J. Folkman, Role of angiogenesis in tumor growth and metastasis, Seminars in Oncology, vol.29, issue.6Q, pp.15-18, 2002.
DOI : 10.1053/sonc.2002.37263

D. J. Hicklin and L. M. Ellis, Role of the Vascular Endothelial Growth Factor Pathway in Tumor Growth and Angiogenesis, Journal of Clinical Oncology, vol.23, issue.5, pp.1011-1027, 2005.
DOI : 10.1200/JCO.2005.06.081

N. Ferrara, K. J. Hillan, H. P. Gerber, and W. Novotny, Case history: Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer, Nature Reviews Drug Discovery, vol.81, issue.5, pp.391-400, 2004.
DOI : 10.1038/nrd1381

L. Q. Chow and S. G. Eckhardt, Sunitinib: From Rational Design to Clinical Efficacy, Journal of Clinical Oncology, vol.25, issue.7, pp.884-896, 2007.
DOI : 10.1200/JCO.2006.06.3602

J. Hasskarl, Sorafenib: Targeting Multiple Tyrosine Kinases in Cancer, Recent Results Cancer Res, vol.201, pp.145-164, 2014.
DOI : 10.1007/978-3-642-54490-3_8

C. J. Allegra, Phase III Trial Assessing Bevacizumab in Stages II and III Carcinoma of the Colon: Results of NSABP Protocol C-08, Journal of Clinical Oncology, vol.29, issue.1, pp.11-16, 2011.
DOI : 10.1200/JCO.2010.30.0855

H. L. Kindler, Gemcitabine Plus Bevacizumab Compared With Gemcitabine Plus Placebo in Patients With Advanced Pancreatic Cancer: Phase III Trial of the Cancer and Leukemia Group B (CALGB 80303), Journal of Clinical Oncology, vol.28, issue.22, pp.3617-3622, 2010.
DOI : 10.1200/JCO.2010.28.1386

R. K. Jain, D. G. Duda, J. W. Clark, and J. S. Loeffler, Lessons from phase III clinical trials on anti-VEGF therapy for cancer, Nature Clinical Practice Oncology, vol.25, issue.1, pp.24-40, 2006.
DOI : 10.1038/ncponc0403

M. I. Koukourakis, Early Antivascular Effects of Bevacizumab Anti-VEGF Monoclonal Antibody on Colorectal Carcinomas Assessed With Functional CT Imaging, American Journal of Clinical Oncology, vol.30, issue.3, pp.315-318, 2007.
DOI : 10.1097/01.coc.0000258119.90805.ca

C. G. Willett, Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer, Nature Medicine, vol.10, issue.2, pp.145-147, 2004.
DOI : 10.1038/nm988

P. V. Dickson, Bevacizumab-Induced Transient Remodeling of the Vasculature in Neuroblastoma Xenografts Results in Improved Delivery and Efficacy of Systemically Administered Chemotherapy, Clinical Cancer Research, vol.13, issue.13, pp.3942-3950, 2007.
DOI : 10.1158/1078-0432.CCR-07-0278

A. R. Anderson and M. A. Chaplain, Continuous and Discrete Mathematical Models of Tumor-induced Angiogenesis, Bulletin of Mathematical Biology, vol.60, issue.5, pp.857-899, 1998.
DOI : 10.1006/bulm.1998.0042

A. Onofrio, A. Gandolfi, and A. Rocca, The dynamics of tumour-vasculature interaction suggests low-dose, time-dense anti-angiogenic schedulings, Cell Proliferation, vol.356, issue.18S, Suppl, pp.317-329, 2009.
DOI : 10.1111/j.1365-2184.2009.00595.x

P. Hahnfeldt, D. Panigrahy, J. Folkman, and L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res, vol.59, pp.4770-4775, 1999.

F. Lignet, Theoretical investigation of the efficacy of antiangiogenic drugs combined to chemotherapy in xenografted mice, Journal of Theoretical Biology, vol.320, pp.86-99, 2013.
DOI : 10.1016/j.jtbi.2012.12.013

URL : https://hal.archives-ouvertes.fr/hal-00785876

B. Ribba, A model of vascular tumour growth in mice combining longitudinal tumour size data with histological biomarkers, European Journal of Cancer, vol.47, issue.3, pp.479-490, 2011.
DOI : 10.1016/j.ejca.2010.10.003

URL : https://hal.archives-ouvertes.fr/inria-00539594

R. Sachs, L. Hlatky, and P. Hahnfeldt, Simple ODE models of tumor growth and antiangiogenic or radiation treatment, Math. Comput. Model, vol.33, pp.12-13, 2001.

B. Ribba, A Review of Mixed-Effects Models of Tumor Growth and Effects of Anticancer Drug Treatment Used in Population Analysis, CPT Pharmacometrics Syst. Pharmacol., vol.59, issue.5, p.113, 2014.
DOI : 10.1016/j.jtbi.2012.12.013

M. Simeoni, G. De-nicolao, P. Magni, M. Rocchetti, and I. Poggesi, Modeling of human tumor xenografts and dose rationale in oncology, Drug Discovery Today: Technologies, vol.10, issue.3, pp.365-372, 2013.
DOI : 10.1016/j.ddtec.2012.07.004

M. Simeoni, Predictive Pharmacokinetic-Pharmacodynamic Modeling of Tumor Growth Kinetics in Xenograft Models after Administration of Anticancer Agents, Cancer Research, vol.64, issue.3, pp.1094-1101, 2004.
DOI : 10.1158/0008-5472.CAN-03-2524

M. Rocchetti, Predictive pharmacokinetic???pharmacodynamic modeling of tumor growth after administration of an anti-angiogenic agent, bevacizumab, as single-agent and combination therapy in tumor xenografts, Cancer Chemotherapy and Pharmacology, vol.12, issue.4770, pp.1147-1157, 2013.
DOI : 10.1007/s00280-013-2107-z

L. B. Saltz, Phase II Trial of Sunitinib in Patients With Metastatic Colorectal Cancer After Failure of Standard Therapy, Journal of Clinical Oncology, vol.25, issue.30, pp.4793-4799, 2007.
DOI : 10.1200/JCO.2007.12.8637

P. Jacqmin, Modelling Response Time Profiles in the Absence of Drug Concentrations: Definition and Performance Evaluation of the K???PD Model, Journal of Pharmacokinetics and Pharmacodynamics, vol.77, issue.1, pp.57-85, 2007.
DOI : 10.1007/s10928-006-9035-z

N. Terranova, M. Germani, F. Del-bene, and P. Magni, A predictive pharmacokinetic???pharmacodynamic model of tumor growth kinetics in xenograft mice after administration of anticancer agents given in combination, Cancer Chemotherapy and Pharmacology, vol.83, issue.2, pp.471-482, 2013.
DOI : 10.1007/s00280-013-2208-8

W. R. Greco, G. Bravo, and J. C. Parsons, The search for synergy: a critical review from a response surface perspective, Pharmacol. Rev, vol.47, issue.2, pp.331-385, 1995.