Adv., vol.14, issue.62, p.61415, 2014.
DOI : 10.1039/C4RA12934B

W. Hsih-yin-tana, N. Keong-lokea, and . Nguyen, A reliable method for bonding polydimethylsiloxane (pdms) to polymethylmethacrylate (pmma) and its application in micropumps, Sensors and Actuators B : Chemical, vol.151, issue.1, pp.133-139, 2010.

W. L. Robb, THIN SILICONE MEMBRANES-THEIR PERMEATION PROPERTIES AND SOME APPLICATIONS, Annals of the New York Academy of Sciences, vol.7, issue.1 Materials in, pp.119-137, 1968.
DOI : 10.1063/1.1731678

L. Jacquamet, J. Ohana, J. Joly, F. Borel, M. Pirocchi et al., Automated Analysis of Vapor Diffusion Crystallization Drops with an X-Ray Beam, Structure, vol.12, issue.7, pp.121219-1225, 2004.
DOI : 10.1016/j.str.2004.04.019

J. Ohana, L. Jacquamet, J. Joly, A. Bertoni, P. Taunier et al., CATS: a Cryogenic Automated Transfer System installed on the beamline FIP at ESRF, Journal of Applied Crystallography, vol.37, issue.1, pp.72-77, 2004.
DOI : 10.1107/S0021889803025482

L. Zhang-yongjian, Z. Zhengtang, Q. Duyang, L. Yimeng, and . Kejun, Pattern transition and sluggish cracking of colloidal droplet deposition with polymer additives, Science China Physics, Mechanics and Astronomy, vol.9, issue.9, pp.1712-1718, 2013.
DOI : 10.1007/s11433-013-5280-5

N. Christo, F. V. Nanev, I. L. Hodzhaoglu, and . Dimitrov, Kinetics of insulin crystal nucleation, energy barrier, and nucleus size, Crystal Growth and Design, vol.11, issue.1, pp.196-202, 2011.

J. V. Parambil, M. Schaepertoens, D. R. Williams, and J. Y. Heng, Effects of Oscillatory Flow on the Nucleation and Crystallization of Insulin, Crystal Growth & Design, vol.11, issue.10, pp.4353-4359, 2011.
DOI : 10.1021/cg200158z

S. L. Perry, S. Guha, A. S. Pawate, R. Henning, I. Kosheleva et al., serial Laue diffraction on a microfluidic crystallization device, Journal of Applied Crystallography, vol.68, issue.6, pp.1975-1982, 2014.
DOI : 10.1107/S1600576714023322

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248567

F. Andreas and . Von-recum, Handbook Of Biomaterials Evaluation : Scientific, Technical And Clinical Testing Of Implant Materials, 1998.

H. Lee, R. M. Venable, A. D. Jr, and R. W. Pastor, Molecular Dynamics Studies of Polyethylene Oxide and Polyethylene Glycol: Hydrodynamic Radius and Shape Anisotropy, Biophysical Journal, vol.95, issue.4, pp.1590-1599, 2008.
DOI : 10.1529/biophysj.108.133025

URL : http://doi.org/10.1529/biophysj.108.133025

P. J. Monique, A. M. Dohmen, J. Pereira, K. Martin, N. E. Timmer et al., Hydrodynamic radii of polyethylene glycols in different solvents determined from viscosity measurements, Journal of Chemical and Engineering Data, vol.53, issue.1, pp.63-65, 2008.

R. López-esparza, M. Guedeau-boudeville, Y. Gambin, C. Rodríguez-beas, A. Maldonado et al., Interaction between poly(ethylene glycol) and two surfactants investigated by diffusion coefficient measurements, Journal of Colloid and Interface Science, vol.300, issue.1, pp.105-110, 2006.
DOI : 10.1016/j.jcis.2006.03.071

J. Israelachvili, The different faces of poly(ethylene glycol), Proceedings of the National Academy of Sciences, vol.12, issue.21, pp.8378-8379, 1997.
DOI : 10.1007/BF01868693

B. L. Henke, E. M. Gullikson, and J. C. Davis, X-ray interactions : Photoabsorption, scattering, transmission, and reflection at e = 50-30,000 ev, z = 1-92. Atomic Data and Nuclear Data Tables, pp.181-342, 1993.
DOI : 10.1006/adnd.1993.1013

J. H. Hubbell, H. A. Gimm, and I. , =1 to 100, Journal of Physical and Chemical Reference Data, vol.9, issue.4, p.1023, 1980.
DOI : 10.1063/1.555629

URL : https://hal.archives-ouvertes.fr/jpa-00214604

J. H. Hubbell, Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 kev to 100 gev, National Bureau of Standads report NSRDS-NSB, vol.29, issue.15, 1969.
DOI : 10.6028/NBS.NSRDS.29

G. Nelson and D. Reilly, Gamma-ray interactions with matter, Passive Nondestructive Analysis of Nuclear Materials, pp.27-42, 1991.

J. H. Hubbell and S. M. Seltzer, Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 kev to 20 mev for elements z = 1 to 92 and 48 additional substances of dosimetric interest, NIST Standard Reference Database, 1996.

S. Sui, Y. Wang, K. W. Kolewe, V. Srajer, R. Henning et al., Graphene-based microfluidics for serial crystallography, Lab Chip, vol.69, issue.16, pp.3082-3096, 2016.
DOI : 10.1039/C6LC00451B

E. D. Greaves and A. Manz, Toward on-chip X-ray analysis, Lab on a Chip, vol.83, issue.10, pp.382-391, 2005.
DOI : 10.1039/b415836a

Z. Liu, H. Wang, Z. Li, X. Lu, X. Zhang et al., Characterization of the regenerated cellulose films in ionic liquids and rheological properties of the solutions, Materials Chemistry and Physics, vol.128, issue.1-2, pp.220-227, 2011.
DOI : 10.1016/j.matchemphys.2011.02.062

J. Credou and T. Berthelot, Cellulose: from biocompatible to bioactive material, Journal of Materials Chemistry B, vol.4, issue.30, pp.4767-4788, 2014.
DOI : 10.1039/C4TB00431K

URL : https://hal.archives-ouvertes.fr/hal-01156573

C. O. Thomas and . Haver, Interactive computer models for analytical chemistry instruction, copyright ©, 2016.

J. Janin, Méthodes biophysiques pour l'étude des macromolécules, 1985.

A. Mehta, Ultraviolet-visible (uv-vis) spectroscopy -limitations and deviations of beer-lambert law

D. F. Swinehart, The Beer-Lambert Law, Journal of Chemical Education, vol.39, issue.7, p.333, 1962.
DOI : 10.1021/ed039p333

V. Santosh, K. M. Thakkar, S. B. Allegre, D. B. Joshi, C. R. Volkin et al., An application of ultraviolet spectroscopy to study interactions in proteins solutions at high concentrations, Journal of Pharmaceutical Sciences, vol.101, issue.9, pp.3051-3061, 2012.

A. Saluja and D. S. Kalonia, Nature and consequences of protein???protein interactions in high protein concentration solutions, International Journal of Pharmaceutics, vol.358, issue.1-2, pp.1-15, 2008.
DOI : 10.1016/j.ijpharm.2008.03.041

L. H. Lucas, A. Baran, L. A. Ersoy, S. B. Kueltzo, D. T. Joshi et al., Probing protein structure and dynamics by second-derivative ultraviolet absorption analysis of cation-?? interactions, Protein Science, vol.2, issue.10, pp.152228-2243, 2006.
DOI : 10.1110/ps.062133706

N. J. Miller-ihli, T. C. Haver, and J. M. Harnly, Calibration and curve fitting for extended range AAS, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.39, issue.12, pp.1603-1614, 1984.
DOI : 10.1016/0584-8547(84)80189-5