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Résumé

Cette thèse porte sur la résolution exacte et heuristique de plusieurs problèmes ayant

des applications dans le domaine de l'Informatique dématérialisé (cloud computing). L'In-

formatique dématérialisée est un domaine en plein extension qui consiste à mutualiser les

machines/serveurs en dé�nissant des machines virtuelles représentant des fractions des

machines/serveurs. Il est nécessaire d'apporter des solutions algorithmiques performantes

en termes de temps de calcul et de qualité des solutions. Dans cette thèse, nous nous

sommes intéressés dans un premier temps au problème d'ordonnancement sur plusieurs

machines (les machines virtuelles) avec contraintes de précédence, c-à-d., que certaines

tâches ne peuvent s'exécuter que si d'autres sont déjà �nies. Ces contraintes représentent

une subdivision des tâches en sous tâchespouvant s'exécuter sur plusieurs machines vir-

tuelles. Nous avons proposé plusieurs algorithmes génétiques permettant de trouver rapi-

dement une bonne solution réalisable. Nous les avons comparés avec les meilleurs algo-

rithmes génétiques de la littérature et avons dé�ni les types d'instances où les solutions

trouvées sont meilleures avec notre algorithme. Dans un deuxième temps, nous avons

modélisé ce problème à l'aide de la programmation linéaire en nombres entiers permet-

tant de résoudre à l'optimum les plus petites instances. Nous avons proposé de nouvelles

inégalités valides permettant d'améliorer les performances de notre modèle. Nous avons

aussi comparé cette modélisation avec plusieurs formulations trouvées dans la littérature.

Dans un troisième temps, nous avons analysé de manière approfondie la sous-structure du

sous-graphe d'intervalle ne possédant pas de clique de taille donnée. Nous avons étudié

le polytope associé à cette sous-structure et nous avons montré que les facettes que nous

avons trouvées sont valides pour le problème d'ordonnancement sur plusieurs machines

avec contraintes de précédence mais elles le sont aussi pour tout problème d'ordonnance-

ment sur plusieurs machines. Nous avons étendu la modélisation permettant de résoudre

le précédent problème a�n de résoudre le problème d'ordonnancement sur plusieurs ma-

chines avec des contraintes disjonctives entre les tâches, c-à-d., que certaines tâches ne

peuvent s'exécuter en même temps que d'autres. Ces contraintes représentent le partage

de ressources critiques ne pouvant pas être utilisées par plusieurs tâches. Nous avons pro-

posé des algorithmes de séparation a�n d'insérer de manière dynamique nos facettes dans

la résolution du problème puis avons développé un algorithme de type Branch-and-Cut.

ix



Nous avons analysé les résultats obtenus a�n de déterminer les inégalités les plus inté-

ressantes a�n de résoudre ce problème.En�n dans le dernier chapitre, nous nous sommes

intéressés au problème d'ordonnancement d'atelier généralisé ainsi que la version plus

classique d'ordonnancement d'atelier (open shop). En e�et, le problème d'ordonnance-

ment d'atelier généralisé est aussi un cas particulier du problème d'ordonnancement sur

plusieurs machines avec des contraintes disjonctives entre les tâches. Nous avons proposé

une formulation à l'aide de la programmation mathématique pour résoudre ces deux pro-

blèmes et nous avons proposé plusieurs familles d'inégalités valides permettant d'améliorer

les performances de notre algorithme. Nous avons aussi pu utiliser les contraintes dé�-

nies précédemment a�n d'améliorer les performances pour le problème d'ordonnancement

d'atelier généralisé. Nous avons �ni par tester notre modèle amélioré sur les instances

classiques de la littérature pour le problème d'ordonnancement d'atelier. Nous obtenons

de bons résultats permettant d'être plus rapide sur certaines instances.

Résumé du chapitre 1 :

Dans ce chapitre, nous avons proposé un état de l'art portant dans un premier temps

sur les problématiques de recherche opérationnelle que l'on peut trouver dans l'Infor-

matique dématérialisée. Ensuite, nous avons rappelé quelques problématiques d'ordon-

nancement s'insérant dans le cadre de l'Informatique dématérialisée. Après cet état de

l'art thématique, nous nous sommes intéressés aux méthodes permettant de résoudre ces

problèmes. En introduction aux méthodologies, nous avons décrit ce qu'est un problème

d'optimisation combinatoire, la modélisation par les graphes et expliqué la di�culté de

résolution de certains problèmes en dé�nissant la complexité. Ensuite, nous avons com-

mencé par décrire les heuristiques et méta-heuristiques que sont les algorithmes gloutons,

les méthodes de recherches locales et les algorithmes génétiques. Puis, nous avons rappelé

les concepts de la programmation en nombres entiers. Ces concepts regroupent, la mo-

délisation, l'approche polyédrale, les algorithmes de type Branch-and-Bound et ceux de

type Branch-and-Cut.

Résumé du chapitre 2 :

Dans le chapitre 2 nous décrivons le problème d'ordonnancement sur plusieurs ma-

chines avec contraintes de précédence et nous donnons une formulation à l'aide de la

programmation mathématique a�n de comparer les heuristiques sur de petites instances.

Nous discutons ensuite des algorithmes heuristiques et méta-heuristiques proposés dans la

littérature et permettant de résoudre ce problème. Nous proposons un nouvel algorithme

génétique basé sur l'a�ectation des jobs aux machines. Nous développons plusieurs va-

x



riantes basées sur cette idée, puis nous combinons plusieurs algorithmes génétiques dif-

férents a�n d'améliorer la meilleure solution trouvée sur les instances de grandes tailles.

Nous �nissons par comparer les di�érents algorithmes sur un ensemble d'instances générées

aléatoirement. Nous montrons que notre algorithme génétique obtient de bien meilleures

performances sur de nombreuses instances.

Résumé du chapitre 3 :

Dans ce chapitre, nous décrivons plusieurs formulations mathématiques données dans

la littérature. Nous proposons une nouvelle modélisation basée sur les graphes d'inter-

valles. Cette formulation possède un nombre exponentiel de contraintes. Nous proposons

des séparations polynomiales pour ces inégalités nous permettant de résoudre e�cacement

les instances testées. Cette modélisation obtient de très bons résultats et outrepasse en

termes de performance toutes les modélisations proposées dans la littérature à l'excep-

tion de la formulation basée sur les ordres linéaires. Nous avons proposé de nombreuses

inégalités valides pour notre modèle basé sur les graphes d'intervalles nous permettant

d'obtenir de meilleurs résultats et des résultats compétitifs sur de nombreuses instances

en comparaison avec la formulation basée sur les ordres linéaires.

Résumé du chapitre 4 :

Dans le chapitre 4, nous avons analysé le problème du sous-graphe d'intervalle sans

clique de taille supérieure à m. Ce sous-problème se retrouve dans de nombreux pro-

blèmes d'ordonnancement. Nous avons proposé des inégalités permettant de supprimer

les sous-graphes interdits dé�nis dans la littérature. Pour chacune de ces inégalités nous

analysons leur aspect facial. Ces contraintes sont en nombres exponentiels et nous propo-

sons plusieurs séparations, exactes et heuristiques pour chacune d'entre elle. Nous �nissons

par comparer les performances de chaque contrainte sur le problème d'ordonnancement

sur plusieurs machines avec contraintes disjonctives. Cette comparaison nous permet de

dé�nir les contraintes les plus intéressantes et la force des séparations proposées.

Résumé du chapitre 5 :

Dans ce chapitre, nous étudions deux problématiques qui sont des cas particuliers du

problème d'ordonnancement sur plusieurs machines avec contraintes disjonctives. Le pre-

mier problème consiste à dé�nir le meilleur ordre des tâches sur plusieurs machines tout en

respectant les contraintes disjonctives. Nous proposons une formulation par la program-

mation linéaire en nombres entiers pour résoudre ce problème ainsi que des contraintes

spéci�ques. Nous avons testé ce modèle en ajoutant les contraintes basées sur le sous-

graphe d'intervalle sans clique de taille m et nous comparons les résultats sur des ins-

xi



tances aléatoires. Le second problème est celui de l'ordonnancement d'atelier (open shop)

largement étudié dans la littérature. Nous étendons le modèle précédent ainsi que les

contraintes proposées précédemment. Ce modèle se base sur l'ordre linéaire des tâches

sur une machine et appartenant à la même tâche. Nous testons la performance de notre

modèle sur les instances utilisées dans la littérature.

Mots-clés: Ordonancement, programmation mathématique, heuristiques, Approche po-

lyèdrale, Branch-and-cut.
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Abstract

The Cloud Computing appears as a strong concept to share costs and resources

related to the use of end-users. As a consequence, several related models exist and are

widely used (IaaS, PaaS, SaaS. . . ). In this context, our research focused on the design

of new methodologies and algorithms to optimize performances using the scheduling and

combinatorial theories. We were interested in the performance optimization of a Cloud

Computing environment where the resources are heterogeneous (operators, machines, pro-

cessors...) but limited. Several scheduling problems have been addressed in this thesis.

Our objective was to build advanced algorithms by taking into account all these addi-

tional speci�cities of such an environment and by ensuring the performance of solutions.

Generally, the scheduling function consists in organizing activities in a speci�c system

imposing some rules to respect. The scheduling problems are essential in the management

of projects, but also for a wide set of real systems (telecommunication, computer science,

transportation, production...). More generally, solving a scheduling problem can be re-

duced to the organization and the synchronization of a set of activities (jobs or tasks)

by exploiting the available capacities (resources). This execution has to respect di�erent

technical rules (constraints) and to provide the maximum of e�ectiveness (according to a

set of criteria). Most of these problems belong to the NP-Hard problems class for which

the majority of computer scientists do not expect the existence of a polynomial exact

algorithm unless P=NP. Thus, the study of these problems is particularly interesting at

the scienti�c level in addition to their high practical relevance. In particular, we aimed to

build new e�cient combinatorial methods for solving parallel-machine scheduling prob-

lems where resources have di�erent speeds and tasks are linked by precedence constraints.

In our work we studied two methodological approaches to solve the problem under the

consideration : exact and meta-heuristic methods.We studied three scheduling problems,

where the problem of task scheduling in cloud environment can be generalized as unrelated

parallel machines, and open shop scheduling problem with di�erent constraints. For solv-

ing the problem of unrelated parallel machines with precedence constraints, we proposed a

novel genetic-based task scheduling algorithms in order to minimize maximum completion

time (makespan). These algorithms combined the genetic algorithm approach with di�er-

ent techniques and batching rules such as list scheduling (LS) and earliest completion time

(ECT ). We reviewed, evaluated and compared the proposed algorithms against one of the

well-known genetic algorithms available in the literature, which has been proposed for the

task scheduling problem on heterogeneous computing systems. Moreover, this compari-
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son has been extended to an existing greedy search method, and to an exact formulation

based on basic integer linear programming. The proposed genetic algorithms show a good

performance dominating the evaluated methods in terms of problems' sizes and time

complexity for large benchmark sets of instances. We also extended three existing math-

ematical formulations to derive an exact solution for this problem. These mathematical

formulations were validated and compared to each other by extensive computational ex-

periments. Moreover, we proposed an integer linear programming formulations for solving

unrelated parallel machine scheduling with precedence/disjunctive constraints, this model

based on the intervalandm−clique free graphs with an exponential number of constraints.
We developed a Branch-and-Cut algorithm, where the separation problems are based on

graph algorithms. We also worked to hybridize the meta-heuristic with the mathematical

program and improved our mathematical program by adding di�erent classes and fami-

lies of valid inequalities to strengthen the model. We also studied the polytope associated

with our mathematical formulation. We discussed the separation algorithms associated

with the valid inequalities and used them within branch-and-cut algorithm to solve the

problem. Finally, we proposed a novel model for solving a generalized open shop task

scheduling problem, and then, we adapted the model to solve the task scheduling prob-

lem in an open shop environment. We also identi�ed some classes of valid inequalities to

improve these models.

Keywords: scheduling, mathematical programming, heuristics, polyhedral study, Branch-

and-cut
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General Introduction

Cloud computing is a natural development of the previous models of distributed and

grid computing, beyond the technical innovations related to the idea of virtualization.

Cloud providers provide the computing as a services, it is called infrastructure as a service

(IaaS). Amazon Elastic Compute Cloud [13] is an example of IaaS. In cloud the providers

deliver physical resources as virtual machines with di�erent capacities to remote users as

a service on pay-as-you-go basis. Remote users send their data (applications, programs,

etc) to the cloud, the scheduler needs to place these data to its proper virtual machines. In

scheduling theory, this problem belongs to the class of parallel machines and open shop.

When the capacity of machines is di�erent, then it becomes more precisely an unrelated

parallel machines and a generalized case of open shop. In cloud computing most applica-

tions can be represented in a form of a directed cyclic graph (DAG). Therefore, precedence

constraints and disjunctive constraints are found. Cloud management is responsible for

resources allocation. When users send their applications (set of jobs with dependencies)

to the cloud the scheduler aims to assign each dependent job to its virtual machines ef-

�ciently. The allocation of jobs to virtual machines is a complicated process in the cloud

computing environment. Optimizing the maximum completion time normally a�ects the

performance of the whole system. The main advantage of job scheduling algorithms in

cloud environment is to achieve an excellent system throughput and high performance

computing.

Scheduling is the allocation of resources over time to perform a collection of tasks,

in which one or several objectives have to be optimized. From this general de�nition of

the term, we could deduce that, scheduling is an important decision making function.

We can say also, scheduling is a theory when it has a collection of principles, models

and techniques. Scheduling plays a crucial role in manufacturing, as well as in services

industries [113]. E�ective scheduling becomes a necessity for survival in marketplace.

For example, services companies have to schedule activities in such a way as to use the

available resources in an e�cient manner. Referring to Conway et al [4], scheduling is
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classi�ed according to four types of information : the operations to be processed, the

number and types of machines, the constraints that restrict the assignment of jobs and

the criteria by which the schedule can be evaluated. In the real life, there are tremendous

number of scheduling applications in manufacturing [6], production systems [7] and in

services industries [3], as well as in most information processing environment [1, 5]. The

journey of scheduling theory starts by Henry Gantt and other pioneers. Di�erent directions

were pursued in academia and industry with an increasing amount of attention paid

to scheduling problems. As a consequence, di�erent approaches have been developed to

solve the scheduling problems [8, 10, 11, 12]. These approaches, generally based on the

optimization techniques including heuristics, meta-heuristics (approximate methods) and

exact techniques, aim to design e�ective algorithms for attacking the considered scheduling

problems.

Most of scheduling problems belong to the NP-Hard problems class for which the

majority of computer scientists do not expect the existence of a polynomial exact algo-

rithm. Thus, the study of these problems is particularly interesting at the scienti�c level

in addition to their high industrial relevance.

Motivated by the optimization of the performances in cloud computing environment.

The scheduling problem in cloud is generalized as an unrelated parallel machine and open

shop scheduling problems according to the cloud environment. In this thesis, we propo-

sed di�erent optimization methods (approximate, and exact ) to handle such scheduling

problems. Our contribution is as follows :

- Several genetic algorithms have been proposed based on local search, list scheduling and

some batching rules.

- Several mathematical formulations are developed to solve the parallel-machine and open

shop scheduling problems.

- The proposed interval subgraph mathematical model have been investigated with the

associated polytope and some facets are de�ned for this polytope.

- Several classes of valid inequalities have been derived.

- Several separation procedures are proposed to strengthen the model.

Many experimental computations have been applied for some generated benchmarks as

well as for some known benchmarks.
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Outlines of the thesis

This thesis consists of �ve chapters where each one could be a self-contained chapter

based on the problem under the consideration and the combinatorial optimization methods

used. The reader can access the chapter with the corresponding method of his interest

directly. The manuscript is organized as follows :

Chapter 1 presents the preliminary and preparatory de�nitions and notations as a

conceptual framework. This chapter includes also some state of the art on cloud compu-

ting, scheduling problem and some de�nitions about complexity theory, polyhedral and

graph theory.

Chapter 2 focus on the approximate solutions of combinatorial problems. Greedy and

genetic algorithms for solving the task scheduling problems in cloud computing are pro-

posed in this chapter. Here, the problem is formulated as an unrelated parallel-machine

with precedences and disjunctive constraints. Moreover, some related work on this area

of research are presented and our results are compared with the existing works.

Chapter 3 presents the mathematical formulation of the studied problem. Our novel

mathematical model, which is based on interval andm-clique free subgraphs for solving the

unrelated parallel machines scheduling problem with precedence constraints is proposed.

We also compared the proposed model against di�erent other mathematical formulations

found in the literature. At the end of this chapter computational experiments are presented

and analysed.

Chapter 4 investigates our mathematical model and studies its associated polytope.

We explore the subproblem of �nding an interval graph and m-clique free subgraphs.

Moreover, we present some facet de�nitions and we also describe the exact and heuristic

separation algorithms to separate some forbidden subgraphs and we propose a branch-

and-cut algorithm based on families of strong valid inequalities presented in this chapter.

Chapter 5 discusses two problems. The �rst one is the Generalized Open Shop problem

and the second is the Open Shop scheduling problem. The structure of our model helps on

solving such problems. By applying the idea of interval graph to propose other mathema-

tical formulations for solving the considered problems, some classes of valid inequalities

are presented. Some separation algorithms are proposed as well.

Most of the results of these chapters have been published in journals, and international

conferences listed below :

Two articles in international journals :

� M-A. Hassan, I. Kacem, S. Martin, I.M. Osman, Genetic Algorithms for Job sche-
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duling in cloud computing. Studies in Informatics and Control, 2015, Vol. 24, No.

4, December 2015. PP. 387-399.

� Mohammed-Albarra Hassan, ImedKacem, Sébastien Martin, Izzeldin M. Osman : m-

clique free Interval sub-graph : Polyhedral analysis and Branch and Cut. (submitted

to the Journal of Combinatoric Optinization (JOCO) in November 2016).

Four articles in international conferences :

� Mohammed-Albarra Hassan, ImedKacem, Sébastien Martin, Izzeldin M. Osman :

Unrelated Parallel Machine Scheduling Problem with Precedence Constraints : Po-

lyhedral Analysis and Branch-and-Cut. ISCO 2016 : Lecture Notes of Computer

Science (SPRINGER) PP. 308-319 (DOI :10.1007/978-3-319-45587-727).

� M-A. Hassan, I. Kacem, S. Martin, I.M.Osman. Valid Inequalities for Unrelated

Parallel Machines Scheduling with Precedence Constraints. Proceedings of IEEE

CODIT'16, 6-8 April 2016, Saint Julian's � Malta : pp.677 - 682 (DOI : 10.1109/Co-

DIT.2016.7593644).

� M-A. Hassan, I. Kacem, S. Martin and I. M. Osman. Mathematical Formulations for

the Unrelated Parallel Machines with Precedence Constraints. Proceedings of 45th

International Conference on Computers & Industrial Engineering (CIE45), 28-30

October 2015, FRANCE.

� Mohammed-Albarra Hassan Abdel-Jabbar, ImedKacem, Sébastien Martin : Unre-

lated parallel machines with precedence constraints : application to cloud compu-

ting. IEEE CLOUDNET 2014 Luxembourg : pp.438-442 (DOI : 10.1109/Cloud-

Net.2014.6969034).

One poster in poster session :

� Poster session presented at � IAEM Journée d'automne �, 15 Octobre 2014 - Faculté

des Sciences & Technologies, Université de Lorraine, Nancy.
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1.1 Cloud Computing

Cloud computing is a type of distributed and parallel system, which consists of physi-

cal and virtual resources. The physical resources in cloud shared virtually across a limited

number of virtual machines to the end users according to their demand [18]. These vir-

tual machines are dynamically presented as computing resources to the end user based on
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what is called a service level agreements (SLA), which is a determined contract between

end-user and service provider that de�nes the computing service expected from the ser-

vice provider. When the computing resources are allocated to the users, they access the

services such as applications and stored data from anywhere at any time. The request for

virtualized resources is described through a list of parameters describing the processing,

the memory and the disk needs. The hardware and software resources are allocated to

the cloud applications on-demand basis. Execution of a task has a cost and this may vary

depending on the resources allocated. Therefore, when the maximum completion time

is minimized, that means the performance of the whole system will be improved. Cloud

computing services are o�ered based on three-tier architecture. The challenge is that, for

the cloud service providers it is di�cult to allocate the virtual machines dynamically and

e�ciently [17, 18].

The cloud service providers receive simultaneously a lot of computing requests from

di�erent users with di�erent requirements and preferences (see Figure 1.1). Some tasks

need to use a lower cost and less computing resources, while some other tasks require

more computing resources and take more bandwidth and CPU. In a cloud computing

environment the tasks may be distributed across distinct computational resources nodes.

In order to allocate the tasks to these nodes, the available computing resources are de-

tected and analyzed. Hence, the quality of cloud computing service can be described by

network bandwidth, task costs and the completion time. The importance of task sche-

duling in cloud environment arises from the previous description. Scheduling algorithms

in cloud computing environment can be categorized into two main groups based on the

cloud mode : batch mode scheduling algorithms and online mode scheduling algorithms. In

batch scheduling algorithms, jobs are queued and collected into a bu�er when they arrive

in the system. Then, the scheduling algorithms will start after a �xed period of time. In

the other mode, jobs are scheduled immediately when they are arrived to the system [17].

There are many di�erent techniques used to allocate user requests to the cloud computing

resources in order to optimize some objectives that a�ect the performance of the cloud

services (See [15]).

1.2 Scheduling problems

Scheduling is a decision-making process, it is found in many real world applications.

such as manufacturing and services industries. It is the process of allocating resources to
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Figure 1.1 � Task scheduling in cloud computing model.

tasks over a given time period aiming to optimize one, two, or multiple objectives. The

resources and tasks can take many di�erent forms in services and in manufacturing. The

resources may be machines in a factory, processing units in a computing environment, etc.

The tasks may be operations in a production line, processing of a computer programs,

etc. In machine environment each task may have some constraints such as a precedence

constraints, a possible starting time and a due date. The objectives can also take many

di�erent forms. One objective may be a single objective such as the minimization of the

completion time of the last task, and another may be bi-objective or multi-objectives.

Scheduling, as a decision-making process, plays an important role in computing environ-

ments, especially in cloud computing. Suppose that m machines Mi(i = 1, ...,m) have to

process n jobs Jj(j = 1, ..., n). A schedule is for each job an allocation of one or more

time intervals to one or more machines.

The classes of scheduling problems are speci�ed in terms of a three-�eld classi�cation

α|β|γ where α speci�es the machine environment, β speci�es the job characteristics and γ

denotes the optimality criterion. Such a classi�cation scheme was introduced by Graham

et al [66].
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1.3 Computational complexity

In this section, we present some de�nitions and principles about the computational

complexity. Complexity theory provides a mathematical framework in which computa-

tional problems are studied so that they can be classi�ed as "easy" or "hard". A more

detailed presentation can be found in the book of Garey & Johnson [61]. The main issue

of the theory of complexity is to determine the required resources needed (time, storage

space) and to measure the performance of algorithms with respect to computational time.

The notations P, NP and co-NP are collections of decision problems : problems that can

be answered by 'yes' or 'no', like whether a given graph has a perfect matching or a Ha-

miltonian circuit. The optimization problem is not a decision problem, but often can be

reduced to it in a certain sense [19]. An easy way to characterize the class NP is : NP is

the collection of decision problems that can be reduced in polynomial time to the satis�a-

bility problem. However, Cook in [16] de�ned NP as the collection of all decision problems

for which each input with positive answer, has a polynomial-time checkable of correctness

of the answer (NP stands for nondeterministically polynomial-time). The NP-complete

problems are the problems that are the hardest in NP : every problem in NP can be

reduced to them. Next description clarify. Problem
∏
⊂ Sigma∗ is said to be reducible

to problem ∧ ⊂ Sigma∗ if there exists a polynomial-time algorithm that returns, for any

input w ∈ Σ∗ an output x ∈ Σ∗ with the property : w ∈
∏
⇔ x ∈ ∧. This implies that

if
∏

is reducible to ∧ and ∧ belongs to P, then also
∏

belongs to P. Similarly, if
∏

is

reducible to ∧ and ∧ belongs to NP, then also
∏

belongs to NP. A problem
∏

is said

to be NP-complete if each problem in NP is reducible to
∏
. An optimization problem is

NP-hard if the corresponding decision problem is NP-complete.

One of the most successful methods of attacking hard combinatorial optimization

problems is the genetic algorithm, which will be discussed in this chapter. Genetic algo-

rithm generally generates feasible solutions that are not guaranteed to be optimal. Any

approach without formal guarantee of performance can be considered as a "heuristic".

Such approaches are useful in practical situations if there is no better methods available.

Important classes of problems which are polynomially solvable are linear programming

problems [25] and integer linear programming problems with �xed number of variables

[27].
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1.4 Heuristics and meta-heuristics

In this section, we present some de�nitions for heuristics and metaheuristics widely

used in combinatorial optimization.

1.4.1 Heuristics

Optimization techniques can be classi�ed, in a heuristic, exact and approximation me-

thods. The heuristic methods try to �nd optimal solutions or near-optimal solutions in a

signi�cantly reduced amount of time. The heuristic methods categorized into constructive

methods and local search methods. Constructive algorithms obtain solutions from scratch

by adding solution components to an initially empty list, until reaching the �nal solution.

Local search algorithms start from an initial solution and iteratively replace the current

solution by a better candidate from the neighbors of the current solution [22]. As de�ned

in [18], a heuristic technique is a method, which tries to �nd good solutions at a reaso-

nable computation cost without being able to guarantee optimality. Unfortunately, it may

not even be possible to determine how close to the optimal solution a particular heuristic

solution is.

1.4.2 Metaheuristics

The term meta-heuristic refers to a certain class of heuristic methods. As Fred Glover

in [21], �rst used this term and de�ned it as follows : A meta-heuristic refers to a master

strategy that guides and modi�es other heuristics to produce solutions beyond those that are

normally generated in a quest for local optimality. In another de�nition, "meta-heuristics

are solution methods that orchestrate an interaction between local improvement procedures

and higher level strategies to create a process capable of escaping from local optima and

performing a robust search of a solution space" [23]. The heuristics guided by such a meta-

strategy may be high level procedures or may include nothing more than a description

of the strategies of moving from one solution to another with an associated evaluation

rule (called �tness). To distinguish between heuristics and metaheuristic concepts, we

can mention that heuristics are often problem dependent, heuristics normally de�ned

for a given problem to �nd optimal or near to the optimal solutions for the problem

under consideration, whereas the metaheuristics are problem independent techniques that

can be applied for a wide range of problems. As an example, when we use simulated
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annealing metaheuristic in scheduling, the decision of moving from current solution to

another candidate one will be done by metaheuristic procedure whereas this method does

not know nothing about scheduling. In the literature there is a vast amount of research

that used a heuristic and metaheuristics to attack scheduling problems.

Genetic algorithm

Holland in 1975 developed the idea of applying the principles of natural evolution to

optimization problems. This idea has been published in his book "Adaptation in natural

and arti�cial systems". He built the �rst genetic algorithm. Holland's theory has been

further developed. Now, genetic algorithms (GAs) considered as a powerful tool for sol-

ving optimization problems. Genetic algorithms are based on the principle of genetics

and evolution. Todays, GAs are used to resolve complicated optimization problems, like

timetabling, job shop scheduling, games playing and others [49].

Now, we give a brief introduction to simple genetic algorithms and associated termi-

nology. GAs encode the decision variables of a search problem into �nite length strings of

alphabets or digits of a certain cardinality. The strings which are candidate solutions to

the search problem are referred to as chromosomes. The chromosome represent a single

solution, the alphabets or digits are referred to as genes and the values of genes are called

alleles. For example, in scheduling problems, a chromosome represents a sequence and a

gene may represent a job, and an allele is a value of processing time taken by a speci�c

job.

In contrast to traditional optimization techniques, GAs work with coding of parame-

ters, rather than the parameters themselves. The general procedures of the GA are as

follows :

1. Initialization. The initial population of candidate solutions is usually generated ran-

domly across the search space. It can be binary or non-binary chromosomes.

2. Evaluation. Once the population is initialized or an o�spring population is created,

the algorithm uses a �tness function to evaluate each chromosome in the population.

3. Selection. In the selection step, the algorithm works to prefer better solutions to worse

ones. The algorithm selects a chromosome to mate the reproduction.

4. Recombination. Recombination combines parts of two or more parental solutions to

create new ones. Here, the algorithm applies a genetic operator (crossover) on the selected

chromosomes.

5. Mutation. Select one solution and apply a small random change to this solution.

10
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6. Replacement. Replace the current population with the temporary population.

If stopping condition is met, then STOP with the best chromosome as the �nal solution

for the problem. Otherwise, GOTO 2.

The determination of a population size is a crucial element in the GAs. In most of

GA applications, the population size can be considered as a constant. The initialization of

population performed by using some suitable heuristics that are relevant to the considered

problem or can be created randomly. Selecting a very small size of population increases

the risk of not converging to a global optimal solution. Large size of population increases

the chance to converge to obtain a good solution. The second operator of GAs is the

�tness function, GA uses this function to evaluate the solution for each chromosome,

then GA can determine if the chromosome can be kept or not. If the chromosome kept

then it produces a new o�spring or will be eliminated.The most important operator is

the selection of chromosomes, which is ensure the convergence of the GA. When the

genetic algorithm capable to select the best chromosome, then it will have a population of

similar chromosomes, that led the GA to converge to a local optimum. Now, we give some

selection methods : roulette wheel selection, deterministic selection, ranking selection,

tournament selection and etc. In step four, the combination of two parents which combines

the features of two �ttest chromosomes and carries these features to the next generation

by forming o�springs. Many well known crossover methods have been developed and

applied. One of them is the two-position crossover method, which consists in selecting two

crossover positions in two chromosomes and then making swapping segments between the

chromosomes. Also, there is another crossover method, which is multi-position crossover

method. This method changes the number of segments during the execution of GA. Shu�e

crossover method �rst shu�es the crossover positions in the two selected chromosomes.

Then, it exchanges the segments between the crossover positions and �nally un-shu�es

the chromosomes. The uniform crossover method is a mix between one position and multi-

positions crossover methods. It produces two new children by exchanging genes in two

chromosomes randomly. The �fth operator in GA steps is the mutation, which exchange

one or more of the chromosome genes randomly to ensure search changement, which may

lead to the global optimum.

Finally, the last GA step is the stopping criterion. There are many methods, which

can be used for the stopping criteria. One of them is the maximum number of generations.

The method based on the convergence is also used : the algorithm stops when the GA
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converges after all chromosomes have reached a certain degree of homogeneity or, by

another stopping criterion, after a chromosome with a certain level of �tness value is

found.

1.5 Graph theory

In this section, we will introduce some basic de�nitions and notations of graph theory

that will be used throughout the chapters of this dissertation. For more details, we refer

the reader to [19].

A graph is denoted G = (V,E) where V is the set of vertices or nodes and E is the

set of edges. If e ∈ E is an edge with initial node u and terminal node v, we may also use

both notations uv or (u, v) to denote e.

The graphs considered here are directed, �nite, loopless and may include multiple arcs.

A directed graph or digraph is denoted G = (V,A) where V is the set of vertices or

nodes and A is the set of arcs. If a ∈ A is an arc with origin node u and destination node

v, we may also use both notations uv or (u, v) to denote a. The graph G is said to be

complete if there exists an arc between each pair of nodes (u, v).

A graph or undirected graph is a pair G = (V,E), where V is a �nite set and E is a

family of unordered pairs from V . The elements of V are called the vertices, sometimes

the nodes or the points. The elements of E are called the edges, sometimes the lines.

A graph G′ = (V ′, E ′) is called a subgraph of a graph G = (V,E) if V ′ ⊂ V and

E ′ ⊂ E. If E ′ consists of all edges of G spanned by V ′, then G′ is called an induced

subgraph, or the subgraph induced by V ′. In notation,

G[V ′] := subgraph of G induced by V ′,

E[V ′] := family of edges spanned by V ′

The complementary graph or complement of a graph G = (V,E) is the simple graph

with vertex set V and edges all pairs of distinct vertices that are nonadjacent in G. In

notation, Ḡ := the complementary graph of G.

1.6 Optimization problems

In mathematics, optimization is a branch of applied mathematics. It derives its im-

portance from the wide variety of its applications and from the availability of e�cient

algorithms that have been used to solve such problems. Mathematically, it refers to the
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minimization (or maximization) of a given objective function of several decision variables

that satisfy functional constraints [113]. For example, let us consider the optimization mo-

del, which addresses the allocation of limited resources among possible alternative uses in

order to maximize the total pro�t. Objective function, decision variables, and constraints

are three essential elements of any optimization problem. If the decision variables in an

optimization problem are restricted to integers, or to a discrete set of possibilities, there

is an integer or discrete optimization problems. The problem is a continuous optimization

problem, if there are no such restrictions on the variables. Some problems may have a

mixture of discrete and continuous variables, that depends on the nature of the problem.

We give the generic description of an optimization problem.

Given a function f (x) : Rn → R and a set S ⊂ Rn, the problem of �nding an x∗ ∈ R that

solves

minxf (x) (1.1)

s.t. x ∈ S

is called an optimization problem (OP). We denote by f the objective function and by S

the feasible region. If S is empty, the problem is called infeasible. If it is possible to �nd a

sequence xk ∈ S such that f (xk)→ −∞ as k → +∞, then the problem is unbounded. If

the problem is neither infeasible nor unbounded, then it is often possible to �nd a solution

x∗ ∈ S.

1.6.1 Combinatorial optimization

Combinatorial Optimization is a subset of mathematical optimization that is related to

operations research, algorithm theory, and computational complexity theory. Its purpose

is to study the optimization problems where the set of feasible solutions can be represented

as a discrete one.

The combinatorial optimization problems are the problems, which are formulated as

follows. Let E = {e1, ..., en} be a �nite set where each element ei is associated with a

weight w(ei). Let F be a family of subsets of E. If F ∈ F , then w(F ) =
∑

ei∈F w(ei)

denotes the weight of F. The problem consists in identifying an element F ∗ of F whose

weight is minimum or maximum. The set F represents the set of feasible solutions of the

problem. Such a problem is called combinatorial optimization problem.

The term combinatorial refers to the discrete structure of the representation of the

feasible solution set F . Generally, this structure is represented by a graph. The term
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optimization tells that we are looking for the best element in the set of feasible solutions.

This set may contain an exponential number of solutions. Thus, we cannot expect to solve

a combinatorial optimization problem by checking or enumerating all its solutions one by

one, which is not a reasonable option. Such a problem is then considered as a hard problem.

Many e�ective techniques and approaches have been developed to attack combinatorial

optimization problems. Some of these approaches use linear, integer programming, and

polyhedral approach and others based on graph theory. combinatorial optimization is

closely related to algorithm and computational complexity theory.

1.6.2 Linear programming

Linear programming deals with the OP with a linear function in the presence of li-

near inequalities. One of the most common optimization problems is linear optimization

or linear programming (LP). It is the problem of optimizing a linear objective function

subject to linear inequalities and equality constraints. Indeed, any combinatorial optimi-

zation problem can be reduced to solving a linear program. The standard form of the LP

is given below :

minx CTx

Ax = b (1.2)

x ≥ 0,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn are given and x ∈ Rn is the variable vector to be deter-
mined. A wide variety of real life problems can be formulated as linear integer optimization

problems. The combinatorial problems, such as the knapsack problem, resources alloca-

tion problem, TSP, network �ow and graph problems, and many scheduling problems can

also be solved as a linear integer optimization problems [24].

1.6.3 Integer programming

When the variables are integer, we call the formulation of the problem as integer

programming. Integer programs are optimization problems that require some or all of

the variables to take integer values. This restriction on the variables usually makes the
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problems very hard to solve. A pure integer linear program is given by :

minx CTx

Ax ≥ b (1.3)

x ≥ 0 and integral,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn are given, and x ∈ Nn is the variable vector to be

determined.

A very common case occurs when the variables xj represent binary decision variables,

that is x ∈ {0, 1}n. The problem is then called a 0 − 1 linear program (or discrete).

When there are both integer constrained variables and continuous variables, the problem

is called a Mixed Integer Linear Program (MILP) :

minx CTx

Ax ≥ b (1.4)

x ≥ 0

xj ∈ N, for j = 1, ..., p

where A, b, c are given data and the integer p (with 1 ≤ p < n) is also part of the input.

1.7 Polyhedral approach

The development of polyhedral theory and the consequent introduction of strong va-

lid inequalities led to a resurgence of cutting plane methods. The polyhedral method was

initiated by Edmonds in 1965 for a matching problem. It consists in describing the convex

hull of problem solutions by a system of linear inequalities. The problem reduces then to

the resolution of a linear program. Normally, in most of the cases, it is not straightforward

to obtain a complete characterization of the convex hull of the solutions for a combinato-

rial optimization problem. However, having a system of linear inequalities that partially

describes the solutions polyhedron may often lead to solve the problem in polynomial

time. This approach has been successfully applied to several combinatorial optimization

problems. In this section, we present the basic notions of polyhedral theory. For detail,

the reader is invited to consult [19, 20, 22].

First, we will recall some de�nitions, propositions, and properties related to polyhedral

theory.
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Elements of (S)

Conv(S)

Figure 1.2 � A convex hull

1.7.1 Elements of polyhedral theory

De�nition 1 Given a set S ⊆ Rn, a point x ∈ Rn is a of points of A if there exists a

�nite set of points {xi}ti=1 in S and a λ ∈ Rt
+ with

∑t
i=1 λi = 1 and x =

∑t
i=1 λix

i.

Figure 1.2 shows the convex hull of a set of integral points in R2. We see that conv(S)

can be described by a �nite set of a linear inequalities and that max{cx : x ∈ S} =

max{cx : x ∈ conv(S)}. Moreover, the latter problem is a linear program.

Finding an inequality description of conv(S) is not easy and questions such as the

dimension of conv(S) and so on, are very important. In this section, we give some results

from linear algebra.

De�nition 2 A set of points x1, ..., xk ∈ Rn is linearly independent if the unique solution

of
∑k

i=l λix
i = 0 is λi = 0, i = 1, ..., k.

Note that the maximum number of linearly independent points in Rn is n.

De�nition 3 H ⊂ Rn is a subspace if x ∈ H implies λx ∈ H for all λ ∈ R1 and x, y ∈ H
implies x+ y ∈ H.

De�nition 4 A polyhedron P ⊂ Rn is the set of points that satisfy a �nite number linear
inequalities ; that is, P = {x ∈ Rn : Ax ≤ b}, where (A, b) is an m× (n+ 1) matrix.
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Valid proper face, facet

Valid invalid

Valid proper face, but not facet

Figure 1.3 � Valid inequality, facet

Now, we describe the polyhedra by facets.

Given a polyhedron P = {x ∈ Rn : Ax ≤ b}, the question is to �nd out which of

the inequalities aix ≤ bi are necessary in the description of P and which can be dropped.

Indeed, we will show that those necessary to describe P are the same, whatever the initial

inequality description of P .

De�nition 5 The inequality πx ≤ π0[or(π, π0)] is called a valid inequality for P if it is

satis�ed by all points in P .

Note that (π, π0) is a valid inequality if and only if P lies in the half-space{x ∈ Rn :

πx ≤ π0}, or equivalently if and only if max{πx : x ∈ P} ≤ π0.

De�nition 6 If (π, π0) is a valid inequality for P and F = {x ∈ P : πx = π0}, F is

called a face of P , and we say that (π, π0) represents F . A face F is said to be proper if

F 6= ∅ and F 6= P .

De�nition 7 A face F of P is a facet of P if dim(F)=dim(P)-1.

1.7.2 Cutting plane methods

Many combinatorial optimization problems can be formulated as mixed integer linear

programming problems. Then, they can be solved by branch-and-cut methods, which
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are exact algorithms consisting of a combination of branch-and-bound algorithm with

a cutting plane method. These methods work by solving a sequence of linear program-

ming relaxations of the integer programming problem. Cutting plane methods improve

the relaxation of the problem to more closely integer programming problem and branch-

and-bound algorithms carry out by a sophisticated divide and conquer approach to solve

problems. Cutting plane algorithms for general integer programming problems were �rst

proposed by Gomory [27]. Thus, this method sometimes called "Gomory Cut", who pro-

ved that these algorithms terminate after a �nite number of iterations with an optimum

solution.

Now, let P be a combinatorial optimization problem, E its basic set, w(.) the weight

function, and S the set of feasible solutions. The problem P consists in �nding an element

of S whose weight is maximum/minimum. If F ⊆ E, then the 0− 1 vector xF ∈ RE such
that xF (e) = 1 if e ∈ F and xF (e) = 0 otherwise, is called the incidence vector of F . The

polyhedron P (S) = convxS|S ∈ S is the polyhedron of the solutions of P or polyhedron

associated with P . P is thus equivalent to the linear program max{cx|x ∈ P (S)}. Notice
that the polyhedron P (S) can be described by a set of a facet de�ning inequalities. And,

when all the inequalities of this set are known, then solving P is equivalent to solve a

linear program.

The objective of the polyhedral approach for combinatorial optimization problems

is to reduce the resolution of P to that of a linear program. In order to reduce P we

need a deep investigation of the polyhedron associated with P . It is generally not easy

to characterize the polyhedron of a combinatorial optimization problem by a system of

linear inequalities. In particular, when the problem is NP-hard it is di�cult to �nd such

a characterization. Moreover, the number of inequalities describing this polyhedron is

exponential in most of time. Therefore, even if we know the complete description of that

polyhedron, its resolution remains in practice a hard task because of the large number of

inequalities.

Cutting plane method is based on the so-called separation problem. This consists, given

a polyhedron P of Rn and a point x∗ ∈ Rn, in verifying whether if x∗ belongs to P , and

if this is not the case, to identify an inequality aTx ≤ b, valid for P and violated by x∗.

In the later case, we say that the hyperplane aTx = b separates P and x∗. More precisely,

the cutting plane method consists in solving successive linear programs, with possibly a

large number of inequalities, by using the following steps. Let LP = max{cx,Ax ≤ b} be
a linear program and LP ′ a linear program obtained by considering a small number of
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inequalities among Ax ≤ b. Let x∗ be the optimal solution of the latter system. We solve

the separation problem associated with Ax ≤ b and x∗. This phase is called the separation

phase. If every inequality of Ax ≤ b is satis�ed by x∗, then x∗ is also optimal for LP. If

not, let ax ≤ α be an inequality violated by x∗. Then, we add ax ≤ α to LP ′ and repeat

this process until an optimal solution is found.

1.8 Branch and cut algorithm

Branch and cut methods are often successful for �nding an exact solution of hard

optimization problems. For each instance, the method always maintains an upper bound

(ub) and a lower bound (lb) for the optimum solution value. Iteratively, the value of the

upper and lower bounds are improved, until they get the optimal solution, or a solution

that is tight enough. It is known that, branch and cut is a special case of branch and

bound method, where in branch and cut method the bounds are determined through LP

and polyhedral theory. Informally, we summarize the basic concepts of branch and cut. We

need a partial description Q of Qc(G) with the properties that the latter is contained in Q.

We call such a polytope a relaxation polytope. The inequality system Apx ≥ bp describing

Q is known and can be generated in polynomial time. We optimize over Q to solve the

linear program, which is found in the form of the LP mentioned in this chapter. Fast

algorithms for solving linear programs exist, for example the well known one is Simplex

method. Within the branch and cut approach we start by some relaxation Q of Qc(G).

Iteratively, we generate tighter description of the cut polytope. The upper bound (ub) on

the optimum value of the maximum cut can be obtained by any heuristic. In the case

where upper and lower bounds are the same we can stop and return an optimum solution,

we can also stop where lower bound solution vector becomes integer. In branch and cut a

sub problem is a node of the tree. The branch and cut algorithm is described as follows.
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Algorithm 2: Branch and Cut Algorithm

1 Start with some P ⊆ Pc(G).

2 Solve (lb) = cx∗ = max{cx|x ∈ P}.
3 (ub) : value found heuristically.

4 if ub=lb or x∗ is cut then

5 Stop ;

6 else

7 �nd a better description of Pc(G);

8 Goback to 2

9 end

10 if no better description can be found then

11 branch : select a variable xij with x∗ij /∈ {1, 0} ; Generate two sub problems in

one of which xij is set to 0, and in the other is to 1.

12 end
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Algorithm 1: Cutting Plane Algorithm
Input: A linear program LP and its system of inequalities Ax ≤ b

Output: Optimal solution x∗ of LP

1 Consider a linear program LP' with a small number of inequalities of LP ;

2 Solve LP' and let x∗ be an optimal solution ;

3 Solve the separation problem associated with Ax ≤ b and x∗ ;

4 if an inequality ax ≤ α of LP is violated by x∗ then

5 Add ax ≤ α to LP';

6 Repeat step 2 ;

7 else

8 x∗ is optimal for LP;

9 return x∗;

10 end
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E�cient job scheduling algorithms are addressed in this chapter to improve the resource

utilization in cloud computing where the aim is to minimize the total completion time

(Makespan). We present a genetic-based task scheduling algorithms in order to minimize

Maximum Completion Time Makespan. These algorithms combines di�erent techniques

such as list scheduling and earliest completion time(ECT) with genetic algorithm. We re-

viewed, evaluated and compared the proposed algorithms against one of the well known

GAs available in the literature, which has been proposed for optimizing the task schedu-

ling on heterogeneous systems. After an exhaustive computational experiments the results

identify that our proposed Genetic algorithms show a good performance dominating the

evaluated algorithms in di�erent problem sizes and complexity for a large benchmark set

of instances. Moreover, greedy algorithm and ILP have been applied to attack the problem.
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2.1 Introduction

This chapter discusses di�erent solutions for the problem of unrelated parallel machine

scheduling with precedence constraints based on heuristic and metaheuristic approaches.

In Cloud environments a task scheduling is a process that maps and assign the inter-

dependent tasks on the data centers (resources) [15]. It allocates the tasks its appropriate

virtual resources which is virtual machines (VMs) inorder to satisfy objective functions

imposed by end-users. The idea of virtualizing a computer system resources(processors,

memory, input/output devices), aiming to improve the sharing of computer resources[29].

Generally,an e�cient task scheduling algorithm will have an important impact to the per-

formance of the system throughput [40, 36]. The scheduling problem in cloud computing

can be generalized as an unrelated parallel machine with di�erent speeds and precedence

constraints. We consider VMs as an unrelated parallel machine because the cloud com-

puting providers o�er their services virtually by sharing their physical resources through

a large number of virtual machines in parallel. These virtual machines, allocated with

di�erent CPU capacities, so it can be considered as an unrelated parallel machines. In

cloud computing users may face hundreds of thousands of virtualized resources to utilize.

It is hard to allocate user± tasks on the available resources. Due to the virtualization pro-

perties, cloud computing leaves task scheduling complexity to the virtual machine layer

through resource virtualization.

Hence, to allocate the resources to each task e�ciently, scheduling plays more im-

portant role in cloud computing [28]. It is di�cult to obtain an optimal solution with

traditional optimization methods. Mathematical optimization techniques can solve the

problems optimally for a reasonable size of instances, however, in the case of a large scale

problems, their application is limited [65]. Dispatching rules (EDD, SPT, LPT,...) are

suitable only for small sized problems. It is also known that, no single dispatching rule

guarantees optimal or near to the optimal solution in various problems [45]. Research ef-

forts in scheduling are concentrated on heuristic approaches as well. Many heuristics and

meta-heuristics have been proposed such as simulated annealing (SA), branch and bound

(Branch and Bound), tabu search, and genetic algorithm (GA) [28]. Among these various

approaches to di�erent scheduling problems, there is an increasing interest in applying

GAs, this interest comes from its characteristic, the ease of implementation, and the high

adaptability. The important di�erence between GA and other heuristics is that GA ge-

nerate a set of solutions (populations) rather than a unique solution, which can lead to

a better diversity. In scheduling problems, Cmax is equivalent to the completion time of
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the last task leaving the system. The small makespan usually means a high utilization.

Therefore, reducing the makespan should also lead to a higher throughput rate in the

overall system [45]. Three genetic algorithms have been applied to solve this problem.

2.1.1 Literature Review

The problem of task scheduling in distributed systems is known as an NP-hard [46].

To allocate n jobs to m virtual machines (VMs), the number of allocation is |n||m| and
the number of states will be n!. One of the objectives of scheduling in cloud computing is

to determine the assignment of jobs to VMs in order to optimize the completion time of

the last task in the system. The job scheduling problem in distributed, and heterogeneous

systems such as cloud computing [15], has been studied widely in the last few years. Ge-

nerally, job scheduling problem can be found in two forms : dynamic and static. When all

information needed for scheduling, such as data dependencies between jobs, and execution

times of jobs are known by the scheduler, then the scheduling problem known as static

scheduling problem. In static scheduling, jobs placed during the compile time. On the

other hand, in the dynamic model, jobs are allocated to the processors upon their arrival

to the scheduler, and scheduling decisions must be made immediately at run time [48, 49].

In this section we focus our attention on the available algorithms for static scheduling in

cloud environment, as well the algorithms that haves been used to solve the unrelated

parallel machine with precedence constraints scheduling problem. A survey on scheduling

in cloud computing can be found in [15],[28],and [43]. Di�erent methods for optimizing

di�erent objectives in cloud computing exist (See[32, 33, 34, 48, 35]). Some researchers

proposed e�cient meta-heuristics based on genetic algorithm : Zhou et al in [50] proposed

a genetic algorithm based on earliest completion time (ECT) to minimize completion time

(we represent this GA in the next sections. Arash and Yalda also developed hybrid genetic

algorithm for work �ow scheduling in cloud system (HSGA). It merges best-�t and Round

Robin methods to obtain a good solution quickly by making an optimal initial population.

It makes a job prioritization in complex graph. A particle swarm optimization (PSO) used

in [51] for work�ow scheduling in cloud environment, which considers not only execution

cost but also the cost for transmitting dependent data. In [52] a PSO is also formulated

as a model for the multi-objective task assignment to optimize the time and cost. To the

best of our knowledge, none of the existing Genetic algorithms have considered the idea

of scheduling jobs with a high number of successors in order to optimize the makespan.

Shamsollah et al in [40] presented a novel approach for job scheduling in cloud computing
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which was called priority based job scheduling algorithm. Their solution method based on

multi-criteria decision-making model and multi-attribute decision-making model which

was �rst developed by T.Saaty in 1980 and called the theory of Analytical Hierarchy

Process. The proposed algorithm mainly focused on priority of job. The experimental

results indicated that the algorithm has reasonable complexity, however the authors did

not expect that this algorithm provides an optimal makespan. Xiaofeng Wang et al in [42]

proposed a new max-min strategy speci�cally for GAs, which use a novel task critical-

ness. They modeled a work�ow job as a Directed Acyclic Graph (DAG). The reliability

driven scheduling of a work�ow application applied to maximize the reliability and to

minimize the makespan of the application. The literature on parallel machine scheduling

is fairly large, we focus mainly on the non-preemptive unrelated parallel machine problem

with precedence constraints to minimize makespan criterion. There are many applications

for this scheduling problem specially in distributed computing systems [52],[50]. Several

heuristics and meta-heuristics have been proposed to solve this problem for optimizing

di�erent objectives. In [38] Vallada and Ruiz proposed a genetic algorithm to minimize

the makespan. Their GA includes a fast local search and a local search enhanced cros-

sover operator. In [65] Balin proposed a new crossover operator for genetic algorithm to

minimize makespan, his algorithm achieved a high computational speed for large-scale

problems. In [53] Tavakkoli-Moghaddam et al proposed a genetic algorithm to solve bi-

objective unrelated parallel machine scheduling problem. Je�rey et al [44] considered the

case where a task has at most one predecessor and at most one successor. They propo-

sed a greedy search, which we use in this chapter for a comparison purpose, and they

proposed also a heuristic based on a branch-and-bound procedure. They also applied a

simulated annealing algorithm to solve the problem. Liu and Yang in [71] considered the

case where the machines do not have speci�c speeds but every job has a processing time

depending on the used machine, which is an extension of the constraint we used in our

problem. They proposed an integer linear programming model and they provided a po-

lynomial time algorithm that can schedule the prior job on the prior machine as early

as possible for minimizing makespan. A hybrid genetic algorithm has been proposed in

[71] for minimizing the total tardiness for the problem of unrelated parallel machines

with precedence constraints. For other proposed approaches the reader could refer to see

[37, 63, 30, 31, 39, 41].

In this chapter, we deal with the problem of job scheduling in cloud environment and

we generalized this problem as an unrelated parallel machines scheduling with precedence
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constraints for optimizing the makespan. We proposed three genetic algorithms, they show

a very good performance for small and medium benchmarks.

In the next section we will present the problem formulation and a mathematical formula-

tion associated to solve unrelated parallel machine with precedence constraints scheduling

problem.

2.2 Problem formulation

The problem under consideration is to schedule n jobs on m machines which are

arranged in parallel with the aim of minimizing the total completion time. Let J be the

set of the jobs andM be the set of the parallel machines. A precedence constraint between

two jobs j1 and j2 is denoted by (j1 ≺ j2) and it requires that job j2 cannot start to be

processed until job j1 will �nish its processing. The type of the precedence constraint is

a graph type, which is denoted by D = (V,A), where V is the set of vertices associated

at each job ϑ and V denotes the set of edges associated with each precedence constraint.

We called this graph the precedence graph. We take also the case where {v, w̄, w} ⊆ V

such that v before w̄ and w̄ before w then v before w. We consider also the speeds for

all machines denoted by si, where i ∈ M . Every job j ∈ J has a processing time pj and

its e�ective processing time depends on the selected machine i, where pij = πj × si. Each
machine i ∈M cannot process more than one job at a given time. Furthermore, machines

have di�erent speeds and preemption of jobs is not allowed. According to the well-known

α|β|γ scheduling problem classi�cation scheme proposed initially by Graham et al [66],

scheduling problem classi�cation scheme this problem can be denoted as P |prec|Cmax We

denote by Ci the completion time of machine i, where i ∈ M , and denote by Cϑ the

completion time of job j, where j ∈ J , in the rest of this chapter. Thus, the problem can

be reduced to the following mathematical formulation proposed in [71]

xjir =


1 if job j is processed in position r on machine i

0 otherwise ∀j ∈ J, i ∈M, r ∈ J

Cj ∈ N+ the completion time of job j.

Cmax ∈ N+ is the total length of the schedule. That is, when all the jobs have �nished

processing.

The model can be stated as :
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minCmax

Cj ≤ Cmax ∀j ∈ J, (2.1)∑
i∈M

∑
r∈{1,...,|J |}

xjir = 1 ∀j ∈ J, (2.2)

∑
j∈J

xjir ≤ 1 ∀r ∈ {1, ..., |J |},∀i ∈M, (2.3)

∑
j1∈J

xj1ir −
∑
j2∈J

xj2ir−1 ≤ 0 ∀r ∈ {2, ..., |J |},∀i ∈M, (2.4)

Cj2 − Cj1 + C(2− xj2ir − xj1ir−1) ≥ pj2i ∀r ∈ {2, ..., |J |},∀i ∈M, ∀j1 6= j2 ∈ J,
(2.5)

Cj ≥
∑

r∈{1,...,|J |}

pjixjir ∀i ∈M,∀j ∈ J, (2.6)

Cj2 − Cj1 ≥
∑

r∈{1,...,|J |}

∑
i∈M

pj2ixj2ir ∀(j1, j2) ∈ A, (2.7)

xjir ∈ {0, 1}, ∀j ∈ J,∀i ∈M,∀r ∈ {1, ..., |J |}, (2.8)

Cj ≥ 0, ∀j ∈ J, (2.9)

Cmax ≥ 0, (2.10)

The objective function is to minimize the makespan. Inequalities (2.1) ensure that the

global makespan is greater than or equal to the completion time for all jobs. Inequalities

(2.2) ensure that each job should be assigned to one position on one machine. Inequali-

ties (2.3) guarantee that at most one job will be assigned to a position on all machines.

Inequalities (2.4) guarantee that there must be no empty time slot between jobs in se-

quences. Inequalities (2.5) ensure that the job j2 must start its processing time after the

�nishing of job j1, if job j1 is assigned on position r−1 and job j2 on the position r on the

same machine. Inequalities (2.6) bounding the completion time for all jobs, only if the job

is in the �rst position, otherwise Cj is bounded with the inequalities (2.5). Inequalities

(2.7) controls the precedence constraints. Inequalities (2.9) de�ne the type of decision

variables. Inequalities (2.10) bounds Cj. This mathematical model will be used later in

computational experiments.
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2.3. An existing algorithm

2.3 An existing algorithm

Greedy algorithms are simple and straightforward [42]. The described algorithm in

this section is an adaptation from [44]. We report the main steps for the sake of compa-

rison with our genetic algorithm. The algorithm �rst prepares the available tasks at each

iteration, then uses the greedy technique to �nd the best local completion time hopefully

to lead to the global minimal completion time. At each iteration the algorithm calculates

the completion time for each available tasks on all machines. Then, it allocates the job to

the machine on which we achieve the best minimum completion time. This algorithm is

designed as follows :

Algorithm 3: Greedy algorithm description
Data: set of M = {1, ...,m} machines, and set of J = {1, ..., n} jobs
Result: Cmax

1 Let Av be the set of all available tasks that could be scheduled.

2 Starting : Ci = 0 for all i ∈M .

3 while |Av| > 0 do

4 Let j′ and i′ be the job from the available tasks and the machine that can �nish

the earliest. Schedule j′ on i′ and update the availability Ci′ of machine i′.

Update Av;

5 end

2.4 Genetic algorithm (GA)

The GA is a general search approach inspired by the process of the natural evolution.

It has been widely exploited for solving combinatorial optimization problems [37]. It is

introduced in the 1970s by Holland [38] The basic idea of our algorithm is to exploit the

advantages of the both of the evolutionary and heuristic based algorithms. The solution of

any problem using GAs will be represented as a chromosome containing a series of genes,

its �tness value is related to its objective function and constraints for that solution.

The population P of generation g, denoted by (Pg), consists of a set of chromosomes.

GA utilizes a population of solutions in its search in order to �nd a better solution. The

e�ciency of GA depends largely on the presentation of a chromosome which is com-

posed of a series of genes. In this chapter we proposed two encoding methods random
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Figure 2.1 � Precedence Constraints

J 1 2 3 4 5 6 7

Processing Time 1 2 3 1 2 3 4

Table 2.1 � Processing Time

ordering method and list scheduling method to formulate the chromosome. During each

iteration step (Generation), genetic operations, that is crossover, mutation and selection

are processed to search potential better solutions. Crossover combines two chromosomes

to generate the next generation(Pg+1). The Mutation operator reorganizes the structure

of the chromosome by changing the positions of genes randomly so that a new combi-

nation of genes may appear in generation Pg+1. It manages the search by jumping form

out of local optimal solutions. The reproduction process is to copy a chromosome to the

next generation so that chromosomes from various generations could pull together in the

evolution and the quality of the population may improved after each generation [65]. The

general schema of GA may be illustrated as follows :
Algorithm 4: Genetic algorithm pseudo-code

1 Generate randomly an initial population of solutions.

2 Calculate the �tness of the initial population.

3 while Stopping Criteria Not Satis�ed do

4 Select a pair of parents based on �tness.

5 Create two o�spring using crossover.

6 Apply mutation to each child.

7 valuate the mutated o�spring. All the o�spring will be the new population.

8 end

The instances in Figure 2.1 and Table 2.1, will be considered for numerical example.

The rest of genetic algorithms tested and compared under the following proposed

benchmark of instances. The processing times are uniformly distributed between 1 and

100 as it is common in the literature [78]. We keep the processing time for a speci�c size
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of problem as in Table 2.2, and we changed the density of graph.

processing time

Average Stdev

50 48.11 25.98

100 52.26 28.62

200 50.81 27.61

500 49.72 27.70

Table 2.2 � Average and Standard deviation for Instances Processing time

2.4.1 Modeling the problem using Genetic Algorithm

In this section, we present the modeling of our GAs for directed ascending graphs

(DAGs) in cloud environment. These scheduling algorithms e�ectively addresses the issues

of minimizing the makespan.

Task Scheduling Genetic Algorithm (GATS)

This GA has been proposed on heterogeneous computing systems by Zhou et al in [50].

They call it, task scheduling based Genetic Algorithm (GATS). It has been modeled as

follows : The linear order of all jobs forms the chromosome. Each chromosome represents

a solution for the problem by scheduling the jobs in the order given by the permutation,

the order of the jobs should be a valid topological order as the associated nodes in the

DAG, where start nodes should be placed in the chromosome at the beginning position ,

while the last nodes should be placed at the end. The initial population is produced by

making a random perturbation to the order of jobs in the �rst chromosome to produce

a valid chromosome, until the desired size of the initial population reached. Indeed, a

linear crossover from a single random position applied to the two selected parents. The

mutation operation operated for all individuals of the new population considering the

precedence constraints topologically. Then, the objective function is evaluated by using

the Earliest Completion Time (ECT) technique, which schedules a candidate job onto

machines (processors) on which the completion time of the job is the earliest. The robust

characteristic in this GA is the generation of a valid chromosome in the initial population.

At the next generation, we modify GATS in GATS+ by just making a random mutation

for two genes selected randomly and if the candidate chromosome is not valid, then we
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throw it out by assigning a big value as Cmax to this candidate. Since we have valid

chromosomes in the initial population, the robust characteristics of the GATS can still be

maintained and we will not spend a lot of computation time in the mutation operator. This

small change increases the chance to �nd a best result, especially when the computation

time is less than one minute, because GATS spends a lot of time in mutation procedure

if the candidate is not valid. Table 2.3 shows the results obtained by GATS and GATS+

in one second with Psize = 100, Pc = 1.0 and Pm = 0.5. The dashed results means that

GATS does not �nd a solution during one second and also when we run the instances for

10 seconds GATS cannot �nd a solution with the problems of large number of instances

in all of the three density sets.

Genetic Algorithm Based on Cut-point (GACP)

For this genetic algorithm (GACP), the chromosome coding composed of two rows :

the �rst represents a valid order of jobs according to the precedence constraints, and

the second row gives an information on job positioning according to the cut-point. We

generate m− 1 random cut-points (cp) = {cp1, cp2, ..., cpm−1, } to assign jobs to its VMs.

The solution provided as follows : The sequence of jobs from j0 to jcp1 will be assigned

on VM1 and the sequence of jobs from jcp1 + 1 to jcp2 will be assigned on VM2 and the

sequence of jobs from to on VM3 and so on. In other words, we assign a valid sub-sequence

of a random length of jobs on a speci�c VM. In this genetic algorithm we carried out one

point crossover between two parents and an exchange between two random points carried

as mutation operator. However, this genetic algorithm gave bad results. The best result

obtained by GACP is at least two times the Cmax obtained by GATS.

Genetic Algorithm Based on The List of Available Jobs (GAAV)

In this section we will propose a simple idea to generate the population with lowest

computational cost, where the chromosome coding depends on VMs and places the job in

its associated VM, and the computational e�orts will be taken in the evaluation function.

In this section we will describe our second genetic algorithm, based on the list of available

jobs (GAAV), which is depends mainly on the available-list scheduling heuristic.

Coding an initial population : The assignment of VMs to the list of jobs is a candidate

solution to the problem. Therefore, the chromosome can be represented by a linear list of

integers, each integer representing a VM, here mi considered as gene. The series of genes

with the length of n are generated randomly by assigning each job of J to a random mi
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Instances L-Density M-Density H-Density

m n GATS GATS+ GATS GATS+ GATS GATS+

2 50 17274 17251 17251 17251 17274 17927

2 100 37667 37667 37713 37667 37667 38636

2 200 - 74590 - 74026 - 75702

2 500 - 181679 - 182170 - 183294

5 50 10349 10527 8163 8279 7813 7355

5 100 20791 19766 19240 18355 20049 19747

5 200 - 37731 - 36704 - 32981

5 500 - 88668 - 84741 - 82615

10 50 7820 7820 4850 4850 6460 6460

10 100 10860 10768 10858 11008 10970 10900

10 200 - 22236 - 20189 - 18182

10 500 - 48365 - 43323 - 40901

20 50 6238 6090 6430 6430 4540 4540

20 100 9775 9604 8693 8504 9628 9593

20 200 - 20892 - 15222 - 15189

20 500 - 39090 - 32557 - 30158

Table 2.3 � GATS vs GATS+, Cmax Comparison
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4 1 3 5 5 4 1 2 3 2

Table 2.4 � Chromosome representation for GAAV

from the set of M. Table 2.4 shows the chromosome representation for ten jobs on �ve

VMs.

In GAAV there is no computational e�ort to produce the initial population (IP )

because it is produced by making a random number of permutations to the integer-list

to produce a chromosome until the size of IP (IPsize) reached. Hence, all chromosomes

give a valid solution.

Fitness evaluation In GAAV, to evaluate the chromosome, �rst we search the virtual

machine with minimum completion time Ci. For this machine we take its available jobs

according to the precedence constraints, from these available jobs we schedule the job

with the maximum number of successors will be placed to the selected virtual machine

�rst. Then, we update Available list, and search again for machine with the minimum

completion time and repeat this process until we �nish the evaluation process. Simply, at

each placement iteration we select the machine with minimum completion time and its

available job with highest number of successors. Then, we assign the job which could lead

to a late schedule of some jobs in the future to its VM, maybe this job will a�ect the Cmax
of the whole system. At the end of this process, a valid schedule will be obtained and

the �tness function (Cmax) also will be calculated. 5 illustrates the GAAV �tness function

steps.

Algorithm 5: Fitness Evaluation Function for GAAV.

1 Let Available be the current set of jobs without predecessors

2 while |Available| > 0 do

3 Selectedmachine = the machine with minimum Ci.

4 Selectedjob= the job of greater number of successors in Selectedmachine.

5 Add Selectedjob to Selectedmachine Update Ci.

6 Update Available.

7 end

Crossover The process of replacing some of the genes of one parent by correspon-

ding ones of the other parent is known as crossover. Here this operator is carried out

based on a linear crossover from a single point. This operator is applied to the selected
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parents (parent1, parent2), then a new two o�springs are obtained as offspring1, and

offspring2, the crossover operated between two chromosomes one with higher �tness

value and the other with the Pc ratio. Table 2.5 illustrates the crossover operator.

↓
Parent 1 1 4 2 1 3 3 5 2 1 3

↓
Parent 2 2 1 1 4 5 2 3 3 1 5

Child 1 1 4 2 1 3 2 3 3 1 5

Child 2 2 1 1 4 5 3 5 2 1 3

Table 2.5 � GAAV :Crossover Operator

Mutation Mutation can be thought as an e�ectively escape method for premature

convergence by randomly change the value of an individual. For maintaining the feasibility

of the new generated individual. During the mutation process, one gene selected randomly

and we put it on a di�erent random mi from the set ofM to obtain a new o�spring, Table

2.6 represents the mutation operator.

O�spring 1 1 4 2 1 3 2 3 3 1 5

O�spring 2 1 4 2 1 3 4 3 3 1 5

Table 2.6 � GAAV :Mutation Operator

Selection Finally, the best chromosome of the �rst population is stored as in a linear

ranking.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

j1 j2 j6 j7

Cmax
↓

m1

j3 j4 j5m2

(a) GAAV solution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cmax
↓

j1 j2 j6 j7m1

j3j4 j5m2

(b) GATS solution

Figure 2.2 � Example of the GATS and GAAV encoding.

Stopping rule The GA is stopped when the execution time is greater than the

maximum execution time allowed.

Figure 2.2, represents an example of chromosome encoding solution for GATS, which

is (1-3-2-6-7-4-5), and a chromosome encoding solution for GAAV, which is (2-1-1-2-2-1-

1), for the instances in Table 2.1 according to the precedence constraints in Figure2.1,

run on two VMs of di�erent speeds which are : s1 = 1, s2 = 2.

Genetic Algorithm (GAAV +)

When GATS depends mainly on ECT technique and GAAV based on the local density

of the DAG, according to the e�ectiveness of these two techniques in the optimization of

scheduling unrelated parallel machine problem with precedence constraints, we combined

these two techniques in GAAV +.

In this genetic algorithmGAAV +, the modi�cation occurred in the Fitness Evaluation.

Therefore, the chromosome representation as in Table 2.4, according to this coding we

know the VM for each job, this �tness evaluation will select the job in machine that will

give the minimum Cj from the available jobs j AV, where AV is the current set of jobs

without predecessors, this is ECT technique. From the other hand, at the same time we

considered the number of successors of this job, and this is the local density of the DAG

technique. Thus, the evaluation can be taken by selecting job j from AV with the minimum
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value produced by the following function : α(Cj) − (1 − α)|Succj| where α ∈ [1, 0] and

|Succj| is the number of successors of job j. We schedule the job with the minimum value

of this function �rst to generate a valid schedule for calculating Cmax.

Experimental Results

This section presents the experimental results ofGATS,GATS+,GAAV andGAAV +.

A set of simulations have been performed on Dell Intel, core i5 running at 3.4 GHz, and

8 GB of RAM. The GAs have been coded in C++, compiled with g++ compiler, and

tested under Ubuntu 14.02 64-OS. The entries in the Table 2.8 are :

m : number of machines,

n : number of jobs,

GATS : Cmax value for GATS,

GATS+ : Cmax value for GATS+,

GAAV : Cmax value for GAAV,

GAAV+ : Cmax value for GAAV+,

Genetic search is implemented through genetic operators. 2.8 show the results given by our

proposed GAs (GATS+, GAAV, and GAAV +) compared to GATS. From this simulation

study we �xed the parameters with the combination of (100, 1.0, 0.5, 600), Population

size, Crossover ratio, mutation ratio and the computation time respectively. We have tes-

ted out di�erent values of α in GAAV + to �nd the best value. Therefore, we took α = 0.5.

From the results we have noticed that when population size in GAAV is larger than 100,

any increase of it has no signi�cant in�uence on the performance of the genetic algorithm.

In Table 2.8 we can see the genetic algorithm GAAV can improve 31% of the solutions

obtained by GATS in low density problems, 43% in medium density problems and 43% in

high density problems. One other interesting outcome is that GAAV can be considered as

an e�cient algorithm with the problems of small and medium number of VMs. GAAV +

mostly outperforms GATS when the number of jobs 100 and 200 in high density. This

may improve 50% of solutions obtained by GATS. It can also improve 50% of medium

density problems and 31 of low density problems. If we focused our attention to genetic

algorithm GATS+, we can see that for low density showed a good performance and for

medium and high density problems is really far from the best solutions, because when

we thrown out the invalid candidates we lost some information about some generations.

According to the GATS operators behaviors, it always needs more time than the speci�ed

stop criterion, with the problems of large numbers of machines and jobs.
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Another interesting factor to study in the experiments is the count of best solutions

obtained by GAs. In Figure 2.3 we can notice that GATS+ can �nd maximum number

of best solutions overall instances in one second and ten seconds, whereas GATS cannot

�nd best solution within the speci�ed computation time, we noticed that GATS cannot

obtain solution when we run it for 1 and 10 seconds, it needs at least 77% seconds to

obtain solution with few number of iterations. We also noticed that GATS need a lot of

time to �nd the �rst population and for other genetic algorithm operators. We can also

see the similarity of a behavior for GATS and GATS+ when we run them for 10 and 60

seconds with the improvement of GATS+. Therefore, we can say GATS+ outperforms

GATS in terms of best solutions for sizes and densities. In Figure 2.3 it is clear that

GAAV + has a positive relationship with the computation time, and has the ability to

improve the counts of best solutions for di�erent problems. The other positive thing is

that, it can also obtain a solution within the speci�ed computation time. The e�ciency

of GAAV appears when we run it for one second ; it can always obtain the best solution

for the minimum and medium problems.

Figure 2.3 � Counts of best results .

Figure 2.5 indicates the Average Relative Percentage Gap (ARPG) between the �rst

and the best solution for genetic algorithm. Indeed, ARPG is computed as follows 100×
(CFirst

max −CBest
max )

CBest
max

, where CBest
max is the best known Cmax, obtained by the given GA, and CFirst

max

is the �rst Cmax obtained by this GA. We noticed that GATS with low, medium and

high density DAG problems cannot improve its solutions. This means GATS starts with a

good initial population and the computation time will not a�ect this solution positively.
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This behavior inherited also by GATS+, whereas GAAV and GAAV + start with random

solutions, but they can obtain a better solutions when we increase the computation time.

Figure 2.4 represents the convergence traces for processing the problem of high density

of a randomly generated DAG with 5 VMs and 100 jobs. It can be observed from this

�gure GAAV + decreases quickly. GAAV also shows a quick decreasing and provides a best

solution when it runs for 10 and 60 seconds. Whereas GATS remains in the same trend,

this behavior followed with most of our problems. Hence, we can say that the techniques

used in GAAV and GAAV + can improve the solution and we can �nd a better upper

bound for this problem. The modi�cation of GATS in GATS+ also has a good outcome.

Figure 2.4 � Genetic algorithms convergence.

Integral Linear Programming Solution (ILP)

The mathematical model is applied for small instances. It is implemented with CPLEX

12.4, on an Intel, core i5 running at 3.4 GHz, and 8 GB of RAM under a computation time

limit of one hour (if after one hour no optimal solution is obtained, the current integer

solution is returned). In Table 2.7, columns LB and UB represent the lower bounds and

the upper bounds respectively for some problems, for which CPLEX is not able to �nd

the linear relaxation value. Indeed, we have limited the use of the RAM to 6 GB and for

the most of instances this amount is not su�cient for the linear relaxation with all these

constraints and variables in the model.
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Instances High Density Medium Density Low Density

m n LB UB LB UB LB UB

2 20 8892 38480 8008 38480 8190 38480

2 50 8887 40885 5482 40885 5575 40835

10 50 7263 45695 4746 45695 5888 45695

Table 2.7 � Results Obtained by the ILP

Transformations Between Genetic Algorithms

In spite of the variety between GATS and GAAV encodings, we tried to investigate the

ability of each genetic algorithm to improve the solution obtained by the other genetic al-

gorithm. We transformed the best population generated by the �rst genetic algorithm, to

be the �rst population for the second genetic algorithm. This also provides interesting ob-

servations, about the di�erences between our proposed genetic algorithms and GATS, by

doing all transformations from GATS to GAAV and GAAV +, and from GAAV,GAAV +

to GATS. We noticed that, because of the di�erences of the encoding and the genetic ope-

rators between GATS in comparing to GAAV and GAAV + the ARPG between the best

solution obtained by the �rst GA before transformation and the best solution obtained

by the second genetic algorithm after the transformation.

The ARPG is computed as follows : 100× (CFirstBest
max −CSecondBest

max )
CSecondBest
max

, where CFirstBest
max is the

best known Cmax, obtained by the �rst GA, and CSecondBest
max is the best known Cmax,

obtained by the second GA. Table 2.9 shows the ARPG of the transformation processes :

the negative values mean that the second best solution is worse than the �rst best. We

observed that the behavior of the proposed GAs and GATS is not the same. From the

transformations, GAAV and GAAV + cannot make an improvement to the best generation

obtained by GATS. However, for the solutions obtained by the transformations from

GAAV to GATS and from GAAV + to GATS sometimes these transformations can lead to

solutions better than those obtained by GAAV, GAAV + and GATS. Table 2.10 represents

a comparison between the best solutions obtained among all GAs in column labeled Best

and the transformations solutions. We can see also, AV +TS can improve the best solution

obtained by the �rst genetic algorithm for instances of large number of jobs, but this

improvement did not improve the best solution obtained among all genetic algorithms.
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Instances Low Density Medium Density

m n GATS GATS+ GAAV GAAV+ GATS GATS+ GAAV GAAV+

2 50 17927 17927 17927 17927 17251 17251 17251 17251

2 100 38577 38577 37790 37539 37661 37667 37505 37492

2 200 75595 75682 74659 74474 73847 73956 73210 74850

2 500 180908 180861 180849 195618 180375 180466 179120 190116

5 50 10349 9672 10073 9591 8318 8228 7997 8013

5 100 19921 19776 19921 19320 18467 18213 17793 17640

5 200 36521 36645 36036 36205 35621 35577 35575 34890

5 500 85015 85268 92482 114689 80365 81039 87801 113390

10 50 7820 7820 7820 7820 4850 4850 4887 4850

10 100 10494 10591 10378 10310 10580 10552 10118 9898

10 200 20656 21755 22980 21803 18858 19521 20010 18148

10 500 44935 46714 57585 73291 40309 41062 48073 70042

20 50 6156 6090 6156 6090 6430 6430 6430 6430

20 100 9310 9431 9801 9495 8206 8141 8186 8198

20 200 20112 19964 21151 20707 14477 14348 15395 14430

20 500 36364 36346 43463 54919 30117 31063 41631 51731

Table 2.8 � Makespan(Cmax)for the proposed algorithms and GATS, (Low& Medium

Density)
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Chapitre 2. Heuristics and Meta-heuristics Solutions

Conclusion

In this chapter we have proposed genetic algorithms for job scheduling problem in

cloud computing with the objective of minimizing the makespan (Cmax), which is consi-

dered as an unrelated parallel-machine scheduling problem under precedence constraints.

GAAV includes a new local search procedure for local graph density to evaluate the chro-

mosome. GATS+ which is based on a permutation coding and ECT, and GAAV + which

is combined the innovative characteristics of GAAV with the (ECT) technique. The per-

formances of our proposed genetic algorithms have been compared against one of the best

existing genetic algorithm for the same problem. After extensive comparisons, we can

conclude that the proposed algorithms can improve the solutions obtained by GATS for

small and medium problems. Moreover, they can get better results than GATS within

the speci�c running time (stop criterion) for a high and medium DAG density problem.

In the future work, we will enhance the mathematical model by adding new constraints

for further improvement. Another interesting topic regarding scheduling problem in cloud

computing is to consider the multiobjective optimization context.

In the next chapter we will compare the available mathematical models with our

proposed model, and will present some valid inequalities to our model.
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2.4. Genetic algorithm (GA)

(a) Low Density.

(b) Medium Density.

(c) High Density.

Figure 2.5 � Average Relatives Percentage Gap.
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Mathematical Formulations
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In this chapter we studied an unrelated parallel machine scheduling problem of mi-

nimizing makespan subject to precedence constraints Rm|prec|Cmax. In this chapter we

compared our proposed mathematical model with other mathematical formulations found

in the literature. The main di�erence between these formulations is the way the makespan

has been linearized. We generate sets of benchmark instances and compare the perfor-

mance of the mathematical formulations with extensive computational testing. Moreover,

three families of valid inequalities are proposed. The �rst two inequalities based on the

idea of the precedence jobs and the third based on the shortest processing time(SPT). We

studied the validity of the new inequalities and strength them by checking the linear com-

bination. After an exhaustive computational and statistical analysis we can conclude that
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Chapitre 3. Mathematical Formulations

the addition of these inequalities decreases the computational requirements to obtain the

optimal solution in many cases.

3.1 Introduction

This chapter addresses the unrelated parallel machines scheduling problem with prece-

dence constraints. However, parallel machine scheduling problems (PMSPs) have been a

subject of continuing interest for researchers and practitioners since they were �rst intro-

duced by McNaughton [56]. Many PMSPs for di�erent manufacturing environments have

been studied. Previous studies on parallel machine scheduling problems are generally clas-

si�ed into three categories McNaughton [56] : (1) identical parallelmachines (2) uniform

parallelmachines and (3) unrelated parallel machines. Among these categories, machines

that are non-identical to one another and cannot be fully correlated by simple rate ad-

justments are classi�ed as unrelated parallel machines Pinedo [55]. This environment is

common in di�erent manufacturing and services domains, textile manufacturing, chemi-

cal, assembly lines, electronic manufacturing, the area of project management, service

industries, and also in computing services. However, the case when machines are unrela-

ted has been much less studied. Additionally, the consideration of precedence constraints

between jobs has been considered in limited works (see e.g[74]). Several mathematical for-

mulations are proposed to solve di�erent types of unrelated parallel machine scheduling

problems (UPMS)[74, 75].

The unrelated parallel machines is a generalization of the single machine from it is

theoretical point of view, and a special case of the open shop. From a practical point of

view, it is important because the occurrence of resources in parallel is common in the

real world. Moreover, techniques for machines in parallel are often used in decomposition

procedures for multi-stage systems[55]. Garey and Johnson in [61] showed that minimizing

the makespan Cmax considering two identical machines is an NP-hard problem. Indeed,

The unrelated parallel machine scheduling problem (UPMSP) is more di�cult than the

identical case, Chiuh and Wei-Shung in [9]. The unrelated machines consist of multiple

machines that have di�erent speeds. This implies a di�erent processing time for each job

depending on the selected machine. It represents a lot of situations in several real world

applications where each machine has a di�erent capability (speed). For the solution of the

unrelated parallel machine a variety of techniques have been developed and proposed in

di�erent cases [70, 69], especially in heuristics [62, 63, 64], meta-heuristics [38, 65, 59], and
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3.2. Problem Description

exact solutions [60, 68]. In the last few decades there are numerous di�erent models have

been proposed to solve the problem of scheduling parallel machine considering di�erent

objective functions and di�erent constraints [58, 7, 68, 67, 71, 72, 57]. A natural way to

attack machine scheduling problems is to formulate them as mathematical programming

models [73]. Therefore, in this chapter we proposed mathematical formulation for the

problem of scheduling n jobs on m unrelated parallel machines with the objective of

minimizing the makespan, considering the precedence constraints. We also adapted the

formulations given by Chunfeng Liu and Shanlin Yang [71], and the formulations given

in [67] by João Paulo et al in the �rst and the second models respectively. The objective

of this chapter is to provide a mathematical formulation. Our mathematical model has

been compared with the other mentioned models. From its promising results we proposed

additional valid inequalities to strength the quality of the linear relaxation of the ILP. In

addition the branch and cut approach and a separation algorithms have been applied to

solve the ILP. All models are tested on large sets of instances. We enhanced the obtained

results by applying branch and cut and separation algorithms to our ILP relaxation.

The chapter is organized as follows. Section 3.3 introduces the di�erent mathematical

formulations that are found in the literature and our proposed model with the separation

algorithm for SPT inequality. 3.4 presents the classes of valid inequalities. Section 3.5

represent the experimental results.

3.2 Problem Description

Recall the description of the problem stated in the previous chapter : The problem

under consideration is to schedule n jobs on m machines which are arranged in parallel

with the aim of minimizing the total completion time. Let J be the set of the jobs and M

be the set of the parallel machines. A precedence constraint between two jobs j1 and j2

is denoted by (j1 ≺ j2) and it requires that job j2 cannot start to be processed until job

j1 �nishes its processing. The type of the precedence constraint is a graph type, which

is denoted by D = (V,A), where V is the set of vertices associated at each job ϑ and V

denotes the set of edges associated with each precedence constraint. We called this graph

the precedence graph. We take also the case where {v, w̄, w} ⊆ V such that v before w̄

and w̄ before w then v before w. We consider also the speeds for all machines denoted by

σi, where i ∈ M . Every job ϕ ∈ ϑ has a processing time πϕ and its e�ective processing

time depends on the selected machine i, where πiϑ = πϑ×σi. Each machine i ∈M cannot
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m1
1 6 4

x4,1,3 = 1

2 3 5m2

Figure 3.1 � Classical Formulation Illustration.

process more than one job at a given time. Furthermore, machines have di�erent speeds

and preemption of jobs is not allowed. According to the well-known α|β|γ scheduling

problem classi�cation scheme proposed initially by Graham et al [66], scheduling problem

classi�cation scheme this problem can be denoted as P |prec|Cmax We denote by Ci the

completion time of machine i, where i ∈M , and denote by Cϑ the completion time of job

ϑ, where ϑ ∈ ϕ.

3.3 Mathematical Formulations

In this section we present di�erent mathematical models for the UPMSP with prece-

dence constraints, with the objective of minimizing the makespan Cmax. The �rst model

based on the position of job on the machine and the job completion time. The second

model use idea of the �ow formulation which is focus on the sequence of jobs on machines.

The third model is based on the partition in linear orderings. Our proposed models are

based on the interval and m-clique free graphs.

In the next sections we present these mathematical formulations.

3.3.1 Classical Formulation

The idea of this ILP given in [71] is based on the position of job on the machine and

the completion time of each job. Figure 3.1, and Figure 3.2 illustrate the idea of this

formulation.

In this Formulation we will denote by C a large positive number. For describing this

model, let us introduce the following variables :
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mi j j′ .. j2 j1

Cj1Cj2

positions 1 2 ... r-1 r

pij1

Figure 3.2 � Job in position r must start its processing after job in position r − 1.

xjir =

{
1 if job j is processed in the position r on machine i
0 otherwise

∀j ∈ J, i ∈M, r ∈

J

Cj ∈ N+ is the completion time of job j.

Cmax ∈ N+ is the total length of the schedule. That is, when all the jobs have �nished

processing.

The model can be stated as :

minCmax

Cj ≤ Cmax ∀j ∈ J, (3.1)∑
i∈M

∑
r∈{1,...,|J |}

xjir = 1 ∀j ∈ J, (3.2)

∑
j∈J

xjir ≤ 1 ∀r ∈ {1, ..., |J |},∀i ∈M, (3.3)

∑
j1∈J

xj1ir −
∑
j2∈J

xj2ir−1 ≤ 0 ∀r ∈ {2, ..., |J |},∀i ∈M, (3.4)

Cj2 − Cj1 + C(2− xj2ir − xj1ir−1) ≥ pj2i ∀r ∈ {2, ..., |J |},∀i ∈M,∀j1 6= j2 ∈ J,
(3.5)

Cj ≥
∑

r∈{1,...,|J |}

pjixjir ∀i ∈M, ∀j ∈ J, (3.6)

Cj2 − Cj1 ≥
∑

r∈{1,...,|J |}

∑
i∈M

pj2ixj2ir ∀(j1, j2) ∈ A, (3.7)

xjir ∈ {0, 1}, ∀j ∈ J,∀i ∈M,∀r ∈ {1, ..., |J |}, (3.8)

Cj ≥ 0, ∀j ∈ J, (3.9)

Cmax ≥ 0, (3.10)

The objective function is to minimize the makespan. Inequalities (3.1) ensure that the
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global makespan is greater than or equal to the completion time for all jobs. Inequalities

(3.2) ensure that each job should be assigned to one position on one machine. Inequalities

(3.3) guarantee that at most one job will be assigned to a position on all machines. Inequa-

lities (3.4) guarantee that there must be no empty time slot between jobs in sequences.

Inequalities (3.5) ensure that the job j2 must start its processing time after the �nishing

of job j1, if job j1 is assigned on position r − 1 and job j2 on the position r on the same

machine. Inequalities (3.6) bounding the completion time for all jobs, only if the job is in

the �rst position, otherwise Cj is bounded with the inequalities (3.5). Inequalities (3.7)

controls the precedence constraints.

3.3.2 Flow Formulation

In this ILP we consider a graph and we search m disjoint paths where each path

represent the sequence of jobs on machines. Figure 3.3 illustrate the idea.

4

5

1

2 3

6

(a) Available jobs

4

5

1

2 3

0

0

0

0

6

(b) Flow of two machines

m1
0 1 4 6 0

0 2 3 5 0m2

(c) Scheduling �ows on two

machines

Figure 3.3 � Flow Formulation Illustration.

This model is based on the Mixed Integer Programming model presented by João Paulo

et al [67] for minimizing earliness and tardiness penalties. The model uses a dummy job

j0 to mark the beginning and the end of a sequence of jobs on each machine, or with ano-

ther words, all paths begin and �nish by a dummy job. The model involves the following

variables :

xj1,j2,i =

{
1 if job j1 is precedes job j2 directly on machine i
0 otherwise

∀j1, j2 ∈ J∪{j0}, ∀i ∈
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j4

j1

j2

j3

(a) An induced sub graph

j1 j2 j4

(b) Possible path

Figure 3.4 � Finding Path between sequences.

M

Cj,i ∈ N+ is the completion time of job j on machine i , ∀j ∈ J ∪ {j0} and ∀i ∈M .

Cmax ∈ N+ is the total length of the schedule.

The mathematical model is :

minCmax

Cj,i ≤ Cmax ∀j ∈ J,∀i ∈M (3.11)∑
i∈M

∑
j1∈(J∪{j0})\{j2}

xj1,j2,i = 1 ∀j2 ∈ J, (3.12)

∑
j∈J

xj0,j,i ≤ 1 ∀i ∈M, (3.13)

∑
j1∈(J∪{j0})\{j}

xj1,j,i −
∑

j2∈(J∪{j0})\{j}

xj,j2,i = 0 ∀j ∈ J,∀i ∈M, (3.14)

Cj2,i ≥ Cj1,i − C + (pj2,i + C)xj1,j2,i ∀i ∈M, ∀j1 ∈ J ∪ j0,∀j2 ∈ J, (3.15)

Cj1,i2 ≤ Cj2,i1 −
∑

j∈(J∪{j0})\{j2}

pj2i1xj2,j,i1 ∀(j1, j2) ∈ A,∀i1, i2 ∈M, (3.16)

Cj,i ≥ 0, ∀(j1, j2) ∈ A, (3.17)

xj1,j2,i ∈ {0, 1} ∀i ∈M, (3.18)

The objective function is to minimize the makespan. Inequalities (3.11) ensure that

the global makespan is greater than or equal to the completion time for all jobs on

all machines. Inequalities (3.12) ensure that for all jobs there exist a direct predecessor.

Inequalities (3.13) limit the number of successors of the �rst dummy job j0 for all machines.

Furthermore, if
∑

j∈J xj0,j,i = 0 then we have no job on the machine i. Inequalities (3.14)

ensure that we have several disjoint paths. For instance if xj1,j2,i = xj2,j4,i = 1 then we

obtain the sequence j1 → j2 → j4 on the machine i(see Figure 3.4). Inequalities (3.15)

controls the completion times of the job at the machines, if a job j2 assigned to machine

i after j1 (i.e. xj1,j2,i = 1), it's completion time Cj2,i must be greater than the completion

53



Chapitre 3. Mathematical Formulations

time of j1, Cj1,i plus the processing time of j2. If (xj1,j2,i=0), then the big constant C

render the constrain redundant. Inequalities (3.16) ensure that in di�erent machines the

completion time of precedent job in an arc is less than or equal to the starting time of

successor job in the same arc. Inequalities (3.17) and (3.18) bound the decision variables.

3.3.3 Order Formulation

This formulation proposed by Coll et al [76], this formulation reveals as a part of it a

polytope of partition in linear orderings for solving the problem of multiprocessors sche-

duling with precedence constraints. The following variables used to describe the model :

xji =

{
1 if job j processed on machine i
0 otherwise

∀j ∈ J,∀i ∈M

zj1j2 =

{
1 if job j1 scheduled before j2 on the same machine
0 otherwise

∀j1, j2 ∈ J

- yj the starting time of the execution of each job j ∈ J .

- Pj = {j1 ∈ J : there exists a path in G from j1 to j2}, i.e., Pj is the set of predecessors
of job j1 ;

- Γj = {j1 ∈ J : (j1, j2) ∈ A}, i.e.,Γj is the set of immediate predecessors of job j2 ;

- Qj = {j1 ∈ J : there exists a path in G from j2 to j1}, i.e.,
- Qj is the set of successors of job j2 ;

- Rj = {j1 ∈ J : there is no path in G from j2 to j1 or from j1 to j2}. The model formulated
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as follows :

minCmax∑
i∈M

xij = 1 ∀j ∈ J, (3.19)

yj1 − yj2 +
∑
i∈M

dj1i.xj1i ≤ µj1j2(1− zj1j2) ∀j2 ∈ J,∀j1 ∈ Rj, (3.20)

yj1 − yj2 +
∑
i∈M

dj1i.xj1i ≤ 0, ∀j2 ∈ J,∀j1 ∈ Γj, (3.21)

yj − Cmax +
∑
i∈M

dji.xji ≤ 0, ∀j ∈ J, (3.22)

zj1j2 + zj2j1 + xj1i − xj2i ≤ 1 ∀j1 ∈ J,∀j2 ∈ Rj,∀i ∈M, (3.23)

zj1j2 + xj1i − xj2i ≤ 1 ∀j1 ∈ Pj,∀j2 ∈ J,∀i ∈M, (3.24)

xj1i + xj2i − zj1j2 ≤ 1 ∀j1 ∈ Rj, ∀j2 ∈ J,∀i ∈M, (3.25)

yj ≤ δj ∀j ∈ J, (3.26)

yji ∈ {0, 1} ∀(j, i) ∈ J ×M, (3.27)

zj1j2 ∈ {0, 1} ∀j2 ∈ J,∀j1 ∈ Rj2 ∪ pj2 , (3.28)

Eq. (3.19) ensure that each job is processed and assigned to exactly one processor.

Inequalities (3.21) express the precedence constraints. Inequalities (3.22) de�ne the ma-

kespan. Inequalities (3.20) de�ne the sequence of starting times of the jobs assigned to

the same processor, ensuring that no overlap occurs. The constant µj1j2 is such that if job

j1 and j2 are not executed in the same processor in that order, then inequality (3.20) is

always satis�ed. Inequality (3.26) δj is a lower bound to the earliest starting time of job

j.

3.3.4 Interval Graph Formulation

The third Integer Linear Programming considers the beginning of the job and the

relation between jobs if they run on the same machine, also verify if one job j1 run before

another job j2 or they run the same time on di�erent machines.

The graph induced by the relation where two jobs run in the same time must be an in-

terval graph and check if all jobs can be schedule on this number of machines.

This model consists of the following decision variables :

yi ∈ N+ the starting time of job j.
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xij =

{
1 if job j on machine i
0 otherwise

∀j ∈ J,∀i ∈M

zj1,j2 =

{
1 if job j1 and job j2 run at the same time
0 otherwise

∀j1, j2 ∈ J

z̄j1,j2 =

{
1 if job j1 is before or runs at the same time with job j2

0 otherwise
∀j1, j2 ∈ J

Cmax ∈ N+ the total completion time

The model can be described by the following ILP (P')

minCmax

yj +
∑
i∈M

pijx
i
j ≤ Cmax, ∀j ∈ J, (3.29)∑

i∈M

xij = 1, ∀j ∈ J, (3.30)

xij1 + xij2 ≤ 2− zj1,j2 , ∀j1, j2 ∈ J,∀i ∈M, (3.31)

yj +
∑
i∈M

pijx
i
j ≤ yj1 , ∀(j, j1) ∈ A, (3.32)

yj +
∑
i∈M

pijx
i
j ≤ yj1 + Cz̄j,j1 , ∀j, j1 ∈ J, (3.33)

z̄j1,j2 + z̄j2,j1 ≤ 1 + zj1,j2 , ∀j1, j2 ∈ J, (3.34)∑
j1,j2∈I

zj1,j2 ≤ |E[I]| − 1, ∀I ⊆ I, (3.35)

∑
j1,j2∈K

zj1,j2 ≤ |E[K]| − 1, ∀K ⊆ K, (3.36)

The objective function is to minimize the makespan. Inequalities (3.29) ensure that

the starting time for each job plus its processing time bound the makespan. Inequalities

(3.30) controls each job to be processed on one machine. Inequalities (3.31) guarantee

that there is no two jobs run on the same machine at the same time. Inequalities (3.32)

controls the precedence constraints. Inequalities (3.33) ensure that the beginning of any

job must began after the �nishing of its predecessor. Inequalities (3.34) ensure that, if

the job j1 run before or at the same time with j2, and j2 run before or at the same time

with job j1 then job j1 and j2 run at the same time. Figure 3.5 illustrate the status of two

jobs job j1 and job j2 on two machines, when z̄j1,j2=1, z̄j2,j1 = 0, then zj1,j2 = 0, this is

represented in (a), when z̄j2,j1=1, z̄j1,j2 = 0, then zj2,j1 = 0, here in (b) job j2 is before job

j1 but not at the same time, in (c) job j1 and job j2 run on the same time, here z̄j1,j2 = 1,

z̄j2,j1 = 1, then zj1,j2 = 1, in this case the tow jobs run at the same time.
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m1

m2

j1

j2

(a) job j1 before job j2

m1

m2

j1

j2

(b) job j2 before job j1

m1

m2

j1

j2

(c) job j1, and job j2 run si-

multaneously

Figure 3.5 � Illustration for the Status of Inequalities (3.34)

Remark that, If we consider a solution given by the vector (z̄, z, x) then the induced

subgraph G = (V,E) where for each job j ∈ J we associate a vertex vj ∈ V and for

all zj1,j2 = 1 we associate an edge vj1vj2 ∈ E must be an interval graph and the clique

of maximum size must be less or equal to m. We denote by I the set of all no interval

induced subgraph and by K the set of all cliques of size greater or equal tom+1. In Figure

3.6b the induced sub graph for this valid schedule is interval and 3-clique free where we

have three machines. We notice that this sub graph contains a clique of size three, but if

it has a clique of size four, then it can not be scheduled on three machines, i.e, if we have

an edge between job 1 and job 3 in Figure 3.6b then we have a clique of size 4, which is

not a valid schedule on three machines.

The inequalities (3.35) ensure that all induced subgraph are interval graphs. The

inequalities (3.36) ensure that all induced subgraph has no clique of size greater or equal

to m + 1. The number of inequalities (3.35) and (3.36) may be exponential. In order

to solve this integer linear program using a branch-and-cut approach, we needs e�cient

algorithms for separating the inequalities (3.35) and (3.36). Remark that, to separate the

inequalities (3.35) and (3.36) we need only the value of the vector z.

In the following we will deal with (UPMSPC) problem. Will propose di�erent families

of valid inequalities to the ILP as we shall see later the numerical results improved the

performance of the ILP.
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1
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(a) An induced sub graph

m1
j1 j3

m2
j4 j5

m3
j2j6

(b) A valid schedule

Figure 3.6 � An induced sub graph with it's valid schedule

For every solution generated by the ILP we associate the following graph, G(V,E)

where each job j associated with a vertex v and if two jobs run at the same time or share

any time unit there exist an associated edge E between these two jobs. The graph induced

by each solution to be valid must have two properties : Must be (i) interval graph, and

(ii) m-clique free graph.

3.4 Valid Inequalities

In this section we will give new inequalities that are valid for P .

Proposition 1 proposition Let j1 and j2 be two jobs in J then,

yj1 − yj2 ≤ pmaxj2
zj1,j2 + C3.37(z̄j2,j1 − zj1,j2), (3.37)

is valid inequality for P , where C3.37 = CH
max − pminj1

.

proof 3.1 proof Consider the di�erent cases of job j1 and job j2 when there is one job is

before other or they run at the same time :

Case 1 : If job j1 is before job j2 without sharing any time unit, then (zj1,j2 = z̄j2,j1 = 0).

Thus, yj1 ≤ yj2, it is always true.

Case 2 : We will �nd yj1 ≤ yj2 +C3.37 when job j2 is before job j1 and they are not sharing

any time unit, it is also a valid case when we have C3.37 in the right side of the inequality.

Case 3 : When job j1 and job j2 run at the same time we deduce yj1 ≤ yj2 + pmaxj2
. This

case is valid because when the two jobs share any time unit that means the starting time

of job j1 is less than the starting time of job j2 plus it is maximum processing time which

is the worst case. Therefore (3.37) is valid for P in all cases.

C3.37 appears when job j2 run before job j1.
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Proposition 2 Let j1 and j2 be two jobs in J then,

yj1 − yj2 ≤ C3.38z̄j2,j1 − pminj1
z̄j1,j2 , (3.38)

is valid inequality for P where C3.38 = CH
max − pminj1 .

proof 3.2 proof Case 1 : Job j1 is before job j2 and they do not share any time unit.

Then, z̄j2,j1 = 0, and z̄j1,j2 = 1. Thus, yj1 ≤ yj2 - pminj1
, this case is valid because the

starting of job j1 plus the smallest processing time is less than the starting of job j2.

Case 2 : Job j2 is before job j1 and they do not share any time unit. Then we deduce

yj1 ≤ yj2 +C3.38, this case is also valid when we have C3.38 in the right part of the inequa-

lity.

Case 3 : Job j1 and job j2 run at the same time, or share any time unit, then we deduce

yj1 ≤ yj2 + C3.38 − pminj1
, and it is true. Therefore (3.38) is valid for P .

We improved this inequality by adding (pminj1
+ pmaxj2

− C3.38)zj1j2 to the right side of the

inequality is important to notice that, this part will not appear in case 1 and case 2 but

will appear when job j1 and job j2 share any time unit. In case 3 when job j1 and job

j2 run at the same time then we deduce that yj1 ≤ yj2 + pmaxj2
as we can see in Figure

3.38(3-a and 3-b) this inequality can be valid. Thus, we will get the following inequality :

Corollary 1 corollary Let j1 and j2 be two jobs in J then,

yj1 − yj2 ≤ C3.38z̄j2,j1 − pminj1
z̄j1,j2 + (pminj1

+ pmaxj2
− C3.38)zj1j2 , (3.39)

This inequality is valid for P in all cases.

Remark that if we add the following valid inequality 0 ≤ pminj1
zj1j2 − pminj1

z̄j1j2 to (3.39)

then we obtain (3.37), we deduce that inequality (3.37) is dominated by (3.39). Then it

is not necessary to add the inequalities (3.37) in the model.

Proposition 3 Let j1 and j2 be two jobs in J then,

yj2 − yj1 ≤ C3.40z̄j1,j2 −
∑
i∈M

pij2x
i
j2

+ pmaxj2
zj1,j2 , (3.40)

is valid inequality for P where C3.40 = CH
max.
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proof 3.3 proof Case 1 : If job j1 is before job j2 and they do not share any time unit,

then yj2 ≤ yj1 −
∑

i∈M pij2x
i
j2

+ C3.40, which is valid.

Case 2 : If job j2 is before job j1 and they do not share any time unit, then yj2 ≤ yj1 −∑
i∈M pij2x

i
j2
, which is also valid when job j1 starts after job j2.

Case 3 : When job j1 and job j2 run at the same time we deduce yj2 ≤ yj1−
∑

i∈M pij2x
i
j2

+

pmaxj1
+C3.40, which is valid when we have a positive C3.40 in the right side of the equality.

Therefore (3.40) is valid for P in all cases.

Here, C3.40 can be bounded by CH
max where job j1 runs before job j2. In the worst case we

have yj2 + pminj2
≤ yj1 + C3.40.

Remark that in case 3 we can reduce the value of C3.40 by this value (pmaxj1
+pmaxj2

−CH
max)

when job j1 and job j2 run at the same time, this value can be a coe�cient for the variable

zj1j2 . Thus, we can improve (3.40) by inequality (3.41)

Corollary 2 Let j1 and j2 be two jobs in J then,

yj2 − yj1 ≤ C3.40z̄j1,j2 −
∑
i∈M

pij2x
i
j2

+(pmaxj1
+ pmaxj2

− C3.40)zj1,j2 , (3.41)

The coe�cient of zj1j2 in (3.41) will not appear in case 1 and case 2 in (3.40). In case

(3-a) when job j1 and job j2 share any time unit and job j1 starts before job j2 we obtain

yj2 ≤ yj1 + pmaxj2
, this inequality is valid where job j2 starts before the completion of the

processing time for job j1. In case (3-b) it is clear yj2 ≤ yj1 + pmaxj2
is valid where job j2

begin before job j1. Thus, it will improve the inequality when we reduce the right side of

the inequality.

There is no linear combination between inequalities (3.39) and (3.41), because when

we subtract inequality (3.41) from inequality(3.39), we �nd inequality (3.42) which is

invalid when job j1 run before job j2 and do not share any time unit

0 ≤ Cz̄j2,j1 +
∑
i∈M

pix
i
j2

+

pminj1
zj1,j2 − pmaxj1

zj1,j2 − C3.41z̄j1,j2 − pminj1
zj1,j2 , (3.42)
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and when we subtract inequality (3.39) from inequality(3.41), we �nd inequality (3.43)

which is invalid when job j2 run before job j1 and do not share any time unit

0 ≤ (z̄j1,j2 − z̄j2,j1)C −
∑
i∈M

pix
i
j2

+

pmaxj1
zj1,j2 − pminj1

zj1,j2 + pminj1
z̄j1,j2 , (3.43)

Thus, its not possible to replace one inequality by another.

In the next section we will present another family of inequalities, these inequalities

consider that, jobs are indexed in the non-decreasing order of their processing times. The

principle of this inequality presented in [77]. This family of inequalities based on Shortest

Processing Time (SPT).

We will de�ne some notations to adapt the inequality to our problem :

� Let J ′ ⊆ J .

� J ′j denotes jobs in the SPT order of J ′ before j.

� SPT (J ′) denotes the sum of the completion time when the jobs indexed in the

non-decreasing order of their processing time in J ′.

� posj denotes the position of job j in the SPT sequence of J ′.

� qij = (|J ′| − posj + 1)pij +
∑

j1∈J ′j
pij1 which denotes the sum of the processing time

for job j plus the processing time for the next jobs in the SPT (J ′) for all J ′ ⊆ J ,

Proposition 4 ∑
j∈J ′

yj +
∑
j∈J ′

pijx
i
j +

∑
j∈J ′

∑
i1∈M�{i}

qijx
i1
j ≥ SPT (J ′), (3.44)

is valid inequality for P ,

a b c

Ca Cb Cc

Figure 3.7 � Schedule of three jobs.

The idea of the proof is as the following. If we have the schedule which is illustrated

in Figure 3.7 and this schedule on the same machine, having pa ≤ pb ≤ pc. Then the

SPT ≥ 3pa + 2pb + pc. Thus the SPT (J ′) is bounding the schedule. Consider the case
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where job b is runs on another machine, then the SPT (J ′) ≥ 2pa + pc, and still bounding

the schedule. Thus, in this case we must remove the value of qij from the SPT (J ′). Thus,

for all j ∈ J ′, if we remove job j from this machine then SPT (J ′) become : SPT (J ′)−qij.
Remark that, if we remove more than one job(i.e.) two jobs (job j1 and job j2), then the

value of SPT will be :

SPT (J ′�{j1, j2}) ≥ SPT (J ′)− qij1 − qij2.

3.4.1 Separation Algorithm for SPT Inequality

In this section we give the idea of the heuristic used to separate inequality (3.44). Given

a fractional solution (x̄, y∗, z∗, z̄∗), the separation problem for inequalities (3.44) consists

in determining whether (x̄, y∗, z∗, z̄∗) satis�es inequalities (3.44). We run this algorithm

for each machine. For all machine i ∈M we sort the jobs according to the SPT order for

y∗, for each job j in the order if x̄ij ≥ 0.99 we take this job, and continue until the SPT

inequality is violated.

The performance of the valid inequalities is evaluated in the experimental results section.

In the following we will propose an updated formulation invented based on Interval graph

formulation.

3.4.2 Reformulation of Interval Graph Formulation

In the following we will present another version of Interval Graph formulation, in this

formulation we made some changes on the variable z̄j1j2 , by considering the case if one

job processed before the other job by using the variable z̃j1j2 it is more nature for the

precedence constraints, and this change enhanced the previous model by reducing the

number of variables. We use the same variables in P with this change

z̃j1,j2 =

{
1 if job j1processed before job j2

0 otherwise
∀j1, j2 ∈ J.
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The model can be described as follow :

minCmax

yj +
∑
i

xijpij ≤ Cmax, ∀j ∈ J, (3.45)∑
i∈M

xij = 1, ∀j ∈ J (3.46)

xij1 + xij2 ≤ 2− zj1j2 , ∀j1, j2 ∈ J, i ∈M, (3.47)

yj1 +
∑
i∈M

pij1x
i
j1
≤ yj2 , ∀(j1, j2) ∈ A, (3.48)

yj1 − yj2 +
∑
i∈M

pij1x
i
j1
≤ C(1− z̃j1j2), ∀j1, j2 ∈ J (3.49)

z̃j1j2 + z̃j2j1 + zj1j2 = 1, ∀j1, j2 ∈ J, (3.50)

yj2 ≤ yj1 +
∑
i∈M

pij1x
i
j1

+ (C − pminj1
)z̃j1j2 ∀j1, j2 ∈ J, (3.51)∑

(j1,j2)∈E(Ī)

z̃j1,j2 −
∑

(j1,j2)∈E(Ī)

z̃j1,j2 ≤ |E(Ī)| − 1, ∀I ⊆ I, (3.52)

∑
(j1,j2)∈E(K)

z̃j1,j2 −
∑

(j1,j2)∈E(K)

z̃j1,j2 ≤ |E(K)| − 1, ∀K ⊆ K (3.53)

The objective function is to minimize the makespan. Inequalities (3.45) ensure that the

beginning time for each job plus its processing time is less than or equal to the total

completion time. Inequalities (3.46) controls each job to be processed on one machine.

Inequalities (3.47) guarantee that there is no two jobs run on the same machine at the same

time. Inequalities (3.48) controls the precedence constraints. Inequalities (3.49) ensure

that the beginning of any job must began after the �nishing of its predecessor. Inequalities

(3.50) ensure that, if the job j1 run before job j2, and j2 run before job j1 then job j1 and

j2 run at the same time, this inequality made the major modi�cation. Inequalities (3.51)

ensure that the beginning of any job must began after the �nishing of its predecessor.

3.5 Experimental Results

The mathematical formulations tested and compared under the following proposed

benchmark of instances.

The processing times are uniformly, distributed between 1 and 100 as it is common in the

literature [78]. We generated �ve di�erent sets of three subsets of DAG where the graph

density is high, medium and low respectively, with the following combinations of number
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of jobs n = {10, 12, 14, 16, 18, 20, 25} and 2 machines . The speed of machines generated

randomly between 10 and 20. In total 5× 7× 3 instances are generated.

Regarding to the graph density(GD), is calculated as follow GD = |E|
|V |(|V |−1)

where E is

the set of edges associated with precedence constraints between jobs, and V is the set

of vertices associated with jobs, we generated the instances of three density sets (low,

medium and high) density with the values (0.1, 0.15 and 0.25) respectively.

The Mathematical model implemented with CPLEX 12.4, on an Intel, core i5 running at

3.4 GHz, and 8 GB of RAM. The obtained results in this experiment are reported in table

3.1. Each line gives the average results obtained by solving 5 instances for each problem

size. The entries in these tables are :

� n : the number of jobs,

� ILP : the Integer Linear Program used to solve :

� 1=classical formulation,

� 2=�ow formulation,

� 3=order formulation,

� 4=interval graph formulation,

� CPU : the total CPU time in seconds,

� Gap : the Gap between the lower bounds and the upper bounds (100× UB−LB
LB

),

� GapH : the Gap between the best solution given by the heuristic and the integer

linear program (100× Heuristique−UB
UB

),

� o/p : the number of problems solved to optimality over the number of instances

tested.

Remark that, all instances are carried out for two machines and n jobs. We remark that

the classical formulation give bad results and can solved only the smallest instances. We

can observe that the interval graph formulation found 62%, 28% and 22% of optimal

solutions in high density, medium and low density respectively. Whereas, the optimal so-

lutions obtained by classical formulation is 17%, 11% and 11% in high density, medium

and low density respectively, and �ow formulation obtained 45%, 20%, and 20% in high

density, medium and low density respectively, and order formulation obtained 68%, 57%,

45% in high density, medium, and low density. The dashed results means that, the model

did not success to run the integer linear program due to the number of inequalities, we

�xed the processing time to one hour.
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Also we remark the Gap between the lower bounds and the upper bounds is sometimes

better for the interval graph formulation. For the high density instances the Gap is always

less than 40% and is acceptable for the instances with less than 20 jobs. Furthermore the

interval graph formulation improve the value given by the heuristic on 11 instances and

only 6 instances for the �ow formulation where the classical formulation improve the value

on 4 instances, and order improved 12 instances.

The ILP with the valid inequalities is tested under the following proposed benchmark

of instances.

The processing times are uniformly, distributed between 1 and 100 as it is common in

the literature [78]. We generated �ve di�erent sets of instances where the graph density is

equal to 0.15 which is calculated as follows GD = |E|
|V |(|V |−1)

where E is the set of edges as-

sociated with precedence constraints between jobs, and V is the set of vertices associated

with jobs, with the following combinations of numbers of jobs n ∈ {10, 12, 14, 16, 18, 20}
and the number of machines m ∈ 2, 3 . The speed of machines is generated randomly

between 10 and 20. In total 5 × 6 × 2 instances are generated. CPU time required is in

seconds.

The ILP is implemented with CPLEX 12.4, on an Intel, core i5 running at 3.4 GHz, and

8 GB of RAM.

We �rst present an overview of the results of computational tests for the ILP when we

add the inequalities. We limit the resolution time of each instance to 3600 seconds.

The number of obtained optimal solutions from the computational experiments are

presented in Table 3.2 with the average of the CPU time required by the model when we

add the inequality for the �ve sets of instances for each problem. We can observe that

Cplex, within the established time, was not able to obtain the optimal solution for all

instances. We can see that the solver founds the optimal solution for all �ve instances

just for the problem of 2×10. We can notice that when we add the inequalities (3.39)

the model found 53% optimal solutions, whereas, the optimal solutions obtained when we

add the inequalities (3.41) is 43%, and when we add the two inequalities (3.39) and (3.41)

the model found 53% optimal solutions with less CPU time. The inequalities (3.44) give

46% optimal solutions, however when we add all inequalities the model found 50% optimal

solution. The results of Table 3.2 also indicate that when we add the two inequalities (3.39)

and (3.41) the model needs less CPU time to �nd optimal solutions. We can notice also

when we increase the number of machines the model is always able to �nd more optimal
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solutions within the time limit for all families of inequalities, with the best results obtained

when we add the family of inequalities(3.39).

In Table 3.3 we can see the results for the average relative percentage gap between

the lower bound and the upper bound when we add the inequalities. Indeed, Gap is com-

puted as follows 100 × Upper bound−Lower bound
Upper bound

. The average relative percentage gap is no

more than 31% for all problems when we add the inequalities (3.39) and (3.41). However,

the dashes in Cplex column indicates that the Cplex is not able to �nd a valid solution

within the time limit and the limited use of the RAM. Furthermore, we remark that,

when the number of tasks increases with 3 machines, the gap still reduces when we use

the inequalities (3.39) and (3.41).

Other analysis can be displayed in Table 3.2. We can notice that when we add inequa-

lities (3.39) and (3.41) together, the model gives the maximum counts of best obtained

results for all problems, and its also interesting to notice the ability of inequalities (3.39)

for obtaining the same number in comparing with other families of inequalities when they

added individually.

Generally, we can notice the improvement of the model in terms of obtained results

and CPU time occurred when we add the two families (3.39) and (3.41) together to

the ILP. When we add the family of inequalities (3.39) alone to the ILP the improvement

happen with the obtained optimal solutions but with more CPU time. We notice a limited

improvement when we add inequalities (3.41) alone to the ILP . The family of inequalities

(3.44) (the separation algorithm) may need more improvements to obtain better results.

We can say there is no remarkable improvements when we add all families of inequalities

to the model.

3.5.1 Conclusion

In this chapter we considered the problem of unrelated parallel machine scheduling,

minimizing makespan subject to precedence constraints. The main di�erence between

these formulations is the way the makespan has been linearized. To study and evaluate

the e�ectiveness and e�ciency of these models, 105 instances of numerical experiments are

conducted. The obtained results show the e�ectiveness of the interval graph formulation

in comparing with the available formulations except the order formulation, but the facial

structure of the polytope generated by interval graph model can be investigated to de�ne

some facet de�ning inequalities, where there is an important piece of information from
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Instance Cplex (3.39) (3.41) (3.39)&(3.41) SPT ALL

2×10 0.0 0.00 0.00 0.00 0.00 0.00
2×12 4.52 0.00 0.00 0.00 3.29 0.64
2×14 15.67 3.41 3.62 2.22 47.42 8.91
2×16 46.52 7.97 7.72 7.73 47.65 14.42
2×18 47.60 12.38 11.80 14.39 50.04 19.23
2×20 85.91 29.54 29.42 30.60 - 33.81
3×10 20.00 0.00 0.00 0.00 0.00 0.00
3×12 20.00 0.00 0.00 0.00 20.02 0.00
3×14 82.04 0.34 20.96 0.26 - 3.48
3×16 - 2.27 41.23 2.66 80.06 4.93
3×18 - 23.54 23.68 22.34 - 24.98
3×20 - 40.80 45.70 25.31 - 46.01

Table 3.3 � Average Relative Percentage Gap between Optimal Solution and Obtained

Solution.

our model where the model could know if the jobs run at the same time or not. There are

some applications require such model, specially in some cloud computing security models.

We improved the interval graph formulation by adding valid inequalities based on the

forbidden interval sub graph, and some Heuristics to solve the clique problem or �nd the

smallest no interval subgraphs. Computational results show that, the addition of these

inequalities decreases the computational requirements to obtain the optimal solution, in

many cases. Furthermore, we proposed other inequalities based on SPT. Some heuristics

used to separate the inequality based on the SPT. In the next chapter we will de�ne the

polytope associated with the interval model.
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Chapitre 4. Polyedral study on interval graphs under m-clique free constraints

In this chapter we consider the problem of interval and m-clique free subgraphs and

we show the relation between the graph problem and the unrelated parallel machines with

disjunctives constraints (UPMSDC) problem. We study the facial structure of their poly-

tope and we present some inequalities de�ning facets to bound the associated integer linear

programming formulation. Moreover, we present exact and heuristic separation algorithms

associated with a cutting-plane algorithm for solving the problem. Finally, we present some

experimental results as well as their analysis.

4.1 Introduction

Interval, m-clique graphs have attracted the interest of researchers for many decades.

The scope of current research in this area extends now to the mathematical and algorith-

mic properties of interval and m-clique graphs, their generalizations and the related graph

parameters. One main reason for this increasing interest is that many real-world applica-

tions involve solving problems on graphs, which are either interval graphs themselves or

are related to interval graphs or a clique in a natural way. Algorithmic aspects of interval

graphs have been the subject of ongoing research for several decades, stimulated by their

numerous applications ; see e.g. [97]. In some applications, interval representations with

special properties are required.

Numerous applications of interval graphs have appeared in the literature including applica-

tions to genetic structure, sequential storage and scheduling (see [97, 58]). An application

of the interval graphs arises on the context of scheduling jobs in cloud computing. In cloud

computing, we not only have to determine how many, but also which jobs should be alloca-

ted to a virtual machine. In scheduling, for example, jobs can have certain durations that

should be refected by the lengths of their intervals and two consecutive jobs can require

a certain handover period that is determined by how much their intervals should intersect.

All graphs in this chapter are simple and have no self-loops. Let G = (V,E) be a

graph. An undirected graph G is called an interval graph if its vertices can be put into a

one-to-one correspondence with a set of intervals I of a linearly ordered set (like the real

line) such that two vertices are connected by an edge of G if their corresponding intervals

have nonempty intersection.

An interval graph is the graph showing intersecting intervals on a line. Thus, we associate

a set of intervals I = {I1, ..., In} on a line with the interval graph G = (V,E), where
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4.1. Introduction

V = {1, ..., n} and two vertices, x and y, are linked by an edge if and only if Ix ∩ Iy 6= ∅. .
In parallel machines scheduling some jobs in di�erent machines can share any time

units, the jobs can be represented with multiple nodes and edges indicate there is a shared

time units between jobs. Normally, the solution is mathematically formalized as a graph

G = (V,E) where V denotes the set of vertices (associated with jobs) and E denotes the

set of relationships between vertices (intersections of jobs). However, when we assign jobs

to parallel machines, the solution is valid for two types of graphs (i.e., interval graph and

m-clique free, where m is the number of machines). This point will be discussed in Section

4.4.

Clique is a very common structure in many applications, which is composed of a subset

of vertices as well as all the possible relationships among them. Therefore, clique detection

is playing an important role in various applications, such as social recommendation [99]

and network routing . The m-clique free graph is the graph that does not contain a clique

of size greater than m+ 1.

De�nition 8 (clique). Let G = (V,E) be an undirected graph. A clique in G is a subset

S ⊂ V such that for any two vertices vi, vj ∈ S there exists an edge (vi, vj) ∈ E.

De�nition 9 (m-clique). Let G = (V,E) be an undirected graph. An m-clique in G is a

subset S ⊂ V and |S| = m such that for any two vertices v1, v2 ∈ S there exists an edge

(v1, v2) ∈ E.

A graph is m-clique free if it does not contain a clique of size greater or equal than

m+ 1. The problem under consideration is to �nd an interval, and m-clique free graph.

Figure 4.1 � Cliques with 3, 4, 5 and 6 vertices.

Figure 4.1 shows the cliques of size 3, 4, 5 and 6. Motivated by practical applications,

this chapter studies the interval and m-clique free sub-graphs as well as the associated

polytope. In particular, the next section provides the polytopes of interval and m-clique

graphs.
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4.2 The polytopes of interval sub-graphs

In this section, we consider the problem of characterizing an interval graph m-clique

free.

Let I := {I ⊆ E |G[I] induces an interval m-clique free subgraph}. The vector zI is called
the incidence vector associated with I. We de�ne the Interval m-Clique Free Subgraph

Problem (IMCFSP) polytope as follows :

PI(G,m) := conv{zI ∈ {0, 1}|E||I ∈ I} ,

Now, we analyze the dimension of this polytope.

Proposition 5 Polytope PI(G,m) has a full dimension.

proof 4.1 We need to show the existence of |E| + 1 feasible solutions such that their

incidence vectors are a�nely independent.

Let I0 = ∅ be a valid solution, because it has no edge. We also de�ne solutions Ie = {e}
for all e ∈ E. The incidence vectors of these solutions are clearly a�nely independents.

Thus, we have |E|+1 vectors of PI(G,m) a�nely independent and the proof is completed.

�

In the following proposition, we will prove that the trivial inequality is a facet.

Proposition 6 Let e ∈ E. The trivial inequality ze ≥ 0 de�nes a facet of PI(G,m).

proof 4.2 Let us denote by az ≤ α inequality −ze ≤ 0 associated with e ∈ E. Let bz ≤ β

be a facet de�ning an equality of PI(G,m), such that {z ∈ PI(G,m) : az = α} ⊆ {z ∈
PI(G,m) : bz = β}. We show that b = ρa for some ρ ∈ R.
Let I0 = ∅ be a valid solution, and the associated incidence vector zI0 verify −ze = 0.

Let e′ ∈ E \ {e}. The solution Ie′ = {e′} is valid and the incidence vector zIe′ associated

with Ie′ veri�es −ze = 0.

Since, azI0=azIe′ , then we deduce that bzI0=bzIe′ and this implies that b(e′) = 0 for all

e′ ∈ E. Therefore, we set b(e) = ρ, and then b = ρa. �

4.2.1 Forbidden subgraphs inequalities

In this section we analyze the graph properties in order to propose valid inequalities.

Properties on interval graphs have been studied in [80]. The authors give all forbidden
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4.2. The polytopes of interval sub-graphs

subgraphs. Indeed, if a graph does not contain at least one of the �ve subgraphs given

in Figure 4.2, then it is an interval graph. The two �rst forbidden subgraphs are called

Bipartite Claw and Umbrella. These subgraphs are de�ned on only seven nodes. The three

last forbidden subgraphs are de�ned for di�erent sizes. The n-net subgraphs are composed

of n+ 4 nodes {1, ..., n, a, b, c, d}, where the edges are {a− b, 1− c, n− d} ∪ {1− b, 2− b,
3−b,..., n−b}∪{1−2, 2−3,..., (n−1)−n}. The n-tent subgraphs are de�ned as follows :

the nodes a, b, c are connected by a triangle, the nodes {1, ..., n} are connected in a line

form, nodes 1 and b are connected, node n is linked to c and the nodes in {b, c, 2, ..., n−1}
de�ne a clique. Finally, the �fth forbidden con�guration is a hole of more than 3 nodes,

which is a cycle without chord. These �ve forbidden subgraphs ensure that the graph is

an interval one. In addition, to be m-clique free, all cliques of size greater or equal than

m+ 1 must be forbidden.

2
1

3 4

5

6 7

(a) Bipartite Claw

2

1

3 4 5 6

7

(b) Umbrella

b

a

1 2 3 ..n
c d

(c) n-net, n ≥ 2

a

b c

1 2 3 4 ...n

(d) n-tent, n ≥ 3

1 2

3 ...n

(e) Hole, n ≥ 4

Figure 4.2 � Forbidden Subgraphs Characterization

In the following subsection we propose some inequalities associated with all forbidden

subgraphs and we prove that these inequalities de�ne facets for PI .

Bipartite Claw

In this subsection, we give inequalities to avoid the bipartite claw forbidden subgraph.

An example is given in Figure 4.3d.

We will give some notations to help in analyzing the bipartite claw forbidden subgraph.

Let us consider the complete graph K7 with seven nodes. We partition this graph to BC

and BC, where BC is the set of all edges that form the bipartite claw as in Figure 4.3d
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and BC is the set of edges in the associated complementary graph of BC. Moreover, BC

is partitioned as follows :

◦ Subset BC
4

h contains all the edges such that each of them enables to form a hole of

size 4 in a bipartite claw.

◦ Subset BC4 contains three edges such that when we add one of them to BC, then

we obtain a central triangle.

◦ Subset BCi contains the edges that are able to form a triangle with the inner vertex.

◦ Subset BC
5

h is composed of all edges such that each of them enables to form a hole

of size 5 in the bipartite claw.

Figure 4.3 shows these subsets.

2
1

3 4

5

6 7

(a) Sub set BCi

2

13 4

5

6 7

(b) Sub Set BC
4
h

2

1
3 4

5

6 7

(c) Sub Set BC
5
h

2

13 4

5

6 7

(d) Sub Set BC4

Figure 4.3 � Subsets of the complementary Bipartite Claw

As a consequence, the previous de�nitions lead explicitely to the following subsets :

� BC = {(1, 2), (1, 3), (1, 4), (2, 5), (4, 7), (3, 6)}.
� BC = { (7, 1), (7, 2), (7, 3), (7, 5), (7, 6), (6, 1), (6, 2), (6, 4), (6, 5), (5, 1), (5, 3),

(5, 4), (4, 2), (4, 3), (3, 2) }.
� BC

4

h = {(3, 5),(2, 6),(5, 4),(2, 7),(3, 7),(4, 6)}.
� BC4 = {(2, 3),(2, 4),(3, 4)},
� BCi = {(1, 5), (1, 6), (1, 7)}.
� BC

5

h = {(5, 6), (5, 7), (6, 7)}.
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We consider two cases, when m = 2, and when m ≥ 3.

If m = 2 then the following inequality is valid :∑
e∈BC

ze ≤ 5. (4.1)

Indeed, when we add an edge from BC4 in Figure 4.3d, by de�nition, the resulting sub-

graph will contain a clique of size 3, which is not m-clique free in this case, as well it

is 2 − net. Moreover, when we add an edge e ∈ BCh then we obtain a hole. If we add

another edge to break this hole then we obtain a clique of size 3.

Proposition 7 The inequality (4.1) de�nes a facet, when m = 2.

proof 4.3 Let us denote by az ≤ α the inequality (4.1). Let bz ≤ β be an inequality that

de�nes a facet of PI(G,m), such that {z ∈ PI(G,m) : az = α} ⊆ {z ∈ PI(G,m) : bz =

β}. Since PI(G,m) is of a full dimension, we need to prove that there exists ρ such that

b = ρa for some ρ ∈ R.

Let e1, e2 ∈ BC be two edges. The solutions I1 = BC \ {e1}, and I2 = BC \ {e2} are
valid. Their incidence vectors satisfy the inequality (4.1) to the equality. Since, azI1=azI2,

therefore bzI1=bzI2 implying that b(e1) = b(e2). We set b(e1) = ρ. As e1 and e2 are arbi-

trary in BC, then b(e) = b(e′) ∀e, e′ ∈ BC.

The solutions I3 = BC \ {(1, 4)}, and I4 = I3 ∪ {(2, 4)}, I5 = I3 ∪ {(5, 4)}, and
I6 = I3 ∪ {(5, 7)} are valid. Their incidence vectors satisfy the inequality (4.1) to the

equality. Since, azI3=azI4=azI4=azI5=azI6, therefore bzI3=bzI4=bzI4=bzI5=bzI6 implying

that b((2, 4)) = b((5, 4)) = b((5, 7)) = 0. By symmetry, b(e) = 0, ∀e ∈ BC4

h∪BC
5

h∪BC4.

The solutions I7 = BC\{(4, 7)} and I8 = I7∪{(1, 7)} are valid and verify the inequality
(4.1) to the equality. Since, azI7 =azI8, therefore bzI7 = bzI8, implying that b((1, 7)) = 0.

By symmetry, we have b((1, 5)) = b((1, 6)) = 0.

Let e3 ∈ E \ (BC ∪ BC). The solutions I3 and I9 = I3 ∪ {e3} are valid and verify

the inequality (4.1) to the equality. Since, azI3 =azI9, therefore bzI3 = bzI9, which implies

that b(e3) = 0. By symmetry, we have b(e) = 0 for all e ∈ E \ (BC ∪BC). �
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Now, if m ≥ 3 then the following inequality is valid.∑
e∈BC

2ze −
∑

e∈BC4
h∪BC4

ze − 2
∑
e∈BCi

ze ≤ 10 (4.2)

This inequality is valid, if we add one edge of BC4 to the bipartite claw, then the resul-

ting subgraph contains 2−net. If we add one edge of BC
5

h or BC
4

h, then we obtain a hole

of size 5 respectively 4. It is clear that when we add one, two or three edges of BCi, then

the resulting graph becomes interval and m-clique free.

Proposition 8 Inequality (4.2) de�nes a facet, when m ≥ 3.

proof 4.4 Let us denote by az ≤ α the inequality (4.2). Let bz ≤ β be an equality that de-

�nes a facet of PI(G,m), such that {z ∈ PI(G,m) : az = α} ⊆ {z ∈ PI(G,m) : bz = β}.
Since PI(G,m) is of a full dimension, we need to prove that there exists ρ such that b = ρa

for some ρ ∈ R.

Let e1, e2 ∈ BC be two edges. The solution I1 = BC \ {e1} and I2 = BC \ {e2} are
valid. Their incidence vectors satisfy the inequality (4.2) to the equality. Since azI1=azI2,

therefore bzI1=bzI2 implying that b(e1) = b(e2). We set b(e1) = 2ρ. As e1 and e2 are arbi-

trary in BC, then b(e) = b(e′) = 2ρ ∀e, e′ ∈ BC.

Let e3 ∈ BCi be one edge. The solutions I3 = BC ∪ {e3} and I1 are valid. Their

incidence vectors satisfy the inequality (4.2) to the equality. As azI3=azI1, then bzI3=bzI1

implying that b(e3) = −b(e1). As e3 is arbitrary in BCi and e1 ∈ BC, then b(e) = −b(e′′).
We deduce that b(e′′) = −2ρ, e′′ ∈ BCi.

The solutions I4 = BC ∪ {(2, 4), (3, 4)} and I5 = BC ∪ {(2, 4), (2, 3)} are valid and

verify the inequality (4.2) to equality. As azI4 = azI5 then bzI4 = bzI5, implying that

b((3, 4)) = b((2, 3)). By symmetry, we have b((3, 4)) = b((2, 4)) = b((2, 3)).

The two solutions I6 = BC ∪ {(2, 4), (5, 4)} and I7 = BC ∪ {(2, 4), (2, 7)} are valid and

verify the inequality (4.2) to equality. Since azI6 = azI7, then bzI6 = bzI7, implying that

b((5, 4)) = b((2, 7)). By symmetry, we have b((2, 6)) = b((3, 5)) and b((4, 6)) = b((3, 7)).

By considering the solutions I4 and I6 we can observe that azI4 = azI6. For this reason

bzI4 = bzI6, which implies that b((3, 4)) = b((5, 4)). By symmetry we have b(e) = b(e′) for
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4.2. The polytopes of interval sub-graphs

all e ∈ BC4 and e′ ∈ BC4

h.

By considering the solutions I1 and I4 are valid and verify the inequality (4.2) to equa-

lity. Hence, azI1 = azI4, therefore bz
I1 = bzI4, this implying that b(e1) = −b((2, 4)) −

b((5, 4)), by the previous results and by the symmetry we deduce b(e) = −2b(e′) for all

e ∈ BC, and for all e′ ∈ BC4 ∪BC
4

h. Therefore b(e
′) = −ρ.

The solutions I11 = BC ∪{(5, 7), (2, 4), (5, 4)}, and the solution I6 are valid and verify

the inequality (4.2) to equality. As azI11 = azI9, then bzI11 = bzI9 implying that b(5, 7) = 0.

By symmetry, we have b(e) = 0 for all e ∈ BC5

h.

Let e8 ∈ E \ (BC ∪ BC). The solutions I12 = (BC \ {(1, 2)}) ∪ {e8} and the solu-

tion I13 = BC \ {(1, 2)} are valid and verify the inequality (4.2) to equality. Since azI12

=azI13, then bzI12 = bzI13 implying that b(e8) = 0. By symmetry, we have b(e) = 0 for all

e ∈ E \ (BC ∪BC). �

Umbrella Inequalities

For the umbrella subgraph as shown in Figure 4.4d, let Gu = (Uu, Eu) be a graph that

formulates the umbrella and let Eu be a set of the complementary edges for Gu. In the

following, we will present a family of valid inequalities that delete the umbrella subgraphs.

To analyze this forbidden subgraph we need the following notations :

Let Ei
u ⊂ Eu be the set of the inner three edges in the umbrella subgraph. Let Et

u ⊂ Eu be

the set of the edges such that when we add one of these edges to the umbrella we create a

new triangle. Subset Ea
u ⊂ Ec is the dashed edges in Figure 4.6a. Finally, Ea

u ⊂ Eu is the

set of the around edges and Eh
u ⊂ Eu is the set of edges such that if they are connected,

then they will form a hole of size 4 or of size 5.

2

1

3 4 5 6

7

(a) The Set Ei
u

2

1

3 4 5 6

7

(b) The Set Et
u ∪ Ec

u

2

1

3 4 5 6

7

(c) The Set Ea
u

2

1

3 4 5 6

7

(d) The Set Eh
u

Figure 4.4 � Subsets of umbrella and its complementary
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Chapitre 4. Polyedral study on interval graphs under m-clique free constraints

� Ei
u = { (1, 3), (1, 4), (1, 5) }.

� Et
u = { (1, 7), (3, 7), (5, 7) }.

� Ec
u = {(2, 4), (3, 5), (4, 6)}.

� Ea
u = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (1, 6), (4, 7) }.

� Eh
u = { (2, 7), (6, 7), (2, 5), (2, 6), (3, 6) }.

Remark that the graph induced by Hu = {Ei
u ∪ Et

u ∪ Ec
u ∪ Ea

u ∪ Eh
u} is a complete

graph.

When m = 2, the triangle becomes a forbidden subgraph (and then it is not possible to

�nd an umbrella). For this forbidden subgraph we focus on instance where m ≥ 3.

When m = 3, in order to keep all edges of Eu it is necessary to add at least one edge of

Et
u. Moreover, when we add an edge from Ec

u in this case the subgraph contains a clique

of size 4. If we add an edge from Eh
u , then the induced subgraph will contain a hole.

Thus, the valid inequalities when m = 3 will be :∑
e∈Eau\{(4,7)}

ze + z(2,6) + z(2,5) + z(3,6) ≤ 5. (4.3)

Proposition 9 Inequality (4.3) de�nes a facet if m = 3.

proof 4.5 Let us denote by az ≤ α the inequality (4.3) associated with e. Let bz ≤ β be

a facet de�ning an equality (4.3) such that {z ∈ PI(G,m) : az = α} ⊆ {z ∈ PI(G,m) :

bz = β}. We show that b = ρa for some ρ ∈ R.

Let e1, e2 ∈ Ea
u \ {(4, 7)}. The solutions I1 = Eu \ {e1} and I2 = Eu \ {e2} are valid

and the incidence vectors zI1 and zI2 verify the inequality (4.3) to equality. Moreover, we

have azI1=azI2. Hence, bzI1=bzI2. This implies that b(e1) = b(e2). We set b(e1) = ρ. As

e1 and e2 are arbitrary in Ea
u \ {(4, 7)}, thus by symmetry, we have b(e′) = b(e) = ρ for

all e ∈ Ea
u \ {(4, 7)}.

The solution I3 = Ea
u \ {(4, 7), (1, 6)} and I4 = (I3 ∪ {(2, 5)}) \ {(4, 5)} are valid and

the incidence vectors zI3 and zI4 verify the inequality (4.3) to equality. Moreover, we have

azI3=azI4. Hence, bzI3=bzI4. This implies that b((4, 5)) = b((2, 5)). Thus, from the pre-

vious results we deduce that b((2, 5)) = b(e) for all e ∈ Ea
u \ {(4, 7)}.

The solutions I3 and I5 = (I3 ∪ {(2, 6)}) \ {(5, 6)} are valid, such that the incidence

vectors zI5 and zI3 verify the inequality (4.3) to equality. Moreover, we have azI5=azI3.
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Hence, bzI5=bzI6. This implies that b((2, 6)) = b((5, 6)). Indeed, from the previous results

we have b((2, 6)) = b(e) for all e ∈ Ea
u \ {(4, 7)}.

The solution I3 and I6 = (I3 ∪ {(3, 6)}) \ {(5, 6)} are valid and the incidence vectors

zI3 and zI6 verify the inequality (4.3) to equality. Moreover, we have azI3=azI6. Hence,

bzI3=bzI6. This implies that b((3, 6)) = b((5, 6)). Indeed, from the previous results we can

deduce that b((3, 6)) = b(e) for all e ∈ Ea
u \ {(4, 7)}.

The solutions I7 = Ea
u \ {(4, 7)∪ (1, 6)} and I8 = (I7 ∪ {(4, 7)} ∪Ei

u) are valid and the

incidence vectors zI7, and zI8 verify the inequality (4.3) to equality. Moreover, we have

azI7=azI8. Hence bzI7=bzI8. This implies that b(e) = 0 ∀e ∈ Ei
u.

Let e ∈ {(2, 7), (3, 7), (1, 7), (5, 7), (6, 7)}. The solutions I1 and I9 = I1 ∪ {e} are valid
and the incidence vectors zI1, zI9 verify the inequality (4.3) to equality. Moreover, we

have azI1 = azI9. Hence, bzI1 = bzI9. This implies that b((2, 7)) = b((3, 7)) = b((1, 7)) =

b((5, 7)) = b((6, 7)) = 0. �

When m ≥ 4, to �nd a valid solution we can add also the edges from Ec
u. Then, the

valid inequalities when m ≥ 4 will be :∑
e∈Eau

ze −
∑

e∈Etu∪Ecu

ze ≤ 6. (4.4)

Proposition 10 Inequality (4.4) de�nes a facet if m ≥ 4.

proof 4.6 Let us denote by az ≤ α inequality (4.4) associated with e. Let bz ≤ β be a facet

de�ning an equality (4.4) such that {z ∈ PI(G,m) : az = α} ⊆ {z ∈ PI(G,m) : bz = β}.
We show that b = ρa for some ρ ∈ R.

Let e1, e2 ∈ Et
u ∪ Ec

u be two edges, where e1 6= e2. We consider the edge sets I1 =

Eu ∪ {e1} and I2 = Eu ∪ {e2} where the incidence vectors zI1 and zI2 are solutions of

PI(G,m) and satisfy the inequality (4.4) to equality. Moreover, we have azI1=azI2. Thus,

bzI1=bzI2. This implies that b(e1) = b(e2). As e1, e2 are arbitrary, then b(e) = b(e′) for all

e, e′ ∈ Et
u ∪ Ec

u.
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Let e3 ∈ Ea
u. The solution I3 = Eu\{e3} is valid and the incidence vectors zI3 verify the

inequality (4.4) to equality. Moreover, we have azI1=azI3. Hence, bzI1=bzI3. This implies

that b(e3) = −b(e1). Thus, by symmetry we have b(e′) = −b(e) for all e ∈ Et
u∪Ec

u, e
′ ∈ Ea

u .

The solutions I4 = Eu \ {(1, 6)}, I5 = (Eu \ {(1, 6)}) ∪ Ei
u, I6 = I5 \ {(1, 5)},

I7 = I6 \ {(1, 4)} and I8 = I7 \ {(1, 3)} are valid. The incidence vectors zI4, zI5, zI6,

zI7 and zI8 verify the inequality (4.3) to the equality. Since azI4=azI5=azI6=azI7=azI8,

therefore bzI4=bzI5=bzI6=bzI7=bzI8, implying that b(e) = 0 ∀e ∈ Ei
u.

The solutions I9 = Eu ∪ {(2, 7), (2, 4)}, I10 = Eu ∪ {(2, 5), (2, 4)}, I11 = Eu ∪ {(2, 4)},
I12 = Eu \ {(2, 3)}, I13 = I12 ∪ {(2, 6)}, I14 = I12 ∪ {(2, 5)}, I15 = Eu \ {(5, 6)} and I16 =

I15 ∪ {(3, 6)} are valid and verify the inequality (4.4) to the equality. Since azI9=azI10=

azI11=azI12=azI13=azI14=azI15 =azI16, therefore bzI9=bzI10= bzI11= bzI12 =bzI13=bzI14=

bzI15 = bzI16, implying that b((2, 6)) = b((2, 5)) = b((2, 7)) = b((6, 7)) = b((3, 6)) = 0.

Let e ∈ E \ (Eu ∪ Ēu). The solutions I17 = Eu \ {(4, 7)} and I18 = I17 ∪ {e} are valid
and verify the inequality (4.4) to the equality. Since azI17=azI18, therefore bzI17=bzI18. By

symmetry, we have b(e) = 0.

We set b(e) = ρ for e ∈ Eu and the proof is ended. �

n-net Inequalities

The n− net forbidden subgraph is shown in Figure 4.2c. We will give some notations

to help in analyzing the n− net forbidden subgraph.

Let Gnet = (Unet, Enet) be the graph that forms a net of size n (i.e., n − net) and Enet
be a set of complementary edges of Gnet. To avoid to have a subgraph that represents an

n−net, where n ≥ 2 we need either to eliminate an edge from the n−net without having
a hole denoted by Eh

net, or to add an edge that does not construct a hole denoted by Eh̄
net.

To analyze this forbidden subgraph we will use the following notations. From Figure 4.2c

let us consider :

- Eh̄
net = {(a, c), (a, d)}∪{(c, 3), (c, 4), ..., (c, n)}∪{(d, 1), (d, 2), ..., (d, n−2)}∪{(c, d)}.

- Eh
net = {(b, 2), ..., (b, n− 1)}.
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4.2. The polytopes of interval sub-graphs

We propose valid inequalities that delete the n− net forbidden subgraphs.∑
e∈Enet\Ehnet

ze −
∑

e∈Enet\Eh̄net

ze ≤ |Enet \ Eh
net| − 1. (4.5)

Proposition 11 Inequality (4.5) de�nes a facet.

proof 4.7 Let us denote by az ≤ α the inequality (4.5) associated with e. Let bz ≤ β be

a facet de�ning an equality (4.5) such that {z ∈ PI(G,m) : az = α} ⊆ {z ∈ PI(G,m) :

bz = β}. We show that b = ρa for some ρ ∈ R.

Let e1, e2 ∈ Enet \ Eh
net be two edges, where e1 6= e2. We consider the edge sets

I1 = Enet \ {e1} and I2 = Enet \ {e2}. Their incidence vectors zI1 and zI2 are solutions of

PI(G,m) and satisfy the inequality (4.5) at the equality. Moreover, we have azI1=azI2 and

then bzI1=bzI2. This implies that b(e1) = b(e2). As e1, e2 are arbitrary, then b(e) = b(e′)

for all e, e′ ∈ Enet \ Eh
net.

We consider the edge sets I3 = Enet \ {(b, 1)} and I4 = Enet \ ({(b, 1)} ∪ Eh
net).Their

incidence vectors zI3 and zI4 are solutions of PI(G,m) and satisfy the inequality (4.5) at

the equality. Moreover, we have azI3=azI4. Hence, we have bzI3=bzI4. This implies that

b(e) = 0 for all e ∈ Eh
net.

Let e3 ∈ Enet \ Eh̄
net. The solution I5 = Enet ∪ {e} is valid and satis�es the inequa-

lity (4.5) to equality. Moreover, we have azI1=azI5 and then bzI1=bzI5. This implies that

b(e) = −b(e′) for all e ∈ Enet \ Eh
net and e

′ ∈ Enet \ Eh̄
net.

Considering the edge sets I6 = Enet∪{(c, 2), (c, 3), ..., (c, n), (c, d)}, I7 = Enet∪{(c, 2)},
I8 = Enet ∪ {(d, 1), (d, 2), ..., (d, n − 1)}, I9 = Enet ∪ {(d, n − 1)},I10 = Enet ∪ {(a, 1)},
I11 = Enet ∪ {(a, 1), (a, c)},I12 = Enet ∪ {(a, n)}, I13 = Enet ∪ {(a, n), (a, d)}. These
edge sets are solutions and satisfy the inequality (4.5) to the equality. Moreover, we have

azI6=azI7=azI8 = azI9=azI10=azI11 = azI12=azI13. Hence, we have bzI6=bzI7=bzI8 =

bzI9=bzI10=bzI11 = bzI12=bzI13. Thus, b(e) = 0 for all e ∈ Eh̄
net.

Let e ∈ E \ (Enet ∪ Enet). By considering the valid solutions I14 = Enet \ {(a, b)} and
I15 = Enet \ {(a, b)} ∪ {e}, we have azI14=azI15. Hence, bzI14=bzI15. This implies that

b(e) = 0.
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We set b(e) = ρ for e ∈ Enet \ Eh
net and the proof is completed. �

n-tent Inequalities

Figure 4.2d shows the n − tent forbidden subgraph, the graph is non-interval if it

contains an n − tent forbidden subgraph Gtent. The induced subgraph Gtent to be valid

we need to add or remove one or more edges considering to not have a hole when we add

or remove any edge.

Let the graph Gtent = (Utent, Etent) be a graph that formulate n− tent for all n ≥ 3, and

Etent be the set of complementary edges.

From Figure 4.2c

- Eh
tent = {(b, c), (c, 4), (b, 2)},

- Eh̄
tent = {(1, 4), (2, 5), ..., (n, n+ 3)}.

Remark that, all n-tent where n ≥ 5 contain a clique of size 5 then the clique inequality

cut these n-tent sub graph if m ≤ 4. It is the same idea for all n-tent where n = 4 (resp.

n = 3) then the clique inequality cut these n-tent sub graph if m = 3(resp. m = 2).

In the following we will propose valid inequalities that delete the n-tent forbidden

subgraphs. ∑
e∈Etent\Ehtent

ze −
∑

e∈Etent\Eh̄tent

ze ≤ |Etent \ Eh
tent| − 1. (4.6)

Proposition 12 Inequality (4.6) de�nes a facet, when m ≥ 5 or (n = 4 and m = 3) or

(n = 3 and m = 2).

proof 4.8 Let us denote by az ≤ α the inequality (4.6) associated with e. Let bz ≤ β be

a facet de�ning an equality (4.6) such that {z ∈ PI(G,m) : az = α} ⊆ {z ∈ PI(G,m) :

bz = β}. We show that b = ρa for some ρ ∈ R.

Let e1, e2 ∈ Etent \ Eh
tent be two edges, where e1 6= e2. We consider the edge sets

I1 = Etent \ {e1} and I2 = Etent \ {e2}. Their incidence vectors zI1 and zI2 are solutions

of PI(G,m) and satisfy the inequality (4.6) to equality. Moreover, we have azI1=azI2 and

then bzI1=bzI2. This implies that b(e1) = b(e2). As e1, e2 are arbitrary, then b(e) = b(e′)

for all e, e′ ∈ Etent \ Eh
tent.
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We consider the edge sets I3 = Etent\{(a, c)}, and I4 = Etent\({(a, c)}∪{(b, c)}) there
incidence vectors zI3, and zI4 are solutions of PI(G,m) and satisfy the inequality (4.6)

to equality. Moreover, we have azI3=azI4 and then bzI3=bzI4. This implies by symmetry

that b((b, c)) = b((b, 2)) = b((c, 4)) = 0.

Let e3 ∈ Etent \ Eh̄
tent. The solution I5 = Etent ∪ {e} is valid and satis�es the inequa-

lity (4.6) to equality. Moreover, we have azI1=azI5. Hence, bzI1=bzI5. This implies that

b(e) = −b(e′) for all e ∈ Etent \ Eh
tent and e

′ ∈ Etent \ Eh̄
tent.

Let (i, i + 3) ∈ Eh̄
tent. The solutions I6 = Etent ∪ {(i, i + 3), (i, i + 2)} and I7 =

Etent∪{(i, i+ 2)} are valid and satisfy the inequality (4.6) to equality. Moreover, we have

azI6=azI7 and then bzI6=bzI7. Thus, b(e) = 0 for all e ∈ Eh̄
tent.

Let e ∈ E \ (Etent ∪Etent). By considering the valid solutions I8 = Etent \ {(a, c)} and
I9 = Etent\{(a, c)}∪{e}, we have azI8=azI9 and then bzI8=bzI9. This implies that b(e) = 0.

We set b(e) = ρ for e ∈ Etent \ Eh
tent and the proof is completed. �

Hole inequalities

Here, it is convenient to de�ne a hole as an induced subgraph of G isomorphic to Ck for

some k ≥ 4, [19]. The hole C is a forbidden subgraph as depicted in Figure 4.2e. Let C de-

note the set of edges that construct the hole, i.e., C = { (u1, u2),(u2, u3),...,(u|C|−1, u|C|),(u|C|, u1)

}. If (i + k) > |C|, then ui+k = ui′ , i′ = (i + k) − |C|. Let C denote the set of all chords

of hole C.

Suppose we have a hole of size 4 this graph is non-interval graph. The induced subgraph

by a hole is valid only if we add to it at least one chord.

Proposition 13 For a hole C, the minimum number of necessary chords that should be

added to the hole to be an interval graph is |C| − 3, when |C| ≥ 4.

proof 4.9 We prove this proposition by induction. When |C| = 4, then we need one chord

kc = 1, and then the proposition is true.

Let assume that the property is true until |C| = l and kc = l−3. We need to prove it for a

cycle C ′ where |C ′| = |C|+1 and that kc′ = |C ′|−3. Let consider C̃ = {u1, u2, u3, ..., u|C|}
be the hole graph given by C where we add kc edges in order to make it hole free and
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(ui, ui+1) is an edge, where i ∈ {1, 2, ..., |C|−1}. Now, we will construct C̃ ′ from C̃ by ad-

ding the vertex u|C|+1 in C̃, by replacing the edge (ui, ui+1) by (ui, u|C|+1) and (u|C|+1, ui+1).

Then, we �nd a unique hole of a size 4 in the new cycle. Therefore, |C̃ ′| = l + 1. It is

necessary to add one edge to break this hole. Thus, kc′ = l′ − 3 is true. As C and kc are

arbitrary, then the property is true for every hole. �

u1
u2

u3

u4

u5
u6

un
un−2
un−1

(a)

u1
u2

u3

u4

u5
u6

un
un−2
un−1

(b)

u1
u2

u3

u4

u5
u6

un
un−2
un−1

(c)

Figure 4.5 � Hole free subgraphs

In the following we will present valid inequalities for the hole forbidden subgraph.

If m = 2, then the inequality (4.7) is valid.∑
e∈C

ze +
∑
e∈C

ze ≤ |C| − 1. (4.7)

Indeed, if we add one chord to C ⊂ {e}, then we will obtain a triangle or another cycle

and it is not valid for m = 2. Remark that this inequality for m = 2 is equivalent to the

clique inequalities described in the next subsection.

If m ≥ 3, then inequality (4.8) is valid.∑
e∈C

(|C| − 3)ze −
∑
e∈C

ze ≤ (|C| − 1)(|C| − 3). (4.8)

Proposition 14 Let C be a hole of size greater than 3, then inequality (4.8) associated

with cycle C de�nes a facet if m ≥ 3.

proof 4.10 Let us denote by az ≤ α the inequality (4.8) associated with e. Let bz ≤ β be

a facet de�ning an equality (4.8) such that {z ∈ PI(G,m) : az = α} ⊆ {z ∈ PI(G,m) :

bz = β}. We show that b = ρa for some e ∈ R.
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Let e1 and e2 be two distinct edges of hole C. The solutions I1 = C�{e1} and

I2 = C�{e2} are interval and m-clique graphs. We deduce that I1, I2 are solutions.

Moreover, we have azI1 = azI2. Hence, bzI1 = bzI2. This implies that b(e1) = b(e2).

Set b(e) = (|C| − 3)ρ. As e1, e2 are arbitrary then b(e) = b(e′) ∀e, e′ ∈ C. We deduce

b(e) = (|C| − 3)ρ for all e ∈ C.
Let ui ∈ V (C). The solution I3 = C ∪ (δ(u) ∩ C), illustrated in Figure 4.5a, and the so-

lution I4 = (I3 \ {(ui, ui+2)})∪ (ui+1, ui+3), illustrated in Figure 4.5b, are valid and verify

the inequality (4.8) to equality. Moreover, we have azI3=azI4 and then bzI3=bzI4. This

implies that b(ui, ui+2) = b(ui+1, ui+3). Thus, by symmetry b((ui, ui+2)) = b((ui+1, ui+3))

are arbitrary for all ∀i ∈ {1, 2, ..., |C|}.

The solution I5 = (I3 \ (ui, ui+j))∪ (ui+j−1, ui+j+1)), illustrated in Figure 4.5c, is valid

and veri�es the inequality (4.8) to equality. Therefore, azI5=azI3. Hence bzI5=bzI3. This

implies that b(ui, ui+j) = b(ui+j−1, ui+j+1). As these edges are arbitrary then b(e) = b(e′)

for all e′ ∈ C.

Now, we will consider the two solutions I1 and I3. These solutions are valid and verify

the inequalities (4.8) to equality. Hence, azI1=azI3 and therefore bzI1=bzI3. This implying

that b(e1) = −
∑

e′∈δ(ui)\C b(e
′). As e1, and ui are arbitrary for all e ∈ C and ui ∈ V (C),

then b(e1) = −(|C| − 3)b(e). We deduce that b(e) = −ρ ∀e ∈ C.
Let e3 ∈ E\(C∪C). The solutions I7 = I3∪{e3} and I3 are valid and verify the inequa-

lities (4.8) to equality. Hence, azI7=azI3 and then bzI7=bzI3. This implies that b(e3) = 0.

As b(e3) is arbitrary, then b(e) = 0 for all e ∈ E \ (C ∪ C). �

Clique inequalities

In this section we will study the clique subgraph and we will propose valid inequalities

and facets.

Proposition 15 Let K be a clique and let V (K) be its set of vertices. If m = 2 the

inequality ∑
e∈E(K)

ze ≤ |V (K)| − 1. (4.9)

is valid and de�nes a facet of PI(G,m).
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proof 4.11 Remark that if m = 2, then a solution can be given only by a forest in the

subgraph G(K). We deduce that the maximum number of edges in this subgraph is equal

to |V (K)| − 1.

Let us denote by az ≤ α the inequality (4.9) associated with e. Let bz ≤ β be a facet

de�ning an equality (4.9) such that {z ∈ PI(G,m) : az = α} ⊆ {z ∈ PI(G,m) : bz = β}.
We show that b = ρa for some ρ ∈ R.

Let (u, v), (u,w) ∈ E(K), be two connected edges. Considering a line Tuv beginning by

(u, v) and �nishing by the vertex w and the line Tuw = Tuv \ {(u, v)} ∪ {(u,w)}. These
two solutions are valid and satisfy the inequality (4.9) to equality. Moreover, we have

azTuv=azTuw . Hence, bzTuv=bzTuw . This implies that b((u, v)) = b((u,w)). By symmetry,

we deduce then that b(e) = b(e′) for all e, e′ ∈ E(K).

Let e ∈ E \ E(K). By considering the valid solution T ′uv = Tuv ∪ {e}, we have

azTuv=azT
′
uv . Hence, bzTuv=bzT

′
uv . This implies that b(e) = 0. �

Proposition 16 Let K be a clique of size m+ 1. The inequality∑
e∈E(K)

ze ≤ |E(K)| − 1 (4.10)

de�nes a facet of PI(G,m).

proof 4.12 Let us denote by az ≤ α the inequality (4.10) associated with e. Let bz ≤ β be

a facet de�ning an equality (4.10) such that {z ∈ PI(G,m) : az = α} ⊆ {z ∈ PI(G,m) :

bz = β}. We show that b = ρa for some ρ ∈ R.
Let e, e′ be two edges in E(K). The solution I1 = E(K)\{e} and I2 = E(K)\{e′} are

valid and verify the inequality (4.10) to equality. Hence, azI1=azI2. Therefore, bzI1=bzI2.

This implies that b(e) = b(e′). We set b(e) = ρ. As b(e) and b(e′) are arbitrary, then

b(e) = b(e′) for all e, e′ ∈ E(K).

Let e1 be an edge in E \E(K). The solution I3 = I1 ∪{e1} and I1 are valid and verify

the inequality (4.10) to equality. Hence, azI1=azI3. Therefore bzI1=bzI3. This implies that

b(e1) = 0. As b(e1) is arbitrary we deduce that b(e) = 0, ∀e ∈ E \ E(K). �

Let f(K,m) be a function giving the minimum number of edges necessary to be

removed from E(K) such that the resulting graph G′(K) ism-clique free. Let α = d |V (K)|
m
e,

nα−1 = mα− |V (K)| and nα = |V (K)|−(nα−1)(α−1)
α
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4.2. The polytopes of interval sub-graphs

Proposition 17 f(K,m) = nα−1
(α−1)(α−2)

2
+ nα

(α)(α−1)
2

proof 4.13 Let E ′ be a set of f(K,m) edges such that E(K)\E ′ is m-clique free. Remark

that in the complementary graph G(K) we have a stable set of size |K|. If we add E ′, then
there does not exist a stable of size m+ 1 (m-stable free). Let consider a minimum set of

edges E ′′ ∈ E(K) such that |E ′′| < |E ′| and G(K)\E ′′ is m-clique free and thus G(K)∪E ′′

is m-stable free. Clearly E ′′ is a set of m disjoint cliques K = {K1, ..., Km}, otherwise E ′′

is not minimal or contain a stable set of size m + 1. To have the minimum set of edges,

it is important to balance the size of cliques. Indeed, if we have two cliques Ki and Kj

where |Ki| ≥ |Kj|+ 2, then for u ∈ Ki we obtain the following result |E(Ki)|+ |E(Kj)| >
|E(Ki\{u})|+ |E(Kj∪{u})|. We deduce that the maximum di�erence between two cliques

of K is less or equal to 1. �

Proposition 18 Let K be a clique. The inequality∑
e∈E(K)

ze ≤ |E(K)| − f(K,m) (4.11)

is valid.

proof 4.14 By de�nition f(K,m) is the minimum number of edges necessary to be remo-

ved from E(K) such that the resulting graph G′(K) is m-clique free. Thus, the inequality

(4.11) is valid. �

In the next subsection, we will improve this family of inequalities.

Clique-Hole inequalities

Remark that if we remove m disjoint cliques in G(K), then we obtain a complete

bipartite subgraph between all pairs of two cliques. Let Hij = (Ki, Kj, Eij) be a complete

bipartite graph. Remark that H contains a hole if |Ki| ≥ 2 and |Kj| ≥ 2. To remove every

hole inHij, the minimum number of edges E ′ necessary to be removed to obtain a hole free

graph is equal to max(|Ki|, |Kj|)−1, otherwise we can always take 2 nodes inKi orKj such

that these two nodes are not covered by E ′. Note that E ′, with size max(|Ki|, |Kj|)− 1,

covers the maximum nodes of Ki and Kj. We can strength the inequality (4.11) by the

following inequality. Let β =
∑

i∈m(max{|Ki| − 1, 0})−maxi∈m |Ki| − 1.

Proposition 19 Let K be a clique. The inequality∑
e∈E(K)

ze ≤ |E(K)| − (f(K,m) + β) (4.12)

is valid and de�nes a facet.
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proof 4.15 Remark that if we unbalance two cliques Ki and Kj to reduce the value

max(|Ki|, |Kj|) − 1 of 1, then the number of edges necessary to be removed increases

by max(|Ki|, |Kj|) −min(|Ki|, |Kj|). Let us denote by az ≤ α the inequality (4.12) asso-

ciated with e. Let bz ≤ β be a facet de�ning an equality (4.12) such that {z ∈ PI(G,m) :

az = α} ⊆ {z ∈ PI(G,m) : bz = β}. We show that b = ρa for some ρ ∈ R.

Let (u, v), (u,w) ∈ E(K) be two connected edges. Let consider a set of stable set where

u is in the stable set i and v, w in the stable set j. We can easily �nd a solution where

(u, v) is an edge and (u,w) is not an edge. These two solutions are valid and satisfy the

inequality (4.12) to equality. This implies by symmetry that b((u, v)) = b((u,w)). We de-

duce then that b(e) = b(e′) for all e, e′ ∈ E(K).

Let e ∈ E \E(K). By considering a valid solution where e is not an edge and a second

solution with the same edges plus e, we can deduce that b(e) = 0. �

4.3 Cutting plane algorithms

Cutting plane method allows us to strengthen the linear relaxation by adding inequa-

lities. Cutting plane algorithms mainly consist in generating constraints by means of a

separation procedure (see, for example, [84], [81],[96], [19] and [67]). Let z∗ be the incidence

vector associated with the value of the variable z in the linear relaxation. The separation

problem consists in �nding if there exists a valid inequality az ≤ b0 that cuts o� the so-

lution z∗,i.e., az ∗ > b0. The separation algorithm associated with a family of inequalities

aE
′
x ≤ bE

′
for all E ′ ∈ E ′ consists in �nding a set E ′ ∈ E ′ such that aE ′z ∗ > bE

′
.

The results of the previous sections have allowed us to derive some exact separation

algorithms and some heuristics separation algorithms. Furthermore, at the end of this

section we propose "lazy separation procedure" to ensure that the integer solutions are

interval and m-clique free subgraph. In the next paragraphs, we will describe these sepa-

ration algorithms for all inequalities described in the previous section.

4.3.1 Bipartite claw separation

In this section we describe the BC separation algorithms. We propose three algorithms

to separate the bipartite claw inequalities. One is an exact algorithm and two others are
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4.3. Cutting plane algorithms

heuristic procedures. We consider only m ≥ 3 (note that it is easy to adapt the algorithm

for m = 2.).

Let the vector z∗ ∈ R|E| be a solution of a linear relaxation. We de�ne a weight for each

edge of the complete graph G as follows : w(e) = z∗e for all e ∈ E. The separation algorithm
consists in �nding one bipartite claw BC such that the associated inequality is violated by

z∗and then we will add this inequality to the separation linear relaxation. This corresponds

to �nd a bipartite claw BC ⊆ E such that :
∑

e∈BC 2z∗e−
∑

e∈BC4
h∪BC4

z∗e−2
∑

e∈BCi z
∗
e >

10.

From Figure 4.3d, the subsets are the following :

BC = {(1, 2), (1, 3), (1, 4), (2, 5), (4, 7), (3, 6)}.
BC

4

h = {(3, 5),(2, 6),(5, 4),(2, 7),(3, 7),(4, 6)}.
BC4 = {(2, 3),(2, 4),(3, 4)}.
BCi = {(1, 5), (1, 6), (1, 7)}.

Proposition 20 A partial bipartite claw B̃C not violated, implies that each bipartite claw

B̃C including a partial bipartite claw is not violated.

Remark that, from Figure 4.7a if we select the 3 �rst vertices 1, 2 and 3 such that

(2z∗1,2 + 2z∗1,3 − z∗2,3) is less than 2, then there does not exist a violated bipartite claw

within these 3 vertices in this position. Indeed, if z∗e = 1,∀e ∈ BC \ {(1, 2), (1, 3)} and
z′e = 0,∀e′ ∈ BC4

h∪BC4, then we obtain the best case, a left hand side value less than 10.
Indeed,

∑
e∈BC\{(1,2),(1,3)} 2z∗e = 8. Thus, 8+0+(2z∗1,2 +2z∗1,3−z∗2,3) < 10. In the same way,

if we add the vertex 4 and the value of (2z∗1,4 +2z∗1,2 +2z∗1,3−z∗2,4−z∗2,3−z∗3,4) is less than 4,

then there does not exist a violated bipartite claw within these 4 vertices in this position.

In the best case we obtain a left side value that is 6+2z∗1,4 +2z∗1,2 +2z∗1,3−z∗2,4−z∗2,3−z∗3,4.
Thus, the left hand side is less than 10 and the value of

∑
e∈BC\{(1,2),(1,3),(1,4)} 2z∗e = 6. With

the same argument we test the weight of all partial subgraphs to drop non interesting

bipartite claws. This process is used for the exact and the �rst heuristic algorithms.

Exact Separation (ExBC-Sep)

Now, we will explain the exact separation algorithm. The exact algorithm consists in

testing all the possible 7 vertices in this order (1,2,3,...,7). We select the nodes such that

the values of the weighted edges in the incidence graph is maximized as follows : two times

the weight of BC, minus the value of edges in BC
h

4 ∪BC4, minus two times the value of

edges BCi. The running time of the exact algorithm in the worst case bounded by O(n7)
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even if in reality with the improvement presented before the running is better controlled.

Heuristic1 : Separation (H1BC-Sep)

In this heuristic we start by searching the vertices 1, 2, 3, and 4 that maximize 2w(1, 2)+

2w(1, 3) + 2w(1, 4)− w(2, 4)− w(2, 3)− w(3, 4) from Figure 4.7a based on the results of

Bipartite Claw in Section 4.2.1. If the value of (2z∗1,2 + 2z∗1,3 + 2z∗1,4− z∗2,4− z∗2,3− z∗3,4) is
greater than 4, then it is possible to �nd a violated BC inequality with this set of vertices.

After, using the greedy approach, we search to add the best weighted vertex 5 according

to the incident weighted edge, if the partial BC is violated, then we will search for the

best vertex 6 and with the same idea we will add vertex 7. If the BC induced by these

vertices is violated by z∗, then we will add the inequality to the relaxation. Using this

greedy approach the heuristic running time is O(n4).

Heuristic 2 : Separation (H2BC-Sep)

This heuristic follows a greedy approach to �nd a violated BC inequality. We search

at each step the best next vertex to add in BC. The idea is to �nd the 'best weighted'

edge in the graph. This edge is considered as z1,2, if the weight of the edge z∗1,2 > 0. The

heuristic tries to �nd with the greedy approach given in heuristic.1 the next best ordering

of vertices 3, 4, ..., 7. This heuristic has O(n2) running time.

4.3.2 Umbrella separation

In this subsection we present the three algorithms for separating the umbrella for-

bidden subgraph. We propose an exact separation algorithm and two heuristics based

on a greedy approach. Recall the inequality
∑

e∈Eau
ze −

∑
e∈Etu∪Ecu

ze ≤ 6 where vector

z∗ ∈ R|E|. The separation algorithm consists in �nding an umbrella, such that the asso-

ciated inequality is violated by z∗. If the associated inequality violated by z∗, then we add

this inequality to the linear relaxation. Thus, we search an umbrella, which is subset of

E such that
∑

e∈Eau
z∗e −

∑
e∈Etu∪Ecu

z∗e > 6 where m ≥ 4. Then, it is possible to adapt the

algorithm for m = 2 and m = 3.
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Exact separation algorithm

The exact separation algorithm starts by �nding �rst edges z1,2 and z2,3. If z∗1,2 +z∗2,3 <

1, then the algorithm cannot �nd an umbrella within these two edges in this position. In

the next step, the algorithm searches the best vertex 4, that satis�es z∗1,2+z
∗
2,3+z3,4−z2,4 ≥

2, and then the algorithm adds vertex 5, then vertex 6 and �nally it will add vertex 7.

Figure 4.6 illustrates the umbrella and the complementary subgraps. The running time of

the exact algorithm in the worst case is in O(n7).

2

1

3 4 5 6

7

−z1,7

−z3,7 −z5,7

−z3,5−z2,4−z4,6

(a) The coe�cient of Et
u ∪ Ec

u

2

1

3 4 5 6

7

z1,2

z2,3

z3,4 z4,5

z5,6

z1,6

z7,4

(b) The coe�cient of Ea
u

Figure 4.6 � Coe�cient of umbrella and its complementary edges

H1U-Sep separation

In this heuristic we start by searching the vertices 1, 2, 3, and 4 that maximize

(z1,2 + z2,3 + z3,4 − z2,4) in Figure4.6 the coe�cient of each edge is illustrated, and Fi-

gure 4.7b shows these basic edges. If this value is greater than 4, then we search 6, and

then 7. If the Umbrella induced by these vertices is violated by z∗ we will add this in-

equality. Using the greedy approach the heuristic running time is in O(n4).

H2U-Sep Separation

This heuristic follow greedy approach to �nd a violated umbrella inequality we search

at each step the best next edge to add in umbrella. The heuristic starts by the best

weighted edge z1,2, then with the greedy approach search the best next vertex 3 to add to

the umbrella, by following this order the best weighted vertex 3, then the best weighted
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vertex 4, after the best weighted 5 until the umbrella constructed. If it is violated by z∗

we will add the inequality. This heuristic has O(n2) running time.

2

1

3 4

(a) Basic nodes for BC

1

2 3 4

(b) Basic nodes for UH1

Figure 4.7 � Basic edges for Bipartite Claw and Umbrella
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a1
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b1

c1

b c

(a) 2-net

a1

a

b1
c1

b

c

c′

(b) From 2-net to 3-net

a1

a

b1
c1

b

c

c′

(c) 3-net

Figure 4.8 � Adding one vertex to 2-net to �nd 3-net

n-net separation

In this subsection we describe the n-net separation algorithms. Let the vector z∗ ∈ R|E|

be a solution of the linear relaxation. The weighted vector is de�ned in the previous

sections. The separation algorithm consists in �nding one n-net where n ≥ 2, such that

the associated inequality is violated by z∗. Then, we add this inequality to the separation

linear program. This corresponds to �nd an n-net ⊆ E such that :
∑

e∈Enet\Ehnet
z∗e −∑

e∈Enet\Eh̄net
z∗e > |Enet \ Eh

net| − 1. From Figure 4.2c, the sub sets are the following :

- Enet = {(a, b), (c, 1), (d, n), (1, 2)..., (n− 1, n)},
- Eh

net = {(b, 2), ..., (b, n− 1)}.
Now, we give the n-net separation algorithm. Recall the inequalities (4.5). Let the vector

z∗ ∈ R|E| be the solution of linear relaxation with the de�ned weighted graph G in the

previous sections. The separation algorithm consists in �nding one n-net such that the

associated inequality is violated by z∗ in order to add it to the linear relaxation. Therefore,

we search an n-net such that :
∑

e∈Enet\Ehnet
z∗e −

∑
e∈Enet\Eh̄net

z∗e > |Enet \ Eh
net| − 1.

Let us consider Figure 4.8a. We search the edge (a, a1) with the maximum weight

w((a, a1)). Then, we search the best vertex b1 such that w((a1, b1)) is maximum. By

greedy search we continue for �nding sequentially c1 and c. By considering 2-net, if the

value of
∑

e∈Enet\Ehnet
z∗e −

∑
e∈Enet\Eh̄net

z∗e is greater than 6, then we try to extend into

3-net by the following way : By adding a vertex (c′) connected to the vertex c. Figure

4.8b explains the process, when the dashed edges are added.
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a

b c

1 2 3

(a) 3-tent

a

b c

1 2 3 4

(b) 4-tent

Figure 4.9 � Adding one vertex to 3-tent to �nd 4-tent.

Remark that we remove the edge (a1, c1) (see. Figure 4.8c) if n + 1 net is violated,

then we add the n-net inequality (if n ≥ 2) and we stop the algorithm.

The proposed heuristic running time is O(n2).

n-tent separation

For the n-tent separation algorithm we propose the following algorithm, which is based

on a greedy approach.

The vector z∗ ∈ R|E|. The n-tent separation algorithm consists in �nding an n-tent, such

that the associated inequality is violated by z∗. If the associated inequality is violated by

z∗, then we add this inequality to the linear program. Thus, we search an n-tent where

n ≥ 3, n-tent⊆ E such that
∑

e∈Etent\Ehtent
ze −

∑
e∈Etent\Eh̄tent

ze ≤ |Etent \ Eh
tent| − 1.

We search for the best za,b, and za,c in the �rst step (see 4.9a). In the next step, we

search the best nodes 1, 2, 3 one by one using a greedy approach to maximize the sum of

n-tent edges, by considering the weight of the edges from n-tent and its complementary.

If 2-tent is not found, that means 3-tent does not exist. If 3-tent is found, then we try to

add the best node 4, which is connected with node c′ and connecting c′ to a1 and remove

(a1, c) to have the structure of 4-tent. The heuristic continues for searching for n+ 1-net

at each step. If the heuristic failed to �nd n + 1-net, then the violated n-net inequality

associated with the found n-net will be added. The proposed heuristic running time is
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u1
u2

u3

u4

u5
u6

un
un−2
un−1

Figure 4.10 � Hole

O(n3).

4.3.3 Hole separation

Now, we explain the hole separation algorithm, which is based on a greedy approach.

In the solution represented by vector z∗ ∈ R|E|. The separation algorithm consists in

�nding a forbidden subgraph hole, such that the associated inequality is violated by z∗. If

the associated inequality violated by z∗ will be then added to the linear program. Thus,

we search a hole of size C where holeC ⊆ E such that
∑

e∈C(|C| − 3)ze −
∑

e∈C ze >

(|C| − 1)(|C| − 3).

The algorithm starts by the edge (u1,u2) with w((u1, u2)) is maximum (see Figure

4.10). By a greedy search, we try to �nd the vertex u3 such that w((u2, u3))−w((u1, u3))

is maximum. With the same process, we search a sequence of vertices u4, ..., un. In each

step, we consider the cycle where we connect u1 to un. We �nd a hole where the associated

inequality is violated and then we add it.

If
∑

e∈C(|C| − 3)ze −
∑

e∈C ze ≤ (|C| − 1)(|C| − 3) where C is the incident cycle,

then we stop the algorithm since we cannot �nd a cycle where the associated inequality

is violated.

4.3.4 Clique separation

In this subsection we explain the clique separation algorithm. The vector z∗ ∈ R|E|

represents the solution. The clique separation algorithm consists in �nding a clique, such

that the associated inequality is violated by z∗. If the associated inequality is violated by

z∗, then this inequality will be added to the linear program. Thus, we search a clique of

size K, E(K) ⊆ E such that
∑

e∈E(K) ze > |E(K)| − f(K,m).
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b

a

c

d

Figure 4.11 � Clique of size 4.

The heuristic starts by the edge (a,b) with w((a, b)) is maximum. By the greedy search

we �nd the vertex c such that w((a, c)) + w((a, b)) + w((c, b)) is maximum. By the same

process we search the vertex d such that w((a, c)) + w((a, b)) + w((c, b)) + w((b, d)) +

w((c, d)) + w((a, d)) is maximum (see Figure 4.11). In each step we consider the clique

where we connect a vertex with all other vertices in the clique. If we �nd a clique where

the associated inequalities is violated, then the inequality will be added.

If
∑

e∈E(K) ze ≤ |E(K)|− f(K,m), then we stop the algorithm, since we cannot �nd a

clique where associated inequality is violated, and we add the inequality of clique of size

n− 1.

4.3.5 Lazy constraint approach

In this subsection, we propose some algorithms to ensure that a solution given by

an integer value vector z̄ ∈ {0, 1}|V |×|V | induces an interval m-clique free subgraph. We

consider the induced graph G̃ = (V, Ẽ) where Ẽ contains all edges such that z̄e = 1.

For the interval graph detection, we use the algorithm given in [100] to check if G̃ is an

interval graph. If G̃ is not an interval graph then we add an interdiction inequality∑
e∈Ẽ

ze −
∑
e∈E\Ẽ

ze ≤ |Ẽ| − 1,

This algorithm runs in O(n+mlog(n)).

For the clique inequalities, we search the clique of a maximum size. We use the integer

linear program given in [101] to �nd the maximum clique in G̃. Finding the maximum

clique in G is an NP-Hard problem. We use CPLEX to solve this problem. If G̃ contains a

clique K of a size greater than m, then we add the following clique inequality associated

with K, otherwise all inequalities (4.20) are valid.∑
e∈E(K)

ze ≤ |E(K)| − 1,

Remark that, lazy constraints' call back is used only to check the validity of an integer

solution.
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4.4 Application to URPMDC problem.

In parallel machine scheduling, a graph can be used to represent a set of jobs com-

peting for some resources such as a set of virtual machines in cloud computing. Here,

the execution of a job when it is assigned to a virtual machine can be represented as an

interval. Then, we may naturally assume that two jobs share any time unit if and only if

there is an overlap between the corresponding intervals. Thus, the corresponding interval

graph represents the jobs sharing execution intervals among these virtual machines. Figure

4.12 illustrates the use of interval graph in parallel machines scheduling. As one of the

interval and m-clique free graphs' applications we will provide the following mathematical

model for de�ning the problem of the unrelated parallel machines with incompatibility

constraints. We will apply the results obtained from the previous sections to this problem.

The unrelated parallel machine scheduling problem with disjunctive constraints is de�ned

2

1

3

4

4

3
2

1

Figure 4.12 � Schedule of 4 jobs on 3 machines

as follows. We have n jobs and m machines, that are arranged in parallel with di�erent

speeds. The problem is to schedule these jobs on the machines, with the aim of minimizing

the Cmax. Let GI = (VI , EI) be the graph of incompatibility, where for each job j ∈ J , we
associate a vertex vj ∈ VI such that there exists an edge between vj1 and vj2 if j1 and j2

cannot be run at the same time. The case where we have to force certain jobs to not run

at the same time with some others can be applied in some security issues in the cloud,

and in constrained unrelated parallel machine.

4.4.1 Mathematical formulation

In this section we present an Integer Linear Programming Model (ILPM) to solve

the unrelated parallel machine scheduling problem with disjunctive constraints. This ILP

considers the starting of the job and the relation between jobs if they run on the same

machine. Moreover, it veri�es if one job runs before another job.
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This model is based on interval graph and an m-clique free graph, because the graph

induced by each solution must be interval graph, and m-clique free graph in order to be

valid. A graph G(V,E) is called interval graph if its vertices V can be represented by

interval Iv of the real line such that two vertices are adjacent if and only if the correspon-

ding intervals intersect [19]. Let K be a clique in G (K ⊆ V such that every two distinct

vertices of K are adjacent). This is equivalent to the condition that the subgraph of G

induced by K is complete. Let I ⊆ E be a subset of edges, the graph G[I] is an m-clique

free if and only if G[I] does not contain a clique of size strictly greater than m.

Now, we introduce the ILPM :

For each job we consider a variable yj ∈ N+ de�ning the starting of job j in J .

We consider binary variables for assigning the jobs on machines.

xij =

{
1 if job j is performed on machine i,
0 otherwise

∀i ∈M,∀j ∈ J.

For every two jobs sharing a time unit the associated subgraph must be interval and m-

clique free. For this reason we consider the following binary variables to know if two jobs

share a time unit or if they are performed on disjonctive intervals :

zj1,j2 =

{
1 if job j1 and job j2 run at the same time,
0 otherwise

∀j1, j2 ∈ J.

z̄j1,j2 =

{
1 if job j1 runs before j2,

0 otherwise
∀j1, j2 ∈ J.

For all j ∈ J , we denote by Cj ∈ N+ the completion time of job j.

Cmax ∈ N+ is the maximum of Cj.
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4.4. Application to URPMDC problem.

The URPMPC can be solved by the following ILPM denoted by (P ) :

minCmax

yj +
∑
i∈M

pijx
i
j ≤ Cmax, ∀j ∈ J, (4.13)∑

i∈M

xij = 1, ∀j ∈ J, (4.14)

xij1 + xij2 ≤ 2− zj1,j2 ∀j1, j2 ∈ J,∀i ∈M, (4.15)

zj1,j2 = 0, ∀(j1, j2) ∈ EI , (4.16)

yj1 +
∑
i∈M

pij1x
i
j1
≤ yj2 + C − Cz̄j1,j2 , ∀j1, j2 ∈ J, (4.17)

z̄j1,j2 + z̄j2,j1 + zj1,j2 = 1, ∀j1, j2 ∈ J, (4.18)∑
(j1,j2)∈E(Ī)

zj1,j2 −
∑

(j1,j2)∈E\E(Ī)

zj1,j2 ≤ |E(Ī)| − 1, ∀I ⊆ I, (4.19)

∑
(j1,j2)∈E(K)

zj1,j2 ≤ |E(K)| − 1, ∀K ⊆ K, (4.20)

The objective function is to minimize the makespan. Inequalities (4.13) ensure that

the starting time for each job plus its processing time is less than or equal to the total

completion time. Inequalities (4.14) control each job to be processed on one machine.

Inequalities (4.15) guarantee that there is no two jobs run on the same machine at the

same time. Inequalities (4.16) control the disjunctive constraints. Inequalities (4.17) ensure

that the starting of any job must be after the completion of its predecessor. Inequalities

(4.18) ensure that, if the job j1 runs before or at the same time with j2, and j2 runs before

or at the same time with job j1, then jobs j1 and j2 run at the same time. If we consider

a solution given by the vector z, then we can de�ne its induced subgraph G = (V,E)

where :

◦ for each job j ∈ J we associate a vertex vj ∈ V and for all zj1j2 = 1 we associate an

edge uv ∈ E,
� G must be an interval graph and the clique of maximum size must be less or equal

to m.

We denote by Ī the set of all the induced non interval subgraphs and by K the set

of all cliques of size greater or equal than m + 1. The inequalities (4.19) ensure that all

induced subgraphs are interval graphs. The inequalities (4.20) ensure that all induced

subgraphs have no clique of size greater or equal than m+ 1.
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4.4.2 Computational Results

To test the e�ciency of the inequalities mentioned in Section 4.2.1 we developed the

mentioned exact and heuristic separations. All computational results are obtained by

using Cplex 12.6 and Java for implementing exact and heuristic algorithms. The ILPM

with the valid inequalities is tested on the following proposed benchmark of instances.

The processing times are uniformly distributed between 50 and 150 as it is common

in the literature [78]. We generated �ve di�erent sets of DAG where the graph density

(GD) is equal to 0.5 and calculated as follows : GD = |E|
|V |(|V |−1)

where E is the set of

edges associated with precedence constraints between jobs, and V is the set of vertices

associated with jobs. The speeds of machines were generated randomly between 10 and

15.

The required CPU time is measured in seconds. We limit to 3600 seconds the algo-

rithm running time for each instance, by using 4.0 GB of RAM.

The next tables provide the following information :

� |J | : number of jobs
� m : number of machines

� Method : 0 cplex only ; 1 bipartite claw inequalities with heuristic separation 1 ;

2 umbrella inequalities with heuristic separation 1 ; 3 hole inequalities ; 4 clique

inequalities with heuristic separation ; 5 n-net inequalities ; 6 n-tent inequalities ; 7

all inequalities.

� CPU : cpu time (limited to 1 hour)

� Nb Nodes : number of nodes in the branching tree

� ct BC : number of bipartite claw inequalities added in the B&C

� ct UMB : number of umbrella inequalities added in the B&C

� ct H : number of hole inequalities added in the B&C

� ct Q : number of clique inequalities added in the B&C

� ct NN : number of n-net inequalities added in the B&C

� ct NT : number of n-tent inequalities added in the B&C

� o/p : number of instances solved (5 instances over 5 or 0 over 5)

In Table 4.1 we can see the that all the instances are solved in less than 20 seconds.

These instances contain 10 jobs with 2 to 8 machines. Remark that the number of the

generated inequalities is less than 200 for the bipartite claw inequalities and less than

70 for all the others. These values are relatively small. Moreover, we generate very small
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4.5. Conclusion

number of clique inequalities, which is due to a small number of jobs. We did not generate

n-net inequalities, which is due to the small average number of jobs per machine. Finally,

we reduce in average the size of the search tree by adding these new valid inequalities.

Table 4.2 gives the results for 15 jobs with 4 to 8 machines. We easily solve the set of

instances within less than 10 minutes. Adding the valid contraints reduces signi�catively

the number of nodes in the tree search. The computation time is variable and adding the

valid contraints does not reduce it systematically. This is due to the reduced size of the

instances. Moreover, it can happen to generate a lot of contraints, as in the instances of 15

jobs on 6 machines, which explains the reduced performance. We observe that the method

3 allows us to reduce the computation times in average on the instances of 15 jobs and

6 machines. Finally, we remark that we generate few clique and n-net constraints for the

same reasons previously mentioned.

Table 4.3 shows the results for 15 jobs and 2 machines. We did not solve the instances

of this size, which demonstrates the hardness of the studied problem. Wa can notice that

we improved the gap of the standard formulation by using the method 4 (exploiting the

clique contraints).

For solving this problem the new valid inequalities dod not allow to signi�cantly im-

prove the computation time. Nevertheless, we will demonstrate in the next chapter the

positive impact of these contraints. Indeed, the instances we try to solve are too small

so that the valid inequalities will be able to improve the CPLEX routines. Moreover, our

separation algorithms need certainly to be improved in order to quickly generate valid

contraints.

4.5 Conclusion

In this chapter we presented a polyhedral study for the problem of interval under

m-clique free subgraphs. A polyhedral investigation of the convex hull of these vectors

yielded several results on facet de�ning inequalities for the de�ned polytope. We designed

and implemented a branch-and-cut algorithms based on families of strong valid inequali-

ties presented in this chapter. We separate some forbidden subgraphs, and we have also

applied the obtained results to the problem of unrelated parallel machines with disjunc-

tives/precedence constraints. The computational experiments on set of instances have

shown that the algorithms are capable to solve all instances more less to the optimality

within less CPU time when we add these separation algorithms. Further research in this
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direction will be helpful to strengthen the integer programming formulations of a large

variety of unrelated parallel machines problems as an application to the interval under m-

clique free subgraphs. In the next chapter the properties of interval graph will be applied

for solving generalized Open Shop.
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|J | m Method CPU Nb Nodes ct BC ct UMB ct H ct Q ct NN ct NT o/p

10 2 0 15,4 41866,8 0 0 0 0 0 0 5/5

10 2 1 15,2 35862,2 177,6 0 0 0 0 0 5/5

10 2 2 15,4 40972,6 0 35,6 0 0 0 0 5/5

10 2 3 13,6 35867,8 0 0 67,2 0 0 0 5/5

10 2 4 15,2 41925 0 0 0 10,8 0 0 5/5

10 2 5 15,4 41866,8 0 0 0 0 0 0 5/5

10 2 6 18 45625,2 0 0 0 0 0 42,4 5/5

10 2 7 13,8 30941,4 138,2 12,6 56,8 11 0 24,4 5/5

10 4 0 0,6 2189,6 0 0 0 0 0 0 5/5

10 4 1 0,8 2125,8 57,6 0 0 0 0 0 5/5

10 4 2 0,6 1864,2 0 40 0 0 0 0 5/5

10 4 3 0,8 1958 0 0 39,6 0 0 0 5/5

10 4 4 0,6 2189,6 0 0 0 0 0 0 5/5

10 4 5 0,6 2189,6 0 0 0 0 0 0 5/5

10 4 6 0,6 1801,8 0 0 0 0 0 38,4 5/5

10 4 7 0,8 1837,8 31,4 18,6 29,6 0 0 25,6 5/5

10 6 0 0,4 980 0 0 0 0 0 0 5/5

10 6 1 0,4 1046,8 38 0 0 0 0 0 5/5

10 6 2 0,4 1107,2 0 40,2 0 0 0 0 5/5

10 6 3 0,4 1245,4 0 0 31 0 0 0 5/5

10 6 4 0,4 980 0 0 0 0 0 0 5/5

10 6 5 0,4 980 0 0 0 0 0 0 5/5

10 6 6 0,2 1075,2 0 0 0 0 0 23,2 5/5

10 6 7 0,4 1294,2 23,2 18,8 28,4 0 0 23 5/5

10 8 0 0,6 1461,4 0 0 0 0 0 0 5/5

10 8 1 0,2 1060 28 0 0 0 0 0 5/5

10 8 2 0,2 1018 0 30,8 0 0 0 0 5/5

10 8 3 0,2 1104,4 0 0 33,4 0 0 0 5/5

10 8 4 0,6 1461,4 0 0 0 0 0 0 5/5

10 8 5 0,6 1461,4 0 0 0 0 0 0 5/5

10 8 6 0,4 1312,4 0 0 0 0 0 37,8 5/5

10 8 7 0,2 971,4 17,8 20,6 23,2 0 0 21,8 5/5

Table 4.1 � Results for 10 jobs with di�erent methods
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|J | m Method CPU Nb Nodes ct BC ct UMB ct H ct Q ct NN ct NT o/p

15 4 0 116,2 91260,8 0 0 0 0 0 0 5/5
15 4 1 363,8 77416,4 3322,6 0 0 0 0 0 5/5
15 4 2 283,6 79595 0 2375,4 0 0 0 0 5/5
15 4 3 153,2 79613,4 0 0 794,6 0 0 0 5/5
15 4 4 105,6 81880,2 0 0 0 0,8 0 0 5/5
15 4 5 117,2 91260,8 0 0 0 0 0 0 5/5
15 4 6 142,2 82362,4 0 0 0 0 0 712 5/5
15 4 7 162,4 63070,2 1005 329,2 332,2 0,8 0 337,8 5/5
15 6 0 177,6 89917,4 0 0 0 0 0 0 5/5
15 6 1 306 48149 3606,2 0 0 0 0 0 5/5
15 6 2 283 36256,2 0 3391 0 0 0 0 5/5
15 6 3 133,4 39087,4 0 0 1067 0 0 0 5/5
15 6 4 168,8 89917,4 0 0 0 0 0 0 5/5
15 6 5 170,8 89917,4 0 0 0 0 0 0 5/5
15 6 6 148,8 39038 0 0 0 0 0 1326,4 5/5
15 6 7 507,6 42444,2 1538,4 1215,8 578,2 0 0 1197,8 5/5
15 8 0 56 29774,2 0 0 0 0 0 0 5/5
15 8 1 71,4 24297,2 1398,4 0 0 0 0 0 5/5
15 8 2 140,8 33379,6 0 2043,2 0 0 0 0 5/5
15 8 3 86,2 33893,8 0 0 638,6 0 0 0 5/5
15 8 4 63,6 29774,2 0 0 0 0 0 0 5/5
15 8 5 56,6 29774,2 0 0 0 0 0 0 5/5
15 8 6 77 29433,2 0 0 0 0 0 882,6 5/5
15 8 7 131,6 24945 1349 850 499,6 0 0 830 5/5

Table 4.2 � Results for 15 jobs with di�erent methods

|J | m Method CPU Nb Nodes ct BC ct UMB ct H ct Q ct NN ct NT o/p gap
15 2 0 3600 2476280 0 0 0 0 0 0 0/5 0,2970
15 2 1 3600 535127,8 10931,8 0 0 0 0 0 0/5 0,3674
15 2 2 3600 1039497 0 5334,8 0 0 0 0 0/5 0,3248
15 2 3 3600 1492568,6 0 0 2921,6 0 0 0 0/5 0,3279
15 2 4 3600 2443961,6 0 0 0 43 0 0 0/5 0,2913
15 2 5 3600 2447396,2 0 0 0 0 0 0 0/5 0,2976
15 2 6 3600 1527756,2 0 0 0 0 0 1989 0/5 0,3177
15 2 7 3600 482432,2 9337 1070 1586 41,4 0 1173,4 0/5 0,3644

Table 4.3 � Results for hard instances with 15 jobs and di�erent methods
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In this chapter we continued the study of our mathematical formulation, which is ba-

sed on the interval subgraph. The strong structure of its polytope encourage us to adapt

this model to solve other scheduling problems. We addressed two open shop scheduling

problems : the generalized version with disjunctive constraints and the standard one. We

present two mathematical formulations for solving these problems. We derived di�erent

classes of valid inequalities to strength our models. We also add separation algorithms to

the relaxed model of the generalized open shop problem. Exhaustive computational experi-

ments on the well known sets of Taillard's benchmarks are presented. The derived valid

inequalities show a good improvement to the computational time for the two models. Mo-
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reover, the generalized open shop model shows the e�ciency of adding the cutting plane

inequalities.

5.1 Introduction

In this chapter, we consider a particular case related to the model of the previous

chapter. This problem is called generalized open shop with disjunctive constraints. In

the �rst part of this chapter, we propose a model for this problem and give some valid

inequalities to improve the associated linear relaxation. Furthermore, we test experimen-

tally the di�erent inequalities. In the second part of this chapter we propose an integer

linear programming model for the standard open shop problem. Indeed, the open shop

is a restricted case of the generalized open shop with jobs disjunctive constraints. The

Open-Shop problem is an important research branch of scheduling problems and it re-

ceives an important amount of attention because of their wide range of applications, such

as modern transport and logistics, modern service industry, large-scale systematic main-

tenance, clothing industry, health care, and so on [102, 103, 104]. In cloud computing,

there is a special case where the job can be divided into m sub tasks. Therefore, each sub

task can be processed on a virtual machine. In general, this problem can be described

by a set of n jobs to be processed by a set of m machines and there is no predetermined

processing route for the jobs. Therefore in the open shop, there are two decisions to make :

the determination of the processing route of each job as well as the job sequence at each

stage [105]. The general O||Cmax problem is strongly NP-hard [66].

Among the many techniques proposed in the literature the problem has not been

attacked a lot by the mathematical models. Masuda and Ishii [107] studied the open shop

scheduling problem for two-machines and they proposed a bi-criteria linear program. Kis

et al [108] described an integer program in two dimension.

We also propose new valid inequalities and we test our model on a well known Taillard's

[109] instances. The experimental results show the e�ciency of our model by solving all

Taillard's instances of size 4 × 4, 5 × 5, 7 × 7 and 10 × 10. Furthermore, we solve all

instances of size 15× 15 and reduce all upper and lower bounds for all other instances.
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5.2 Generalized open shop problem with jobs disjunc-

tive constraints

The Generalized Open Shop with Disjunctive Constraints (GOSDC) can be formulated

as follows. Let M be the set of machines. For all i ∈ M we consider the set of jobs Ji
must be running of the machine i and we denote by J = {J1, ..., Jm} the set of all these
sets and by J =

⋃
i∈M Ji the union of these sets. We denote by pij the processing time of

job j on its machine i. We consider an incompatibility graph GI = (VI , EI), in this graph,

for each job j ∈ J we associate a vertex vj ∈ VI and there exist an edge between vj1 and

vj2 if j1 and j2 cannot run at the same time. Remark that, it is necessary to considering

a linear ordering on each machine. To the best of our knowledge this special problem has

not been studied before.

5.2.1 Integer linear programming formulation

In this section, we present the integer linear programming for solving the problem. We

need a family of binary variables. In the following, we describe the variables used in the

model :

z̄j1,j2 =

{
1 if the job j1 runs before the job j2
0 otherwise

∀j1, j2 ∈ J.

zj1,j2 =

{
1 if j1 and j2 run at the same time
0 otherwise

∀j1 ∈ Ji, j2 ∈ Ji′ |i 6= i′ ∈M.

For all j ∈ J , we consider the variable yj ∈ N+ representing the starting time of job

j.

Cmax ∈ N+ is the maximum completion time.

The GOSDC can be solved by the following ILP, denoted by (PGOS) :
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minCmax

yj + pij ≤ Cmax, ∀i ∈M ∀j ∈ Ji, (5.1)

yj1 + pij1 ≤ yj2 + Cz̄j2,j1 , ∀i ∈M ∀j1 ∈ Ji and j2 ∈ J, (5.2)

z̄j1,j2 + z̄j2,j1 = 1, ∀i ∈M ∀j1, j2 ∈ Ji, (5.3)

z̄j1,j2 + z̄j2,j1 = 1, ∀(vj1 , vj2) ∈ EI , (5.4)

z̄j1,j2 + z̄j2,j1 + zj2,j1 = 1, ∀(vj1 , vj2) /∈ EI , (5.5)

∑
(j1,j2)∈E(Ī)

zj1,j2 −
∑

(j1,j2)∈E\E(Ī)

zj1,j2 ≤ |E(Ī)| − 1, ∀I ⊆ I, (5.6)

∑
(j1,j2)∈E(K)

zj1,j2 ≤ |E(K)| − 1, ∀K ⊆ K, (5.7)

The objective function is to minimize the makespan. Inequalities (5.1) ensure that

the beginning time for each job plus its processing time is less than or equal to the total

completion time. Inequalities (5.2) and inequalities (5.3) guarantee that there is no two

jobs run on the same machine at the same time and control the linear ordering. Inequalities

(5.4) ensure that if two jobs are linked by an edge in the compatibility graph, then they

do not run at the same time. Indeed, these two jobs j1, j2 either j1 before j2 or j2 before

j1. Inequalities (5.5) ensure the three possibilities : j1 before j2 or j2 before j1 or they run

at the same time. Inequalities (5.6) and (5.7) guarantee that the induced subgraphs are

interval and m-clique free subgraphs. The number of inequalities may be exponential and

thus we will use the separating algorithm presented in Chapter 4.

5.2.2 Valid inequalities

To strength the model in this section we propose some valid inequalities to (PGOS).

Sequence inequalities

Considering every i ∈M , we introduce the following valid inequalities :

∑
j∈Ji

(yj + pij)× pij ≥ SCi, (5.8)
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Figure 5.1 � Di�erent sequences of jobs on a machine
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ỹj Cmax

Figure 5.2 � Sequence inequalities.

with SCi is equal to the sum of Cj × pij for all jobs in Ji given by a schedule of jobs

in any sequence. We notice that this inequality remains valid for any subset. Figure 5.1

illustrates this relation. In this �gure, the processing times of jobs are : p1 = 2, p2 = 1

and p3 = 3, where the speed of machine equal to 1. In the �rst sequence, we have :

1× 1 + 3× 4 + 2× 6 = 25. The second sequencing is 2× 2 + 1× 3 + 3× 6 = 25. It is clear

that the order will not a�ect the value
∑

j∈Ji(yj + pij)× pij.
Figure 5.2 illustrates the idea of this family of inequalities. Having ỹj = Cmax−yj and

from the valid inequalities (5.8), we can derive that
∑

j∈Ji pij(ỹj) ≥ SCi. Thus, we can

establish that :

∑
j∈Ji

(Cmax − yj)× pij ≥ SCi, ∀j ∈ J, (5.9)

Therefore, we deduce that :

∑
j∈Ji

Cmax × pij ≥ SCi +
∑
j∈Ji

yj × pij, ∀j ∈ J, (5.10)

Previous job inequalities

Considering machine i ∈ M and the job j ∈ Ji, we introduce the following valid

inequality :
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mi
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Figure 5.3 � Previous job inequalities.
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Figure 5.4 � Line job inequalities

∑
j′∈Ji

pij′ z̄j′,j ≤ yj, (5.11)

Inequalities (5.13) ensure that the starting time of job j on machine i will be after the

sum of the completion times of all previous jobs on the same machine. We derived other

family of inequalities based on the idea of the previous jobs. Figure 5.3 helps to explain

this family of inequalities. The Cmax is bounded by the sum of the starting time of job j on

machine i, plus the processing time of job j on machine i, plus the sum of the processing

times of all next jobs on the same machine. Thus, job j processed previous these jobs on

this machine.

Cmax ≥ pij + yj +
∑
j′∈Ji

pij′ z̄jj′ , ∀i ∈M,∀j ∈ Ji, (5.12)

Line job inequalities

This class of inequalities derived from the idea of the linear order of jobs on the same

machine extended for 3 machines. Considering i, i1, i2 ∈M and a job j ∈ Ji, the following
inequality holds. ∑

j′∈Ji1

pi1j′ z̄j′,j + pij +
∑
j′∈Ji2

pi2j′ z̄j,j′ ≤ Cmax, , (5.13)
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Cmax is bounded by the sum of the processing times of its previous jobs, plus its

processing time, plus the sum of the processing times of all next jobs. This class of

inequalities is very interesting when we have jobs with long processing times, because we

can avoid some empty slots on other machine.

Logical implication inequalities

Considering these jobs j1, j2, j3 ∈ J , we introduce the following valid inequalities :

z̄j1,j2 + z̄j2,j3 ≤ 1 + z̄j1j3 , (5.14)

In this valid inequalities, we apply the logical implication. If job j1 is before job j2 and

job j2 is before job j3, then job j1 is before job j3.

5.2.3 Experimental results

The entries of the table are :

� |Ji| : Number of jobs by machine.

� m : Number of machines.

� opt : 0 : Basic model ; 1 : Sequence inequalities, previous job inequalities, line job

inequalities ; 2 : Sequence inequalities, previous job inequalities, line job inequalities,

logical implication

� IC : N basic model only ; Y using the inequalities explained in the previous chap-

ter "Chapter.4" : bipartite claw inequalities with heuristic separation 1 ; umbrella

inequalities with heuristic separation 1 ; hole inequalities ; clique inequalities with

heuristic separation ; n-net inequalities ; n-tent inequalities.

� CPU : Computational time (limited to 1 hour).

� ct BC : The number of bipartite claw inequalities added in the B&C.

� ct UMB : The number of umbrella inequalities added in the B&C.

� ct H : The number of hole inequalities added in the B&C.

� ct Q : The number of clique inequalities added in the B&C.

� ct NN : The number of n-net inequalities added in the B&C.

� ct NT : The number of n-tent inequalities added in the B&C.

� Nodes : The number of nodes in the branching tree.

� gap : The gap between the lower bounds and the upper bounds (100× UB−LB
LB

),

� o/p : the number of instances solved (5 instances over 5 or 0 over 5)
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5.3. Open shop problem

Table 5.1 presents the results of the generalized open shop problem. The entries of this

table were shown before. From the obtained results, the model can solve many problems

to the optimality within reasonable computation time (especially for 5 jobs per machine,

for two machines, and for ten jobs per machine, for two machines). In overall, the model

solved 61% of the problems to optimality within one hour. For the other problems the

gap is reasonable within this time limit. We can also notice that from the structure of the

polytope there is no clique inequality added. Interesting results could be extracted from

this experiments. Indeed, when we add the sequence, previous, and line valid inequalities

to our model, we obtain an optimal solution for the larger instances within good compu-

tational time. When we add sequence, previous, and logical valid inequalities, we obtain

some good results. We can say that there is a noticeable improvement for the results

when we add our derived valid inequalities to our model. The most interesting things

come from the improvement of the gap when we add the inequalities given in chapter 4.

These inequalities allow us to divide the gap for the harder instances by 2 to 5 and then

show their e�ciency. Remark that we add a lot of interval subgraph inequalities for the

harder instances.

In the next section, we adapt this model to the standard open shop problem, where

the job is divided into operations and the operations will be processed on a given set of

parallel machines.

5.3 Open shop problem

In the second part of this chapter, we deal with the open shop problem.

The open shop scheduling problem can be described as follows. Having a set of parallel

machines and a �nite set of operations, these operations have to be processed on the given

set of parallel machines. Preemption is not allowed. Each job has a processing time and

each operation belongs to only one job. Operations are grouped in jobs. Moreover, the

operations that belong to the same job and the operations that use the same machine

cannot be processed at the same time. Furthermore, each operation is assigned to an

only one machine. The objective of the open shop scheduling problem is to perform all

operations, so as to minimize the maximum completion time (makespan).

More formally, we have a set J = {1, 2, .., n} of n jobs to be performed on a set

of machines Mi where i = {1, 2, ...,m}. Each job j ∈ J consists of exactly m operations

Oi,j(i ∈ {1, 2, ...,m}). For every job j and every index i, operationOi,j should be performed
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O31 O32 O33

Cmax
↑

m3

O22 O21 O23m2

O12 O13 O11m1

Figure 5.5 � Open shop for three jobs

on machine Mi. The processing time of each operation Oi,j is denoted by pi,j . At any

time, a job can be processed by at most one machine. Moreover, any machine can process

only one job at a time. Preemption of operations is not allowed. For every job j, its

completion time Cj is de�ned as the completion time of its last operation. The objective

is to �nd a feasible schedule that minimizes the maximum completion time Cmax. Figure

5.5 illustrates the schedule of three jobs j1, j2 and j3, where job j2 does not share any

time unit with job j3 in the system, but job j1 is processed at the same time with job j2

and job j3.

Open shop scheduling problem is NP-hard problem [111]. Using the standard notation

α|β|γ of Graham et al. [66], we can denote the open shop problem as Om||Cmax. Numerous

scheduling problems in real life applications can be modeled as an open shop : network

�ow has a lot of problems that can be immediately translated into an open shop scheduling

problem [113]. A recent literature review of open shop is found in [112]

Let denote by OJi the set of operations of all jobs J assigned to machine i ∈ M and

by OMj the set of operations of job j assigned to all the machines. We denote by pij the

processing time of the operation associated with j ∈ J assigned to machine i ∈M .

5.3.1 Integer linear programming formulation

z̄O1,O2 =

{
1 if O1 runs before O2

0 otherwise
∀i ∈M,∀O1, O2 ∈ OJi ∨
∀j ∈ J,∀O1, O2 ∈ OMj

For all j ∈ J and i ∈M :

yi,j ∈ N+ is the starting time of operation Oi,j.

Cmax ∈ N+ is the maximum of yi,j + pij.

The Open Shop can be solved by the following integer linear programming model, denoted
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5.3. Open shop problem

by (POS) :

minCmax

yi,j + pij ≤ Cmax, ∀i ∈M ∀j ∈ J, (5.15)

yi,j1 + pij1 ≤ yi,j2 + Cz̄Oi,j2 ,Oi,j1 , ∀i ∈M ∀j1, j2 ∈ J, (5.16)

yi1,j + pi1j ≤ yi2,j + Cz̄Oi2,j ,Oi1,j , ∀j ∈ J ∀i1, i2 ∈M, (5.17)

z̄Oi,j1 ,Oi,j2 + z̄Oi,j2 ,Oi,j1 = 1, ∀i ∈M ∀j1, j2 ∈ J, (5.18)

z̄Oi1,j ,Oi2,j + z̄Oi2,j ,Oi1,j = 1, ∀j ∈ J ∀i1, i2 ∈M, (5.19)

The objective function is to minimize the makespan.

Inequalities (5.15) ensure that the starting time for each operation plus its processing

time is less than or equal to the total completion time. Inequalities (5.16) control that if

operation Oij1 is before operation Oij2 , then operation Oij2 must start after the completion

of operation Oij1 on the same machine. Inequalities (5.17) guarantee that if operation of

job j runs on machine i1 before its operation on machine i2, then the starting time of Oi2,j

must be after the completion of operation Oi1,j. Inequalities (5.18) and (5.19) guarantee

the linear ordering of the operations on the same machine and the linear ordering of the

operations of the same job.

We also use the conditional constraints for inequalities (5.2) and (5.3). We can write

these two constraints as follows :

if(z̄Oi,j1 ,Oi,j2 = 1), then yi,j1 + pij1 ≤ yi,j2 , ∀i ∈M ∀j1, j2 ∈ J, (5.20)

(5.21)

if(z̄Oi1,j ,Oi2,j = 1), then yi1,j + pi1j ≤ yi2,j, ∀j ∈ J ∀i1, i2 ∈M, (5.22)

Inequalities (5.20) imply that if job j1 is before job j2, then it implies that, the starting

time of job j2 must be after the completion time of job j1. The conditional inequalities

5.21 test if the operation of job j on machine i1 is before the operation of the same job on

machine i2, then the starting time of the operation of job j on machine i2 must be after

the completion of the operation of job j on machine i1. Adding the conditional inequalities

will remove the bigM(C), but the solver must branch on these conditions. We will explain

the results of using conditional inequalities in the section dedicated to the experimental

results.
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5.3.2 Valid inequalities

In this section, we derive various classes of valid inequalities for the integer linear

programming model. In these derived inequalities, we consider the sequence of jobs on

the machines, the relation between a job and its previous ones as in [110] and we consider

a logical implication. We adapted the classes of valid inequalities introduced in Section

5.2.2.

Sequence inequalities

Considering job j ∈ J , we introduce the following valid inequalities :∑
i∈M

(yi,j + pij)× pij ≥ SCj, (5.23)

where SCj is equal to the sum of Ci,j×pij where Ci,j is the completion time of operation

Oi,j in any sequence. With the same idea, we can dervie similar valid inequalities for every

subset of operations of job j.

By symmetry, let i ∈M . The following valid inequalities hold :∑
j∈J

(yi,j + pij)× pij ≥ SCi, (5.24)

where SCi is equal to the sum of Ci,j × pij by varying j, and Ci,j is the completion time

of Oi,j in any sequence.

Having ỹi,j = Cmax − yi,j, and form the valid inequalities (5.24), we can derive that∑
j∈J pij(ỹi,j) ≥ SCi. Thus, we deduce that :

∑
j∈J

pij(Cmax − yi,j) ≥ SCi, ∀i ∈M, (5.25)

Therefore, the following relation holds :

∑
j∈J

pijCmax ≥
∑
j∈J

pijyi,j + SCi, ∀i ∈M, (5.26)

These valid inequalities can lead to similar inequalities (5.23) for all jobs j ∈ J :

∑
i∈M

pijCmax ≥
∑
i∈M

pijyi,j + SCj, (5.27)
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0 1 2 3 4 5 6 7 8

O33

y33 = 6
Cmax↓

m3

O23

C23 = 6y23 = 3

m2

O13, p13 = 3

C13 = 3y13 = 0

m1

Figure 5.6 � Example : previous job inequalities between operations

Previous operations inequalities

Let consider the machine i ∈ M and the job j ∈ J . The following inequalities are

valid :

∑
j′∈J

pij′ z̄Oi,j′ ,Oi,j ≤ yi,j, (5.28)

By a similar reasoning, for every job j ∈ J and every machine i′ ∈ M , we introduce

the following valid inequality :

∑
i∈M

pij z̄Oi,j ,Oi′,j ≤ yi′,j, (5.29)

By symmetry, we can derive the following two families of inequalities. Figure 5.6

presents a numerical example to illustrate the previous operations inequalities.

As we proposed in the �rst section, the following inequalities, based on precedence

reasoning, hold :

Cmax ≥ pij + yij +
∑
j′∈J

pij′ z̄oijoij′ , ∀j ∈ J,∀i ∈M, (5.30)

Cmax ≥ pij + yij +
∑
i′∈M

pi′j z̄oijoi′j , ∀j ∈ J,∀i ∈M, (5.31)
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O11 O12 O13m1

Figure 5.7 � Logical implication on one machine.

O33

Cmax
↑

m3

O23m2

O13m1

Figure 5.8 � Logical implication between operations.

Logical implication inequalities

Here, we adapt the logical implication for the operations.Le us consider machine i ∈M
and jobs j1, j2, j3 ∈ J . We introduce the following valid inequalities :

z̄Oi,j1 ,Oi,j2 + z̄Oi,j2 ,Oi,j3 ≤ 1 + z̄Oi,j1 ,Oi,j3 , (5.32)

This implication is related to the same machine for di�erent operations. Figure 5.7 illus-

trates the idea behind : when operation O11 is before operation O12 and operation O12 is

before operation O13, then operation O11 is before operation O13.

This implication can be also applied to the operations as in Figure 5.8.

Considering job j ∈ J and the machine i1, i2, i3 ∈ M , we introduce the following valid

inequalities :

z̄Oi1,j ,Oi2,j + z̄Oi2,j ,Oi3,j ≤ 1 + z̄Oi1,j ,Oi3,j , (5.33)

In the next subsection, we present the computational experiments performed to test

the e�ectiveness of the proposed inequalities.
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5.3. Open shop problem

5.3.3 Experimental results

The experimental results were performed for several sets of instances. First, we report

the instances of Taillard. In these instances, every operation is assigned to a given machine

without considering the order of the operations. Detailed description about this instances

is available in [109]. The entries of the table are :

� name : name of the instance

� method : 0 basic model ;1 sequence inequalities, and logical implication ;2 conditional

inequalities ; 3 previous inequalities ;4 logical implication ;5 all inequalities[1 to 4] ;

6 only conditional and previous job ; 7 : add(1,3,4) ; 8 : add(1,2,3,4) ; 9 :add(1,3) ;

10 : add(1,2,3).

� CPU : cpu time (limit 1 hour).

� LB ILP : lower bound found by our model.

� UB ILP : upper bound found by our model.

� LB : lower bound given in the �le of the instance.

� UB : upper bound given in the �le of the instance.

� Nb Nodes : number of nodes in the branching tree.

� Status : AbortTimeLim : No solution found within the 1 hour ; Optimal : found

optimal solution ; MemLimInfeas : The limited memory not enough for more bran-

ching.

In order to show the e�ciency of our inequalities and to see the di�erence between all

inequalities we used CPLEX 12.4 solver with JAVA on DualCorei7, CPU 2.4 GHz. Tables

5.2, 5.3, 5.4 and 5.5 report the obtained results for the Open Shop model and its valid

inequalities for di�erent sized problems. In Table 5.2, it is clear that the basic model does

not solve all problems within the limited resources (time and RAM). When we add the

conditional and previous inequalities, the solutions for all instances are obtained within

reasonable computation time. However, when we add the conditional inequalities alone,

or the previous inequalities alone, they do not solve all the problems, but they just solve

50% of 77 problems. The logical implication inequalities do not show an important im-

provement to the basic model when these inequalities are added alone. We can also see

that when we add all the inequalities, all problems are solved within the best CPU time.

From these results, we can say that the addition of all the families of inequalities improved

the computation time of the basic model. In Table 5.3, we tested another combination of

inequalities to solve the instances (10 10). From the obtained results, we can also observe

that all the problems have been solved except one problem (not solved within one hour)
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when we add the combination of inequalities (sequence, previous and logical implication).

It is also worthy to notice that the best CPU time obtained by the combination of the

sequence and previous inequalities. Table 5.4 reports the results for instances (15 15). Ac-

cording to these results, the related problems are not easy to solve within the limited time

and the memory space. Thus, few number of problems have been solved. The combination

of the sequence and previous inequalities allows us to obtain some optimal solutions. It is

also the same case, when we add to this combination the conditional inequalities (i.e., we

obtained the same number of the optimal solutions). The gap between the obtained UB

ILP and LB ILP does not exceed 5%.

Table 5.5 reports the results for instances of (20 20). Within the adjusted time to one

hour, no problem has been solved for this size. But, we can see the small gaps between

the UB and LB obtained by the ILP. All of them appear when we add the combination

of sequence and previous inequalities.

5.4 Conclusion

In this chapter, we considered two parallel-machine scheduling problems. The �rst

problem is the generalized open shop with disjunctive constraints. To the best of our

knowledge there is no mathematical model for this problem. The second problem is the

standard open shop problem. The aim is to minimize the maximum completion time.

To deal with these problems, two mathematical models were proposed. We derived some

classes of valid inequalities. We also added the interval subgraph separation algorithms

for the generalized open shop problem. We adapted the derived valid inequalities to the

open shop mathematical formulation. The results on some instances show that the basic

models can solve the small size instances to optimality, and the generalized model shows

the e�ciency of adding the cutting plane inequalities proposed in Chapter 4, which can

divide the gaps by 2 to 5. The derived valid inequalities show an important improvement

of the computation time for the two models. We believe that the design of new classes

of valid inequalities and the incorporation of further separation algorithms will improve

the computation times of our models and it will lead to optimal solutions for some of the

unsolved instances.
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5.4. Conclusion

name method CPU LB ILP UB ILP lb ub nodes Status
taillard7 7 0 0 3600 410 435 435 438 2280194 AbortTimeLim
taillard7 7 0 1 12 435 435 435 438 20001 Optimal
taillard7 7 0 2 1288 435 435 435 438 1417451 OptimalTol
taillard7 7 0 3 136 435 435 435 438 126604 Optimal
taillard7 7 0 4 3600 427 435 435 438 3953672 AbortTimeLim
taillard7 7 0 5 2 435 435 435 438 1482 Optimal
taillard7 7 0 6 55 435 435 435 438 84226 Optimal
taillard7 7 1 0 3600 436 443 443 449 3877579 AbortTimeLim
taillard7 7 1 1 5 443 443 443 449 7161 Optimal
taillard7 7 1 2 3600 431 443 443 449 3141616 AbortTimeLim
taillard7 7 1 3 227 443 443 443 449 252160 Optimal
taillard7 7 1 4 3600 436 443 443 449 1755340 AbortTimeLim
taillard7 7 1 5 6 443 443 443 449 3029 Optimal
taillard7 7 1 6 305 443 443 443 449 276375 Optimal
taillard7 7 2 0 1394 468 468 468 479 1600501 OptimalTol
taillard7 7 2 1 470 468 468 468 479 1065452 Optimal
taillard7 7 2 2 3600 429 468 468 479 2763775 AbortTimeLim
taillard7 7 2 3 14 468 468 468 479 10898 Optimal
taillard7 7 2 4 109 468 468 468 479 91748 OptimalTol
taillard7 7 2 5 30 468 468 468 479 15622 Optimal
taillard7 7 2 6 26 468 468 468 479 14559 Optimal
taillard7 7 3 0 52 463 463 463 467 61095 OptimalTol
taillard7 7 3 1 25 463 463 463 467 55909 Optimal
taillard7 7 3 2 3600 457 463 463 467 3753894 AbortTimeLim
taillard7 7 3 3 3 463 463 463 467 3605 Optimal
taillard7 7 3 4 3600 439 463 463 467 1960948 AbortTimeLim
taillard7 7 3 5 5 463 463 463 467 2717 Optimal
taillard7 7 3 6 7 463 463 463 467 4017 Optimal
taillard7 7 4 0 96 416 416 416 419 113490 OptimalTol
taillard7 7 4 1 7 416 416 416 419 11797 Optimal
taillard7 7 4 2 111 416 416 416 419 108925 Optimal
taillard7 7 4 3 4 416 416 416 419 3190 Optimal
taillard7 7 4 4 1377 416 416 416 419 1467035 OptimalTol
taillard7 7 4 5 2 416 416 416 419 1659 Optimal
taillard7 7 4 6 5 416 416 416 419 4074 Optimal
taillard7 7 5 0 3600 439 451 451 460 2153465 AbortTimeLim
taillard7 7 5 1 893 451 451 451 460 1702917 Optimal
taillard7 7 5 2 104 451 451 451 460 157809 Optimal
taillard7 7 5 3 120 451 451 451 460 158977 Optimal
taillard7 7 5 4 3600 401 451 451 460 1839871 AbortTimeLim
taillard7 7 5 5 34 451 451 451 460 19285 Optimal
taillard7 7 5 6 33 451 451 451 460 20461 Optimal
taillard7 7 6 0 1143 422 422 422 435 962496 OptimalTol
taillard7 7 6 1 169 422 422 422 435 307675 Optimal
taillard7 7 6 2 169 422 422 422 435 152148 Optimal
taillard7 7 6 3 10 422 422 422 435 11140 Optimal
taillard7 7 6 4 3600 404 422 422 435 1694336 AbortTimeLim
taillard7 7 6 5 21 422 422 422 435 12358 Optimal
taillard7 7 6 6 37 422 422 422 435 28226 Optimal
taillard7 7 7 0 35 424 424 424 426 60107 OptimalTol
taillard7 7 7 1 0 424 424 424 426 0 Optimal
taillard7 7 7 2 3600 420 424 424 426 4260918 AbortTimeLim
taillard7 7 7 3 34 424 424 424 426 67727 Optimal
taillard7 7 7 4 26 424 424 424 426 28765 OptimalTol
taillard7 7 7 5 1 424 424 424 426 521 Optimal
taillard7 7 7 6 78 424 424 424 426 127959 Optimal
taillard7 7 8 0 254 458 458 458 460 198988 OptimalTol
taillard7 7 8 1 0 458 458 458 460 883 Optimal
taillard7 7 8 2 2401 458 458 458 460 2874228 Optimal
taillard7 7 8 3 1 458 458 458 460 1224 Optimal
taillard7 7 8 4 1422 458 458 458 460 931297 OptimalTol
taillard7 7 8 5 2 458 458 458 460 1433 Optimal
taillard7 7 8 6 2 458 458 458 460 1768 Optimal
taillard7 7 9 0 120 398 398 398 400 144714 OptimalTol
taillard7 7 9 1 0 398 398 398 400 731 Optimal
taillard7 7 9 2 3600 369 398 398 400 1984622 AbortTimeLim
taillard7 7 9 3 4 398 398 398 400 4252 Optimal
taillard7 7 9 4 15 398 398 398 400 15112 OptimalTol
taillard7 7 9 5 0 398 398 398 400 0 Optimal
taillard7 7 9 6 2 398 398 398 400 3047 Optimal

Table 5.2 � Number of optimal solutions obtained.
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name method time LB ILP UB ILP lb ub nodes status
taillard10 10 0 7 370 637 637 637 652 60177 Optimal
taillard10 10 0 8 2767 637 637 637 652 509746 Optimal
taillard10 10 0 9 1320 637 637 637 652 716200 Optimal
taillard10 10 0 10 318 637 637 637 652 59542 Optimal
taillard10 10 1 7 3600 588 589 588 596 263243 AbortTimeLim
taillard10 10 1 8 138 588 588 588 596 22275 Optimal
taillard10 10 1 9 17 588 588 588 596 5115 Optimal
taillard10 10 1 10 27 588 588 588 596 7054 Optimal
taillard10 10 2 7 3502 598 598 598 617 207390 Optimal
taillard10 10 2 8 735 598 598 598 617 76285 Optimal
taillard10 10 2 9 128 598 598 598 617 68884 Optimal
taillard10 10 2 10 85 598 598 598 617 31821 Optimal
taillard10 10 3 7 36 577 577 577 581 4533 Optimal
taillard10 10 3 8 16 577 577 577 581 3099 Optimal
taillard10 10 3 9 18 577 577 577 581 8237 Optimal
taillard10 10 3 10 21 577 577 577 581 4493 Optimal
taillard10 10 4 7 136 640 640 640 657 21179 Optimal
taillard10 10 4 8 429 640 640 640 657 90436 Optimal
taillard10 10 4 9 27 640 640 640 657 10299 Optimal
taillard10 10 4 10 212 640 640 640 657 107261 Optimal
taillard10 10 5 7 45 538 538 538 545 4758 Optimal
taillard10 10 5 8 104 538 538 538 545 16536 Optimal
taillard10 10 5 9 15 538 538 538 545 3038 Optimal
taillard10 10 5 10 24 538 538 538 545 5524 Optimal
taillard10 10 6 7 29 616 616 616 623 2292 Optimal
taillard10 10 6 8 103 616 616 616 623 14769 Optimal
taillard10 10 6 9 269 616 616 616 623 146553 Optimal
taillard10 10 6 10 22 616 616 616 623 6938 Optimal
taillard10 10 7 7 80 595 595 595 606 11411 Optimal
taillard10 10 7 8 107 595 595 595 606 13793 Optimal
taillard10 10 7 9 17 595 595 595 606 4923 Optimal
taillard10 10 7 10 69 595 595 595 606 25884 Optimal
taillard10 10 8 7 59 595 595 595 606 9833 Optimal
taillard10 10 8 8 237 595 595 595 606 31298 Optimal
taillard10 10 8 9 57 595 595 595 606 27753 Optimal
taillard10 10 8 10 115 595 595 595 606 47695 Optimal
taillard10 10 9 7 48 596 596 596 604 6100 Optimal
taillard10 10 9 8 237 596 596 596 604 40515 Optimal
taillard10 10 9 9 11 596 596 596 604 4510 Optimal
taillard10 10 9 10 28 596 596 596 604 9797 Optimal

Table 5.3 � Number of optimal solutions obtained.
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name method time LB ILP UB ILP gap lb ub nodes status
taillard15 15 0 7 1233 937 956 1.99 937 956 16338 MemLimFeas
taillard15 15 0 8 3572 937 937 0.00 937 956 72686 Optimal
taillard15 15 0 9 3600 937 947 1.06 937 956 517809 AbortTimeLim
taillard15 15 0 10 2638 937 937 0.00 937 956 475219 Optimal
taillard15 15 1 7 3600 918 939 2.24 918 957 34301 AbortTimeLim
taillard15 15 1 8 3600 918 954 3.77 918 957 59266 AbortTimeLim
taillard15 15 1 9 1550 918 949 3.27 918 957 76726 MemLimFeas
taillard15 15 1 10 3600 918 933 1.61 918 957 610624 AbortTimeLim
taillard15 15 2 7 952 871 897 2.90 871 899 16983 MemLimFeas
taillard15 15 2 8 3600 871 896 2.79 871 899 54762 AbortTimeLim
taillard15 15 2 9 462 871 871 0.00 871 899 82995 Optimal
taillard15 15 2 10 3600 871 872 0.11 871 899 505148 AbortTimeLim
taillard15 15 3 7 1450 934 942 0.85 934 946 27800 MemLimFeas
taillard15 15 3 8 3600 934 937 0.32 934 946 52356 AbortTimeLim
taillard15 15 3 9 3600 934 940 0.64 934 946 364704 AbortTimeLim
taillard15 15 3 10 1518 934 934 0.00 934 946 255462 Optimal
taillard15 15 4 7 3600 946 990 4.44 946 992 19375 AbortTimeLim
taillard15 15 4 8 3600 946 990 4.44 946 992 54201 AbortTimeLim
taillard15 15 4 9 3600 946 949 0.32 946 992 222656 AbortTimeLim
taillard15 15 4 10 3600 946 969 2.37 946 992 577703 AbortTimeLim
taillard15 15 5 7 1336 933 956 2.41 933 959 20458 MemLimFeas
taillard15 15 5 8 3600 933 955 2.30 933 959 48663 AbortTimeLim
taillard15 15 5 9 299 933 933 0.00 933 959 54583 Optimal
taillard15 15 5 10 3525 933 933 0.00 933 959 557028 Optimal
taillard15 15 6 7 793 891 928 3.99 891 931 14393 MemLimFeas
taillard15 15 6 8 3600 891 925 3.68 891 931 92441 AbortTimeLim
taillard15 15 6 9 3600 891 893 0.22 891 931 948307 AbortTimeLim
taillard15 15 6 10 3600 891 897 0.67 891 931 993133 AbortTimeLim
taillard15 15 7 7 619 893 916 2.51 893 916 14173 MemLimFeas
taillard15 15 7 8 3600 893 900 0.78 893 916 94041 AbortTimeLim
taillard15 15 7 9 455 893 893 0.00 893 916 108151 Optimal
taillard15 15 7 10 1613 893 893 0.00 893 916 414890 Optimal
taillard15 15 8 7 3600 899 911 1.32 899 951 95415 AbortTimeLim
taillard15 15 8 8 3600 899 943 4.67 899 951 109120 AbortTimeLim
taillard15 15 8 9 3600 899 900 0.11 899 951 877150 AbortTimeLim
taillard15 15 8 10 3600 899 914 1.64 899 951 1046262 AbortTimeLim
taillard15 15 9 7 631 12226 MemLimInfeas
taillard15 15 9 8 3600 902 931 3.11 902 935 99270 AbortTimeLim
taillard15 15 9 9 431 902 902 0.00 902 935 98569 Optimal
taillard15 15 9 10 3600 902 912 1.10 902 935 1166219 AbortTimeLim

Table 5.4 � Number of optimal solutions obtained.
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name method time LB ILP UB ILP gap lb ub nodes status
taillard20 20 0 7 3600 1210 1155 1215 AbortTimeLim
taillard20 20 0 8 3091 1155 1215 MemLimInfeas
taillard20 20 0 9 440 1155 1215 MemLimInfeas
taillard20 20 0 10 3600 1155 1203 4.16 1155 1215 418184 AbortTimeLim
taillard20 20 1 7 894 1241 1332 MemLimInfeas
taillard20 20 1 8 3602 1241 1332 MemLimInfeas
taillard20 20 1 9 882 1241 1331 7.25 1241 1332 26232 MemLimFeas
taillard20 20 1 10 3600 1241 1331 7.25 1241 1332 95021 AbortTimeLim
taillard20 20 2 7 3600 1257 1294 AbortTimeLim
taillard20 20 2 8 731 1257 1294 MemLimInfeas
taillard20 20 2 9 270 1257 1292 2.78 1257 1294 17669 MemLimFeas
taillard20 20 2 10 3600 1257 1294 AbortTimeLim
taillard20 20 3 7 2412 1248 1310 MemLimInfeas
taillard20 20 3 8 929 1248 1310 MemLimInfeas
taillard20 20 3 9 689 1248 1309 4.89 1248 1310 20594 MemLimFeas
taillard20 20 3 10 3600 1248 1310 4.97 1248 1310 92297 AbortTimeLim
taillard20 20 4 7 3600 1256 1301 AbortTimeLim
taillard20 20 4 8 2929 1256 1301 MemLimInfeas
taillard20 20 4 9 3600 1256 1300 3.50 1256 1301 282077 AbortTimeLim
taillard20 20 4 10 3600 1256 1301 AbortTimeLim
taillard20 20 5 7 3600 1204 1252 AbortTimeLim
taillard20 20 5 8 2841 1204 1252 MemLimInfeas
taillard20 20 5 9 310 1204 1242 3.16 1204 1252 18846 MemLimFeas
taillard20 20 5 10 3262 1204 1250 3.82 1204 1252 415290 MemLimFeas
taillard20 20 6 7 3600 1294 1352 AbortTimeLim
taillard20 20 6 8 2778 1294 1352 MemLimInfeas
taillard20 20 6 9 400 1294 1352 4.48 1294 1352 18467 MemLimFeas
taillard20 20 6 10 3600 1294 1351 4.40 1294 1352 94174 AbortTimeLim
taillard20 20 7 7 3600 1169 1269 AbortTimeLim
taillard20 20 7 8 1295 1169 1269 MemLimInfeas
taillard20 20 7 9 3600 1169 1269 AbortTimeLim
taillard20 20 7 10 3600 1169 1258 7.61 1169 1269 107821 AbortTimeLim
taillard20 20 8 7 3600 1289 1322 AbortTimeLim
taillard20 20 8 8 2611 1289 1322 MemLimInfeas
taillard20 20 8 9 572 1289 1322 2.56 1289 1322 20666 MemLimFeas
taillard20 20 8 10 3600 1289 1322 2.56 1289 1322 102128 AbortTimeLim
taillard20 20 9 7 3600 1241 1284 AbortTimeLim
taillard20 20 9 8 806 1241 1284 MemLimInfeas
taillard20 20 9 9 413 1241 1280 3.14 1241 1284 18195 MemLimFeas
taillard20 20 9 10 3600 1241 1284 3.46 1241 1284 106041 AbortTimeLim

Table 5.5 � Number of optimal solutions obtained.
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6

General Conclusion and Perspectives

Due to increasing demand, scheduling in cloud environment attracted much attention

in recent years. Several scheduling problems have been recently addressed in cloud com-

puting research �eld. Nonetheless, scheduling in cloud computing still lacks some research

e�orts, because of the everyday growing of this recent technology.

In this thesis, we consider the scheduling problem in cloud computing, which is formu-

lated as an unrelated parallel-machine scheduling problem under precedence constraints

(URPMPC) and as a generalized case of open shop problem under disjonctive constraints.

For solving these problems we applied di�erent combinatorial optimization techniques.

To attack URPMPC, we proposed several genetic algorithms for job scheduling problem

in cloud computing with the objective of minimizing the makespan (Cmax). We also wor-

ked on di�erent exact approaches. We studied the mathematical formulations that are

found in literature. Moreover, we proposed a novel mathematical formulations based on

interval graph. The main di�erence between these formulations is the way the makes-

pan has been linearized. The facial structure of the polytope generated by interval graph

model is investigated to de�ne some facets. There is an important piece of information

contained in this model but it cannot know if the jobs run at the same time or not.

There are some applications that require such an information, especially in some cloud

computing security based models. We improved the interval graph formulation by adding

valid inequalities based on the forbidden interval subgraph and some heuristics to solve

the clique problem or �nd the smallest non interval subgraphs. Furthermore, we proposed

other inequalities based on SPT (Shortest Processing Time). Some heuristics are used to

separate the inequality based on the SPT. We also present a polyhedral study for the pro-

blem of interval and m-clique free graphs. A polyhedral investigation of the convex hull of
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these vectors yielded several results on inequalities de�ning facets for this new polytope.

We have also applied the obtained results to the problem of unrelated parallel-machine

with disjunctive constraints. We designed and implemented a branch-and-cut algorithms

based on families of strong valid inequalities presented in this chapter. We separate some

forbidden subgraphs. The results in heuristics and metaheuristic show that the perfor-

mances of our proposed genetic algorithms have been compared against one of the best

existing genetic algorithm for the same problem. After extensive comparisons, we can

conclude that the proposed algorithms can improve the solutions obtained. In the exact

solutions, we studied and evaluated the e�ectiveness and e�ciency of our model and the

other models. Intensive numerical experiments are conducted. The obtained results show

the e�ectiveness of the interval graph formulation compared to the available formulations

except the order formulation. Computational results show that the addition of the valid

inequalities decreases the computational requirements to obtain the optimal solution in

many cases.

Finally, we considered the generalized open shop with disjunctive constraints and the

open shop scheduling problem. To the best of our knowledge there is no mathematical mo-

del for this problem. To tackle these problems, two mathematical models are constructed.

We derived some classes of valid inequalities. We also add the interval subgraph sepa-

ration algorithms for the generalized open shop problem. We adapted the derived valid

inequalities to the open shop mathematical formulation. The results on some instances

show that the basic models can solve the small size instances to optimality. The generali-

zed model shows the e�ciency of adding the cutting plane inequalities and the reduction

of the gap between upper and lower bounds. The derived valid inequalities show a good

improvement of the computational time for the two models.

We can conclude that, in this thesis we developed di�erent approaches to tackle the

scheduling problem in cloud computing. Three novel genetic algorithms based and three

novel mathematical models with interesting theoretical results in polyhedral analysis were

proposed. The class of scheduling problems in cloud computing has di�erent perspectives

in terms of optimization criteria (minimization of total completion time and other objec-

tives). Moreover, we need to develop other heuristics for the branch and cut, to derive

new classes of valid inequalities and to incorporate further separation algorithms, in order

to improve the computation time of our models. Furthermore, for the theoretical point of

view, the identi�cation of further relaxations to de�ne more facets will be interesting in

such problems. It will be also interesting to work on branch and price methods. Finally,
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another interesting topic regarding scheduling problem in cloud computing is to consider

the multiobjective optimization context.
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