L. Wang, B. Sixou, and F. Peyrin, Binary Tomography Reconstructions With Stochastic Level-Set Methods, IEEE Signal Processing Letters, vol.22, issue.7, 2015.
DOI : 10.1109/LSP.2014.2375511

URL : https://hal.archives-ouvertes.fr/hal-01126649

B. Sixou, L. Wang, S. Rit, and F. Peyrin, Binary Tomography Reconstruction with Stochastic Diffusion Based on Level-set and Total Variation Regularization, International Journal of Tomography and Simulation, vol.29, issue.2, pp.1-26, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01285003

B. Wang, S. Sixou, F. Rit, and . Peyrin, Binary tomography reconstruction from few projections with level-set regularization methods for bone microstucture study, International Journal of tomography and simulation, vol.29, issue.1, pp.1-17, 2016.
DOI : 10.3233/xst-160542

URL : https://hal.archives-ouvertes.fr/hal-01272966

L. Wang, B. Sixou, S. Rit, and F. Peyrin, Binary tomography reconstruction from few projections with Total Variation regularization for bone microstructure studies, Journal of X-Ray Science and Technology, vol.24, issue.2, pp.177-189, 2016.
DOI : 10.3233/XST-160542

B. Sixou, L. Wang, and F. Peyrin, Bone microstructure reconstructions from few projections with level-set regularization, 2013 IEEE 10th International Symposium on Biomedical Imaging, pp.1170-1173, 2013.
DOI : 10.1109/ISBI.2013.6556688

B. Sixou, L. Wang, and F. Peyrin, Stochastic diffusion equation with singular diffusivity and gradient-dependent noise in binary tomography, New Computational Methods for Inverse Problems (NCMIP), 2014.
DOI : 10.1088/1742-6596/542/1/012001

URL : https://hal.archives-ouvertes.fr/hal-01053083

B. Wang, F. Sixou, and . Peyrin, Bone microstructure reconstructions from few projections with stochastic nonlinear diffusion, Signal Processing Conference (EUSIPCO), pp.1826-1830, 2014.

B. Wang, F. Sixou, and . Peyrin, Binary tomography reconstructions of bone microstructure from few projections with stochastic level-set methods, 2014 IEEE International Conference on Image Processing (ICIP), 2014.
DOI : 10.1109/ICIP.2014.7025356

B. Wang, F. Sixou, and . Peyrin, Filtered stochastic optimization for binary tomography, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp.1604-1607, 2015.
DOI : 10.1109/ISBI.2015.7164187

URL : https://hal.archives-ouvertes.fr/hal-01285080

B. Wang, F. Sixou, and . Peyrin, Multi-level tomography reconstructions with level-set and TV regularization methods, 2016 24th European Signal Processing Conference (EUSIPCO), 2016.
DOI : 10.1109/EUSIPCO.2016.7760538

URL : https://hal.archives-ouvertes.fr/hal-01482142

. Afonso, Fast Image Recovery Using Variable Splitting and Constrained Optimization, IEEE Transactions on Image Processing, vol.19, issue.9, pp.2345-2356, 2010.
DOI : 10.1109/TIP.2010.2047910

URL : http://arxiv.org/abs/0910.4887

. Afonso, An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems, IEEE Transactions on Image Processing, vol.20, issue.3, pp.681-695, 2011.
DOI : 10.1109/TIP.2010.2076294

K. Andersen, A. Andersen, and A. Kak, Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the Art Algorithm, Ultrasonic Imaging, vol.12, issue.1, pp.81-94, 1984.
DOI : 10.1177/016173468400600107

. Apostol, Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture, Medical Physics, vol.1, issue.9, pp.3546-3556, 2006.
DOI : 10.1118/1.2211727

A. , K. Aubert, G. Kornprobst, and P. , Mathematical problems in image processing: partial differential equations and the calculus of variations, 2006.

R. Azencott, Sequential simulated annealing: speed of convergence and acceleration techniques, Azencott, vol.1, pp.1-10, 1992.

. Bamgbose, Conebeam computed tomography (CBCT): The new vista in oral and maxillofacial imaging, Nigerian Quarterly Journal of Hospital Medicine, vol.18, issue.1, pp.32-35, 2007.
DOI : 10.4314/nqjhm.v18i1.44955

. Barbu, Stochastic Nonlinear Diffusion Equations with Singular Diffusivity, SIAM Journal on Mathematical Analysis, vol.41, issue.3, pp.411106-1120, 2009.
DOI : 10.1137/080718966

. Barkaoui, Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method, International Journal for Numerical Methods in Biomedical Engineering, vol.32, issue.4, pp.318-338, 2014.
DOI : 10.1002/cnm.2604

URL : https://hal.archives-ouvertes.fr/hal-00958443

H. Barkaoui, A. Barkaoui, and R. Hambli, Finite element 3D modeling of mechanical behavior of mineralized collagen microfibrils, Journal of Applied Biomaterials & Biomechanics, vol.9, issue.3, pp.199-205, 2011.
DOI : 10.5301/JABB.2011.8876

URL : https://hal.archives-ouvertes.fr/hal-00648410

S. Batenburg, K. Batenburg, and J. Sijbers, Discrete tomography from micro-CT data: application to the mouse trabecular bone structure, Medical Imaging 2006: Physics of Medical Imaging, pp.614240-614240, 2006.
DOI : 10.1117/12.652603

K. J. Batenburg and J. Sijbers, Generic iterative subset algorithms for discrete tomography, Discrete Applied Mathematics, vol.157, issue.3, pp.438-451, 2009.
DOI : 10.1016/j.dam.2008.05.033

URL : http://doi.org/10.1016/j.dam.2008.05.033

S. Batenburg, K. Batenburg, and J. Sijbers, DART: A Practical Reconstruction Algorithm for Discrete Tomography, IEEE Transactions on Image Processing, vol.20, issue.9, pp.2542-2553, 2011.
DOI : 10.1109/TIP.2011.2131661

. Becker, NESTA: A Fast and Accurate First-Order Method for Sparse Recovery, SIAM Journal on Imaging Sciences, vol.4, issue.1, pp.1-39, 2009.
DOI : 10.1137/090756855

URL : http://arxiv.org/abs/0904.3367

. Beister, Iterative reconstruction methods in X-ray CT, Physica Medica, vol.28, issue.2, pp.94-108, 2012.
DOI : 10.1016/j.ejmp.2012.01.003

P. Benhali, A. Benhali, and F. Peyrin, La Tomographie et La Tomographie médicale, 2002.

D. P. Bertsekas and J. N. Tsitsiklis, Gradient Convergence in Gradient methods with Errors, SIAM Journal on Optimization, vol.10, issue.3, pp.627-642, 2000.
DOI : 10.1137/S1052623497331063

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.4799

J. Besag, Statistical analysis of dirty pictures*, Journal of Applied Statistics, vol.6, issue.5-6, pp.259-302, 1986.
DOI : 10.1016/0031-3203(83)90012-2

. Bonjour, Peak bone mass, Osteoporosis International, vol.327, issue.54(Suppl), pp.7-13, 1994.
DOI : 10.1007/BF01623429

. Bouxsein, Guidelines for assessment of bone microstructure in rodents using micro-computed tomography, Journal of Bone and Mineral Research, vol.22, issue.7, pp.1468-1486, 2010.
DOI : 10.1002/jbmr.141

. Bresson, Fast Global Minimization of the Active Contour/Snake Model, Journal of Mathematical Imaging and Vision, vol.7, issue.3, pp.151-167, 2007.
DOI : 10.1007/s10851-007-0002-0

D. Brooks, R. A. Brooks, D. Chiro, and G. , Theory of Image Reconstruction in Computed Tomography, Radiology, vol.117, issue.3, pp.561-572, 1975.
DOI : 10.1148/117.3.561

. Brown, Completely Convex Formulation of the Chan-Vese Image Segmentation Model, International Journal of Computer Vision, vol.26, issue.2, pp.103-121, 2012.
DOI : 10.1007/s11263-011-0499-y

P. Insa-lyon-bruyant, Analytic and iterative reconstruction algorithms in SPECT, Bruyant Journal Of Nuclear Medicine, issue.10, pp.431343-1358, 2002.

. Burghardt, Highresolution computed tomography for clinical imaging of bone microarchitecture, Clinical Orthopaedics and Related Research®, issue.8, pp.4692179-2193, 2011.

M. Cai, W. Cai, and L. Ma, Comparison of approaches based on optimization and algebraic iteration for binary tomography, Computer Physics Communications, vol.181, issue.12, pp.1974-1981, 2010.
DOI : 10.1016/j.cpc.2010.09.004

N. Cai, W. Cai, and R. Ning, Preliminary study of a phase-contrast cone-beam computed tomography system: the edge-enhancement effect in the tomographic reconstruction of in-line holographic images, Optical Engineering, issue.3, pp.47037004-037004, 2008.

C. Capricelli, T. D. Capricelli, and P. L. Combettes, Parallel Block-Iterative Reconstruction Algorithms for Binary Tomography, Electronic Notes in Discrete Mathematics, vol.20, pp.263-280, 2005.
DOI : 10.1016/j.endm.2005.05.068

URL : https://hal.archives-ouvertes.fr/hal-00017820

C. Capricelli, T. Capricelli, and P. Combettes, Advances in discrete tomography and its applications: A convex programming algorithm for noisy discrete tomography, 2007.

O. Catoni, Rough Large Deviation Estimates for Simulated Annealing: Application to Exponential Schedules, The Annals of Probability, vol.20, issue.3, pp.1109-1146, 1992.
DOI : 10.1214/aop/1176989682

URL : http://projecteuclid.org/download/pdf_1/euclid.aop/1176989682

O. Catoni, Rough Large Deviation Estimates for Simulated Annealing: Application to Exponential Schedules, The Annals of Probability, vol.20, issue.3, pp.1109-1146, 1992.
DOI : 10.1214/aop/1176989682

URL : http://projecteuclid.org/download/pdf_1/euclid.aop/1176989682

B. Chalmond, Image restoration using an estimated Markov model, Signal Processing, vol.15, issue.2, pp.115-129, 1988.
DOI : 10.1016/0165-1684(88)90065-5

P. Chambolle, A. Chambolle, and T. Pock, A First-Order Primal-Dual Algorithm for Convex Problems with??Applications to Imaging, Journal of Mathematical Imaging and Vision, vol.60, issue.5, pp.120-145, 2011.
DOI : 10.1007/s10851-010-0251-1

URL : https://hal.archives-ouvertes.fr/hal-00490826

C. , T. Chan, T. F. Tai, and X. , Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients, Journal of Computational Physics, vol.193, issue.1, pp.40-66, 2004.
DOI : 10.1016/j.jcp.2003.08.003

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.6568

C. , V. Chan, T. Vese, and L. , Active contours without edges, IEEE Transactions on Image Processing, vol.10, pp.266-277, 2001.
DOI : 10.1109/83.902291

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1828

. Chow, GLOBAL OPTIMIZATIONS BY INTERMITTENT DIFFUSION, 2009.
DOI : 10.1142/9789814434805_0037

B. Clarke, Normal Bone Anatomy and Physiology, Clinical Journal of the American Society of Nephrology, vol.3, issue.Supplement 3, pp.131-139, 2008.
DOI : 10.2215/CJN.04151206

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152283

A. M. Cormack, Representation of a Function by Its Line Integrals, with Some Radiological Applications, Journal of Applied Physics, vol.34, issue.9, pp.2722-2727, 1963.
DOI : 10.1103/PhysRev.81.404

A. Cormack, Reconstruction of densities from their projections, with applications in radiological physics, Physics in Medicine and Biology, vol.18, issue.2, p.195, 1973.
DOI : 10.1088/0031-9155/18/2/003

. Cot, Piecewise constant triangular cooling schedules for generalized simulated annealing algorithms, The Annals of Applied Probability, vol.8, issue.2, pp.375-396, 1998.
DOI : 10.1214/aoap/1028903532

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.1474

. Daubechies, Ten lectures on wavelets, 1992.
DOI : 10.1137/1.9781611970104

. Decezaro, On multiple level-set regularization methods for inverse problems, Inverse Problems, vol.25, issue.3, p.25, 2009.
DOI : 10.1088/0266-5611/25/3/035004

. Decezaro, On piecewise constant level-set (PCLS) methods for the identification of discontinuous parameters in ill-posed problems, Inverse Problems, p.29, 2013.

. Defrise, An algorithm for total variation regularization in high-dimensional linear problems, Inverse Problems, vol.27, issue.6, p.27065002, 2011.
DOI : 10.1088/0266-5611/27/6/065002

S. V. Dorozhkin, Nanosized and nanocrystalline calcium orthophosphates, Acta Biomaterialia, vol.6, issue.3, pp.715-734, 2010.
DOI : 10.1016/j.actbio.2009.10.031

. Duan, Few-View Projection Reconstruction With an Iterative Reconstruction-Reprojection Algorithm and TV Constraint, IEEE Transactions on Nuclear Science, vol.56, issue.3, pp.1377-1382, 2009.
DOI : 10.1109/TNS.2008.2009990

[. E. Quinto and E. T. Quinto, Singularities of the X-Ray Transform and Limited Data Tomography in $\mathbb{R}^2 $ and $\mathbb{R}^3 $, SIAM Journal on Mathematical Analysis, vol.24, issue.5, pp.1215-1225, 1993.
DOI : 10.1137/0524069

A. Egger and L. Leitao, Nonlinear regularization for illposed problems with piecewise constant or strongly varying solutions, Inverse Problems, p.25, 2009.
DOI : 10.1088/0266-5611/25/11/115014

. Feldkamp, The direct examination of three-dimensional bone architecture in vitro by computed tomography, Journal of Bone and Mineral Research, vol.12, issue.1B, pp.3-11, 1989.
DOI : 10.1002/jbmr.5650040103

. Flannery, Three-Dimensional X-ray Microtomography, Science, vol.237, issue.4821, pp.2371439-1444, 1987.
DOI : 10.1126/science.237.4821.1439

. Folkens, Guide to marine mammals of the world, 2002.

B. R. Insa-lyon-frieden, Restoring with Maximum Likelihood and Maximum Entropy*, Journal of the Optical Society of America, vol.62, issue.4, pp.511-518, 1972.
DOI : 10.1364/JOSA.62.000511

. Fruhauf, Analysis of Regularization Methods for the Solution of Ill-Posed Problems Involving Discontinuous Operators, SIAM Journal on Numerical Analysis, vol.43, issue.2, pp.767-786, 2005.
DOI : 10.1137/S0036142903430906

G. Geman, S. Geman, and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. Pattern Analysis and Machine Intelligence, IEEE Transactions on, issue.6, pp.721-741, 1984.

G. Geman, S. Geman, and D. Geman, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, Journal of Applied Statistics, vol.20, pp.5-625, 1993.

H. Geman, S. Geman, and C. Hwang, Diffusions for Global Optimization, SIAM Journal on Control and Optimization, vol.24, issue.5, pp.1031-1043, 1986.
DOI : 10.1137/0324060

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.586.5362

B. C. Gidas, Metropolis-type Monte Carlo simulation algorithms and simulated annealing, Gidas, 1995.

N. Gilbert, J. C. Gilbert, and J. Nocedal, Global Convergence Properties of Conjugate Gradient Methods for Optimization, SIAM Journal on Optimization, vol.2, issue.1, pp.21-42, 1992.
DOI : 10.1137/0802003

URL : https://hal.archives-ouvertes.fr/inria-00075291

V. Gilsanz, Bone density in children: a review of the available techniques and indications, European Journal of Radiology, vol.26, issue.2, pp.177-182, 1998.
DOI : 10.1016/S0720-048X(97)00093-4

. Gindi, Bayesian reconstruction for emission tomography via deterministic annealing, Information Processing in Medical Imaging, pp.322-338, 1993.
DOI : 10.1007/BFb0013797

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.3511

O. Goldstein, T. Goldstein, and S. Osher, The Split Bregman Method for L1-Regularized Problems, SIAM Journal on Imaging Sciences, vol.2, issue.2, pp.323-343, 2009.
DOI : 10.1137/080725891

L. Golob, A. L. Golob, and M. B. Laya, Osteoporosis, Medical Clinics of North America, vol.99, issue.3, pp.99587-606, 2015.
DOI : 10.1016/j.mcna.2015.01.010

. Gordon, Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography, Journal of Theoretical Biology, vol.29, issue.3, pp.29471-481, 1970.
DOI : 10.1016/0022-5193(70)90109-8

. Gouillart, Belief-propagation reconstruction for discrete tomography, Inverse Problems, vol.29, issue.3, p.29, 2013.
DOI : 10.1088/0266-5611/29/3/035003

URL : https://hal.archives-ouvertes.fr/hal-00750511

S. Guglielmi, G. Guglielmi, and G. Scalzo, Imaging tools transform diagnosis of osteoporosis, Diagnostic Imaging Europe, vol.26, issue.3, pp.7-11, 2010.

A. Hadjidakis, D. J. Hadjidakis, and I. I. Androulakis, Bone Remodeling, Annals of the New York Academy of Sciences, vol.1445, issue.3, pp.385-396, 2006.
DOI : 10.1172/JCI24918

P. C. Insa-lyon-hansen, The L-curve and its use in the numerical treatment of inverse problems Advances in Computational Bioengineering, pp.Southamp- ton, 2001.

. Heaney, Peak Bone Mass, Osteoporosis International, vol.11, issue.12, pp.11985-1009, 2000.
DOI : 10.1007/s001980070020

G. T. Herman, Fundamentals of Computerized Tomography Image Reconstruction from Projections, 2009.

K. Herman, G. T. Herman, and A. Kuba, Advances in discrete tomography and its applications Applied and Numerical Harmonic Analysis, 2007.

G. N. Hounsfield, Computerized transverse axial scanning (tomography ), chapter 1,Description of system, Br.J. Radiol, pp.1016-1022, 1973.
DOI : 10.1259/0007-1285-46-552-1016

L. Ingber, Very fast simulated re-annealing, Mathematical and Computer Modelling, vol.12, issue.8, pp.967-973, 1989.
DOI : 10.1016/0895-7177(89)90202-1

T. Inouye, Image Reconstruction with Limited Angle Projection Data, IEEE Transactions on Nuclear Science, vol.26, issue.2, pp.2665-2669, 1979.
DOI : 10.1109/TNS.1979.4330507

. Jacobs, Principles of computerised X-ray tomography and applications to building materials, Science of The Total Environment, vol.167, issue.1-3, pp.161-170, 1995.
DOI : 10.1016/0048-9697(95)04577-N

. Jia, 4D Computed Tomography Reconstruction from Few-Projection Data via Temporal Non-local Regularization, Medical Image Comput, vol.13, pp.143-150, 2010.
DOI : 10.1007/978-3-642-15705-9_18

P. Jiang, G. Jiang, and D. Peng, Weighted ENO Schemes for Hamilton--Jacobi Equations, SIAM Journal on Scientific Computing, vol.21, issue.6, pp.2126-2143, 2000.
DOI : 10.1137/S106482759732455X

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.3391

J. , K. Jung, S. Kleinheinz, and J. , Angiogenesis-The key to regeneration. Regenerative medicine and tissue engineering, pp.453-73, 2013.
DOI : 10.5772/55542

URL : http://www.intechopen.com/articles/show/title/angiogenesis-the-key-to-regeneration

I. B. Kabiena, Simultaneous Iterative Reconstruction Technique by Selective Discrimination SIRT-DS, International Journal of Innovative Research in Science, Engineering and Technology, vol.4, issue.10, pp.10367-10374, 2015.

B. Kamphuis, C. Kamphuis, and F. J. Beekman, Accelerated iterative transmission CT reconstruction using an ordered subsets convex algorithm, IEEE Transactions on Medical Imaging, vol.17, issue.6, pp.1101-1105, 1998.
DOI : 10.1109/42.746730

. Lyon, The diagnosis of osteoporosis, these.pdf © [L. Wang], [2016], pp.1137-1141, 1994.

R. Kinahan, P. E. Kinahan, and J. Rogers, Analytic 3D image reconstruction using all detected events, IEEE Transactions on Nuclear Science, vol.36, issue.1, pp.964-968, 1989.
DOI : 10.1109/23.34585

P. Kloeden, P. E. Kloeden, and E. Platen, Higher-order implicit strong numerical schemes for stochastic differential equations, Journal of Statistical Physics, vol.19, issue.1-2, pp.283-314, 1992.
DOI : 10.1007/BF01060070

M. A. Laskey, Dual-energy X-ray absorptiometry and body composition, Nutrition, vol.12, issue.1, pp.45-51, 1996.
DOI : 10.1016/0899-9007(95)00017-8

. Launey, On the mechanistic origins of toughness in bone. Annual review of materials research, pp.25-53, 2010.

. Li, Micro-computed tomography for small animal imaging: Technological details, Progress in Natural Science, vol.18, issue.5, pp.513-521, 2008.
DOI : 10.1016/j.pnsc.2008.01.002

URL : http://doi.org/10.1016/j.pnsc.2008.01.002

H. Liao, H. Y. Liao, and G. T. Herman, Automated Estimation of the Parameters of Gibbs Priors to be Used in Binary Tomography, Electronic Notes in Theoretical Computer Science, vol.46, pp.393-412, 2001.
DOI : 10.1016/S1571-0661(04)81000-4

H. Liao, H. Y. Liao, and G. Herman, Automated estimation of the parameters of the Gibbs priors to be uses in binary tomography, Discrete Applied Mathematics, pp.249-170, 2004.

. Melton, EPIDEMIOLOGY OF VERTEBRAL FRACTURES IN WOMEN, American Journal of Epidemiology, vol.129, issue.5, pp.1000-1011, 1989.
DOI : 10.1093/oxfordjournals.aje.a115204

B. Misch, C. E. Misch, and L. Bortolotti, Implantología contemporánea, 2009.

V. A. Morozov, Methods for solving incorrectly posed problems, Morozov, 1984.
DOI : 10.1007/978-1-4612-5280-1

C. Mory, Tomographie cardiaque en angiographie rotationnelle, Mory, vol.1, 2014.
URL : https://hal.archives-ouvertes.fr/tel-00985728

. Mukundan, Discrete vs. continuous orthogonal moments for image analysis, 2001.

R. Müller, R. Müller, and P. Rüegsegger, Morphological validation of the 3D structure of non-invasive bone biopsies, Bone Miner, vol.25, p.8, 1994.

J. Nadabar, S. G. Nadabar, and A. K. Jain, Parameter estimation in Markov random field contextual models using geometric models of objects. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.18, issue.3, pp.326-329, 1996.

F. Natterer, The mathematics of computerized tomography. Wiley-Teubner series in computer science, Natterer, 1986.

. Ng, Solving Constrained Total-variation Image Restoration and Reconstruction Problems via Alternating Direction Methods, these.pdf © [L. Wang], pp.2710-2736, 2010.
DOI : 10.1137/090774823

. Nuzzo, Synchrotron Radiation Microtomography Allows the Analysis of Three-Dimensional Microarchitecture and Degree of Mineralization of Human Iliac Crest Biopsy Specimens: Effects of Etidronate Treatment, Journal of Bone and Mineral Research, vol.15, issue.Suppl 2, pp.1372-1382, 2002.
DOI : 10.1359/jbmr.2002.17.8.1372

. Nuzzo, Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography, Medical Physics, vol.48, issue.11, pp.2672-2681, 2002.
DOI : 10.1118/1.1513161

. Palenstijn, The ASTRA tomography toolbox, 13th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE, p.40, 2013.

D. Panetta, Advances in X-ray detectors for clinical and preclinical Computed Tomography. Nuclear Instruments and Methods in, Panetta Physics Research A, vol.809, pp.2-12, 2016.

R. Parpas, P. Parpas, and B. Rustem, An Algorithm for the Global Optimization of a Class of??Continuous Minimax Problems, Journal of Optimization Theory and Applications, vol.15, issue.3, pp.461-473, 2009.
DOI : 10.1007/s10957-008-9473-4

P. Peter, Z. Peter, and F. Peyrin, Synchrotron Radiation Micro-CT Imaging of Bone Tissue, Theory and Applications of CT Imaging and Analysis, 2011.
DOI : 10.5772/14995

URL : http://www.intechopen.com/articles/show/title/synchrotron-radiation-micro-ct-imaging-of-bone-tissue

D. Peyrin, F. Peyrin, and P. Douek, X-Ray Tomography. Photon- Based Medical Imagery, pp.161-205, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00849308

E. Peyrin, F. Peyrin, and K. Engelke, CT Imaging: Basics and New Trends, Handbook of Particle Detection and Imaging, pp.883-915, 2012.
DOI : 10.1007/978-3-642-13271-1_36

URL : https://hal.archives-ouvertes.fr/hal-00828180

. Peyré, Non-local Regularization of Inverse Problems, Inverse Problems and Imaging, vol.5, issue.2, pp.511-530, 2011.
DOI : 10.1007/978-3-540-88690-7_5

J. Prato, G. Zabczyk-prato, and J. Zabczyk, Stochastic equations in infinite dimensions, 1992.

R. Prévôt, C. Prévôt, and M. Röckner, A concise course on stochastic partial differential equations, 2007.

H. Pérez, P. Pérez, and F. Heitz, Une approche multiéchelle à l'analyse d'images par champs markoviens, Traitement du Signal, vol.9, issue.6, pp.459-465, 1992.

. Retraint, Three-dimensional regularized binary image reconstruction from three two-dimensional projections using a randomized ICM algorithm, International Journal of Imaging Systems and Technology, vol.9, issue.2-3, pp.135-146, 1998.
DOI : 10.1002/(SICI)1098-1098(1998)9:2/3<135::AID-IMA11>3.0.CO;2-W

. Rho, Mechanical properties and the hierarchical structure of bone, Medical Engineering & Physics, vol.20, issue.2, pp.92-102, 1998.
DOI : 10.1016/S1350-4533(98)00007-1

. Rit, INSA Lyon, tous droits réservés The Reconstruction Toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the Insight Toolkit (ITK), Journal of Physics: Conference Series, p.12079, 2014.

M. Rit, S. Rit, and C. Mory, Rtk training, 2015.

. Ritschl, Improved total variation-based CT image reconstruction applied to clinical data, Physics in Medicine and Biology, vol.56, issue.6, pp.1545-1561, 2011.
DOI : 10.1088/0031-9155/56/6/003

G. A. Rodan, Introduction to bone biology, Bone, vol.13, pp.3-6, 1992.
DOI : 10.1016/S8756-3282(09)80003-3

. Rudin, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.259-268, 2013.
DOI : 10.1016/0167-2789(92)90242-F

K. Rusko, L. Rusko, and A. Kuba, Multi-resolution method for binary tomography, Electronic Notes in Discrete Mathematics, vol.20, pp.299-311, 2005.
DOI : 10.1016/j.endm.2005.05.070

. Salomé, A synchrotron radiation microtomography system for the analysis of trabecular bone samples, Medical Physics, vol.8, issue.2, pp.262194-2204, 1999.
DOI : 10.1118/1.598736

W. Sato, M. Sato, and T. J. Webster, Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications. Expert review of medical devices, pp.105-114, 2004.

. Scarfe, Clinical applications of cone-beam computed tomography in dental practice, Journal-Canadian Dental Association, vol.72, issue.1, p.75, 2006.

M. B. Burr and D. B. , Stiffness of compact bone: effects of porosity and density, Journal of biomechanics, vol.21, issue.1, pp.13-16, 1988.

. Schüle, Discrete tomography by convex???concave regularization and D.C. programming, Discrete Applied Mathematics, vol.151, issue.1-3, pp.229-243, 2005.
DOI : 10.1016/j.dam.2005.02.028

. Schüle, Adaptive Reconstruction of Discrete-Valued Objects from few Projections, Electronic Notes in Discrete Mathematics, vol.20, pp.365-384, 2005.
DOI : 10.1016/j.endm.2005.05.074

. Sidky, Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle???Pock algorithm, Physics in Medicine and Biology, vol.57, issue.10, p.573065, 2012.
DOI : 10.1088/0031-9155/57/10/3065

E. Y. Insa-lyon-sidky and X. Pan, Accurate image reconstrution feom few-views and limited-angle data in divergent-beam CT, these.pdf © [L. Wang], pp.119-139, 2006.

P. Sidky, E. Y. Sidky, and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in Medicine and Biology, vol.53, issue.17, pp.4777-4807, 2008.
DOI : 10.1088/0031-9155/53/17/021

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630711

. Sixou, Binary tomographic reconstruction of bone microstructure from few projections with level-set regularization, IEEE Symposium on Biomedical Imaging, 2013.

P. Sixou, B. Sixou, and F. Peyrin, Reconstruction of bone microstructure from few projections with convex-concave and non local regularization, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp.1443-1446, 2012.
DOI : 10.1109/ISBI.2012.6235842

URL : https://hal.archives-ouvertes.fr/hal-00830308

H. Szu, H. Szu, and R. Hartley, Fast simulated annealing, Physics Letters A, vol.122, issue.3-4, pp.157-162, 1987.
DOI : 10.1016/0375-9601(87)90796-1

[. T. Chiang, S. J. Sheu, T. S. Chiang, C. , and S. J. Sheu, Diffusion for Global Optimization in $\mathbb{R}^n $, SIAM Journal on Control and Optimization, vol.25, issue.3, pp.737-753, 1987.
DOI : 10.1137/0325042

. Tai, Image Segmentation Using Some Piecewise Constant Level Set Methods with MBO Type of Projection, International Journal of Computer Vision, vol.127, issue.1, pp.61-76, 2007.
DOI : 10.1007/s11263-006-9140-x

C. Tai, X. C. Tai, and T. Chan, A survey on multiple level-set methods with applications for identifying piecewise constant functions, International Journal of Numerical Analysis and Modeling, vol.1, pp.25-47, 2004.

P. D. Tao and L. T. An, A D.C. Optimization Algorithm for Solving the Trust-Region Subproblem, SIAM Journal on Optimization, vol.8, issue.2, pp.476-505, 1998.
DOI : 10.1137/S1052623494274313

URL : https://hal.archives-ouvertes.fr/hal-01412121

A. N. Tikhonov, Solutions of ill-posed problems, Tikhonov, 1977.

. Tikhonov, Numerical methods for the solution of ill-posed problems, 2013.
DOI : 10.1007/978-94-015-8480-7

. Tsui, Comparison between ML-EM and WLS-CG algorithms for SPECT image reconstruction, Nuclear Science IEEE Transactions on, issue.6, pp.381766-1772, 1991.
DOI : 10.1109/tns.1991.574227

. Van-gompel, A discrete tomography approach for superresolution micro-CT images: application to bone, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.816-819, 2010.
DOI : 10.1109/ISBI.2010.5490111

K. Vu, H. T. Vu, and M. W. Knuiman, A hybrid ML-EM algorithm for calculation of maximum likelihood estimates in semiparametric shared frailty models, Computational Statistics & Data Analysis, vol.40, issue.1, pp.173-187, 2002.
DOI : 10.1016/S0167-9473(01)00099-8